Sample records for zero-gravity surface figure

  1. On Calculating the Zero-Gravity Surface Figure of a Mirror

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2010-01-01

    An analysis of the classical method of calculating the zero-gravity surface figure of a mirror from surface-figure measurements in the presence of gravity has led to improved understanding of conditions under which the calculations are valid. In this method, one measures the surface figure in two or more gravity- reversed configurations, then calculates the zero-gravity surface figure as the average of the surface figures determined from these measurements. It is now understood that gravity reversal is not, by itself, sufficient to ensure validity of the calculations: It is also necessary to reverse mounting forces, for which purpose one must ensure that mountingfixture/ mirror contacts are located either at the same places or else sufficiently close to the same places in both gravity-reversed configurations. It is usually not practical to locate the contacts at the same places, raising the question of how close is sufficiently close. The criterion for sufficient closeness is embodied in the St. Venant principle, which, in the present context, translates to a requirement that the distance between corresponding gravity-reversed mounting positions be small in comparison to their distances to the optical surface of the mirror. The necessity of reversing mount forces is apparent in the behavior of the equations familiar from finite element analysis (FEA) that govern deformation of the mirror.

  2. Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.; Lam, Jonathan C.; Feria, V. Alfonso; Chang, Zensheu

    2007-01-01

    The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.

  3. Extracting Zero-Gravity Surface Figure of a Mirror

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.; Lam, Jonathan C.; Feria, Alfonso; Chang, Zensheu

    2011-01-01

    The technical innovation involves refinement of the classic optical technique of averaging surface measurements made in different orientations with respect to gravity, so the effects of gravity cancel in the averaged image. Particularly for large, thin mirrors subject to substantial deformation, the further requirement is that mount forces must also cancel when averaged over measurement orientations. The zerogravity surface figure of a mirror in a hexapod mount is obtained by analyzing the summation of mount forces in the frame of the optic as surface metrology is averaged over multiple clockings. This is illustrated with measurements taken from the Space Interferometry Mission (SIM) PT-Ml mirror for both twofold and threefold clocking. The positive results of these measurements and analyses indicate that, from this perspective, a lighter mirror could be used; that is, one might place less reliance on the damping effects of the elliptic partial differential equations that describe the propagation of forces through glass. The advantage over prior art is relaxing the need for an otherwise substantial thickness of glass that might be needed to ensure accurate metrology in the absence of a detailed understanding and analysis of the mount forces. The general insights developed here are new, and provide the basic design principles on which mirror mount geometry may be chosen.

  4. Development of a large support surface for an air-bearing type zero-gravity simulator

    NASA Technical Reports Server (NTRS)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  5. Zero-gravity movement studies

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  6. BOILING HEAT TRANSFER IN ZERO GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, E.A.

    1964-01-01

    The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less

  7. Tribology experiment in zero gravity

    NASA Technical Reports Server (NTRS)

    Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.

    1984-01-01

    A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates studies of the motion of liquid lubricants over solid surfaces as controlled by interfacial and capillary forces. Observations were made of phenomena associated with the liquid on one solid surface and also with the liquid between a pair of closely spaced surfaces. Typical photographic records obtained on Spacelab 1 are described.

  8. An experimental and analytical investigation of thermoacoustic convection heat transfer in gravity and zero-gravity environments

    NASA Technical Reports Server (NTRS)

    Parang, Masood

    1986-01-01

    An experimental and analytical study of Thermoacoustic Convection heat transfer in gravity and zero-gravity environments is presented. The experimental apparatus consisted of a cylinder containing air as a fluid. The side wall of the cylinder was insulated while the bottom wall was allowed to remain at the ambient temperature. The enclosed air was rapidly heated by the top surface which consisted of a thin stainless steel foil connected to a battery pack as the power source. Thermocouples were used to measure the transient temperature of the air on the axis of the cylinder. The ouput of the thermocouples was displayed on digital thermometers and the temperature displays were recorded on film using a high-speed movie camera. Temperature measurements were obtained in the zero-gravity environment by dropping the apparatus in the 2-Seconds Zero-Gravity Drop Tower Facilities of NASA Lewis Research Center. In addition, experiments were also performed in the gravity environment and the results are compared in detail with those obtained under zero-gravity conditions.

  9. Zero-gravity open-type urine receptacle

    NASA Technical Reports Server (NTRS)

    Girala, A. S.

    1972-01-01

    The development of the zero-gravity open-type urine receptacle used in the Apollo command module is described. This type receptacle eliminates the need for a cuff-type urine collector or for the penis to circumferentially contact the receptacle in order to urinate. This device may be used in a gravity environment, varying from zero gravity to earth gravity, such as may be experienced in a space station or space base.

  10. Zero-gravity quantity gaging system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Zero-Gravity Quantity Gaging System program is a technology development effort funded by NASA-LeRC and contracted by NASA-JSC to develop and evaluate zero-gravity quantity gaging system concepts suitable for application to large, on-orbit cryogenic oxygen and hydrogen tankage. The contract effective date was 28 May 1985. During performance of the program, 18 potential quantity gaging approaches were investigated for their merit and suitability for gaging two-phase cryogenic oxygen and hydrogen in zero-gravity conditions. These approaches were subjected to a comprehensive trade study and selection process, which found that the RF modal quantity gaging approach was the most suitable for both liquid oxygen and liquid hydrogen applications. This selection was made with NASA-JSC concurrence.

  11. Zero-gravity aerosol behavior

    NASA Technical Reports Server (NTRS)

    Edwards, H. W.

    1981-01-01

    The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.

  12. Combustion of solid carbon rods in zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.; Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Dewitt, K. J.

    1979-01-01

    In order to investigate the mechanism of carbon combustion, spectroscopic carbon rods were resistance ignited and burned in an oxygen environment in normal and zero gravity. Direct mass spectrometric sampling was used in the normal gravity tests to obtain concentration profiles of CO2, CO, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnant film model. Zero gravity droptower tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 5, 10, 15, and 20 psia was obtained for three different diameter rods. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.

  13. Marangoni bubble motion in zero gravity. [Lewis zero gravity drop tower

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Dewitt, K. J.

    1979-01-01

    It was shown experimentally that the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low gravity environment. A mathematical model consisting of the Navier-Stokes and thermal energy equations, together with the appropriate boundary conditions for both media, is presented. Parameter perturbation theory is used to solve this boundary value problem; the expansion parameter is the Marangoni number. The zeroth, first, and second order approximations for the velocity, temperature and pressure distributions in the liquid and in the bubble, and the deformation and terminal velocity of the bubble are determined. Experimental zero gravity data for a nitrogen bubble in ethylene glycol, ethanol, and silicone oil subjected to a linear temperature gradient were obtained using the NASA Lewis zero gravity drop tower. Comparison of the zeroth order analytical results for the bubble terminal velocity showed good agreement with the experimental measurements. The first and second order solutions for the bubble deformation and bubble terminal velocity are valid for liquids having Prandtl numbers on the order of one, but there is a lack of appropriate data to test the theory fully.

  14. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  15. Zero-gravity cloud physics.

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.

    1972-01-01

    The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.

  16. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  17. Zero-gravity venting of three refrigerants

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Aydelott, J. C.; Amling, G. E.

    1974-01-01

    An experimental investigation of venting cylindrical containers partially filled with initially saturated liquids under zero-gravity conditions was conducted in the NASA Lewis Research Center 5-second zero-gravity facility. The effect of interfacial mass transfer on the ullage pressure response during venting was analytically determined, based on a conduction analysis applied to an infinitely planer (flat) liquid-vapor interface. This pressure response was compared with both the experimental results and an adiabatic decompression computation.

  18. Tribology Experiment in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.

    2015-01-01

    A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.

  19. Space truss zero gravity dynamics

    NASA Technical Reports Server (NTRS)

    Swanson, Andy

    1989-01-01

    The Structural Dynamics Branch of the Air Force Flight Dynamics Laboratory in cooperation with the Reduced Gravity Office of the NASA Lyndon B. Johnson Space Center (JSC) plans to perform zero-gravity dynamic tests of a 12-meter truss structure. This presentation describes the program and presents all results obtained to date.

  20. Criticality in the slowed-down boiling crisis at zero gravity.

    PubMed

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  1. Surfing surface gravity waves

    NASA Astrophysics Data System (ADS)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  2. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    NASA Astrophysics Data System (ADS)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport

  3. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  4. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1977-01-01

    The free surface shapes of circular liquid jets impinging normal to sharp-edged disks in zero gravity are determined. Zero gravity drop tower experiments yielded three distinct flow patterns that were classified in terms of the relative effects of surface tension and inertial forces. An order of magnitude analysis was conducted that indicated regions where viscous forces were not significant in the computation of free surface shapes. The free surface analysis was simplified by transforming the governing potential flow equations and boundary conditions into the inverse plane, where the stream function and velocity potential became the coordinates. The resulting nonlinear equations were solved by standard finite difference methods, and comparisons were made with the experimental data for the inertia dominated regime.

  5. Astronaut Edwin Aldrin undergoes zero-gravity training aboard KC-135

    NASA Image and Video Library

    1969-07-15

    S69-39269 (10 July 1969) --- Astronaut Edwin E. Aldrin Jr., lunar module pilot of the Apollo 11 lunar landing mission, undergoes zero-gravity training aboard a U.S. Air Force KC-135 jet aircraft from nearby Patrick Air Force Base, Florida. Aldrin is wearing an Extravehicular Mobility Unit (EMU), the type of equipment which he will wear on the lunar surface.

  6. Experiments with the Skylab fire detectors in zero gravity

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.

    1972-01-01

    The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.

  7. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    NASA Technical Reports Server (NTRS)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  8. A helium-3/helium-4 dilution cryocooler for operation in zero gravity

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.

    1988-01-01

    This research effort covered the development of He-3/He-4 dilution cryocooler cycles for use in zero gravity. The dilution cryocooler is currently the method of choice for producing temperatures below 0.3 Kelvin in the laboratory. However, the current dilution cryocooler depends on gravity for their operation, so some modification is required for zero gravity operation. In this effort, we have demonstrated, by analysis, that the zero gravity dilution cryocooler is feasible. We have developed a cycle that uses He-3 circulation, and an alternate cycle that uses superfluid He-4 circulation. The key elements of both cycles were demonstrated experimentally. The development of a true 'zero-gravity' dilution cryocooler is now possible, and should be undertaken in a follow-on effort.

  9. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a

  10. The response of single human cells to zero gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Schulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.

    1974-01-01

    The SO15 experiment was designed to extend observations of the effects of zero-gravity to living human cells during and subsequent to a 59-day flight on Skylab 3. A strain of diploid human embryonic lung cells, WI-38, was chosen for this purpose. The studies were concerned with observations designed to detect the effects of zero-gravity on cell growth rates and on cell structure as observed by light microscopy, transmission and scanning electron microscopy and histochemistry. Studies of the effects of zero-gravity on the cell function and the cell cycle were performed by time lapse motion picture photography and microspectrophotometry. Subsequent study of the returned living cells included karotyping, G- and C-banding, and analyses of the culture media used. Some of the living cells returned were banked by deep freeze techniques for possible future experiments.

  11. Gravity and Zero Point Energy

    NASA Astrophysics Data System (ADS)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  12. Zero-Gravity Research Facility Drop Test (2/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  13. Zero-Gravity Research Facility Drop Test (1/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  14. Zero-Gravity Research Facility Drop Test (3/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  15. Zero-Gravity Research Facility Drop Test (4/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  16. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All space Shuttle flights were suspended, including logistics support for the International Space Station. NASA LaRC s Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by JSC. At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net- gravity alone.

  17. Zero gravity tissue-culture laboratory

    NASA Technical Reports Server (NTRS)

    Cook, J. E.; Montgomery, P. O., Jr.; Paul, J. S.

    1972-01-01

    Hardware was developed for performing experiments to detect the effects that zero gravity may have on living human cells. The hardware is composed of a timelapse camera that photographs the activity of cell specimens and an experiment module in which a variety of living-cell experiments can be performed using interchangeable modules. The experiment is scheduled for the first manned Skylab mission.

  18. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All Space Shuttle flights were suspended, including logistics support for the International Space Station. NASA Langley Research Center s (LaRC) Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by Johnson Space Center (JSC). At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net-gravity alone.

  19. Subject Load-Harness Interaction During Zero-Gravity Treadmill Exercise

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.; Baron, Heidi A.; Derr, Janice A.; Davis, Brian L.; Cavanagh, Peter R.

    1996-01-01

    When astronauts exercise on orbit, a subject load device (SLD) must be used to return the subject back to the supporting surface. The load in the SLD needs to be transferred the body by a harness which typically distributes this load between the pelvis and We shoulders. Through the use of a zero-gravity simulator, this research compared subject comfort and ground reaction forces during treadmill running at three levels of subject load (60%,80%, and 100% of body weight) in two harness designs ("shoulder only" and "waist "and shoulder ").

  20. The behavior of surface tension on steady-state rotating fluids in the low gravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Leslie, Fred W.

    1987-01-01

    The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.

  1. DEM simulation of the granular Maxwell's Demon under zero gravity

    NASA Astrophysics Data System (ADS)

    Wang, Wenguang; Zhou, Zhigang; Zong, Jin; Hou, Meiying

    2017-06-01

    In this work, granular segregation in a two-compartment cell (Maxwell's Demon) under zero gravity is studied numerically by DEM simulation for comparison with the experimental observation in satellite SJ-10. The effect of three parameters: the total number of particlesN, the excitation strengthΓ, and the position of the window coupling the two compartments, on the segregationɛ and the waiting timeτ are investigated. In the simulation, non-zero segregation under zero gravity is obtained, and the segregation ɛ is found independent of the excitation strengthΓ. The waiting time τ, however, depends strongly onΓ. For higher acceleration Γ, |ɛi| reaches steady state valueɛ faster.

  2. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  3. Equilibrium shape of (4)He crystal under zero gravity below 200 mK.

    PubMed

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-10-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. (4)He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of (4)He. We report the relaxation processes of macroscopic (4)He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened (4)He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff's origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained.

  4. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  5. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  6. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  7. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  8. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  9. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  10. Equilibrium shape of 4He crystal under zero gravity below 200 mK

    PubMed Central

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-01-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. 4He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of 4He. We report the relaxation processes of macroscopic 4He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened 4He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff’s origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained. PMID:26601315

  11. Laboratory outreach: student assessment of flow cytometer fluidics in zero gravity.

    PubMed

    Crucian, B; Norman, J; Brentz, J; Pietrzyk, R; Sams, C

    2000-10-01

    Due to the the clinical utility of the flow cytometer, the National Aeronautics and Space Administration (NASA) is interested in the design of a space flight-compatible cytometer for use on long-duration space missions. Because fluid behavior is altered dramatically during space flight, it was deemed necessary to validate the principles of hydrodynamic focusing and laminar flow (cytometer fluidics) in a true microgravity environment. An experiment to validate these properties was conducted by 12 students from Sweetwater High School (Sweetwater, TX) participating in the NASA Reduced Gravity Student Flight Opportunity, Class of 2000. This program allows high school students to gain scientific experience by conducting an experiment on the NASA KC-135 zero gravity laboratory aircraft. The KC-135 creates actual zero-gravity conditions in 30-second intervals by flying a highly inclined parabolic flight path. The experiment was designed by their mentor in the program, the Johnson Space Center's flow cytometrist Brian Crucian, PhD, MT(ASCP). The students performed the experiment, with the mentor, onboard the NASA zero-gravity research aircraft in April 2000.

  12. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  13. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  14. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  15. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  16. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  17. The response of single human cells to zero gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Schulz, W. W.; Stock, D.; Kinzey, S.; Rogers, T.; Campbell, D.

    1975-01-01

    Twenty separate cultures of Wistar-38 human embryonic lung cells were exposed to a zero-gravity environment on Skylab for periods of time ranging from one to 59 days. Duplicate cultures were run concurrently as ground controls. Ten cultures were fixed on board the satellite during the first 12 days of flight. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of the fixed cells revealed no effects of a zero-gravity environment on the ten cultures. Two cultures were photographed with phase time lapse cinematography during the first 27 days of flight. No differences were found in mitotic index, cell cycle, and migration between the flight and control cells. Eight cultures were returned to earth in an incubated state. Karyotyping and chromosome banding tests show no differences between the flight and control cells.

  18. Future utilization of space: Silverton Conference on material science and phase transformations in zero-gravity, summary of proceeding

    NASA Technical Reports Server (NTRS)

    Eisner, M. (Editor)

    1975-01-01

    The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest.

  19. Development of coatings to control electroosmosis in zero gravity electrophoresis

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.

    1974-01-01

    A major problem confronting the operation of free fluid electrophoresis in zero gravity is the control of electrokinetic phenomena and, in particular, electroosmosis. Due to the severity of counter flow, as a result of electroosmosis, the electrical potential developed at the surface of shear must be maintained at near, or as close to, zero millivolts as possible. Based upon this investigation, it has been found that the amount of bound water or the degree of hydroxylation plays a major role in the control of this phenomena. Of necessity, factors, such as adhesion, biocompatibility, protein adsorption, and insolubility were considered in this investigation because of the long buffer-coating exposure times required by present space operations. Based upon tests employing microcapillary electrophoresis, it has been found that gamma amino propyl trihydroxysilane produced a coating which provides the lowest potential (minus 3.86 mv) at the surface of shear between the stationary and mobile layers. This coating has been soaked in both borate and saline buffers, up to three months, in a pH range of 6.5 to 10 without deleterious effects or a change in its ability to control electrokinetic effects.

  20. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1976-01-01

    An experimental and analytical investigation was conducted to determine the free surface shapes of circular liquid jets impinging normal to sharp-edged disks under both normal and zero gravity conditions. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The demarcation between the viscous and inviscid region was found to depend upon the flow Reynolds number and the ratio between the jet and disk radius.

  1. Keyhole and weld shapes for plasma arc welding under normal and zero gravity

    NASA Technical Reports Server (NTRS)

    Keanini, R. G.; Rubinsky, B.

    1990-01-01

    A first order study of the interfacial (keyhole) shape between a penetrating argon plasma arc jet and a stationary liquid metal weld pool is presented. The interface is determined using the Young-Laplace equation by assuming that the plasma jet behaves as a one-dimensional ideal gas flow and by neglecting flow within the weld pool. The solution for the keyhole shape allows an approximate determination of the liquid-solid metal phase boundary location based on the assumption that the liquid melt is a stagnant thermal boundary layer. Parametric studies examine the effect of plasma mass flow rate, initial plasma enthalpy, liquid metal surface tension, and jet shear on weldment shape under both normal and zero gravity. Among the more important findings of this study is that keyhole and weld geometries are minimally affected by gravity, suggesting that data gathered under gravity can be used in planning in-space welding.

  2. Behavior of the lean methane-air flame at zero-gravity

    NASA Technical Reports Server (NTRS)

    Noe, K. A.; Strehlow, R. A.

    1985-01-01

    A special rig was designed and constructed to be compatible with the NASA Lewis Research Center Airborne Research Laboratory to allow the study of the effect of gravity on the behavior of lean limit in a standard 50.4 mm (2 in.) internal diameter tube when the mixtures are ignited at the open end and propagate towards the closed end of the tube. The lean limit at zero gravity was found to be 5.10% methane and the flame was found to extenguish in a manner previously observed for downward propagating flames at one g. It was observed that g-jitter could be maintained at less than + or 0.04 g on most zero g trajectories. All of propagating lean limit flames were found to be sporadically cellularly unstable at zero g. There was no observable correlation between the occurrence of g-jitter and the lean limit, average propagation speed of the flame through the tube or the occurrence of cellular instability.

  3. Middeck zero-gravity dynamics experiment - Comparison of ground and flight test data

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of the changes in the modal parameters of space structural test articles from one- to zero-gravity is presented. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, made on a spring/wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity level.

  4. Astronaut Gregory Jarvis during KC-135 zero gravity training

    NASA Image and Video Library

    1985-01-25

    S85-26106 (25 Jan. 1985) --- Astronaut Gregory Jarvis gets a familiarization session in weightlessness aboard a KC-135 "zero gravity" aircraft. Jarvis was originally assigned as payload specialist to STS-51D but was reassigned to STS-51L. Photo credit: NASA

  5. Ball Lightning in Zero Gravity in the Laboratory

    NASA Astrophysics Data System (ADS)

    Alexeff, Igor; Parameswaran, Sriram; Grace, Michael

    2004-11-01

    We have created balls of orange plasma in atmospheric - pressure air that survive for over 1/2 second without power input. The technique used was to create a pulsed horizontal electric arc in a zero - gravity environment using 6 neon - sign transformers in parallel, each producing 16,000 V at 60 mA. The zero - gravity environment reduces heat losses by reducing thermal convection, creating a larger ball. Previous work (1) suggests that the ball lifetime scales as the square of the ball radius. The balls were photographed after power turnoff with a high - speed 16 mm movie camera. Movies of the balls being formed and decaying will be shown. We suggest that there are several other forms of ball lightning (2). 1.Igor Alexeff et. al. International Conference On Plasma Science, Jeju, Korea, June 2-5, 2003, Conference Record, p 254. 2. Igor Alexeff and Mark Rader, IEEE Transactions on Plasma Science, Vol. 20, No. 6, Dec. 1992, pp.669-671. Igor Alexeff and Mark Rader, Fusion Technology, Vol. 27, May 1995, p. 271.

  6. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  7. The response of single human cells to zero-gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Shulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.

    1977-01-01

    Microscopic and histochemical evaluations of human embrionic lung cells after exposure to zero-gravity are reported. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of fixed cells revealed no effects on the cultures. Minor unexplained differences have been found in biochemical constituents of the samples.

  8. The electrical properties of zero-gravity processed immiscibles

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Otto, G. H.

    1974-01-01

    When dispersed or mixed immiscibles are solidified on earth, a large amount of separation of the constituents takes place due to differences in densities. However, when the immiscibles are dispersed and solidified in zero-gravity, density separation does not occur, and unique composite solids can be formed with many new and promising electrical properties. By measuring the electrical resistivity and superconducting critical temperature, Tc, of zero-g processed Ga-Bi samples, it has been found that the electrical properties of such materials are entirely different from the basic constituents and the ground control samples. Our results indicate that space processed immiscible materials may form an entirely new class of electronic materials.

  9. Binding of alpha-fetoprotein by immobilized monoclonal antibodies during episodes of zero-gravity obtained by parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Guikema, James A.; Barnes, Grady

    1990-01-01

    Alpha-fetoprotein (AFP), a single-chain polypeptide which is synthesized by the liver and yolk sac of the human fetus, provided a model ligand for assessing the effects of microgravity on ligand binding to surface-immobilized model receptor molecules. Monoclonal antibodies, used as receptors for AFP, were immobilized by covalent attachment to latex microparticles. Zero gravity environment was obtained by parabolic flight aboard NASA 930, a modified KC-135 aircraft. Buring the onset of an episode of zero gravity, ligand and receptor were mixed. Timed incubation (20 s) was terminated by centrifugation, the supernatant removed, and microparticies were assessed for bound AFP by immunochemical methods. The extent of binding was not influenced by microgravity, when compared with 1-G controls, which suggests that aberrant cellular activities observed in microgravity are not the simple expression of altered macromolecular interactions.

  10. Device for mass measurement under zero-gravity conditions.

    PubMed

    Sarychev, V A; Sazonov, V V; Zlatorunsky, A S; Khlopina, S F; Egorov, A D; Somov, V I

    1980-06-01

    The problem considered in this paper is the investigation of the properties of a mass-meter, i.e. the device for determining the mass of cosmonaut's body under zero-gravity conditions. The estimates of accuracy of mass measurement by this device are given, and the results of measuring the masses of cosmonauts' bodies on the Salyut 5 and 6 orbital stations are presented.

  11. An Innovative 6-DOF Platform for Testing a Space Robotic System to Perform Contact Tasks in Zero-Gravity Environment

    DTIC Science & Technology

    2013-10-21

    Platform for Testing a Space Robotic System to Perform Contact Tasks in Zero- Gravity Environment 5a. CONTRACT NUMBER FA9453-11-1-0306 5b...SUBJECT TERMS Microgravity, zero gravity , test platform, simulation, gravity offloading 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...4  3.3  Principle of Gravity Offloading

  12. Containing Hair During Cutting In Zero Gravity

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1992-01-01

    Proposed device collects loose hair during barbering and shaving in zero gravity to prevent hair clippings from contaminating cabin of spacecraft. Folds for storage, opens into clear, bubblelike plastic dome surrounding user's head, tray fits around user's throat, and fanlike ring surrounds back of neck. Device fits snugly but comfortably around neck, preventing hair from escaping to outside. Flow of air into hose connected to suction pump removes hair from bubble as cut. Filter at end of hose collects hair.

  13. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    1999-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.

  14. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    2001-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.

  15. Combustion of solid carbon rods in zero and normal gravity. Ph.D. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.

    1981-01-01

    In order to investigate the mechanism of carbon combustion and to assess the importance of gravitational induced convection on the process, zero and normal gravity experiments were conducted in which spectroscopic carbon rods were resistance ignitied and burned in dry oxygen environments. In the zero-gravity drop tower tests, a blue flame surrounded the rod, showing that a gas phase reaction in which carbon monoxide was oxidized to carbon dioxide was taking place. The ratio of flame diameter to rod diameter was obtained as a function of time. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter. In the normal gravity tests, direct mass spectrometric sampling was used to measure gas phase concentrations. The gas sampling probe was positioned near the circumference of a horizontally mounted 0.615 cm diameter carbon rod, either at the top or at angles of 45 deg to 90 deg from the top, and yielded concentration profiles of CO2, CO, and O2 as a function of distance from the surface. The mechanism controlling the combustion process was found to change from chemical process control at the 90 deg and 45 deg probe positions to mass transfer control at the 0 deg probe position at the top of the rod. Under the experimental conditions used, carbon combustion was characterized by two surface reactions, 2C + O2 yields 2CO and CO2 + C yields 2CO, and a gas phase reaction, 2CO + O2 yields 2CO2.

  16. Modeling of zero gravity venting: Studies of two-phase heat transfer under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, H., Jr.

    1986-01-01

    The objective is to predict the pressure response of a saturated liquid-vapor system when undergoing a venting or depressurization process in zero gravity at low vent rates. An experimental investigation of the venting of cylindrical containers partially filled with initially saturated liquids was previously conducted under zero-gravity conditions and compared with an analytical model which incorporated the effect of interfacial mass transfer on the ullage pressure response during venting. A new model is presented to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated to approximate the transient temperature response of the interface, treating the liquid as a semi-infinite solid with conduction heat transfer. Account is also taken of the condensation taking place within the bulk of a saturated vapor as isentropic expansion takes place. Computational results are presented for the venting of R-11 from a given vessel and initial state for five different venting rates over a period of three seconds, and compared to prior NASA experiments. An improvement in the prediction of the final pressure takes place, but is still considerably below the measurements.

  17. Grounding the figure: surface attachment influences figure-ground organization.

    PubMed

    Vecera, Shaun P; Palmer, Stephen E

    2006-08-01

    We investigated whether the lower region effect on figure-ground organization (Vecera, Vogel, and Woodman, 2002) would generalize to contextual depth planes in vertical orientations, as is predicted by a theoretical analysis based on the ecological statistics of edges arising from objects that are attached to surfaces of support. Observers viewed left/right ambiguous figure-ground displays that occluded middle sections of four types of contextual inducers: two types of attached, receding, vertical planes (walls) that used linear perspective and/or texture gradients to induce perceived depth and two types of similar trapezoidal control figures that used either uniform color or random texture to reduce or eliminate perceived depth. The results showed a reliable bias toward seeing as "figure" the side of the figure-ground display that was attached to the receding depth plane, but no such bias for the corresponding side in either of the control conditions. The results are interpreted as being consistent with the attachment hypothesis that the lower region cue to figure-ground organization results from ecological biases in edge interpretation that arise when objects are attached to supporting surfaces in the terrestrial gravitational field.

  18. Preliminary drop-tower experiments on liquid-interface geometry in partially filled containers at zero gravity

    NASA Technical Reports Server (NTRS)

    Smedley, G.

    1990-01-01

    Plexiglass containers with rounded trapezoidal cross sections were designed and built to test the validity of Concus and Finn's existence theorem (1974, 1983) for a bounded free liquid surface at zero gravity. Experiments were carried out at the NASA Lewis two-second drop tower. Dyed ethanol-water solutions and three immiscible liquid pairs, with one liquid dyed, were tested. High-speed movies were used to record the liquid motion. Liquid rose to the top of the smaller end of the containers when the contact angle was small enough, in agreement with the theory. Liquid interface motion demonstrated a strong dependence on physical properties, including surface roughness and contamination.

  19. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A o...

  20. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  1. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  2. STS-42 Payload Specialist Merbold inside KC-135 during zero gravity flight

    NASA Image and Video Library

    1988-05-24

    S88-37966 (2 Oct 1988) --- European Space Agency payload specialists Ulf Merbold (STS-42, right) and Reinhold Furrer (STS 61-A) get the "feel" of zero-gravity aboard NASA's KC-135 aircraft over the Gulf of Mexico.

  3. Clean Room in the Zero Gravity Research Facility

    NASA Image and Video Library

    1968-07-21

    A technician prepares a test sample in the Zero Gravity Research Facility clean room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Zero Gravity Research Facility contained a drop tower which provided five seconds of microgravity during freefall in its 450-foot deep vacuum chamber. The facility has been used for a variety of studies relating to the behavior of fluids and flames in microgravity. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the special ten-second drops in which the package was pneumatically shot to the top of the tower then dropped. The facility also contained a control room, shop offices, tool and equipment rooms, and this clean room. The 242.5-foot long and 19.5-foot wide clean room was equipped with specialized cleaning equipment. In the 1960s the room was rated as a class 10,000 clean room, but I was capable of meeting the class 100 requirements. The room included a fume hood, ultrasonic cleaner, and a laminar flow station which operated as a class 100 environment. The environment in the clean room was maintained at 71° F and a relative humidity of 45- percent.

  4. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-07

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

  5. Possible correlation between annual gravity change and shallow background seismicity rate at subduction zone by surface load

    NASA Astrophysics Data System (ADS)

    Mitsui, Yuta; Yamada, Kyohei

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) has monitored global gravity changes since 2002. Gravity changes are considered to represent hydrological water mass movements around the surface of the globe, although fault slip of a large earthquake also causes perturbation of gravity. Since surface water movements are expected to affect earthquake occurrences via elastic surface load or pore-fluid pressure increase, correlation between gravity changes and occurrences of small (not large) earthquakes may reflect the effects of surface water movements. In the present study, we focus on earthquakes smaller than magnitude 7.5 and examine the relation between annual gravity changes and earthquake occurrences at worldwide subduction zones. First, we extract amplitudes of annual gravity changes from GRACE data for land. Next, we estimate background seismicity rates in the epidemic-type aftershock sequence model from shallow seismicity data having magnitudes of over 4.5. Then, we perform correlation analysis of the amplitudes of the annual gravity changes and the shallow background seismicity rates, excluding source areas of large earthquakes, and find moderate positive correlation. It implies that annual water movements can activate shallow earthquakes, although the surface load elastostatic stress changes are on the order of or below 1 kPa, as small as a regional case in a previous study. We speculate that periodic stress perturbation is amplified through nonlinear responses of frictional faults.[Figure not available: see fulltext.

  6. A Water-Immersion Technique for the Study of Mobility of a Pressure-Suited Subject Under Balanced-Gravity Conditions

    DTIC Science & Technology

    1966-01-01

    simulating zero-gravity performance of an astronaut in a pressurized spacesuit by complete water immersion has been developed and inves- tigated. The...critical operational characteristics relating to space- craft and spacesuit design under conditions of zero gravity. In addition, the physical...the legs of the suit and are contained by insulated flight boots . The Mark IV suit used in the tests is shown in figure 1. 3 Pressure-Suit

  7. Separation of biogenic materials by electrophoresis under zero gravity (L-3)

    NASA Technical Reports Server (NTRS)

    Kuroda, Masao

    1993-01-01

    Electrophoresis separates electrically charged materials by imposing a voltage between electrodes. Though free-flow electrophoresis is used without carriers such as colloids to separate and purify biogenic materials including biogenic cells and proteins in blood, its resolving power and separation efficiency is very low on Earth due to sedimentation, flotation, and thermal convection caused by the specific gravity differences between separated materials and buffer solutions. The objective of this experiment is to make a comparative study of various electrophoresis conditions on the ground and in zero-gravity in order to ultimately develop a method for separating various important 'vial' components which are difficult to separate on the ground.

  8. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, James D.; Greeley, Ronald

    1987-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  9. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.; Greeley, R.

    1986-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in Earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  10. Surface reconstruction, figure-ground modulation, and border-ownership.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2013-01-01

    The Differentiation-Integration for Surface Completion (DISC) model aims to explain the reconstruction of visual surfaces. We find the model a valuable contribution to our understanding of figure-ground organization. We point out that, next to border-ownership, neurons in visual cortex code whether surface elements belong to a figure or the background and that this is influenced by attention. We furthermore suggest that there must be strong links between object recognition and figure-ground assignment in order to resolve the status of interior contours. Incorporation of these factors in neurocomputational models will further improve our understanding of surface reconstruction, figure-ground organization, and border-ownership.

  11. Muscle and the physiology of locomotion. [in zero gravity

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Nicogossian, A. E.; Pool, S. L.

    1983-01-01

    NASA's past, current, and planned research on muscle deterioration at zero gravity and development of countermeasures are reviewed; Soviet studies are discussed as well. A definition of muscle mass and strength regulation factors, and improved measurement methods of muscle atrophy are needed. Investigations of tissue growth factors and their receptors, endogenous and exogenous anabolic protein synthesis stimulation, and a potential neurotropic factor are among the projects in progress or planned. At present, vigorous physical exercise during spaceflight is recommended as the most effective countermeasure against skeletal muscle atrophy.

  12. Plasma surface figuring of large optical components

    NASA Astrophysics Data System (ADS)

    Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.

    2012-04-01

    Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.

  13. Soldering Tested in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Pettegrew, Richard D.; Watson, J. Kevin; Down, Robert S.; Haylett, Daniel R.

    2005-01-01

    Whether used occasionally for contingency repair or routinely in nominal repair operations, soldering will become increasingly important to the success of future long-duration human space missions. As a result, it will be critical to have a thorough understanding of the service characteristics of solder joints produced in reduced-gravity environments. The National Center for Space Exploration Research (via the Research for Design program), the NASA Glenn Research Center, and the NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole (see the drawing and image on the preceding figure) and surface-mounted devices are being investigated. This effort (the low-gravity portion being conducted on NASA s KC-135 research aircraft) uses the soldering hardware currently available on the International Space Station. The experiment involves manual soldering by a contingent of test operators, including both highly skilled technicians and less skilled individuals to provide a skill mix that might be encountered in space mission crews. The experiment uses both flux-cored solder and solid-core solder with an externally applied flux. Other experimental parameters include the type of flux, gravitational level (nominally zero,

  14. A Study of Blood Flow and of Aggregation of Blood Cells Under Conditions of Zero Gravity: Its Relevance to the Occlusive Diseases and Cancer

    NASA Technical Reports Server (NTRS)

    Dintenfass, L.

    1985-01-01

    The objectives of this program are: (1) to determine whether the size of red cell aggregates, kinetics and morphology of these aggregates are influenced by near-zero gravity; (2) whether viscosity, especially at low shear rate, is afflicted by near-zero gravity (the latter preventing sedimentation of red cells); (3) whether the actual shape of red cells changes; and (4) whether blood samples obtained from different donors (normal and patients suffering from different disorders) react in the same manner to near-zero gravity.

  15. Assessment of zero gravity effects on space worker health and safety

    NASA Technical Reports Server (NTRS)

    1980-01-01

    One objective of the study is to assess the effects of all currently known deviations from normal of medical, physiological, and biochemical parameters which appear to be due to zero gravity (zero-g) environment and to acceleration and deceleration to be experienced, as outlined in the references Solar Power Satellites (SPS) design, by space worker. Study results include identification of possible health or safety effects on space workers either immediate or delayed due to the zero gravity environment and acceleration and deceleration; estimation of the probability that an individual will be adversely affected; description of the possible consequence to work efficiency in persons adversely affected; and description of the possible/probable consequences to immediate and future health of individuals exposed to this environment. A research plan, which addresses the uncertainties in current knowledge regarding the health and safety hazards to exposed SPS space workers, is presented. Although most adverse affects experienced during space flight soon disappeared upon return to the Earth's environment, there remains a definite concern for the long-term effects to SPS space workers who might spend as much as half their time in space during a possible five year career period. The proposed 90 day up/90 day down cycle, coupled with the fact that most of the effects of weightlessness may persist throughout the flight along with the realization that recovery may occupy much of the terrestrial stay, may keep the SPS workers in a deviant physical condition or state of flux for 60 to 100% of their five year career.

  16. Astronaut Edwin Aldrin makes sandwich in zero gravity condition

    NASA Image and Video Library

    1969-07-22

    S69-39724 (22 July 1969) --- Astronaut Edwin E. Aldrin Jr., Apollo 11 lunar module pilot, performs for his Earth-bound television audience, in this color reproduction taken from a TV transmission, from the Apollo 11 spacecraft during its trans-Earth journey home from the moon. Aldrin illustrates how to make a sandwich under zero-gravity conditions. When this picture was made, Apollo 11 was approximately 137,000 nautical miles from Earth, traveling at a speed of about 4,300 feet per second. Also, aboard the spacecraft were astronauts Neil A. Armstrong, commander; and Michael Collins, command module pilot.

  17. ASTRONAUT YOUNG, JOHN W. - ZERO-GRAVITY (ZERO-G) - KC-135

    NASA Image and Video Library

    1978-12-15

    S79-30347 (31 March 1979) --- Taking advantage of a brief period of zero-gravity afforded aboard a KC-135 flying a parabolic curve, the flight crew of the first space shuttle orbital flight test (STS-1) goes through a spacesuit donning exercise. Astronaut John W. Young has just entered the hard-material torso of the shuttle spacesuit by approaching it from below. He is assisted by astronaut Robert L. Crippen. The torso is held in place by a special stand here, simulating the function provided by the airlock wall aboard the actual shuttle craft. The life support system is mated to the torso on Earth and remains so during the flight, requiring this type of donning and doffing exercise. Note Crippen?s suit is the type to be used for intravehicular activity in the shirt sleeve environment to be afforded aboard shuttle. The suit worn by Young is for extravehicular activity (EVA). Young will be STS-1 commander and Crippen, pilot. They will man the space shuttle orbiter 102 Columbia. Photo credit: NASA

  18. Ion beam figuring of high-slope surfaces based on figure error compensation algorithm.

    PubMed

    Dai, Yifan; Liao, Wenlin; Zhou, Lin; Chen, Shanyong; Xie, Xuhui

    2010-12-01

    In a deterministic figuring process, it is critical to guarantee high stability of the removal function as well as the accuracy of the dwell time solution, which directly influence the convergence of the figuring process. Hence, when figuring steep optics, the ion beam is required to keep a perpendicular incidence, and a five-axis figuring machine is typically utilized. In this paper, however, a method for high-precision figuring of high-slope optics is proposed with a linear three-axis machine, allowing for inclined beam incidence. First, the changing rule of the removal function and the normal removal rate with the incidence angle is analyzed according to the removal characteristics of ion beam figuring (IBF). Then, we propose to reduce the influence of varying removal function and projection distortion on the dwell time solution by means of figure error compensation. Consequently, the incident ion beam is allowed to keep parallel to the optical axis. Simulations and experiments are given to verify the removal analysis. Finally, a figuring experiment is conducted on a linear three-axis IBF machine, which proves the validity of the method for high-slope surfaces. It takes two iterations and about 9 min to successfully figure a fused silica sample, whose aperture is 21.3 mm and radius of curvature is 16 mm. The root-mean-square figure error of the convex surface is reduced from 13.13 to 5.86 nm.

  19. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.

  20. Investigation of crystal growth in zero gravity environment and investigation of metallic whiskers

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lal, R. B.; Walter, H. U.; Castle, J. G., Jr.

    1972-01-01

    Theoretical and experimental work reported relates to the effects of near-zero gravity on growths of crystals and metallic whiskers during Skylab and Apollo flight experiments. Studies on growth and characterization of candidate materials for flight experiments cover indium-bismuth compounds, bismuth single crystals, gallium arsenide films and single crystals, and cadmium whiskers.

  1. Full-Scale Spacecraft Simulator Design for a 2D Zero Gravity Small Body Surface Sampling Validation

    NASA Astrophysics Data System (ADS)

    Mongelli, Marco

    NASA is developing several Touch-And-Go (TAG) classes of missions. These types of missions like the OSIRIS-REx asteroid sample return [1] or a comet sample return mission (CSSR)[2], consist usually in three phases: propulsive approach to the target, sampling and propulsion to move the spacecraft away from the target. The development of TAG mission, from concept to realization, is usually divided in two phases: Phase I discusses the major trades that could affect the mission architecture; Phase II focuses in detail on the design. This project of a spacecraft emulator fits into phase II and specifically on the way the spacecraft could react in absence of gravity while the Sample Acquisition System (SAS) is collecting the sample. A full-scale spacecraft on a 2D zero-friction environment has been designed. Also a propulsion system has been implemented to re-create the full dynamics of a spacecraft in space.

  2. Failures in sand in reduced gravity environments

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.

    2018-04-01

    The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.

  3. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Image and Video Library

    1991-08-21

    S91-44453 (21 Aug 1991) --- The crew of STS-45 is already training for its March 1992 mission, including stints on the KC-135 zero-gravity-simulating aircraft. Shown with an inflatable globe are, clockwise from the top, C. Michael Foale, mission specialist; Dirk Frimout, payload specialist; Brian Duffy, pilot; Charles R. (Rick) Chappell, backup payload specialist; Charles F. Bolden, mission commander; Byron K. Lichtenberg, payload specialist; and Kathryn D. Sullivan, payload commander.

  4. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    NASA Astrophysics Data System (ADS)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  5. Investigation of Propellant Sloshing and Zero Gravity Equilibrium for the Orion Service Module Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Kreppel, Samantha

    A scaled model of the downstream Orion service module propellant tank was constructed to asses the propellant dynamics under reduced and zero-gravity conditions. Flight and ground data from the experiment is currently being used to validate computational models of propel-lant dynamics in Orion-class propellant tanks. The high fidelity model includes the internal structures of the propellant management device (PMD) and the mass-gauging probe. Qualita-tive differences between experimental and CFD data are understood in terms of fluid dynamical scaling of inertial effects in the scaled system. Propellant configurations in zero-gravity were studied at a range of fill-fractions and the settling time for various docking maneuvers was determined. A clear understanding of the fluid dynamics within the tank is necessary to en-sure proper control of the spacecraft's flight and to maintain safe operation of this and future service modules. Understanding slosh dynamics in partially-filled propellant tanks is essential to assessing spacecraft stability.

  6. Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft

    NASA Astrophysics Data System (ADS)

    Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.

    2012-01-01

    For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.

  7. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope

    NASA Astrophysics Data System (ADS)

    Li, Zongxuan; Chen, Xue; Wang, Shaoju; Jin, Guang

    2017-12-01

    A flexural support technique for lightweighted Primary Mirror Assembly (PMA) of a space telescope is presented in this article. The proposed three-point flexural mount based on a cartwheel flexure can maintain the surface figure of the PMA in a horizontal optical testing layout. The on-orbit surface error of the PMA causes significant degradation in image quality. On-ground optical testing cannot determine the zero-gravity figure of the PMA due to surface distortion by gravity. We unveiled the crucial fact that through a delicate mounting structure design, the surface figure can remain constant precisely without inducing distinguishable astigmatism when PMA rotates with respect to the optical axis, and the figure can be considered as the zero-gravity surface figure on the orbit. A design case is described to show the lightweight design of a SiC mirror and the optimal flexural mounting. Topology optimization and integrated opto-mechanical analysis using the finite element method are utilized in the design process. The Primary Mirror and mounting structures were fabricated and assembled. After the PMA mirror surface was polished to λ/50 RMS, optical testing in different clocking configurations was performed, respectively, through rotating the PMA by multiple angles. Test results show that the surface figure remained invariant, indicating that gravity release on the orbit will not cause an additional surface error. Vibration tests including sweep sine and random vibration were also performed to validate the mechanical design. The requirements for the mounting technique in space were qualified.

  8. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    NASA Technical Reports Server (NTRS)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  9. Equilibrium fluid interface behavior under low- and zero-gravity conditions

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    We describe here some of our recent mathematical work, which forms a basis for the Interface Configuration Experiment scheduled for USML-2. The work relates to the design of apparatus that exploits microgravity conditions for accurate determination of contact angle. The underlying motivation for the procedures rests on a discontinuous dependence of the capillary free surface interface S on the contact angle gamma, in a cylindrical capillary tube whose section (base) omega contains a protruding corner with opening angle 2 alpha. Specifically, in a gravity-free environment, omega can be chosen so that, for all sufficiently large fluid volume, the height of S is uniquely determined as a (single-valued) function mu(x,y) entirely covering the base; the height mu is bounded over omega uniformly in gamma throughout the range absolute value of (gamma -(pion/2)) less than or equal to alpha, while for absolute value of (gamma - (pion/2)) greater than alpha fluid will necessarily move to the corner and uncover the base, rising to infinity (or falling to negative infinity) at the vertex, regardless of volume. We mention here only that procedures based on the phenomenon promise excellent accuracy when gamma is close pion/2 but may be subject to experimental error when gamma is close to zero (orpion), as the 'singular' part of the domain over which the fluid accumulates (or disappears) when a critical angle gamma theta is crossed then becomes very small and may be difficult to observe. We ignore the trivial case gamma is equal to pion/2 (planar free surface), to simplify the discussion.

  10. New Views of Earth's Gravity Field from GRACE

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Map 1Map 2

    Gravity and the Earth's Shape Gravity is the force that is responsible for the weight of an object and is determined by how the material that makes up the Earth is distributed throughout the Earth. Because gravity changes over the surface of the Earth, the weight of an object changes along with it. One can define standard gravity as the value of gravity for an perfectly smooth 'idealized' Earth, and the gravity 'anomaly' is a measure of how actual gravity deviates from this standard. Gravity reflects the Earth's surface topography to a high degree and is associated with features that most people are familiar with such as large mountains and deep ocean trenches.

    Progress in Measuring the Earth's Gravity Field Through GRACE Prior to GRACE, the Earth's gravity field was determined using measurements of varying quality from different satellites and of incomplete coverage. Consequently the accuracy and resolution of the gravity field were limited. As is shown in Figure 1, the long wavelength components of the gravity field determined from satellite tracking were limited to a resolution of approximately 700 km. At shorter wavelengths, the errors were too large to be useful. Only broad geophysical features of the Earth's structure could be detected (see map 1).

    In contrast, GRACE, by itself, has provided accurate gravity information with a resolution of 200 km. Now, much more detail is clearly evident in the Earth's geophysical features (see map 2). High resolution features detected by GRACE that are representative of geophysical phenomena include the Tonga/Kermadec region (a zone where one tectonic plate slides under another), the Himalayan/Tibetan Plateau region (an area of uplift due to colliding plates), and the mid-Atlantic ridge (an active spreading center in the middle of the Atlantic ocean where new crust is being created). Future GRACE gravity

  11. Gravity: first measurement on the lunar surface.

    PubMed

    Nance, R L

    1969-10-17

    The gravity at the landing site of the first lunar-landing mission has been determined to be 162,821.680 milligals from data telemetered to earth by the lunar module on the lunar surface. The gravity was measured with a pulsed integrating pendulous accelerometer. These measurements were used to compute the gravity anomaly and radius at the landing site.

  12. Existence, stability, and nonlinear dynamics of detached Bridgman growth states under zero gravity

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2011-01-01

    A thermocapillary model is used to study the existence, stability, and nonlinear dynamics of detached melt crystal growth in a vertical Bridgman system under zero gravity conditions. The model incorporates time-dependent heat, mass, and momentum transport, and accounts for temperature-dependent surface tension effects at the menisci bounding the melt. The positions of the menisci and phase-change boundary are computed to satisfy the conservation laws rigorously. A rich bifurcation structure in gap width versus pressure difference is uncovered, demarcating conditions under which growth with a stable gap is feasible. Thermal effects shift the bifurcation diagram to a slightly different pressure range, but do not alter its general structure. Necking and freeze-off are shown to be two different manifestations of the same instability mechanism. Supercooling of melt at the meniscus and low thermal gradients in the melt ahead of the crystal-melt-gas triple phase line, either of which may be destabilizing, are both observed under some conditions. The role of wetting and growth angles in dynamic shape stability is clarified.

  13. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation. Experiment MA-060

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1977-01-01

    Experiment MA-060 was designed to establish the crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero-g conditions. The interface demarcation technique was incorporated into the experiment since it constitutes a unique tool for recording the morphology of the growth rate throughout solidification, and for establishing an absolute time reference framework for all stages of the solidification process. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. There was no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground-based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  14. The study of single crystals for space processing and the effect of zero gravity

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1975-01-01

    A study was undertaken to analyze different growth techniques affected by a space environment. Literature on crystal growth from melt, vapor phase and float zone was reviewed and the physical phenomena important for crystal growth in zero-gravity environment was analyzed. Recommendations for potential areas of crystal growth feasible for space missions are presented and a bibliography of articles in the area of crystal growth in general is listed.

  15. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Astrophysics Data System (ADS)

    Ravex, Alain; Flachbart, Robin; Holt, Barney

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6

  16. Preliminary Concept, Specifications, and Requirements for a Zero-Gravity Combustion Facility for Spacelab

    NASA Technical Reports Server (NTRS)

    Dewitt, Richard L.

    1978-01-01

    The preliminary concept, specifications, and requirements of a reusable zero gravity combustion facility (0-GCF) for use by experimenters aboard the spacelab payload of the space transportation system (STS) orbiter are described. The facility will be amenable to any mission of the STS orbiter in which a spacelab habitable segment and pallet segment are integral and for which orbital mission plans specify induced accelerations of 0.0001 g or less for sufficiently long periods so as not to impact experiment performance.

  17. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  18. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves

  19. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.

    1976-01-01

    Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

  20. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  1. The Marshall Space Flight Center KC-135 zero gravity test program for FY 1982

    NASA Technical Reports Server (NTRS)

    Shurney, R. E. (Editor)

    1983-01-01

    During FY-82, researchers and experimenters from Marshall Space Flight Center (MSFC) conducted 11 separate investigations during 26.3 hr of testing aboard the KC-135 zero-gravity aircraft, based at Ellington Air force Base, Texas. Although this represented fewer hours than initially projected, all experiment and test objectives were met or exceeded. This Technical Memorandum compiles all results achieved by MSFC users during FY-82, a year considered to be highly productive.

  2. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  3. Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head-space tissue culture vessel

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.

    1991-01-01

    The gravity induced motions, through the culture media, is calculated of living tissue segments cultured in the NASA rotating zero head space culture vessels. This is then compared with the media perfusion speed which is independent of gravity. The results may be interpreted as a change in the physical environment which will occur by operating the NASA tissue culture systems in actual microgravity (versus unit gravity). The equations governing particle motions which induce flows at the surface of tissues contain g terms. This allows calculation of the fluid flow speed, with respect to a cultured particle, as a function of the external gravitational field strength. The analysis is approached from a flow field perspective. Flow is proportional to the shear exerted on a structure which maintains position within the field. The equations are solved for the deviation of a particle from its original position in a circular streamline as a function of time. The radial deviation is important for defining the operating limits and dimensions of the vessel because of the finite radius at which particles necessarily intercept the wall. This analysis uses a rotating reference frame concept.

  4. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, crewmembers and backup payload specialist participate in zero gravity activities onboard KC-135 NASA 930. The crewmembers, wearing flight suits, float and tumble around an inflated globe during the few seconds of microgravity created by parabolic flight. With his hand on the fuselage ceiling is Payload Specialist Dirk D. Frimout. Clockwise from his position are Mission Specialist (MS) C. Michael Foale, Pilot Brian Duffy, backup Payload Specialist Charles R. Chappell, MS and Payload Commander (PLC) Kathryn D. Sullivan (with eye glasses), Commander Charles F. Bolden, and Payload Specialist Byron K. Lichtenberg.

  5. Silverton Conference on Applications of the Zero Gravity Space Shuttle Environment to Problems in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Eisner, M. (Editor)

    1974-01-01

    The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.

  6. Containment of a silicone fluid free surface in reduced gravity using barrier coatings

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.; Jacobson, Thomas P.

    1988-01-01

    In support of the Surface Tension Driven Convection Experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec Drop Tower and the 5.0-sec Zero-G facility at the NASA Lewis Research Center. The dynamics of controlling the test fluid, a 10-cSt viscosity silicone fluid in a low gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating; a square edge, a sharp edge with a 45-deg slope, and a sawtooth edge. All three edge designs were successful in containing the fluid below the edge. G-jitter experiments were made in scaled down containers subjected to horizontal accelerations. The data showed that a barrier coating is effective in containing silicone fluid under g-levels up to 10 sup -1 sub g sub 0. In addition, a second barrier coating was found which has similar anti-wetting characteristics and is also more durable.

  7. Adiabatic demagnetization refrigerator for use in zero gravity

    NASA Technical Reports Server (NTRS)

    Dingus, Michael L.

    1988-01-01

    In this effort, a new design concept for an adiabatic demagnetization refrigerator (ADR) that is capable of operation in zero gravity has been developed. The design uses a vortex precooler to lower the initial temperature of magnetic salt from the initial space superfluid helium dewar of 1.8 K to 1.1 K. This reduces the required maximum magnetic field from 4 Tesla to 2 Tesla. The laboratory prototype vortex precooler reached a minimum temperature of 0.78 K, and had a cooling power of 1 mW at 1.1 K. A study was conducted to determine the dependence of vortex cooler performance on system element configuration. A superfluid filled capillary heat switch was used in the design. The laboratory prototype ADR reached a minimum temperature of 0.107 K, and maintained temperatures below 0.125 K for 90 minutes. Demagnetization was carried out from a maximum field of 2 T. A soft iron shield was developed that reduced the radial central field to 1 gauss at 0.25 meters.

  8. Zero-gravity Mean Free Surface Curvature of a Confined Liquid in a Radially-Vaned Container

    NASA Technical Reports Server (NTRS)

    Chen, Yongkang; Callahan, Michael; Weislogel, Mark

    2013-01-01

    A variety of increasingly intricate container geometries are under consideration for the passive manipulation of liquids aboard spacecraft where the impact of gravity may be neglected. In this study we examine the mean curvature of a liquid volume confined within a radial array of disconnected vanes of infinite extent. This particular geometry possesses a number of desirable characteristics relevant to waste water treatment aboard spacecraft for life support. It is observed that under certain conditions the slender shape of the free surface approaches an asymptote, which can be predicted analytically using new hybrid boundary conditions proposed herein. This contribution represents possibly the final extension of what has been referred to as the method of de Lazzer et al. (1996). The method enables the integration of the Young-Laplace equation over a domain with its boundaries, including the wetted portion of the solid boundaries, symmetry planes, and circular arcs representing free surfaces at the center plane of the liquid body. Asymptotic solutions at several limits are obtained and the analysis is confirmed with numerical computations.

  9. ZERO-G - Crippen, Robert L.

    NASA Image and Video Library

    1979-04-03

    Zero-gravity experiments in KC-135 conducted by John Young, Robert L. Crippen, Joseph Kerwin, and Margaret Seddon. 1. Kerwin, Joseph - Zero-G 2. Seddon, Margaret - Zero-G 3. Young, John - Zero-G 4. Aircraft - KC-135

  10. Low Gravity venting of Refrigerant 11

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Aydelott, J. C.; Lacovic, R. F.

    1972-01-01

    An experimental investigation was conducted in a five-second zero gravity facility to examine the effects of venting initially saturated Refrigerant 11 from a cylindrical container (15-cm diameter) under reduced gravitational conditions. The system Bond numbers studied were 0 (weightlessness), 9 and 63; the liquid exhibited a nearly zero-degree contact angle on the container surface. During the venting process, both liquid-vapor interface and liquid bulk vaporization occurred. The temperature of the liquid in the immediate vicinity of the liquid-vapor interface was found to decrease during venting, while the liquid bulk temperature remained constant. Qualitative observations of the effects of system acceleration, vent rate, and vapor volume presented. Quantitative information concerning the ullage pressure decay during low gravity venting is also included.

  11. A preliminary analysis of the data from experiment 77-13 and final report on glass fining experiments in zero gravity

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Meyyappan, M.; Smith, H. D.; Mattox, D. M.; Partlow, D. P.

    1981-01-01

    Thermal fining, thermal migration of bubbles under reduced gravity conditions, and data to verify current theoretical models of bubble location and temperatures as a function of time are discussed. A sample, sodium borate glass, was tested during 5 to 6 minutes of zero gravity during rocket flight. The test cell contained a heater strip; thermocouples were in the sample. At present quantitative data are insufficient to confirm results of theoretical calculations.

  12. Estimating the Volumes of Solid Figures with Curved Surfaces.

    ERIC Educational Resources Information Center

    Cohen, Donald

    1991-01-01

    Several examples of solid figures that calculus students can use to exercise their skills at estimating volume are presented. Although these figures are bounded by surfaces that are portions of regular cylinders, it is interesting to note that their volumes can be expressed as rational numbers. (JJK)

  13. The bricycle: a bicycle in zero gravity can be balanced or steered but not both

    NASA Astrophysics Data System (ADS)

    Dong, O.; Graham, C.; Grewal, A.; Parrucci, C.; Ruina, A.

    2014-12-01

    A bicycle or inverted pendulum can be balanced, that is kept nearly upright, by accelerating the base. This balance is achieved by steering on a bicycle. Simultaneously one can also control the lateral position of the base: changing of the track line of a bike or the position of hand under a balanced stick. We show here with theory and experiment that if the balance problem is removed, by making the system neutrally stable for balance, one cannot simultaneously maintain balance and control the position of the base. We made a bricycle, essentially a bicycle with springy training wheels. The stiffness of the training wheel suspension can be varied from near infinite, making the bricycle into a tricycle, to zero, making it effectively a bicycle. The springy training wheels effectively reduce or even negate gravity, at least for balance purposes. One might expect a smooth transition from tricycle to bicycle as the stiffness is varied, in terms of handling, balance and feel. Not so. At an intermediate stiffness, when gravity is effectively zeroed, riders can balance easily but no longer turn. Small turns cause an intolerable leaning. Thus there is a qualitative difference between bicycles and tricycles, a difference that cannot be met halfway.

  14. High-Accuracy Surface Figure Measurement of Silicon Mirrors at 80 K

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Davila, Pamela; Robinson, F. David

    2004-01-01

    This report describes the equipment, experimental methods, and first results at a new facility for interferometric measurement of cryogenically-cooled spherical mirrors at the Goddard Space Flight Center Optics Branch. The procedure, using standard phase-shifting interferometry, has an standard combined uncertainty of 3.6 nm rms in its representation of the two-dimensional surface figure error at 80, and an uncertainty of plus or minus 1 nm in the rms statistic itself. The first mirror tested was a concave spherical silicon foam-core mirror, with a clear aperture of 120 mm. The optic surface was measured at room temperature using standard absolute techniques; and then the change in surface figure error from room temperature to 80 K was measured. The mirror was cooled within a cryostat. and its surface figure error measured through a fused-silica window. The facility and techniques will be used to measure the surface figure error at 20K of prototype lightweight silicon carbide and Cesic mirrors developed by Galileo Avionica (Italy) for the European Space Agency (ESA).

  15. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation experiment MA-060, section 5

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.; Lichtensteiger, M.; Herman, C. J.

    1982-01-01

    The crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero g conditions were investigated. The germanium (doped with gallium) system was selected because it was extensively studied on Earth and because it lends itself to a very detailed macroscopic and microscopic characterization. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. On the basis of the results obtained to date, there is no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  16. Stress, temperature, heart rate, and hibernating factors in hamsters. [pathophysiological conditions resulting from exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1974-01-01

    Pathophysiological conditions resulting from prolonged exposure to zero gravity, cabin constraint, altered ambient environment, whether it be noise, vibrations, high temperatures, or combinations of such factors, are studied in laboratory animals and applied to manned space flight. Results and plans for further study are presented. Specific topics covered include: thermoregulation and its role in reflecting stress and adaptation to the gravity free environment and cabin confinement with its altered circadian forcings; renal function and its measurement in electrolyte distribution and blood flow dynamics; gastronintestinal function and an assessment of altered absorptive capacity in the intestinal mucosa; and catecholamine metabolism in terms of distribution and turnover rates in specific tissues.

  17. Sediment-transport (wind) experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iverson, J.; Gillette, D.; Greeley, R.; Lee, J.; Mackinnon, I.; Marshall, J.; Nickling, W.; Werner, B.; White, B.; Williams, S.

    1986-01-01

    The carousel wind tunnel (CWT) can be a significant tool for the determination of the nature and magnitude of interparticlar forces at threshold of motion. By altering particle and drum surface electrical properties and/or by applying electric potential difference across the inner and outer drums, it should be possible to separate electrostatic effects from other forces of cohesion. Besides particle trajectory and bedform analyses, suggestions for research include particle aggregation in zero and subgravity environments, effect of suspension-saltation ratio on soil abrasion, and the effects of shear and shearfree turbulence on particle aggregation as applied to evolution of solar nebula.

  18. Further Investigations of Gravity Modeling on Surface-Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2009-01-01

    A vehicle simulation is "surface-interacting" if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. The dynamics of surface-interacting simulations are influenced by the modeling of gravity. Gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. Both components are functions of position relative to the world s center and that position for a given set of geodetic coordinates (latitude, longitude, and altitude) depends on the world model (world shape and dynamics). Thus, gravity fidelity depends on the fidelities of the gravitation model and the world model and on the interaction of the gravitation and world model. A surface-interacting simulation cannot treat the gravitation separately from the world model. This paper examines the actual performance of different pairs of world and gravitation models (or direct gravity models) on the travel of a subsonic civil transport in level flight under various starting conditions.

  19. Gravity Modeling Effects on Surface-Interacting Vehicles in Supersonic Flight

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2010-01-01

    A vehicle simulation is "surface-interacting" if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations per-form ascent, entry, descent, landing, surface travel, or atmospheric flight. The dynamics of surface-interacting simulations are influenced by the modeling of gravity. Gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. Both components are functions of position relative to the world s center and that position for a given set of geodetic coordinates (latitude, longitude, and altitude) depends on the world model (world shape and dynamics). Thus, gravity fidelity depends on the fidelities of the gravitation model and the world model and on the interaction of these two models. A surface-interacting simulation cannot treat gravitation separately from the world model. This paper examines the actual performance of different pairs of world and gravitation models (or direct gravity models) on the travel of a supersonic aircraft in level flight under various start-ing conditions.

  20. Changes in surface figure due to thermal hysteresis

    NASA Astrophysics Data System (ADS)

    Jacobs, S. F.; Johnston, S. C.; Sasian, J. M.; Watson, M.; Targove, J. D.

    1987-01-01

    Thermal cycling hysteresis affects surface figure in low-expansivity mirror substrates. Zerodur, ULE, and Cer-Vit 8-in.-diameter mirrors and dilatometer samples were thermally cycled at uniform rates of 6 K/hr and 60 K/hr, and somewhat faster for nonuniform heating. Figure distortions as large as lambda/10 were observed following nonuniform heating of standard Zerodur, which was the only material exhibiting thermal hysteresis. A new experimental Zerodur appears to be free of this problem.

  1. Surface figure changes due to thermal cycling hysteresis.

    PubMed

    Jacobs, S F; Johnston, S C; Sasian, J M; Watson, M; Targove, J D; Bass, D

    1987-10-15

    How does thermal cycling hysteresis affect surface figure in low expansivity mirror substrates? Zerodur, ULE, and Cer-Vit 20.3-cm (8-in.) diam mirrors and dilatometer samples were thermally cycled at 6 and 60 K/h with uniform and nonuniform heating. Figure distortions as large as lambda/10 were observed only with nonuniform heating of standard Zerodur, which was the only material exhibiting thermal hysteresis. A new experimental Zerodur appears to be free of this problem.

  2. Experiments on the properties of superfluid helium in zero gravity

    NASA Technical Reports Server (NTRS)

    Mason, P.; Collins, D.; Petrac, D.; Yang, L.; Edeskuty, F.; Williamson, K.

    1976-01-01

    The paper describes a research program designed to study the behavior of superfluid liquid helium in low and zero gravity in order to determine the properties which are critically important to its use as a stored cryogen for cooling scientific instruments aboard spacecraft for periods up to several months. The experiment program consists of a series of flights of an experiment package on a free-fall trajectory both on an aircraft and on a rocket. The objectives are to study thickness of thin films of helium as a function of acceleration, heat transfer in thin films, heat transfer across copper-liquid helium interfaces, fluid dynamics of bulk helium in high and low accelerations and under various conditions of rotations, alternate methods of separation of liquid and vapor phases and of efficient venting of the vapor, and undesirable thermomechanical oscillations in the vent pipes. Preliminary results from aircraft tests are discussed.

  3. Surface Figure Measurement of Silicon Carbide Mirrors at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela

    2005-01-01

    The surface figure of a developmental silicon carbide mirror, cooled to 87 K and then 20 K within a cryostat, was measured with unusually high precision at the Goddard Space Flight Center (GSFC). The concave spherical mirror, with a radius of 600 mm and a clear aperture of 150 mm, was fabricated of sintered silicon carbide. The mirror was mounted to an interface plate representative of an optical bench, made of the material Cesic@, a composite of silicon, carbon, and silicon carbide. The change in optical surface figure as the mirror and interface plate cooled from room temperature to 20 K was 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.

  4. APPROACHING ZERO DISCHARGE IN SURFACE FINISHING

    EPA Science Inventory

    This document provides guidance to surface finishing manufacturers on control technologies and process changes for approaching zero discharge (AZD). AZD is a key theme underlying the Strategic Goals Program (SGP). The SGP is a cooperative effort between the EPA nd the American El...

  5. A surface spherical harmonic expansion of gravity anomalies on the ellipsoid

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.; Hirt, C.

    2015-10-01

    A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.

  6. Effect of Gravity on Surface Tension

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Azzam, M. O. J.; Mann, J. A.

    1998-01-01

    Spectroscopic measurements of liquid-vapor interfaces are made in +/- 1-g environments to note the effect of gravity on surface tension. A slight increase is detected at -1-g0, but is arguably within the uncertainty of the measurement technique. An increased dependence of surface tension on the orientation and magnitude of the gravitational vector is anticipated as the critical point is approached.

  7. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  8. Myosin heavy chain expression in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Haddad, F.; Herrick, R. E.; Adams, G. R.; Baldwin, K. M.

    1993-01-01

    This study ascertained the effects of 9 days of zero gravity on the relative (percentage of total) and calculated absolute (mg/muscle) content of isomyosin expressed in both antigravity and locomotor skeletal muscle of ground control (CON) and flight-exposed (FL) rats. Results showed that although there were no differences in body weight between FL and CON animals, a significant reduction in muscle mass occurred in the vastus intermedius (VI) (P < 0.05) but not in the vastus lateralis (VL) or the tibialis anterior. Both total muscle protein and myofibril protein content were not different between the muscle regions examined in the FL and CON groups. In the VI, there were trends for reductions in the relative content of type I and IIa myosin heavy chains (MHCs) that were offset by increases in the relative content of both type IIb and possibly type IIx MHC protein (P > 0.05). mRNA levels were consistent with this pattern (P < 0.05). The same pattern held true for the red region of the VL as examined at both the protein and mRNA level (P < 0.05). When the atrophy process was examined, there were net reductions in the absolute content of both type I and IIa MHCs that were offset by calculated increases in type IIb MHC in both VI and red VL. Collectively, these findings suggest that there are both absolute and relative changes occurring in MHC expression in the "red" regions of antigravity skeletal muscle during exposure to zero gravity that could affect muscle function.

  9. Surface singularities in Eddington-inspired Born-Infeld gravity.

    PubMed

    Pani, Paolo; Sotiriou, Thomas P

    2012-12-21

    Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability.

  10. Experimental investigations of stability of static liquid fillets and liquid-gas interface in capillary passages for gas-free liquid acquisition in zero gravity

    NASA Astrophysics Data System (ADS)

    Purohit, Ghanshyam Purshottamdas

    surface tension propellant management device (PMD) that uses photo-chemically etched disk stacks as capillary elements is examined. These PMDs are used in gas pressurized liquid propellant tanks to supply gas-free propellant to rocket engines in near zero-gravity environment. The experimentally validated models are integrated to perform key analyses for predicting PMD performance in zero gravity.

  11. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly†

    PubMed Central

    Hill, Richard J. A.; Larkin, Oliver J.; Dijkstra, Camelia E.; Manzano, Ana I.; de Juan, Emilio; Davey, Michael R.; Anthony, Paul; Eaves, Laurence; Medina, F. Javier; Marco, Roberto; Herranz, Raul

    2012-01-01

    Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity. PMID:22219396

  12. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly.

    PubMed

    Hill, Richard J A; Larkin, Oliver J; Dijkstra, Camelia E; Manzano, Ana I; de Juan, Emilio; Davey, Michael R; Anthony, Paul; Eaves, Laurence; Medina, F Javier; Marco, Roberto; Herranz, Raul

    2012-07-07

    Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity.

  13. New figuring model based on surface slope profile for grazing-incidence reflective optics

    DOE PAGES

    Zhou, Lin; Huang, Lei; Bouet, Nathalie; ...

    2016-08-09

    Surface slope profile is widely used in the metrology of grazing-incidence reflective optics instead of surface height profile. Nevertheless, the theoretical and experimental model currently used in deterministic optical figuring processes is based on surface height, not on surface slope. This means that the raw slope profile data from metrology need to be converted to height profile to perform the current height-based figuring processes. The inevitable measurement noise in the raw slope data will introduce significant cumulative error in the resultant height profiles. As a consequence, this conversion will degrade the determinism of the figuring processes, and will have anmore » impact on the ultimate surface figuring results. To overcome this problem, an innovative figuring model is proposed, which directly uses the raw slope profile data instead of the usual height data as input for the deterministic process. In this article, first the influence of the measurement noise on the resultant height profile is analyzed, and then a new model is presented; finally a demonstration experiment is carried out using a one-dimensional ion beam figuring process to demonstrate the validity of our approach.« less

  14. STS-42 closeup view shows SE 81-09 Convection in Zero Gravity experiment

    NASA Image and Video Library

    1992-01-30

    STS-42 closeup view shows Student Experiment 81-09 (SE 81-09), Convection in Zero Gravity experiment, with radial pattern caused by convection induced by heating an oil and aluminum powder mixture in the weightlessness of space. While the STS-42 crewmembers activated the Shuttle Student Involvement Program (SSIP) experiment on Discovery's, Orbiter Vehicle (OV) 103's, middeck, Scott Thomas, the student who designed the experiment, was able to observe the procedures via downlinked television (TV) in JSC's Mission Control Center (MCC). Thomas, now a physics doctoral student at the University of Texas, came up with the experiment while he participated in the SSIP as a student at Richland High School in Johnstown, Pennsylvia.

  15. Centrifuge in Free Fall: Combustion at Partial Gravity

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul

    2017-01-01

    A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.

  16. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Wu, Yue; Deng, Li-Cai

    2015-07-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surfacemore » gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data.« less

  17. Passive zero-gravity leg restraint

    NASA Technical Reports Server (NTRS)

    Miller, Christopher R. (Inventor)

    1989-01-01

    A passive zero or microgravity leg restraint is described which includes a central support post with a top and a bottom. Extending from the central support post are a calf pad tab, to which calf pad is attached, and a foot pad tab, to which foot tab is attached. Also extending from central support post are knee pads. When the restraint is in use the user's legs are forced between pads by a user imposed scissors action of the legs. The user's body is then supported in a zero or microgravity neutral body posture by the leg restraint. The calf pad has semi-ridig elastic padding material covering structural stiffener. The foot pad has padding material and a structural stiffener. Knee pads have s structural tube stiffener at their core.

  18. WILSON-BAPPU EFFECT: EXTENDED TO SURFACE GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sunkyung; Kang, Wonseok; Lee, Jeong-Eun

    2013-10-01

    In 1957, Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (M{sub V} ) and the width of the Ca II K emission line for late-type stars. Here, we revisit the Wilson-Bappu relationship (WBR) to claim that the WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high-resolution spectra of 125 late-type stars obtained with the Bohyunsan Optical Echelle Spectrograph and adopted from the Ultraviolet and Visual Echelle Spectrograph archive. Based onmore » our measurement of the emission line width (W), we have obtained a WBR of M{sub V} = 33.76 - 18.08 log W. In order to extend the WBR to being a surface gravity indicator, stellar atmospheric parameters such as effective temperature (T{sub eff}), surface gravity (log g), metallicity ([Fe/H]), and micro-turbulence ({xi}{sub tur}) have been derived from self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and log W, we found that log g = -5.85 log W+9.97 log T{sub eff} - 23.48 for late-type stars.« less

  19. Contributions of satellite-determined gravity results in geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1974-01-01

    Different forms of the theoretical gravity formula are summarized and methods of standardization of gravity anomalies obtained from satellite gravity and terrestrial gravity data are discussed in the context of three most commonly used reference figures, e.g., International Reference Ellipsoid, Reference Ellipsoid 1967, and Equilibrium Reference Ellipsoid. These methods are important in the comparison and combination of satellite gravity and gravimetric data as well as the integration of surface gravity data, collected with different objectives, in a single reference system. For ready reference, tables for such reductions are computed. Nature of the satellite gravity anomalies is examined to aid the geophysical and geodetic interpretation of these anomalies in terms of the tectonic features of the earth and the structure of the earth's crust and mantle. Computation of the Potsdam correction from satellite-determined geopotential is reviewed. The contribution of the satellite gravity results in decomposing the total observed gravity anomaly into components of geophysical interest is discussed. Recent work on the possible temporal variations in the geogravity field is briefly reviewed.

  20. Some physiological effects of alternation between zero gravity and one gravity

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1977-01-01

    The anatomy and physiology of the healthy vestibular system and the history of its study, maintenance of muskuloskeletal fitness under low-gravity conditions, tests of motion sickness, and data and techniques on testing subjects in a slow rotation room, are covered. Components of the inner ear labyrinth and their behavior in relation to equilibrium, gravity and inertial forces, motion sickness, and dizziness are discussed. Preventive medicine, the biologically effective force environment, weightlessness per se, activity in a weightless spacecraft, exercizing required to maintain musculoskeletal function, and ataxia problems are dealt with.

  1. Material removal and surface figure during pad polishing of fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Feit, M D; Steele, W A

    2009-05-04

    The material removal and surface figure after ceria pad polishing of fused silica glass have been measured and analyzed as a function of kinematics, loading conditions, and polishing time. Also, the friction at the workpiece/lap interface, the slope of the workpiece relative to the lap plane, and lap viscoelastic properties have been measured and correlated to material removal. The results show that the relative velocity between the workpiece & lap (determined by the kinematics) and the pressure distribution determine the spatial and temporal material removal and hence the final surface figure of the workpiece. In the case where the appliedmore » loading and relative velocity distribution over the workpiece are spatially uniform, a significant non-uniform spatial material removal from the workpiece surface is observed. This is due to a non-uniform pressure distribution resulting from: (1) a moment caused by a pivot point and interface friction forces; (2) viscoelastic relaxation of the polyurethane lap; and (3) a physical workpiece/lap interface mismatch. Both the kinematics and these contributions to the pressure distribution are quantitatively described, and then combined to form a spatial and temporal Preston model & code for material removal (called Surface Figure or SurF{copyright}). The surface figure simulations are consistent with the experiment for a wide variety of polishing conditions. This study is an important step towards deterministic full-aperture polishing, which would allow optical glass fabrication to be performed in a more repeatable, less iterative, and hence more economical manner.« less

  2. Human strength simulations for one and two-handed tasks in zero gravity

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A description is given of a three dimensional hand force capability model for the seated operator and a biomechanical model for analysis of symmetric sagittal plane activities. The models are used to simulate and study human strengths for one and two handed tasks in zero gravity. Specific conditions considered include: (1) one hand active, (2) both hands active but with different force directions on each, (3) body bracing situations provided by portable foot restraint when standing and lap belt when seated, (4) static or slow movement tasks with maximum length of 4 seconds and a minimum rest of 5 minutes between exertions, and (5) wide range of hand positions relative to either the feet or bisection of a line connecting the hip centers. Simulations were also made for shirt sleeved individuals and for the male population strengths with anthropometry matching that of astronauts.

  3. Apollo-Soyuz pamphlet no. 8: Zero-g technology. [experimental designispace processing and aerospace engineering

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The behavior of liquids in zero gravity environments is discussed with emphasis on foams, wetting, and wicks. A multipurpose electric furnace (MA-010) for the high temperature processing of metals and salts in zero-g is described. Experiments discussed include: monolectic and synthetic alloys (MA-041); multiple material melting point (MA-150); zero-g processing of metals (MA-070); surface tension induced convection (MA-041); halide eutectic growth; interface markings in crystals (MA-060); crystal growth from the vapor phase (MA-085); and photography of crystal growth (MA-028).

  4. Test Package Plummets in the Zero Gravity Research Facility

    NASA Image and Video Library

    1966-09-21

    National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying the behavior of liquid in microgravity for several years using ballistic rocket flights, aircraft flying series of parabolas, and in the 2.2-Second Drop Tower. It was easier to control experiments and repeat tests based on almost instantaneous test results in the Zero Gravity Research Facility than missiles or aircraft. It also more than doubled the microgravity time of the original drop tower. The experiments were enclosed in a large experiment package that was suspended inside the chamber. A vacuum was introduced to the chamber before the package was released. The test equipment allowed researchers to film and take measurements of the experiment as it was falling. The 2500‐pound package was slowed by special Styrofoam‐like pellets in a decelerator cart. An experiment, traveling 176 feet per second, was stopped in about 15 feet of deceleration material. The facility’s designers struggled to determine the correct type of deceleration pellets to use. For several years Lewis engineers tested various samples from manufacturers. The final selection was not made until the facility’s completion in May 1966, just before the facility made its public debut at the 1966 Inspection of the Center.

  5. Rectangular Drop Vehicle in the Zero Gravity Research Facility

    NASA Image and Video Library

    1969-03-21

    A rectangular drop test vehicle perched above 450-foot shaft at the Zero Gravity Research Facility at NASA Lewis Research Center. The drop tower was designed to provide five seconds of microgravity during a normal drop, but had a pneumatic gun that could quickly propel the vehicle to the top of the shaft prior to its drop, thus providing ten seconds of microgravity. The shaft contained a steel-lined vacuum chamber 20 feet in diameter and 469 feet deep. The package was stopped at the bottom of the pit by a 15-foot deep deceleration cart filled with polystyrene pellets. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the ten second drops. After the test vehicle was prepared it was suspended above the shaft from the top of the chamber. A lid was used to seal the top of the chamber. The vacuum system reduced the pressure levels inside the chamber. The bolt holding the vehicle was then sheared and the vehicle plummeted into the deceleration cart.

  6. Measuring Fundamental Parameters of Substellar Objects. I. Surface Gravities

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy; Basri, Gibor; Jayawardhana, Ray; Allard, France; Hauschildt, Peter; Ardila, David

    2004-07-01

    We present an analysis of high-resolution optical spectra for a sample of very young, mid- to late-M, low-mass stellar and substellar objects: 11 in the Upper Scorpius association, and two (GG Tau Ba and Bb) in the Taurus star-forming region. Effective temperatures and surface gravities are derived from a multiple-feature spectral analysis using TiO, Na I, and K I, through comparison with the latest synthetic spectra. We show that these spectral diagnostics complement each other, removing degeneracies with temperature and gravity in the behavior of each. In combination, they allow us to determine temperature to within 50 K and gravity to within 0.25 dex, in very cool young objects. Our high-resolution spectral analysis does not require extinction estimates. Moreover, it yields temperatures and gravities independent of theoretical evolutionary models (although our estimates do depend on the synthetic spectral modeling). We find that our gravities for most of the sample agree remarkably well with the isochrone predictions for the likely cluster ages. However, discrepancies appear in our coolest targets: these appear to have significantly lower gravity (by up to 0.75 dex) than our hotter objects, even though our entire sample covers a relatively narrow range in effective temperature (~300 K). This drop in gravity is also implied by intercomparisons of the data alone, without recourse to synthetic spectra. We consider, and argue against, dust opacity, cool stellar spots, or metallicity differences leading to the observed spectral effects; a real decline in gravity is strongly indicated. Such gravity variations are contrary to the predictions of the evolutionary tracks, causing improbably low ages to be inferred from the tracks for our coolest targets. Through a simple consideration of contraction timescales, we quantify the age errors introduced into the tracks through the particular choice of initial conditions and demonstrate that they can be significant for low

  7. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG-5 gravimeter and a LaCoste and Romberg (L&R) Model-G gravimeter. The CG-5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill-hole intercept values. Preliminary Interpretation of Results: The Carson Sink is a

  8. Stratification calculations in a heated cryogenic oxygen storage tank at zero gravity

    NASA Technical Reports Server (NTRS)

    Shuttles, J. T.; Smith, G. L.

    1971-01-01

    A cylindrical one-dimensional model of the Apollo cyrogenic oxygen storage tank has been developed to study the effect of stratification in the tank. Zero gravity was assumed, and only the thermally induced motions were considered. The governing equations were derived from conservation laws and solved on a digital computer. Realistic thermodynamic and transport properties were used. Calculations were made for a wide range of conditions. The results show the fluid behavior to be dependent on the quantity in the tank or equivalently the bulk fluid temperature. For high quantities (low temperatures) the tank pressure rose rapidly with heat addition, the heater temperature remained low, and significant pressure drop potentials accrued. For low quantities the tank pressure rose more slowly with heat addition and the heater temperature became high. A high degree of stratification resulted for all conditions; however, the stratified region extended appreciably into the tank only for the lowest tank quantity.

  9. Surface settling in partially filled containers upon step reduction in gravity

    NASA Technical Reports Server (NTRS)

    Weislogel, Marl M.; Ross, Howard D.

    1990-01-01

    A large literature exists concerning the equilibrium configurations of free liquid/gas surfaces in reduced gravity environments. Such conditions generally yield surfaces of constant curvature meeting the container wall at a particular (contact) angle. The time required to reach and stabilize about this configuration is less studied for the case of sudden changes in gravity level, e.g. from normal- to low-gravity, as can occur in many drop tower experiments. The particular interest here was to determine the total reorientation time for such surfaces in cylinders (mainly), as a function primarily of contact angle and kinematic viscosity, in order to aid in the development of drop tower experiment design. A large parametric range of tests were performed and, based on an accompanying scale analysis, the complete data set was correlated. The results of other investigations are included for comparison.

  10. Recommended reference figures for geophysics and geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.; Okeefe, J. A.

    1973-01-01

    Specific reference figures are recommended for consistent use in geophysics and geodesy. The selection of appropriate reference figure for geophysical studies suggests a relationship between the Antarctic negative gravity anomaly and the great shrinkage of the Antarctic ice cap about 4-5 million years ago. The depression of the south polar regions relative to the north polar regions makes the Southern Hemisphere flatter than the Northern Hemisphere, thus producing the third harmonic (pear-shaped) contribution to the earth's figure.

  11. Correcting Surface Figure Error in Imaging Satellites Using a Deformable Mirror

    DTIC Science & Technology

    2013-12-01

    background understanding about the Naval Postgraduate School’s SMT test- bed and the required performance for mirror surface figures. The...Postgraduate School. Larger than the Hubble Space Telescope, but smaller than the JWST (see Figure 2), the SMT is an advanced test- bed to research the...orientation (from [3]). The six segments of the primary mirror have a lightweight, deformable, nano- laminate face with actuators across the rear

  12. A novel variable-gravity simulation method: potential for astronaut training.

    PubMed

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  13. Stability of flat zero-energy states at the dirty surface of a nodal superconductor

    NASA Astrophysics Data System (ADS)

    Ikegaya, Satoshi; Asano, Yasuhiro

    2017-06-01

    We discuss the stability of highly degenerate zero-energy states that appear at the surface of a nodal superconductor preserving time-reversal symmetry. The existence of such surface states is a direct consequence of the nontrivial topological numbers defined in the restricted Brillouin zones in the clean limit. In experiments, however, potential disorder is inevitable near the surface of a real superconductor, which may lift the high degeneracy at zero energy. We show that an index defined in terms of the chiral eigenvalues of the zero-energy states can be used to measure the degree of degeneracy at zero energy in the presence of potential disorder. We also discuss the relationship between the index and the topological numbers.

  14. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  15. Triad Resonance in the Gravity-Acoustic Family

    NASA Astrophysics Data System (ADS)

    Kadri, U.

    2015-12-01

    Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic

  16. Estimating zero-g flow rates in open channels having capillary pumping vanes

    NASA Astrophysics Data System (ADS)

    Srinivasan, Radhakrishnan

    2003-02-01

    In vane-type surface tension propellant management devices (PMD) commonly used in satellite fuel tanks, the propellant is transported along guiding vanes from a reservoir at the inlet of the device to a sump at the outlet from where it is pumped to the satellite engine. The pressure gradient driving this free-surface flow under zero-gravity (zero-g) conditions is generated by surface tension and is related to the differential curvatures of the propellant-gas interface at the inlet and outlet of the PMD. A new semi-analytical procedure is prescribed for accurately calculating the extremely small fuel flow rates under reasonably idealized conditions. Convergence of the algorithm is demonstrated by detailed numerical calculations. Owing to the substantial cost and the technical hurdles involved in accurately estimating these minuscule flow rates by either direct numerical simulation or by experimental methods which simulate zero-g conditions in the lab, it is expected that the proposed method will be an indispensable tool in the design and operation of satellite fuel tanks.

  17. Texture segregation, surface representation and figure-ground separation.

    PubMed

    Grossberg, S; Pessoa, L

    1998-09-01

    A widespread view is that most texture segregation can be accounted for by differences in the spatial frequency content of texture regions. Evidence from both psychophysical and physiological studies indicate, however, that beyond these early filtering stages, there are stages of 3-D boundary segmentation and surface representation that are used to segregate textures. Chromatic segregation of element-arrangement patterns--as studied by Beck and colleagues--cannot be completely explained by the filtering mechanisms previously employed to account for achromatic segregation. An element arrangement pattern is composed of two types of elements that are arranged differently in different image regions (e.g. vertically on top and diagonally on the bottom). FACADE theory mechanisms that have previously been used to explain data about 3-D vision and figure-ground separation are here used to simulate chromatic texture segregation data, including data with equiluminant elements on dark or light homogeneous backgrounds, or backgrounds composed of vertical and horizontal dark or light stripes, or horizontal notched stripes. These data include the fact that segregation of patterns composed of red and blue squares decreases with increasing luminance of the interspaces. Asymmetric segregation properties under 3-D viewing conditions with the equiluminant elements close or far are also simulated. Two key model properties are a spatial impenetrability property that inhibits boundary grouping across regions with non-collinear texture elements and a boundary-surface consistency property that uses feedback between boundary and surface representations to eliminate spurious boundary groupings and separate figures from their backgrounds.

  18. Zero-order bows in radially inhomogeneous spheres: direct and inverse problems.

    PubMed

    Adam, John A

    2011-10-01

    Zero-order ray paths are examined in radially inhomogeneous spheres with differentiable refractive index profiles. It is demonstrated that zero-order and sometimes twin zero-order bows can exist when the gradient of refractive index is sufficiently negative. Abel inversion is used to "recover" the refractive index profiles; it is therefore possible in principle to specify the nature and type of bows and determine the refractive index profile that induces them. This may be of interest in the field of rainbow refractometry and optical fiber studies. This ray-theoretic analysis has direct similarities with the phenomenon of "orbiting" and other phenomena in scattering theory and also in seismological, surface gravity wave, and gravitational "lensing" studies. For completeness these topics are briefly discussed in the appendixes; they may also be of pedagogic interest.

  19. Rigidly rotating zero-angular-momentum observer surfaces in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Frolov, Andrei V.; Frolov, Valeri P.

    2014-12-01

    A stationary observer in the Kerr spacetime has zero angular momentum if their angular velocity ω has a particular value, which depends on the position of the observer. Worldlines of such zero-angular-momentum observers (ZAMOs) with the same value of the angular velocity ω form a three-dimensional surface, which has the property that the Killing vectors generating time translation and rotation are tangent to it. We call such a surface a rigidly rotating ZAMO surface. This definition allows for a natural generalization to the surfaces inside the black hole, where ZAMO trajectories formally become spacelike. A general property of such a surface is that there exist linear combinations of the Killing vectors with constant coefficients which make them orthogonal on it. In this paper we discuss properties of the rigidly rotating ZAMO surfaces both outside and inside the black hole and the relevance of these objects to a couple of interesting physical problems.

  20. Using Gravity and Topography to Map Mars' Crustal Thickness

    NASA Image and Video Library

    2016-03-21

    Newly detailed mapping of local variations in Mars' gravitational pull on orbiters (center), combined with topographical mapping of the planet's mountains and valleys (left) yields the best-yet mapping of Mars' crustal thickness (right). These three views of global mapping are centered at 90 degrees west longitude, showing portions of the planet that include tall volcanoes on the left and the deep Valles Marineris canyon system just right of center. Additional views of these global maps are available at http://svs.gsfc.nasa.gov/goto?4436. The new map of Mars' gravity (center) results from analysis of the planet's gravitational effects on orbiters passing over each location on the globe. The data come from many years of using NASA's Deep Space Network to track positions and velocities of NASA's Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter. If Mars were a perfectly smooth sphere of uniform density, the gravity experienced by the spacecraft would be exactly the same everywhere. But like other rocky bodies in the solar system, including Earth, Mars has both a bumpy surface and a lumpy interior. As the spacecraft fly in their orbits, they experience slight variations in gravity caused by both of these irregularities, variations which show up as small changes in the velocity and altitude of the three spacecraft. The "free-air" gravity map presents the results without any adjustment for the known bumpiness of Mars' surface. Local gravitational variations in acceleration are expressed in units called gals or galileos. The color-coding key beneath the center map indicates how colors on the map correspond to mGal (milligal) values. The map on the left shows the known bumpiness, or topography, of the Martian surface, using data from the Mars Orbiter Laser Altimeter (MOLA) instrument on Mars Global Surveyor. Mars has no actual "sea level," but does have a defined zero elevation level. The color-coding key beneath this map indicates how the colors

  1. Zero dead volume tube to surface seal

    DOEpatents

    Benett, William J.; Folta, James A.

    2000-01-01

    A method and apparatus for connecting a tube to a surface that creates a dead volume seal. The apparatus is composed of three components, a body, a ferrule, and a threaded fitting. The ferrule is compressed onto a tube and a seal is formed between the tube and a device retained in the body by threading the fitting into the body which provides pressure that seals the face of the ferrule to a mating surface on the device. This seal can be used at elevated temperatures depending on the materials used. While the invention has been developed for use with micro-machined silicon wafers used in Capillary Gas Chromatograph (GC), it can be utilized anywhere for making a gas or fluid face seal to the surface of a device that has near zero dead volume.

  2. A Human Factors Evaluation of a Methodology for Pressurized Crew Module Acceptability for Zero-Gravity Ingress of Spacecraft

    NASA Technical Reports Server (NTRS)

    Sanchez, Merri J.

    2000-01-01

    This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.

  3. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  4. Estimating zero strain states of very soft tissue under gravity loading using digital image correlation⋆,⋆⋆,★

    PubMed Central

    Gao, Zhan; Desai, Jaydev P.

    2009-01-01

    This paper presents several experimental techniques and concepts in the process of measuring mechanical properties of very soft tissue in an ex vivo tensile test. Gravitational body force on very soft tissue causes pre-compression and results in a non-uniform initial deformation. The global Digital Image Correlation technique is used to measure the full field deformation behavior of liver tissue in uniaxial tension testing. A maximum stretching band is observed in the incremental strain field when a region of tissue passes from compression and enters a state of tension. A new method for estimating the zero strain state is proposed: the zero strain position is close to, but ahead of the position of the maximum stretching band, or in other words, the tangent of a nominal stress-stretch curve reaches minimum at λ ≳ 1. The approach, to identify zero strain by using maximum incremental strain, can be implemented in other types of image-based soft tissue analysis. The experimental results of ten samples from seven porcine livers are presented and material parameters for the Ogden model fit are obtained. The finite element simulation based on the fitted model confirms the effect of gravity on the deformation of very soft tissue and validates our approach. PMID:20015676

  5. Neural dynamics of 3-D surface perception: figure-ground separation and lightness perception.

    PubMed

    Kelly, F; Grossberg, S

    2000-11-01

    This article develops the FACADE theory of three-dimensional (3-D) vision to simulate data concerning how two-dimensional pictures give rise to 3-D percepts of occluded and occluding surfaces. The theory suggests how geometrical and contrastive properties of an image can either cooperate or compete when forming the boundary and surface representations that subserve conscious visual percepts. Spatially long-range cooperation and short-range competition work together to separate boundaries of occluding figures from their occluded neighbors, thereby providing sensitivity to T-junctions without the need to assume that T-junction "detectors" exist. Both boundary and surface representations of occluded objects may be amodally completed, whereas the surface representations of unoccluded objects become visible through modal processes. Computer simulations include Bregman-Kanizsa figure-ground separation, Kanizsa stratification, and various lightness percepts, including the Münker-White, Benary cross, and checkerboard percepts.

  6. Maglev Facility for Simulating Variable Gravity

    NASA Technical Reports Server (NTRS)

    Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.

    2010-01-01

    An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful

  7. Approaches to Validation of Models for Low Gravity Fluid Behavior

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad

    2005-01-01

    This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.

  8. Surface charges for gravity and electromagnetism in the first order formalism

    NASA Astrophysics Data System (ADS)

    Frodden, Ernesto; Hidalgo, Diego

    2018-02-01

    A new derivation of surface charges for 3  +  1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.

  9. Role of gravity in the formation of bacterial colonies with a hydrophobic surface layer

    NASA Astrophysics Data System (ADS)

    Puzyr, A. P.; Tirranen, L. K.; Krylova, T. Y.; Borodina, E. V.

    A simple technique for determining hydrophobic-hydrophilic properties of bacterial colonies surface, which involves putting a drop of liquid with known properties (e.g. water, oil) on their surface, has been described. This technique allows quick estimate of wettability of bacterial colony surface, i.e. its hydrophobic-hydrophilic properties. The behaviour of water drops on colonies of bacteria Bacillus five strains (of different types) has been studied. It was revealed that 1) orientation in the Earth gravity field during bacterial growth can define the form of colonies with hydrophobic surface; 2) the form and size of the colony are dependent on the extention ability, most probably, of the hydrophobic layer; 3) the Earth gravity field (gravity) serves as a 'pump' providing and keeping water within the colony. We suppose that at growing colonies on agar media the inflow of water-soluble nutrient materials takes place both due to diffusion processes and directed water current produced by the gravity. The revealed effect probably should be taken into consideration while constructing the models of colonies growing on dense nutrient media. The easily determined hydrophobic properties of colonies surface can become a systematic feature after collecting more extensive data on the surface hydrophobic-hydrophilic properties of microorganism colonies of other types and species.

  10. Zero curvature-surface driven small objects

    NASA Astrophysics Data System (ADS)

    Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin

    2017-08-01

    In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.

  11. Internal gravity wave contributions to global sea surface variability

    NASA Astrophysics Data System (ADS)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  12. Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2013-12-01

    Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing

  13. Three-Dimensional Printing in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki

    2015-01-01

    The 3D printing in zero-g (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling additive manufacturing in the microgravity environment experienced on the International Space Station (ISS). This demonstration is the first step towards realizing a 'machine shop' in space, a critical enabling component of any deep space mission.

  14. Investigating Gravity Anomalies Associated with Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Miller, E.; Musa, D.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.

    2016-12-01

    Detection of subsurface effects from underground nuclear explosions (UNEs) is an important aspect of the overall characterization of a site and UNE signatures, which is central to the mission of the National Nuclear Security Admistration's Office of Proliferation Detection, Defense Nuclear Non-Prolifeation Research and Development, Underground Nuclear Explosion Signatures Experiment (UNESE). We are conducting an experiment at the Nevada National Security Site (NNSS) that includes the acquisition of ground-based gravity data to contribute to a multi-disciplinary characterization of two UNEs located on Pahute Mesa. For one of the UNEs, the working point for the detonation was in zeolitic ash-flow tuff 600 m below the surface. For the other UNE, the detonation working point was also at a depth 600m below the surface and was located in flow breccias and lavas. No evidence of chimney collapse has been manifested for either of these UNEs, hence a cavity may still in place and may produce a detectable gravity anomaly. Each of the gravity surveys consist of 150 sites which were precisely located using a Trimble 5700 GPS receiver for lateral precision of 2 cm and vertical control of 3 cm. The readings were arranged in radial lines from Surface Ground Zero (SGZ), with spacing 10-20 m near the center, and increasing intervals for the distal portions of the lines, which extended to as much as 200 m from SGZ. Gravity were collected using a LaCoste-Romberg model G gravity meter at one location and a Scintrex G-5 at the other. We present a preliminary look at the gravity data in conjunction with forward modeling of the anticipated anomaly given a suite of possible post-explosion cavity and chimney features.

  15. Emergent gravity from a mass deformation in warped spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gherghetta, Tony; Peloso, Marco; Poppitz, Erich

    2005-11-15

    We consider a deformation of five-dimensional warped gravity with bulk and boundary mass terms to quadratic order in the action. We show that massless zero modes occur for special choices of the masses. The tensor zero mode is a smooth deformation of the Randall-Sundrum graviton wave function and can be localized anywhere in the bulk. There is also a vector zero mode with similar localization properties, which is decoupled from conserved sources at tree level. Interestingly, there are no scalar modes, and the model is ghost-free at the linearized level. When the tensor zero mode is localized near the IRmore » brane, the dual interpretation is a composite graviton describing an emergent (induced) theory of gravity at the IR scale. In this case Newton's law of gravity changes to a new power law below the millimeter scale, with an exponent that can even be irrational.« less

  16. Droplet Depinning on Inclined Surfaces at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    White, Edward; Singh, Natasha; Lee, Sungyon

    2017-11-01

    Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α < 0 when gravity resists depinning by wind. Above We 4 , depinning is dominated by wind forcing; at We < 4 , depinning is gravity dominated. While Wecrit depends linearly on A Bo sinα in both forcing regimes, the slopes of the the limit lines depend on the forcing regime. The difference is attributed to different drop shapes and contact angle distributions that arise depending on whether wind or gravity dominates the depinning behavior. Supported by the National Science Foundation through Grant CBET-1605947.

  17. Planar zeros in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    Jiménez, Diego Medrano; Vera, Agustín Sabio; Vázquez-Mozo, Miguel Á.

    2016-09-01

    Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU( N) with N = 2 , 3 , 5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.

  18. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  19. View of Zero-G training for astronauts and payload specialists

    NASA Image and Video Library

    1984-08-27

    S84-40538 (24 Aug 1984) --- Two 41-G payload specialists and a backup for one of them appear to be at home in zero gravity in this scene photographed aboard a KC-135 "Zero gravity" aircraft flying one of its weightlessness opportunity parabolas. Paul D. Scully-Power, a civilian oceanographer with the U.S. Navey, is flanked by Marc Garneau (left) and Robert Thirsk, both representing the National Research Council of Canada. Thirsk is back up payload specialist for Garneau.

  20. Cautionary tales for reduced-gravity particle research

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald; Tucker, D. W.

    1987-01-01

    Failure of experiments conducted on the KC-135 aircraft in zero gravity are discussed. Tests that were a total failure are reported. Why the failure occurred and the sort of questions that potential researchers should ask in order to avoid the appearance of abstracts such as this are discussed. Many types of aggregation studies were proposed for the Space Station, and it is hoped that the following synopsis of events will add a touch of reality to experimentation proposed for this zero-gravity environment.

  1. ASTRONAUT EDWARD H. WHITE II - GEMINI-TITAN (GT)-IV - ZERO GRAVITY - OUTER SPACE

    NASA Image and Video Library

    2015-03-20

    S65-30427 (3 June 1965) --- Astronaut Edward H. White II, pilot for the Gemini-Titan 4 (GT-4) spaceflight, floats in the zero-gravity of space during the third revolution of the GT-4 spacecraft. White wears a specially designed spacesuit. His face is shaded by a gold-plated visor to protect him from unfiltered rays of the sun. In his right hand he carries a Hand-Held Self-Maneuvering Unit (HHSMU) that gives him control over his movements in space. White also wears an emergency oxygen chest pack; and he carries a camera mounted on the HHSMU for taking pictures of the sky, Earth and the GT-4 spacecraft. He is secured to the spacecraft by a 25-feet umbilical line and a 23-feet tether line. Both lines are wrapped together in gold tape to form one cord. Astronaut James A. McDivitt, command pilot, remained inside the spacecraft during the extravehicular activity (EVA). Photo credit: NASA EDITOR'S NOTE: Astronaut Edward H. White II died in the Apollo/Saturn 204 fire at Cape Kennedy on Jan. 27, 1967.

  2. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  3. The Influence of Surface Gravity Waves on Marine Current Turbine Performance

    NASA Astrophysics Data System (ADS)

    Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.

    2013-12-01

    Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging

  4. Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry

    PubMed Central

    Ma, Baoshun

    2012-01-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957

  5. Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2012-08-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.

  6. Assessment of geophysical flows for zero-gravity simulation

    NASA Technical Reports Server (NTRS)

    Winn, C. B.; Cox, A.; Srivatsangam, R.

    1976-01-01

    The results of research relating to the feasibility of using a low gravity environment to model geophysical flows are presented. Atmospheric and solid earth flows are considered. Possible experiments and their required apparatus are suggested.

  7. Ion figuring of large prototype mirror segments for the E-ELT

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Vecchi, G.; Basso, S.; Citterio, O.; Civitani, M.; Mattaini, E.; Pareschi, G.; Sironi, G.

    2014-07-01

    At INAF-Astronomical Observatory of Brera a study is under way to explore the problems related to the ion beam figuring of full scale Zerodur hexagonal mirrors of M1 for the European Extremely Large Telescope (E-ELT), having size of 1.4 m corner to corner. During this study it is initially foreseen the figuring of a scaled down version mirror of the same material having size of 1 m corner to corner to assess the relevant figuring problems and issues. This specific mirror has a radius of curvature of 3 m, which allows for easy interferometric measurement. A mechanical support was designed to minimize its deformations due to the gravity. The Ion Beam Figuring Facility used for this study has been recently completed in the Brera Observatory and has a figuring area of 140 cm x 170 cm. It employs a Kaufman ion source having 50 mm grids mounted on three axis. This system has been designed and developed to be autonomous and self-monitoring during the figuring process. The software and the mathematical tools used to compute the dwell time solution have been developed at INAF-OAB as well. Aim of this study is the estimation and optimization of the time requested to correct the surface adopting strategies to mitigate the well-known thermal problems related to the Zerodur material. In this paper, the results obtained figuring the 1 m corner-to-corner test segment are reported.

  8. The measurement of surface gravity

    NASA Technical Reports Server (NTRS)

    Harrison, J. C.; Lacoste, L. J. B.

    1978-01-01

    LaCoste and Romberg G and D gravity meters are normally employed when attempting high precision measurement of gravity differences on land. The capabilities and limitations of these instruments are discussed.

  9. Numerical Study on the Effects of Gravity and Surface Tension on Condensation Process in Square Minichannel

    NASA Astrophysics Data System (ADS)

    Li, Panpan; Chen, Zhenqian; Shi, Juan

    2018-02-01

    A volume of fluid (VOF) method is adopted to simulate the condensation of R134a in a horizontal single square minichannel with 1 mm side length. The effect of gravity, surface tension and gas-liquid interfacial shear stress are taken into account. The result denotes that condensation is first appeared at the corner of channel, and then the condensation is stretched at the effect of surface tension until the whole channel boundary covered. The effect of gravity on the distribution of the liquid film depends on the channel length. In short channel, the gravity shows no significant effect, the distribution shape of steam in the cross section of the channel is approximately circular. In long channel, due to the influence of gravity, the liquid converges at the bottom under the effect of gravity, and the thickness of the liquid film at the bottom is obviously higher than that of the upper part of the channel. The effect of surface tension on condensation is also analysed. The surface tension can enhance the condensation heat transfer significantly when the inlet mass flux is low. Whilst, at high mass flux, the enhancement of surface tension on heat transfer is unobvious and can be neglected.

  10. The Development of a Deflectometer for Accurate Surface Figure Metrology

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Eberhardt, Andrew; Ramsey, Brian; Atkins, Carolyn

    2015-01-01

    Marshall Space Flight Center is developing the method of direct fabrication for high resolution full-shell x-ray optics. In this technique the x-ray optics axial profiles are figured and polished using a computer-controlled ZeekoIRP600X polishing machine. Based on the Chandra optics fabrication history about one third of the manufacturing time is spent on moving a mirror between fabrication and metrology sites, reinstallation and alignment with either the metrology or fabrication instruments. Also, the accuracy of the alignment significantly affects the ultimate accuracy of the resulting mirrors. In order to achieve higher convergence rate it is highly desirable to have a metrology technique capable of in situ surface figure measurements of the optics under fabrication, so the overall fabrication costs would be greatly reduced while removing the surface errors due to the re-alignment necessary after each metrology cycle during the fabrication. The goal of this feasibility study is to demonstrate if the Phase Measuring Deflectometry can be applied for in situ metrology of full shell x-ray optics. Examples of the full-shell mirror substrates suitable for the direct fabrication

  11. Normal Gravity Fields and Equipotential Ellipsoids of Small Objects in the Solar System: A Closed-form Solution in Ellipsoidal Harmonics up to the Second Degree

    NASA Astrophysics Data System (ADS)

    Hu, Xuanyu

    2017-11-01

    We propose a definition for the normal gravity fields and normal figures of small objects in the solar system, such as asteroids, cometary nuclei, and planetary moons. Their gravity fields are represented as series of ellipsoidal harmonics, ensuring more robust field evaluation in the proximity of an arbitrary, convex shape than using spherical harmonics. The normal gravity field, approximate to the actual field, can be described by a finite series of three terms, that is, degree zero, and the zonal and sectoral harmonics of degree two. The normal gravity is that of an equipotential ellipsoid, defined as the normal ellipsoid of the body. The normal ellipsoid may be distinct from the actual figure. We present a rationale for specifying and a numerical method for determining the parameters of the normal ellipsoid. The definition presented here generalizes the convention of the normal spheroid of a large, hydrostatically equilibrated planet, such as Earth. Modeling the normal gravity and the normal ellipsoid is relevant to studying the formation of the “rubble pile” objects, which may have been accreted, or reorganized after disruption, under self-gravitation. While the proposed methodology applies to convex, approximately ellipsoidal objects, those bi-lobed objects can be treated as contact binaries comprising individual convex subunits. We study an exemplary case of the nearly ellipsoidal Martian moon, Phobos, subject to strong tidal influence in its present orbit around Mars. The results allude to the formation of Phobos via gravitational accretion at some further distance from Mars.

  12. Probability distribution for the Gaussian curvature of the zero level surface of a random function

    NASA Astrophysics Data System (ADS)

    Hannay, J. H.

    2018-04-01

    A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z)  =  0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f  =  0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.

  13. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  14. An experimental study on low-velocity low-gravity collisions into granular surfaces

    NASA Astrophysics Data System (ADS)

    Sunday, C.; Murdoch, N.; Mimoun, D.

    2014-07-01

    The Japanese Space Agency (JAXA) is scheduled to launch the asteroid sample-return mission, Hayabusa-2, to target body 1999 JU_3 in December 2014 [1]. The spacecraft will arrive at the C-type near-Earth asteroid in mid-2018 and deploy several science payloads to its surface. Among these payloads is a 10-kg lander, the Mobile Asteroid Surface Scout (MASCOT), provided by the German Space Agency (DLR) with cooperation from the Centre National d'Etudes Spatiales (CNES). MASCOT will reach the asteroid's surface with an anticipated impact speed of 10--20 cm/s. In addition to housing four instruments for in-situ science investigation, MASCOT contains a mobility mechanism that will correct its orientation and enable it to ''hop'' to various measurement sites [2]. Based on thermal infrared observations [3,4,5] and previous space missions [6,7], it is strongly believed that 1999 JU_3 is covered by loose regolith. The asteroid's granular surface, in combination with the low surface gravity, makes it difficult to predict the lander's collision behavior from existing theoretical models. However, to ensure that MASCOT can successfully fulfill its mission, it is vital to understand the rebound dynamics of the lander in the asteroid surface environment. The objective of this work, derived from the needs of current and future asteroid missions, is to present an experiment designed to study low-velocity, low-gravity collisions into granular surfaces. The experiment measures the amount of energy lost during impact via a projectile's coefficient of restitution and also the acceleration profile of the projectile during collision. The key challenge to designing an asteroid collision experiment is finding a way to simulate reduced gravity conditions on the Earth so that the prevailing forces in micro-gravity collisions can be reflected in the experimental results. The proposed way to achieve this goal is to let a free-falling projectile impact a surface with a constant downward

  15. Gravity deformation measurements of 70m reflector surfaces

    NASA Technical Reports Server (NTRS)

    Brenner, Michael; Imbriale, William A.; Britcliffe, Michael K.

    2001-01-01

    Two of NASA's Deep Space Network (DSN) 70-meter reflectors are measured using a Leica TDM-5000 theodolite. The main reflector surface was measured at five elevation angles so that a gravity deformation model could be derived that described the main reflector distortions over the entire range of elevation angles. The report describes the measurement equipment and accuracy and the results derived from the data.

  16. A finite difference model for free surface gravity drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couri, F.R.; Ramey, H.J. Jr.

    1993-09-01

    The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells inmore » the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.« less

  17. Physics at the surface of a star in Eddington-inspired Born-Infeld Gravity

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-Chan

    2014-03-01

    We study phenomena happening at the surface of a star in Eddington-inspired Born-Infeld (EiBI) gravity. The star is made of particles, which are effectively described by a polytropic fluid. The EiBI theory was known to have a pathology that singularities happen at a star surface. We suggest that the gravitational backreaction on the particles cures the problem. Strong tidal forces near the (surface) singularity modify the effective equation of state of the particles or make the surface be unstable depending on its matter contents. The geodesic deviation equations take after Hooke's law, where its frequency squared is proportional to the scalar curvature at the surface. For a positive curvature, a particle collides with a probing wall more often and increases the pressure. With the increased pressure, the surface is no longer singular. For a negative curvature, the matters around the surface experience repulsions with infinite accelerations. Therefore, the EiBI gravity is saved from the pathology of a surface singularity.

  18. Glass fining experiments in zero gravity

    NASA Technical Reports Server (NTRS)

    Smith, H. D.

    1977-01-01

    Ground based experiments were conducted to demonstrate that thermal migration actually operated in glass melts. Thermal migration consistent with the theory was found in one experiment on a borax melt, i.e., there was an approximately linear relation between the bubble diameter and bubble velocity for a given temperature and temperature gradient. It also appeared that nearby bubbles were attracted to one another, which could greatly aid fining. Interpretation of these results was not possible because of complications arising from gravity, i.e., floating of the bubbles, circulation currents due to buoyancy-driven natural connection, and flow of the melt out from the cell.

  19. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.

    2017-03-20

    We combine 131 new medium-resolution ( R ∼ 2000) J -band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5–T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6–L7 objects in our sample by measuring the equivalent widths (EW) of the K i lines at 1.1692, 1.1778, and 1.2529 μ m, and the 1.2 μ m FeH{sub J} absorption index. Our resultsmore » are consistent with previous surface gravity measurements, showing a distinct double peak—at ∼L5 and T5—in K i EW as a function of spectral type. We analyze the K i EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6–L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity-sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current data sets cannot be used to provide a precise age estimate.« less

  20. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  1. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  2. Modeling Candle Flame Behavior In Variable Gravity

    NASA Technical Reports Server (NTRS)

    Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.

    2003-01-01

    The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g < g(sub e)). In a previous numerical model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process

  3. An enhanced trend surface analysis equation for regional-residual separation of gravity data

    NASA Astrophysics Data System (ADS)

    Obasi, A. I.; Onwuemesi, A. G.; Romanus, O. M.

    2016-12-01

    Trend surface analysis is a geological term for a mathematical technique which separates a given map set into a regional component and a local component. This work has extended the steps for the derivation of the constants in the trend surface analysis equation from the popularly known matrix and simultaneous form to a more simplified and easily achievable format. To achieve this, matrix inversion was applied to the existing equations and the outcome was tested for suitability using a large volume of gravity data set acquired from the Anambra Basin, south-eastern Nigeria. Tabulation of the field data set was done using the Microsoft Excel spread sheet, while gravity maps were generated from the data set using Oasis Montaj software. A comparison of the residual gravity map produced using the new equations with its software derived counterpart has shown that the former has a higher enhancing capacity than the latter. This equation has shown strong suitability for application in the separation of gravity data sets into their regional and residual components.

  4. Ceiling Fires Studied to Simulate Low-Gravity Fires

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.

    2001-01-01

    A unique new way to study low-gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low-stretch environments, a normal gravity low-stretch diffusion flame was generated using a cylindrical PMMA sample of varying large radii, as shown in the photograph. These experiments have demonstrated that low-gravity flame characteristics can be generated in normal gravity through the proper use of scaling. On the basis of this work, it is feasible to apply this concept toward the development of an Earth-bound method of evaluating material flammability in various gravitational environments from normal gravity to microgravity, including the effects of partial gravity low-stretch rates such as those found on the Moon (1/6g) or Mars (1/3g). During these experiments, the surface regression rates for PMMA were measured for the first time over the full range of flammability in air, from blowoff at high stretch, to quenching at low stretch, as plotted in the graph. The solid line drawn through the central portion of the data (3figure coordinates assume that the values of stretch are equivalent, whether derived from forced stretch or from buoyant stretch. The excellent correlation of the regression-rate data over the two-order-of-magnitude variation of stretch shows the reasonableness of this assumption.

  5. Zero-Based Budgeting Redux.

    ERIC Educational Resources Information Center

    Geiger, Philip E.

    1993-01-01

    Zero-based, programmatic budgeting involves four basic steps: (1) define what needs to be done; (2) specify the resources required; (3) determine the assessment procedures and standards to use in evaluating the effectiveness of various programs; and (4) assign dollar figures to this information. (MLF)

  6. Droplet burning at zero G

    NASA Technical Reports Server (NTRS)

    Williams, F. A.

    1978-01-01

    Questions of the importance and feasibility of performing experiments on droplet burning at zero gravity in Spacelab were studied. Information on the physics and chemistry of droplet combustion, with attention directed specifically to the chemical kinetics, heat and mass transfer, and fluid mechanics of the phenomena involved, are presented. The work was divided into three phases, the justification, the feasibility, and the conceptual development of a preliminary design. Results from the experiments performed revealed a few new facts concerning droplet burning, notably burning rates in excess of theoretical prediction and a phenomenon of flash extinction, both likely traceable to accumulation of carbon produced by gas-phase pyrolysis in the fuel-rich zone enclosed by the reaction surface. These experiments also showed that they were primarily due to timing difficulties.

  7. Deep Orographic Gravity Wave Dynamics over Subantarctic Islands as Observed and Modeled during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

    NASA Astrophysics Data System (ADS)

    Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.

    2016-12-01

    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high

  8. Generalized Vaidya spacetime for cubic gravity

    NASA Astrophysics Data System (ADS)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  9. Geoid Anomalies and the Near-Surface Dipole Distribution of Mass

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.; Ockendon, J. R.

    1978-01-01

    Although geoid or surface gravity anomalies cannot be uniquely related to an interior distribution of mass, they can be related to a surface mass distribution. However, over horizontal distances greater than about 100 km, the condition of isostatic equilibrium above the asthenosphere is a good approximation and the total mass per unit column is zero. Thus the surface distribution of mass is also zero. For this case we show that the surface gravitational potential anomaly can be uniquely related to a surface dipole distribution of mass. Variations in the thickness of the crust and lithosphere can be expected to produce undulations in the geoid.

  10. Further studies of propellant sloshing under low-gravity conditions

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.

    1971-01-01

    A variational integral is formulated from Hamilton's Principle and is proved to be equivalent to the usual differential equations of low-gravity sloshing in ellipsoidal tanks. It is shown that for a zero-degree contact angle the contact line boundary condition corresponds to the stuck condition, a result that is due to the linearization of the equations and the ambiguity in the definition of the wave height at the wall. The variational integral is solved by a Rayleigh-Ritz technique. Results for slosh frequency when the free surface is not bent-over compare well with previous numerical solutions. When the free surface is bent over, however, the results for slosh frequency are considerably larger than those predicted by previous finite-difference, numerical approaches: the difference may be caused by the use of a zero degree contact angle in the present theory in contrast to the nonzero contact angle used in the numerical approaches.

  11. Getting the Swing of Surface Gravity

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.; Quick, Matthew

    2012-04-01

    Sports are a popular and effective way to illustrate physics principles. Baseball in particular presents a number of opportunities to motivate student interest and teach concepts. Several articles have appeared in this journal on this topic,1 illustrating a wide variety of areas of physics. In addition, several websites2 and an entire book3 are available. In this paper we describe a student-designed project that illustrates the relative surface gravity on the Earth, Sun, and other solar system bodies using baseball. We describe the project and its results here as an example of a simple, fun, and student-driven use of baseball to illustrate an important physics principle.

  12. Quantification of gravity-induced skin strain across the breast surface.

    PubMed

    Sanchez, Amy; Mills, Chris; Haake, Steve; Norris, Michelle; Scurr, Joanna

    2017-12-01

    Quantification of the magnitude of skin strain in different regions of the breast may help to estimate possible gravity-induced damage whilst also being able to inform the selection of incision locations during breast surgery. The aim of this study was to quantify static skin strain over the breast surface and to estimate the risk of skin damage caused by gravitational loading. Fourteen participants had 21 markers applied to their torso and left breast. The non-gravity breast position was estimated as the mid-point of the breast positions in water and soybean oil (higher and lower density than breast respectively). The static gravity-loaded breast position was also measured. Skin strain was calculated as the percentage extension between adjacent breast markers in the gravity and non-gravity loaded conditions. Gravity induced breast deformation caused peak strains ranging from 14 to 75% across participants, with potentially damaging skin strain (>60%) in one participant and skin strains above 30% (skin resistance zone) in a further four participants. These peak strain values all occurred in the longitudinal direction in the upper region of the breast skin. In the latitudinal direction, smaller-breasted participants experienced greater strain on the outer (lateral) breast regions and less strain on the inner (medial) breast regions, a trend which was reversed in the larger breasted participants (above size 34D). To reduce tension on surgical incisions it is suggested that preference should be given to medial latitudinal locations for smaller breasted women and lateral latitudinal locations for larger breasted women. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  14. Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.

    2017-12-01

    Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and

  15. Automatic robotic arm operations and sampling in near zero gravity environment - functional tests results from Phobos-Grunt mission

    NASA Astrophysics Data System (ADS)

    Kozlova, Tatiana; Karol Seweryn, D..; Grygorczuk, Jerzy; Kozlov, Oleg

    The sample return missions have made a very significant progress to understanding of geology, the extra-terrestrial materials, processes occurring on surface and subsurface level, as well as of interactions between such materials and mechanisms operating there. The various sample return missions in the past (e.g. Apollo missions, Luna missions, Hayabusa mission) have provided scientists with samples of extra-terrestrial materials allowing to discover answers to critical scientific questions concerning the origin and evolution of the Solar System. Several new missions are currently planned: sample return missions, e.g Russian Luna-28, ESA Phootprint and MarcoPolo-R as well as both robotic and manned exploration missions to the Moon and Mars. One of the key challenges in such missions is the reliable sampling process which can be achieved by using many different techniques, e.g. static excavating technique (scoop), core drilling, sampling using dynamic mechanisms (penetrators), brushes and pneumatic systems. The effectiveness of any sampling strategy depends on many factors, including the required sample size, the mechanical and chemical soil properties (cohesive, hard or porous regolith, stones), the environment conditions (gravity, temperature, pressure, radiation). Many sampling mechanism have been studied, designed and built in the past, two techniques to collect regolith samples were chosen for the Phobos-Grunt mission. The proposed system consisted of a robotic arm with a 1,2m reach beyond the lander (IKI RAN); a tubular sampling device designed for collecting both regolith and small rock fragments (IKI RAN); the CHOMIK device (CBK PAN) - the low velocity penetrator with a single-sample container for collecting samples from the rocky surface. The functional tests were essential step in robotic arm, sampling device and CHOMIK device development process in the frame of Phobos-Grunt mission. Three major results were achieved: (i) operation scenario for autonomous

  16. Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology.

    PubMed

    Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin

    2017-09-01

    Currently, ion beam figuring (IBF) technology has presented many excellent performances in figuring potassium dihydrogen phosphate (KDP) crystals, such as it is a noncontact figuring process and it does not require polishing fluid. So, it is a very clean figuring process and does not introduce any impurities. However, the ion beam energy deposited on KDP crystal will heat the KDP crystal and may generate cracks on it. So, it is difficult directly using IBF technology to figure KDP crystal, as oblique incident IBF (OI-IBF) has lower heat deposition, higher removal rate, and smoother surface roughness compared to normal incident IBF. This paper studied the process of using OI-IBF to figure KDP crystal. Removal rates and removal functions at different incident angles were first investigated. Then heat depositions on a test work piece were obtained through experiments. To validate the figuring process, a KDP crystal with a size of 200  mm×200  mm×12  mm was figured by OI-IBF. After three iterations using the OI-IBF process, the surface error decreases from the initial values with PV 1.986λ RMS 0.438λ to PV 0.215λ RMS 0.035λ. Experimental results indicate that OI-IBF is feasible and effective to figure KDP crystals.

  17. 2D instabilities of surface gravity waves on a linear shear current

    NASA Astrophysics Data System (ADS)

    Francius, Marc; Kharif, Christian

    2016-04-01

    instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437

  18. Fabrication of zero contact angle ultra-super hydrophilic surfaces.

    PubMed

    Jothi Prakash, C G; Clement Raj, C; Prasanth, R

    2017-06-15

    Zero contact angle surfaces have been created with the combined effect of nanostructure and UV illumination. The contact angle of titanium surface has been optimized to 3.25°±1°. with nanotubular structures through electrochemical surface modification. The porosity and surface energy of tubular TiO 2 layer play critical role over the surface wettability and the hydrophilicity of the surface. The surface free energy has been enhanced from 23.72mJ/m 2 (bare titanium surface) to 87.11mJ/m 2 (nanotubular surface). Similar surface with TiO 2 nanoparticles coating shows superhydrophilicity with contact angle up to 5.63°±0.95°. This implies liquid imbibition and surface curvature play a crucial role in surface hydrophilicity. The contact angle has been further reduced to 0°±0.86° by illuminating the surface with UV radiation. Results shows that by tuning the nanotube morphology, highly porous surfaces can be fabricated to reduce contact angle and enhance wettability. This study provides an insight into the inter-relationship between surface structural factors and ultra-superhydrophilic surfaces which can help to optimize thermal hydraulic and self cleaning surfaces. Copyright © 2017. Published by Elsevier Inc.

  19. Constellation Stick Figures Convey Information about Gravity and Neutrinos

    NASA Astrophysics Data System (ADS)

    Mc Leod, David Matthew; Mc Leod, Roger David

    2008-10-01

    12/21/98, at America's Stonehenge, DMM detected, and drew, the full stick-figure equivalent of Canis Major, CM, as depicted by our Wolf Clan leaders, and many others. Profound, foundational physics is implied, since this occurred in the Watch House there, hours before the ``model rose.'' Similar configurations like Orion, Osiris of ancient Egypt, show that such figures are projected through solid parts of the Earth, as two-dimensional equivalents of the three-dimensional star constellations. Such ``sticks'' indicate that ``line equivalents'' connect the stars, and the physical mechanism projects outlines detectable by traditional cultures. We had discussed this ``flashlight'' effect, and recognized some of its implications. RDM states that the flashlight is a strong, distant neutrino source; the lines represent neutrinos longitudinally aligned in gravitational excitation, opaque, to earthbound, transient, transversely excited neutrinos. ``Sticks'' represent ``graviton'' detection. Neutrinos' longitudinal alignment accounts for the weakness of gravitational force.

  20. Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.

    2015-12-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.

  1. The relationship between surface topography, gravity anomalies, and temperature structure of convection

    NASA Technical Reports Server (NTRS)

    Parsons, B.; Daly, S.

    1983-01-01

    Consideration is given to the relationship between the temperature structure of mantle convection and the resulting surface topography and gravity anomalies, which are used in its investigation. Integral expressions relating the three variables as a function of wavelength are obtained with the use of Green's function solutions to the equations of motion for the case of constant-viscosity convection in a plane layer subject to a uniform gravitational field. The influence of the boundary conditions, particularly at large wavelengths, is pointed out, and surface topographies and gravity produced by convection are illustrated for a number of simple temperature distributions. It is shown that the upper thermal boundary layer plays an important role in determining the surface observables, while temperatures near the bottom of the layer affect mainly that boundary. This result is consistent with an explanation of geoid anomalies over mid-ocean swells in terms of convection beneath the lithosphere.

  2. Two components of postseismic gravity changes of megathrust earthquakes from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Heki, K.

    2013-12-01

    There are several reports of the observations of gravity changes due to megathrust earthquakes with data set of Gravity Recovery And Climate Experiment (GRACE) satellite. We analyzed the co- and postseismic gravity changes of the three magnitude 9 class earthquakes, the 2004 Sumatra-Andaman, the 2010 Chile (Maule), and the 2011 Tohoku-Oki earthquakes, using the newly released data (Release 05 data) set. In addition to the coseismic steps, these earthquakes showed a common feature that the postseismic changes include two components with different polarity and time constants, i.e. rapid decreases over a few months, followed by slow increases lasting for years. This is shown in the auxiliary figure of this abstract. In this figure, the white circles are the data whose seasonal and secular changes were removed. The vertical translucent lines denote the earthquake occurrence times. All the three earthquakes suggest the existence of two postseismic gravity change components with two distinct time constants. The first (short-term) component showed geographical distribution similar to the coseismic changes, but the position of the largest gravity decrease shifted toward the trench. The short-term components can be related to afterslip, but their time constants and distributions showed significant deviation from gravity changes predicted by the afterslip models. The second (long-term) components are characterized by positive gravity changes with the peak close to the trench axis. The long-term components should be attributed to different or multiple mechanisms, e.g. viscous relaxation of rocks in the upper mantle [Han and Simons, 2008; Panet et al., 2007] and diffusion of supercritical water around the down-dip end of the ruptured fault [Ogawa and Heki, 2007]. Both of the two mechanisms can explain the postseismic gravity increase in this timescale to some extent, but there have been no decisive evidence to prove or disprove either one of these. But generally speaking

  3. The spinning artificial gravity environment: A design project

    NASA Technical Reports Server (NTRS)

    Pignataro, Robert; Crymes, Jeff; Marzec, Tom; Seibert, Joe; Walker, Gary

    1987-01-01

    The SAGE, or Spinning Artificial Gravity Environment, design was carried out to develop an artificial gravity space station which could be used as a platform for the performance of medical research to determine the benefits of various, fractional gravity levels for astronauts normally subject to zero gravity. Desirable both for its medical research mission and a mission for the study of closed loop life-support and other factors in prolonged space flight, SAGE was designed as a low Earth orbiting, solar powered, manned space station.

  4. Nonlinear modal resonances in low-gravity slosh-spacecraft systems

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    1991-01-01

    Nonlinear models of low gravity slosh, when coupled to spacecraft vibrations, predict intense nonlinear eigenfrequency shifts at zero gravity. These nonlinear frequency shifts are due to internal quadratic and cubic resonances between fluid slosh modes and spacecraft vibration modes. Their existence has been verified experimentally, and they cannot be correctly modeled by approximate, uncoupled nonlinear models, such as pendulum mechanical analogs. These predictions mean that linear slosh assumptions for spacecraft vibration models can be invalid, and may lead to degraded control system stability and performance. However, a complete nonlinear modal analysis will predict the correct dynamic behavior. This paper presents the analytical basis for these results, and discusses the effect of internal resonances on the nonlinear coupled response at zero gravity.

  5. Ion beam figuring technique used as final step in the manufacturing of the optics for the E-ELT

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Vecchi, G.; Basso, S.; Citterio, O.; Civitani, M.; Pareschi, G.; Sironi, G.

    The INAF-Astronomical Observatory of Brera (INAF-OAB) is exploring the technical problems related to the ion beam figuring (IBF) of the Zerodur hexagonal mirrors (1.45 m corner to corner) of M1 for the European Extremely Large Telescope (E-ELT). As starting step a scaled down version mirror of the same material having size of 1 m corner to corner has been used to assess the relevant figuring problems. This specific mirror is spherical and has a radius of curvature of 3 m which allows a simple interferometric measurement setup. A mechanical support was designed to minimize its deformations due to gravity. The Ion Beam Figuring Facility used for this study has been recently completed in the Brera Observatory and has a figuring area of 170 cm x 140 cm. Aim of this study is the estimation and optimization of the time requested for the correction of the surface using also strategies to control the well-known thermal problems related to the Zerodur material. In this paper we report the results obtained figuring the 1 m corner-to-corner test segment.

  6. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E.; Rice, Emily L.; Kirkpatrick, J. Davy; Burgasser, Adam J.; McGovern, Mark R.; Prato, Lisa

    2017-03-01

    We combine 131 new medium-resolution (R ˜ 2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5-T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6-L7 objects in our sample by measuring the equivalent widths (EW) of the K I lines at 1.1692, 1.1778, and 1.2529 μm, and the 1.2 μm FeH J absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak—at ˜L5 and T5—in K I EW as a function of spectral type. We analyze the K I EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6-L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity-sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current data sets cannot be used to provide a precise age estimate. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  7. Progress in ion figuring large optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, L.N.

    1995-12-31

    Ion figuring is an optical fabrication method that provides deterministic surface figure error correction of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Considerable process development has been completed and numerous large optical elements have been successfully final figured using this process. The process has been demonstrated to be highly deterministic, capable of completing complex-shaped optical element configurations in only a few process iterations, and capable of achieving high-quality surface figure accuracy`s. A review of the neutral ion beam figuring process will be provided, along with discussion ofmore » processing results for several large optics. Most notably, processing of Keck 10 meter telescope primary mirror segments and correction of one other large optic where a convergence ratio greater than 50 was demonstrated during the past year will be discussed. Also, the process has been demonstrated on various optical materials, including fused silica, ULE, zerodur, silicon and chemically vapor deposited (CVD) silicon carbide. Where available, results of surface finish changes caused by the ion bombardment process will be discussed. Most data have shown only limited degradation of the optic surface finish, and that it is generally a function of the quality of mechanical polishing prior to ion figuring. Removals of from 5 to 10 {mu}m on some materials are acceptable without adversely altering the surface finish specularity.« less

  8. On singularities of capillary surfaces in the absence of gravity

    DOE PAGES

    Roytburd, V.

    1983-01-01

    We smore » tudy numerical solutions to the equation of capillary surfaces in trapezoidal domains in the absence of gravity when the boundary contact angle declines from 90 ° to some critical value. We also discuss a result on the behavior of solutions in more general domains that confirms numerical calculations.« less

  9. Temporal sea-surface gravity changes observed near the source area prior to the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Tsuboi, S.

    2013-12-01

    Recent seismological studies suggested subsurface activities preceding the 2011 Tohoku earthquake; the occurrence of migration of seismicity (Kato et al., 2012) and slow slip events (Ito et al., 2013) in and around the source area one month before the mainshock. In this study, we investigated sea-surface gravity changes observed by the shipboard gravimeter mounted on research vessels before the mainshock. The vessels incidentally passed through the source area along almost the same cruise track twice, four months before and one month before the mainshock. Comparing the sea surface gravity in the former track with that in the latter after Bouguer correction, we find the gravity changes of approximately 7 mGal in coseismic slip areas near the trench axis during the three months. We find these gravity changes even in the crossing areas of the cruise tracks where seafloor topographies have no differences between the tracks. We also find that the topographic differences show positive changes but the gravity changes negative ones in other areas, which is a negative correlation inconsistent with the theoretical relationship between the topographic difference and the gravity change. These mean that the differences of seafloor topographies due to differences between the two cruise tracks are not main causes of the observed gravity changes there. The changes cannot also be explained by drifts of the gravimeter and geostrophic currents. Although we have not had any clear evidences, we speculate that the possible cause may be density increases around the seismogenic zone or uplifts of seafloor in order to explain the changes of this size. We estimate the density increases of 1.0 g/cm**3 in a disk with a radius of 40 km and a width of 200 m or the uplifts of several tens of meters in seafloor areas for the observed gravity changes. Our results indicate that sea-surface gravity observations may be one of valid approaches to monitor the approximate location of a possible great

  10. Gravity current into an ambient fluid with an open surface

    NASA Astrophysics Data System (ADS)

    Ungarish, Marius

    2017-11-01

    Consider the steady-state gravity current of height h and density ρ1 that propagates into an ambient motionless fluid of height H and density ρ2 with an upper surface open to the atmosphere (open channel) at high Reynolds number. The current propagates with speed U and causes a depth decrease χ of the top surface. This is a significant extension of Benjamin's (1968) seminal solution for the fixed-top channel χ = 0 . Here the determination of χ is a part of the problem. The dimensionless parameters of the problem are a = h / H and r =ρ2 /ρ1 . We show that a control-volume analysis determines χ = χ / H and Fr = U / (g ' h)1/2 as functions of a , r , where g ' = (r-1 - 1) g is the reduced gravity. The system satisfies balance of volume and momentum (explicitly), and vorticity (implicitly). We present solutions. The predicted flows are in general dissipative, and thus physically valid only for a <=amax (r) 0.5 r where non-negative dissipation appears. The open-surface Fr (a , r) is smaller than Benjamin's Frb (a) , but the reduction is not dramatic, typically a few percent. In the Boussinesq r 1 case, χ << 1 while Fr and dissipation are close to Benjamin's values.

  11. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  12. Fluid/gravity correspondence for massive gravity

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Jian; Huang, Yong-Chang

    2016-11-01

    In this paper, we investigate the fluid/gravity correspondence in the framework of massive Einstein gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a timelike hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and nonrelativistic limits. Furthermore, we have concisely computed the ratio of dynamical viscosity to entropy density for two massive Einstein gravity theories, and found that they still saturate the Kovtun-Son-Starinets (KSS) bound.

  13. Multiphase Flow: The Gravity of the Situation

    NASA Technical Reports Server (NTRS)

    Hewitt, Geoffrey F.

    1996-01-01

    A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.

  14. CREW TRAINING - STS-33/51L (ZERO-G)

    NASA Image and Video Library

    1985-10-16

    S85-42473 (16 Oct. 1985) --- Sharon Christa McAuliffe, a teacher-citizen observer on STS-51L, smiles before participating in some zero-G rehearsals for her upcoming flight. She is seated near the controls of the KC-135 aircraft, flying for the Johnson Space Center from Ellington Air Field. Referred to as the ?zero-gravity? aircraft, the KC-135 provides brief moments of weightlessness for shuttle crew members in training. Photo credit: NASA

  15. Combining nutation and surface gravity observations to estimate the Earth's core and inner core resonant frequencies

    NASA Astrophysics Data System (ADS)

    Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian

    2017-04-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.

  16. Materials processing in zero gravity. [space manufacturing

    NASA Technical Reports Server (NTRS)

    Wuenscher, H. F.

    1973-01-01

    Manufacturing processes which are expected to show drastic changes in a space environment due to the absence of earth gravity are classified according to (1) buoyancy and thermal convection sensitive processes and (2) processes where molecular forces like cohesion and adhesion remain as the relatively strongest and hence controlling factors. Some specific process demonstration experiments carried out during the Apollo 14 mission and in the Skylab program are described. These include chemical separation by electrophoresis, the M551 metals melting experiment, the M552 exothermic brazing experiment, the M553 sphere forming experiment, the M554 composite casting experiment, and the M555 gallium arsenide crystal growth experiment.

  17. Modeling the Salar de Uyuni, Bolivia as an Equipotential Surface of Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Borsa, Adrian; Bills, Bruce

    2004-01-01

    The salar de Uyuni is a massive dry salt lake that lies at the lowest point of an internal/drainage basin in the Bolivian Altiplano. Its topography is remarkable for its extraordinary flatness over almost a full degree of latitude and longitude. We surveyed a 54 x 45 km region of the salar with kinematic GPS in September, 2002 and found a topographic range of only 80 cm over the entire surveyed area. Furthermore, the survey revealed distinct surface features with several dominant wavelengths and orientations. Some of these appear to be aligned with orographic features that intersect the salar, leading us to conjecture that they are the surface expression of high-density mountains that have been buried by low-density basin sediments. Over the oceans, a similar correspondence between basin bathymetry and surface topography is exploited to map the seafloor using sea-surface satellite altimetry measurements, with the sea surface following geoid undulations due to the underwater mass distribution. On the salar, annual flooding creates a shallow lake whose surface also lies on a equipotential surface shaped by the distribution of underlying mass. The link to the actual salar surface is via the dissolution and redeposition of salt by the lake waters, which appears to push the system to an equilibrium of constant water depth and the coincidence of the shapes of the lake surface and bottom. To test our hypothesis about the origin of the surface features on the salar, we compare our GPS survey elevations with the equipotential surface generated from local gravity measurements in conjunction with gravity and potential values from the EGM96 global geopotential model. 50% of the variance of the GPS elevations can be explained by equipotential surface undulations from the EGM96 model alone, and an additional 40% is explained by the shorter-wavelength equipotential surface derived from local gravity. We examine the unexplained 10% of elevation variance from the standpoint of

  18. Two-dimensional free-surface flow under gravity: A new benchmark case for SPH method

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Fang, L.

    2018-02-01

    Currently there are few free-surface benchmark cases with analytical results for the Smoothed Particle Hydrodynamics (SPH) simulation. In the present contribution we introduce a two-dimensional free-surface flow under gravity, and obtain an analytical expression on the surface height difference and a theoretical estimation on the surface fractal dimension. They are preliminarily validated and supported by SPH calculations.

  19. Higher order statistics of planetary gravities and topographies

    NASA Technical Reports Server (NTRS)

    Kaula, William M.

    1993-01-01

    The statistical properties of Earth, Venus, Mars, Moon, and a 3-D mantle convection model are compared. The higher order properties are expressed by third and fourth moments: i.e., as mean products over equilateral triangles (defined as coskewance) and equilateral quadrangles (defined as coexance). For point values, all the fields of real planets have positive skewness, ranging from slightly above zero for Lunar gravity to 2.6 sigma(exp 3) for Martian gravity (sigma is rms magnitude). Six of the eight excesses are greater than Gaussian (3 sigma(exp 4)), ranging from 2.0 sigma(exp 4) for Earth topography to 18.6 sigma(exp 4), for Martian topography. The coskewances and coexances drop off to zero within 20 deg arc in most cases. The mantle convective model has zero skewness and excess slightly less than Gaussian, probably arising from viscosity variations being only radial.

  20. A novel facility for reduced-gravity testing: A setup for studying low-velocity collisions into granular surfaces

    NASA Astrophysics Data System (ADS)

    Sunday, C.; Murdoch, N.; Cherrier, O.; Morales Serrano, S.; Valeria Nardi, C.; Janin, T.; Avila Martinez, I.; Gourinat, Y.; Mimoun, D.

    2016-08-01

    This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ˜0.1 to 1.0 m/s2. Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.

  1. A novel facility for reduced-gravity testing: A setup for studying low-velocity collisions into granular surfaces.

    PubMed

    Sunday, C; Murdoch, N; Cherrier, O; Morales Serrano, S; Valeria Nardi, C; Janin, T; Avila Martinez, I; Gourinat, Y; Mimoun, D

    2016-08-01

    This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ∼0.1 to 1.0 m/s(2). Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.

  2. Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Vagt, Nicole; Braun, Markus

    With the ability to sense gravity plants possess a powerful tool to adapt to a great variety of environmental conditions and to respond to environmental changes in a most beneficial way. Gravity is the only constant factor that provides organisms with reliable information for their orientation since billions of years. Any deviation of the genetically determined set-point angle of the plants organs from the vector of gravity is sensed by specialized cells, the statocytes of roots and shoots in higher plants. Dense particles, so-called statoliths, sediment in the direction of gravity and activate membrane-bound gravireceptors. A physiological signalling-cascade is initiated that eventually results in the gravitropic curvature response, namely, the readjust-ment of the growth direction. Experiments under microgravity conditions have significantly contributed to our understanding of plant gravity-sensing and gravitropic reorientation. For a gravity-sensing lower plant cell type, the rhizoid of the green alga Chara, and for statocytes of higher plant roots, it was shown that the interactions between statoliths and the actomyosin system consisting of the actin cytoskeleton and motor proteins (myosins) are the basis for highly efficient gravity-sensing processes. In Chara rhizoids, the actomyosin represents a guid-ing system that directs sedimenting statoliths to a specific graviperception site. Parabolic flight experiments aboard the airbus A300 Zero-G have provided evidence that lower and higher plant cells use principally the same statolith-mediated gravireceptor-activation mechanism. Graviper-ception is not dependent on mechanical pressure mediated through the weight of the sedimented statoliths, but on direct interactions between the statoliths's surface and yet unknown gravire-ceptor molecules. In contrast to Chara rhizoids, in the gravity-sensing cells of higher plants, the actin cytoskeleton is not essentially involved in the early phases of gravity sensing. Dis

  3. Studying unsaturated epikarst water storage properties by time lapse surface to depth gravity measurements

    NASA Astrophysics Data System (ADS)

    Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.

    2011-12-01

    The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth

  4. Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.

    1995-01-01

    This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion

  5. Exotic containers for capillary surfaces

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1991-01-01

    This paper discusses 'exotic' rotationally symmetric containers that admit an entire continuum of distinct equilibrium capillary free surfaces. The paper extends earlier work to a larger class of parameters and clarifies and simplifies the governing differential equations, while expressing them in a parametric form appropriate for numerical integration. A unified presentation suitable for both zero and nonzero gravity is given. Solutions for the container shapes are depicted graphically along with members of the free-surface continuum, and comments are given concerning possible physical experiments.

  6. First Gravity Traverse on the Martian Surface from the Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Lewis, K. W.; Peters, S. F.; Gonter, K. A.; Vasavada, A. R.

    2016-12-01

    Orbital gravity surveys have been a key tool in understanding planetary interiors and shallow crustal structure, exemplified by recent missions such as GRAIL and Juno. However, due to the loss of spatial resolution with altitude, airborne and ground-based survey methods are typically employed on the Earth. Previously, the Lunar Traverse Gravimeter experiment on the Apollo 17 mission has been the only attempt to collect surface gravity measurements on another planetary body. We will describe the results of the first gravity survey on the Martian surface, using data from the Curiosity rover over its >10 km traverse across the floor of Gale crater and lower slopes of Mount Sharp. These results enable us to estimate bulk rock density, and to search for potential subsurface density anomalies. To measure local gravitational acceleration, we use one of the two onboard Rover Inertial Measurement Units (RIMU-A), designed for rover position and fine attitude determination. The IMU contains three-axis micro-electromechanical (MEMS) accelerometers and fiber-optic gyros, and is used for gyrocompassing by integrating data for several minutes on sols with no drive or arm motions (roughly 50% of sols to date). Raw acceleration data are calibrated for biases induced by temperature effects and rover orientation, along with rover elevation over the course of the mission using multiple regression. We use the best fit linear relationship between topographic height and gravitational acceleration to estimate a Bouguer correction for the observed change in magnitude over the mission as the rover has ascended over 100 meters up the lower slopes of Mount Sharp. We find a relatively low best-fit density of 1600 +/- 500 kg/m^3 for the rocks of Mount Sharp, consistent with rover-based measurements of thermal inertial, and potentially indicating pervasive fracturing, high porosity and/or low compaction within the original sediments at least to depths of order 100 meters. Future measurements

  7. Strategy For Implementing The UN "Zero-Gravity Instrument Project" To Promote Space Science Among School Children In Nigeria

    NASA Astrophysics Data System (ADS)

    Alabi, O.; Agbaje, G.; Akinyede, J.

    2015-12-01

    The United Nations "Zero Gravity Instrument Project" (ZGIP) is one of the activities coordinated under the Space Education Outreach Program (SEOP) of the African Regional Centre for Space Science and Technology Education in English (ARCSSTE-E) to popularize space science among pre-collegiate youths in Nigeria. The vision of ZGIP is to promote space education and research in microgravity. This paper will deliberate on the strategy used to implement the ZGIP to introduce school children to authentic scientific data and inquiry. The paper highlights how the students learned to collect scientific data in a laboratory environment, analyzed the data with specialized software, obtained results, interpreted and presented the results of their study in a standard format to the scientific community. About 100 school children, aged between 7 and 21 years, from ten public and private schools located in Osun State, Nigeria participated in the pilot phase of the ZGIP which commenced with a 1-day workshop in March 2014. During the inauguration workshop, the participants were introduced to the environment of outer space, with special emphasis on the concept of microgravity. They were also taught the basic principle of operation of the Clinostat, a Zero-Gravity Instrument donated to ARCSSTE-E by the United Nations Office for Outer Space Affairs (UN-OOSA), Vienna, under the Human Space Technology Initiative (UN-HSTI). At the end of the workshop, each school designed a project, and had a period of 1 week, on a planned time-table, to work in the laboratory of ARCSSTE-E where they utilized the clinostat to examine the germination of indigenous plant seeds in simulated microgravity conditions. The paper also documents the post-laboratory investigation activities, which included presentation of the results in a poster competition and an evaluation of the project. The enthusiasm displayed by the students, coupled with the favorable responses recorded during an oral interview conducted to

  8. Correcting the spectroscopic surface gravity using transits and asteroseismology. No significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.

    2014-12-01

    Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the

  9. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  10. Evaluation of an ATP Assay to Quantify Bacterial Attachment to Surfaces in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; Roberson, Luke B.; Roberts, Michael S.

    2010-01-01

    Aim: To develop an assay to quantify the biomass of attached cells and biofilm formed on wetted surfaces in variable-gravity environments. Methods and Results: Liquid cultures of Pseudomonas aeruginosa were exposed to 30-35 brief cycles of hypergravity (< 2-g) followed by free fall (i.e., reduced gravity) equivalent to either lunar-g (i.e., 0.17 normal Earth gravity) or micro-g (i.e., < 0.001 normal Earth gravity) in an aircraft flying a series of parabolas. Over the course of two days of parabolic flight testing, 504 polymer or metal coupons were exposed to a stationary-phase population of P. aeruginosa strain ERC1 at a concentration of 1.0 x 10(exp 5) cells per milliliter. After the final parabola on each flight test day, half of the material coupon samples were treated with either 400 micro-g/L ionic silver fluoride (microgravity-exposed cultures) or 1% formalin (lunar-gravity-exposed cultures). The remaining sample coupons from each flight test day were not treated with a fixative. All samples were returned to the laboratory for analysis within 2 hours of landing, and all biochemical assays were completed within 8 hours of exposure to variable gravity. The intracellular ATP luminescent assay accurately reflected cell physiology compared to both cultivation-based and direct-count microscopy analyses. Cells exposed to variable gravity had more than twice as much intracellular ATP as control cells exposed only to normal Earth gravity.

  11. Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.

  12. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    NASA Astrophysics Data System (ADS)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  13. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  14. The emergence of gravity as a retro-causal post-inflation macro-quantum-coherent holographic vacuum Higgs-Goldstone field

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack; Levit, Creon

    2009-06-01

    We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the "zero point" (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual "condensate" (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter ΩMDM approx 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.

  15. A Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving

  16. Surface topography estimated by inversion of satellite gravity gradiometry observations

    NASA Astrophysics Data System (ADS)

    Ramillien, Guillaume

    2015-04-01

    An integration of mass elements is presented for evaluating the six components of the 2-order gravity tensor (i.e., second derivatives of the Newtonian mass integral for the gravitational potential) created by an uneven sphere topography consisting of juxtaposed vertical prisms. The method is based on Legendre polynomial series with the originality of taking elastic compensation of the topography by the Earth's surface into account. The speed of computation of the polynomial series increases logically with the observing altitude from the source of anomaly. Such a forward modelling can be easily used for reduction of observed gravity gradient anomalies by the effects of any spherical interface of density. Moreover, an iterative least-square inversion of the observed gravity tensor values Γαβ is proposed to estimate a regional set of topographic heights. Several tests of recovery have been made by considering simulated gradiometry anomaly data, and for varying satellite altitudes and a priori levels of accuracy. In the case of GOCE-type gradiometry anomalies measured at an altitude of ~300 km, the search converges down to a stable and smooth topography after 20-30 iterations while the final r.m.s. error is ~100 m. The possibility of cumulating satellite information from different orbit geometries is also examined for improving the prediction.

  17. A zero-gravity demonstration of the collision and coalescence of water droplets

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Vaughan, O. H.; Smith, R. E.

    1974-01-01

    The mechanics of the collision and coalescence of liquid droplets is one of the main research areas in the fields of nuclear physics, astrophysics, meteorology and fluid mechanics. The crew members on the Skylab 3 and 4 missions were requested to perform demonstrations of the collision and coalescence of water droplets under the low gravity environment at orbital altitude. In Skylab 4 two water droplets with equal volumes, 30 cu cm each, were used. A dark colored droplet (contaminated with grape drink) moving with a velocity of 3.14 cm/sec collided with a stationary pink colored droplet (contaminated with strawberry drink) and coalescence occurred. Theoretical models are proposed to study the various stages of the collision-coalescence processes. Special considerations are concentrated in the investigation of the bounce-coalescence and coalescence-instability processes. The surface tension of the coalesced droplets was calculated to be 52 dynes/cm in perfect agreement with laboratory measurements made after the flight using a reproduction of the liquids.

  18. Crossing of the phantom divide using tachyon-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, J.; Banijamali, A.; Milani, F.

    2009-06-15

    In this paper we consider two models. First, we study tachyon-Gauss-Bonnet gravity and obtain the condition of the equation of state crossing -1. Second, we discuss the modified Gauss-Bonnet gravity with the tachyon field and show the condition of {omega} crossing -1. Also, we plot figures for {omega} numerically in special potential and coupling function.

  19. Defying Gravity Using Jenga[TM] Blocks

    ERIC Educational Resources Information Center

    Tan, Yin-Soo; Yap, Kueh-Chin

    2007-01-01

    This paper describes how Jenga[TM] blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum. (Contains 8 figures and 1 table.)

  20. Anti-gravity device

    NASA Technical Reports Server (NTRS)

    Palsingh, S. (Inventor)

    1975-01-01

    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  1. An inverse dynamic analysis on the influence of upper limb gravity compensation during reaching.

    PubMed

    Essers, J M N Hans; Meijer, Kenneth; Murgia, Alessio; Bergsma, Arjen; Verstegen, Paul

    2013-06-01

    Muscular dystrophies (MDs) are characterized by progressive muscle wasting and weakness. Several studies have been conducted to investigate the influence of arm supports in an attempt to restore arm function. Lowering the load allows the user to employ the residual muscle force for movement as well as for posture stabilization. In this pilot study three conditions were investigated during a reaching task performed by three healthy subjects and three MD subjects: a control condition involving reaching; a similar movement with gravity compensation using braces to support the forearm; an identical reaching movement in simulated zero-gravity. In the control condition the highest values of shoulder moments were present, with a maximum of about 6 Nm for shoulder flexion and abduction. In the gravity compensation and zero gravity conditions the maximum shoulder moments were decreased by more than 70% and instead of increasing during reaching, they remained almost unvaried, fluctuating around an offset value less than 1 Nm. Similarly, the elbow moments in the control condition were the highest with a peak around 3.3 Nm for elbow flexion, while the moments were substantially reduced in the remaining two conditions, fluctuating around offset values between 0 to 0.5 Nm. In conclusion, gravity compensation by lower arm support is effective in healthy subjects and MD subjects and lowers the amount of shoulder and elbow moments by an amount comparable to a zero gravity environment. However the influence of gravity compensation still needs to be investigated on more people with MDs in order to quantify any beneficial effect on this population.

  2. Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.

    2003-01-01

    To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.

  3. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  4. VizieR Online Data Catalog: Surface gravity determination in late-type stars (Morel+, 2012)

    NASA Astrophysics Data System (ADS)

    Morel, T.; Miglio, A.

    2012-06-01

    The frequency of maximum oscillation power measured in dwarfs and giants exhibiting solar-like pulsations provides a precise, and potentially accurate, inference of the stellar surface gravity. An extensive comparison for about 40 well-studied pulsating stars with gravities derived using classical methods (ionization balance, pressure-sensitive spectral features or location with respect to evolutionary tracks) supports the validity of this technique and reveals an overall remarkable agreement with mean differences not exceeding 0.05dex (although with a dispersion of up to ~0.2dex). It is argued that interpolation in theoretical isochrones may be the most precise way of estimating the gravity by traditional means in nearby dwarfs. Attention is drawn to the usefulness of seismic targets as benchmarks in the context of large-scale surveys. (1 data file).

  5. A feedback model of figure-ground assignment.

    PubMed

    Domijan, Drazen; Setić, Mia

    2008-05-30

    A computational model is proposed in order to explain how bottom-up and top-down signals are combined into a unified perception of figure and background. The model is based on the interaction between the ventral and the dorsal stream. The dorsal stream computes saliency based on boundary signals provided by the simple and the complex cortical cells. Output from the dorsal stream is projected to the surface network which serves as a blackboard on which the surface representation is formed. The surface network is a recurrent network which segregates different surfaces by assigning different firing rates to them. The figure is labeled by the maximal firing rate. Computer simulations showed that the model correctly assigns figural status to the surface with a smaller size, a greater contrast, convexity, surroundedness, horizontal-vertical orientation and a higher spatial frequency content. The simple gradient of activity in the dorsal stream enables the simulation of the new principles of the lower region and the top-bottom polarity. The model also explains how the exogenous attention and the endogenous attention may reverse the figural assignment. Due to the local excitation in the surface network, neural activity at the cued region will spread over the whole surface representation. Therefore, the model implements the object-based attentional selection.

  6. Newton-Cartan gravity and torsion

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric; Chatzistavrakidis, Athanasios; Romano, Luca; Rosseel, Jan

    2017-10-01

    We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.

  7. Effect of gravity on the stability and structure of lean hydrogen-air flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1991-01-01

    Detailed, time-dependent, 2D numerical simulations with full hydrogen-oxygen chemistry are used to investigate the effects of gravity on the stability and structure of laminar flames in lean, premixed hydrogen-air mixtures. The calculations show that the effects of gravity becomes more important as the lean flammability limit is approached. In a 12 percent hydrogen-air mixture, gravity plays only a secondary role in determining the multidimensional structure of the flame with the stability and structure of the flame controlled primarily by the thermo-diffusive instability mechanism. However, in leaner hydrogen-air mixtures gravity becomes more important. Upward-propagating flames are highly curved and evolve into a bubble rising upwards in the tube. Downward-propagating flames are flat or even oscillate between structures with concave and convex curvatures. The zero-gravity flame shows only cellular structures. Cellular structures which are present in zero gravity can be suppressed by the effect of buoyancy for mixtures leaner than 11 percent hydrogen. These observations are explained on the basis of an interaction between the processes leading to buoyancy-induced Rayleigh-Taylor instability and the thermo-diffusive instability.

  8. Mars - Hellas Planitia gravity analysis

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Wimberley, R. N.

    1981-01-01

    Doppler radio tracking data from Viking Orbiter 1 has provided new detailed observations of gravity variations over Hellas Planitia. Line-of-sight Bouguer gravity definitely indicates that isostatic adjustment has occurred. Two theoretical models were tested to obtain fits to the gravity data. Results for a surface deficit model, and a model with a surface deficit and a mass excess at depth are displayed. The mass-at-depth model produced very marked improvement in the data fit as compared to the surface deficit model. The optimum depth for the mass excess is 130 km.

  9. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Herrick, R. E.; McCue, S. A.

    1993-01-01

    A study was conducted, as part of the integrated National Aeronautics and Space Administration Space Life Sciences 1 mission flown in June of 1991, to ascertain the effects of 9 days of exposure to zero gravity on the capacity of rodent skeletal muscle fiber types to oxidize either [14C]pyruvate or [14C]palmitate under state 3 metabolic conditions, i.e., nonlimiting amounts of substrate and cofactors. In addition, activity levels of marker enzymes of the tricarboxylic acid cycle, malate shuttle, and beta-oxidation were measured. Results showed that significant differences in muscle weight occurred in both the predominantly slow vastus intermedius and predominantly fast vastus lateralis of flight vs. control groups (P < 0.05). Total protein content of the muscle samples was similar between groups. Both pyruvate oxidation capacity and the marker oxidative enzymes were not altered in the flight relative to control animals. However, the capacity to oxidize long-chain fatty acids was significantly reduced by 37% in both the high- and low-oxidative regions of the vastus muscle (P < 0.05). Although these findings of a selective reduction in fatty acid oxidation capacity in response to spaceflight are surprising, they are consistent with previous findings showing 1) an increased capacity to take up glucose and upregulate glucose transporter proteins and 2) a marked accumulation of triglycerides in the skeletal muscles of rats subjected to states of unloading. Thus, skeletal muscle of animals exposed to non-weight-bearing environments undergo subcellular transformations that may preferentially bias energy utilization to carbohydrates.

  10. Energy theorem for (2+1)-dimensional gravity.

    NASA Astrophysics Data System (ADS)

    Menotti, P.; Seminara, D.

    1995-05-01

    We prove a positive energy theorem in (2+1)-dimensional gravity for open universes and any matter energy-momentum tensor satisfying the dominant energy condition. We consider on the space-like initial value surface a family of widening Wilson loops and show that the energy-momentum of the enclosed subsystem is a future directed time-like vector whose mass is an increasing function of the loop, until it reaches the value 1/4G corresponding to a deficit angle of 2π. At this point the energy-momentum of the system evolves, depending on the nature of a zero norm vector appearing in the evolution equations, either into a time-like vector of a universe which closes kinematically or into a Gott-like universe whose energy momentum vector, as first recognized by Deser, Jackiw, and 't Hooft (1984) is space-like. This treatment generalizes results obtained by Carroll, Fahri, Guth, and Olum (1994) for a system of point-like spinless particle, to the most general form of matter whose energy-momentum tensor satisfies the dominant energy condition. The treatment is also given for the anti-de Sitter (2+1)-dimensional gravity.

  11. Near-station terrain corrections for gravity data by a surface-integral technique

    USGS Publications Warehouse

    Gettings, M.E.

    1982-01-01

    A new method of computing gravity terrain corrections by use of a digitizer and digital computer can result in substantial savings in the time and manual labor required to perform such corrections by conventional manual ring-chart techniques. The method is typically applied to estimate terrain effects for topography near the station, for example within 3 km of the station, although it has been used successfully to a radius of 15 km to estimate corrections in areas where topographic mapping is poor. Points (about 20) that define topographic maxima, minima, and changes in the slope gradient are picked on the topographic map, within the desired radius of correction about the station. Particular attention must be paid to the area immediately surrounding the station to ensure a good topographic representation. The horizontal and vertical coordinates of these points are entered into the computer, usually by means of a digitizer. The computer then fits a multiquadric surface to the input points to form an analytic representation of the surface. By means of the divergence theorem, the gravity effect of an interior closed solid can be expressed as a surface integral, and the terrain correction is calculated by numerical evaluation of the integral over the surfaces of a cylinder, The vertical sides of which are at the correction radius about the station, the flat bottom surface at the topographic minimum, and the upper surface given by the multiquadric equation. The method has been tested with favorable results against models for which an exact result is available and against manually computed field-station locations in areas of rugged topography. By increasing the number of points defining the topographic surface, any desired degree of accuracy can be obtained. The method is more objective than manual ring-chart techniques because no average compartment elevations need be estimated ?

  12. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  13. Figure 12(a) Effects of Inclining Water. Figure 12(b) Sand. NASA document NASA-TN-D-56 An investigation to determine conditions under which downwash from VTOL aircraft will start surface erosion from various types of terrain

    NASA Image and Video Library

    1959-05-04

    Figure 12(a) Effects of Inclining Water. Figure 12(b) Sand. NASA-TN-D-56 An investigation to determine conditions under which downwash from VTOL aircraft will start surface erosion from various types of terrain.

  14. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  15. Experimental concept for examination of biological effects of magnetic field concealed by gravity.

    PubMed

    Yamashita, M; Tomita-Yokotani, K; Hashimoto, H; Takai, M; Tsushima, M; Nakamura, T

    2004-01-01

    Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  16. The pH-dependent surface charging and points of zero charge: V. Update.

    PubMed

    Kosmulski, Marek

    2011-01-01

    The points of zero charge (PZC) and isoelectric points (IEP) from the recent literature are discussed. This study is an update of the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC, Boca Raton, FL, 2009] and of its previous update [J. Colloid Interface Sci. 337 (2009) 439]. In several recent publications, the terms PZC/IEP have been used outside their usual meaning. Only the PZC/IEP obtained according to the methods recommended by the present author are reported in this paper, and the other results are ignored. PZC/IEP of albite, sepiolite, and sericite, which have not been studied before, became available over the past 2 years. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  18. WISEP J004701.06+680352.1: An Intermediate Surface Gravity, Dusty Brown Dwarf in the AB Dor Moving Group

    DTIC Science & Technology

    2015-02-01

    reserved. WISEP J004701.06+680352.1: AN INTERMEDIATE SURFACE GRAVITY, DUSTY BROWN DWARF IN THE AB DOR MOVING GROUP John E. Gizis1,9, Katelyn N...pc. The three-dimensional space mo- tion identifies it as a member of the AB Dor Moving Group, an identification supported by our classification of...SUBTITLE WISEP J004701+680352.1: An Intermediate Surface Gravity, Dusty Brown Dwarf In The AB Dor Moving Group 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  19. Capillary surfaces in a wedge: Differing contact angles

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.

  20. Two critical periods in early visual cortex during figure-ground segregation.

    PubMed

    Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F

    2012-11-01

    The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure-ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure-ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure-ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96-119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236-259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure-ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure-ground segregation such as surface segregation.

  1. Complexity growth in minimal massive 3D gravity

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study the complexity growth by using "complexity =action " (CA) proposal in the minimal massive 3D gravity (MMG) model which is proposed for resolving the bulk-boundary clash problem of topologically massive gravity (TMG). We observe that the rate of the complexity growth for Banados-Teitelboim-Zanelli (BTZ) black hole saturates the proposed bound by physical mass of the BTZ black hole in the MMG model, when the angular momentum parameter and the inner horizon of black hole goes to zero.

  2. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    NASA Technical Reports Server (NTRS)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  3. Zero-G Condensing Heat Exchanger with Integral Disinfection

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2012-01-01

    The system that operates in a zero gravity environment and has an integral ozone generating capability is disclosed. The system contributes to the control of metabolic water vapors in the air, and also provided disinfection of any resulting condensate within the system, as well as disinfection of the air stream that flows throughout the disclosed system.

  4. Accurate integration over atomic regions bounded by zero-flux surfaces.

    PubMed

    Polestshuk, Pavel M

    2013-01-30

    The approach for the integration over a region covered by zero-flux surface is described. This approach based on the surface triangulation technique is efficiently realized in a newly developed program TWOE. The elaborated method is tested on several atomic properties including the source function. TWOE results are compared with those produced by using well-known existing programs. Absolute errors in computed atomic properties are shown to range usually from 10(-6) to 10(-5) au. The demonstrative examples prove that present realization has perfect convergence of atomic properties with increasing size of angular grid and allows to obtain highly accurate data even in the most difficult cases. It is believed that the developed program can be bridgehead that allows to implement atomic partitioning of any desired molecular property with high accuracy. Copyright © 2012 Wiley Periodicals, Inc.

  5. The realistic models of relativistic stars in f (R) = R + αR 2 gravity

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; Odintsov, Sergei D.; de la Cruz-Dombriz, Álvaro

    2017-10-01

    In the context of f(R)=R+α R2 gravity, we study the existence of neutron and quark stars for various α with no intermediate approximation in the system of equations. Analysis shows that for positive α the scalar curvature does not drop to zero at the star surface (as in general relativity) but exponentially decreases with distance. Also the stellar mass bounded by star surface decreases when the value α increases. Nonetheless distant observers would observe a gravitational mass due to appearance of a so-called gravitational sphere around the star. The non-zero curvature contribution to the gravitational mass eventually is shown to compensate the stellar mass decrease for growing α’s. We perform our analysis for several equations of state including purely hadronic configurations as well as hyperons and quark stars. In all cases, we assess that the relation between the parameter α and the gravitational mass weakly depends upon the chosen equation of state. Another interesting feature is the increase of the star radius in comparison with general relativity for stars with masses close to maximal, whereas for intermediate masses 1.4 -1.6 M_⊙ the radius of star depends upon α very weakly. Also the decrease in the mass bounded by star surface may cause the surface redshift to decrease in R 2-gravity when compared to Einsteinian predictions. This effect is shown to hardly depend upon the observed gravitational mass. Finally, for negative values of α our analysis shows that outside the star the scalar curvature has damped oscillations but the contribution of the gravitational sphere into the gravitational mass increases indefinitely with radial distance putting into question the very existence of such relativistic stars.

  6. Aspheric figure generation using feedback from an infrared phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.; Ketelsen, D.

    An infrared phase-shifting interferometric system has been integrated with a novel optical figure generator at the University of Arizona Optical Sciences Center. This unique generator facility can produce generalized axially symmetric surface figures in a timely and cost-effective manner. The success of this facility depends on both its ability to efficiently remove material while forming the surface figure, and its ability to monitor the surface figure during the generation process to provide feedback to the optician. The facility has been used on several occasions to custom-generate off-axis parabolic segments. Figures to within 0.30 microns rms of the desired figure have been obtained. This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments, and how it is affected by the surface roughness produced by each generator tool.

  7. Lunar Bouguer gravity anomalies - Imbrian age craters

    NASA Technical Reports Server (NTRS)

    Dvorak, J.; Phillips, R. J.

    1978-01-01

    The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.

  8. Heart Rate and Blood Pressure Variability under Moon, Mars and Zero Gravity Conditions During Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Aerts, Wouter; Joosen, Pieter; Widjaja, Devy; Varon, Carolina; Vandeput, Steven; Van Huffel, Sabine; Aubert, Andre E.

    2013-02-01

    Gravity changes during partial-G parabolic flights (0g -0.16g - 0.38g) lead to changes in modulation of the autonomic nervous system (ANS), studied via the heart rate variability (HRV) and blood pressure variability (BPV). HRV and BPV were assessed via classical time and frequency domain measures. Mean systolic and diastolic blood pressure show both increasing trends towards higher gravity levels. The parasympathetic and sympathetic modulation show both an increasing trend with decreasing gravity, although the modulation is sympathetic predominant during reduced gravity. For the mean heart rate, a non-monotonic relation was found, which can be explained by the increased influence of stress on the heart rate. This study shows that there is a relation between changes in gravity and modulations in the ANS. With this in mind, countermeasures can be developed to reduce postflight orthostatic intolerance.

  9. Study on processing immiscible materials in zero gravity

    NASA Technical Reports Server (NTRS)

    Reger, J. L.; Mendelson, R. A.

    1975-01-01

    An experimental investigation was conducted to evaluate mixing immiscible metal combinations under several process conditions. Under one-gravity, these included thermal processing, thermal plus electromagnetic mixing, and thermal plus acoustic mixing. The same process methods were applied during free fall on the MSFC drop tower facility. The design is included of drop tower apparatus to provide the electromagnetic and acoustic mixing equipment, and a thermal model was prepared to design the specimen and cooling procedure. Materials systems studied were Ca-La, Cd-Ga and Al-Bi; evaluation of the processed samples included the morphology and electronic property measurements. The morphology was developed using optical and scanning electron microscopy and microprobe analyses. Electronic property characterization of the superconducting transition temperatures were made using an impedance change-tuned coil method.

  10. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  11. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  12. Remediation of trichloroethylene-contaminated groundwater by three modifier-coated microscale zero-valent iron.

    PubMed

    Han, Jun; Xin, Jia; Zheng, Xilai; Kolditz, Olaf; Shao, Haibing

    2016-07-01

    Building a microscale zero-valent iron (mZVI) reaction zone is a promising in situ remediation technology for restoring groundwater contaminated by trichloroethylene (TCE). In order to determine a suitable modifier that could not only overcome gravity sedimentation of mZVI but also improve its remediation efficiency for TCE, the three biopolymers xanthan gum (XG), guargum (GG), and carboxymethyl cellulose (CMC) were employed to coat mZVI for surface modification. The suspension stability of the modified mZVI and its TCE removal efficiency were systematically investigated. The result indicated that XG as a shear-thinning fluid showed the most remarkable efficiency of preventing mZVI from gravity sedimentation and enhancing the TCE removal efficiency by mZVI. In a 480-h experiment, the presence of XG (3 g L(-1)) increased the TCE removal efficiency by 31.85 %, whereas GG (3 g L(-1)) and CMC (3 g L(-1)) merely increased by 15.61 and 9.69 % respectively. The pH value, Eh value, and concentration of ferrous ion as functions of the reaction time were recorded in all the reaction systems, which indicated that XG worked best in buffering the pH value of the solution and inhibiting surface passivation of mZVI.

  13. Direction-dependent arm kinematics reveal optimal integration of gravity cues.

    PubMed

    Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos

    2016-11-02

    The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort.

  14. Isoperimetric surfaces and area-angular momentum inequality in a rotating black hole in new massive gravity

    NASA Astrophysics Data System (ADS)

    Aceña, Andrés; López, Ericson; Llerena, Mario

    2018-03-01

    We study the existence and stability of isoperimetric surfaces in a family of rotating black holes in new massive gravity. We show that the stability of such surfaces is determined by the sign of the hair parameter. We use the isoperimetric surfaces to find a geometric inequality between the area and the angular momentum of the black hole, conjecturing geometric inequalities for more general black holes.

  15. An experiment in vision based autonomous grasping within a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Grimm, K. A.; Erickson, J. D.; Anderson, G.; Chien, C. H.; Hewgill, L.; Littlefield, M.; Norsworthy, R.

    1992-01-01

    The National Aeronautics and Space Administration's Reduced Gravity Program (RGP) offers opportunities for experimentation in gravities of less than one-g. The Extravehicular Activity Helper/Retriever (EVAHR) robot project of the Automation and Robotics Division at the Lyndon B. Johnson Space Center in Houston, Texas, is undertaking a task that will culminate in a series of tests in simulated zero-g using this facility. A subset of the final robot hardware consisting of a three-dimensional laser mapper, a Robotics Research 807 arm, a Jameson JH-5 hand, and the appropriate interconnect hardware/software will be used. This equipment will be flown on the RGP's KC-135 aircraft. This aircraft will fly a series of parabolas creating the effect of zero-g. During the periods of zero-g, a number of objects will be released in front of the fixed base robot hardware in both static and dynamic configurations. The system will then inspect the object, determine the objects pose, plan a grasp strategy, and execute the grasp. This must all be accomplished in the approximately 27 seconds of zero-g.

  16. A figure control sensor for the Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Bartman, R.; Dubovitsky, S.

    1988-01-01

    A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.

  17. Gravity field, geoid and ocean surface by space techniques

    NASA Technical Reports Server (NTRS)

    Anderle, R. J.

    1978-01-01

    Knowledge of the earth's gravity field continued to increase during the last four years. Altimetry data from the GEOS-3 satellite has provided the geoid over most of the ocean to an accuracy of about one meter. Increasing amounts of laser data has permitted the solution for 566 terms in the gravity field with which orbits of the GEOS-3 satellite have been computed to an accuracy of about one to two meters. The combination of satellite tracking data, altimetry and gravimetry has yielded a solution for 1360 terms in the earth's gravity field. A number of problems remain to be solved to increase the accuracy of the gravity field determination. New satellite systems would provide gravity data in unsurveyed areas and correction for topographic features of the ocean and improved computational procedures together with a more extensive laser network will considerably improve the accuracy of the results.

  18. Analytical Study of Gravity Effects on Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Edelman, R. B.; Fortune, O.; Weilerstein, G.

    1972-01-01

    A mathematical model is presented for the description of axisymmetric laminar-jet diffusion flames. The analysis includes the effects of inertia, viscosity, diffusion, gravity and combustion. These mechanisms are coupled in a boundary layer type formulation and solutions are obtained by an explicit finite difference technique. A dimensional analysis shows that the maximum flame width radius, velocity and thermodynamic state characterize the flame structure. Comparisons with experimental data showed excellent agreement for normal gravity flames and fair agreement for steady state low Reynolds number zero gravity flames. Kinetics effects and radiation are shown to be the primary mechanisms responsible for this discrepancy. Additional factors are discussed including elipticity and transient effects.

  19. Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.

  20. The Mystery of the Mars North Polar Gravity-Topography Correlation(Or Lack Thereof)

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sjogren, W. L.; Johnson, C. L.

    1999-01-01

    Maps of moderately high resolution gravity data obtained from the Mars Global Surveyor (MGS) gravity calibration orbit campaign and high precision topography obtained from the Mars Orbiter Laser Altimeter (MOLA) experiment reveal relationships between gravity and topography in high northern latitudes of Mars. Figure 1 shows the results of a JPL spherical harmonic gravity model bandpass filtered between degrees 6 and 50 contoured over a MOLA topographic image. A positive gravity anomaly exists over the main North Polar cap, but there are at least six additional positive gravity anomalies, as well as a number of smaller negative anomalies, with no obvious correlation to topography. Additional information is contained in the original extended abstract.

  1. Surface filling-in and contour interpolation contribute independently to Kanizsa figure formation.

    PubMed

    Chen, Siyi; Glasauer, Stefan; Müller, Hermann J; Conci, Markus

    2018-04-30

    To explore mechanisms of object integration, the present experiments examined how completion of illusory contours and surfaces modulates the sensitivity of localizing a target probe. Observers had to judge whether a briefly presented dot probe was located inside or outside the region demarcated by inducer elements that grouped to form variants of an illusory, Kanizsa-type figure. From the resulting psychometric functions, we determined observers' discrimination thresholds as a sensitivity measure. Experiment 1 showed that sensitivity was systematically modulated by the amount of surface and contour completion afforded by a given configuration. Experiments 2 and 3 presented stimulus variants that induced an (occluded) object without clearly defined bounding contours, which gave rise to a relative sensitivity increase for surface variations on their own. Experiments 4 and 5 were performed to rule out that these performance modulations were simply attributable to variable distances between critical local inducers or to costs in processing an interrupted contour. Collectively, the findings provide evidence for a dissociation between surface and contour processing, supporting a model of object integration in which completion is instantiated by feedforward processing that independently renders surface filling-in and contour interpolation and a feedback loop that integrates these outputs into a complete whole. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Simplified model of statistically stationary spacecraft rotation and associated induced gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1978-01-01

    A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.

  3. A figure of merit for AMTEC electrodes

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.

    1991-01-01

    As a method to compare the results of alkali metal thermoelectric converter (AMTEC) electrode performance measured under different conditions, an AMTEC figure of merit called ZA is proposed. This figure of merit is the ratio of the experimental maximum power for an electrode to a calculated maximum power density as determined from a recently published electrode performance model. The calculation of a maximum power density assumes that certain loss terms in the electrode can be reduced to essentially zero by improved cell design and construction, and that the electrochemical exchange current is determined from a standard value. Other losses in the electrode are considered inherent to the electrode performance. Thus, these terms remain in the determination of the calculated maximum power. A value of ZA near one, then, indicates an electrode performance near the maximum possible performance. The primary limitation of this calculation is that the small electrode effect cannot be included. This effect leads to anomalously high values of ZA. Thus, the electrode area should be reported along with the figure of merit.

  4. Investigation of the Ignition and Burning of Materials in Space Cabin Atmospheres. Part 2: Ignition of a Combustible Mixture by a Hot Body with the Effects of Gravity

    NASA Technical Reports Server (NTRS)

    Lew, H. G.

    1972-01-01

    The ignition of a combustible gas mixture by a hot cylinder under the effect of a gravity field for steady state conditions is examined. For this purpose a horizontal cylinder is considered with gravity as a parameter together with a finite chemical reacting flow generated by free convection with the additional effect of diffusion. Both mass transfer and zero mass transfer cases are considered. By defining an ignition criterion the surface temperature and species are obtained from the analysis as a function of the gravity field. It is supposed that at the point of ignition the heat evolved in the gas is sufficiently high to attain a sustained combustion without any energy from the hot cylinder.

  5. View of Payload specialist Paul Scully-Power during Zero-G training

    NASA Image and Video Library

    1984-07-16

    S84-37536 (18 July 1984) --- Astronaut Robert L. Crippen, left, 41-G crew commander watches as one of his fellow crewmembers gets an introduction to weightlessness aboard a KC-135, "zero-gravity" aircraft. Paul D. Scully-Power is the crew member literally floating here in the brief period of micro-gravity. Scully-Power, an oceanographer with the U.S. Navy, and Marc Garneau (partially visible in chair behind the floating Scully-Power)are payload specialists for 41-G. Garneau represents the National Research Council (Canada).

  6. Gravity Acceleration and Gravity Paradox

    NASA Astrophysics Data System (ADS)

    Hanyongquan, Han; Yuteng, Tang

    2017-10-01

    The magnitude of the gravitational acceleration of the earth is derived from low of universal gravitation. If the size and mass of the gravitational force are proportional to any situation, then the celestial surface gravity is greater than the celestial center near the gravity, and objective facts do not match. Specific derivation method, F = GMm / R2 = mg, g = GM/R2 . c / Ú, G is the gravitational constant, M is the mass of the earth, and finally the g = 9.8 m/s 2 is obtained. We assume that the earth is a standard positive sphere, the earth's volume V = 4 ΠR3/3, assuming that the earth's density is ρ, then M = ρ 4 ΠR3/3 .. c / Ú, the c / Ú into c / Ú get: g = G ρ4 ΠR / 3 .. c / Û, the density of the earth is constant. Careful analysis of the formula c / Û The result of this calculation, we can reach conclusion the gravity acceleration g and the radius of the earth is proportional. In addition to the radius of the Earth c / U the right is constant, That is, the Earth's Gravity acceleration of the outer layer of the earth is greater than the Earth's Gravity acceleration of Inner layer. We are in High School, Huairou District, Beijing, China Author: hanyongquan tangyuteng TEL: 15611860790, 15810953809.

  7. Ocean gravity and geoid determination

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Siry, J. W.; Brown, R. D.; Wells, W. T.

    1977-01-01

    Gravity anomalies have been recovered in the North Atlantic and the Indian Ocean regions. Comparisons of 63 2 deg x 2 deg mean free air gravity anomalies recovered in the North Atlantic area and 24 5 deg x 5 deg mean free air gravity anomalies in the Indian Ocean area with surface gravimetric measurements have shown agreement to + or - 8 mgals for both solutions. Geoids derived from the altimeter solutions are consistent with altimetric sea surface height data to within the precision of the data, about + or - 2 meters.

  8. Experimental and Analytical Study of Two-Phase Flow in Zero Gravity.

    DTIC Science & Technology

    1988-03-01

    in Imitated Reduced Gravity Fields," 4th International Heat Transfer Conference, Versailles, France, Vol. 6, 1970. 11. S. S. Papell and 0. C. Faber...K. D. Timmerhaus, ed.) Vol. 9, p 45, Plenum, New York, 1963. 63. S. S. Papell et al., "Buoyancy Effects on Critical Heat Flux of Forced Convective

  9. Ion Figuring of Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Cantey, Thomas M.; Gregory, Don A.

    1997-01-01

    This investigation included experiments to demonstrate ion beam figuring effects on electroless nickel with the expressed desire to figure X-ray optic mandrels. It was important to establish that ion beam figuring did not induce any adverse effects to the nickel surface. The ion beam has consistently been shown to be an excellent indicator of the quality of the subsurface. Polishing is not the only cause for failure in the ion beam final figuring process, the material composition is equally important. Only by careful consideration of both these factors can the ion beam final figuring process achieve its greatest potential. The secondary goal was to construct a model for representing the ion beam material removal rate. Representing the ion beam removal rate is only an approximation and has a number of limiting factors. The resolution of the metrology apparatus limits the modeling of the beam function as well. As the surface error corrections demand more precision in the final figuring, the model representing beam function must be equally precise. The precision to which the beam function can be represented is not only determined by the model but also by the measurements producing that model. The method developed for determining the beam function has broad application to any material destined to be ion beam figured.

  10. Gravity Field Characterization around Small Bodies

    NASA Astrophysics Data System (ADS)

    Takahashi, Yu

    A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with

  11. Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1

    NASA Technical Reports Server (NTRS)

    Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.

    1974-01-01

    Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.

  12. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  13. Simulation and preparation of surface EVA in reduced gravity at the Marseilles Bay subsea analogue sites

    NASA Astrophysics Data System (ADS)

    Weiss, P.; Gardette, B.; Chirié, B.; Collina-Girard, J.; Delauze, H. G.

    2012-12-01

    Extravehicular activity (EVA) of astronauts during space missions is simulated nowadays underwater in neutral buoyancy facilities. Certain aspects of weightlessness can be reproduced underwater by adding buoyancy to a diver-astronaut, therefore exposing the subject to the difficulties of working without gravity. Such tests were done at the COMEX' test pool in Marseilles in the 1980s to train for a French-Russian mission to the MIR station, for the development of the European HERMES shuttle and the COLUMBUS laboratory. However, space agencies are currently studying missions to other destinations than the International Space Station in orbit, such as the return to the Moon, NEO (near-Earth objects) or Mars. All these objects expose different gravities: Moon has one sixth of Earth's gravity, Mars has a third of Earth's gravity and asteroids have virtually no surface gravity; the astronaut "floats" above the ground. The preparation of such missions calls for a new concept in neutral buoyancy training, not on man-made structures, but on natural terrain, underwater, to simulate EVA operations such as sampling, locomotion or even anchoring in low gravity. Underwater sites can be used not only to simulate the reduced gravity that astronauts will experience during their field trips, also human factors like stress are more realistically reproduced in such environment. The Bay of Marseille hosts several underwater sites that can be used to simulate various geologic morphologies, such as sink-holes which can be used to simulate astronaut descends into craters, caves where explorations of lava tubes can be trained or monolithic rock structures that can be used to test anchoring devices (e.g., near Earth objects). Marseilles with its aerospace and maritime/offshore heritage hosts the necessary logistics and expertise that is needed to perform such simulations underwater in a safe manner (training of astronaut-divers in local test pools, research vessels, subsea robots and

  14. New massive gravity and AdS(4) counterterms.

    PubMed

    Jatkar, Dileep P; Sinha, Aninda

    2011-04-29

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.

  15. ^4He experiments near T_λ with a heat current and reduced gravity in a low-gravity simulator

    NASA Astrophysics Data System (ADS)

    Liu, Yuanming; Larson, Melora; Israelsson, Ulf

    1998-03-01

    Conventional ground-based helium experiments experience limitations due to a variation of the superfluid transition temperature (T_λ) caused by the gravity-induced hydrostatic pressure in a ^4He sample cell. A low-gravity simulator consisting a high field superconducting magnet has been built in our laboratory and the preliminary measurements demonstrated a reduction of gravity in the sample cell. (Melora Larson, Feng-Chuan Liu, and Ulf Israelsson, Czech. J. of Phys. 46, 179 (1996).) We report our latest improvements on the simulator and measurements with a new sample cell which had copper end plates, Vepsel sidewalls, and sidewall probes. The measurements showed that gravity can be canceled with a field-field gradient product of 20.7 T^2/cm (or B=15.5 Tesla), in excellent agreement with the theoretical prediction. The measurements also revealed that the boundary resistance between the thermometers and liquid helium increased from 1.6 cm^2 K/W at zero field to 2.0 cm^2 K/W at B=13.8 Tesla. The preliminary dynamic measurements near T_λ with a heat current and reduced gravity will also be presented. This research was supported by NASA.

  16. Principal facts for gravity stations in the Antelope Valley-Bedell Flat area, west-central Nevada

    USGS Publications Warehouse

    Jewel, Eleanore B.; Ponce, David A.; Morin, Robert L.

    2000-01-01

    In April 2000 the U.S. Geological Survey (USGS) established 211 gravity stations in the Antelope Valley and Bedell Flat area of west-central Nevada (see figure 1). The stations were located about 15 miles north of Reno, Nevada, southwest of Dogskin Mountain, and east of Petersen Mountain, concentrated in Antelope Valley and Bedell Flat (figure 2). The ranges in this area primarily consist of normal-faulted Cretaceous granitic rocks, with some volcanic and metavolcanic rocks. The purpose of the survey was to characterize the hydrogeologic framework of Antelope Valley and Bedell Flat in support of future hydrologic investigations. The information developed during this study can be used in groundwater models. Gravity data were collected between latitude 39°37.5' and 40°00' N and longitude 119°37.5' and 120°00' W. The stations were located on the Seven Lakes Mountain, Dogskin Mountain, Granite Peak, Bedell Flat, Fraser Flat, and Reno NE 7.5 minute quadrangles. All data were tied to secondary base station RENO-A located on the campus of the University of Nevada at Reno (UNR) in Reno, Nevada (latitude 39°32.30' N, longitude 119°48.70' W, observed gravity value 979674.69 mGal). The value for observed gravity was calculated by multiple ties to the base station RENO (latitude 39°32.30' N, longitude 119°48.70' W, observed gravity value 979674.65 mGal), also on the UNR campus. The isostatic gravity map (figure 3) includes additional data sets from the following sources: 202 stations from a Geological Survey digital data set (Ponce, 1997), and 126 stations from Thomas C. Carpenter (written commun., 1998).

  17. High-resolution gravity model of Venus

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  18. More on Weinberg's no-go theorem in quantum gravity

    NASA Astrophysics Data System (ADS)

    Nagahama, Munehiro; Oda, Ichiro

    2018-05-01

    We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.

  19. Criticality in third order lovelock gravity and butterfly effect

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study third order Lovelock Gravity in D=7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D=7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D=7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, vB^{E.H}>vB^{E.G.B}>vB^{3rd Lovelock} . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases.

  20. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  1. The pH dependent surface charging and points of zero charge. VII. Update.

    PubMed

    Kosmulski, Marek

    2018-01-01

    The pristine points of zero charge (PZC) and isoelectric points (IEP) of metal oxides and IEP of other materials from the recent literature, and a few older results (overlooked in previous searches) are summarized. This study is an update of the previous compilations by the same author [Surface Charging and Points of Zero Charge, CRC, Boca Raton, 2009; J. Colloid Interface Sci. 337 (2009) 439; 353 (2011) 1; 426 (2014) 209]. The field has been very active, but most PZC and IEP are reported for materials, which are very well-documented already (silica, alumina, titania, iron oxides). IEP of (nominally) Gd 2 O 3 , NaTaO 3 , and SrTiO 3 have been reported in the recent literature. Their IEP were not reported in older studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Present status of marine gravity

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1978-01-01

    The technique of measuring gravity at sea was greatly improved by the development of spring-type surface-ship gravimeters which can be operated in a wide variety of sea conditions. A brief review of the most recent developments in marine gravity is presented. The extent of marine gravity data coverage is illustrated in a compilation map of the world's free-air gravity anomaly maps of the world's oceans. A brief discussion of some of the main results in the interpretation of marine gravity is given. Some comments made on recent determinations of the gravity field in oceanic regions using satellite radar altimeters are also presented.

  3. Low-gravity fluid flows

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1982-01-01

    The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.

  4. Direction-dependent arm kinematics reveal optimal integration of gravity cues

    PubMed Central

    Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos

    2016-01-01

    The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort. DOI: http://dx.doi.org/10.7554/eLife.16394.001 PMID:27805566

  5. The effect of recognizability on figure-ground processing: does it affect parsing or only figure selection?

    PubMed

    Navon, David

    2011-03-01

    Though figure-ground assignment has been shown to be probably affected by recognizability, it appears sensible that object recognition must follow at least the earlier process of figure-ground segregation. To examine whether or not rudimentary object recognition could, counterintuitively, start even before the completion of the stage of parsing in which figure-ground segregation is done, participants were asked to respond, in a go/no-go fashion, whenever any out of 16 alternative connected patterns (that constituted familiar stimuli in the upright orientation) appeared. The white figure of the to-be-attended stimulus-target or foil-could be segregated from the white ambient ground only by means of a frame surrounding it. Such a frame was absent until the onset of target display. Then, to manipulate organizational quality, the greyness of the frame was either gradually increased from zero (in Experiment 1) or changed abruptly to a stationary level whose greyness was varied between trials (in Experiments 2 and 3). Stimulus recognizability was manipulated by orientation angle. In all three experiments the effect of recognizability was found to be considerably larger when organizational quality was minimal due to an extremely faint frame. This result is argued to be incompatible with any version of a serial thesis suggesting that processing aimed at object recognition starts only with a good enough level of organizational quality. The experiments rather provide some support to the claim, termed here "early interaction hypothesis", positing interaction between early recognition processing and preassignment parsing processes.

  6. Gaussian black holes in Rastall gravity

    NASA Astrophysics Data System (ADS)

    Spallucci, Euro; Smailagic, Anais

    In this short note we present the solution of Rastall gravity equations sourced by a Gaussian matter distribution. We find that the black hole metric shares all the common features of other regular, General Relativity BH solutions discussed in the literature: there is no curvature singularity and the Hawking radiation leaves a remnant at zero temperature in the form of a massive ordinary particle.

  7. Gravity at sea--A memoir of a marine geophysicist.

    PubMed

    Tomoda, Yoshibumi

    2010-01-01

    A history of studies on the gravity measurements at sea in Japan is reviewed with an emphasis on the contribution of the author. The first successful measurements at sea were made in 1923 by Vening Meinesz in the Netherlands using the pendulum apparatus installed in a submarine. However, the gravity measurements using a submarine are not convenient because the access to a submarine is limited. Professor Chuji Tsuboi made a number of unsuccessful attempts at developing a gravity meter that can be operated on a normal surface ship by reducing the noise by minimizing the motion of the gravity meter through a mechanical design. I have chosen a new approach toward the measurements of gravity on a surface ship by simplifying the mechanical part using a string gravity meter that was installed directly on a vertical gyroscope in combination with the numerical and/or electronic reduction of noises. With this gravity meter TSSG (Tokyo Surface Ship Gravity Meter), we firstly succeeded in measuring gravity at sea onboard a surface ship in July 1961 and the measurements have been extended to the northwestern Pacific and beyond. The results reveal the fine structures of gravity field in and around trenches that provide important clues as to a number of geodynamic issues including the nature of the trench-trench interaction and the interaction of trenches with seamounts.

  8. Inertial waste separation system for zero G WMS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design, operation, and flight test are presented for an inertial waste separation system. Training personnel to use this system under simulated conditions is also discussed. Conclusions indicate that before the system is usable in zero gravity environments, a mirror for the user's guidance should be installed, the bounce cycle and bag changing system should be redesigned, and flange clips should be added to improve the user's balance.

  9. The measurement of surface gravity.

    PubMed

    Crossley, David; Hinderer, Jacques; Riccardi, Umberto

    2013-04-01

    This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10(-8) m s(-2)), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post

  10. Ion beam figuring of Φ520mm convex hyperbolic secondary mirror

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Wang, Yonggang; Li, Ang; Li, Wenqing

    2016-10-01

    The convex hyperbolic secondary mirror is a Φ520-mm Zerodur lightweight hyperbolic convex mirror. Typically conventional methods like CCOS, stressed-lap polishing are used to manufacture this secondary mirror. Nevertheless, the required surface accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. Ion beam figuring is an optical fabrication method that provides highly controlled error of previously polished surfaces using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Several iterations with different ion beam size are selected and optimized to fit different stages of surface figure error and spatial frequency components. Before ion beam figuring, surface figure error of the secondary mirror is 2.5λ p-v, 0.23λ rms, and is improved to 0.12λ p-v, 0.014λ rms in several process iterations. The demonstration clearly shows that ion beam figuring can not only be used to the final correction of aspheric, but also be suitable for polishing the coarse surface of large, complex mirror.

  11. Spacecraft intercept guidance using zero effort miss steering

    NASA Astrophysics Data System (ADS)

    Newman, Brett

    The suitability of proportional navigation, or an equivalent zero effort miss formulation, for spacecraft intercepts during midcourse guidance, followed by a ballistic coast to the endgame, is addressed. The problem is formulated in terms of relative motion in a general 3D framework. The proposed guidance law for the commanded thrust vector orientation consists of the sum of two terms: (1) along the line of sight unit direction and (2) along the zero effort miss component perpendicular to the line of sight and proportional to the miss itself and a guidance gain. If the guidance law is to be suitable for longer range targeting applications with significant ballistic coasting after burnout, determination of the zero effort miss must account for the different gravitational accelerations experienced by each vehicle. The proposed miss determination techniques employ approximations for the true differential gravity effect. Theoretical results are applied to a numerical engagement scenario and the resulting performance is evaluated in terms of the miss distances determined from nonlinear simulation.

  12. Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms

    NASA Technical Reports Server (NTRS)

    Han, Olyvia; Kienholz, David; Janzen, Paul; Kidney, Scott

    2010-01-01

    Gravity-off-loading of deployable spacecraft mechanisms during ground testing is a long-standing problem. Deployable structures which are usually too weak to support their own weight under gravity require a means of gravity-off-loading as they unfurl. Conventional solutions to this problem have been helium-filled balloons or mechanical pulley/counterweight systems. These approaches, however, suffer from the deleterious effects of added inertia or friction forces. The changing form factor of the deployable structure itself and the need to track the trajectory of the center of gravity also pose a challenge to these conventional technologies. This paper presents a novel testing apparatus for high-fidelity zero-gravity simulation for special application to deployable space structures such as solar arrays, magnetometer booms, and robotic arms in class 100,000 clean room environments

  13. Precise stellar surface gravities from the time scales of convectively driven brightness variations

    PubMed Central

    Kallinger, Thomas; Hekker, Saskia; García, Rafael A.; Huber, Daniel; Matthews, Jaymie M.

    2016-01-01

    A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars’ surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA’s Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode. PMID:26767193

  14. Precise stellar surface gravities from the time scales of convectively driven brightness variations.

    PubMed

    Kallinger, Thomas; Hekker, Saskia; García, Rafael A; Huber, Daniel; Matthews, Jaymie M

    2016-01-01

    A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars' surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA's Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode.

  15. Laser figuring for the generation of analog micro-optics and kineform surfaces

    NASA Technical Reports Server (NTRS)

    Gratrix, Edward J.

    1993-01-01

    To date, there have been many techniques used to generate micro-optic structures in glass or other materials. Using methods common to the lithographic industry, the manufacturing technique known as 'binary optics,' has demonstrated the use of diffractive optics in a variety of micro-optic applications. It is well established that diffractive structures have limited capability when applied in a design more suited for a refractive element. For applications that demand fast, highly efficient, broadband designs, we have developed a technique which uses laser figuring to generate the refractive micro-optical surface. This paper describes the technique used to fabricate refractive micro-optics. Recent results of micro-optics in CdZnTe focal planes are shown.

  16. Time and space analysis of turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Mordant, Nicolas; Aubourg, Quentin; Viboud, Samuel; Sommeria, Joel

    2016-11-01

    Wave turbulence is a statistical state made of a very large number of nonlinearly interacting waves. The Weak Turbulence Theory was developed to describe such a situation in the weakly nonlinear regime. Although, oceanic data tend to be compatible with the theory, laboratory data fail to fulfill the theoretical predictions. A space-time resolved measurement of the waves have proven to be especially fruitful to identify the mechanism at play in turbulence of gravity-capillary waves. We developed an image processing algorithm to measure the motion of the surface of water with both space and time resolution. We first seed the surface with slightly buoyant polystyrene particles and use 3 cameras to reconstruct the surface. Our stereoscopic algorithm is coupled to PIV so that to obtain both the surface deformation and the velocity of the water surface. Such a coupling is shown to improve the sensitivity of the measurement by one order of magnitude. We use this technique to probe the existence of weakly nonlinear turbulence excited by two small wedge wavemakers in a 13-m diameter wave flume. We observe a truly weakly nonlinear regime of isotropic wave turbulence. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 647018-WATU).

  17. Minimizing the RMS surface distortions from gravity loadings of the 34-m HA-DEC antenna for deep space missions

    NASA Technical Reports Server (NTRS)

    Katow, S. M.

    1979-01-01

    The computer analysis of the 34-m HA-DEC antenna by the IDEAS program provided the rms distortions of the surface panels support points for full gravity loadings in the three directions of the basic coordinate system of the computer model. The rms distortions for the gravity vector not in line with any of the three basic directions were solved and contour plotted starting from three surface panels setting declination angle. By inspections of the plots, it was concluded that the setting or rigging angle of -15 degrees declination minimized the rms distortions for sky coverage of plus or minus 22 declination angles to 10 degrees of ground mask.

  18. Effect of gravity and microgravity on intracranial pressure

    PubMed Central

    Lawley, Justin S.; Petersen, Lonnie G.; Howden, Erin J.; Sarma, Satyam; Cornwell, William K.; Zhang, Rong; Whitworth, Louis A.; Williams, Michael A.

    2017-01-01

    Key Points Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure on Earth.Gravity has a profound effect on fluid distribution and pressure within the human circulation. In contrast to prevailing theory, we observed that microgravity reduces central venous and intracranial pressure.This being said, intracranial pressure is not reduced to the levels observed in the 90 deg seated upright posture on Earth. Thus, over 24 h in zero gravity, pressure in the brain is slightly above that observed on Earth, which may explain remodelling of the eye in astronauts. Abstract Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure (ICP). This syndrome is considered the most mission‐critical medical problem identified in the past decade of manned spaceflight. We recruited five men and three women who had an Ommaya reservoir inserted for the delivery of prophylactic CNS chemotherapy, but were free of their malignant disease for at least 1 year. ICP was assessed by placing a fluid‐filled 25 gauge butterfly needle into the Ommaya reservoir. Subjects were studied in the upright and supine position, during acute zero gravity (parabolic flight) and prolonged simulated microgravity (6 deg head‐down tilt bedrest). icp was lower when seated in the 90 deg upright posture compared to lying supine (seated, 4 ± 1 vs. supine, 15 ± 2 mmHg). Whilst lying in the supine posture, central venous pressure (supine, 7 ± 3 vs. microgravity, 4 ± 2 mmHg) and ICP (supine, 17 ± 2 vs. microgravity, 13 ± 2 mmHg) were reduced in acute zero gravity, although not to the levels observed in the 90 deg seated upright posture on Earth. Prolonged periods of simulated microgravity did not cause progressive elevations in ICP (supine, 15 ± 2 vs. 24 h head‐down tilt, 15 ± 4 mmHg). Complete removal of

  19. Effect of gravity and microgravity on intracranial pressure.

    PubMed

    Lawley, Justin S; Petersen, Lonnie G; Howden, Erin J; Sarma, Satyam; Cornwell, William K; Zhang, Rong; Whitworth, Louis A; Williams, Michael A; Levine, Benjamin D

    2017-03-15

    Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure on Earth. Gravity has a profound effect on fluid distribution and pressure within the human circulation. In contrast to prevailing theory, we observed that microgravity reduces central venous and intracranial pressure. This being said, intracranial pressure is not reduced to the levels observed in the 90 deg seated upright posture on Earth. Thus, over 24 h in zero gravity, pressure in the brain is slightly above that observed on Earth, which may explain remodelling of the eye in astronauts. Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure (ICP). This syndrome is considered the most mission-critical medical problem identified in the past decade of manned spaceflight. We recruited five men and three women who had an Ommaya reservoir inserted for the delivery of prophylactic CNS chemotherapy, but were free of their malignant disease for at least 1 year. ICP was assessed by placing a fluid-filled 25 gauge butterfly needle into the Ommaya reservoir. Subjects were studied in the upright and supine position, during acute zero gravity (parabolic flight) and prolonged simulated microgravity (6 deg head-down tilt bedrest). ICP was lower when seated in the 90 deg upright posture compared to lying supine (seated, 4 ± 1 vs. supine, 15 ± 2 mmHg). Whilst lying in the supine posture, central venous pressure (supine, 7 ± 3 vs. microgravity, 4 ± 2 mmHg) and ICP (supine, 17 ± 2 vs. microgravity, 13 ± 2 mmHg) were reduced in acute zero gravity, although not to the levels observed in the 90 deg seated upright posture on Earth. Prolonged periods of simulated microgravity did not cause progressive elevations in ICP (supine, 15 ± 2 vs. 24 h head-down tilt, 15 ± 4 mmHg). Complete removal of gravity does not

  20. On the Hamiltonian formalism of the tetrad-gravity with fermions

    NASA Astrophysics Data System (ADS)

    Lagraa, M. H.; Lagraa, M.

    2018-06-01

    We extend the analysis of the Hamiltonian formalism of the d-dimensional tetrad-connection gravity to the fermionic field by fixing the non-dynamic part of the spatial connection to zero (Lagraa et al. in Class Quantum Gravity 34:115010, 2017). Although the reduced phase space is equipped with complicated Dirac brackets, the first-class constraints which generate the diffeomorphisms and the Lorentz transformations satisfy a closed algebra with structural constants analogous to that of the pure gravity. We also show the existence of a canonical transformation leading to a new reduced phase space equipped with Dirac brackets having a canonical form leading to the same algebra of the first-class constraints.

  1. Creating a zero-order resonator using an optical surface transformation

    PubMed Central

    Sun, Fei; Ge, Xiaochen; He, Sailing

    2016-01-01

    A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space). PMID:26888359

  2. Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults

    NASA Astrophysics Data System (ADS)

    Abdelrahman, E. M.; Essa, K. S.

    2015-02-01

    We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.

  3. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  4. Flammability Limits of Gases Under Low Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.

    1985-01-01

    The purpose of this combustion science investigation is to determine the effect of zero, fractional, and super gravity on the flammability limits of a premixed methane air flame in a standard 51 mm diameter flammability tube and to determine, if possible, the fluid flow associated with flame passage under zero-g conditions and the density (and hence, temperature) profiles associated with the flame under conditions of incipient extinction. This is accomplished by constructing an appropriate apparatus for placement in NASA's Lewis Research Center Lear Jet facility and flying the prescribed g-trajectories while the experiment is being performed. Data is recorded photographically using the visible light of the flame. The data acquired is: (1) the shape and propagation velocity of the flame under various g-conditions for methane compositions that are inside the flammable limits, and (2) the effect of gravity on the limits. Real time accelerometer readings for the three orthogonal directions are displayed in full view of the cameras and the framing rate of the cameras is used to measure velocities.

  5. pH-dependent surface charging and points of zero charge. IV. Update and new approach.

    PubMed

    Kosmulski, Marek

    2009-09-15

    The recently published points of zero charge (PZC) and isoelectric points (IEPs) of various materials are compiled to update the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC Press, Boca Raton, FL, 2009]. Unlike in previous compilations by the same author [Chemical Properties of Material Surfaces, Dekker, New York, 2001; J. Colloid Interface Sci. 253 (2002) 77; J. Colloid Interface Sci. 275 (2004) 214; J. Colloid Interface Sci. 298 (2006) 730], the materials are sorted not only by the chemical formula, but also by specific product, that is, by brand name (commercially available materials), and by recipe (home-synthesized materials). This new approach indicated that the relatively consistent PZC/IEP reported in the literature for materials having the same chemical formula are due to biased choice of specimens to be studied. Specimens which have PZC/IEP close to the "recommended" value are selected more often than other specimens (PZC/IEP not reported before or PZC/IEP reported, but different from the "recommended" value). Thus, the previously published PZC/IEP act as a self-fulfilling prophecy.

  6. Gravity Field and Interior Structure of Saturn from Cassini Observations

    NASA Astrophysics Data System (ADS)

    Anderson, J. D.; Schubert, G.

    2007-05-01

    We discuss the sources for a determination of Saturn's external gravitational potential, beginning with a Pioneer 11 flyby in September 1979, two Voyager flybys in November 1980 for Voyager 1 and August 1981 for Voyager 2, four useful close approaches by the Cassini orbiter in May and June 2005, and culminating in an extraordinary close approach for Radio Science in September 2006. Results from the 2006 data are not yet available, but even without them, Cassini offers improvements in accuracy over Pioneer and Voyager by a factor of 37 in the zonal coefficient J2, a factor of 14 in J4, and a factor of 5 in J6. These improvements are important to our understanding of the internal structure of Saturn in particular, and to solar and extrasolar giant planets in general. Basically, Saturn can be modeled as a rapidly rotating planet in hydrostatic equilibrium. Consistent with the limited data available, we express the density distribution as a polynomial of fifth degree in the normalized mean radius β = r/R over the real interval zero to one, where R is the radius of a sphere with density equal to the mean density of Saturn. Then the six coefficients of the polynomial are adjusted by nonlinear least squares until they match the measured even zonal gravity coefficients J2,J4,J6 within a fraction of a standard deviation. The gravity coefficients are computed from the density distribution by the method of level surfaces to the third order in the rotational smallness parameter. Two degrees of freedom are removed by applying the constraints that (1)~the derivative of the density distribution is zero at the center, and (2)~the density is zero at the surface. Further, a unique density distribution is obtained by the method of singular value decomposition truncated at rank three. Given this unique density distribution, the internal pressure can be obtained by numerical integration of the equation of hydrostatic equilibrium, expressed in terms of the single independent parameter

  7. Phase Zero Contracting Operations-Strategic and Integrative Planning for Contingency and Expeditionary Operations

    DTIC Science & Technology

    2013-10-01

    349–372 Phase Zero Contracting Operations (PZCO) FIGURE 4. CONTRACTING PHASE ZERO: PLAN, EXERCISE, REHEARSE, AND SYNCHRONIZE Note. BPA = Blanket...More Robust Construction Supplies; Oce Equipment; Quality of Life; and Morale, Welfare, and Recreation PO/TO/DO/ BPA Small Purchase Standard Vehicles PO...TO/DO/ BPA Small Purchase Standard Vehicles PO/TO/DO/ BPA Small Purchase Standard Vehicles PO/TO/DO/ BPA Small Purchase Food, Water, Billeting, Hygiene

  8. A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Nerem, R. S.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Marshall, J. A.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Chinn, D. S.

    1994-01-01

    An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until

  9. Gravity settling

    DOEpatents

    Davis, Hyman R.; Long, R. H.; Simone, A. A.

    1979-01-01

    Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.

  10. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  11. Gravity at sea —A memoir of a marine geophysicist—

    PubMed Central

    TOMODA, Yoshibumi

    2010-01-01

    A history of studies on the gravity measurements at sea in Japan is reviewed with an emphasis on the contribution of the author. The first successful measurements at sea were made in 1923 by Vening Meinesz in the Netherlands using the pendulum apparatus installed in a submarine. However, the gravity measurements using a submarine are not convenient because the access to a submarine is limited. Professor Chuji Tsuboi made a number of unsuccessful attempts at developing a gravity meter that can be operated on a normal surface ship by reducing the noise by minimizing the motion of the gravity meter through a mechanical design. I have chosen a new approach toward the measurements of gravity on a surface ship by simplifying the mechanical part using a string gravity meter that was installed directly on a vertical gyroscope in combination with the numerical and/or electronic reduction of noises. With this gravity meter TSSG (Tokyo Surface Ship Gravity Meter), we firstly succeeded in measuring gravity at sea onboard a surface ship in July 1961 and the measurements have been extended to the northwestern Pacific and beyond. The results reveal the fine structures of gravity field in and around trenches that provide important clues as to a number of geodynamic issues including the nature of the trench-trench interaction and the interaction of trenches with seamounts. PMID:20948173

  12. Direct recovery of mean gravity anomalies from satellite to satellite tracking

    NASA Technical Reports Server (NTRS)

    Hajela, D. P.

    1974-01-01

    The direct recovery was investigated of mean gravity anomalies from summed range rate observations, the signal path being ground station to a geosynchronous relay satellite to a close satellite significantly perturbed by the short wave features of the earth's gravitational field. To ensure realistic observations, these were simulated with the nominal orbital elements for the relay satellite corresponding to ATS-6, and for two different close satellites (one at about 250 km height, and the other at about 900 km height) corresponding to the nominal values for GEOS-C. The earth's gravitational field was represented by a reference set of potential coefficients up to degree and order 12, considered as known values, and by residual gravity anomalies obtained by subtracting the anomalies, implied by the potential coefficients, from their terrestrial estimates. It was found that gravity anomalies could be recovered from strong signal without using any a-priori terrestrial information, i.e. considering their initial values as zero and also assigning them a zero weight matrix. While recovering them from weak signal, it was necessary to use the a-priori estimate of the standard deviation of the anomalies to form their a-priori diagonal weight matrix.

  13. Fabrication of biocompatible and efficient antimicrobial porous polymer surfaces by the Breath Figures approach.

    PubMed

    Vargas-Alfredo, Nelson; Martínez-Campos, Enrique; Santos-Coquillat, Ana; Dorronsoro, Ane; Cortajarena, Aitziber L; Del Campo, Adolfo; Rodríguez-Hernández, Juan

    2018-03-01

    We designed and fabricated highly efficient and selective antibacterial substrates, i.e. surface non-cytotoxic against mammalian cells but exhibiting strong antibacterial activity. For that purpose, microporous substrates (pore sizes in the range of 3-5 μm) were fabricated using the Breath Figures approach (BFs). These substrates have additionally a defined chemical composition in the pore cavity (herein either a poly(acrylic acid) or the antimicrobial peptide Nisin) while the composition of the rest of the surface is identical to the polymer matrix. As a result, considering the differences in size of bacteria (1-4 μm) in comparison to mammalian cells (above 10 µm) the bacteria were able to enter in contact with the inner part of the pores where the antimicrobial functionality has been placed. On the opposite, mammalian cells remain in contact with the top surface thus preventing cytotoxic effects and enhancing the biocompatibility of the substrates. The resulting antimicrobial surfaces were exposed to Staphylococcus aureus as a model bacteria and murine endothelial C166-GFP cells. Superior antibacterial performance while maintaining an excellent biocompatibility was obtained by those surfaces prepared using PAA while no evidence of significant antibacterial activity was observed at those surfaces prepared using Nisin. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Visual gravity cues in the interpretation of biological movements: neural correlates in humans.

    PubMed

    Maffei, Vincenzo; Indovina, Iole; Macaluso, Emiliano; Ivanenko, Yuri P; A Orban, Guy; Lacquaniti, Francesco

    2015-01-01

    Our visual system takes into account the effects of Earth gravity to interpret biological motion (BM), but the neural substrates of this process remain unclear. Here we measured functional magnetic resonance (fMRI) signals while participants viewed intact or scrambled stick-figure animations of walking, running, hopping, and skipping recorded at normal or reduced gravity. We found that regions sensitive to BM configuration in the occipito-temporal cortex (OTC) were more active for reduced than normal gravity but with intact stimuli only. Effective connectivity analysis suggests that predictive coding of gravity effects underlies BM interpretation. This process might be implemented by a family of snapshot neurons involved in action monitoring. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Algorithm for ion beam figuring of low-gradient mirrors.

    PubMed

    Jiao, Changjun; Li, Shengyi; Xie, Xuhui

    2009-07-20

    Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.

  16. Effect of surface tension on the dynamical behavior of bubble in rotating fluids under low gravity environment

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).

  17. Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis.

    PubMed

    Oliva, Michele; Dunand, Christophe

    2007-01-01

    Arabidopsis seedlings growing on inclined agar surfaces exhibit characteristic root behaviours called 'waving' and 'skewing': the former consists of a series of undulations, whereas the latter is a deviation from the direction of gravity. Even though the precise basis of these growth patterns is not well understood, both gravity and the contact between the medium and the root are considered to be the major players that result in these processes. The influence of these forces on root surface-dependent behaviours can be verified by growing seedlings at different gel pitches: plants growing on vertical plates present roots with slight waving and skewing when compared with seedlings grown on plates held at minor angles of < 90 degrees . However, other factors are thought to modulate root growth on agar; for instance, it has been demonstrated that the presence and concentration of certain compounds in the medium (such as sucrose) and of drugs able to modify the plant cell cytoskeleton also affect skewing and waving. The recent discovery of an active role of ethylene on surface-dependent root behaviour, and the finding of new mutants showing anomalous growth, pave the way for a more detailed description of these phenomena.

  18. Zero-Inertial Recession for a Kinematic Wave Model

    USDA-ARS?s Scientific Manuscript database

    Kinematic-wave models of surface irrigation assume a fixed relationship between depth and discharge (typically, normal depth). When surface irrigation inflow is cut off, the calculated upstream flow depth goes to zero, since the discharge is zero. For short time steps, use of the Kinematic Wave mode...

  19. 3D joint inversion of gravity-gradient and borehole gravity data

    NASA Astrophysics Data System (ADS)

    Geng, Meixia; Yang, Qingjie; Huang, Danian

    2017-12-01

    Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.

  20. Paramagnetic Liquid Bridge in a Gravity-Compensating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mahajan, Milind P.; Tsige, Mesfin; Taylor, P. L.; Rosenblatt, Charles

    1999-01-01

    Magnetic levitation was used to stabilize cylindrical columns of a paramagnetic liquid in air between two solid supports. The maximum achievable length to diameter ratio R(sub max) was approx. (3.10 +/- 0.07), very close to the Rayleigh-Plateau limit of pi. For smaller R, the stability of the column was measured as a function of the Bond number, which could be continuously varied by adjusting the strength of the magnetic field. Liquid bridges supported by two solid surfaces have been attracting scientific attention since the time of Rayleigh and Plateau. For a cylindrical bridge of length L and diameter d, it was shown theoretically that in zero gravity the maximum slenderness ratio R (identically = L/d) is pi. The stability and ultimate collapse of such bridges is of interest because of their importance in a number of industrial processes and their potential for low gravity applications. In the presence of gravity, however, the cylindrical shape of an axisymmetric bridge tends to deform, limiting its stability and decreasing the maximum achievable value of R. Theoretical studies have discussed the stability and possible shapes of axisymmetric bridges. Experiments typically are performed in either a Plateau tank, in which the bridge is surrounded by a density-matched immiscible fluid, or in a space-borne microgravity environment. It has been shown, for example, that the stability limit R can be pushed beyond pi by using flow stabilization, by acoustic radiation pressure, or by forming columns in the presence of an axial electric field. In this work, magnetic levitation was used to simulate a low gravity environment and create quasi-cylindrical liquid columns in air. Use of a magnetic field permits us to continuously vary the Bond number B identically equal to (g)(rho)d(exp 2)/4(sigma), where g is the gravitational acceleration, rho is the density of the liquid, and sigma is the surface tension of the liquid in air. The dimensionless Bond number represents the

  1. OFO experimental techniques and preliminary conclusions - Is artificial gravity needed during prolonged weightlessness.

    NASA Technical Reports Server (NTRS)

    Gualtierotti, T.; Bracchi, F.

    1972-01-01

    The technique of single unit recording from body systems generating electrical pulses coherent with their basic function (CNS, muscles, sense organs) has been proved feasible during the OFO A orbital flight, an automatic physiological experiment. The results of recording 155 hours of orbital flight of pulses from the nerve fibres of four vestibular gravity sensors in two bull frogs indicate that the vestibular organ adjusts to zero g. As all the other biological changes observed during orbit are due to lack of exercise, it is concluded that artificial gravity might not be necessary during prolonged space missions or on low gravity celestial bodies.

  2. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt... Plane EC03OC91.035 ...

  3. Cardiovascular autonomic adaptation in lunar and martian gravity during parabolic flight.

    PubMed

    Widjaja, Devy; Vandeput, Steven; Van Huffel, Sabine; Aubert, André E

    2015-06-01

    Weightlessness has a well-known effect on the autonomic control of the cardiovascular system. With future missions to Mars in mind, it is important to know what the effect of partial gravity is on the human body. We aim to study the autonomic response of the cardiovascular system to partial gravity levels, as present on the Moon and on Mars, during parabolic flight. ECG and blood pressure were continuously recorded during parabolic flight. A temporal analysis of blood pressure and heart rate to changing gravity was conducted to study the dynamic response. In addition, cardiovascular autonomic control was quantified by means of heart rate (HR) and blood pressure (BP) variability measures. Zero and lunar gravity presented a biphasic cardiovascular response, while a triphasic response was noted during martian gravity. Heart rate and blood pressure are positively correlated with gravity, while the general variability of HR and BP, as well as vagal indices showed negative correlations with increasing gravity. However, the increase in vagal modulation during weightlessness is not in proportion when compared to the increase during partial gravity. Correlations were found between the gravity level and modulations in the autonomic nervous system during parabolic flight. Nevertheless, with future Mars missions in mind, more studies are needed to use these findings to develop appropriate countermeasures.

  4. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  5. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  6. Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements.

    PubMed

    Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2014-07-15

    Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome. Copyright © 2014 the American Physiological Society.

  7. Transport of inertial anisotropic particles under surface gravity waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas

    2016-11-01

    The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.

  8. System Finds Horizontal Location of Center of Gravity

    NASA Technical Reports Server (NTRS)

    Johnston, Albert S.; Howard, Richard T.; Brewster, Linda L.

    2006-01-01

    An instrumentation system rapidly and repeatedly determines the horizontal location of the center of gravity of a laboratory vehicle that slides horizontally on three air bearings (see Figure 1). Typically, knowledge of the horizontal center-of-mass location of such a vehicle is needed in order to balance the vehicle properly for an experiment and/or to assess the dynamic behavior of the vehicle. The system includes a load cell above each air bearing, electronic circuits that generate digital readings of the weight on each load cell, and a computer equipped with software that processes the readings. The total weight and, hence, the mass of the vehicle are computed from the sum of the load-cell weight readings. Then the horizontal position of the center of gravity is calculated straightforwardly as the weighted sum of the known position vectors of the air bearings, the contribution of each bearing being proportional to the weight on that bearing. In the initial application for which this system was devised, the center- of-mass calculation is particularly simple because the air bearings are located at corners of an equilateral triangle. However, the system is not restricted to this simple geometry. The system acquires and processes weight readings at a rate of 800 Hz for each load cell. The total weight and the horizontal location of the center of gravity are updated at a rate of 800/3 approx. equals 267 Hz. In a typical application, a technician would use the center-of-mass output of this instrumentation system as a guide to the manual placement of small weights on the vehicle to shift the center of gravity to a desired horizontal position. Usually, the desired horizontal position is that of the geometric center. Alternatively, this instrumentation system could be used to provide position feedback for a control system that would cause weights to be shifted automatically (see Figure 2) in an effort to keep the center of gravity at the geometric center.

  9. Analysis of Cell Biomechanics Response to Gravity:A Fluids for Biology Study Utilizing NASA Glenns Zero Gravity Research Facility

    NASA Technical Reports Server (NTRS)

    Bomani, Bilal M. M.; Kassemi, Mohammad; Neumann, Eric S.

    2016-01-01

    It remains unclear how biological cells sense and respond to gravitational forces. Leading scientists state that a large gap exists in the understanding of physiological and molecular adaptation that occurs as biology enters the spaceflight realm. We are seeking a method to fully understand how cells sense microgravity/gravity and what triggers their response.

  10. From honeycomb- to microsphere-patterned surfaces of poly(lactic acid) and a starch-poly(lactic acid) blend via the breath figure method.

    PubMed

    Duarte, Ana Rita C; Maniglio, Devid; Sousa, Nuno; Mano, João F; Reis, Rui L; Migliaresi, Claudio

    2017-01-26

    This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.

  11. V1 mechanisms and some figure-ground and border effects.

    PubMed

    Li, Zhaoping

    2003-01-01

    V1 neurons have been observed to respond more strongly to figure than background regions. Within a figure region, the responses are usually stronger near figure boundaries (the border effect), than further inside the boundaries. Sometimes the medial axes of the figures (e.g., the vertical midline of a vertical figure strip) induce secondary, intermediate, response peaks (the medial axis effect). Related is the physiologically elusive "cross-orientation facilitation", the observation that a cell's response to a grating patch can be facilitated by an orthogonally oriented grating in the surround. Higher center feedbacks have been suggested to cause these figure-ground effects. It has been shown, using a V1 model, that the causes could be intra-cortical interactions within V1 that serve pre-attentive visual segmentation, particularly, object boundary detection. Furthermore, whereas the border effect is robust, the figure-ground effects in the interior of a figure, in particular, the medial axis effect, are by-products of the border effect and are predicted to diminish to zero for larger figures. This model prediction (of the figure size dependence) was subsequently confirmed physiologically, and supported by findings that the response modulations by texture surround do not depend on feedbacks from V2. In addition, the model explains the "cross-orientation facilitation" as caused by a dis-inhibition, to the cell responding to the center of the central grating, by the background grating. Furthermore, the elusiveness of this phenomena was accounted for by the insight that it depends critically on the size of the figure grating. The model is applied to understand some figure-ground effects and segmentation in psychophysics: in particular, that contrast discrimination threshold is lower within and at the center of a closed contour than that in the background, and that a very briefly presented vernier target can perceptually shine through a subsequently presented large

  12. Differential Deposition for Surface Figure Corrections in Grazing Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Broadway, David M.

    2015-01-01

    Differential deposition corrects the low- and mid- spatial-frequency deviations in the axial figure of Wolter-type grazing incidence X-ray optics. Figure deviations is one of the major contributors to the achievable angular resolution. Minimizing figure errors can significantly improve the imaging quality of X-ray optics. Material of varying thickness is selectively deposited, using DC magnetron sputtering, along the length of optic to minimize figure deviations. Custom vacuum chambers are built that can incorporate full-shell and segmented Xray optics. Metrology data of preliminary corrections on a single meridian of full-shell x-ray optics show an improvement of mid-spatial frequencies from 6.7 to 1.8 arc secs HPD. Efforts are in progress to correct a full-shell and segmented optics and to verify angular-resolution improvement with X-ray testing.

  13. Numerical study of gravity effects on phase separation in a swirl chamber.

    PubMed

    Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L

    2016-01-01

    The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.

  14. Improvement of Europa's Gravity and Body Tides and Shape with a Laser Altimeter during a Flyby Tour

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Genova, A.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    Laser altimeters have been primarily utilized with orbiter spacecraft. Recently, the Mercury Laser Altimeter on MESSENGER successfully operated at Mercury during two flybys and thousands of highly-elliptical orbits, and contributed greatly towards improved understanding of the innermost planet. We show that a laser altimeter instrument on a flyby tour mission such as the planned NASA Europa Clipper can constrain key geophysical parameters when supported by variable-frequency altimetric measurements over repeated ~145°-long arcs across the surface. Previous work by Park et al. (2011, GRL) showed through covariance analysis that a similar trajectory could yield the gravity tidal Love number k2 to good accuracy (0.05). Here, we conduct a full simulation of a 45-flyby trajectory in the Jupiter system with Europa as primary target. We consider reasonable tracking coverage and noise level (dominated by plasma noise), as well as gravity (degree 50) and topography (200m resolution supplemented by realistic fractal noise at shorter wavelengths), informed by relevant existing data (Galileo, Cassini). The simulation is initialized at pessimistic values, with C20, C22, k2, and h2 in error of 90%, 90%, 50%, and 50%, respectively. All other gravity coefficients up to degree 3 have zero a priori values. Assumed altimetric data sampling and noise are derived from the tour trajectory and the instrument performance described by Smith et al. (this meeting). This variable-frequency laser altimeter can greatly improve the surface coverage (for shape recovery) and the number of altimetric crossovers, the best measurement type to constrain the tidal surface deformation. We find from our simulation that the addition of altimetry data significantly improves the determination of the gravity tidal Love number k2 and enables the recovery of the body tidal Love number h2. Low-degree gravity and topography are most important to constrain the interior structure of Europa. Scientific objectives

  15. Crustal density contrast detection by global gravity and topography models and in-situ gravity observations

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-12-01

    Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.

  16. Is the Surface Potential Integral of a Dipole in a Volume Conductor Always Zero? A Cloud Over the Average Reference of EEG and ERP.

    PubMed

    Yao, Dezhong

    2017-03-01

    Currently, average reference is one of the most widely adopted references in EEG and ERP studies. The theoretical assumption is the surface potential integral of a volume conductor being zero, thus the average of scalp potential recordings might be an approximation of the theoretically desired zero reference. However, such a zero integral assumption has been proved only for a spherical surface. In this short communication, three counter-examples are given to show that the potential integral over the surface of a dipole in a volume conductor may not be zero. It depends on the shape of the conductor and the orientation of the dipole. This fact on one side means that average reference is not a theoretical 'gold standard' reference, and on the other side reminds us that the practical accuracy of average reference is not only determined by the well-known electrode array density and its coverage but also intrinsically by the head shape. It means that reference selection still is a fundamental problem to be fixed in various EEG and ERP studies.

  17. Is There Gravity in Space?

    ERIC Educational Resources Information Center

    Bar, Varda; And Others

    1997-01-01

    Investigates students' ideas about gravity beyond the earth's surface. Presents a lesson plan designed to help students understand that gravity can act beyond Earth's atmosphere. Also helps students gain a more adequate intuitive understanding of how natural and artificial satellites stay in orbit. Reports that this strategy changed some students'…

  18. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.

  19. Status of the geopotential. [earth gravity measurement

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.

    1983-01-01

    Satellite laser ranging, satellite altimetry, and improved measurements of surface gravitational anomalies have broadened the data base on intermediate and short wavelength regions of the earth gravity field. The global data set served to develop new geopotential models with a resolution in spherical harmonics out to degree 180. The resolution was made possible using Seasat altimetry data containing 56,761 values of 1 x 1 deg gravity anomalies. Satellite-to-satellite tracking techniques involving the Geos-3 and Apollo spacecraft data for the sea surface temperature have yielded accurate intermediate wavelength gravity variations which correlate well with residual depth anomalies. Oceanic gravity anomalies have been computed directly from satellite altimetry or through statistical estimation using oceanic geoid heights. The data sets for gravimetric geoids have been compared with altimetric surfaces to identify areas which were of interest for geophysical investigation. Future data sets could become available from a proposed satellite-to-satellite Doppler tracking system (Gravsat) launched by NASA.

  20. Dynamics of Superfluid Helium in Low-Gravity

    NASA Technical Reports Server (NTRS)

    Frank, David J.

    1997-01-01

    sensitive to quasi-steady changes in the mass distribution of the liquid. The CFD codes were used to model the fluid's dynamic motion. Tests in one-g were performed with the main emphasis on being able to compute the actual damping of the fluid. A series of flights on the NASA Lewis reduced gravity DC-9 aircraft were performed with the Jet Propulsion Laboratory (JPL) Low Temperature Flight Facility and a superfluid Test Cell. The data at approximately 0.04g, lg and 2g were used to determine if correct fundamental frequencies can be predicted based on the acceleration field. Tests in zero gravity were performed to evaluate zero gravity motion.

  1. Stochastic Geometry and Quantum Gravity: Some Rigorous Results

    NASA Astrophysics Data System (ADS)

    Zessin, H.

    The aim of these lectures is a short introduction into some recent developments in stochastic geometry which have one of its origins in simplicial gravity theory (see Regge Nuovo Cimento 19: 558-571, 1961). The aim is to define and construct rigorously point processes on spaces of Euclidean simplices in such a way that the configurations of these simplices are simplicial complexes. The main interest then is concentrated on their curvature properties. We illustrate certain basic ideas from a mathematical point of view. An excellent representation of this area can be found in Schneider and Weil (Stochastic and Integral Geometry, Springer, Berlin, 2008. German edition: Stochastische Geometrie, Teubner, 2000). In Ambjørn et al. (Quantum Geometry Cambridge University Press, Cambridge, 1997) you find a beautiful account from the physical point of view. More recent developments in this direction can be found in Ambjørn et al. ("Quantum gravity as sum over spacetimes", Lect. Notes Phys. 807. Springer, Heidelberg, 2010). After an informal axiomatic introduction into the conceptual foundations of Regge's approach the first lecture recalls the concepts and notations used. It presents the fundamental zero-infinity law of stochastic geometry and the construction of cluster processes based on it. The second lecture presents the main mathematical object, i.e. Poisson-Delaunay surfaces possessing an intrinsic random metric structure. The third and fourth lectures discuss their ergodic behaviour and present the two-dimensional Regge model of pure simplicial quantum gravity. We terminate with the formulation of basic open problems. Proofs are given in detail only in a few cases. In general the main ideas are developed. Sufficiently complete references are given.

  2. On estimating gravity anomalies - A comparison of least squares collocation with conventional least squares techniques

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Lowrey, B.

    1977-01-01

    The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described.

  3. A Demonstration of Einstein's Equivalence of Gravity and Acceleration

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2008-01-01

    In 1907, Einstein described a "Gedankenexperiment" in which he showed that free fall in a gravitational field is indistinguishable from a body at rest in an elevator accelerated upwards in zero gravity. This paper describes an apparatus, which is simple to make and simple to operate, that acts as an observable footnote to Einstein's example. It…

  4. Optimal thermoelectric figure of merit of a molecular junction

    NASA Astrophysics Data System (ADS)

    Murphy, Padraig; Mukerjee, Subroto; Moore, Joel

    2008-10-01

    We show that a molecular junction can give large values of the thermoelectric figure of merit ZT , and so it could be used as a solid-state energy-conversion device that operates close to the Carnot efficiency. The mechanism is similar to the Mahan-Sofo model for bulk thermoelectrics—the Lorenz number goes to zero violating the Wiedemann-Franz law while the thermopower remains nonzero. The molecular state through which charge is transported must be weakly coupled to the leads, and the energy level of the state must be of order kBT away from the Fermi energy of the leads. In practice, the figure of merit is limited by the phonon thermal conductance; we show that the largest possible Z Ttilde ( Gtilde thph)-1/2 , where Gtilde thph is the phonon thermal conductance divided by the thermal conductance quantum.

  5. The influence of gravity level during directional solidification of immiscible alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Schmale, A. L.; Sandlin, A. C.

    1992-01-01

    During directional solidification of immiscible (hypermonotectic) alloys it is theoretically possible to establish a stable macroscopically-planar solidification front, and thus avoid sedimentation. Unfortunately, convective instabilities often occur which interfere with the directional solidification process. In this paper, stability conditions are discussed and results presented from directional solidification studies carried out aboard NASA's KC-135 zero-g aircraft. Samples were directionally solidified while the effective gravity level was varied from approximately 0.01 g for 25 s to 1.8 g for 45 s. Dramatic variations in microstructure were observed with gravity level during solidification.

  6. The report of the Gravity Field Workshop

    NASA Astrophysics Data System (ADS)

    Smith, D. E.

    1982-04-01

    A Gravity Field Workshop was convened to review the actions which could be taken prior to a GRAVSAT mission to improve the Earth's gravity field model. This review focused on the potential improvements in the Earth's gravity field which could be obtained using the current satellite and surface gravity data base. In particular, actions to improve the quality of the gravity field determination through refined measurement corrections, selected data augmentation and a more accurate reprocessing of the data were considered. In addition, recommendations were formulated which define actions which NASA should take to develop the necessary theoretical and computation techniques for gravity model determination and to use these approaches to improve the accuracy of the Earth's gravity model.

  7. How Much Gravity Is Needed to Establish the Perceptual Upright?

    PubMed Central

    Harris, Laurence R.; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael

    2014-01-01

    Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars. PMID:25184481

  8. How much gravity is needed to establish the perceptual upright?

    PubMed

    Harris, Laurence R; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael

    2014-01-01

    Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars.

  9. Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Grafarend, E. W.

    2001-09-01

    The Somigliana-Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana-Pizzetti gravity o({,u) as a function of Jacobi spheroidal latitude { and height u to the order ™(10m10 Gal), and o(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ™(10m10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana-Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (u,{,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet.

  10. New observational constraints on f ( T ) gravity from cosmic chronometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N., E-mail: nunes@ecm.ub.edu, E-mail: span@iiserkol.ac.in, E-mail: Emmanuel_Saridakis@baylor.edu

    2016-08-01

    We use the local value of the Hubble constant recently measured with 2.4% precision, as well as the latest compilation of cosmic chronometers data, together with standard probes such as Supernovae Type Ia and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f ( T ) gravity models, where T is the torsion scalar in teleparallel gravity. In particular, we consider three f ( T ) models with two parameters, out of which one is independent, and we quantify their deviation from ΛCDM cosmology through a sole parameter. Our analysis reveals thatmore » for one of the models a small but non-zero deviation from ΛCDM cosmology is slightly favored, while for the other models the best fit is very close to ΛCDM scenario. Clearly, f ( T ) gravity is consistent with observations, and it can serve as a candidate for modified gravity.« less

  11. Ion beam figuring of silicon aspheres

    NASA Astrophysics Data System (ADS)

    Demmler, Marcel; Zeuner, Michael; Luca, Alfonz; Dunger, Thoralf; Rost, Dirk; Kiontke, Sven; Krüger, Marcus

    2011-03-01

    Silicon lenses are widely used for infrared applications. Especially for portable devices the size and weight of the optical system are very important factors. The use of aspherical silicon lenses instead of spherical silicon lenses results in a significant reduction of weight and size. The manufacture of silicon lenses is more challenging than the manufacture of standard glass lenses. Typically conventional methods like diamond turning, grinding and polishing are used. However, due to the high hardness of silicon, diamond turning is very difficult and requires a lot of experience. To achieve surfaces of a high quality a polishing step is mandatory within the manufacturing process. Nevertheless, the required surface form accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. To overcome these disadvantages a method called Ion Beam Figuring can be used to manufacture silicon lenses with high surface form accuracies. The general advantage of the Ion Beam Figuring technology is a contactless polishing process without any aging effects of the tool. Due to this an excellent stability of the removal rate without any mechanical surface damage is achieved. The related physical process - called sputtering - can be applied to any material and is therefore also applicable to materials of high hardness like Silicon (SiC, WC). The process is realized through the commercially available ion beam figuring system IonScan 3D. During the process, the substrate is moved in front of a focused broad ion beam. The local milling rate is controlled via a modulated velocity profile, which is calculated specifically for each surface topology in order to mill the material at the associated positions to the target geometry. The authors will present aspherical silicon lenses with very high surface form accuracies compared to conventionally manufactured lenses.

  12. Venus spherical harmonic gravity model to degree and order 60

    NASA Technical Reports Server (NTRS)

    Konopliv, Alex S.; Sjogren, William L.

    1994-01-01

    The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.

  13. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    NASA Technical Reports Server (NTRS)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations

  14. Constraint on reconstructed f(R) gravity models from gravitational waves

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon

    2018-06-01

    The gravitational wave (GW) detection of a binary neutron star inspiral made by the Advanced LIGO and Advanced Virgo paves the unprecedented way for multi-messenger observations. The propagation speed of this GW can be scrutinized by comparing the arrival times between GW and neutrinos or photons. It provides the constraint on the mass of the graviton. f(R) gravity theories have the habitual non-zero mass gravitons in addition to usual massless ones. Previously, we show that the model independent f(R) gravity theories can be constructed from the both background evolution and the matter growth with one undetermined parameter. We show that this parameter can be constrained from the graviton mass bound obtained from GW detection. Thus, the GW detection provides the invaluable constraint on the validity of f(R) gravity theories.

  15. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data

    NASA Astrophysics Data System (ADS)

    Bucha, Blažej; Janák, Juraj; Papčo, Juraj; Bezděk, Aleš

    2016-11-01

    We develop a high-resolution regional gravity field model by a combination of spherical harmonics, band-limited spherical radial basis functions (SRBFs) and the residual terrain model (RTM) technique. As the main input data set, we employ a dense terrestrial gravity database (3-6 stations km-2), which enables gravity field modelling up to very short spatial scales. The approach is based on the remove-compute-restore methodology in which all the parts of the signal that can be modelled are removed prior to the least-squares adjustment in order to smooth the input gravity data. To this end, we utilize degree-2159 spherical harmonic models and the RTM technique using topographic models at 2 arcsec resolution. The residual short-scale gravity signal is modelled via the band-limited Shannon SRBF expanded up to degree 21 600, which corresponds to a spatial resolution of 30 arcsec. The combined model is validated against GNSS/levelling-based height anomalies, independent surface gravity data, deflections of the vertical and terrestrial vertical gravity gradients achieving an accuracy of 2.7 cm, 0.53 mGal, 0.39 arcsec and 279 E in terms of the RMS error, respectively. A key aspect of the combined approach, especially in mountainous areas, is the quality of the RTM. We therefore compare the performance of two RTM techniques within the innermost zone, the tesseroids and the polyhedron. It is shown that the polyhedron-based approach should be preferred in rugged terrain if a high-quality RTM is required. In addition, we deal with the RTM computations at points located below the reference surface of the residual terrain which is known to be a rather delicate issue.

  16. Surface topography due to convection in a variable viscosity fluid - Application to short wavelength gravity anomalies in the central Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lin, J.; Parmentier, E. M.

    1985-01-01

    Finite difference calculations of thermal convection in a fluid layer with a viscosity exponentially decreasing with temperature are performed in the context of examining the topography and gravity anomalies due to mantle convection. The surface topography and gravity anomalies are shown to be positive over regions of ascending flow and negative over regions of descending flow; at large Rayleigh numbers the amplitude of surface topography is inferred to depend on Rayleigh number to the power of 7/9. Compositional stratifications of the mantle is proposed as a mechanism for confining small-scale convection to a thin layer. A comparative analysis of the results with other available models is included.

  17. Gravity changes, soil moisture and data assimilation

    NASA Astrophysics Data System (ADS)

    Walker, J.; Grayson, R.; Rodell, M.; Ellet, K.

    2003-04-01

    Remote sensing holds promise for near-surface soil moisture and snow mapping, but current techniques do not directly resolve the deeper soil moisture or groundwater. The benefits that would arise from improved monitoring of variations in terrestrial water storage are numerous. The year 2002 saw the launch of NASA's Gravity Recovery And Climate Experiment (GRACE) satellites, which are mapping the Earth's gravity field at such a high level of precision that we expect to be able to infer changes in terrestrial water storage (soil moisture, groundwater, snow, ice, lake, river and vegetation). The project described here has three distinct yet inter-linked components that all leverage off the same ground-based monitoring and land surface modelling framework. These components are: (i) field validation of a relationship between soil moisture and changes in the Earth's gravity field, from ground- and satellite-based measurements of changes in gravity; (ii) development of a modelling framework for the assimilation of gravity data to constrain land surface model predictions of soil moisture content (such a framework enables the downscaling and disaggregation of low spatial (500 km) and temporal (monthly) resolution measurements of gravity change to finer spatial and temporal resolutions); and (iii) further refining the downscaling and disaggregation of space-borne gravity measurements by making use of other remotely sensed information, such as the higher spatial (25 km) and temporal (daily) resolution remotely sensed near-surface soil moisture measurements from the Advanced Microwave Scanning Radiometer (AMSR) instruments on Aqua and ADEOS II. The important field work required by this project will be in the Murrumbidgee Catchment, Australia, where an extensive soil moisture monitoring program by the University of Melbourne is already in place. We will further enhance the current monitoring network by the addition of groundwater wells and additional soil moisture sites. Ground

  18. On-orbit figure sensing and figure correction control for 0.5 arc-second adjustable X-ray optics

    NASA Astrophysics Data System (ADS)

    Reid, Paul

    changed constantly at several cycles/sec (active). In our approach, the mirror figure is corrected based on ground measurements, accounting for figure errors due to mirror manufacturing, mounting induced deformations, modeled gravity release, and modeled on-orbit thermal effects. The piezoelectric strain monitoring we seek to develop in this program extends adjustable mirror technology development, as it enables efficient adjustment and correction of mirror figure on-orbit, as required. This unprecedented level of system robustness will make telescopes less expensive to build because requirements for the non-optical systems can be looser, and it will also make the system more resistant to degradation, promoting mission success. The largest drivers for changes from ground calibration to on-orbit performance are piezoelectric material aging and an unexpected thermal environment (i.e., larger gradients than modeled or other thermal control system problem). Developing the capability to accurately monitor the health of each piezoelectric cell and the local mirror surface temperature will enable the real time sensing of any of these potential issues, help determine the cause, and enable corrections via updating models of on-orbit conditions and re-optimizing the required piezoelectric cell voltages for mirror figure correction. Our 3 year research program includes the development of the strain monitoring technology, its deposition on the adjustable optics, modeling and performance simulation, accelerated lifetime testing, and optical and electrical metrology of sample adjustable optics that incorporate monitoring sensors. Development of the capability to remotely monitor piezo performance and temperature to necessary precision will vastly improve reliability of the SMART-X mission concept, or the sub-arc-second X-ray Surveyor mission described in the 2013 NASA Astrophysics Roadmap, Enduring Quests Daring Visions.

  19. Segmented Mirror Image Degradation Due to Surface Dust, Alignment and Figure

    NASA Technical Reports Server (NTRS)

    Schreur, Julian J.

    1999-01-01

    In 1996 an algorithm was developed to include the effects of surface roughness in the calculation of the point spread function of a telescope mirror. This algorithm has been extended to include the effects of alignment errors and figure errors for the individual elements, and an overall contamination by surface dust. The final algorithm builds an array for a guard-banded pupil function of a mirror that may or may not have a central hole, a central reflecting segment, or an outer ring of segments. The central hole, central reflecting segment, and outer ring may be circular or polygonal, and the outer segments may have trimmed comers. The modeled point spread functions show that x-tilt and y-tilt, or the corresponding R-tilt and theta-tilt for a segment in an outer ring, is readily apparent for maximum wavefront errors of 0.1 lambda. A similar sized piston error is also apparent, but integral wavelength piston errors are not. Severe piston error introduces a focus error of the opposite sign, so piston could be adjusted to compensate for segments with varying focal lengths. Dust affects the image principally by decreasing the Strehl ratio, or peak intensity of the image. For an eight-meter telescope a 25% coverage by dust produced a scattered light intensity of 10(exp -9) of the peak intensity, a level well below detectability.

  20. Visual analysis of flow boiling at different gravity levels in 4.0 mm tube

    NASA Astrophysics Data System (ADS)

    Valencia-Castillo, C. M.; Celata, G. P.; Saraceno, L.; Zummo, G.

    2014-11-01

    The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed during the parabolic flight campaign of October-November 2013. The paper will show the analysis of differences between the heat transfer coefficients and vapour bubble parameters at normal and at zero gravity. The results of 4.0 mm tube are presented and discussed. With respect to terrestrial gravity, heat transfer is systematically lower at microgravity in the range of the experimental conditions. Heat transfer differences for the two gravity conditions are related to the different bubble size in each of them. The size of a bubble in flow boiling is affected by the gravity level, being larger at low gravity, unless inertial forces are largely predominant over buoyancy and other forces acting on the bubble itself when detaching from a heated wall. Vapour bubble parameters (bubble diameter, bubble length, width, and nose velocity) have been measured.

  1. Venus gravity - Analysis of Beta Regio

    NASA Technical Reports Server (NTRS)

    Esposito, P. B.; Sjogren, W. L.; Mottinger, N. A.; Bills, B. G.; Abbott, E.

    1982-01-01

    Radio tracking data acquired over Beta Regio were analyzed to obtain a surface mass distribution from which a detailed vertical gravity field was derived. In addition, a corresponding vertical gravity field was evaluated solely from the topography of the Beta region. A comparison of these two maps confirms the strong correlation between gravity and topography which was previously seen in line-of-sight gravity maps. It also demonstrates that the observed gravity is a significant fraction of that predicted from the topography alone. The effective depth of complete isostatic compensation for the Beta region is estimated to be 330 km, which is somewhat deeper than that found for other areas of Venus.

  2. Rotating gravity currents. Part 1. Energy loss theory

    NASA Astrophysics Data System (ADS)

    Martin, J. R.; Lane-Serff, G. F.

    2005-01-01

    A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.

  3. Expected precision of Europa Clipper gravity measurements

    NASA Astrophysics Data System (ADS)

    Verma, Ashok K.; Margot, Jean-Luc

    2018-11-01

    The primary gravity science objective of NASA's Clipper mission to Europa is to confirm the presence or absence of a global subsurface ocean beneath Europa's Icy crust. Gravity field measurements obtained with a radio science investigation can reveal much about Europa's interior structure. Here, we conduct extensive simulations of the radio science measurements with the anticipated spacecraft trajectory and attitude (17F12v2) and assets on the spacecraft and the ground, including antenna orientations and beam patterns, transmitter characteristics, and receiver noise figures. In addition to two-way Doppler measurements, we also include radar altimeter crossover range measurements. We concentrate on ± 2 h intervals centered on the closest approach of each of the 46 flybys. Our covariance analyses reveal the precision with which the tidal Love number k2, second-degree gravity coefficients Cbar20 and Cbar22 , and higher-order gravity coefficients can be determined. The results depend on the Deep Space Network (DSN) assets that are deployed to track the spacecraft. We find that some DSN allocations are sufficient to conclusively confirm the presence or absence of a global ocean. Given adequate crossover range performance, it is also possible to evaluate whether the ice shell is hydrostatic.

  4. Effects of varying gravity levels in parabolic flight on the size-mass illusion.

    PubMed

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects.

  5. Effects of Varying Gravity Levels in Parabolic Flight on the Size-Mass Illusion

    PubMed Central

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects. PMID:24901519

  6. On the Resolvability of Steam Assisted Gravity Drainage Reservoirs Using Time-Lapse Gravity Gradiometry

    NASA Astrophysics Data System (ADS)

    Elliott, E. Judith; Braun, Alexander

    2017-11-01

    Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.

  7. Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf

    NASA Astrophysics Data System (ADS)

    Guo, Lanli; Sheng, Jinyu

    2017-05-01

    A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.

  8. Figure-ground segregation modulates apparent motion.

    PubMed

    Ramachandran, V S; Anstis, S

    1986-01-01

    We explored the relationship between figure-ground segmentation and apparent motion. Results suggest that: static elements in the surround can eliminate apparent motion of a cluster of dots in the centre, but only if the cluster and surround have similar "grain" or texture; outlines that define occluding surfaces are taken into account by the motion mechanism; the brain uses a hierarchy of precedence rules in attributing motion to different segments of the visual scene. Being designated as "figure" confers a high rank in this scheme of priorities.

  9. Effect of a zero g environment on flammability limits as determined using a standard flammability tube apparatus

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Reuss, D. L.

    1980-01-01

    Flammability limits in a zero gravity environment were defined. Key aspects of a possible spacelab experiment were investigated analytically, experimentally on the bench, and in drop tower facilities. A conceptual design for a spacelab experiment was developed.

  10. NASA Engineer and Technician Instrument Zero Gravity Spheres

    NASA Image and Video Library

    1961-08-21

    An engineer and technician at the National Aeronautics and Space Administration (NASA) Lewis Research Center install the instrumentation on spherical fuel tanks for an investigation of the behavior of liquids in microgravity. Lewis researchers were undertaking a broad effort to study the heat transfer properties of high energy propellants such as liquid hydrogen in microgravity. In the center’s 2.2-Second Drop Tower they investigated the wetting characteristics of liquid and the liquid-vapor configurations, and predicted the equilibrium state in microgravity conditions. Lewis was also conducting a series microgravity investigations which launched 9-inch diameter spherical dewars, seen here, on an Aerobee sounding rocket. A camera inside the rocket filmed the liquid hydrogen’s behavior during its 4 to 7 minutes of freefall. The researchers concluded, however, that they needed to extend the weightlessness period to obtain better results. So they designed an experiment to be launched on an Atlas missile that would provide 21 minutes of weightlessness. The experiment was flight qualified at Lewis. The 36-percent full liquid hydrogen stainless steel dewar was launched on the Atlas on February 25, 1964. The instrumentation measured temperature, pressure, vacuum, and liquid level. Temperature instrumentation indicated wall drying during the freefall. The resultant pressure-rise characteristics were similar to those used for the normal-gravity test.

  11. Design strategies for the International Space University's variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1990-01-01

    A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

  12. Free-surface phenomena under low- and zero-gravity conditions

    NASA Technical Reports Server (NTRS)

    Coles, D.

    1985-01-01

    An apparatus to measure contact angle was constructed to exploit the proposed internal-corner criterion. If 2 alfa is the internal angle between two intersecting vertical planes and gamma is the contact angle, a meniscus at the corner rises to a finite height if alfa + gamma pi/2 and to an infinite height if alfa + gamma pi/2. The apparatus operates by decreasing the angle alfa from pi/2 until the meniscus height changes abruptly. A number of liquids are tested on glass and plexiglas.

  13. Seasonal gravity change at Yellowstone caldera

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; de Zeeuw-van Dalfsen, E.

    2017-12-01

    The driving forces behind Yellowstone's dynamic deformation, vigorous hydrothermal system, and abundant seismicity are usually ascribed to "magmatic fluids," which could refer to magma, water, volatiles, or some combination. Deformation data alone cannot distinguish the relative importance of these fluids. Gravity measurements, however, provide an indication of mass change over time and, when combined with surface displacements, can constrain the density of subsurface fluids. Unfortunately, several decades of gravity surveys at Yellowstone have yielded ambiguous results. We suspect that the difficulty in interpreting Yellowstone gravity data is due to seasonal variations in environmental conditions—especially surface and ground water. Yellowstone gravity surveys are usually carried out at the same time of year (generally late summer) to minimize the impact of seasonality. Nevertheless, surface and subsurface water levels are not likely to be constant from year to year, given annual differences in precipitation. To assess the overall magnitude of seasonal gravity changes, we conducted gravity surveys of benchmarks in and around Yellowstone caldera in May, July, August, and October 2017. Our goal was to characterize seasonal variations due to snow melt/accumulation, changes in river and lake levels, changes in groundwater levels, and changes in hydrothermal activity. We also hope to identify sites that show little variation in gravity over the course of the 2017 surveys, as these locations may be less prone to seasonal changes and more likely to detect small variations due to magmatic processes. Preliminary examination of data collected in May and July 2017 emphasizes the importance of site location relative to sources of water. For example, a site on the banks of the Yellowstone River showed a gravity increase of several hundred microgals associated with a 50 cm increase in the river level. A high-altitude site far from rivers and lakes, in contrast, showed a

  14. Solution algorithm of dwell time in slope-based figuring model

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhou, Lin

    2017-10-01

    Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.

  15. Automatic Figure Ranking and User Interfacing for Intelligent Figure Search

    PubMed Central

    Yu, Hong; Liu, Feifan; Ramesh, Balaji Polepalli

    2010-01-01

    Background Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org). Existing research in figure search treats each figure equally, but we introduce a novel concept of “figure ranking”: figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery. Methodology/Findings We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP) approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs) incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation. Conclusion/Significance The evaluation results

  16. Gravity Modeling for Variable Fidelity Environments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2006-01-01

    Aerospace simulations can model worlds, such as the Earth, with differing levels of fidelity. The simulation may represent the world as a plane, a sphere, an ellipsoid, or a high-order closed surface. The world may or may not rotate. The user may select lower fidelity models based on computational limits, a need for simplified analysis, or comparison to other data. However, the user will also wish to retain a close semblance of behavior to the real world. The effects of gravity on objects are an important component of modeling real-world behavior. Engineers generally equate the term gravity with the observed free-fall acceleration. However, free-fall acceleration is not equal to all observers. To observers on the sur-face of a rotating world, free-fall acceleration is the sum of gravitational attraction and the centrifugal acceleration due to the world's rotation. On the other hand, free-fall acceleration equals gravitational attraction to an observer in inertial space. Surface-observed simulations (e.g. aircraft), which use non-rotating world models, may choose to model observed free fall acceleration as the gravity term; such a model actually combines gravitational at-traction with centrifugal acceleration due to the Earth s rotation. However, this modeling choice invites confusion as one evolves the simulation to higher fidelity world models or adds inertial observers. Care must be taken to model gravity in concert with the world model to avoid denigrating the fidelity of modeling observed free fall. The paper will go into greater depth on gravity modeling and the physical disparities and synergies that arise when coupling specific gravity models with world models.

  17. An example of branching in a variational problem. [shape of liquid suspended from wire in zero gravity

    NASA Technical Reports Server (NTRS)

    Darbro, W.

    1978-01-01

    In an experiment in space it was found that when a cubical frame was slowly withdrawn from a soap solution, the wire frame retained practically a full cube of liquid. Removed from the frame (by shaking), the faces of the cube became progressively more concave, until adjacent faces became tangential. In the present paper a mathematical model describing the shape a liquid takes due to its surface tension while suspended on a wire frame in zero-g is solved by use of Lagrange multipliers. It is shown how the configuration of soap films so bounded is dependent upon the volume of liquid trapped in the films. A special case of the solution is a soap film naturally formed on a cubical wire frame.

  18. New observational constraints on f ( R ) gravity from cosmic chronometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.

    We use the recently released cosmic chronometer data and the latest measured value of the local Hubble parameter, combined with the latest joint light curves of Supernovae Type Ia, and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f ( R ) gravity models. We consider four f ( R ) models, namely the Hu-Sawicki, the Starobinsky, the Tsujikawa, and the exponential one, and we parametrize them introducing a distortion parameter b that quantifies the deviation from ΛCDM cosmology. Our analysis reveals that a small but non-zero deviation from ΛCDM cosmology ismore » slightly favored, with the corresponding fittings exhibiting very efficient AIC and BIC Information Criteria values. Clearly, f ( R ) gravity is consistent with observations, and it can serve as a candidate for modified gravity.« less

  19. Reduced cost and improved figure of sapphire optical components

    NASA Astrophysics Data System (ADS)

    Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate

    2015-10-01

    Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.

  20. Viscosity Measurement of Highly Viscous Liquids Using Drop Coalescence in Low Gravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    The method of drop coalescence is being investigated for use as a method for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in this case to minimize the undesirable effects of body forces and liquid motion in levitated drops. Also, the low gravity environment will allow for investigating large liquid volumes which can lead to much higher accuracy for the viscosity calculations than possible under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. In the analytical aspect of the method two liquid volumes are brought into contact which will coalesce under the action of surface tension alone. The free surface geometry development as well as its velocity during coalescence which are obtained from numerical computations are compared with an analogous experimental model. The viscosity in the numerical computations is then adjusted to bring into agreement of the experimental results with the calculations. The true liquid viscosity is the one which brings the experiment closest to the calculations. Results are presented for method validation experiments performed recently on board the NASA/KC-135 aircraft. The numerical solution for this validation case was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, in this case glycerine at room temperature, was determined to high degree of accuracy using the liquid coalescence method. These experiments gave very encouraging results which will be discussed together with plans for implementing the method in a shuttle flight experiment.

  1. New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.

  2. On estimating gravity anomalies: A comparison of least squares collocation with least squares techniques

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Lowrey, B.

    1976-01-01

    The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described, and its numerical properties are compared with the numerical properties of the conventional least squares estimator.

  3. z -Weyl gravity in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Taeyoon; Oh, Phillial, E-mail: dpproject@skku.edu, E-mail: ploh@skku.edu

    We consider higher dimensional gravity in which the four dimensional spacetime and extra dimensions are not treated on an equal footing. The anisotropy is implemented in the ADM decomposition of higher dimensional metric by requiring the foliation preserving diffeomorphism invariance adapted to the extra dimensions, thus keeping the general covariance only for the four dimensional spacetime. The conformally invariant gravity can be constructed with an extra (Weyl) scalar field and a real parameter z which describes the degree of anisotropy of conformal transformation between the spacetime and extra dimensional metrics. In the zero mode effective 4D action, it reduces tomore » four-dimensional scalar-tensor theory coupled with nonlinear sigma model described by extra dimensional metrics. There are no restrictions on the value of z at the classical level and possible applications to the cosmological constant problem with a specific choice of z are discussed.« less

  4. Mesopores induced zero thermal expansion in single-crystal ferroelectrics.

    PubMed

    Ren, Zhaohui; Zhao, Ruoyu; Chen, Xing; Li, Ming; Li, Xiang; Tian, He; Zhang, Ze; Han, Gaorong

    2018-04-24

    For many decades, zero thermal expansion materials have been the focus of numerous investigations because of their intriguing physical properties and potential applications in high-precision instruments. Different strategies, such as composites, solid solution and doping, have been developed as promising approaches to obtain zero thermal expansion materials. However, microstructure controlled zero thermal expansion behavior via interface or surface has not been realized. Here we report the observation of an impressive zero thermal expansion (volumetric thermal expansion coefficient, -1.41 × 10 -6  K -1 , 293-623 K) in single-crystal ferroelectric PbTiO 3 fibers with large-scale faceted and enclosed mesopores. The zero thermal expansion behavior is attributed to a synergetic effect of positive thermal expansion near the mesopores due to the oxygen-based polarization screening and negative thermal expansion from an intrinsic ferroelectricity. Our results show that a fascinating surface construction in negative thermal expansion ferroelectric materials could be a promising strategy to realize zero thermal expansion.

  5. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  6. Displacements of the earth's surface due to atmospheric loading - Effects of gravity and baseline measurements

    NASA Technical Reports Server (NTRS)

    Van Dam, T. M.; Wahr, J. M.

    1987-01-01

    Atmospheric mass loads and deforms the earth's crust. By performing a convolution sum between daily, global barometric pressure data and mass loading Green's functions, the time dependent effects of atmospheric loading, including those associated with short-term synoptic storms, on surface point positioning measurements and surface gravity observations are estimated. The response for both an oceanless earth and an earth with an inverted barometer ocean is calculated. Load responses for near-coastal stations are significantly affected by the inclusion of an inverted barometer ocean. Peak-to-peak vertical displacements are frequently 15-20 mm with accompanying gravity perturbations of 3-6 micro Gal. Baseline changes can be as large as 20 mm or more. The perturbations are largest at higher latitudes and during winter months. These amplitudes are consistent with the results of Rabbel and Zschau (1985), who modeled synoptic pressure disturbances as Gaussian functions of radius around a central point. Deformation can be adequately computed using real pressure data from points within about 1000 km of the station. Knowledge of local pressure, alone, is not sufficient. Rabbel and Zschau's hypothesized corrections for these displacements, which use local pressure and the regionally averaged pressure, prove accurate at points well inland but are, in general, inadequate within a few hundred kilometers of the coast.

  7. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  8. Using a Gravity Model to Predict Circulation in a Public Library System.

    ERIC Educational Resources Information Center

    Ottensmann, John R.

    1995-01-01

    Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…

  9. Breath-Figure Self-Assembly, a Versatile Method of Manufacturing Membranes and Porous Structures: Physical, Chemical and Technological Aspects

    PubMed Central

    2017-01-01

    The review is devoted to the physical, chemical, and technological aspects of the breath-figure self-assembly process. The main stages of the process and impact of the polymer architecture and physical parameters of breath-figure self-assembly on the eventual pattern are covered. The review is focused on the hierarchy of spatial and temporal scales inherent to breath-figure self-assembly. Multi-scale patterns arising from the process are addressed. The characteristic spatial lateral scales of patterns vary from nanometers to dozens of micrometers. The temporal scale of the process spans from microseconds to seconds. The qualitative analysis performed in the paper demonstrates that the process is mainly governed by interfacial phenomena, whereas the impact of inertia and gravity are negligible. Characterization and applications of polymer films manufactured with breath-figure self-assembly are discussed. PMID:28813026

  10. Sleep and gravity.

    PubMed

    Gonfalone, Alain A

    2018-04-01

    What is known about sleep results from years of observation at the surface of the Earth. Since a few decade man has been able to reach space, escape from the earth attraction and spend days and nights in a weightless condition. Some major physiological changes have been observed during long stays and in particular the sleep duration in space is shorter than on ground. This paper reviews a novel hypothesis proposing that sleep is partly due to gravity. Gravity is a fundamental part of our environment, but is elusive and difficult to apprehend. At the same time, all creatures on Earth undergo cycles of activity and periods of rest (although not always sleep). Careful analysis of previous research on sleep, on Earth, in space and in water, shows that gravity differs in these three situations, and sleep also varies, at least in its duration. On Earth, Rapid Eye Movement (REM) sleep is conditioned by gravity; in space, astronauts have a shorter sleep duration and this is even more striking when a test subject is immersed in water for a week. In conclusion, sleep is partly due to gravity, which acts on our body and brain during the wake period. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  11. Differential Deposition to Correct Surface Figure Deviations in Astronomical Grazing-Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.

    2011-01-01

    A coating technique is being developed to correct the surface figure deviations in reflective-grazing-incidence X-ray optics. These optics are typically designed to have precise conic profiles, and any deviation in this profile, as a result of fabrication, results in a degradation of the imaging performance. To correct the mirror profiles, physical vapor deposition has been utilized to selectively deposit a filler material inside the mirror shell. The technique, termed differential deposition, has been implemented as a proof of concept on miniature X-ray optics developed at MSFC for medical-imaging applications. The technique is now being transferred to larger grazing-incidence optics suitable for astronomy and progress to date is reported.

  12. Gravity model improvement using GEOS-3 (GEM 9 and 10)

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Klosko, S. M.; Laubscher, R. E.; Wagner, C. A.

    1977-01-01

    The use of collocation permitted GEM 9 to be a larger field than previous derived satellite models, GEM 9 having harmonics complete to 20 x 20 with selected higher degree terms. The satellite data set has approximately 840,000 observations, of which 200,000 are laser ranges taken on 9 satellites equipped with retroreflectors. GEM 10 is complete to 22 x 22 with selected higher degree terms out to degree and order 30 amounting to a total of 592 coefficients. Comparisons with surface gravity and altimeter data indicate a substantial improvement in GEM 9 over previous satellite solutions; GEM 9 is in even closer agreement with surface data than the previously published GEM 6 solution which contained surface gravity. In particular the free air gravity anomalies calculated from GEM 9 and a surface gravity solution are in excellent agreement for the high degree terms.

  13. Mars Surface Environmental Issues

    NASA Technical Reports Server (NTRS)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  14. A high resolution gravity model for Venus - GVM-1

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.

    1993-01-01

    A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.

  15. A new method for extracting near-surface mass-density anomalies from land-based gravity data, based on a special case of Poisson's PDE at the Earth's surface: A case study of salt diapirs in the south of Iran

    NASA Astrophysics Data System (ADS)

    AllahTavakoli, Y.; Safari, A.; Ardalan, A.; Bahroudi, A.

    2015-12-01

    The current research provides a method for tracking near-surface mass-density anomalies via using only land-based gravity data, which is based on a special version of Poisson's Partial Differential Equation (PDE) of the gravitational field at Earth's surface. The research demonstrates how the Poisson's PDE can provide us with a capability to extract the near-surface mass-density anomalies from land-based gravity data. Herein, this version of the Poisson's PDE is mathematically introduced to the Earth's surface and then it is used to develop the new method for approximating the mass-density via derivatives of the Earth's gravitational field (i.e. via the gradient tensor). Herein, the author believes that the PDE can give us new knowledge about the behavior of the Earth's gravitational field at the Earth's surface which can be so useful for developing new methods of Earth's mass-density determination. In a case study, the proposed method is applied to a set of gravity stations located in the south of Iran. The results were numerically validated via certain knowledge about the geological structures in the area of the case study. Also, the method was compared with two standard methods of mass-density determination. All the numerical experiments show that the proposed approach is well-suited for tracking near-surface mass-density anomalies via using only the gravity data. Finally, the approach is also applied to some petroleum exploration studies of salt diapirs in the south of Iran.

  16. Ion beam figuring of CVD silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  17. Structural zeroes and zero-inflated models.

    PubMed

    He, Hua; Tang, Wan; Wang, Wenjuan; Crits-Christoph, Paul

    2014-08-01

    In psychosocial and behavioral studies count outcomes recording the frequencies of the occurrence of some health or behavior outcomes (such as the number of unprotected sexual behaviors during a period of time) often contain a preponderance of zeroes because of the presence of 'structural zeroes' that occur when some subjects are not at risk for the behavior of interest. Unlike random zeroes (responses that can be greater than zero, but are zero due to sampling variability), structural zeroes are usually very different, both statistically and clinically. False interpretations of results and study findings may result if differences in the two types of zeroes are ignored. However, in practice, the status of the structural zeroes is often not observed and this latent nature complicates the data analysis. In this article, we focus on one model, the zero-inflated Poisson (ZIP) regression model that is commonly used to address zero-inflated data. We first give a brief overview of the issues of structural zeroes and the ZIP model. We then given an illustration of ZIP with data from a study on HIV-risk sexual behaviors among adolescent girls. Sample codes in SAS and Stata are also included to help perform and explain ZIP analyses.

  18. Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures.

    PubMed

    Grossberg, S

    1997-07-01

    This article develops the FACADE theory of 3-dimensional (3-D) vision and figure-ground separation to explain data concerning how 2-dimensional pictures give rise to 3-D percepts of occluding and occluded objects. The model describes how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representation that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T junctions at which occluded figures contact occluding figures. These boundaries control the filling-in of color within multiple depth-sensitive surface representations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. Both the boundary and the surface representations of occluded objects may be amodally completed, while the surface representations of unoccluded objects become visible through modal completion. Functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortices.

  19. Tracing Acoustic-Gravity Waves from the Ocean into the Ionosphere

    NASA Astrophysics Data System (ADS)

    Zabotin, N. A.; Godin, O. A.; Bullett, T. W.; Negrea, C.

    2013-12-01

    Ionospheric manifestations of tsunamis provide dramatic evidence of a connection between wave processes in the ocean and in the atmosphere. But tsunamis are only a transient feature of a more general phenomenon, infragravity waves (IGWs). IGWs are permanently present surface gravity waves in the ocean with periods longer than the longest periods (~30 s) of wind-generated waves. IGWs propagate transoceanic distances and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, atmosphere, and the solid Earth. The notion that tsunamis may generate waves in the upper atmosphere has existed for a long time but no quantitative coupling theory for the background waves has been proposed. We provide a strict physical justification for the influence of the background IGWs on the upper atmosphere. Taking into account both fluid compressibility and the gravity in a coupled atmosphere-ocean system, we show that there exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has evanescent waves in the atmosphere propagating horizontally along the ocean surface. At lower frequencies, IGWs continuously radiate their energy into the upper atmosphere in the form of acoustic gravity waves (AGWs). The transition frequency depends on the ocean depth; it varies slowly near 3 mHz for typical depth values and drops to zero sharply only for extremely large depths. Using semi-empirical model of the IGW power spectrum, we derive an estimate of the flux of the mechanical energy and mechanical momentum from the deep ocean into the atmosphere due to background IGWs and predict specific forcing on the atmosphere in coastal regions. We compare spectra of wave processes in the ionosphere measured using Dynasonde technique over Wallops Island, VA and San Juan, PR and interpret the differences in terms of the oceanic effects. We conclude that AGWs of oceanic origin may have an observable

  20. Ultrasonic hydrometer. [Specific gravity of electrolyte

    DOEpatents

    Swoboda, C.A.

    1982-03-09

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  1. f(R) gravity on non-linear scales: the post-Friedmann expansion and the vector potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.B.; Bruni, M.; Koyama, K.

    2015-07-01

    Many modified gravity theories are under consideration in cosmology as the source of the accelerated expansion of the universe and linear perturbation theory, valid on the largest scales, has been examined in many of these models. However, smaller non-linear scales offer a richer phenomenology with which to constrain modified gravity theories. Here, we consider the Hu-Sawicki form of f(R) gravity and apply the post-Friedmann approach to derive the leading order equations for non-linear scales, i.e. the equations valid in the Newtonian-like regime. We reproduce the standard equations for the scalar field, gravitational slip and the modified Poisson equation in amore » coherent framework. In addition, we derive the equation for the leading order correction to the Newtonian regime, the vector potential. We measure this vector potential from f(R) N-body simulations at redshift zero and one, for two values of the f{sub R{sub 0}} parameter. We find that the vector potential at redshift zero in f(R) gravity can be close to 50% larger than in GR on small scales for |f{sub R{sub 0}}|=1.289 × 10{sup −5}, although this is less for larger scales, earlier times and smaller values of the f{sub R{sub 0}} parameter. Similarly to in GR, the small amplitude of this vector potential suggests that the Newtonian approximation is highly accurate for f(R) gravity, and also that the non-linear cosmological behaviour of f(R) gravity can be completely described by just the scalar potentials and the f(R) field.« less

  2. NSTA-NASA Shuttle Student Involvement Project. Experiment Results: Insect Flight Observation at Zero Gravity

    NASA Technical Reports Server (NTRS)

    Nelson, T. E.; Peterson, J. R.

    1982-01-01

    The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.

  3. CREW TRAINING (ZERO-G) - STS-41G - OUTER SPACE

    NASA Image and Video Library

    1984-07-16

    S84-37514 (18 July 1984) --- Marc Garneau, representing Canada's National Research Council as one of two 41-G payload specialists, gets the "feel" of zero gravity aboard a special NASA aircraft designed to create brief periods of weightlessness. Five astronauts and an oceanographer from the U.S. Dept. of the Navy will join Canada's first representative in space for the trip aboard Challenger later this year. This KC-135 aircraft is used extensively for evaluation of equipment and experiments scheduled for future missions.

  4. Zero-leak valve

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F., Jr.

    1980-01-01

    Zero-leakage valve has fluid-sealing diaphragm support and flat sievelike sealing surface. Diaphragm-support valve is easy to fabricate and requires minimum maintenance. Potential applications include isolation valve for waste systems and remote air-actuated valve. Device is also useful in controlling flow of liquid fluorine and corrosive fluids at high pressures.

  5. Figure-ground assignment in pigeons: evidence for a figural benefit.

    PubMed

    Lazareva, Olga E; Castro, Leyre; Vecera, Shaun P; Wasserman, Edward A

    2006-07-01

    Four pigeons discriminated whether a target spot appeared on a colored figural shape or on a differently colored background by first pecking the target and then reporting its location: on the figure or the background. We recorded three dependent variables: target detection time, choice response time, and choice accuracy. The birds were faster to detect the target, to report its location, and to learn the correct response on figure trials than on background trials. Later tests suggested that the pigeons might have attended to the figural region as a whole rather than using local properties in performing the figure-background discrimination. The location of the figural region did not affect figure-ground assignment. Finally, when 4 other pigeons had to detect and peck the target without making a choice report, no figural advantage emerged in target detection time, suggesting that the birds' attention may not have been automatically summoned to the figural region.

  6. Four-dimensional black holes in Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.

    2016-12-01

    We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.

  7. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  8. Energy in first order 2 +1 gravity

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Rubalcava-García, Iraís

    2015-08-01

    We consider Λ =0 three-dimensional gravity with asymptotically flat boundary conditions. This system was studied by Ashtekar and Varadarajan within the second-order formalism—with metric variables—who showed that the Regge-Teitelboim formalism yields a consistent Hamiltonian description where, surprisingly, the energy is bounded from below and from above. The energy of the spacetime is, however, determined up to an arbitrary constant. The natural choice was to fix that freedom such that Minkowski spacetime has zero energy. More recently, Marolf and Patiño started from the Einstein-Hilbert action supplemented with the Gibbons-Hawking term and showed that, in the (2 +1 ) decomposition of the theory, the energy is shifted from the Ashtekar-Varadarajan analysis in such a way that Minkowski spacetime possesses a negative energy. In this contribution we consider the first-order formalism, where the fundamental variables are a s o (2 ,1 ) connection waIJ and a triad eaI . We consider two actions. A natural extension to 3 dimensions of the consistent action in 4 D Palatini gravity is shown to be finite and differentiable. For this action, the (2 +1 ) decomposition (that we perform using two methods) yields a Hamiltonian boundary term that corresponds to energy. It assigns zero energy to Minkowski spacetime. We then put forward a totally gauge invariant action and show that it is also well defined and differentiable. Interestingly, it turns out to be related, on shell, to the 3D Palatini action by an additive constant in such a way that its associated energy is given by the Marolf-Patiño expression. Thus, we conclude that, from the perspective of the first-order formalism, Minkowski spacetime can consistently have either zero, or a negative energy equal to -1 /4 G , depending on the choice of consistent action employed as starting point.

  9. Self-gravity in thin discs and edge effects: an extension of Paczynski's approximation

    NASA Astrophysics Data System (ADS)

    Trova, Audrey; Huré, Jean-Marc; Hersant, Franck

    2014-03-01

    Because hydrostatic equilibrium of gaseous discs is partly governed by the gravity field, we have estimated the component caused by a vertically homogeneous disc with particular attention to the outer regions where self-gravity appears most often. The accuracy of the integral formula is better than 1% regardless of the disc thickness, radial extension and radial density profile. At order zero, the field is even algebraic for thin discs and reads -4πGΣ(R) × fedges(R) at disc surface, which means a correction of Paczynski's formula by a multiplying factor fedges ≲ ½, which depends on the relative distance to the edges and the local disc thickness. For very centrally condensed discs, however, this local contribution can be surpassed by the action of mass stored in the inner regions, possibly resulting in fedges ≫ 1. A criterion setting the limit between these two regimes is derived. These results are robust in the sense that the details of vertical stratification are not critical. We briefly discuss how hydrostatic equilibrium is affected. In particular, the disc flaring probably does not reverse in the self-gravitating region, which contradicts what is usually obtained from Paczynski's formula. This suggests that i) these outer regions are probably not fully shadowed by the inner ones (when the disc is illuminated by a central star); and ii) the flared shape of discs does not firmly prove the absence or weakness of self-gravity.

  10. Megaquakes, prograde surface waves and urban evolution

    NASA Astrophysics Data System (ADS)

    Lomnitz, C.; Castaños, H.

    2013-05-01

    Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción

  11. Improvement of the Earth's gravity field from terrestrial and satellite data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1992-01-01

    The determination of the Earth's gravitational potential can be done through the analysis of satellite perturbations, the analysis of surface gravity data, or both. The combination of the two data types yields a solution that combines the strength of each method: the longer wavelength strength in the satellite analysis with the better high frequency information from surface gravity data. Since 1972, Ohio State has carried out activities that have provided surface gravity data to a number of organizations who have developed combination potential coefficient models that describe the Earth's gravitational potential.

  12. Normal gravity field in relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao

    2018-02-01

    Modern geodesy is subject to a dramatic change from the Newtonian paradigm to Einstein's theory of general relativity. This is motivated by the ongoing advance in development of quantum sensors for applications in geodesy including quantum gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of the geoid and multipolar structure of the Earth's gravitational field. At the same time, very long baseline interferometry, satellite laser ranging, and global navigation satellite systems have achieved an unprecedented level of accuracy in measuring 3-d coordinates of the reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of the of Earth's gravitational field are referred is a normal gravity field represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid of which mass and quadrupole momentum are equal to the total mass and (tide-free) quadrupole moment of Earth's gravitational field. The present paper extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus our attention on the calculation of the post-Newtonian approximation of the normal field that is sufficient for current and near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order with respect to the geodetic Cartesian coordinates. At the same time, admitting a post-Newtonian inhomogeneity of the mass density in the form of concentric elliptical shells allows one to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level surface with two parameters which are

  13. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    NASA Astrophysics Data System (ADS)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model

  14. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    NASA Astrophysics Data System (ADS)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  15. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    PubMed

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  16. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.

    PubMed

    Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  17. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves

    NASA Astrophysics Data System (ADS)

    Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  18. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-Chan; Noh, Hyerim

    2005-03-01

    We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein’s gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein’s gravity and others.

  19. Ring modulator small-signal response analysis based on pole-zero representation.

    PubMed

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-04-04

    We present a closed-form expression for the small-signal response of a depletion-mode ring modulator and verify it by measurement results. Both electrical and optical behavior of micro-ring modulator as well as the loss variation due to the index modulation is considered in the derivation. This expression suggests that a ring modulator is a third-order system with one real pole, one zero and a pair of complex-conjugate poles. The exact positions of the poles/zero are given and shown to be dependent upon parameters such as electrical bandwidth, coupling condition, optical loss, and sign/value of laser detunings. We show that the location of zero is different for positive and negative detuning, and therefore, the ring modulator frequency response is asymmetric. We use the gain-bandwidth product as a figure of merit and calculate it for various pole/zero locations. We show that gain-bandwidth for the over-coupled ring modulator is superior compared to other coupling conditions. Also, we show that the gain-bandwidth product can be increased to a limit by increasing the electrical bandwidth.

  20. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  1. Theoretical model of droplet wettability on a low-surface-energy solid under the influence of gravity.

    PubMed

    Yonemoto, Yukihiro; Kunugi, Tomoaki

    2014-01-01

    The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.

  2. Time series of low-degree geopotential coefficients from SLR data: estimation of Earth's figure axis and LOD variations

    NASA Astrophysics Data System (ADS)

    Luceri, V.; Sciarretta, C.; Bianco, G.

    2012-12-01

    The redistribution of the mass within the earth system induces changes in the Earth's gravity field. In particular, the second-degree geopotential coefficients reflect the behaviour of the Earth's inertia tensor of order 2, describing the main mass variations of our planet impacting the EOPs. Thanks to the long record of accurate and continuous laser ranging observations to Lageos and other geodetic satellites, SLR is the only current space technique capable to monitor the long time variability of the Earth's gravity field with adequate accuracy. Time series of low-degree geopotential coefficients are estimated with our analysis of SLR data (spanning more than 25 years) from several geodetic satellites in order to detect trends and periodic variations related to tidal effects and atmospheric/oceanic mass variations. This study is focused on the variations of the second-degree Stokes coefficients related to the Earth's principal figure axis and oblateness: C21, S21 and C20. On the other hand, surface mass load variations induce excitations in the EOPs that are proportional to the same second-degree coefficients. The time series of direct estimates of low degree geopotential and those derived from the EOP excitation functions are compared and presented together with their time and frequency analysis.

  3. Gravity waves in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Friedson, A. James

    1994-01-01

    Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of

  4. Synchrotron speciation data for zero-valent iron nanoparticles

    EPA Pesticide Factsheets

    This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include linear combination fitting results (Table 6 and Figure 9) and ab-initio extended x-ray absorption fine structure spectroscopy fitting (Figure 10 and Table 7).Table 6: Linear combination fitting of the XAS data for the 5 commercial nZVI/ZVI products tested. Species proportions are presented as percentages. Goodness of fit is indicated by the chi^2 value.Figure 9: Normalised Fe K-edge k3-weighted EXAFS of the 5 commercial nZVI/ZVIproducts tested. Dotted lines show the best 4-component linear combination fit ofreference spectra.Figure 10: Fourier transformed radial distribution functions (RDFs) of the five samplesand an iron metal foil. The black lines in Fig. 10 represent the sample data and the reddotted curves represent the non-linear fitting results of the EXAFS data.Table 7: Coordination parameters of Fe in the samples.This dataset is associated with the following publication:Chekli, L., B. Bayatsarmadi, R. Sekine, B. Sarkar, A. Maoz Shen, K. Scheckel , W. Skinner, R. Naidu, H. Shon, E. Lombi, and E. Donner. Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review. Richard P. Baldwin ANALYTICA CHIMICA ACTA. Elsevier Science Ltd, New York, NY, USA, 903: 13-35, (2016).

  5. Brane-World Gravity.

    PubMed

    Maartens, Roy; Koyama, Kazuya

    2010-01-01

    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+ d -dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

  6. Grasping objects autonomously in simulated KC-135 zero-g

    NASA Technical Reports Server (NTRS)

    Norsworthy, Robert S.

    1994-01-01

    The KC-135 aircraft was chosen for simulated zero gravity testing of the Extravehicular Activity Helper/retriever (EVAHR). A software simulation of the EVAHR hardware, KC-135 flight dynamics, collision detection and grasp inpact dynamics has been developed to integrate and test the EVAHR software prior to flight testing on the KC-135. The EVAHR software will perform target pose estimation, tracking, and motion estimation for rigid, freely rotating, polyhedral objects. Manipulator grasp planning and trajectory control software has also been developed to grasp targets while avoiding collisions.

  7. An improved model for the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  8. Unified theory of nonlinear electrodynamics and gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos

    2011-01-15

    We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but formore » any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.« less

  9. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  10. A network of superconducting gravimeters detects submicrogal coseismic gravity changes.

    PubMed

    Imanishi, Yuichi; Sato, Tadahiro; Higashi, Toshihiro; Sun, Wenke; Okubo, Shuhei

    2004-10-15

    With high-resolution continuous gravity recordings from a regional network of superconducting gravimeters, we have detected permanent changes in gravity acceleration associated with a recent large earthquake. Detected changes in gravity acceleration are smaller than 10(-8) meters seconds(-2) (1 micro-Galileo, about 10(-9) times the surface gravity acceleration) and agree with theoretical values calculated from a dislocation model. Superconducting gravimetry can contribute to the studies of secular gravity changes associated with tectonic processes.

  11. Analysis of the convergence rules of full-range PSD surface error of magnetorheological figuring KDP crystal.

    PubMed

    Chen, Shaoshan; He, Deyu; Wu, Yi; Chen, Huangfei; Zhang, Zaijing; Chen, Yunlei

    2016-10-01

    A new non-aqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the convergence rules of the surface error of an initial single-point diamond turning (SPDT)-finished KDP crystal after MRF polishing. Currently, the SPDT process contains spiral cutting and fly cutting. The main difference of these two processes lies in the morphology of intermediate-frequency turning marks on the surface, which affects the convergence rules. The turning marks after spiral cutting are a series of concentric circles, while the turning marks after fly cutting are a series of parallel big arcs. Polishing results indicate that MRF polishing can only improve the low-frequency errors (L>10  mm) of a spiral-cutting KDP crystal. MRF polishing can improve the full-range surface errors (L>0.01  mm) of a fly-cutting KDP crystal if the polishing process is not done more than two times for single surface. We can conclude a fly-cutting KDP crystal will meet better optical performance after MRF figuring than a spiral-cutting KDP crystal with similar initial surface performance.

  12. Band-limited Bouguer gravity identifies new basins on the Moon

    NASA Astrophysics Data System (ADS)

    Featherstone, W. E.; Hirt, C.; Kuhn, M.

    2013-06-01

    Spectral domain forward modeling is used to generate topography-implied gravity for the Moon using data from the Lunar Orbiter Laser Altimeter instrument operated on board the Lunar Reconnaissance Orbiter mission. This is subtracted from Selenological and Engineering Explorer (SELENE)-derived gravity to generate band-limited Bouguer gravity maps of the Moon so as to enhance the gravitational signatures of anomalous mass densities nearer the surface. This procedure adds evidence that two previously postulated basins on the lunar farside, Fitzgerald-Jackson (25°N, 191°E) and to the east of Debye (50°N, 180°E), are indeed real. When applied over the entire lunar surface, band-limited Bouguer gravity reveals the locations of 280 candidate basins that have not been identified when using full-spectrum gravity or topography alone, showing the approach to be of utility. Of the 280 basins, 66 are classified as distinct from their band-limited Bouguer gravity and topographic signatures, making them worthy of further investigation.

  13. Partial gravity habitat study

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke

    1989-01-01

    The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.

  14. Validity of the "Laplace Swindle" in Calculation of Giant-Planet Gravity Fields

    NASA Astrophysics Data System (ADS)

    Hubbard, William B.

    2014-11-01

    Jupiter and Saturn have large rotation-induced distortions, providing an opportunity to constrain interior structure via precise measurement of external gravity. Anticipated high-precision gravity measurements close to the surfaces of Jupiter (Juno spacecraft) and Saturn (Cassini spacecraft), possibly detecting zonal harmonics to J10 and beyond, will place unprecedented requirements on gravitational modeling via the theory of figures (TOF). It is not widely appreciated that the traditional TOF employs a formally nonconvergent expansion attributed to Laplace. This suspect expansion is intimately related to the standard zonal harmonic (J-coefficient) expansion of the external gravity potential. It can be shown (Hubbard, Schubert, Kong, and Zhang: Icarus, in press) that both Jupiter and Saturn are in the domain where Laplace's "swindle" works exactly, or at least as well as necessary. More highly-distorted objects such as rapidly spinning asteroids may not be in this domain, however. I present a numerical test for the validity and precision of TOF via polar "audit points". I extend the audit-point test to objects rotating differentially on cylinders, obtaining zonal harmonics to J20 and beyond. Models with only low-order differential rotation do not exhibit dramatic effects in the shape of the zonal harmonic spectrum. However, a model with Jupiter-like zonal winds exhibits a break in the zonal harmonic spectrum above about J10, and generally follows the more shallow Kaula power rule at higher orders. This confirms an earlier result obtained by a different method (Hubbard: Icarus 137, 357-359, 1999).

  15. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  16. Automated Figuring and Polishing of Replication Mandrels for X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Krebs, Carolyn (Technical Monitor); Content, David; Fleetwood, Charles; Wright, Geraldine; Arsenovic, Petar; Collela, David; Kolos, Linette

    2003-01-01

    In support of the Constellation X mission the Optics Branch at Goddard Space Flight Center is developing technology for precision figuring and polishing of mandrels used to produce replicated mirrors that will be used in X-Ray telescopes. Employing a specially built machine controlled in 2 axes by a computer, we are doing automated polishing/figuring of 15 cm long, 20 cm diameter cylindrical, conical and Wolter mandrels. A battery of tests allow us to fully characterize all important aspects of the mandrels, including surface figure and finish, mid-frequency errors, diameters and cone angle. Parts are currently being produced with surface roughnesses at the .5nm RMS level, and half-power diameter slope error less than 2 arcseconds.

  17. Structure and magnetic properties of mono- and bi-layer graphene films on ultraprecision figured 4H-SiC(0001) surfaces.

    PubMed

    Hattori, Azusa N; Okamoto, Takeshi; Sadakuni, Shun; Murata, Junji; Oi, Hideo; Arima, Kenta; Sano, Yasuhisa; Hattori, Ken; Daimon, Hiroshi; Endo, Katsuyoshi; Yamauchi, Kazuto

    2011-04-01

    Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.

  18. Gauge symmetry and constraints structure for topologically massive AdS gravity: a symplectic viewpoint

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tzompantzi, Omar; Escalante, Alberto

    2018-05-01

    By applying the Faddeev-Jackiw symplectic approach we systematically show that both the local gauge symmetry and the constraint structure of topologically massive gravity with a cosmological constant Λ , elegantly encoded in the zero-modes of the symplectic matrix, can be identified. Thereafter, via a suitable partial gauge-fixing procedure, the time gauge, we calculate the quantization bracket structure (generalized Faddeev-Jackiw brackets) for the dynamic variables and confirm that the number of physical degrees of freedom is one. This approach provides an alternative to explore the dynamical content of massive gravity models.

  19. Techniques for determination of impact forces during walking and running in a zero-G environment

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael; Walton, Marlei; Bishop, Phillip; Squires, William

    1992-01-01

    One of the deleterious adaptations to the microgravity conditions of space flight is the loss of bone mineral content. This loss appears to be at least partially attributable to the minimal skeletal axial loading concomitant with microgravity. The purpose of this study was to develop and fabricate the instruments and hardware necessary to quantify the vertical impact forces (Fz) imparted to users of the space shuttle passive treadmill during human locomotion in a three-dimensional zero-gravity environment. The shuttle treadmill was instrumented using a Kistler forceplate to measure vertical impact forces. To verify that the instruments and hardware were functional, they were tested both in the one-G environment and aboard the KC-135 reduced gravity aircraft. The magnitude of the impact loads generated in one-G on the shuttle treadmill for walking at 0.9 m/sec and running at 1.6 and 2.2 m/sec were 1.1, 1.7, and 1.7 G, respectively, compared with loads of 0.95, 1.2, and 1.5 G in the zero-G environment.

  20. Flexural isostasy: Constraints from gravity and topography power spectra

    NASA Astrophysics Data System (ADS)

    Watts, Tony; Moore, James

    2017-04-01

    We have used the spherical harmonic coefficients that describe the EGM2008 gravity and topography model (Pavlis et al. 2010) to quantify the role of flexural isostasy in contributing to Earth's gravity and topography. Power spectra show that the gravity effect of the topography and its flexural compensation contributes significantly to the observed free-air gravity anomaly field for degree 33-180, which corresponds approximately to wavelengths of 220-1200 km. The best fit is for an elastic thickness of the lithosphere, Te, of 34.0±4.0 km. Smaller values of Te, under-predict while high values of Te, over-predict the observed gravity spectra. The best fit value is a global average and so it is reasonable to speculate that regions exist where Te is both lower and higher. This is confirmed in studies of selected regions such as the Hawaiian-Emperor seamount chain and the Ganges-Himalaya foreland fold and thrust belt where we show that flexural isostatic anomalies are near zero in regions where Te approaches 34 km (e.g. Hawaiian ridge) and of large amplitude in regions of lower (e.g. Emperor) and higher Te (e.g. Ganges-Himalaya). Plate flexure may be significant at higher (180-441) and lower (12-33) degrees, but topography appears either uncompensated or fully compensated at these degrees, irrespective of the actual Te. Nevertheless, all isostatic models under-predict the observed gravity spectra at degree <12 and so we interpret the low order Earth's gravity field as caused by non-isostatic processes due to dynamic motions such as those associated with mantle convection.