Sample records for zero-gravity surface figure

  1. Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.; Lam, Jonathan C.; Feria, V. Alfonso; Chang, Zensheu

    2007-01-01

    The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.

  2. On Calculating the Zero-Gravity Surface Figure of a Mirror

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2010-01-01

    An analysis of the classical method of calculating the zero-gravity surface figure of a mirror from surface-figure measurements in the presence of gravity has led to improved understanding of conditions under which the calculations are valid. In this method, one measures the surface figure in two or more gravity- reversed configurations, then calculates the zero-gravity surface figure as the average of the surface figures determined from these measurements. It is now understood that gravity reversal is not, by itself, sufficient to ensure validity of the calculations: It is also necessary to reverse mounting forces, for which purpose one must ensure that mountingfixture/ mirror contacts are located either at the same places or else sufficiently close to the same places in both gravity-reversed configurations. It is usually not practical to locate the contacts at the same places, raising the question of how close is sufficiently close. The criterion for sufficient closeness is embodied in the St. Venant principle, which, in the present context, translates to a requirement that the distance between corresponding gravity-reversed mounting positions be small in comparison to their distances to the optical surface of the mirror. The necessity of reversing mount forces is apparent in the behavior of the equations familiar from finite element analysis (FEA) that govern deformation of the mirror.

  3. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope

    NASA Astrophysics Data System (ADS)

    Li, Zongxuan; Chen, Xue; Wang, Shaoju; Jin, Guang

    2017-12-01

    A flexural support technique for lightweighted Primary Mirror Assembly (PMA) of a space telescope is presented in this article. The proposed three-point flexural mount based on a cartwheel flexure can maintain the surface figure of the PMA in a horizontal optical testing layout. The on-orbit surface error of the PMA causes significant degradation in image quality. On-ground optical testing cannot determine the zero-gravity figure of the PMA due to surface distortion by gravity. We unveiled the crucial fact that through a delicate mounting structure design, the surface figure can remain constant precisely without inducing distinguishable astigmatism when PMA rotates with respect to the optical axis, and the figure can be considered as the zero-gravity surface figure on the orbit. A design case is described to show the lightweight design of a SiC mirror and the optimal flexural mounting. Topology optimization and integrated opto-mechanical analysis using the finite element method are utilized in the design process. The Primary Mirror and mounting structures were fabricated and assembled. After the PMA mirror surface was polished to λ/50 RMS, optical testing in different clocking configurations was performed, respectively, through rotating the PMA by multiple angles. Test results show that the surface figure remained invariant, indicating that gravity release on the orbit will not cause an additional surface error. Vibration tests including sweep sine and random vibration were also performed to validate the mechanical design. The requirements for the mounting technique in space were qualified.

  4. A Water-Immersion Technique for the Study of Mobility of a Pressure-Suited Subject Under Balanced-Gravity Conditions

    DTIC Science & Technology

    1966-01-01

    simulating zero-gravity performance of an astronaut in a pressurized spacesuit by complete water immersion has been developed and inves- tigated. The...critical operational characteristics relating to space- craft and spacesuit design under conditions of zero gravity. In addition, the physical...the legs of the suit and are contained by insulated flight boots . The Mark IV suit used in the tests is shown in figure 1. 3 Pressure-Suit

  5. Extracting Zero-Gravity Surface Figure of a Mirror

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.; Lam, Jonathan C.; Feria, Alfonso; Chang, Zensheu

    2011-01-01

    The technical innovation involves refinement of the classic optical technique of averaging surface measurements made in different orientations with respect to gravity, so the effects of gravity cancel in the averaged image. Particularly for large, thin mirrors subject to substantial deformation, the further requirement is that mount forces must also cancel when averaged over measurement orientations. The zerogravity surface figure of a mirror in a hexapod mount is obtained by analyzing the summation of mount forces in the frame of the optic as surface metrology is averaged over multiple clockings. This is illustrated with measurements taken from the Space Interferometry Mission (SIM) PT-Ml mirror for both twofold and threefold clocking. The positive results of these measurements and analyses indicate that, from this perspective, a lighter mirror could be used; that is, one might place less reliance on the damping effects of the elliptic partial differential equations that describe the propagation of forces through glass. The advantage over prior art is relaxing the need for an otherwise substantial thickness of glass that might be needed to ensure accurate metrology in the absence of a detailed understanding and analysis of the mount forces. The general insights developed here are new, and provide the basic design principles on which mirror mount geometry may be chosen.

  6. Development of a large support surface for an air-bearing type zero-gravity simulator

    NASA Technical Reports Server (NTRS)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  7. The behavior of surface tension on steady-state rotating fluids in the low gravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Leslie, Fred W.

    1987-01-01

    The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.

  8. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1977-01-01

    The free surface shapes of circular liquid jets impinging normal to sharp-edged disks in zero gravity are determined. Zero gravity drop tower experiments yielded three distinct flow patterns that were classified in terms of the relative effects of surface tension and inertial forces. An order of magnitude analysis was conducted that indicated regions where viscous forces were not significant in the computation of free surface shapes. The free surface analysis was simplified by transforming the governing potential flow equations and boundary conditions into the inverse plane, where the stream function and velocity potential became the coordinates. The resulting nonlinear equations were solved by standard finite difference methods, and comparisons were made with the experimental data for the inertia dominated regime.

  9. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the spray bar configuration is that pressure reduction is achieved independent of liquid and vapor location, thereby enhancing the applicability of normal gravity test data to zero gravity conditions. The in-tank components are minimized with the proposed TVS design. Because the recirculation pump is external to the tank, no electrical power penetration of the tank is required for pump or valve operation. This is especially desirable for L02 tanks since the presence of an electrical ignition source in oxygen represents a critical failure mode. Also, since the critical components (pump, motor, valve, orifice) are external to the tank, system checkout and ground servicing/replacement are easier. For zero-g operation, component replacement external to the tank may be a significant benefit. In addition to satisfying the zero g TVS design objectives, the TVS concept tested offers additional benefits to the integrated subcritical cryogenic storage and launch system.

  10. An experimental and analytical investigation of thermoacoustic convection heat transfer in gravity and zero-gravity environments

    NASA Technical Reports Server (NTRS)

    Parang, Masood

    1986-01-01

    An experimental and analytical study of Thermoacoustic Convection heat transfer in gravity and zero-gravity environments is presented. The experimental apparatus consisted of a cylinder containing air as a fluid. The side wall of the cylinder was insulated while the bottom wall was allowed to remain at the ambient temperature. The enclosed air was rapidly heated by the top surface which consisted of a thin stainless steel foil connected to a battery pack as the power source. Thermocouples were used to measure the transient temperature of the air on the axis of the cylinder. The ouput of the thermocouples was displayed on digital thermometers and the temperature displays were recorded on film using a high-speed movie camera. Temperature measurements were obtained in the zero-gravity environment by dropping the apparatus in the 2-Seconds Zero-Gravity Drop Tower Facilities of NASA Lewis Research Center. In addition, experiments were also performed in the gravity environment and the results are compared in detail with those obtained under zero-gravity conditions.

  11. Tribology experiment in zero gravity

    NASA Technical Reports Server (NTRS)

    Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.

    1984-01-01

    A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates studies of the motion of liquid lubricants over solid surfaces as controlled by interfacial and capillary forces. Observations were made of phenomena associated with the liquid on one solid surface and also with the liquid between a pair of closely spaced surfaces. Typical photographic records obtained on Spacelab 1 are described.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackett, S.J.

    JASON solves general electrostatics problems having either slab or cylindrical symmetry. More specifically, it solves the self-adjoint elliptic equation, div . (KgradV) - ..gamma..V + rho = 0 in an aritrary two-dimensional domain. For electrostatics, V is the electrostatic potential, K is the dielectric tensor, and rho is the free-charge density. The parameter ..gamma.. is identically zero for electrostatics but may have a positive nonzero value in other cases (e.g., capillary surface problems with gravity loading). The system of algebraic equations used in JASON is generated by the finite element method. Four-node quadrilateral elements are used for most of themore » mesh. Triangular elements, however, are occasionally used on boundaries to avoid severe mesh distortions. 15 figures. (RWR)« less

  13. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1976-01-01

    An experimental and analytical investigation was conducted to determine the free surface shapes of circular liquid jets impinging normal to sharp-edged disks under both normal and zero gravity conditions. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The demarcation between the viscous and inviscid region was found to depend upon the flow Reynolds number and the ratio between the jet and disk radius.

  14. Combustion of solid carbon rods in zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.; Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Dewitt, K. J.

    1979-01-01

    In order to investigate the mechanism of carbon combustion, spectroscopic carbon rods were resistance ignited and burned in an oxygen environment in normal and zero gravity. Direct mass spectrometric sampling was used in the normal gravity tests to obtain concentration profiles of CO2, CO, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnant film model. Zero gravity droptower tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 5, 10, 15, and 20 psia was obtained for three different diameter rods. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.

  15. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing

    NASA Astrophysics Data System (ADS)

    Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.

    2008-07-01

    Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.

  16. Soldering Tested in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Pettegrew, Richard D.; Watson, J. Kevin; Down, Robert S.; Haylett, Daniel R.

    2005-01-01

    Whether used occasionally for contingency repair or routinely in nominal repair operations, soldering will become increasingly important to the success of future long-duration human space missions. As a result, it will be critical to have a thorough understanding of the service characteristics of solder joints produced in reduced-gravity environments. The National Center for Space Exploration Research (via the Research for Design program), the NASA Glenn Research Center, and the NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole (see the drawing and image on the preceding figure) and surface-mounted devices are being investigated. This effort (the low-gravity portion being conducted on NASA s KC-135 research aircraft) uses the soldering hardware currently available on the International Space Station. The experiment involves manual soldering by a contingent of test operators, including both highly skilled technicians and less skilled individuals to provide a skill mix that might be encountered in space mission crews. The experiment uses both flux-cored solder and solid-core solder with an externally applied flux. Other experimental parameters include the type of flux, gravitational level (nominally zero,

  17. Ultra Lightweight Mirror Fabrication Technology

    DTIC Science & Technology

    1983-12-01

    supported on-back at three points, 120 degrees apart at the 0.7 radial zone. The surface deformation, produced by a one-g gravity load applied to a...reliable and repeatable simulation of zero- gravity . 16 * ....- • • ~~~~~~. ,. ........ ...... ....... o....... .. -.. . ...... " . - tively... gravity loading. The stability of this mirru, over these environmental conditions is considered to be excellent. The interferometrically measured surface

  18. Plants in space

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Dutcher, F. R.

    1987-01-01

    Space may be, as some have called it, our last frontier. As such, it provides novel, even unique research opportunities. Plants are sure to figure significantly in these activities. The ability to manipulate the force of gravity from near zero to 1 g affords fresh opportunities to investigate gravity's physiological effects as well as a means of probing gravi- and phototropism, thigmo-morphogenesis, and other environmental effects in a state uncompromised by gravity. In this review we aim primarily to consider phenomenology, a goal that befits the state of our knowledge from space experiments. We intend to provide grist for future ground-based and space experiments and to reveal the potential for scientific discovery in this area.

  19. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    NASA Astrophysics Data System (ADS)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  20. Astronaut Edwin Aldrin undergoes zero-gravity training aboard KC-135

    NASA Image and Video Library

    1969-07-15

    S69-39269 (10 July 1969) --- Astronaut Edwin E. Aldrin Jr., lunar module pilot of the Apollo 11 lunar landing mission, undergoes zero-gravity training aboard a U.S. Air Force KC-135 jet aircraft from nearby Patrick Air Force Base, Florida. Aldrin is wearing an Extravehicular Mobility Unit (EMU), the type of equipment which he will wear on the lunar surface.

  1. Air Force Academy Aeronautics Digest - Fall/Winter 1980.

    DTIC Science & Technology

    1981-05-01

    Crandall # _2EXAMINING A RULE OF THUMB FOR THE RELATION BETWEEN CAMBER AND 21 ZERO -LIFT ANGLE OF ATTACK,S----E.J. Jumper / EXPERIMENTAL AERODYNAMIC...slow- ing the fluid velocity to zero without loss. Static pressure is the pressure exerted on an aerodynamic surface parallel to the free stream...it is zero at the vor- tex center. Figure 2 shows the velocity distribution of a vortex with a viscous core 0. rt r Figure 2. Fluid Velocity Versus

  2. Tribology experiment. [journal bearings and liquid lubricants

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1981-01-01

    A two-dimensional concept for Spacelab rack 7 was developed to study the interaction of liquid lubricants and surfaces under static and dynamic conditions in a low-gravity environment fluid wetting and spreading experiments of a journal bearing experiments, and means to accurately measure and record the low-gravity environment during experimentation are planned. The wetting and spreading process of selected commercial lubricants on representative surface are to the observes in a near-zero gravity environment.

  3. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    NASA Astrophysics Data System (ADS)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.

  4. New Views of Earth's Gravity Field from GRACE

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Map 1Map 2

    Gravity and the Earth's Shape Gravity is the force that is responsible for the weight of an object and is determined by how the material that makes up the Earth is distributed throughout the Earth. Because gravity changes over the surface of the Earth, the weight of an object changes along with it. One can define standard gravity as the value of gravity for an perfectly smooth 'idealized' Earth, and the gravity 'anomaly' is a measure of how actual gravity deviates from this standard. Gravity reflects the Earth's surface topography to a high degree and is associated with features that most people are familiar with such as large mountains and deep ocean trenches.

    Progress in Measuring the Earth's Gravity Field Through GRACE Prior to GRACE, the Earth's gravity field was determined using measurements of varying quality from different satellites and of incomplete coverage. Consequently the accuracy and resolution of the gravity field were limited. As is shown in Figure 1, the long wavelength components of the gravity field determined from satellite tracking were limited to a resolution of approximately 700 km. At shorter wavelengths, the errors were too large to be useful. Only broad geophysical features of the Earth's structure could be detected (see map 1).

    In contrast, GRACE, by itself, has provided accurate gravity information with a resolution of 200 km. Now, much more detail is clearly evident in the Earth's geophysical features (see map 2). High resolution features detected by GRACE that are representative of geophysical phenomena include the Tonga/Kermadec region (a zone where one tectonic plate slides under another), the Himalayan/Tibetan Plateau region (an area of uplift due to colliding plates), and the mid-Atlantic ridge (an active spreading center in the middle of the Atlantic ocean where new crust is being created). Future GRACE gravity models are expected to increase the resolution further. The second figure confirms that the Grace data is global, homogeneous and highly accurate. These are all properties that have been sought for gravity model development.

    [figure removed for brevity, see original site] Ocean Circulation Measurements from Grace The arrows in the three data sets in Figure 3 depict ocean currents off the East Coast of the United States, 1,000 meters (approximately 3,280 feet) beneath the surface. The top panel is obtained from the GRACE geoid, satellite altimetry and ship measurements of temperature and salt. The bottom panel is computed in the same manner as the top one, except that the best geoid prior to GRACE is used instead of the GRACE geoid. The middle panel shows direct measurement of those currents by floats deployed from ships. Notice that the current arrows in the Gulf Stream extension, East and slightly South of Washington DC, point eastward, toward Europe, in the two upper panels, but in the opposite direction in the lower panel. Colors indicate the strength of the ocean current, with red being strongest and blue-green weakest. Areas in white have no available data.

    The Gulf Stream region of the North Atlantic is among the best studied in the world's oceans, with a significant quantity of high-quality data available on it as a result of shipborne instrument measurements. In less well studied regions, the new information provided by GRACE, together with satellite altimetry, will increase our knowledge of ocean circulation.

  5. Failures in sand in reduced gravity environments

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.

    2018-04-01

    The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.

  6. Equilibrium shape of 4He crystal under zero gravity below 200 mK

    PubMed Central

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-01-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. 4He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of 4He. We report the relaxation processes of macroscopic 4He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened 4He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff’s origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained. PMID:26601315

  7. Equilibrium shape of (4)He crystal under zero gravity below 200 mK.

    PubMed

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-10-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. (4)He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of (4)He. We report the relaxation processes of macroscopic (4)He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened (4)He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff's origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained.

  8. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    NASA Technical Reports Server (NTRS)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  9. Tribology Experiment in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.

    2015-01-01

    A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.

  10. Surfing surface gravity waves

    NASA Astrophysics Data System (ADS)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  11. Criticality in the slowed-down boiling crisis at zero gravity.

    PubMed

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  12. Preliminary drop-tower experiments on liquid-interface geometry in partially filled containers at zero gravity

    NASA Technical Reports Server (NTRS)

    Smedley, G.

    1990-01-01

    Plexiglass containers with rounded trapezoidal cross sections were designed and built to test the validity of Concus and Finn's existence theorem (1974, 1983) for a bounded free liquid surface at zero gravity. Experiments were carried out at the NASA Lewis two-second drop tower. Dyed ethanol-water solutions and three immiscible liquid pairs, with one liquid dyed, were tested. High-speed movies were used to record the liquid motion. Liquid rose to the top of the smaller end of the containers when the contact angle was small enough, in agreement with the theory. Liquid interface motion demonstrated a strong dependence on physical properties, including surface roughness and contamination.

  13. Earthquake Signal Visible in GRACE Data

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure1

    This figure shows the effect of the December 2004 great Sumatra earthquake on the Earth's gravity field as observed by GRACE. The signal is expressed in terms of the relative acceleration of the two GRACE satellites, in this case a few nanometers per second squared, or about 1 billionth of the acceleration we experience everyday at the Earth's surface.GRACE observations show comparable signals in the region of the earthquake.

    Other natural variations are also apparent in the expected places, whereas no other significant change would be expected in the region of the earthquake

    GRACE, twin satellites launched in March 2002, are making detailed measurements of Earth's gravity field which will lead to discoveries about gravity and Earth's natural systems. These discoveries could have far-reaching benefits to society and the world's population.

  14. Droplet Depinning on Inclined Surfaces at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    White, Edward; Singh, Natasha; Lee, Sungyon

    2017-11-01

    Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α < 0 when gravity resists depinning by wind. Above We 4 , depinning is dominated by wind forcing; at We < 4 , depinning is gravity dominated. While Wecrit depends linearly on A Bo sinα in both forcing regimes, the slopes of the the limit lines depend on the forcing regime. The difference is attributed to different drop shapes and contact angle distributions that arise depending on whether wind or gravity dominates the depinning behavior. Supported by the National Science Foundation through Grant CBET-1605947.

  15. Binding of alpha-fetoprotein by immobilized monoclonal antibodies during episodes of zero-gravity obtained by parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Guikema, James A.; Barnes, Grady

    1990-01-01

    Alpha-fetoprotein (AFP), a single-chain polypeptide which is synthesized by the liver and yolk sac of the human fetus, provided a model ligand for assessing the effects of microgravity on ligand binding to surface-immobilized model receptor molecules. Monoclonal antibodies, used as receptors for AFP, were immobilized by covalent attachment to latex microparticles. Zero gravity environment was obtained by parabolic flight aboard NASA 930, a modified KC-135 aircraft. Buring the onset of an episode of zero gravity, ligand and receptor were mixed. Timed incubation (20 s) was terminated by centrifugation, the supernatant removed, and microparticies were assessed for bound AFP by immunochemical methods. The extent of binding was not influenced by microgravity, when compared with 1-G controls, which suggests that aberrant cellular activities observed in microgravity are not the simple expression of altered macromolecular interactions.

  16. Subject Load-Harness Interaction During Zero-Gravity Treadmill Exercise

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.; Baron, Heidi A.; Derr, Janice A.; Davis, Brian L.; Cavanagh, Peter R.

    1996-01-01

    When astronauts exercise on orbit, a subject load device (SLD) must be used to return the subject back to the supporting surface. The load in the SLD needs to be transferred the body by a harness which typically distributes this load between the pelvis and We shoulders. Through the use of a zero-gravity simulator, this research compared subject comfort and ground reaction forces during treadmill running at three levels of subject load (60%,80%, and 100% of body weight) in two harness designs ("shoulder only" and "waist "and shoulder ").

  17. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a pneumatic subject load device to apply a near constant gravity-replacement load to the test subject during exercise, and is currently used in conjunction with the General Clinical Research Center for evaluating exercise protocols using a bedrest analog. The enhanced ZLS (eZLS) at NASA Glenn Research Center features an offloaded treadmill that floats on a thin film of air and interfaces to a force reaction frame via variably-compliant isolators, or vibration isolation system. The isolators can be configured to simulate compliant interfaces to the vehicle, which affects mechanical loading to crewmembers during exercise, and has been used to validate system dynamic models for new countermeasures equipment designs, such as the second International Space Station treadmill slated for use in 2010. In the eZLS, the test subject and exercise device can be pitched at the appropriate angle for partial gravity simulations, such as lunar gravity (1/6th earth gravity). On both the eZLS and the NASA-Johnson Space Center standalone ZLS installed at the University of Texas Medical Branch in Galveston, Texas, USA, the subject's body weight relative to the treadmill is controlled via a linear motor subject load device (LM-SLD). The LM-SLD employs a force-feedback closed-loop control system to provide a relatively constant force to the test subject during locomotion, and is set and verified for subject safety prior to each session. Locomotion data were collected during parabolic flight and on the eZLS. The purpose was to determine the similarities and differences between locomotion in actual and simulated microgravity. Subjects attained greater amounts of hip flexion during walking and running during parabolic flight. During running, subjects had greater hip range of motion. Trunk motion was significantly less on the eZLS than during parabolic flight. Peak impact forces, loading rate, and impulse were greater on the eZLS than during parabolic while walking with a low external load (EL) and rning with a high EL. Activation timing differences existed between locations in all muscles except for the rectus femoris. The tibialis anterior and gluteus maximus were active for longer durations on the eZLS than in parabolic flight during walking. Ground reaction forces were greater with the LM-SLD than with bungees during eZLS locomotion. While the eZLS serves as a ground-based analog, researchers should be aware that subtle, but measurable, differences in kinematics and leg musculature activities exist between the environments. Aside from space applications, zero-gravity locomotion simulators may help medical researchers in the future with development of rehabilitative or therapeutic protocols for injured or ill patients. Zero-gravity locomotion simulators may be used as a ground-based test bed to support future missions for space exploration, and eventually may be used to simulate planetary locomotion in partial gravity environments, including the Moon and Mars. Figure: Zero-gravity Locomotion Simulator at the Cleveland Clinic, Cleveland, Ohio, USA

  18. Normal Gravity Fields and Equipotential Ellipsoids of Small Objects in the Solar System: A Closed-form Solution in Ellipsoidal Harmonics up to the Second Degree

    NASA Astrophysics Data System (ADS)

    Hu, Xuanyu

    2017-11-01

    We propose a definition for the normal gravity fields and normal figures of small objects in the solar system, such as asteroids, cometary nuclei, and planetary moons. Their gravity fields are represented as series of ellipsoidal harmonics, ensuring more robust field evaluation in the proximity of an arbitrary, convex shape than using spherical harmonics. The normal gravity field, approximate to the actual field, can be described by a finite series of three terms, that is, degree zero, and the zonal and sectoral harmonics of degree two. The normal gravity is that of an equipotential ellipsoid, defined as the normal ellipsoid of the body. The normal ellipsoid may be distinct from the actual figure. We present a rationale for specifying and a numerical method for determining the parameters of the normal ellipsoid. The definition presented here generalizes the convention of the normal spheroid of a large, hydrostatically equilibrated planet, such as Earth. Modeling the normal gravity and the normal ellipsoid is relevant to studying the formation of the “rubble pile” objects, which may have been accreted, or reorganized after disruption, under self-gravitation. While the proposed methodology applies to convex, approximately ellipsoidal objects, those bi-lobed objects can be treated as contact binaries comprising individual convex subunits. We study an exemplary case of the nearly ellipsoidal Martian moon, Phobos, subject to strong tidal influence in its present orbit around Mars. The results allude to the formation of Phobos via gravitational accretion at some further distance from Mars.

  19. A new method to include the gravitational forces in a finite element model of the scoliotic spine.

    PubMed

    Clin, Julien; Aubin, Carl-Éric; Lalonde, Nadine; Parent, Stefan; Labelle, Hubert

    2011-08-01

    The distribution of stresses in the scoliotic spine is still not well known despite its biomechanical importance in the pathomechanisms and treatment of scoliosis. Gravitational forces are one of the sources of these stresses. Existing finite element models (FEMs), when considering gravity, applied these forces on a geometry acquired from radiographs while the patient was already subjected to gravity, which resulted in a deformed spine different from the actual one. A new method to include gravitational forces on a scoliotic trunk FEM and compute the stresses in the spine was consequently developed. The 3D geometry of three scoliotic patients was acquired using a multi-view X-ray 3D reconstruction technique and surface topography. The FEM of the patients' trunk was created using this geometry. A simulation process was developed to apply the gravitational forces at the centers of gravity of each vertebra level. First the "zero-gravity" geometry was determined by applying adequate upwards forces on the initial geometry. The stresses were reset to zero and then the gravity forces were applied to compute the geometry of the spine subjected to gravity. An optimization process was necessary to find the appropriate zero-gravity and gravity geometries. The design variables were the forces applied on the model to find the zero-gravity geometry. After optimization the difference between the vertebral positions acquired from radiographs and the vertebral positions simulated with the model was inferior to 3 mm. The forces and compressive stresses in the scoliotic spine were then computed. There was an asymmetrical load in the coronal plane, particularly, at the apices of the scoliotic curves. Difference of mean compressive stresses between concavity and convexity of the scoliotic curves ranged between 0.1 and 0.2 MPa. In conclusion, a realistic way of integrating gravity in a scoliotic trunk FEM was developed and stresses due to gravity were explicitly computed. This is a valuable improvement for further biomechanical modeling studies of scoliosis.

  20. BOILING HEAT TRANSFER IN ZERO GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, E.A.

    1964-01-01

    The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less

  1. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  2. Low Gravity venting of Refrigerant 11

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Aydelott, J. C.; Lacovic, R. F.

    1972-01-01

    An experimental investigation was conducted in a five-second zero gravity facility to examine the effects of venting initially saturated Refrigerant 11 from a cylindrical container (15-cm diameter) under reduced gravitational conditions. The system Bond numbers studied were 0 (weightlessness), 9 and 63; the liquid exhibited a nearly zero-degree contact angle on the container surface. During the venting process, both liquid-vapor interface and liquid bulk vaporization occurred. The temperature of the liquid in the immediate vicinity of the liquid-vapor interface was found to decrease during venting, while the liquid bulk temperature remained constant. Qualitative observations of the effects of system acceleration, vent rate, and vapor volume presented. Quantitative information concerning the ullage pressure decay during low gravity venting is also included.

  3. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  4. Possible correlation between annual gravity change and shallow background seismicity rate at subduction zone by surface load

    NASA Astrophysics Data System (ADS)

    Mitsui, Yuta; Yamada, Kyohei

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) has monitored global gravity changes since 2002. Gravity changes are considered to represent hydrological water mass movements around the surface of the globe, although fault slip of a large earthquake also causes perturbation of gravity. Since surface water movements are expected to affect earthquake occurrences via elastic surface load or pore-fluid pressure increase, correlation between gravity changes and occurrences of small (not large) earthquakes may reflect the effects of surface water movements. In the present study, we focus on earthquakes smaller than magnitude 7.5 and examine the relation between annual gravity changes and earthquake occurrences at worldwide subduction zones. First, we extract amplitudes of annual gravity changes from GRACE data for land. Next, we estimate background seismicity rates in the epidemic-type aftershock sequence model from shallow seismicity data having magnitudes of over 4.5. Then, we perform correlation analysis of the amplitudes of the annual gravity changes and the shallow background seismicity rates, excluding source areas of large earthquakes, and find moderate positive correlation. It implies that annual water movements can activate shallow earthquakes, although the surface load elastostatic stress changes are on the order of or below 1 kPa, as small as a regional case in a previous study. We speculate that periodic stress perturbation is amplified through nonlinear responses of frictional faults.[Figure not available: see fulltext.

  5. Keyhole and weld shapes for plasma arc welding under normal and zero gravity

    NASA Technical Reports Server (NTRS)

    Keanini, R. G.; Rubinsky, B.

    1990-01-01

    A first order study of the interfacial (keyhole) shape between a penetrating argon plasma arc jet and a stationary liquid metal weld pool is presented. The interface is determined using the Young-Laplace equation by assuming that the plasma jet behaves as a one-dimensional ideal gas flow and by neglecting flow within the weld pool. The solution for the keyhole shape allows an approximate determination of the liquid-solid metal phase boundary location based on the assumption that the liquid melt is a stagnant thermal boundary layer. Parametric studies examine the effect of plasma mass flow rate, initial plasma enthalpy, liquid metal surface tension, and jet shear on weldment shape under both normal and zero gravity. Among the more important findings of this study is that keyhole and weld geometries are minimally affected by gravity, suggesting that data gathered under gravity can be used in planning in-space welding.

  6. Future utilization of space: Silverton Conference on material science and phase transformations in zero-gravity, summary of proceeding

    NASA Technical Reports Server (NTRS)

    Eisner, M. (Editor)

    1975-01-01

    The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest.

  7. Research study on materials processing in space experiment number M512. [adhesion-cohesion properties of liquid metals under weightlessness conditions in Skylab

    NASA Technical Reports Server (NTRS)

    Tobin, J. M.; Kossowsky, R.

    1973-01-01

    Adhesion of the melted metals to the adjacent solid metals, and cohesion of the liquid metal to itself appeared to be equally as strong in zero gravity as on earth. Similar cut edge bead periodicity in cut thin plate, and similar periodic chevron patterns in full penetration welds were seen. The most significant practical result is that the design of braze joints for near zero gravity can be very tolerant of dimensional gaps in the joint. This conclusion is based on a comparison of narrow, wide and variable gap widths. Brazing is very practical as a joining or repairing technique for metal structures at zero gravity. The operation of the hardware developed to locate successive small (0.6 cm) diameter cylinders in the focus of the battery powered EB unit, melt the various metal specimens and deploy some liquid metal drops to drift in space, was generally successful. However, the sphericity and surface roughness were far from those of ball bearings.

  8. Geoid Anomalies and the Near-Surface Dipole Distribution of Mass

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.; Ockendon, J. R.

    1978-01-01

    Although geoid or surface gravity anomalies cannot be uniquely related to an interior distribution of mass, they can be related to a surface mass distribution. However, over horizontal distances greater than about 100 km, the condition of isostatic equilibrium above the asthenosphere is a good approximation and the total mass per unit column is zero. Thus the surface distribution of mass is also zero. For this case we show that the surface gravitational potential anomaly can be uniquely related to a surface dipole distribution of mass. Variations in the thickness of the crust and lithosphere can be expected to produce undulations in the geoid.

  9. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  10. An Innovative 6-DOF Platform for Testing a Space Robotic System to Perform Contact Tasks in Zero-Gravity Environment

    DTIC Science & Technology

    2013-10-21

    Platform for Testing a Space Robotic System to Perform Contact Tasks in Zero- Gravity Environment 5a. CONTRACT NUMBER FA9453-11-1-0306 5b...SUBJECT TERMS Microgravity, zero gravity , test platform, simulation, gravity offloading 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...4  3.3  Principle of Gravity Offloading

  11. Apollo-Soyuz pamphlet no. 8: Zero-g technology. [experimental designispace processing and aerospace engineering

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The behavior of liquids in zero gravity environments is discussed with emphasis on foams, wetting, and wicks. A multipurpose electric furnace (MA-010) for the high temperature processing of metals and salts in zero-g is described. Experiments discussed include: monolectic and synthetic alloys (MA-041); multiple material melting point (MA-150); zero-g processing of metals (MA-070); surface tension induced convection (MA-041); halide eutectic growth; interface markings in crystals (MA-060); crystal growth from the vapor phase (MA-085); and photography of crystal growth (MA-028).

  12. A helium-3/helium-4 dilution cryocooler for operation in zero gravity

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.

    1988-01-01

    This research effort covered the development of He-3/He-4 dilution cryocooler cycles for use in zero gravity. The dilution cryocooler is currently the method of choice for producing temperatures below 0.3 Kelvin in the laboratory. However, the current dilution cryocooler depends on gravity for their operation, so some modification is required for zero gravity operation. In this effort, we have demonstrated, by analysis, that the zero gravity dilution cryocooler is feasible. We have developed a cycle that uses He-3 circulation, and an alternate cycle that uses superfluid He-4 circulation. The key elements of both cycles were demonstrated experimentally. The development of a true 'zero-gravity' dilution cryocooler is now possible, and should be undertaken in a follow-on effort.

  13. Using an instrumented manikin for Space Station Freedom analysis

    NASA Technical Reports Server (NTRS)

    Orr, Linda; Hill, Richard

    1989-01-01

    One of the most intriguing and complex areas of current computer graphics research is animating human figures to behave in a realistic manner. Believable, accurate human models are desirable for many everyday uses including industrial and architectural design, medical applications, and human factors evaluations. For zero-gravity (0-g) spacecraft design and mission planning scenarios, they are particularly valuable since 0-g conditions are difficult to simulate in a one-gravity Earth environment. At NASA/JSC, an in-house human modeling package called PLAID is currently being used to produce animations for human factors evaluation of Space Station Freedom design issues. Presented here is an introductory background discussion of problems encountered in existing techniques for animating human models and how an instrumented manikin can help improve the realism of these models.

  14. Zero-gravity open-type urine receptacle

    NASA Technical Reports Server (NTRS)

    Girala, A. S.

    1972-01-01

    The development of the zero-gravity open-type urine receptacle used in the Apollo command module is described. This type receptacle eliminates the need for a cuff-type urine collector or for the penis to circumferentially contact the receptacle in order to urinate. This device may be used in a gravity environment, varying from zero gravity to earth gravity, such as may be experienced in a space station or space base.

  15. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  16. Open Science- Space Coffee Cup

    NASA Image and Video Library

    2016-10-11

    In low-gravity environments like the space station, fluids tend to get ‘sticky.’ Surface tension and capillary effects, which are overwhelmed by gravity on Earth, rule the day in space. As a result, coffee tends to cling to the walls of the cup. The zero-G coffee cup solves these problems by 'going with the flow': putting the strange behavior of fluid in microgravity to work.

  17. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  18. Combustion of solid carbon rods in zero and normal gravity. Ph.D. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.

    1981-01-01

    In order to investigate the mechanism of carbon combustion and to assess the importance of gravitational induced convection on the process, zero and normal gravity experiments were conducted in which spectroscopic carbon rods were resistance ignitied and burned in dry oxygen environments. In the zero-gravity drop tower tests, a blue flame surrounded the rod, showing that a gas phase reaction in which carbon monoxide was oxidized to carbon dioxide was taking place. The ratio of flame diameter to rod diameter was obtained as a function of time. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter. In the normal gravity tests, direct mass spectrometric sampling was used to measure gas phase concentrations. The gas sampling probe was positioned near the circumference of a horizontally mounted 0.615 cm diameter carbon rod, either at the top or at angles of 45 deg to 90 deg from the top, and yielded concentration profiles of CO2, CO, and O2 as a function of distance from the surface. The mechanism controlling the combustion process was found to change from chemical process control at the 90 deg and 45 deg probe positions to mass transfer control at the 0 deg probe position at the top of the rod. Under the experimental conditions used, carbon combustion was characterized by two surface reactions, 2C + O2 yields 2CO and CO2 + C yields 2CO, and a gas phase reaction, 2CO + O2 yields 2CO2.

  19. Zero-gravity movement studies

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  20. Low-g simulation testing of propellant systems using neutral buoyancy

    NASA Technical Reports Server (NTRS)

    Balzer, D. L.; Lake, R. J., Jr.

    1972-01-01

    A two liquid, neutral buoyancy technique is being used to simulate propellant behavior in a weightless environment. By equalizing the density of two immiscible liquids within a container (propellant tank), the effect of gravity at the liquid interface is balanced. Therefore the surface-tension forces dominate to control the liquid/liquid system configuration in a fashion analogous to a liquid/gas system in a zero gravity environment.

  1. Solutocapillary Convection Effects on Polymeric Membrane Morphology

    NASA Technical Reports Server (NTRS)

    Krantz, William B.; Todd, Paul W.; Kinagurthu, Sanjay

    1996-01-01

    Macro voids are undesirable large pores in membranes used for purification. They form when membranes are cast as thin films on a smooth surface by evaporating solvent (acetone) from a polymer solution. There are two un-tested hypotheses explaining the growth of macro voids. One states that diffusion of the non-solvent (water) is solely responsible, while the other states that solutocapillary convection is the primary cause of macro void growth. Solutocapillary convection is flow-caused by a concentration induced surface-tension gradient. Macrovoid growth in the former hypothesis is gravity independent, while in the latter it is opposed by gravity. To distinguish between these two hypotheses, experiments were designed to cast membranes in zero-gravity. A semi-automated apparatus was designed and built for casting membranes during the 20 secs of zero-g time available in parabolic aircraft flight such as NASA's KC-135. The phase changes were monitored optically, and membrane morphology was evaluated by scanning electron microscopy (SEM). These studies appear to be the first quantitative studies of membrane casting in micro-gravity which incorporate real-time data acquisition. Morphological studies of membranes cast at 0, 1, and 1.8 g revealed the presence of numerous, sparse and no macrovoids respectively. These results are consistent with the predictions of the solutocapillary hypothesis of macrovoid growth.

  2. Further studies of propellant sloshing under low-gravity conditions

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.

    1971-01-01

    A variational integral is formulated from Hamilton's Principle and is proved to be equivalent to the usual differential equations of low-gravity sloshing in ellipsoidal tanks. It is shown that for a zero-degree contact angle the contact line boundary condition corresponds to the stuck condition, a result that is due to the linearization of the equations and the ambiguity in the definition of the wave height at the wall. The variational integral is solved by a Rayleigh-Ritz technique. Results for slosh frequency when the free surface is not bent-over compare well with previous numerical solutions. When the free surface is bent over, however, the results for slosh frequency are considerably larger than those predicted by previous finite-difference, numerical approaches: the difference may be caused by the use of a zero degree contact angle in the present theory in contrast to the nonzero contact angle used in the numerical approaches.

  3. KSC-07pd0964

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- Peter Diamandis (left), founder of the Zero Gravity Corp., and noted physicist Stephen Hawking move away from Zero G's modified Boeing 727 on the runway at the Kennedy Space Center's Shuttle Landing Facility. Hawking enjoyed his first zero gravity flight provided by Zero G. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  4. A Study of Blood Flow and of Aggregation of Blood Cells Under Conditions of Zero Gravity: Its Relevance to the Occlusive Diseases and Cancer

    NASA Technical Reports Server (NTRS)

    Dintenfass, L.

    1985-01-01

    The objectives of this program are: (1) to determine whether the size of red cell aggregates, kinetics and morphology of these aggregates are influenced by near-zero gravity; (2) whether viscosity, especially at low shear rate, is afflicted by near-zero gravity (the latter preventing sedimentation of red cells); (3) whether the actual shape of red cells changes; and (4) whether blood samples obtained from different donors (normal and patients suffering from different disorders) react in the same manner to near-zero gravity.

  5. KSC-07pd0955

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, noted physicist Stephen Hawking, in the wheelchair, is ready to get onboard a modified Boeing 727 aircraft owned by Zero Gravity Corp. for his first zero-gravity flight. Zero Gravity Corp. is a commercial company licensed to provide the public with weightless flight experiences. At right is Peter Diamandis, founder of the Zero Gravity Corp. Behind Hawking is Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  6. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.

    1976-01-01

    Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

  7. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  8. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  9. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  10. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  11. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly ER10MR98.01...

  12. Development of coatings to control electroosmosis in zero gravity electrophoresis

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.

    1974-01-01

    A major problem confronting the operation of free fluid electrophoresis in zero gravity is the control of electrokinetic phenomena and, in particular, electroosmosis. Due to the severity of counter flow, as a result of electroosmosis, the electrical potential developed at the surface of shear must be maintained at near, or as close to, zero millivolts as possible. Based upon this investigation, it has been found that the amount of bound water or the degree of hydroxylation plays a major role in the control of this phenomena. Of necessity, factors, such as adhesion, biocompatibility, protein adsorption, and insolubility were considered in this investigation because of the long buffer-coating exposure times required by present space operations. Based upon tests employing microcapillary electrophoresis, it has been found that gamma amino propyl trihydroxysilane produced a coating which provides the lowest potential (minus 3.86 mv) at the surface of shear between the stationary and mobile layers. This coating has been soaked in both borate and saline buffers, up to three months, in a pH range of 6.5 to 10 without deleterious effects or a change in its ability to control electrokinetic effects.

  13. Contributions of satellite-determined gravity results in geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1974-01-01

    Different forms of the theoretical gravity formula are summarized and methods of standardization of gravity anomalies obtained from satellite gravity and terrestrial gravity data are discussed in the context of three most commonly used reference figures, e.g., International Reference Ellipsoid, Reference Ellipsoid 1967, and Equilibrium Reference Ellipsoid. These methods are important in the comparison and combination of satellite gravity and gravimetric data as well as the integration of surface gravity data, collected with different objectives, in a single reference system. For ready reference, tables for such reductions are computed. Nature of the satellite gravity anomalies is examined to aid the geophysical and geodetic interpretation of these anomalies in terms of the tectonic features of the earth and the structure of the earth's crust and mantle. Computation of the Potsdam correction from satellite-determined geopotential is reviewed. The contribution of the satellite gravity results in decomposing the total observed gravity anomaly into components of geophysical interest is discussed. Recent work on the possible temporal variations in the geogravity field is briefly reviewed.

  14. Preliminary flight prototype waste collection subsystem. [performance of waste disposal system in weightless environment

    NASA Technical Reports Server (NTRS)

    Swider, J. E., Jr.

    1974-01-01

    The zero gravity test program demonstrated the feasibility and practicability of collecting urine from both male and female crew members in a zero gravity environment in an earthlike manner not requiring any manual handling of urine containers. In addition, the testing demonstrated that a seat which is comfortable in both regimes of operation could be designed for use on the ground and in zero-gravity. Further, the tests showed that the vortex liquid/air separator is an effective liquid/air separation method in zero gravity. Visual observations indicate essentially zero liquid carry over. The system also demonstrated its ability to handle post elimination wipes without difficulty. The designs utilized in the WCS were verified as acceptable for usage in the space shuttle or other space vehicles.

  15. Estimating zero-g flow rates in open channels having capillary pumping vanes

    NASA Astrophysics Data System (ADS)

    Srinivasan, Radhakrishnan

    2003-02-01

    In vane-type surface tension propellant management devices (PMD) commonly used in satellite fuel tanks, the propellant is transported along guiding vanes from a reservoir at the inlet of the device to a sump at the outlet from where it is pumped to the satellite engine. The pressure gradient driving this free-surface flow under zero-gravity (zero-g) conditions is generated by surface tension and is related to the differential curvatures of the propellant-gas interface at the inlet and outlet of the PMD. A new semi-analytical procedure is prescribed for accurately calculating the extremely small fuel flow rates under reasonably idealized conditions. Convergence of the algorithm is demonstrated by detailed numerical calculations. Owing to the substantial cost and the technical hurdles involved in accurately estimating these minuscule flow rates by either direct numerical simulation or by experimental methods which simulate zero-g conditions in the lab, it is expected that the proposed method will be an indispensable tool in the design and operation of satellite fuel tanks.

  16. Centrifuge in Free Fall: Combustion at Partial Gravity

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul

    2017-01-01

    A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.

  17. Zero-gravity quantity gaging system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Zero-Gravity Quantity Gaging System program is a technology development effort funded by NASA-LeRC and contracted by NASA-JSC to develop and evaluate zero-gravity quantity gaging system concepts suitable for application to large, on-orbit cryogenic oxygen and hydrogen tankage. The contract effective date was 28 May 1985. During performance of the program, 18 potential quantity gaging approaches were investigated for their merit and suitability for gaging two-phase cryogenic oxygen and hydrogen in zero-gravity conditions. These approaches were subjected to a comprehensive trade study and selection process, which found that the RF modal quantity gaging approach was the most suitable for both liquid oxygen and liquid hydrogen applications. This selection was made with NASA-JSC concurrence.

  18. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  19. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  20. Equilibrium Fluid Interface Behavior Under Low- and Zero-Gravity Conditions. 2

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1996-01-01

    The mathematical basis for the forthcoming Angular Liquid Bridge investigation on board Mir is described. Our mathematical work is based on the classical Young-Laplace-Gauss formulation for an equilibrium free surface of liquid partly filling a container or otherwise in contact with solid support surfaces. The anticipated liquid behavior used in the apparatus design is also illustrated.

  1. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All Space Shuttle flights were suspended, including logistics support for the International Space Station. NASA Langley Research Center s (LaRC) Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by Johnson Space Center (JSC). At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net-gravity alone.

  2. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All space Shuttle flights were suspended, including logistics support for the International Space Station. NASA LaRC s Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by JSC. At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net- gravity alone.

  3. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  4. Skylab

    NASA Image and Video Library

    1973-01-01

    W. Brian Dunlap of Youngstown, Ohio, proposed Skylab student experiment ED-78, Liquid Motion in Zero-G, a study of wave motion in a liquid. He was particularly interested in comparing surface waves over a liquid in zero-gravity with those occurring on Earth. In space, with the absence of gravity, a liquid does not necessarily take the shape of its container as it does on Earth. Adhesion forces may hold the liquid in contact with its container, but the liquid can also assume a free-floating condition. It was in this latter state that Dunlap wished to examine the behavior of surface waves. Data were recorded on videotape and subsequently converted to 16-mm film. Dunlap analyzed these data to determine periods of oscillation of free-floating globules and found agreement with the theory to be much better than expected. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  5. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation experiment MA-060, section 5

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.; Lichtensteiger, M.; Herman, C. J.

    1982-01-01

    The crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero g conditions were investigated. The germanium (doped with gallium) system was selected because it was extensively studied on Earth and because it lends itself to a very detailed macroscopic and microscopic characterization. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. On the basis of the results obtained to date, there is no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  6. Fluid Acquisition and Resupply Experiment (FARE-I) flight results

    NASA Astrophysics Data System (ADS)

    Dominick, Sam M.; Driscoll, Susan L.

    1993-06-01

    The Fluid Acquisition and Resupply Experiment, (FARE) is a Shuttle middeck-mounted experiment to demonstrate techniques for handling liquids in zero gravity for operations such as refueling spacecraft in orbit. The first flight took place on STS 53 launched December 2, 1992. Eight tests were performed during the mission and the experiment achieved 100 percent mission success. The second flight will be on STS 57, scheduled for launch in June 1993. The objective of FARE I was to demonstrate techniques for controlling the position of the liquid and gas within a tank during refilling and to better understand the operation of screen-type surface tension devices used to drain tanks in zero gravity. Tests were performed to demonstrate tank refilling, low gravity propellant slosh, and expulsion efficiency of the screen device. Expulsion efficiencies of 97 percent - 98 percent were demonstrated under a variety of flowrates and accelerations. Final fill levels of 60 percent to 80 percent were achieved during the vented fill tests.

  7. The emergence of gravity as a retro-causal post-inflation macro-quantum-coherent holographic vacuum Higgs-Goldstone field

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack; Levit, Creon

    2009-06-01

    We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the "zero point" (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual "condensate" (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter ΩMDM approx 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.

  8. A crater and its ejecta: An interpretation of Deep Impact

    NASA Astrophysics Data System (ADS)

    Holsapple, Keith A.; Housen, Kevin R.

    2007-03-01

    We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.

  9. A crater and its ejecta: An interpretation of Deep Impact

    NASA Astrophysics Data System (ADS)

    Holsapple, Keith A.; Housen, Kevin R.

    We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.

  10. Zero-gravity venting of three refrigerants

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Aydelott, J. C.; Amling, G. E.

    1974-01-01

    An experimental investigation of venting cylindrical containers partially filled with initially saturated liquids under zero-gravity conditions was conducted in the NASA Lewis Research Center 5-second zero-gravity facility. The effect of interfacial mass transfer on the ullage pressure response during venting was analytically determined, based on a conduction analysis applied to an infinitely planer (flat) liquid-vapor interface. This pressure response was compared with both the experimental results and an adiabatic decompression computation.

  11. Experiments with the Skylab fire detectors in zero gravity

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.

    1972-01-01

    The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.

  12. KSC-07pd0957

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, a modified Boeing 727 aircraft owned by Zero Gravity Corp. takes off with its well-known passenger, physicist Stephen Hawking. Zero Gravity Corp. is a commercial company licensed to provide the public with weightless flight experiences. Hawking will be making his first zero-gravity flight. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Jack Pfaller

  13. KSC-07pd0951

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, Peter Diamandis, founder of the Zero Gravity Corp., talks to the media about physicist Stephen Hawking's (in the wheelchair) first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd0956

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, a modified Boeing 727 aircraft owned by Zero Gravity Corp. is ready to take off with its well-known passenger, physicist Stephen Hawking. Zero Gravity Corp. is a commercial company licensed to provide the public with weightless flight experiences. Hawking will be making his first zero-gravity flight. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  15. Compilation of Blast Parameters of Selected High Explosives, Propellants, and Pyrotechnics in Surface Burst Configurations.

    DTIC Science & Technology

    1987-01-01

    APPENDIX B- DATA REDUCTION PROGRAM .............................. 403 LIST OF ILLUSTRATIONS FIGURE NO. PAGE 1. Instrumented Test Pad Layout...weight to produce the same yield relative to hemis- pherical TNT. The test specimens were placed at ground zero in a particular in- plant geometry...The containers were either scaled from the original size or tested in full- scale configurations. The test charges were placed at ground zero and

  16. Simulating correction of adjustable optics for an x-ray telescope

    NASA Astrophysics Data System (ADS)

    Aldcroft, Thomas L.; Schwartz, Daniel A.; Reid, Paul B.; Cotroneo, Vincenzo; Davis, William N.

    2012-10-01

    The next generation of large X-ray telescopes with sub-arcsecond resolution will require very thin, highly nested grazing incidence optics. To correct the low order figure errors resulting from initial manufacture, the mounting process, and the effects of going from 1 g during ground alignment to zero g on-orbit, we plan to adjust the shapes via piezoelectric "cells" deposited on the backs of the reflecting surfaces. This presentation investigates how well the corrections might be made. We take a benchmark conical glass element, 410×205 mm, with a 20×20 array of piezoelectric cells 19×9 mm in size. We use finite element analysis to calculate the influence function of each cell. We then simulate the correction via pseudo matrix inversion to calculate the stress to be applied by each cell, considering distortion due to gravity as calculated by finite element analysis, and by putative low order manufacturing distortions described by Legendre polynomials. We describe our algorithm and its performance, and the implications for the sensitivity of the resulting slope errors to the optimization strategy.

  17. Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head-space tissue culture vessel

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.

    1991-01-01

    The gravity induced motions, through the culture media, is calculated of living tissue segments cultured in the NASA rotating zero head space culture vessels. This is then compared with the media perfusion speed which is independent of gravity. The results may be interpreted as a change in the physical environment which will occur by operating the NASA tissue culture systems in actual microgravity (versus unit gravity). The equations governing particle motions which induce flows at the surface of tissues contain g terms. This allows calculation of the fluid flow speed, with respect to a cultured particle, as a function of the external gravitational field strength. The analysis is approached from a flow field perspective. Flow is proportional to the shear exerted on a structure which maintains position within the field. The equations are solved for the deviation of a particle from its original position in a circular streamline as a function of time. The radial deviation is important for defining the operating limits and dimensions of the vessel because of the finite radius at which particles necessarily intercept the wall. This analysis uses a rotating reference frame concept.

  18. Space truss zero gravity dynamics

    NASA Technical Reports Server (NTRS)

    Swanson, Andy

    1989-01-01

    The Structural Dynamics Branch of the Air Force Flight Dynamics Laboratory in cooperation with the Reduced Gravity Office of the NASA Lyndon B. Johnson Space Center (JSC) plans to perform zero-gravity dynamic tests of a 12-meter truss structure. This presentation describes the program and presents all results obtained to date.

  19. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG-5 gravimeter and a LaCoste and Romberg (L&R) Model-G gravimeter. The CG-5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill-hole intercept values. Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south-central, east-central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step-overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.

  20. A novel variable-gravity simulation method: potential for astronaut training.

    PubMed

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  1. An Overview of NASA's In-Space Cryogenic Propellant Management Technologies

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)

    2001-01-01

    Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.

  2. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  3. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  4. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  5. Dishwasher For Earth Or Outer Space

    NASA Technical Reports Server (NTRS)

    Tromble, Jon D.

    1991-01-01

    Dishwashing machine cleans eating utensils in either Earth gravity or zero gravity of outer space. Cycle consists of three phases: filling, washing, and draining. Rotation of tub creates artificial gravity aiding recirculation of water during washing phase in absence of true gravity. Centrifugal air/water separator helps system function in zero gravity. Self-cleaning filter contains interdigitating blades catching solid debris when water flows between them. Later, blades moved back and forth in scissor-like manner to dislodge debris, removed by backflow of water.

  6. Review study and evaluation of possible flight experiments relating to cloud physics experiments in space

    NASA Technical Reports Server (NTRS)

    Hunt, R. J.; Wu, S. T.

    1976-01-01

    The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.

  7. Flight prototype regenerative particulate filter system development

    NASA Technical Reports Server (NTRS)

    Green, D. C.; Garber, P. J.

    1974-01-01

    The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.

  8. Using Gravity and Topography to Map Mars' Crustal Thickness

    NASA Image and Video Library

    2016-03-21

    Newly detailed mapping of local variations in Mars' gravitational pull on orbiters (center), combined with topographical mapping of the planet's mountains and valleys (left) yields the best-yet mapping of Mars' crustal thickness (right). These three views of global mapping are centered at 90 degrees west longitude, showing portions of the planet that include tall volcanoes on the left and the deep Valles Marineris canyon system just right of center. Additional views of these global maps are available at http://svs.gsfc.nasa.gov/goto?4436. The new map of Mars' gravity (center) results from analysis of the planet's gravitational effects on orbiters passing over each location on the globe. The data come from many years of using NASA's Deep Space Network to track positions and velocities of NASA's Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter. If Mars were a perfectly smooth sphere of uniform density, the gravity experienced by the spacecraft would be exactly the same everywhere. But like other rocky bodies in the solar system, including Earth, Mars has both a bumpy surface and a lumpy interior. As the spacecraft fly in their orbits, they experience slight variations in gravity caused by both of these irregularities, variations which show up as small changes in the velocity and altitude of the three spacecraft. The "free-air" gravity map presents the results without any adjustment for the known bumpiness of Mars' surface. Local gravitational variations in acceleration are expressed in units called gals or galileos. The color-coding key beneath the center map indicates how colors on the map correspond to mGal (milligal) values. The map on the left shows the known bumpiness, or topography, of the Martian surface, using data from the Mars Orbiter Laser Altimeter (MOLA) instrument on Mars Global Surveyor. Mars has no actual "sea level," but does have a defined zero elevation level. The color-coding key beneath this map indicates how the colors correspond to elevations above or below zero, in kilometers. Analysis that subtracts effects of the surface topography from the free-air gravity mapping, combined with an assumption that crust material has a uniform density, leads to the derived mapping of crustal thickness -- or subsurface "lumpiness" -- on the right. Highs in gravity indicate places where the denser mantle material beneath the crust is closer to the surface, and hence where the crust is thinner. The color-coding key for this map indicates how the colors on the map correspond to the thickness of the crust, in kilometers. http://photojournal.jpl.nasa.gov/catalog/PIA20277

  9. Approaches to Validation of Models for Low Gravity Fluid Behavior

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad

    2005-01-01

    This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.

  10. A harmonic analysis of lunar topography

    NASA Technical Reports Server (NTRS)

    Bills, B. G.; Ferrari, A. J.

    1977-01-01

    A global lunar topographic map has been derived from existing earth-based and orbital observations supplemented in areas without data by a linear autocovariance predictor. Of 2592 bins, each 5 deg square, 1380 (64.7% by area) contain at least one measurement. A spherical harmonic analysis to degree 12 yields a mean radius of 1737.53 plus or minus 0.03 km (formal standard error) and an offset of the center of figure of 1.98 plus or minus 0.06 km toward (19 plus or minus 2) deg S, (194 plus or minus 1) deg E. A Bouguer gravity map, derived from a 12-degree free-air gravity model and the present topography data, is presented for an elevation of 100 km above the mean surface. It is confirmed that the low-degree gravity harmonics are determined primarily by surface height variations and only secondarily by lateral density variations.

  11. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-07

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

  12. KSC-07pd0950

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, Space Florida president Steve Kohler (left) talks to the media about physicist Stephen Hawking's (in the wheelchair) first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. At right is Peter Diamandis, founder of the Zero Gravity Corp. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  13. The response of single human cells to zero gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Schulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.

    1974-01-01

    The SO15 experiment was designed to extend observations of the effects of zero-gravity to living human cells during and subsequent to a 59-day flight on Skylab 3. A strain of diploid human embryonic lung cells, WI-38, was chosen for this purpose. The studies were concerned with observations designed to detect the effects of zero-gravity on cell growth rates and on cell structure as observed by light microscopy, transmission and scanning electron microscopy and histochemistry. Studies of the effects of zero-gravity on the cell function and the cell cycle were performed by time lapse motion picture photography and microspectrophotometry. Subsequent study of the returned living cells included karotyping, G- and C-banding, and analyses of the culture media used. Some of the living cells returned were banked by deep freeze techniques for possible future experiments.

  14. Device for Extracting Flavors and Fragrances

    NASA Technical Reports Server (NTRS)

    Chang, F. R.

    1986-01-01

    Machine for making coffee and tea in weightless environment may prove even more valuable on Earth as general extraction apparatus. Zero-gravity beverage maker uses piston instead of gravity to move hot water and beverage from one chamber to other and dispense beverage. Machine functions like conventional coffeemaker during part of operating cycle and includes additional features that enable operation not only in zero gravity but also extraction under pressure in presence or absence of gravity.

  15. Spacecraft utensil/hand cleansing fixture

    NASA Technical Reports Server (NTRS)

    Jonkoniec, T. G.

    1978-01-01

    A fixture which provides a means for a crewman to perform, in zero gravity, laboratory utensil/tool cleansing and personal hygiene functions such as handwashing, shaving, body wash, and teeth brushing is described. A prototype unit developed incorporating design improvements resulting from breadboard tests in a one gravity and zero gravity environment demonstrated the capability of performing the different cleansing functions.

  16. Monterey Bay Geoid

    DTIC Science & Technology

    1994-03-01

    thought to be a flat disk. The first scientific hypothesis that the earth was spherical is credited to Thales of Milet in 600 B.C. or Pythagoras in 550...acceleration can be integrated over the surface, by Gauss’s theorem and gives: 35 v1 Wv2 <v3 Figure 12. Equipotential Surfaces and Gravity: V,, V2, V3 are...continuous derivatives where they satisfy Laplace’s equation. Stokes’ theorem states that a harmonic function outside a surface is uniquely determined by

  17. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation. Experiment MA-060

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1977-01-01

    Experiment MA-060 was designed to establish the crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero-g conditions. The interface demarcation technique was incorporated into the experiment since it constitutes a unique tool for recording the morphology of the growth rate throughout solidification, and for establishing an absolute time reference framework for all stages of the solidification process. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. There was no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground-based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  18. A Geological and Geophysical Information System for the Middle East and North Africa,

    DTIC Science & Technology

    1995-08-14

    Saad, D., Sawaf, T., and Gebran, A., 1990, Bouguer gravity trends and crustal structure of the Palmyride Mountain belt and surrounding northern Arabian ...that occurred between 1977 and 1992 (Figure 2). We have finished compiling a crustal scale Bouguer gravity data for Syria, Israel and Lebanon (Figure...3). This Bouguer gravity database is a part of our attempt to form a uniform grided Bouguer gravity data set for the entire Middle East, which then

  19. Exotic containers for capillary surfaces

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1991-01-01

    This paper discusses 'exotic' rotationally symmetric containers that admit an entire continuum of distinct equilibrium capillary free surfaces. The paper extends earlier work to a larger class of parameters and clarifies and simplifies the governing differential equations, while expressing them in a parametric form appropriate for numerical integration. A unified presentation suitable for both zero and nonzero gravity is given. Solutions for the container shapes are depicted graphically along with members of the free-surface continuum, and comments are given concerning possible physical experiments.

  20. Capillary surfaces in a wedge: Differing contact angles

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.

  1. KSC-07pd0961

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- Noted physicist Stephen Hawking (center) returns to the Kennedy Space Center Shuttle Landing Facility after a zero gravity flight. At far left is Peter Diamandis, founder of the Zero Gravity Corp. that provided the flight aboard its modified Boeing 727. Hawking suffers from amyotrophic lateral sclerosis (also known as Lou Gehrig's disease). At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  2. DEM simulation of the granular Maxwell's Demon under zero gravity

    NASA Astrophysics Data System (ADS)

    Wang, Wenguang; Zhou, Zhigang; Zong, Jin; Hou, Meiying

    2017-06-01

    In this work, granular segregation in a two-compartment cell (Maxwell's Demon) under zero gravity is studied numerically by DEM simulation for comparison with the experimental observation in satellite SJ-10. The effect of three parameters: the total number of particlesN, the excitation strengthΓ, and the position of the window coupling the two compartments, on the segregationɛ and the waiting timeτ are investigated. In the simulation, non-zero segregation under zero gravity is obtained, and the segregation ɛ is found independent of the excitation strengthΓ. The waiting time τ, however, depends strongly onΓ. For higher acceleration Γ, |ɛi| reaches steady state valueɛ faster.

  3. Emergent gravity from a mass deformation in warped spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gherghetta, Tony; Peloso, Marco; Poppitz, Erich

    2005-11-15

    We consider a deformation of five-dimensional warped gravity with bulk and boundary mass terms to quadratic order in the action. We show that massless zero modes occur for special choices of the masses. The tensor zero mode is a smooth deformation of the Randall-Sundrum graviton wave function and can be localized anywhere in the bulk. There is also a vector zero mode with similar localization properties, which is decoupled from conserved sources at tree level. Interestingly, there are no scalar modes, and the model is ghost-free at the linearized level. When the tensor zero mode is localized near the IRmore » brane, the dual interpretation is a composite graviton describing an emergent (induced) theory of gravity at the IR scale. In this case Newton's law of gravity changes to a new power law below the millimeter scale, with an exponent that can even be irrational.« less

  4. KSC-07pd0947

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- The media surround noted wheelchair-bound physicist Stephen Hawking after his arrival at the Kennedy Space Center Shuttle Landing Facility for his first zero-gravity flight. Behind Hawking, at left, is Space Florida president Steve Kohler. In the center, striding toward Hawking, is Zero Gravity Corp. founder Peter Diamandis. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity, a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  5. KSC-07pd0952

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, noted physicist Stephen Hawking, in the wheelchair, arrives at the runway for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. At left is Peter Diamandis, founder of the Zero Gravity Corp. Behind Hawking is Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd0954

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, noted physicist Stephen Hawking, in the wheelchair, arrives at the runway for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. At left is Peter Diamandis, founder of the Zero Gravity Corp. At center is Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  7. KSC-07pd0953

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Shuttle Landing Facility, noted physicist Stephen Hawking, in the wheelchair, arrives at the runway for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. At left is Peter Diamandis, founder of the Zero Gravity Corp. At center is Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  8. Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry

    PubMed Central

    Ma, Baoshun

    2012-01-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957

  9. Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2012-08-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.

  10. Implicit Boundary Integral Methods for the Helmholtz Equation in Exterior Domains

    DTIC Science & Technology

    2016-06-01

    1 2 Figure 3.3: (Left) The “Kite shape. Right: The bean shape. The interface is the zero set of φ(x, y, z) = 9(1.6x+ ( y 1.6 )2)2 + ( y 1.5 )2 + ( z...1.5 )2 − 10. 3.4 Scattering in three dimensions by a “ Bean ” shape We test on a non-convex shape in 3D as shown in figure 3.3, the bean shape. The...solutions computed by EIBIM and IBIM using different mesh sizes. The scattering surface is the bean shape shown in Figure (3.3). k = 1, 0 = √ ∆x. Evaluated

  11. Zero-order bows in radially inhomogeneous spheres: direct and inverse problems.

    PubMed

    Adam, John A

    2011-10-01

    Zero-order ray paths are examined in radially inhomogeneous spheres with differentiable refractive index profiles. It is demonstrated that zero-order and sometimes twin zero-order bows can exist when the gradient of refractive index is sufficiently negative. Abel inversion is used to "recover" the refractive index profiles; it is therefore possible in principle to specify the nature and type of bows and determine the refractive index profile that induces them. This may be of interest in the field of rainbow refractometry and optical fiber studies. This ray-theoretic analysis has direct similarities with the phenomenon of "orbiting" and other phenomena in scattering theory and also in seismological, surface gravity wave, and gravitational "lensing" studies. For completeness these topics are briefly discussed in the appendixes; they may also be of pedagogic interest.

  12. Seismic Waveform Analysis of Underground Nuclear Explosions

    DTIC Science & Technology

    1979-11-15

    parameters to be discussed here are Bouguer gravity (Figure 18), and station elevation (Figure 19). Tn this simple comparison of various geophysical...noted the frequent strong correlation between Bouguer gravity and elevation. Indeed, many of the geophysical parameters discussed above are interrelated

  13. Investigation of the Ignition and Burning of Materials in Space Cabin Atmospheres. Part 2: Ignition of a Combustible Mixture by a Hot Body with the Effects of Gravity

    NASA Technical Reports Server (NTRS)

    Lew, H. G.

    1972-01-01

    The ignition of a combustible gas mixture by a hot cylinder under the effect of a gravity field for steady state conditions is examined. For this purpose a horizontal cylinder is considered with gravity as a parameter together with a finite chemical reacting flow generated by free convection with the additional effect of diffusion. Both mass transfer and zero mass transfer cases are considered. By defining an ignition criterion the surface temperature and species are obtained from the analysis as a function of the gravity field. It is supposed that at the point of ignition the heat evolved in the gas is sufficiently high to attain a sustained combustion without any energy from the hot cylinder.

  14. The realistic models of relativistic stars in f (R) = R + αR 2 gravity

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; Odintsov, Sergei D.; de la Cruz-Dombriz, Álvaro

    2017-10-01

    In the context of f(R)=R+α R2 gravity, we study the existence of neutron and quark stars for various α with no intermediate approximation in the system of equations. Analysis shows that for positive α the scalar curvature does not drop to zero at the star surface (as in general relativity) but exponentially decreases with distance. Also the stellar mass bounded by star surface decreases when the value α increases. Nonetheless distant observers would observe a gravitational mass due to appearance of a so-called gravitational sphere around the star. The non-zero curvature contribution to the gravitational mass eventually is shown to compensate the stellar mass decrease for growing α’s. We perform our analysis for several equations of state including purely hadronic configurations as well as hyperons and quark stars. In all cases, we assess that the relation between the parameter α and the gravitational mass weakly depends upon the chosen equation of state. Another interesting feature is the increase of the star radius in comparison with general relativity for stars with masses close to maximal, whereas for intermediate masses 1.4 -1.6 M_⊙ the radius of star depends upon α very weakly. Also the decrease in the mass bounded by star surface may cause the surface redshift to decrease in R 2-gravity when compared to Einsteinian predictions. This effect is shown to hardly depend upon the observed gravitational mass. Finally, for negative values of α our analysis shows that outside the star the scalar curvature has damped oscillations but the contribution of the gravitational sphere into the gravitational mass increases indefinitely with radial distance putting into question the very existence of such relativistic stars.

  15. Laboratory outreach: student assessment of flow cytometer fluidics in zero gravity.

    PubMed

    Crucian, B; Norman, J; Brentz, J; Pietrzyk, R; Sams, C

    2000-10-01

    Due to the the clinical utility of the flow cytometer, the National Aeronautics and Space Administration (NASA) is interested in the design of a space flight-compatible cytometer for use on long-duration space missions. Because fluid behavior is altered dramatically during space flight, it was deemed necessary to validate the principles of hydrodynamic focusing and laminar flow (cytometer fluidics) in a true microgravity environment. An experiment to validate these properties was conducted by 12 students from Sweetwater High School (Sweetwater, TX) participating in the NASA Reduced Gravity Student Flight Opportunity, Class of 2000. This program allows high school students to gain scientific experience by conducting an experiment on the NASA KC-135 zero gravity laboratory aircraft. The KC-135 creates actual zero-gravity conditions in 30-second intervals by flying a highly inclined parabolic flight path. The experiment was designed by their mentor in the program, the Johnson Space Center's flow cytometrist Brian Crucian, PhD, MT(ASCP). The students performed the experiment, with the mentor, onboard the NASA zero-gravity research aircraft in April 2000.

  16. Application of electrohydrodynamic phenomena to space processing

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1975-01-01

    The capabilities of electrohydrodynamic (EHD) unit separation, liquid handling/control, and mixing are introduced to industrial chemists and metallurgists, working on specific zero-gravity processes. Previously proposed zero-gravity applications of EHD are presented along with the prominent electrohydrodynamical force effects.

  17. Zero-Gravity Research Facility Drop Test (2/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  18. Zero-Gravity Research Facility Drop Test (1/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  19. Zero-Gravity Research Facility Drop Test (3/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  20. Zero-Gravity Research Facility Drop Test (4/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  1. Middeck zero-gravity dynamics experiment - Comparison of ground and flight test data

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of the changes in the modal parameters of space structural test articles from one- to zero-gravity is presented. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, made on a spring/wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity level.

  2. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  3. STS-42 Payload Specialist Merbold inside KC-135 during zero gravity flight

    NASA Image and Video Library

    1988-05-24

    S88-37966 (2 Oct 1988) --- European Space Agency payload specialists Ulf Merbold (STS-42, right) and Reinhold Furrer (STS 61-A) get the "feel" of zero-gravity aboard NASA's KC-135 aircraft over the Gulf of Mexico.

  4. Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.

    2017-12-01

    Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics, 80(4): ID1-ID18. Okabe M. 1979. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 44(4), 730-741.

  5. Astronaut Gregory Jarvis during KC-135 zero gravity training

    NASA Image and Video Library

    1985-01-25

    S85-26106 (25 Jan. 1985) --- Astronaut Gregory Jarvis gets a familiarization session in weightlessness aboard a KC-135 "zero gravity" aircraft. Jarvis was originally assigned as payload specialist to STS-51D but was reassigned to STS-51L. Photo credit: NASA

  6. Zero-gravity aerosol behavior

    NASA Technical Reports Server (NTRS)

    Edwards, H. W.

    1981-01-01

    The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.

  7. Sediment-transport (wind) experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iverson, J.; Gillette, D.; Greeley, R.; Lee, J.; Mackinnon, I.; Marshall, J.; Nickling, W.; Werner, B.; White, B.; Williams, S.

    1986-01-01

    The carousel wind tunnel (CWT) can be a significant tool for the determination of the nature and magnitude of interparticlar forces at threshold of motion. By altering particle and drum surface electrical properties and/or by applying electric potential difference across the inner and outer drums, it should be possible to separate electrostatic effects from other forces of cohesion. Besides particle trajectory and bedform analyses, suggestions for research include particle aggregation in zero and subgravity environments, effect of suspension-saltation ratio on soil abrasion, and the effects of shear and shearfree turbulence on particle aggregation as applied to evolution of solar nebula.

  8. ZERO-G - Crippen, Robert L.

    NASA Image and Video Library

    1979-04-03

    Zero-gravity experiments in KC-135 conducted by John Young, Robert L. Crippen, Joseph Kerwin, and Margaret Seddon. 1. Kerwin, Joseph - Zero-G 2. Seddon, Margaret - Zero-G 3. Young, John - Zero-G 4. Aircraft - KC-135

  9. The free versus fixed geodetic boundary value problem for different combinations of geodetic observables

    NASA Astrophysics Data System (ADS)

    Grafarend, E. W.; Heck, B.; Knickmeyer, E. H.

    1985-03-01

    Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.

  10. KSC-07pd0962

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- Well-wishers greet noted physicist Stephen Hawking (in the wheelchair) at the Kennedy Space Center Shuttle Landing Facility after a zero gravity flight. Next to him at left are Peter Diamandis, founder of the Zero Gravity Corp. that provided the flight aboard its modified Boeing 727, and Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking suffers from amyotrophic lateral sclerosis (also known as Lou Gehrig's disease). At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd0963

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- Well-wishers greet noted physicist Stephen Hawking (in the wheelchair) at the Kennedy Space Center Shuttle Landing Facility after a zero gravity flight. Next to him at left are Peter Diamandis, founder of the Zero Gravity Corp. that provided the flight aboard its modified Boeing 727, and Nicola O'Brien, a nurse practitioner who is Hawking's aide. Hawking suffers from amyotrophic lateral sclerosis (also known as Lou Gehrig's disease). At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  12. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  13. The response of single human cells to zero-gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Shulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.

    1977-01-01

    Microscopic and histochemical evaluations of human embrionic lung cells after exposure to zero-gravity are reported. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of fixed cells revealed no effects on the cultures. Minor unexplained differences have been found in biochemical constituents of the samples.

  14. Containment of a silicone fluid free surface in reduced gravity using barrier coatings

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.; Jacobson, Thomas P.

    1988-01-01

    In support of the Surface Tension Driven Convection Experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec Drop Tower and the 5.0-sec Zero-G facility at the NASA Lewis Research Center. The dynamics of controlling the test fluid, a 10-cSt viscosity silicone fluid in a low gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating; a square edge, a sharp edge with a 45-deg slope, and a sawtooth edge. All three edge designs were successful in containing the fluid below the edge. G-jitter experiments were made in scaled down containers subjected to horizontal accelerations. The data showed that a barrier coating is effective in containing silicone fluid under g-levels up to 10 sup -1 sub g sub 0. In addition, a second barrier coating was found which has similar anti-wetting characteristics and is also more durable.

  15. Marangoni bubble motion in zero gravity. [Lewis zero gravity drop tower

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Dewitt, K. J.

    1979-01-01

    It was shown experimentally that the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low gravity environment. A mathematical model consisting of the Navier-Stokes and thermal energy equations, together with the appropriate boundary conditions for both media, is presented. Parameter perturbation theory is used to solve this boundary value problem; the expansion parameter is the Marangoni number. The zeroth, first, and second order approximations for the velocity, temperature and pressure distributions in the liquid and in the bubble, and the deformation and terminal velocity of the bubble are determined. Experimental zero gravity data for a nitrogen bubble in ethylene glycol, ethanol, and silicone oil subjected to a linear temperature gradient were obtained using the NASA Lewis zero gravity drop tower. Comparison of the zeroth order analytical results for the bubble terminal velocity showed good agreement with the experimental measurements. The first and second order solutions for the bubble deformation and bubble terminal velocity are valid for liquids having Prandtl numbers on the order of one, but there is a lack of appropriate data to test the theory fully.

  16. Experimental investigations of stability of static liquid fillets and liquid-gas interface in capillary passages for gas-free liquid acquisition in zero gravity

    NASA Astrophysics Data System (ADS)

    Purohit, Ghanshyam Purshottamdas

    Experimental investigations of static liquid fillets formed between small gaps of a cylindrical surface and a flat surface are carried out. The minimum volume of liquid required to form a stable fillet and the maximum liquid content the fillet can hold before becoming unstable are studied. Fillet shapes are captured in photographs obtained by a high speed image system. Experiments were conducted using water, UPA and PF 5060 on two surfaces-stand-blasted titanium and polished copper for different surface inclinations. Experimental data are generalized using appropriate non-dimensional groups. Analytical model are developed to describe the fillet curvature. Fillet curvature data are compared against model predictions and are found to be in close agreement. Bubble point experiments were carried out to measure the capillary pressure difference across the liquid-gas interface in the channels of photo-chemically etched disk stacks. Experiments were conducted using titanium stacks of five different geometrical configurations. Both well wetting liquids (IPA and PF5060) and partially wetting liquid (water) were used during experiments. Test results are found to be in close agreement with analytical predictions. Experiments were carried out to measure the frictional pressure drop across the stack as a function of liquid flow rate using two different liquids (water and IPA) and five stacks of different geometrical configurations. A channel pressure drop model is developed by treating the flow within stack channels as fully developed laminar flow between parallel plates and solving the one-dimensional Navier Stokes equation. An alternate model is developed by treating the flow in channels as flow within porous media. Expressions are developed for effective porosity and permeability for the stacks and the pressure drop is related to these parameters. Pressure drop test results are found to be in close agreement with model predictions. As a specific application of this work, a surface tension propellant management device (PMD) that uses photo-chemically etched disk stacks as capillary elements is examined. These PMDs are used in gas pressurized liquid propellant tanks to supply gas-free propellant to rocket engines in near zero-gravity environment. The experimentally validated models are integrated to perform key analyses for predicting PMD performance in zero gravity.

  17. Triad Resonance in the Gravity-Acoustic Family

    NASA Astrophysics Data System (ADS)

    Kadri, U.

    2015-12-01

    Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic envelope (middle) travels relatively fast to the right minimising the interaction time. Consequently, the resultant acoustic wave envelope (bottom) might be significantly smaller. As the two acoustic beams concurrently move away from the gravity wave, with disparate group velocities, the resonant interaction gradually vanishes.

  18. Analysis of capillary drainage from a flat solid strip

    NASA Astrophysics Data System (ADS)

    Ramé, Enrique; Zimmerli, Gregory A.

    2014-06-01

    A long and narrow solid strip coated with a thin liquid layer is used as a model of a generic fluid mass probe in a spacecraft propellant tank just after a small thruster firing. The drainage dynamics of the initial coating layer into the settled bulk fluid affects the interpretation of probe measurements as the sensors' signal depends strongly on whether a sensor is in contact with vapor or with liquid. We analyze the drainage under various conditions of zero-gravity (i.e., capillary drainage) and with gravity aligned with the strip length, corresponding to the thruster acceleration. Long-time analytical solutions are found for zero and non-zero gravity. In the case with gravity, an approximate solution is found using matched asymptotics. Estimates show that a thrust of 10-3g0 significantly reduces drainage times.

  19. KSC-07pd0949

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- The media surround noted wheelchair-bound physicist Stephen Hawking after his arrival at the Kennedy Space Center Shuttle Landing Facility for his first zero-gravity flight. Behind Hawking, at left, are Zero Gravity Corporation founder Peter Diamandis and Space Florida president Steve Kohler. The flight will be aboard a modified Boeing 727 aircraft owned by Zero G, a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  20. Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF)

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Maloney, Chris

    2016-07-01

    NEXCERATM cordierite ceramics, which have ultra-low thermal expansion properties, are perfect candidate materials to be used for light-weight satellite mirrors that are used for geostationary earth observation and for mirrors used in ground-based astronomical metrology. To manufacture the high precision aspheric shapes required, the deterministic aspherization and figure correction capabilities of Magnetorheological Finishing (MRF) are tested. First, a material compatibility test is performed to determine the best method for achieving the lowest surface roughness of RMS 0.8nm on plano surfaces made of NEXCERATM ceramics. Secondly, we will use MRF to perform high precision figure correction and to induce a hyperbolic shape into a conventionally polished 100mm diameter sphere.

  1. Investigating Gravity Anomalies Associated with Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Miller, E.; Musa, D.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.

    2016-12-01

    Detection of subsurface effects from underground nuclear explosions (UNEs) is an important aspect of the overall characterization of a site and UNE signatures, which is central to the mission of the National Nuclear Security Admistration's Office of Proliferation Detection, Defense Nuclear Non-Prolifeation Research and Development, Underground Nuclear Explosion Signatures Experiment (UNESE). We are conducting an experiment at the Nevada National Security Site (NNSS) that includes the acquisition of ground-based gravity data to contribute to a multi-disciplinary characterization of two UNEs located on Pahute Mesa. For one of the UNEs, the working point for the detonation was in zeolitic ash-flow tuff 600 m below the surface. For the other UNE, the detonation working point was also at a depth 600m below the surface and was located in flow breccias and lavas. No evidence of chimney collapse has been manifested for either of these UNEs, hence a cavity may still in place and may produce a detectable gravity anomaly. Each of the gravity surveys consist of 150 sites which were precisely located using a Trimble 5700 GPS receiver for lateral precision of 2 cm and vertical control of 3 cm. The readings were arranged in radial lines from Surface Ground Zero (SGZ), with spacing 10-20 m near the center, and increasing intervals for the distal portions of the lines, which extended to as much as 200 m from SGZ. Gravity were collected using a LaCoste-Romberg model G gravity meter at one location and a Scintrex G-5 at the other. We present a preliminary look at the gravity data in conjunction with forward modeling of the anticipated anomaly given a suite of possible post-explosion cavity and chimney features.

  2. Zero-gravity cloud physics.

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.

    1972-01-01

    The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.

  3. KSC-07pd0946

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- Noted physicist Stephen Hawking arrives at the Kennedy Space Center Shuttle Landing Facility for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd0960

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. -- Noted physicist Stephen Hawking (center) returns to the Kennedy Space Center Shuttle Landing Facility after a zero gravity flight. At his side is Nicola O'Brien, a nurse practitioner who is Hawking's aide. At far left on the truck's tail gate is Peter Diamandis, founder of the Zero Gravity Corp. that provided the flight aboard its modified Boeing 727. Hawking suffers from amyotrophic lateral sclerosis (also known as Lou Gehrig's disease). At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  5. Structural Design Considerations for an 8-m Space Telescope

    NASA Technical Reports Server (NTRS)

    Arnold, William R. Sr.; Stahl, H. Philip

    2009-01-01

    NASA's upcoming ARES V launch vehicle, with its' immerse payload capacities (both volume and mass) has opened the possibilities for a whole new paradigm of space observatories. It becomes practical to consider a monolith mirror of sufficient size to permit significant scientific advantages, both in collection area and smoothness or figure at a reasonable price. The technologies and engineering to manufacture and test 8 meter class monoliths is mature, with nearly a dozen of such mirrors already in operation around the world. This paper will discuss the design requirements to adapt an 8m meniscus mirror into a Space Telescope System, both launch and operational considerations are included. With objects this massive and structurally sensitive, the mirror design must include all stages of the process. Based upon the experiences of the Hubble Space Telescope, testing and verification at both component and integrated system levels are considered vital to mission success. To this end, two different component level test methods for gravity sag (the so call zero- gravity simulation or test mount) are proposed, with one of these methods suitable for the full up system level testing as well.

  6. Structural design considerations for an 8-m space telescope

    NASA Astrophysics Data System (ADS)

    Arnold, William r., Sr.; Stahl, H. Philip

    2009-08-01

    NASA's upcoming ARES V launch vehicle, with its' immense payload capacities (both volume and mass) has opened the possibilities for a whole new paradigm of space observatories. It becomes practical to consider a monolith mirror of sufficient size to permit significant scientific advantages, both in collection area and smoothness or figure at a reasonable price. The technologies and engineering to manufacture and test 8 meter class monoliths is mature, with nearly a dozen of such mirrors already in operation around the world. This paper will discuss the design requirements to adapt an 8m meniscus mirror into a Space Telescope System, both launch and operational considerations are included. With objects this massive and structurally sensitive, the mirror design must include all stages of the process. Based upon the experiences of the Hubble Space Telescope, testing and verification at both component and integrated system levels are considered vital to mission success. To this end, two different component level test methods for gravity sag (the so call zero- gravity simulation or test mount) are proposed, with one of these methods suitable for the full up system level testing as well.

  7. Experiment K-7-29: Connective Tissue Studies. Part 2; Changes in Muscle Serine Proteases, Serpins and Matrix Molecules

    NASA Technical Reports Server (NTRS)

    Festoff, B. W.; Ilyina-Kakueva, E. I.; Rayford, A. R.; Burkovskaya, T. E.; Reddy, B. R.; Rao, J. S.

    1994-01-01

    In zero or micro-gravity, type 1 muscle fibers atrophy and lose predominance, especially in slow-twitch muscles. No increase in mononuclear cells has been observed, just as in simple denervation, where both types 1 and 2 fibers atrophy, again without infiltration of cells, but with clear satellite cell proliferation. However, extracellular matrix (ECM) degradation takes place after denervation and if re-innervation is encouraged, functional recovery to near control levels may be achieved. No information is available concerning the ECM milieu, the activation of serine proteases, their efficacy in degrading ECM components and the production of locally-derived natural protease inhibitors (serpins) in effecting surface proteolytic control. In addition, no studies are available concerning the activation of these enzymes in micro- or zero gravity or their response to muscle injury on the ground and what alterations, if any, occur in space. These studies were the basis for the experiments in Cosmos 2044.

  8. Full-Scale Spacecraft Simulator Design for a 2D Zero Gravity Small Body Surface Sampling Validation

    NASA Astrophysics Data System (ADS)

    Mongelli, Marco

    NASA is developing several Touch-And-Go (TAG) classes of missions. These types of missions like the OSIRIS-REx asteroid sample return [1] or a comet sample return mission (CSSR)[2], consist usually in three phases: propulsive approach to the target, sampling and propulsion to move the spacecraft away from the target. The development of TAG mission, from concept to realization, is usually divided in two phases: Phase I discusses the major trades that could affect the mission architecture; Phase II focuses in detail on the design. This project of a spacecraft emulator fits into phase II and specifically on the way the spacecraft could react in absence of gravity while the Sample Acquisition System (SAS) is collecting the sample. A full-scale spacecraft on a 2D zero-friction environment has been designed. Also a propulsion system has been implemented to re-create the full dynamics of a spacecraft in space.

  9. A preliminary analysis of the data from experiment 77-13 and final report on glass fining experiments in zero gravity

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Meyyappan, M.; Smith, H. D.; Mattox, D. M.; Partlow, D. P.

    1981-01-01

    Thermal fining, thermal migration of bubbles under reduced gravity conditions, and data to verify current theoretical models of bubble location and temperatures as a function of time are discussed. A sample, sodium borate glass, was tested during 5 to 6 minutes of zero gravity during rocket flight. The test cell contained a heater strip; thermocouples were in the sample. At present quantitative data are insufficient to confirm results of theoretical calculations.

  10. Cautionary tales for reduced-gravity particle research

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald; Tucker, D. W.

    1987-01-01

    Failure of experiments conducted on the KC-135 aircraft in zero gravity are discussed. Tests that were a total failure are reported. Why the failure occurred and the sort of questions that potential researchers should ask in order to avoid the appearance of abstracts such as this are discussed. Many types of aggregation studies were proposed for the Space Station, and it is hoped that the following synopsis of events will add a touch of reality to experimentation proposed for this zero-gravity environment.

  11. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  12. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  13. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A o...

  14. Collagenase and tissue plasminogen activator production in developing rat calvariae: normal progression despite fetal exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Davis, B. A.; Sipe, B.; Gershan, L. A.; Fiacco, G. J.; Lorenz, T. C.; Jeffrey, J. J.; Partridge, N. C.

    1998-01-01

    Exposure to zero gravity has been shown to cause a decrease in bone formation. This implicates osteoblasts as the gravity-sensing cell in bone. Osteoblasts also are known to produce neutral proteinases, including collagenase and tissue plasminogen activator (tPA), which are thought to be important in bone development and remodeling. The present study investigated the effects of zero gravity on development of calvariae and their expression of collagenase and tPA. After in utero exposure to zero gravity for 9 days on the NASA STS-70 space shuttle mission, the calvariae of rat pups were examined by immunohistochemistry for the presence and location of these two proteinases. The ages of the pups were from gestational day 20 (G20) to postnatal (PN) day 35. Both collagenase and tPA were found to be present at all ages examined, with the greatest amount of both proteinases present in the PN14 rats. At later ages, high amounts were maintained for tPA but collagenase decreased substantially between ages PN21 to PN35. The location of collagenase was found to be associated with bone-lining cells, osteoblasts, osteocytes, and in the matrix along cement lines. In contrast, tPA was associated with endothelial cells lining the blood vessels entering bone. The presence and developmental expression of these two proteinases appeared to be unaffected by the exposure to zero gravity. The calvarial thickness of the pups was also examined; again the exposure to zero gravity showed little to no effect on the growth of the calvariae. Notably, from G20 to PN14, calvarial thickness increased dramatically, reaching a plateau after this age. It was apparent that elevated collagenase expression correlated with rapid bone growth in the period from G20 to PN14. To conclude, collagenase and tPA are present during the development of rat calvariae. Despite being produced by the same cell in vitro, i.e., the osteoblast, they are located in distinctly different places in bone in vivo. Their presence, developmental expression, and quantity do not seem to be affected by a brief exposure to zero gravity in utero.

  15. View of Zero-G training for astronauts and payload specialists

    NASA Image and Video Library

    1984-08-27

    S84-40538 (24 Aug 1984) --- Two 41-G payload specialists and a backup for one of them appear to be at home in zero gravity in this scene photographed aboard a KC-135 "Zero gravity" aircraft flying one of its weightlessness opportunity parabolas. Paul D. Scully-Power, a civilian oceanographer with the U.S. Navey, is flanked by Marc Garneau (left) and Robert Thirsk, both representing the National Research Council of Canada. Thirsk is back up payload specialist for Garneau.

  16. Zero gravity tissue-culture laboratory

    NASA Technical Reports Server (NTRS)

    Cook, J. E.; Montgomery, P. O., Jr.; Paul, J. S.

    1972-01-01

    Hardware was developed for performing experiments to detect the effects that zero gravity may have on living human cells. The hardware is composed of a timelapse camera that photographs the activity of cell specimens and an experiment module in which a variety of living-cell experiments can be performed using interchangeable modules. The experiment is scheduled for the first manned Skylab mission.

  17. Investigation of crystal growth in zero gravity environment and investigation of metallic whiskers

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lal, R. B.; Walter, H. U.; Castle, J. G., Jr.

    1972-01-01

    Theoretical and experimental work reported relates to the effects of near-zero gravity on growths of crystals and metallic whiskers during Skylab and Apollo flight experiments. Studies on growth and characterization of candidate materials for flight experiments cover indium-bismuth compounds, bismuth single crystals, gallium arsenide films and single crystals, and cadmium whiskers.

  18. KSC-07pd0948

    NASA Image and Video Library

    2007-04-26

    KENNEDY SPACE CENTER, FLA. — Noted physicist Stephen Hawking greets the media after his arrival at the Kennedy Space Center Shuttle Landing Facility for his first zero-gravity flight. The flight will be aboard a modified Boeing 727 aircraft owned by Zero Gravity Corp., a commercial company licensed to provide the public with weightless flight experiences. Hawking developed amyotrophic lateral sclerosis disease in the 1960s, a type of motor neuron disease which would cost him the loss of almost all neuromuscular control. At the celebration of his 65th birthday on January 8 this year, Hawking announced his plans for a zero-gravity flight to prepare for a sub-orbital space flight in 2009 on Virgin Galactic's space service. Photo credit: NASA/Kim Shiflett

  19. Equatorial flattenings of planets - Venus

    NASA Astrophysics Data System (ADS)

    Burša, M.; Šíma, Z.

    1985-05-01

    The dimensions of Venus were found in order to calculate the degree of flattening due to gravity. The calculations were carried out within the framework of the general flattening theory of Bursa and Sima (1969). Data on the gravitational field of Venus, obtained during observations by Mottinger and Williams (1983) were incorporated in the equations. It is shown that the figure of Venus is different from all terrestrial bodies in the solar system: the surface in the equatorial zone is located above the best-fitting triaxial Venus ellipsoid. Deflections of the vertical at the planet surface are given.

  20. Performance and Long Duration Test of a 30 kw Thermal Arcjet Engine.

    DTIC Science & Technology

    1987-11-01

    Surface ____________________________ 69 50. SEM Close-up of Cathode Crater Surface Completely Covered with Arc Microspots and Splashed Tung- sten ...gaskets, and possibly stretching the bolts and/or nuts. 17 CL 4- C4 ---- 40 as 00 CiC E 18~ le J .Ir e 5 Figure 11 is a composite picture of the... composition . This transducer was zeroed both electronically and with reference to an ion gauge in a second vacuum system pumped by 26 F6 W. 320 a 280- (n, gis

  1. Catalog of Apollo experiment operations

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1994-01-01

    This catalog reviews Apollo mission reports, preliminary science reports, technical crew debriefings, lunar surface operations plans, and various relevant lunar experiment documents, collecting engineering- and operation-specific information by experiment. It is organized by discrete experimental and equipment items emplaced or operated on the lunar surface or at zero gravity during the Apollo missions. It also attempts to summarize some of the general problems encountered on the surface and provides guidelines for the design of future lunar surface experiments with an eye toward operations. Many of the problems dealt with on the lunar surface originated from just a few novel conditions that manifested themselves in various nasty ways. Low gravity caused cables to stick up and get caught on feet, and also made it easy for instruments to tip over. Dust was a problem and caused abrasion, visibility, and thermal control difficulties. Operating in a pressure suit limited a person's activity, especially in the hands. I hope to capture with this document some of the lessons learned from the Apollo era to make the jobs of future astronauts, principle investigators, engineers, and operators of lunar experiments more productive.

  2. The effects of radiative heat loss on microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Fakheri, Ahmad; Olson, Sandra L.

    1989-01-01

    The effect of radiative heat loss from the surface of a solid material burning in a zero gravity environment in an opposed flow is studied through the use of a numerical model. Radiative heat loss is found to decrease the flame spread rate, the boundary layer thickness, and pyrolysis lengths. Blowoff extinction is predicted to occur at slower opposesd flow velocities than would occur if the radiative loss is not present. The radiative heat fluxes are comparable to the conduction fluxes, indicating the significance of the surface energy loss.

  3. Autonomous Landing and Smart Anchoring for In-Situ Exploration of Small Bodies

    NASA Technical Reports Server (NTRS)

    Ghavimi, Ali R.; Serricchio, Frederick; Hadaegh, Fred Y.; Dolgin, Ben

    2000-01-01

    Future NASA missions include in-situ scientific explorations of small interplanetary objects like comets and asteroids. Sample acquisition systems are envisioned to operate directly from the landers that are anchored to the surface. Landing and anchoring proves to be challenging in the absence of an attitude control system and in the presence of nearly zero-gravity environments with uncertain surface terrain and unknown mechanical properties. This paper presents recent advancements in developing a novel landing and anchoring control system for the exploration of small bodies.

  4. Two components of postseismic gravity changes of megathrust earthquakes from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Heki, K.

    2013-12-01

    There are several reports of the observations of gravity changes due to megathrust earthquakes with data set of Gravity Recovery And Climate Experiment (GRACE) satellite. We analyzed the co- and postseismic gravity changes of the three magnitude 9 class earthquakes, the 2004 Sumatra-Andaman, the 2010 Chile (Maule), and the 2011 Tohoku-Oki earthquakes, using the newly released data (Release 05 data) set. In addition to the coseismic steps, these earthquakes showed a common feature that the postseismic changes include two components with different polarity and time constants, i.e. rapid decreases over a few months, followed by slow increases lasting for years. This is shown in the auxiliary figure of this abstract. In this figure, the white circles are the data whose seasonal and secular changes were removed. The vertical translucent lines denote the earthquake occurrence times. All the three earthquakes suggest the existence of two postseismic gravity change components with two distinct time constants. The first (short-term) component showed geographical distribution similar to the coseismic changes, but the position of the largest gravity decrease shifted toward the trench. The short-term components can be related to afterslip, but their time constants and distributions showed significant deviation from gravity changes predicted by the afterslip models. The second (long-term) components are characterized by positive gravity changes with the peak close to the trench axis. The long-term components should be attributed to different or multiple mechanisms, e.g. viscous relaxation of rocks in the upper mantle [Han and Simons, 2008; Panet et al., 2007] and diffusion of supercritical water around the down-dip end of the ruptured fault [Ogawa and Heki, 2007]. Both of the two mechanisms can explain the postseismic gravity increase in this timescale to some extent, but there have been no decisive evidence to prove or disprove either one of these. But generally speaking, postseismic crustal movements measured by GPS do not show such polarity reversals. This suggests that satellite gravimetry can separate two independent physical postseismic processes that are not discernible by observing only surface crustal movements.

  5. Modification of the continuous flow diffusion chamber for use in zero-gravity. [atmospheric cloud physics lab

    NASA Technical Reports Server (NTRS)

    Keyser, G.

    1978-01-01

    The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.

  6. Remediation of trichloroethylene-contaminated groundwater by three modifier-coated microscale zero-valent iron.

    PubMed

    Han, Jun; Xin, Jia; Zheng, Xilai; Kolditz, Olaf; Shao, Haibing

    2016-07-01

    Building a microscale zero-valent iron (mZVI) reaction zone is a promising in situ remediation technology for restoring groundwater contaminated by trichloroethylene (TCE). In order to determine a suitable modifier that could not only overcome gravity sedimentation of mZVI but also improve its remediation efficiency for TCE, the three biopolymers xanthan gum (XG), guargum (GG), and carboxymethyl cellulose (CMC) were employed to coat mZVI for surface modification. The suspension stability of the modified mZVI and its TCE removal efficiency were systematically investigated. The result indicated that XG as a shear-thinning fluid showed the most remarkable efficiency of preventing mZVI from gravity sedimentation and enhancing the TCE removal efficiency by mZVI. In a 480-h experiment, the presence of XG (3 g L(-1)) increased the TCE removal efficiency by 31.85 %, whereas GG (3 g L(-1)) and CMC (3 g L(-1)) merely increased by 15.61 and 9.69 % respectively. The pH value, Eh value, and concentration of ferrous ion as functions of the reaction time were recorded in all the reaction systems, which indicated that XG worked best in buffering the pH value of the solution and inhibiting surface passivation of mZVI.

  7. Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.

  8. Bioprocessing: Prospects for space electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  9. Research on metal solidification in zero-g state

    NASA Technical Reports Server (NTRS)

    Papazian, J. M.; Larson, D. J., Jr.

    1975-01-01

    The containerless solidification of several pure metals and metallic alloys was studied in a low gravity environment. The tests were performed in the MSFC 4.2 s drop tower using a rapid wire melting apparatus designed and built for this purpose. Pure iron and nickel, and alloys of iron-nickel, iron-carbon, nickel-aluminum and tungsten-rhenium were all melted and solidified at a gravity level of approximately 100.000/-4 g. Interpretation of the results has led to an appreciation of the factors controlling the successful execution of this drop test experiment and to a delineation of the limits of applicability of the apparatus. Preliminary metallurgical evaluations are presented of the overall shapes, lattice parameters, surface microstructure,, cross-sectional microstructures, solidification and transformation sequences, evaporative segregation, and localized solute redistribution observed in the low-gravity specimens. The effects of low gravity on metallic solidification are discussed with particular emphasis on observations of spontaneous undercooling and evaporative segregation in uncontained melts.

  10. Device for mass measurement under zero-gravity conditions.

    PubMed

    Sarychev, V A; Sazonov, V V; Zlatorunsky, A S; Khlopina, S F; Egorov, A D; Somov, V I

    1980-06-01

    The problem considered in this paper is the investigation of the properties of a mass-meter, i.e. the device for determining the mass of cosmonaut's body under zero-gravity conditions. The estimates of accuracy of mass measurement by this device are given, and the results of measuring the masses of cosmonauts' bodies on the Salyut 5 and 6 orbital stations are presented.

  11. Maglev Facility for Simulating Variable Gravity

    NASA Technical Reports Server (NTRS)

    Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.

    2010-01-01

    An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful, variously, as rocket fuels or as working fluids for heat transfer devices. A drop of water 45 mm in diameter and a small laboratory mouse have been levitated in this apparatus.

  12. Tsunami generation and associated waves in the water column and seabed due to an asymmetric earthquake motion within an anisotropic substratum

    NASA Astrophysics Data System (ADS)

    Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad; Attarnejad, Reza

    2016-10-01

    In this paper, closed-form integral expressions are derived to describe how surface gravity waves (tsunamis) are generated when general asymmetric ground displacement (due to earthquake rupturing), involving both horizontal and vertical components of motion, occurs at arbitrary depth within the interior of an anisotropic subsea solid beneath the ocean. In addition, we compute the resultant hydrodynamic pressure within the seawater and the elastic wavefield within the seabed at any position. The method of potential functions and an integral transform approach, accompanied by a special contour integration scheme, are adopted to handle the equations of motion and produce the numerical results. The formulation accounts for any number of possible acoustic-gravity modes and is valid for both shallow and deep water situations as well as for any focal depth of the earthquake source. Phase and group velocity dispersion curves are developed for surface gravity (tsunami mode), acoustic-gravity, Rayleigh, and Scholte waves. Several asymptotic cases which arise from the general analysis are discussed and compared to existing solutions. The role of effective parameters such as hypocenter location and frequency of excitation is examined and illustrated through several figures which show the propagation pattern in the vertical and horizontal directions. Attention is directed to the unexpected contribution from the horizontal ground motion. The results have important application in several fields such as tsunami hazard prediction, marine seismology, and offshore and coastal engineering. In a companion paper, we examine the effect of ocean stratification on the appearance and character of internal and surface gravity waves.

  13. The response of single human cells to zero gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Schulz, W. W.; Stock, D.; Kinzey, S.; Rogers, T.; Campbell, D.

    1975-01-01

    Twenty separate cultures of Wistar-38 human embryonic lung cells were exposed to a zero-gravity environment on Skylab for periods of time ranging from one to 59 days. Duplicate cultures were run concurrently as ground controls. Ten cultures were fixed on board the satellite during the first 12 days of flight. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of the fixed cells revealed no effects of a zero-gravity environment on the ten cultures. Two cultures were photographed with phase time lapse cinematography during the first 27 days of flight. No differences were found in mitotic index, cell cycle, and migration between the flight and control cells. Eight cultures were returned to earth in an incubated state. Karyotyping and chromosome banding tests show no differences between the flight and control cells.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehghani, M.H.; Department of Physics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1; Perimeter Institute for Theoretical Physics, 35 Caroline Street North, Waterloo, Ontario

    We investigate the existence of Taub-NUT (Newman-Unti-Tamburino) and Taub-bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter {alpha} goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield nonextremal NUT solutions to Einstein gravity having a curvature singularity at r=N in the limit {alpha}{yields}0. Indeed, we have nonextreme NUT solutions in 2+2k dimensions withmore » nontrivial fibration only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a two-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two-dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.« less

  15. Behavior of the lean methane-air flame at zero-gravity

    NASA Technical Reports Server (NTRS)

    Noe, K. A.; Strehlow, R. A.

    1985-01-01

    A special rig was designed and constructed to be compatible with the NASA Lewis Research Center Airborne Research Laboratory to allow the study of the effect of gravity on the behavior of lean limit in a standard 50.4 mm (2 in.) internal diameter tube when the mixtures are ignited at the open end and propagate towards the closed end of the tube. The lean limit at zero gravity was found to be 5.10% methane and the flame was found to extenguish in a manner previously observed for downward propagating flames at one g. It was observed that g-jitter could be maintained at less than + or 0.04 g on most zero g trajectories. All of propagating lean limit flames were found to be sporadically cellularly unstable at zero g. There was no observable correlation between the occurrence of g-jitter and the lean limit, average propagation speed of the flame through the tube or the occurrence of cellular instability.

  16. Modeling heat exchange characteristics of long term space operations: Role of skin wettedness and exercise

    NASA Technical Reports Server (NTRS)

    Gonzalez, Richard R.

    1994-01-01

    The problems of heat exchange during rest and exercise during long term space operations are covered in this report. Particular attention is given to the modeling and description of the consequences of requirement to exercise in a zero-g atmosphere during Space Shuttle flights, especially long term ones. In space environments, there exists no free convection therefore only forced convection occurring by movement, such as pedalling on a cycle ergometer, augments required heat dissipation necessary to regulate body temperature. The requirement to exercise at discrete periods of the day is good practice in order to resist the deleterious consequences of zero-gravity problems and improve distribution of body fluids. However, during exercise (ca. 180 to 250W), in zero-g environments, the mass of eccrine sweating rests as sheets on the skin surface and the sweat cannot evaporate readily. The use of exercise suits with fabrics that have hydrophobic or outwicking properties somewhat distributes the mass of sweat to a larger surface from which to evaporate. However, with no free convection, increased skin wettedness throughout the body surface induces increasing thermal discomfort, particularly during continuous exercise. This report presents several alternatives to aid in this problem: use of intermittent exercise, methods to quantify local skin wettedness, and introduction of a new effective temperature that integrates thermal stress and heat exchange avenues in a zero-g atmosphere.

  17. Polishing aspheric mirrors of zero-thermal expansion cordierite ceramics (NEXCERA) for space telescope

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Kamiya, Tomohiro; Mikashima, Bumpei

    2017-09-01

    Ultra-low thermal expansion ceramics NEXCERATM is regarded as one of potential candidate materials crucial for ultralightweight and thermally-stable optical mirrors for space telescopes which are used in future optical missions satisfying extremely high observation specifications. To realize the high precision NEXCERA mirrors for space telescopes, it is important to develop a deterministic aspheric shape polishing and a precise figure correction polishing method for the NEXCERA. Magnetorheological finishing (MRF) was tested to the NEXCERA aspheric mirror from best fit sphere shape, because the MRF technology is regarded as the best suited process for a precise figure correction of the ultralightweight mirror with thin sheet due to its advantage of low normal force polishing. As using the best combination of material and MR fluid, the MRF was performed high precision figure correction and to induce a hyperbolic shape from a conventionally polished 100mm diameter sphere, and achieved the sufficient high figure accuracy and the high quality surface roughness. In order to apply the NEXCERA to a large scale space mirror, for the next step, a middle size solid mirror, 250 mm diameter concave parabola, was machined. It was roughly ground in the parabolic shape, and was lapped and polished by a computer-controlled polishing machine using sub-aperture polishing tools. It resulted in the smooth surface of 0.6 nm RMS and the figure accuracy of λ/4, being enough as pre-MRF surface. A further study of the NEXCERA space mirrors should be proceeded as a figure correction using the MRF to lightweight mirror with thin mirror sheet.

  18. Separating biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Technique utilizing electric field to promote biological cell separation from suspending medium in zero gravity increases speed, reduces sedimentation, and improves efficiency of separation in normal gravity.

  19. Silverton Conference on Applications of the Zero Gravity Space Shuttle Environment to Problems in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Eisner, M. (Editor)

    1974-01-01

    The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.

  20. Manufacturing of the 1070mm F/1.5 ellipsoid mirror

    NASA Astrophysics Data System (ADS)

    Guo, Peiji; Yu, Jingchi; Zhang, Yaoming; Qiu, Gufeng

    2009-05-01

    The manufacturing procedure of a φ1070mm in diameter F/1.5 ellipsoid mirror is introduced in detail. For testing the rough-ground surface, guiding shaping and fine grinding, a three dimension X-θ-Z profilometer is developed, the instrument measures surface profiles with 1μm accuracy and the biggest mirror being tested is φ1200mm in diameter. During polishing and fine figuring, we chose null test by null corrector with point source at infinity, the designed null corrector includes two piece of lenses and the designed residual wave front aberration is less than 0.008λ(λ=0.6328μm)PV. For avoiding the influence of gravity deformation during polishing and testing, a kind of support system with multipoint unequal support force is developed by applying FEA-based optimization. The mirror was finally figured to the shape accuracy of 0.016λRMS.

  1. Existence, stability, and nonlinear dynamics of detached Bridgman growth states under zero gravity

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2011-01-01

    A thermocapillary model is used to study the existence, stability, and nonlinear dynamics of detached melt crystal growth in a vertical Bridgman system under zero gravity conditions. The model incorporates time-dependent heat, mass, and momentum transport, and accounts for temperature-dependent surface tension effects at the menisci bounding the melt. The positions of the menisci and phase-change boundary are computed to satisfy the conservation laws rigorously. A rich bifurcation structure in gap width versus pressure difference is uncovered, demarcating conditions under which growth with a stable gap is feasible. Thermal effects shift the bifurcation diagram to a slightly different pressure range, but do not alter its general structure. Necking and freeze-off are shown to be two different manifestations of the same instability mechanism. Supercooling of melt at the meniscus and low thermal gradients in the melt ahead of the crystal-melt-gas triple phase line, either of which may be destabilizing, are both observed under some conditions. The role of wetting and growth angles in dynamic shape stability is clarified.

  2. Growth and Interaction of Colloid Nuclei

    NASA Astrophysics Data System (ADS)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  3. Ion beam figuring technique used as final step in the manufacturing of the optics for the E-ELT

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Vecchi, G.; Basso, S.; Citterio, O.; Civitani, M.; Pareschi, G.; Sironi, G.

    The INAF-Astronomical Observatory of Brera (INAF-OAB) is exploring the technical problems related to the ion beam figuring (IBF) of the Zerodur hexagonal mirrors (1.45 m corner to corner) of M1 for the European Extremely Large Telescope (E-ELT). As starting step a scaled down version mirror of the same material having size of 1 m corner to corner has been used to assess the relevant figuring problems. This specific mirror is spherical and has a radius of curvature of 3 m which allows a simple interferometric measurement setup. A mechanical support was designed to minimize its deformations due to gravity. The Ion Beam Figuring Facility used for this study has been recently completed in the Brera Observatory and has a figuring area of 170 cm x 140 cm. Aim of this study is the estimation and optimization of the time requested for the correction of the surface using also strategies to control the well-known thermal problems related to the Zerodur material. In this paper we report the results obtained figuring the 1 m corner-to-corner test segment.

  4. Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.

    1995-01-01

    This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion stages of the metal specimen. This paper summarizes the results obtained to date from experiments conducted under normal and high-gravity conditions.

  5. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  6. Nonlinear modal resonances in low-gravity slosh-spacecraft systems

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    1991-01-01

    Nonlinear models of low gravity slosh, when coupled to spacecraft vibrations, predict intense nonlinear eigenfrequency shifts at zero gravity. These nonlinear frequency shifts are due to internal quadratic and cubic resonances between fluid slosh modes and spacecraft vibration modes. Their existence has been verified experimentally, and they cannot be correctly modeled by approximate, uncoupled nonlinear models, such as pendulum mechanical analogs. These predictions mean that linear slosh assumptions for spacecraft vibration models can be invalid, and may lead to degraded control system stability and performance. However, a complete nonlinear modal analysis will predict the correct dynamic behavior. This paper presents the analytical basis for these results, and discusses the effect of internal resonances on the nonlinear coupled response at zero gravity.

  7. Ceiling Fires Studied to Simulate Low-Gravity Fires

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.

    2001-01-01

    A unique new way to study low-gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low-stretch environments, a normal gravity low-stretch diffusion flame was generated using a cylindrical PMMA sample of varying large radii, as shown in the photograph. These experiments have demonstrated that low-gravity flame characteristics can be generated in normal gravity through the proper use of scaling. On the basis of this work, it is feasible to apply this concept toward the development of an Earth-bound method of evaluating material flammability in various gravitational environments from normal gravity to microgravity, including the effects of partial gravity low-stretch rates such as those found on the Moon (1/6g) or Mars (1/3g). During these experiments, the surface regression rates for PMMA were measured for the first time over the full range of flammability in air, from blowoff at high stretch, to quenching at low stretch, as plotted in the graph. The solid line drawn through the central portion of the data (3

  8. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    1999-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.

  9. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    2001-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.

  10. An inverse dynamic analysis on the influence of upper limb gravity compensation during reaching.

    PubMed

    Essers, J M N Hans; Meijer, Kenneth; Murgia, Alessio; Bergsma, Arjen; Verstegen, Paul

    2013-06-01

    Muscular dystrophies (MDs) are characterized by progressive muscle wasting and weakness. Several studies have been conducted to investigate the influence of arm supports in an attempt to restore arm function. Lowering the load allows the user to employ the residual muscle force for movement as well as for posture stabilization. In this pilot study three conditions were investigated during a reaching task performed by three healthy subjects and three MD subjects: a control condition involving reaching; a similar movement with gravity compensation using braces to support the forearm; an identical reaching movement in simulated zero-gravity. In the control condition the highest values of shoulder moments were present, with a maximum of about 6 Nm for shoulder flexion and abduction. In the gravity compensation and zero gravity conditions the maximum shoulder moments were decreased by more than 70% and instead of increasing during reaching, they remained almost unvaried, fluctuating around an offset value less than 1 Nm. Similarly, the elbow moments in the control condition were the highest with a peak around 3.3 Nm for elbow flexion, while the moments were substantially reduced in the remaining two conditions, fluctuating around offset values between 0 to 0.5 Nm. In conclusion, gravity compensation by lower arm support is effective in healthy subjects and MD subjects and lowers the amount of shoulder and elbow moments by an amount comparable to a zero gravity environment. However the influence of gravity compensation still needs to be investigated on more people with MDs in order to quantify any beneficial effect on this population.

  11. Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins

    NASA Astrophysics Data System (ADS)

    Cheng, Polly; Kambli, Ankita; Stone, Johnny

    2017-10-01

    Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.

  12. Preparation, testing and analysis of zinc diffusion samples, NASA Skylab experiment M-558

    NASA Technical Reports Server (NTRS)

    Braski, D. N.; Kobisk, E. H.; Odonnell, F. R.

    1974-01-01

    Transport mechanisms of zinc atoms in molten zinc were investigated by radiotracer techniques in unit and in near-zero gravity environments. Each melt in the Skylab flight experiments was maintained in a thermal gradient of 420 C to 790 C. Similar tests were performed in a unit gravity environment for comparison. After melting in the gradient furnace followed by a thermal soak period (the latter was used for flight samples only), the samples were cooled and analyzed for Zn-65 distribution. All samples melted in a unit gravity environment were found to have uniform Zn-65 distribution - no concentration gradient was observed even when the sample was brought rapidly to melting and then quenched. Space-melted samples, however, showed textbook distributions, obviously the result of diffusion. It was evident that convection phenomena were the dominant factors influencing zinc transport in unit gravity experiments, while diffusion was the dominant factor in near-zero gravity experiments.

  13. Modeling of zero gravity venting: Studies of two-phase heat transfer under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, H., Jr.

    1986-01-01

    The objective is to predict the pressure response of a saturated liquid-vapor system when undergoing a venting or depressurization process in zero gravity at low vent rates. An experimental investigation of the venting of cylindrical containers partially filled with initially saturated liquids was previously conducted under zero-gravity conditions and compared with an analytical model which incorporated the effect of interfacial mass transfer on the ullage pressure response during venting. A new model is presented to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated to approximate the transient temperature response of the interface, treating the liquid as a semi-infinite solid with conduction heat transfer. Account is also taken of the condensation taking place within the bulk of a saturated vapor as isentropic expansion takes place. Computational results are presented for the venting of R-11 from a given vessel and initial state for five different venting rates over a period of three seconds, and compared to prior NASA experiments. An improvement in the prediction of the final pressure takes place, but is still considerably below the measurements.

  14. Effect of gravity on the stability and structure of lean hydrogen-air flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1991-01-01

    Detailed, time-dependent, 2D numerical simulations with full hydrogen-oxygen chemistry are used to investigate the effects of gravity on the stability and structure of laminar flames in lean, premixed hydrogen-air mixtures. The calculations show that the effects of gravity becomes more important as the lean flammability limit is approached. In a 12 percent hydrogen-air mixture, gravity plays only a secondary role in determining the multidimensional structure of the flame with the stability and structure of the flame controlled primarily by the thermo-diffusive instability mechanism. However, in leaner hydrogen-air mixtures gravity becomes more important. Upward-propagating flames are highly curved and evolve into a bubble rising upwards in the tube. Downward-propagating flames are flat or even oscillate between structures with concave and convex curvatures. The zero-gravity flame shows only cellular structures. Cellular structures which are present in zero gravity can be suppressed by the effect of buoyancy for mixtures leaner than 11 percent hydrogen. These observations are explained on the basis of an interaction between the processes leading to buoyancy-induced Rayleigh-Taylor instability and the thermo-diffusive instability.

  15. The study of single crystals for space processing and the effect of zero gravity

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1975-01-01

    A study was undertaken to analyze different growth techniques affected by a space environment. Literature on crystal growth from melt, vapor phase and float zone was reviewed and the physical phenomena important for crystal growth in zero-gravity environment was analyzed. Recommendations for potential areas of crystal growth feasible for space missions are presented and a bibliography of articles in the area of crystal growth in general is listed.

  16. Higher order statistics of planetary gravities and topographies

    NASA Technical Reports Server (NTRS)

    Kaula, William M.

    1993-01-01

    The statistical properties of Earth, Venus, Mars, Moon, and a 3-D mantle convection model are compared. The higher order properties are expressed by third and fourth moments: i.e., as mean products over equilateral triangles (defined as coskewance) and equilateral quadrangles (defined as coexance). For point values, all the fields of real planets have positive skewness, ranging from slightly above zero for Lunar gravity to 2.6 sigma(exp 3) for Martian gravity (sigma is rms magnitude). Six of the eight excesses are greater than Gaussian (3 sigma(exp 4)), ranging from 2.0 sigma(exp 4) for Earth topography to 18.6 sigma(exp 4), for Martian topography. The coskewances and coexances drop off to zero within 20 deg arc in most cases. The mantle convective model has zero skewness and excess slightly less than Gaussian, probably arising from viscosity variations being only radial.

  17. Separation of biogenic materials by electrophoresis under zero gravity (L-3)

    NASA Technical Reports Server (NTRS)

    Kuroda, Masao

    1993-01-01

    Electrophoresis separates electrically charged materials by imposing a voltage between electrodes. Though free-flow electrophoresis is used without carriers such as colloids to separate and purify biogenic materials including biogenic cells and proteins in blood, its resolving power and separation efficiency is very low on Earth due to sedimentation, flotation, and thermal convection caused by the specific gravity differences between separated materials and buffer solutions. The objective of this experiment is to make a comparative study of various electrophoresis conditions on the ground and in zero-gravity in order to ultimately develop a method for separating various important 'vial' components which are difficult to separate on the ground.

  18. Distribution of pulmonary ventilation and perfusion during short periods of weightlessness

    NASA Technical Reports Server (NTRS)

    Michels, D. B.; West, J. B.

    1978-01-01

    Airborne experiments were conducted on four trained normal male subjects (28-40 yr) to study pulmonary function during short periods (22-27 sec) of zero gravity obtained by flying a jet aircraft through appropriate parabolic trajectories. The cabin was always pressurized to a sea-level altitude. The discussion is limited to pulmonary ventilation and perfusion. The results clearly demonstrate that gravity is the major factor causing nonuniformity in the topographical distribution of pulmonary ventilation. More importantly, the results suggest that virtually all the topographical nonuniformity of ventilation, blood flow, and lung volume observed under 1-G conditions are eliminated during short periods of zero gravity.

  19. Semiconductor crystal growth and segregation problems on earth and in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1982-01-01

    Semiconductor crystal growth and segregation problems are examined in the context of their relationship to material properties, and some of the problems are illustrated with specific experimental results. The compositional and structural defects encountered in semiconductors are largely associated with gravity-induced convective currents in the melt; additional problems are introduced by variations in stoichiometry. It is demonstrated that in near-zero gravity environment, crystal growth and segregation takes place under ideal steady-state conditions with minimum convective interference. A discussion of the advantages of zero-gravity crystal growth is followed by a summary of problems arising from the absence of gravitational forces.

  20. An experiment in vision based autonomous grasping within a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Grimm, K. A.; Erickson, J. D.; Anderson, G.; Chien, C. H.; Hewgill, L.; Littlefield, M.; Norsworthy, R.

    1992-01-01

    The National Aeronautics and Space Administration's Reduced Gravity Program (RGP) offers opportunities for experimentation in gravities of less than one-g. The Extravehicular Activity Helper/Retriever (EVAHR) robot project of the Automation and Robotics Division at the Lyndon B. Johnson Space Center in Houston, Texas, is undertaking a task that will culminate in a series of tests in simulated zero-g using this facility. A subset of the final robot hardware consisting of a three-dimensional laser mapper, a Robotics Research 807 arm, a Jameson JH-5 hand, and the appropriate interconnect hardware/software will be used. This equipment will be flown on the RGP's KC-135 aircraft. This aircraft will fly a series of parabolas creating the effect of zero-g. During the periods of zero-g, a number of objects will be released in front of the fixed base robot hardware in both static and dynamic configurations. The system will then inspect the object, determine the objects pose, plan a grasp strategy, and execute the grasp. This must all be accomplished in the approximately 27 seconds of zero-g.

  1. Brick Paving Systems in Expeditionary Environments: Field Testing

    DTIC Science & Technology

    2012-07-01

    specific gravity of 2.7, optimum moisture content of 2.6 percent, and a maximum dry density of 114.2 pcf. Figure 5 shows the Proctor curve developed by...4  Figure 3. Dry density versus moisture content for CH material...6  Figure 5. Dry density versus moisture content for blended GM base course. ..................................... 7  Figure 6

  2. Droplet burning at zero G

    NASA Technical Reports Server (NTRS)

    Williams, F. A.

    1978-01-01

    Questions of the importance and feasibility of performing experiments on droplet burning at zero gravity in Spacelab were studied. Information on the physics and chemistry of droplet combustion, with attention directed specifically to the chemical kinetics, heat and mass transfer, and fluid mechanics of the phenomena involved, are presented. The work was divided into three phases, the justification, the feasibility, and the conceptual development of a preliminary design. Results from the experiments performed revealed a few new facts concerning droplet burning, notably burning rates in excess of theoretical prediction and a phenomenon of flash extinction, both likely traceable to accumulation of carbon produced by gas-phase pyrolysis in the fuel-rich zone enclosed by the reaction surface. These experiments also showed that they were primarily due to timing difficulties.

  3. Transition from Ignition to Flame Growth under External Radiation in Three Dimensions (TIGER-3D)

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nakamura, Yuji; Olson, Sandra L.; Mell, William

    2004-01-01

    This study focuses on localized ignition by external radiant flux and subsequent flame growth over thin polymeric materials (plastic and paper) in microgravity. Two transition stages were observed. The first transition stage covers the period from the onset of ignition to the formation of stabilized flame near the ignited area. This is followed by the second transition of the flame growth stage from the initial stabilized flame to sustained fire growth away from the ignited area. For the first stage, ignition experiments of thin PMMA sheets were conducted using a CO2 laser as an external source in the 10 s drop tower. The results of front side surface ignition and of backside surface ignition were observed. The effects of imposed flow velocity, sample thickness, and ambient oxygen concentration on ignition are obtained. Numerical study was conducted to investigate to understand and predict ignition behavior observed in the experiments. For the second stage, numerical study is being conducted to describe the effects of gravity on heat release rate of a PMMA sheet. The gravity level was varied from zero to normal gravity. The preliminary results show that the maximum heat release occurs at around 0.02 g.

  4. Transition from Ignition to Flame Growth under External Radiation in 3D

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nakamura, Yuji; Mell, William E.; Olson, Sandra L.

    2004-01-01

    This study focuses on localized ignition by external radiant flux and subsequent flame growth over thin polymeric materials (plastic and paper) in microgravity. Two transition stages were observed. The first transition stage covers the period from the onset of ignition to the formation of stabilized flame near the ignited area. This is followed by the second transition of the flame growth stage from the initial stabilized flame to sustained fire growth away from the ignited area. For the first stage, ignition experiments of thin PMMA sheets were conducted using a CO2 laser as an external source in the 10 s drop tower. The results of front side surface ignition and of backside surface ignition were observed. The effects of imposed flow velocity, sample thickness, and ambient oxygen concentration on ignition are obtained. Numerical study was conducted to investigate to understand and predict ignition behavior observed in the experiments. For the second stage, numerical study is being conducted to describe the effects of gravity on heat release rate of a PMMA sheet. The gravity level was varied from zero to normal gravity. The preliminary results show that the maximum heat release occurs at around 0.02 g.

  5. Model Selection for the Multiple Model Adaptive Algorithm for In-Flight Simulation.

    DTIC Science & Technology

    1987-12-01

    of the two models, while the other model was given a probability of approximately zero. If the probabilties were exactly one and zero for the...Figures 6-103 through 6-107. From Figure 6-103, it can be seen that the probabilty of the model associated with the 10,000 ft, 0.35 Mach flight con

  6. Engineering and Development Support of General Decon Technology for the U.S. Army’s Installation Restoration Program. Task 2. Treatment of Explosives Contaminated Lagoon Sediment. Phase 1. Literature Review and Evaluation

    DTIC Science & Technology

    1982-04-01

    128 32. Effects of UV, Ozone and UV-Ozone on the Degradation of Pink Water at Zero Flow ............ ................. 130 33. Formation of...Nitrate Ion During UV-Ozonolysis of TNT in Zero Flow Mode ........ ... ........................ ..... 132 34. Detailed Analysis of Run 7-12...the Degradation of Pink Water at Zero Flow* (Layne et al., 1980) *This figure represents a combination of Figures 5 and 7 in the report. 130 - -+ TNT

  7. The electrical properties of zero-gravity processed immiscibles

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Otto, G. H.

    1974-01-01

    When dispersed or mixed immiscibles are solidified on earth, a large amount of separation of the constituents takes place due to differences in densities. However, when the immiscibles are dispersed and solidified in zero-gravity, density separation does not occur, and unique composite solids can be formed with many new and promising electrical properties. By measuring the electrical resistivity and superconducting critical temperature, Tc, of zero-g processed Ga-Bi samples, it has been found that the electrical properties of such materials are entirely different from the basic constituents and the ground control samples. Our results indicate that space processed immiscible materials may form an entirely new class of electronic materials.

  8. Modeling Candle Flame Behavior In Variable Gravity

    NASA Technical Reports Server (NTRS)

    Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.

    2003-01-01

    The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g < g(sub e)). In a previous numerical model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process. This is the limiting case that the mass transfer process in the wick is much faster than the evaporation process at the wick surface.

  9. 14 CFR 27.143 - Controllability and maneuverability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... gravity; (3) Critical rotor r.p.m.; and (4) Power off (except for helicopters demonstrating compliance...; with— (i) Critical Weight; (ii) Critical center of gravity; (iii) Critical rotor r.p.m.; (2) For...; (ii) Critical center of gravity; and (iii) Critical rotor r.p.m. (d) Wind velocities from zero to at...

  10. 14 CFR 27.143 - Controllability and maneuverability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... gravity; (3) Critical rotor r.p.m.; and (4) Power off (except for helicopters demonstrating compliance...; with— (i) Critical Weight; (ii) Critical center of gravity; (iii) Critical rotor r.p.m.; (2) For...; (ii) Critical center of gravity; and (iii) Critical rotor r.p.m. (d) Wind velocities from zero to at...

  11. 14 CFR 27.143 - Controllability and maneuverability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... gravity; (3) Critical rotor r.p.m.; and (4) Power off (except for helicopters demonstrating compliance...; with— (i) Critical Weight; (ii) Critical center of gravity; (iii) Critical rotor r.p.m.; (2) For...; (ii) Critical center of gravity; and (iii) Critical rotor r.p.m. (d) Wind velocities from zero to at...

  12. Two-Body Convection in the Mantle of the Earth: E/W Asymmetry, Under Astronomically Determined Tilt in g

    NASA Astrophysics Data System (ADS)

    Bostrom, R. C.

    2002-12-01

    Under purely geocentric gravity, over time displacement under mantle convection is globally symmetrical, resulting in zero net lithosphere rotation. The effect is here explored of substituting the asymmetric Earth-Moon field, gconv, prevalent in actuality. The gravity responsible for mantle convection is defined as the vector sum of a vertical component and the day-averaged attraction of masses lagging tidal equilibrium. The increasingly accurately measured lunar recession may then be used to delimit the internal field in terms of the secular luni-tidal interval of the Earth as a whole, some 600 seconds [1], without having to identify tidal components i.e. separate marine from body tides. In context the astronomic phase-lag may be viewed as a global isostatic anomaly, in which the longitude circles marking Earth's gravimetric figure are located east of those describing its perpetually unattained equilibrium figure by some 89 km at the Equator. Reference the hydrostatic ellipsoid gconv is tilted by the astronomically delimited amount, albeit that the phase lag is attributable in part to the convection itself. As with the convection, the tectonic significance of its asymmetry is determinable geodetically. Using present art-state a strategically located GPS grid [2] would provide continuously more precise separation of the asymmetric component of surface displacement. In developing plate-motion models including members of the Nuvel series, it would be logical to follow up rather than discard the set permitting minor asymmetrical convection sans net torque, such as an element of net-lithosphere-rotation relative to plumes. To conserve system angular-momentum, this may be the only valid set. Characteristics of the convection to be expected accord with 'paradoxical' features of plate tectonics under purely radial gravity, including: difficulty in closing plate-motion circuits; net-lithosphere-rotation refce. hot-spots, sans net torque; geotectonic maps ranging from Wegener to the present day [3], identifying a 'global tectonic polarity'; and westward drift, of which the asymmetry may be regarded as its engine. In sum, Earth's mantle is subject to three non-reversing force systems acting in the direction of causing net surface-west horizontal displacement, namely: I, Weak and tectonically insignificant forces ('tidal drag'), in unison constituting GH Darwin's tidal retarding couple; II, The forces inducing cumulative vorticity (TVI) [4] in an imperfectly elastic mantle, under passage of tidal M2. The operation of this system is ineluctable, and based on stress and energy consumption is likely to be significant, but its quantification requires separation of the marine from the bodily tidal energy dissipation utilizing secondary effects [4,5]; and III, Buoyancy-forces under convection now recognized as fundamental in geotectonics; - as normally modeled, greatly superadiabatic and dissipative, but within a field gconv minutely west-tilted, rather than artifically devoid of the Moon. Asymmetry of its internal gravity is unique to the asynchronous member of Kuiper's Earth-Moon double planet. The asymmetry distinguishes Earth's steady-state convection from the episodic regime of its moonless and almost non-rotating 'identical twin', Venus. Refs: [1] Tuoma, J. and J. Wisdom, 1994. Astron. J. 108(5) 1943-1961. [2] RCB, 2002. Episodes: J. Int. Geosc. 25(3), in pr. [3] Doglioni, C., 1993. J. Geol. Soc. 150, 991-1002. [4] RCB, 2000. Tectonic Consequences of Earth's Rotation (Oxford UP) s.4.3. [5] Lambeck, K., 1988. Geophysical Geodesy: The Slow Deformations of the Earth (Oxford UP) s. 11.3.

  13. Zero-gravity Mean Free Surface Curvature of a Confined Liquid in a Radially-Vaned Container

    NASA Technical Reports Server (NTRS)

    Chen, Yongkang; Callahan, Michael; Weislogel, Mark

    2013-01-01

    A variety of increasingly intricate container geometries are under consideration for the passive manipulation of liquids aboard spacecraft where the impact of gravity may be neglected. In this study we examine the mean curvature of a liquid volume confined within a radial array of disconnected vanes of infinite extent. This particular geometry possesses a number of desirable characteristics relevant to waste water treatment aboard spacecraft for life support. It is observed that under certain conditions the slender shape of the free surface approaches an asymptote, which can be predicted analytically using new hybrid boundary conditions proposed herein. This contribution represents possibly the final extension of what has been referred to as the method of de Lazzer et al. (1996). The method enables the integration of the Young-Laplace equation over a domain with its boundaries, including the wetted portion of the solid boundaries, symmetry planes, and circular arcs representing free surfaces at the center plane of the liquid body. Asymptotic solutions at several limits are obtained and the analysis is confirmed with numerical computations.

  14. Containing Hair During Cutting In Zero Gravity

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1992-01-01

    Proposed device collects loose hair during barbering and shaving in zero gravity to prevent hair clippings from contaminating cabin of spacecraft. Folds for storage, opens into clear, bubblelike plastic dome surrounding user's head, tray fits around user's throat, and fanlike ring surrounds back of neck. Device fits snugly but comfortably around neck, preventing hair from escaping to outside. Flow of air into hose connected to suction pump removes hair from bubble as cut. Filter at end of hose collects hair.

  15. Development of Skylab experiment T020 employing a foot controlled maneuvering unit

    NASA Technical Reports Server (NTRS)

    Hewes, D. E.; Glover, K. E.

    1972-01-01

    A review of the plans and preparations is presented for Skylab experiment T020, entitled Foot-Controlled Maneuvering Unit (FCMU). The FCMU is an experimental system intended to explore the use of simple astronaut maneuvering devices in the zero-gravity environment of space. This review also includes discussions of the FCMU concept and experiment hardware systems, as well as supporting experiment definition and development research studies conducted with the aid of zero-gravity simulators.

  16. The Marshall Space Flight Center KC-135 zero gravity test program for FY 1982

    NASA Technical Reports Server (NTRS)

    Shurney, R. E. (Editor)

    1983-01-01

    During FY-82, researchers and experimenters from Marshall Space Flight Center (MSFC) conducted 11 separate investigations during 26.3 hr of testing aboard the KC-135 zero-gravity aircraft, based at Ellington Air force Base, Texas. Although this represented fewer hours than initially projected, all experiment and test objectives were met or exceeded. This Technical Memorandum compiles all results achieved by MSFC users during FY-82, a year considered to be highly productive.

  17. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Image and Video Library

    1991-08-21

    S91-44453 (21 Aug 1991) --- The crew of STS-45 is already training for its March 1992 mission, including stints on the KC-135 zero-gravity-simulating aircraft. Shown with an inflatable globe are, clockwise from the top, C. Michael Foale, mission specialist; Dirk Frimout, payload specialist; Brian Duffy, pilot; Charles R. (Rick) Chappell, backup payload specialist; Charles F. Bolden, mission commander; Byron K. Lichtenberg, payload specialist; and Kathryn D. Sullivan, payload commander.

  18. Catalog of Existing Small Tools for Surface Preparation and Support Equipment for Blasters and Painters

    DTIC Science & Technology

    1977-05-01

    128 lbs./ft3 Specific Gravity 3.6 Hardness (MOHS) 7 Melting Point 2900°F. Coefficient of Expansion 7 . 8 X 1 0– 6 FIGURE 3.17: Properties of...Beaumont, Texas Bethlehem Steel Corporation, San Francisco, California Bethlehem Steel Corporation, Sparrows Point , Maryland Jacksonville Shipyards...checklist can be used by operators and super- visors as a starting point for determining if the yard’s abrasive blasting facility is operating at full

  19. 49 CFR Appendix B to Part 220 - Recommended Pronunciation of Numerals

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...”should be used preceding such numbers. Numbers should be pronounced as follows: Number Spoken 0 ZERO. 1 WUN. 2 TOO. 3 THUH-REE-. 4 FO-WER. 5 FI-YIV. 6 SIX. 7 SEVEN. 8 ATE. 9 NINER. (The figure ZERO should be written as “0” to distinguish it from the letter “O”. The figure ONE should be underlined to...

  20. Measurements of Surfactant Squeeze-out Using Magnetically-Levitated Liquid Bridges

    NASA Technical Reports Server (NTRS)

    Rosenblatt, Charles

    2004-01-01

    Liquid bridges: Columns of liquid supported by two solid surfaces. These are generally opposing right circular cylinders in 0g. For a cylindrical bridge of length L and diameter d, in zero g, the maximum slenderness ratio Lambda [L/d] = pi [Rayleigh]. In the presence of gravity the cylindrical shape of an axisymmetric bridge tends to deform. Fluid has a volumetric magnetic susceptibility X. Magnetic levitation has numerous applications in studies of fluids, "soft" and "hard" condensed matter physics, and biophysics

  1. Free-surface phenomena under low- and zero-gravity conditions

    NASA Technical Reports Server (NTRS)

    Coles, D.

    1985-01-01

    An apparatus to measure contact angle was constructed to exploit the proposed internal-corner criterion. If 2 alfa is the internal angle between two intersecting vertical planes and gamma is the contact angle, a meniscus at the corner rises to a finite height if alfa + gamma pi/2 and to an infinite height if alfa + gamma pi/2. The apparatus operates by decreasing the angle alfa from pi/2 until the meniscus height changes abruptly. A number of liquids are tested on glass and plexiglas.

  2. Emblem for the second manned Skylab mission, Skylab 3

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This is the emblem for the second manned Skylab mission. It will be a mission of up to 56 days. The patch symbolizes the main objectives of the flight. The central figure, adapted from one by Leonardo da Vinci, illustrates the proportions of the human form and suggests the many studies of man himself to be conducted in the zero-gravity environment of space. This drawing is superimposed on two hemispheres representing the two additional main areas of research - studies of the Sun and the development of techniques for survey of the Earth's resources. The left hemisphere show the Sun as it will be seen in the red light radiated by hydrogen atoms in the solar atmosphere. The right hemisphere is intended to suggest the studies of Earth resources to be conducted on Skylab. Although the patch denotes this mission as Skylab II, it is actually consided to be the Skylab III mission.

  3. Deep Orographic Gravity Wave Dynamics over Subantarctic Islands as Observed and Modeled during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

    NASA Astrophysics Data System (ADS)

    Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.

    2016-12-01

    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high-altitude numerical weather prediction models.

  4. Surfactants for Bubble Removal against Buoyancy

    PubMed Central

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  5. Surfactants for Bubble Removal against Buoyancy

    NASA Astrophysics Data System (ADS)

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.

  6. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  7. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  8. Stress, temperature, heart rate, and hibernating factors in hamsters. [pathophysiological conditions resulting from exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1974-01-01

    Pathophysiological conditions resulting from prolonged exposure to zero gravity, cabin constraint, altered ambient environment, whether it be noise, vibrations, high temperatures, or combinations of such factors, are studied in laboratory animals and applied to manned space flight. Results and plans for further study are presented. Specific topics covered include: thermoregulation and its role in reflecting stress and adaptation to the gravity free environment and cabin confinement with its altered circadian forcings; renal function and its measurement in electrolyte distribution and blood flow dynamics; gastronintestinal function and an assessment of altered absorptive capacity in the intestinal mucosa; and catecholamine metabolism in terms of distribution and turnover rates in specific tissues.

  9. Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1

    NASA Technical Reports Server (NTRS)

    Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.

    1974-01-01

    Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.

  10. Neutral buoyancy testing of architectural and environmental concepts of space vehicle design

    NASA Technical Reports Server (NTRS)

    Lenda, J. A.; Rosener, A. A.; Stephenson, M. L.

    1972-01-01

    Design guidelines are presented that are applicable to providing habitability areas and furniture elements for extended periods in a zero gravity environment. This was accomplished by: (1) analyzing the existing habitability crew area requirements, mobility and restraint aids, cross-cultural design, and establishing a man model for zero gravity; (2) designing specific furniture elements, chair and table, and volumes for a stateroom, office, bathroom, galley, and wardroom; and (3) neutral buoyancy testing and evaluation of these areas.

  11. Preliminary Concept, Specifications, and Requirements for a Zero-Gravity Combustion Facility for Spacelab

    NASA Technical Reports Server (NTRS)

    Dewitt, Richard L.

    1978-01-01

    The preliminary concept, specifications, and requirements of a reusable zero gravity combustion facility (0-GCF) for use by experimenters aboard the spacelab payload of the space transportation system (STS) orbiter are described. The facility will be amenable to any mission of the STS orbiter in which a spacelab habitable segment and pallet segment are integral and for which orbital mission plans specify induced accelerations of 0.0001 g or less for sufficiently long periods so as not to impact experiment performance.

  12. Space Processing Applications Rocket project, SPAR 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Experiment objectives, design/operational concepts, and final results are summarized for six materials science experiments conducted during the second space processing applications rocket mission flown by NASA. The individual experiments discussed are: (1) solidification of Pb-Sb eutectic; (2) feasibility of producing closed-cell metal foams; (3) direct observation of dendrite remelting and macrosegregation in castings; (4) agglomeration in immiscible liquids; (5) casting dispersion - strengthened composites at zero gravity; and (6) solidification behavior of Al-In alloys under zero gravity conditions.

  13. Breadboard development of a fluid infusion system

    NASA Technical Reports Server (NTRS)

    Thompson, R. W.

    1974-01-01

    A functional breadboard of a zero gravity Intravenous Infusion System (IVI) is presented. Major components described are: (1) infusate pack pressurizers; (2) pump module; (3) infusion set; and (4) electronic control package. The IVI breadboard was designed to demonstrate the feasibility of using the parallel solenoid pump and spring powered infusate source pressurizers for the emergency infusion of various liquids in a zero gravity environment. The IVI was tested for flow rate and sensitivity to back pressure at the needle. Results are presented.

  14. A Hexapod Robot to Demonstrate Mesh Walking in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Foor, David C.

    2005-01-01

    The JPL Micro-Robot Explorer (MRE) Spiderbot is a robot that takes advantage of its small size to perform precision tasks suitable for space applications. The Spiderbot is a legged robot that can traverse harsh terrain otherwise inaccessible to wheeled robots. A team of Spiderbots can network and can exhibit collaborative efforts to SUCCeSSfUlly complete a set of tasks. The Spiderbot is designed and developed to demonstrate hexapods that can walk on flat surfaces, crawl on meshes, and assemble simple structures. The robot has six legs consisting of two spring-compliant joints and a gripping actuator. A hard-coded set of gaits allows the robot to move smoothly in a zero-gravity environment along the mesh. The primary objective of this project is to create a Spiderbot that traverses a flexible, deployable mesh, for use in space repair. Verification of this task will take place aboard a zero-gravity test flight. The secondary objective of this project is to adapt feedback from the joints to allow the robot to test each arm for a successful grip of the mesh. The end result of this research lends itself to a fault-tolerant robot suitable for a wide variety of space applications.

  15. Experimental concept for examination of biological effects of magnetic field concealed by gravity.

    PubMed

    Yamashita, M; Tomita-Yokotani, K; Hashimoto, H; Takai, M; Tsushima, M; Nakamura, T

    2004-01-01

    Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  16. Assessment of geophysical flows for zero-gravity simulation

    NASA Technical Reports Server (NTRS)

    Winn, C. B.; Cox, A.; Srivatsangam, R.

    1976-01-01

    The results of research relating to the feasibility of using a low gravity environment to model geophysical flows are presented. Atmospheric and solid earth flows are considered. Possible experiments and their required apparatus are suggested.

  17. Principal facts for gravity stations in the Antelope Valley-Bedell Flat area, west-central Nevada

    USGS Publications Warehouse

    Jewel, Eleanore B.; Ponce, David A.; Morin, Robert L.

    2000-01-01

    In April 2000 the U.S. Geological Survey (USGS) established 211 gravity stations in the Antelope Valley and Bedell Flat area of west-central Nevada (see figure 1). The stations were located about 15 miles north of Reno, Nevada, southwest of Dogskin Mountain, and east of Petersen Mountain, concentrated in Antelope Valley and Bedell Flat (figure 2). The ranges in this area primarily consist of normal-faulted Cretaceous granitic rocks, with some volcanic and metavolcanic rocks. The purpose of the survey was to characterize the hydrogeologic framework of Antelope Valley and Bedell Flat in support of future hydrologic investigations. The information developed during this study can be used in groundwater models. Gravity data were collected between latitude 39°37.5' and 40°00' N and longitude 119°37.5' and 120°00' W. The stations were located on the Seven Lakes Mountain, Dogskin Mountain, Granite Peak, Bedell Flat, Fraser Flat, and Reno NE 7.5 minute quadrangles. All data were tied to secondary base station RENO-A located on the campus of the University of Nevada at Reno (UNR) in Reno, Nevada (latitude 39°32.30' N, longitude 119°48.70' W, observed gravity value 979674.69 mGal). The value for observed gravity was calculated by multiple ties to the base station RENO (latitude 39°32.30' N, longitude 119°48.70' W, observed gravity value 979674.65 mGal), also on the UNR campus. The isostatic gravity map (figure 3) includes additional data sets from the following sources: 202 stations from a Geological Survey digital data set (Ponce, 1997), and 126 stations from Thomas C. Carpenter (written commun., 1998).

  18. An example of branching in a variational problem. [shape of liquid suspended from wire in zero gravity

    NASA Technical Reports Server (NTRS)

    Darbro, W.

    1978-01-01

    In an experiment in space it was found that when a cubical frame was slowly withdrawn from a soap solution, the wire frame retained practically a full cube of liquid. Removed from the frame (by shaking), the faces of the cube became progressively more concave, until adjacent faces became tangential. In the present paper a mathematical model describing the shape a liquid takes due to its surface tension while suspended on a wire frame in zero-g is solved by use of Lagrange multipliers. It is shown how the configuration of soap films so bounded is dependent upon the volume of liquid trapped in the films. A special case of the solution is a soap film naturally formed on a cubical wire frame.

  19. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.

  20. Ball Lightning in Zero Gravity in the Laboratory

    NASA Astrophysics Data System (ADS)

    Alexeff, Igor; Parameswaran, Sriram; Grace, Michael

    2004-11-01

    We have created balls of orange plasma in atmospheric - pressure air that survive for over 1/2 second without power input. The technique used was to create a pulsed horizontal electric arc in a zero - gravity environment using 6 neon - sign transformers in parallel, each producing 16,000 V at 60 mA. The zero - gravity environment reduces heat losses by reducing thermal convection, creating a larger ball. Previous work (1) suggests that the ball lifetime scales as the square of the ball radius. The balls were photographed after power turnoff with a high - speed 16 mm movie camera. Movies of the balls being formed and decaying will be shown. We suggest that there are several other forms of ball lightning (2). 1.Igor Alexeff et. al. International Conference On Plasma Science, Jeju, Korea, June 2-5, 2003, Conference Record, p 254. 2. Igor Alexeff and Mark Rader, IEEE Transactions on Plasma Science, Vol. 20, No. 6, Dec. 1992, pp.669-671. Igor Alexeff and Mark Rader, Fusion Technology, Vol. 27, May 1995, p. 271.

  1. Gravity and Zero Point Energy

    NASA Astrophysics Data System (ADS)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  2. Investigation of Propellant Sloshing and Zero Gravity Equilibrium for the Orion Service Module Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Kreppel, Samantha

    A scaled model of the downstream Orion service module propellant tank was constructed to asses the propellant dynamics under reduced and zero-gravity conditions. Flight and ground data from the experiment is currently being used to validate computational models of propel-lant dynamics in Orion-class propellant tanks. The high fidelity model includes the internal structures of the propellant management device (PMD) and the mass-gauging probe. Qualita-tive differences between experimental and CFD data are understood in terms of fluid dynamical scaling of inertial effects in the scaled system. Propellant configurations in zero-gravity were studied at a range of fill-fractions and the settling time for various docking maneuvers was determined. A clear understanding of the fluid dynamics within the tank is necessary to en-sure proper control of the spacecraft's flight and to maintain safe operation of this and future service modules. Understanding slosh dynamics in partially-filled propellant tanks is essential to assessing spacecraft stability.

  3. The spinning artificial gravity environment: A design project

    NASA Technical Reports Server (NTRS)

    Pignataro, Robert; Crymes, Jeff; Marzec, Tom; Seibert, Joe; Walker, Gary

    1987-01-01

    The SAGE, or Spinning Artificial Gravity Environment, design was carried out to develop an artificial gravity space station which could be used as a platform for the performance of medical research to determine the benefits of various, fractional gravity levels for astronauts normally subject to zero gravity. Desirable both for its medical research mission and a mission for the study of closed loop life-support and other factors in prolonged space flight, SAGE was designed as a low Earth orbiting, solar powered, manned space station.

  4. Modal parameters of space structures in 1 G and 0 G

    NASA Technical Reports Server (NTRS)

    Bicos, Andrew S.; Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett

    1993-01-01

    Analytic and experimental results are presented from a study of the changes in the modal parameters of space structural test articles from one- to zero-gravity. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, which were made on a spring-wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset, suspension, and ambient gravity level.

  5. Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft

    NASA Astrophysics Data System (ADS)

    Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.

    2012-01-01

    For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.

  6. Viscosity Measurement using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    We present in here details of a new method, using drop coalescence, for application in microgravity environment for determining the viscosity of highly viscous undercooled liquids. The method has the advantage of eliminating heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Also, due to the rapidity of the measurement, homogeneous nucleation would be avoided. The technique relies on both a highly accurate solution to the Navier-Stokes equations as well as on data gathered from experiments conducted in near zero gravity environment. The liquid viscosity is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity of two coalescing drops. Results are presented from two validation experiments of the method which were conducted recently on board the NASA KC-135 aircraft. In these tests the viscosity of a highly viscous liquid, such as glycerine at different temperatures, was determined to reasonable accuracy using the liquid coalescence method. The experiments measured the free surface velocity of two glycerine drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The free surface velocity was then compared with the computed values obtained from different viscosity values. The results of these experiments were found to agree reasonably well with the calculated values.

  7. New Fluid Prevents Railway Ice

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a licensing agreement between NASA's Ames Research Center and Midwest Industrial Supply, Inc. (MIS), two MIS products have been enhanced with NASA's anti-icing fluid technology. MIS offers the new fluid in two commercial products, the Zero Gravity(TM) Third Rail Anti-Icer/Deicer and the Ice Free Switch(R). Using NASA's fluid technology, these products form a protective-coating barrier that prevents the buildup of ice and snow. Applying the fluid to the railway components prior to ice or snowstorm works as an anti-icing fluid, remaining in place to melt precipitation as it hits the surface. It also functions as a deicing fluid. If applied to an already frozen switch or rail, it will quickly melt the ice, free the frozen parts, and then remain in place to prevent refreezing. Additional benefits include the ability to cling to vertical rail surfaces and resist the effects of rain and wind. With the Ice Free Switch, it takes only five minutes to treat the switch by spraying, brushing, or pouring on the product. Ice Free Switch requires as little as one gallon per switch whereas other deicing fluids require five to ten gallons of liquid to effectively melt ice. Zero Gravity serves the same anti-icing/deicing purposes but applies fluid to the third rail through a system that is easily installed onto mass transit cars. A tank of fluid and a dispensing system are placed underneath the train car and the fluid is applied as the train runs its route.

  8. Ion figuring of large prototype mirror segments for the E-ELT

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Vecchi, G.; Basso, S.; Citterio, O.; Civitani, M.; Mattaini, E.; Pareschi, G.; Sironi, G.

    2014-07-01

    At INAF-Astronomical Observatory of Brera a study is under way to explore the problems related to the ion beam figuring of full scale Zerodur hexagonal mirrors of M1 for the European Extremely Large Telescope (E-ELT), having size of 1.4 m corner to corner. During this study it is initially foreseen the figuring of a scaled down version mirror of the same material having size of 1 m corner to corner to assess the relevant figuring problems and issues. This specific mirror has a radius of curvature of 3 m, which allows for easy interferometric measurement. A mechanical support was designed to minimize its deformations due to the gravity. The Ion Beam Figuring Facility used for this study has been recently completed in the Brera Observatory and has a figuring area of 140 cm x 170 cm. It employs a Kaufman ion source having 50 mm grids mounted on three axis. This system has been designed and developed to be autonomous and self-monitoring during the figuring process. The software and the mathematical tools used to compute the dwell time solution have been developed at INAF-OAB as well. Aim of this study is the estimation and optimization of the time requested to correct the surface adopting strategies to mitigate the well-known thermal problems related to the Zerodur material. In this paper, the results obtained figuring the 1 m corner-to-corner test segment are reported.

  9. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  10. Gravity Field and Interior Structure of Saturn from Cassini Observations

    NASA Astrophysics Data System (ADS)

    Anderson, J. D.; Schubert, G.

    2007-05-01

    We discuss the sources for a determination of Saturn's external gravitational potential, beginning with a Pioneer 11 flyby in September 1979, two Voyager flybys in November 1980 for Voyager 1 and August 1981 for Voyager 2, four useful close approaches by the Cassini orbiter in May and June 2005, and culminating in an extraordinary close approach for Radio Science in September 2006. Results from the 2006 data are not yet available, but even without them, Cassini offers improvements in accuracy over Pioneer and Voyager by a factor of 37 in the zonal coefficient J2, a factor of 14 in J4, and a factor of 5 in J6. These improvements are important to our understanding of the internal structure of Saturn in particular, and to solar and extrasolar giant planets in general. Basically, Saturn can be modeled as a rapidly rotating planet in hydrostatic equilibrium. Consistent with the limited data available, we express the density distribution as a polynomial of fifth degree in the normalized mean radius β = r/R over the real interval zero to one, where R is the radius of a sphere with density equal to the mean density of Saturn. Then the six coefficients of the polynomial are adjusted by nonlinear least squares until they match the measured even zonal gravity coefficients J2,J4,J6 within a fraction of a standard deviation. The gravity coefficients are computed from the density distribution by the method of level surfaces to the third order in the rotational smallness parameter. Two degrees of freedom are removed by applying the constraints that (1)~the derivative of the density distribution is zero at the center, and (2)~the density is zero at the surface. Further, a unique density distribution is obtained by the method of singular value decomposition truncated at rank three. Given this unique density distribution, the internal pressure can be obtained by numerical integration of the equation of hydrostatic equilibrium, expressed in terms of the single independent parameter β. By means of this technique, a pressure of 3~Mbar is indicated at about half the distance to the surface, consistent with a phase transition from molecular to metallic hydrogen at 50% depth. However, a similar integration of the mass continuity equation does not use up all the mass. Mathematically this results in a point- mass core of about 10 Earth masses, although in reality the core must be sufficiently large to have a physically reasonable mean density. Our results are robust against the relatively large uncertainty in Saturn's rotation period.

  11. Megaquakes, prograde surface waves and urban evolution

    NASA Astrophysics Data System (ADS)

    Lomnitz, C.; Castaños, H.

    2013-05-01

    Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción

  12. Earth's core and inner-core resonances from analysis of VLBI nutation and superconducting gravimeter data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.

    2017-01-01

    Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.

  13. Crossing of the phantom divide using tachyon-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, J.; Banijamali, A.; Milani, F.

    2009-06-15

    In this paper we consider two models. First, we study tachyon-Gauss-Bonnet gravity and obtain the condition of the equation of state crossing -1. Second, we discuss the modified Gauss-Bonnet gravity with the tachyon field and show the condition of {omega} crossing -1. Also, we plot figures for {omega} numerically in special potential and coupling function.

  14. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  15. Muscle and the physiology of locomotion. [in zero gravity

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Nicogossian, A. E.; Pool, S. L.

    1983-01-01

    NASA's past, current, and planned research on muscle deterioration at zero gravity and development of countermeasures are reviewed; Soviet studies are discussed as well. A definition of muscle mass and strength regulation factors, and improved measurement methods of muscle atrophy are needed. Investigations of tissue growth factors and their receptors, endogenous and exogenous anabolic protein synthesis stimulation, and a potential neurotropic factor are among the projects in progress or planned. At present, vigorous physical exercise during spaceflight is recommended as the most effective countermeasure against skeletal muscle atrophy.

  16. View of Payload specialist Paul Scully-Power during Zero-G training

    NASA Image and Video Library

    1984-07-16

    S84-37536 (18 July 1984) --- Astronaut Robert L. Crippen, left, 41-G crew commander watches as one of his fellow crewmembers gets an introduction to weightlessness aboard a KC-135, "zero-gravity" aircraft. Paul D. Scully-Power is the crew member literally floating here in the brief period of micro-gravity. Scully-Power, an oceanographer with the U.S. Navy, and Marc Garneau (partially visible in chair behind the floating Scully-Power)are payload specialists for 41-G. Garneau represents the National Research Council (Canada).

  17. Killifish Hatching and Orientation experiment MA-161

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Boyd, J. F.; Bozarth, G. A.; Conner, J. A.; Eichler, V. B.; Fuller, P. M.; Hoffman, R. B.; Keefe, J. R.; Kuchnow, K. P.; Oppenheimer, J. M.

    1976-01-01

    The killifish Fundulus heteroclitus was used as a model system for study of embryonic development and vestibular adaptation in orbital flight. Juvenile fish in a zero gravity environment exhibited looping swimming activity similar to that observed during the Skylab 3 mission. Hatchings from a 336 hour egg stage were also observed to loop. At splashdown, both juveniles and hatchings exhibited a typical diving response suggesting relatively normal vestibular function. Juveniles exhibited swimming patterns suggestive of abnormal swim bladders. The embryos exhibited no abnormalities resulting from development in a zero gravity environment.

  18. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  19. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  20. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  1. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  2. Pancam Mast Assembly on Mars Rover

    NASA Technical Reports Server (NTRS)

    Warden, Robert M.; Cross, Mike; Harvison, Doug

    2004-01-01

    The Pancam Mast Assembly (PMA) for the 2003 Mars Rover is a deployable structure that provides an elevated platform for several cameras. The PMA consists of several mechanisms that enable it to raise the cameras as well as point the cameras in all directions. This paper describes the function of the various mechanisms as well as a description of the mechanisms and some test parameters. Designing these mechanisms to operate on the surface of Mars presented several challenges. Typical spacecraft mechanisms must operate in zero-gravity and high vacuum. These mechanisms needed to be designed to operate in Martian gravity and atmosphere. Testing conditions were a little easier because the mechanisms are not required to operate in a vacuum. All of the materials are vacuum compatible, but the mechanisms were tested in a dry nitrogen atmosphere at various cold temperatures.

  3. Skylab

    NASA Image and Video Library

    1973-01-01

    This chart describes the Skylab student experiment ED-61, Plant Growth, and experiment ED-62, Plant Phototropism. Two similar proposals were submitted by Joel G. Wordekemper of West Point, Nebraska, and Donald W. Schlack of Downey, California. Wordekemper's experiment (ED-61) was to see how the lack of gravity would affect the growth of roots and stems of plants. Schlack's experiment (ED-62) was to study the effect of light on a seed developing in zero gravity. The growth container of the rice seeds for their experiment consisted of eight compartments arranged in two parallel rows of four. Each had two windowed surfaces to allow periodic photography of the developing seedlings. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  4. Relationship between regolith particle size and porosity on small bodies

    NASA Astrophysics Data System (ADS)

    Kiuchi, M.; Nakamura, A.

    2014-07-01

    Small planetary bodies are covered by a particle layer called the regolith. The particle size and porosity of the regolith surface of the small bodies are important physical properties. The responses of the surface to solar irradiation depend on the particle size and porosity. The particle size and porosity have influences on the dynamic responses of the surface, such as cratering efficiency. In previous studies, these two quantities were measured or estimated by various methods. Here we propose a semi-empirical relationship between the particle size and porosity for small bodies' surfaces. An empirical relationship between the porosity of granular materials in loose packing state under 1G and the ratio of the magnitudes of the interparticle force and gravity which act on a particle was presented in a previous study [1]. In this study, we assume that the van der Waals force F_{V} is predominant in the interparticle forces and adopt a model formula [2] which is different from that adopted in the previous study [1]: F_{V} = {AS^{2}}/{48Ω ^{2}}r, where A is the Hamaker constant, r is the particle radius, Ω is the diameter of an O^{-2} ion, and S is the cleanliness ratio which shows the smallness of a number of the adsorbate molecules [2]. It was shown that the cleanliness ratio S is approximately 0.1 on the Earth, and is almost unity in the interplanetary space. In addition to the data of the several previous studies, our own measurement result for micron-sized fly-ash particles in atmospheric conditions is used in the present analysis. We calculate F_{V} using Eq. (1), and obtain a relationship between porosity and the ratio R_{F} = F_{V}/F_{g}, where F_{g} is gravity. An empirical formula used in the previous study [1], p = p_{0}+(1-p_{0})exp(-m{R_{F}}^{-n}), is applied to fit the data, where p is the porosity and p_{0}, m and n are constants. We assume that p_{0} is 0.36. By substituting Eq. (1) to Eq. 2, we obtain p = p_{0}+(1-p_{0})exp {-m({AS^{2}}/{64πΩ ^{2}ρ g r^{2}})^{-2} }, where ρ is particle density and g is the gravitational acceleration. We found that previous data and our own measurement result were fit successfully by Eq. (3) as shown in the figure (left). We then apply Eq. (3) to the conditions of small bodies' surfaces to derive the relationship between particle radius and porosity for the several objects as shown in the figure (right). For example, in the case of asteroid (25143) Itokawa, the range of porosity is expected to be between 0.55 and 0.8 for the surface area consisting of particles with mm-cm sizes. Figure: Porosity of granular media as a function of the ratio R_{F} of the magnitudes of the van der Waals force and gravity (left) and porosity as a function of particle radius on the surface of small bodies (right).

  5. Ship Signatures in RADARSAT-1 ScanSAR Narrow B Imagery: Analysis with AISLive Data

    DTIC Science & Technology

    2007-03-01

    desired target subscene contains image border “airballs” (i.e., the zero padded region around the image); • Multi-Signature Target Masking – A...of figures Figure 1. Histogram of latencies from AIS broadcast times by the originating vessels to the AISLive snapshot acquistion time for the... zero -th approximation, and first approximation courses are , , , and , respectively. The path length is a function of: a) the offset totalD iC fC

  6. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  7. Multiphase Flow: The Gravity of the Situation

    NASA Technical Reports Server (NTRS)

    Hewitt, Geoffrey F.

    1996-01-01

    A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.

  8. Geophysical studies of the Crump Geyser known geothermal resource area, Oregon, in 1975

    USGS Publications Warehouse

    Plouff, Donald

    2006-01-01

    The U.S. Geological Survey (USGS) conducted geophysical studies in support of the resource appraisal of the Crump Geyser Known Geothermal Resource Area (KGRA). This area was designated as a KGRA by the USGS, and this designation became effective on December 24, 1970. The land classification standards for a KGRA were established by the Geothermal Steam Act of 1970 (Public Law 91-581). Federal lands so classified required competitive leasing for the development of geothermal resources. The author presented an administrative report of USGS geophysical studies entitled 'Geophysical background of the Crump Geyser area, Oregon, KGRA' to a USGS resource committee on June 17, 1975. This report, which essentially was a description of geophysical data and a preliminary interpretation without discussion of resource appraisal, is in Appendix 1. Reduction of sheets or plates in the original administrative report to page-size figures, which are listed and appended to the back of the text in Appendix 1, did not seem to significantly degrade legibility. Bold print in the text indicates where minor changes were made. A colored page-size index and tectonic map, which also show regional geology not shown in figure 2, was substituted for original figure 1. Detailed descriptions for the geologic units referenced in the text and shown on figures 1 and 2 were separately defined by Walker and Repenning (1965) and presumably were discussed in other reports to the committee. Heavy dashed lines on figures 1 and 2 indicate the approximate KGRA boundary. One of the principal results of the geophysical studies was to obtain a gravity map (Appendix 1, fig. 10; Plouff, and Conradi, 1975, pl. 9), which reflects the fault-bounded steepness of the west edge of sediments and locates the maximum thickness of valley sediments at about 10 kilometers south of Crump Geyser. Based on the indicated regional-gravity profile and density-contrast assumptions for the two-dimensional profile, the maximum sediment thickness was estimated at 820 meters. A three-dimensional gravity model would have yielded a greater thickness. Audiomagnotelluric measurements were not made as far south as the location of the gravity low, as determined in the field, due to a lack of communication at that time. A boat was borrowed to collect gravity measurements along the edge of Crump Lake, but the attempt was curtailed by harsh, snowy weather on May 21, 1975, which shortly followed days of hot temperature. Most of the geophysical data and illustrations in Appendix 1 have been published (Gregory and Martinez, 1975; Plouff, 1975; and Plouff and Conradi, 1975), and Donald Plouff (1986) discussed a gravity interpretation of Warner Valley at the Fall 1986 American Geophysical Union meeting in San Francisco. Further interpretation of possible subsurface geologic sources of geophysical anomalies was not discussed in Appendix 1. For example, how were apparent resistivity lows (Appendix 1, figs. 3-6) centered near Crump Geyser affected by a well and other manmade electrically conductive or magnetic objects? What is the geologic significance of the 15-milligal eastward decrease across Warner Valley? The explanation that the two-dimensional gravity model (Appendix 1, fig. 14) was based on an inverse iterative method suggested by Bott (1960) was not included. Inasmuch as there was no local subsurface rock density distribution information to further constrain the gravity model, the three-dimensional methodology suggested by Plouff (1976) was not attempted. Inasmuch as the associated publication by Plouff (1975), which released the gravity data, is difficult to obtain and not in digital format, that report is reproduced in Appendix 2. Two figures of the publication are appended to the back of the text. A later formula for the theoretical value of gravity for the given latitudes at sea level (International Association of Geodesy, 1971) should be used to re-compute gravity anomalies. To merge t

  9. Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System

    NASA Astrophysics Data System (ADS)

    Pikulin, D. I.; Franz, M.

    2017-07-01

    A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti-de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.

  10. Time series of low-degree geopotential coefficients from SLR data: estimation of Earth's figure axis and LOD variations

    NASA Astrophysics Data System (ADS)

    Luceri, V.; Sciarretta, C.; Bianco, G.

    2012-12-01

    The redistribution of the mass within the earth system induces changes in the Earth's gravity field. In particular, the second-degree geopotential coefficients reflect the behaviour of the Earth's inertia tensor of order 2, describing the main mass variations of our planet impacting the EOPs. Thanks to the long record of accurate and continuous laser ranging observations to Lageos and other geodetic satellites, SLR is the only current space technique capable to monitor the long time variability of the Earth's gravity field with adequate accuracy. Time series of low-degree geopotential coefficients are estimated with our analysis of SLR data (spanning more than 25 years) from several geodetic satellites in order to detect trends and periodic variations related to tidal effects and atmospheric/oceanic mass variations. This study is focused on the variations of the second-degree Stokes coefficients related to the Earth's principal figure axis and oblateness: C21, S21 and C20. On the other hand, surface mass load variations induce excitations in the EOPs that are proportional to the same second-degree coefficients. The time series of direct estimates of low degree geopotential and those derived from the EOP excitation functions are compared and presented together with their time and frequency analysis.

  11. Defying Gravity Using Jenga[TM] Blocks

    ERIC Educational Resources Information Center

    Tan, Yin-Soo; Yap, Kueh-Chin

    2007-01-01

    This paper describes how Jenga[TM] blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum. (Contains 8 figures and 1 table.)

  12. Analysis of Cell Biomechanics Response to Gravity:A Fluids for Biology Study Utilizing NASA Glenns Zero Gravity Research Facility

    NASA Technical Reports Server (NTRS)

    Bomani, Bilal M. M.; Kassemi, Mohammad; Neumann, Eric S.

    2016-01-01

    It remains unclear how biological cells sense and respond to gravitational forces. Leading scientists state that a large gap exists in the understanding of physiological and molecular adaptation that occurs as biology enters the spaceflight realm. We are seeking a method to fully understand how cells sense microgravity/gravity and what triggers their response.

  13. Recommended reference figures for geophysics and geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.; Okeefe, J. A.

    1973-01-01

    Specific reference figures are recommended for consistent use in geophysics and geodesy. The selection of appropriate reference figure for geophysical studies suggests a relationship between the Antarctic negative gravity anomaly and the great shrinkage of the Antarctic ice cap about 4-5 million years ago. The depression of the south polar regions relative to the north polar regions makes the Southern Hemisphere flatter than the Northern Hemisphere, thus producing the third harmonic (pear-shaped) contribution to the earth's figure.

  14. A new unified approach to determine geocentre motion using space geodetic and GRACE gravity data

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Kusche, Jürgen; Landerer, Felix W.

    2017-06-01

    Geocentre motion between the centre-of-mass of the Earth system and the centre-of-figure of the solid Earth surface is a critical signature of degree-1 components of global surface mass transport process that includes sea level rise, ice mass imbalance and continental-scale hydrological change. To complement GRACE data for complete-spectrum mass transport monitoring, geocentre motion needs to be measured accurately. However, current methods of geodetic translational approach and global inversions of various combinations of geodetic deformation, simulated ocean bottom pressure and GRACE data contain substantial biases and systematic errors. Here, we demonstrate a new and more reliable unified approach to geocentre motion determination using a recently formed satellite laser ranging based geocentric displacement time-series of an expanded geodetic network of all four space geodetic techniques and GRACE gravity data. The unified approach exploits both translational and deformational signatures of the displacement data, while the addition of GRACE's near global coverage significantly reduces biases found in the translational approach and spectral aliasing errors in the inversion.

  15. Integrated geophysical and geological study of the tectonic framework of the 38th parallel lineament in the vicinity of its intersection with the extension of the New Madrid fault zone. Annual progress report, fiscal year 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braile, L.W.; Hinze, W.J.; Sexton, J.L.

    1979-09-01

    An integrated gravity, magnetic, crustal seismic refraction, and basement geology study is being conducted of the northeastern extension of the New Madrid Fault Zone in the vicinity of the 38th Parallel Lineament. Gravity and magnetic anomaly maps prepared of this area plus regional seismicity suggest that the basement structural feature associated with the New Madrid seismicity extends northeasterly into southern Indiana to at least 39/sup 0/N latitude. Gravity and subsurface data indicate that the Rough Creek Fault Zone, a major element of the 38th Parallel Lineament, is the northern boundary of a complex graben which formed in late Precambrian-early Paleozoicmore » time and since has been reactivated. Surface wave studies indicate that the crustal thickness of the northern Mississippi Embayment is probably in the range of 50 to 55 km, and the structure of the crust obtained from these studies is highly suggestive of a failed rift. 40 figures, 3 tables.« less

  16. The Mystery of the Mars North Polar Gravity-Topography Correlation(Or Lack Thereof)

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sjogren, W. L.; Johnson, C. L.

    1999-01-01

    Maps of moderately high resolution gravity data obtained from the Mars Global Surveyor (MGS) gravity calibration orbit campaign and high precision topography obtained from the Mars Orbiter Laser Altimeter (MOLA) experiment reveal relationships between gravity and topography in high northern latitudes of Mars. Figure 1 shows the results of a JPL spherical harmonic gravity model bandpass filtered between degrees 6 and 50 contoured over a MOLA topographic image. A positive gravity anomaly exists over the main North Polar cap, but there are at least six additional positive gravity anomalies, as well as a number of smaller negative anomalies, with no obvious correlation to topography. Additional information is contained in the original extended abstract.

  17. Improvement of Europa's Gravity and Body Tides and Shape with a Laser Altimeter during a Flyby Tour

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Genova, A.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    Laser altimeters have been primarily utilized with orbiter spacecraft. Recently, the Mercury Laser Altimeter on MESSENGER successfully operated at Mercury during two flybys and thousands of highly-elliptical orbits, and contributed greatly towards improved understanding of the innermost planet. We show that a laser altimeter instrument on a flyby tour mission such as the planned NASA Europa Clipper can constrain key geophysical parameters when supported by variable-frequency altimetric measurements over repeated ~145°-long arcs across the surface. Previous work by Park et al. (2011, GRL) showed through covariance analysis that a similar trajectory could yield the gravity tidal Love number k2 to good accuracy (0.05). Here, we conduct a full simulation of a 45-flyby trajectory in the Jupiter system with Europa as primary target. We consider reasonable tracking coverage and noise level (dominated by plasma noise), as well as gravity (degree 50) and topography (200m resolution supplemented by realistic fractal noise at shorter wavelengths), informed by relevant existing data (Galileo, Cassini). The simulation is initialized at pessimistic values, with C20, C22, k2, and h2 in error of 90%, 90%, 50%, and 50%, respectively. All other gravity coefficients up to degree 3 have zero a priori values. Assumed altimetric data sampling and noise are derived from the tour trajectory and the instrument performance described by Smith et al. (this meeting). This variable-frequency laser altimeter can greatly improve the surface coverage (for shape recovery) and the number of altimetric crossovers, the best measurement type to constrain the tidal surface deformation. We find from our simulation that the addition of altimetry data significantly improves the determination of the gravity tidal Love number k2 and enables the recovery of the body tidal Love number h2. Low-degree gravity and topography are most important to constrain the interior structure of Europa. Scientific objectives of a mission such as Europa Clipper can be made more robust and even furthered with a laser altimeter.

  18. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  19. New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.

  20. Energy theorem for (2+1)-dimensional gravity.

    NASA Astrophysics Data System (ADS)

    Menotti, P.; Seminara, D.

    1995-05-01

    We prove a positive energy theorem in (2+1)-dimensional gravity for open universes and any matter energy-momentum tensor satisfying the dominant energy condition. We consider on the space-like initial value surface a family of widening Wilson loops and show that the energy-momentum of the enclosed subsystem is a future directed time-like vector whose mass is an increasing function of the loop, until it reaches the value 1/4G corresponding to a deficit angle of 2π. At this point the energy-momentum of the system evolves, depending on the nature of a zero norm vector appearing in the evolution equations, either into a time-like vector of a universe which closes kinematically or into a Gott-like universe whose energy momentum vector, as first recognized by Deser, Jackiw, and 't Hooft (1984) is space-like. This treatment generalizes results obtained by Carroll, Fahri, Guth, and Olum (1994) for a system of point-like spinless particle, to the most general form of matter whose energy-momentum tensor satisfies the dominant energy condition. The treatment is also given for the anti-de Sitter (2+1)-dimensional gravity.

  1. Should tsunami simulations include a nonzero initial horizontal velocity?

    NASA Astrophysics Data System (ADS)

    Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.

    2017-08-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.[Figure not available: see fulltext.

  2. 49 CFR Appendix B to Part 220 - Recommended Pronunciation of Numerals

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...”should be used preceding such numbers. Numbers should be pronounced as follows: Number Spoken 0 ZERO. 1 WUN. 2 TOO. 3 THUH-REE-. 4 FO-WER. 5 FI-YIV. 6 SIX. 7 SEVEN. 8 ATE. 9 NINER. (The figure ZERO should... ATENINER NINER. 20.3 TOO ZERO DECIMALTHUH-REE. ...

  3. 49 CFR Appendix B to Part 220 - Recommended Pronunciation of Numerals

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...”should be used preceding such numbers. Numbers should be pronounced as follows: Number Spoken 0 ZERO. 1 WUN. 2 TOO. 3 THUH-REE-. 4 FO-WER. 5 FI-YIV. 6 SIX. 7 SEVEN. 8 ATE. 9 NINER. (The figure ZERO should... ATENINER NINER. 20.3 TOO ZERO DECIMALTHUH-REE. ...

  4. 49 CFR Appendix B to Part 220 - Recommended Pronunciation of Numerals

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...”should be used preceding such numbers. Numbers should be pronounced as follows: Number Spoken 0 ZERO. 1 WUN. 2 TOO. 3 THUH-REE-. 4 FO-WER. 5 FI-YIV. 6 SIX. 7 SEVEN. 8 ATE. 9 NINER. (The figure ZERO should... ATENINER NINER. 20.3 TOO ZERO DECIMALTHUH-REE. ...

  5. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, crewmembers and backup payload specialist participate in zero gravity activities onboard KC-135 NASA 930. The crewmembers, wearing flight suits, float and tumble around an inflated globe during the few seconds of microgravity created by parabolic flight. With his hand on the fuselage ceiling is Payload Specialist Dirk D. Frimout. Clockwise from his position are Mission Specialist (MS) C. Michael Foale, Pilot Brian Duffy, backup Payload Specialist Charles R. Chappell, MS and Payload Commander (PLC) Kathryn D. Sullivan (with eye glasses), Commander Charles F. Bolden, and Payload Specialist Byron K. Lichtenberg.

  6. Astronaut Edwin Aldrin makes sandwich in zero gravity condition

    NASA Image and Video Library

    1969-07-22

    S69-39724 (22 July 1969) --- Astronaut Edwin E. Aldrin Jr., Apollo 11 lunar module pilot, performs for his Earth-bound television audience, in this color reproduction taken from a TV transmission, from the Apollo 11 spacecraft during its trans-Earth journey home from the moon. Aldrin illustrates how to make a sandwich under zero-gravity conditions. When this picture was made, Apollo 11 was approximately 137,000 nautical miles from Earth, traveling at a speed of about 4,300 feet per second. Also, aboard the spacecraft were astronauts Neil A. Armstrong, commander; and Michael Collins, command module pilot.

  7. Influence of zero-G on single-cell systems and zero-G fermenter design concepts

    NASA Technical Reports Server (NTRS)

    Mayeux, J. V.

    1977-01-01

    An analysis was made to identify potential gravity-sensitive mechanisms that may be present in the single-cell growth system. Natural convection (density gradients, induced sedimentation, and buoyancy) is important in microbial systems. The absence of natural convection in the space-flight environment could provide an opportunity for new approaches for developments in industrial fermentation and agriculture. Some of the potential influences of gravity (i.e., convection, sedimentation, etc.) on the cell were discussed to provide insight into what experimental areas may be pursued in future space-flight research programs.

  8. Controlled Tests of Eductors and Submersible Pumps

    DTIC Science & Technology

    1994-09-01

    5 1. " 20 25 3 0 510 15 20 25 30 Time (min) Plate B63 Slurry Specific Gravity H & H Submersible Pump Clean Sand Test 1 2 I S-SG Densit MeterI SG...22 Using Differential Pressure to Measure Specific Gravity ...... .32 4-Conclusions and Recommendations ..................... 34 References...33 Figure 21. Comparison of specific gravity of the slurry as measured by the nuclear density meter and differential pressure

  9. Equilibrium fluid interface behavior under low- and zero-gravity conditions

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    We describe here some of our recent mathematical work, which forms a basis for the Interface Configuration Experiment scheduled for USML-2. The work relates to the design of apparatus that exploits microgravity conditions for accurate determination of contact angle. The underlying motivation for the procedures rests on a discontinuous dependence of the capillary free surface interface S on the contact angle gamma, in a cylindrical capillary tube whose section (base) omega contains a protruding corner with opening angle 2 alpha. Specifically, in a gravity-free environment, omega can be chosen so that, for all sufficiently large fluid volume, the height of S is uniquely determined as a (single-valued) function mu(x,y) entirely covering the base; the height mu is bounded over omega uniformly in gamma throughout the range absolute value of (gamma -(pion/2)) less than or equal to alpha, while for absolute value of (gamma - (pion/2)) greater than alpha fluid will necessarily move to the corner and uncover the base, rising to infinity (or falling to negative infinity) at the vertex, regardless of volume. We mention here only that procedures based on the phenomenon promise excellent accuracy when gamma is close pion/2 but may be subject to experimental error when gamma is close to zero (orpion), as the 'singular' part of the domain over which the fluid accumulates (or disappears) when a critical angle gamma theta is crossed then becomes very small and may be difficult to observe. We ignore the trivial case gamma is equal to pion/2 (planar free surface), to simplify the discussion.

  10. Viscosity Measurement Using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.

  11. Generalized Vaidya spacetime for cubic gravity

    NASA Astrophysics Data System (ADS)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  12. Plant Growth/Plant Phototropism - Skylab Student Experiment ED-61/62

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes the Skylab student experiment ED-61, Plant Growth, and experiment ED-62, Plant Phototropism. Two similar proposals were submitted by Joel G. Wordekemper of West Point, Nebraska, and Donald W. Schlack of Downey, California. Wordekemper's experiment (ED-61) was to see how the lack of gravity would affect the growth of roots and stems of plants. Schlack's experiment (ED-62) was to study the effect of light on a seed developing in zero gravity. The growth container of the rice seeds for their experiment consisted of eight compartments arranged in two parallel rows of four. Each had two windowed surfaces to allow periodic photography of the developing seedlings. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  13. Electrophoresis demonstration on Apollo 16

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1972-01-01

    Free fluid electrophoresis, a process used to separate particulate species according to surface charge, size, or shape was suggested as a promising technique to utilize the near zero gravity condition of space. Fluid electrophoresis on earth is disturbed by gravity-induced thermal convection and sedimentation. An apparatus was developed to demonstrate the principle and possible problems of electrophoresis on Apollo 14 and the separation boundary between red and blue dye was photographed in space. The basic operating elements of the Apollo 14 unit were used for a second flight demonstration on Apollo 16. Polystyrene latex particles of two different sizes were used to simulate the electrophoresis of large biological particles. The particle bands in space were extremely stable compared to ground operation because convection in the fluid was negligible. Electrophoresis of the polystyrene latex particle groups according to size was accomplished although electro-osmosis in the flight apparatus prevented the clear separation of two particle bands.

  14. The effects of prolonged spaceflight on the regional distribution of fluid, muscle and fat: Biostereometric results from Skylab

    NASA Technical Reports Server (NTRS)

    Whittle, M. W.; Herron, R. L.; Cuzzi, J. R.; Keys, C. W.

    1977-01-01

    Biostereometric analysis of body form was performed several times preflight and postflight on the astronauts of all three skylab flights. The analysis was made by deriving the three-dimensional coordinates of numerous points on the body surface from stereoscopic pairs of photographs of the subject, using a stereoplotter. The volume of segments of the body, and of the body as a whole, was calculated by integration of cross sectional areas derived from the coordinate data. All nine astronauts demonstrated regional changes in volume distribution which could be related to changes in total body water, muscle mass, and fat deposits. The change in water resulted from a redistribution of fluid in response to zero gravity. Changes in muscle mass resulted from an alternation in patterns of musclar activity in the absence of gravity, and changes in fat resulted from discrepancies between the individual's caloric needs and his food consumption.

  15. Fiber pulling apparatus modification

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.

    1992-01-01

    A reduced gravity fiber pulling apparatus (FPA) was constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. Four flights have been completed to date during which E-glass fiber was successfully produced in simulated zero, high, and lunar gravity environments. In addition simulated lunar soil samples were tested for their fiber producing properties using the FPA.

  16. Simplified model of statistically stationary spacecraft rotation and associated induced gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1978-01-01

    A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.

  17. Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements.

    PubMed

    Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2014-07-15

    Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome. Copyright © 2014 the American Physiological Society.

  18. Exploring the KT source crater: Progress and future prospects

    NASA Astrophysics Data System (ADS)

    Sharpton, Virgil L.

    It has been 15 years since an iridium-enriched clay layer at the Cretaceous-Tertiary (KT) boundary was discovered, providing the first hard evidence linking the most recent mass extinction event to a comet or asteroid strike [Alvarez et al., 1980]. Now it is widely accepted that the site of this collision is on the Yucatan platform, centered near Progreso, Mexico. The 200-300-km-wide crater lies buried beneath 300-1000 m of limestone laid down in the intervening 65 million years, and few clues of its presence remain at the surface, save an arcuate arrangement of water-filled sinkholes centered approximately on the structure (Figure 1). Yet prominent circular anomalies in gravity and magnetic anomaly maps gained the interest of Petroleos Mexicanos (Pemex), and in the early 1950s they began an exploration campaign that included deep drilling to recover samples of the subsurface rocks. The buried feature became known as the Chicxulub structure. Pemex drilling continued throughout the early 1970s and by that time, three wells near the center had recovered silicate rocks with igneous textures, initially mistaken for volcanic rocks. Other wells, located between 130 km and 210 km from ground zero recovered breccia deposits hundreds of meters thick that showed evidence of catastropic or explosive conditions. By 1980, Antonio Camargo, a geophysicist at Pemex, felt the evidence pointed to impact, although a volcanic origin for the Chicxulub structure could not be ruled out.

  19. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; Allerman, Andrew A.; Lee, Stephen R.

    2017-04-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750-900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to 7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at 362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.

  20. Development of a Device to Deploy Fluid Droplets in Microgravity

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; Chai, An-Ti

    1997-01-01

    A free-floating droplet in microgravity is ideal for scientific observation since it is free of confounding factors such as wetting and nonsymmetrical heat transfer introduced by contact with surfaces. However, the technology to reliably deploy in microgravity has not yet been developed. In some recent fluid deployment experiments, droplets are either shaken off the dispenser or the dispenser is quickly retracted from the droplet. These solutions impart random residual motion to deployed droplet, which can be undesirable for certain investigations. In the present study, two new types of droplet injectors were built and tested. Testing of the droplet injectors consisted of neutral buoyancy tank tests, 5-sec drop tower tests at the NASA Lewis Zero Gravity Facility, and DC-9 tests. One type, the concentric injector, worked well in the neutral buoyancy tank but did not do well in low-gravity. However, it appeared that it makes a fine apparatus for constructing bubbles in low-gravity conditions. The other type, the T-injector, showed the most promise for future development. In both neutral buoyancy and DC-9 tests, water droplets were formed and deployed with some control and repeatability, although in low-gravity the residual velocities were higher than desirable. Based on our observations, further refinements are suggested for future development work.

  1. 49 CFR 572.17 - Neck.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...

  2. 49 CFR 572.7 - Neck.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...

  3. 49 CFR 572.17 - Neck.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...

  4. 49 CFR 572.17 - Neck.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...

  5. 49 CFR 572.17 - Neck.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...

  6. 49 CFR 572.17 - Neck.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...

  7. 49 CFR 572.7 - Neck.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...

  8. 49 CFR 572.7 - Neck.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...

  9. 49 CFR 572.7 - Neck.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...

  10. 49 CFR 572.7 - Neck.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...

  11. Reproductive cell separation: A concept

    NASA Technical Reports Server (NTRS)

    Cutaia, A. J.

    1973-01-01

    Attempt has been made to separate mammalian male (Y) bearing sperm from female (X) bearing sperm. Both types of sperm are very dependent on gravity for their direction of movement. Proposed concept suggests electrophoretic force of suitable magnitude and direction may be effective means of separating X and Y sperm under zero gravity.

  12. Spacelab

    NASA Image and Video Library

    1970-11-01

    At Marshall Space Flight Center, Skylab's Multiple Docking Adapter (MDA) flight article undergoes center-of-gravity testing. Developed and fabricated by MSFC, the MDA housed the control units for the Apollo Telescope Mount (ATM), Earth Resources Experiment Package (EREP), and the Zero-Gravity Material Processing Facility and provided a docking port for the Apollo Command Module.

  13. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.

  14. Effect of a zero g environment on flammability limits as determined using a standard flammability tube apparatus

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Reuss, D. L.

    1980-01-01

    Flammability limits in a zero gravity environment were defined. Key aspects of a possible spacelab experiment were investigated analytically, experimentally on the bench, and in drop tower facilities. A conceptual design for a spacelab experiment was developed.

  15. Prediction of Bubble Diameter at Detachment from a Wall Orifice in Liquid Cross Flow Under Reduced and Normal Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2003-01-01

    Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.

  16. Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb

    NASA Technical Reports Server (NTRS)

    Wang, Yazhen; Regel, Liya L.; Wilcox, William R.

    2000-01-01

    We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.

  17. On causes of the low seismic activity in the Earth's polar latitudes

    NASA Astrophysics Data System (ADS)

    Levin, Boris; Sasorova, Elena; Domanski, Andrei

    2016-04-01

    The irregularity of distribution of seismic activity in the world was observed at the beginning of the era of instrumental seismology (B. Gutenberg, C. Richter, K. Kasahara). At the same time, the global nature of the symmetry of this effect has been established only in this millennium, with the participation of authors (Levin B.W., Sasorova E.V., 2010). Analysis of the global earthquake catalogs showed that almost all seismic events over the last century occurred within a limited latitudinal band contained between the 65 N and 65 S. The seismic activity in the polar regions of the planet was manifested very weakly. The reasons for such features were found by following the analysis of the characteristics associated with the theory of the figure of the Earth. In the works of the French mathematician A. Veronne (1912) was the first to introduce the concept of "critical" latitudes (φ1 = ±35°15' 22″) wherein the radius of the ellipsoid of revolution is equal to the radius of the sphere of the same volume. Variation of the radius vector of the ellipsoid at this latitude is equal to zero. There is the boundary between the compressed areas of the polar zones and equatorial region, where the rocks of the Earth are dominated by tensile forces. Analysis of the specific characteristics of the gravity force distribution on the surface of the ellipsoid has shown that there is a distribution of the same character with a singular point at latitude φ2 = ±61° 52' 12″. In case of variations in the angular velocity of the planet's rotation the variation of gravity force at the latitude φ2 is negligible, compared with variations of gravity force on the equator and pole, which exceed the previous value by 3-4 orders. Attempted analysis of the model of the ellipsoid of revolution in the theory of axisymmetric elastic shells has allowed to establish that in the elastic shell of the planet must occur meridional and ring forces. The theory shows that when the flatness (or polar compression) is littleness the whole shell must be compressed, in this case there is a singular point at the latitude φ3 = ±55° 42' 22″. It should be noted that circular forces in the area between the latitudes φ3 with increasing compression force become smaller ring forces of a spherical shell. And outside mentioned area - on the contrary, these forces become more and more. Thus, according to the theory of equilibrium figures of celestial bodies in the higher latitudes (due to variations in rotation velocity and change of the body flatness) should appear specific latitudinal zones where the different characteristics of the body structure and physical parameters undergo the significant changes. The study of such zones can bring us closer to understanding the physics of the emergence of interfaces between areas of high and low seismic activity.

  18. Some physiological effects of alternation between zero gravity and one gravity

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1977-01-01

    The anatomy and physiology of the healthy vestibular system and the history of its study, maintenance of muskuloskeletal fitness under low-gravity conditions, tests of motion sickness, and data and techniques on testing subjects in a slow rotation room, are covered. Components of the inner ear labyrinth and their behavior in relation to equilibrium, gravity and inertial forces, motion sickness, and dizziness are discussed. Preventive medicine, the biologically effective force environment, weightlessness per se, activity in a weightless spacecraft, exercizing required to maintain musculoskeletal function, and ataxia problems are dealt with.

  19. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.

  20. Automatic Mass Balancing of Air-Bearing-Based Three-Axis Rotational Spacecraft Simulator

    DTIC Science & Technology

    2009-06-01

    required at all possible combinations of spacecraft attitude, angular/linear position of rotating/translating parts, maneuver rates, etc., which is...solution is to generate a desired spacecraft momentum trajectory that can provide persistent maneuvering of the spacecraft simulator. We define the...disturbance torque becomes zero. Because the spacecraft is con- stantly maneuvering , the center of gravity also converges to zero to have a zero

  1. An Active Z Gravity Compensation System

    DTIC Science & Technology

    1992-07-01

    is necessary to convert the modified digital controller back into continuous time, assuming a zero -order hold for output, and using the Padd ...most likely higher frequency pole- zero pairs introduced by the motor and torque servo, these are generally non-oscillatory, and small in amplitude...on the output of the PI control. The detection scheme is the following: if the output of the fuzzy controller has remained zero (static system) for

  2. Computational and theoretical analysis of free surface flow in a thin liquid film under zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1988-01-01

    The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.

  3. A Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.

  4. Liquid-vapour surface sensors for liquid nitrogen and hydrogen

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.; Voth, R. O.; Snyder, S. M.

    1992-01-01

    The present paper identifies devices to serve as liquid-vapor detectors in zero gravity. The testing in LH2 was done in a sealed glass Dewar system to eliminate any chance of mixing H2 and air. Most of the tests were performed with the leads to the sensor horizontal. Some results of rapid cycle testing of LVDG in LH2 are presented. Findings of rapid-cycle testing of LVDG in LH2 are discussed. The sensor crossed the liquid surface when the position sensor registered 1.9 V, which occurred at about 0.4075 s. The delay time was about 1.5 ms. From the estimated slope of the position sensor curve at 1.9 V, the velocity of the sensor through the liquid surface is over 3 m/s. Results of tests of optical sensors are presented as well.

  5. Thermocapillary convection in two immiscible liquid layers with free surface

    NASA Technical Reports Server (NTRS)

    Doi, Takao; Koster, Jean N.

    1993-01-01

    Thermocapillary convection is studied in two immiscible liquid layers with one free surface, one liquid/liquid interface, and differential heating applied parallel to the interfaces. An analytical solution is introduced for infinite horizontal layers. The defining parameter for the flow pattern is lambda, the ratio of the temperature coefficient of the interfacial tension to that of the surface tension. Four different flow patterns exist under zero gravity conditions. 'Halt' conditions which halt the fluid motion in the lower encapsulated liquid layer have been found. A numerical experiment is carried out to study effects of vertical end walls on the double layer convection in a 2D cavity. The halt condition obtained from the analytical study is found to be valid in the limit of small Reynolds numbers. The flow in the encapsulated liquid layer can be suppressed substantially.

  6. Between soap bubbles and vesicles: The dynamics of freely floating smectic bubbles

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; May, Kathrin; Harth, Kirsten; Trittel, Torsten

    2013-03-01

    The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. We introduce freely floating bubbles of smectic liquid crystals and report their unique dynamic properties. Smectic bubbles can be used as simple models for dynamic studies of fluid membranes. In equilibrium, they form minimal surfaces like soap films. However, shape transformations of closed smectic membranes that change the surface area involve the formation and motion of molecular layer dislocations. These processes are slow compared to the capillary wave dynamics, therefore the effective surface tension is zero like in vesicles. Freely floating smectic bubbles are prepared from collapsing catenoid films and their dynamics is studied with optical high-speed imaging. Experiments are performed under normal gravity and in microgravity during parabolic flights. Supported by DLR within grant OASIS-Co.

  7. STS-44 Atlantis, OV-104, crewmembers participate in JSC FB-SMS training

    NASA Image and Video Library

    1991-04-22

    S91-38355 (28 May 1991) --- Seen floating about the vacant spaces of the Johnson Space Center's KC-135 "zero-gravity" aircraft are the six crewmembers for the STS 44 mission. Left to right are Terence T. Henricks, James S. Voss, F. Story Musgrave (partially obscured), Frederick D. Gregory, Thomas J. Hennen and Mario Runco Jr. Gregory is mission commander. Hennen is payload specialist for this flight, dedicated to the Department of Defense. The flight served as a refresher and a preview of the experience of weightlessness, as the special aircraft flew a series of parabolas which provided short sessions of zero-gravity.

  8. Gypsy moths and American dog ticks: Space partners

    NASA Technical Reports Server (NTRS)

    Hayes, D. K.; Morgan, N. O.; Webb, R. E.; Goans, M. D.

    1984-01-01

    An experiment intended for the space shuttle and designed to investigate the effects of weightlessness and total darkness on gypsy moth eggs and engorged American dog ticks is described. The objectives are: (1) to reevaluate the effects of zero gravity on the termination of diapause/hibernation of embryonated gypsy moth eggs, (2) to determine the effect of zero gravity on the ovipositions and subsequent hatch from engorged female American dog ticks that have been induced to diapause in the laboratory, and (3) to determine whether morphological or biochemical changes occur in the insects under examination. Results will be compared with those from a similar experiment conducted on Skylab 4.

  9. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    NASA Astrophysics Data System (ADS)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  10. First haemorheological experiment on NASA space shuttle 'Discovery' STS 51-C: aggregation of red cells.

    PubMed

    Dintenfass, L; Osman, P D; Jedrzejczyk, H

    1985-01-01

    The 'secret' D.O.D. Mission on flight STS 51-C also carried nearly 100 kg of automated instrumentation of the Australian experiment on aggregation of red cells ("ARC"). The automated Slit-Capillary Photo Viscometer contained blood samples from subjects with history of coronary heart disease, cancer of the colon, insulin-dependent diabetes, etc., as well as normals. The experiment ran for nine hours, according to the program of its microcomputers. When shuttle landed and instrumentation recovered and opened in the presence of NASA quality control officers, it was obvious that experiment was a success. Tentative and preliminary results can be summarized as follows: red cells did not change shape under zero gravity; red cells do aggregate under zero gravity, although the size of aggregates is smaller than on the ground; the morphology of aggregates of red cells appears to be of rouleaux type under zero gravity, notwithstanding the fact that pathological blood was used. These results will have to be confirmed in the future flights. The background and history of development of the project are described, and put into context of our general haemorheological studies.

  11. Using a Gravity Model to Predict Circulation in a Public Library System.

    ERIC Educational Resources Information Center

    Ottensmann, John R.

    1995-01-01

    Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…

  12. Zero-Based Budgeting Redux.

    ERIC Educational Resources Information Center

    Geiger, Philip E.

    1993-01-01

    Zero-based, programmatic budgeting involves four basic steps: (1) define what needs to be done; (2) specify the resources required; (3) determine the assessment procedures and standards to use in evaluating the effectiveness of various programs; and (4) assign dollar figures to this information. (MLF)

  13. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly†

    PubMed Central

    Hill, Richard J. A.; Larkin, Oliver J.; Dijkstra, Camelia E.; Manzano, Ana I.; de Juan, Emilio; Davey, Michael R.; Anthony, Paul; Eaves, Laurence; Medina, F. Javier; Marco, Roberto; Herranz, Raul

    2012-01-01

    Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity. PMID:22219396

  14. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly.

    PubMed

    Hill, Richard J A; Larkin, Oliver J; Dijkstra, Camelia E; Manzano, Ana I; de Juan, Emilio; Davey, Michael R; Anthony, Paul; Eaves, Laurence; Medina, F Javier; Marco, Roberto; Herranz, Raul

    2012-07-07

    Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity.

  15. Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults

    NASA Astrophysics Data System (ADS)

    Abdelrahman, E. M.; Essa, K. S.

    2015-02-01

    We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.

  16. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt... Plane EC03OC91.035 ...

  17. CREW TRAINING - STS-33/51L (ZERO-G)

    NASA Image and Video Library

    1985-10-16

    S85-42473 (16 Oct. 1985) --- Sharon Christa McAuliffe, a teacher-citizen observer on STS-51L, smiles before participating in some zero-G rehearsals for her upcoming flight. She is seated near the controls of the KC-135 aircraft, flying for the Johnson Space Center from Ellington Air Field. Referred to as the ?zero-gravity? aircraft, the KC-135 provides brief moments of weightlessness for shuttle crew members in training. Photo credit: NASA

  18. The Plasma Wake Downstream of Lunar Topographic Obstacles: Preliminary Results from 2D Particle Simulations

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.

    2011-01-01

    Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).

  19. On estimating gravity anomalies - A comparison of least squares collocation with conventional least squares techniques

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Lowrey, B.

    1977-01-01

    The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described.

  20. Geological-Seismological Evaluation of Earthquake Hazards at Prompton and Francis E. Walter Damsites, Pennsylvania.

    DTIC Science & Technology

    1986-09-01

    gravity anomalies for the study area were prepared by 15 Wa *~~~.. A *-S A J~ V Hildreth (1979) and are shown in Figure 8. Magnetic anomalies for...the gravity and the magnetic anomalies reflect the patterns of the folded strata and the associated faulting. The magnetic anomalies are in- dicative...BOUGUER GRAVITY ANOMALY 5 C- -- I5 CONTOUR INTERVAL 0 20 40 60 80 100 120 26 - -KM 2 AND 5 MILLIGALS BOUNDARY FOR EARTHQUAKE /: I SOURCE

  1. The effects of simulated hypogravity on murine bone marrow cells

    NASA Technical Reports Server (NTRS)

    Lawless, Desales

    1989-01-01

    Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.

  2. Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2013-12-01

    Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing along with results from ground based van testing and laboratory results have shown that the new sensor provides more consistent gravity data, as measured by repeated line surveys, as well as preserving the inherent sensitivity of the Lacoste and Romberg zero length spring design. The sensor also provides reliability during survey operation as there is no mechanical counter screw. Results will be presented which show the advantages of the new sensor system over the current technology in both data quality and survey productivity. Applications include high resolution geoid mapping, crustal structure investigations and resource mapping of minerals, oil and gas.

  3. Viscosity Measurement of Highly Viscous Liquids Using Drop Coalescence in Low Gravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    The method of drop coalescence is being investigated for use as a method for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in this case to minimize the undesirable effects of body forces and liquid motion in levitated drops. Also, the low gravity environment will allow for investigating large liquid volumes which can lead to much higher accuracy for the viscosity calculations than possible under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. In the analytical aspect of the method two liquid volumes are brought into contact which will coalesce under the action of surface tension alone. The free surface geometry development as well as its velocity during coalescence which are obtained from numerical computations are compared with an analogous experimental model. The viscosity in the numerical computations is then adjusted to bring into agreement of the experimental results with the calculations. The true liquid viscosity is the one which brings the experiment closest to the calculations. Results are presented for method validation experiments performed recently on board the NASA/KC-135 aircraft. The numerical solution for this validation case was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, in this case glycerine at room temperature, was determined to high degree of accuracy using the liquid coalescence method. These experiments gave very encouraging results which will be discussed together with plans for implementing the method in a shuttle flight experiment.

  4. The sdA problem - I. Physical properties

    NASA Astrophysics Data System (ADS)

    Pelisoli, Ingrid; Kepler, S. O.; Koester, D.

    2018-04-01

    The so-called sdA stars are defined by having H-rich spectra and surface gravities similar to hot subdwarf stars, but effective temperature below the zero-age horizontal branch. Their evolutionary history is an enigma: their surface gravity is too high for main-sequence stars, but too low for single evolution white dwarfs. They are most likely byproducts of binary evolution, including blue-stragglers, extremely-low mass white dwarf stars (ELMs) and their precursors (pre-ELMs). A small number of ELMs with similar properties to sdAs is known. Other possibilities include metal-poor A/F dwarfs, second generation stars, or even stars accreted from dwarf galaxies. In this work, we analyse colours, proper motions, and spacial velocities of a sample of sdAs from the Sloan Digital Sky Survey to assess their nature and evolutionary origin. We define a probability of belonging to the main sequence and a probability of being a (pre-)ELM based on these properties. We find that 7 per cent of the sdAs are more likely to be (pre-)ELMs than main-sequence stars. However, the spacial velocity distribution suggests that over 35 per cent of them cannot be explained as single metal-poor A/F stars.

  5. Experimental and Analytical Study of Two-Phase Flow in Zero Gravity.

    DTIC Science & Technology

    1988-03-01

    in Imitated Reduced Gravity Fields," 4th International Heat Transfer Conference, Versailles, France, Vol. 6, 1970. 11. S. S. Papell and 0. C. Faber...K. D. Timmerhaus, ed.) Vol. 9, p 45, Plenum, New York, 1963. 63. S. S. Papell et al., "Buoyancy Effects on Critical Heat Flux of Forced Convective

  6. A Demonstration of Einstein's Equivalence of Gravity and Acceleration

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2008-01-01

    In 1907, Einstein described a "Gedankenexperiment" in which he showed that free fall in a gravitational field is indistinguishable from a body at rest in an elevator accelerated upwards in zero gravity. This paper describes an apparatus, which is simple to make and simple to operate, that acts as an observable footnote to Einstein's example. It…

  7. Complexity growth in minimal massive 3D gravity

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study the complexity growth by using "complexity =action " (CA) proposal in the minimal massive 3D gravity (MMG) model which is proposed for resolving the bulk-boundary clash problem of topologically massive gravity (TMG). We observe that the rate of the complexity growth for Banados-Teitelboim-Zanelli (BTZ) black hole saturates the proposed bound by physical mass of the BTZ black hole in the MMG model, when the angular momentum parameter and the inner horizon of black hole goes to zero.

  8. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even an overdense region, with a low density contrast ~1.

  9. Antigravity and the big crunch/big bang transition

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  10. EVA assembly of large space structure element

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.

    1981-01-01

    The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.

  11. STS-42 closeup view shows SE 81-09 Convection in Zero Gravity experiment

    NASA Image and Video Library

    1992-01-30

    STS-42 closeup view shows Student Experiment 81-09 (SE 81-09), Convection in Zero Gravity experiment, with radial pattern caused by convection induced by heating an oil and aluminum powder mixture in the weightlessness of space. While the STS-42 crewmembers activated the Shuttle Student Involvement Program (SSIP) experiment on Discovery's, Orbiter Vehicle (OV) 103's, middeck, Scott Thomas, the student who designed the experiment, was able to observe the procedures via downlinked television (TV) in JSC's Mission Control Center (MCC). Thomas, now a physics doctoral student at the University of Texas, came up with the experiment while he participated in the SSIP as a student at Richland High School in Johnstown, Pennsylvia.

  12. High Precision Metrology on the Ultra-Lightweight W 50.8 cm f/1.25 Parabolic SHARPI Primary Mirror using a CGH Null Lens

    NASA Technical Reports Server (NTRS)

    Antonille, Scott

    2004-01-01

    For potential use on the SHARPI mission, Eastman Kodak has delivered a 50.8cm CA f/1.25 ultra-lightweight UV parabolic mirror with a surface figure error requirement of 6nm RMS. We address the challenges involved in verifying and mapping the surface error of this large lightweight mirror to +/-3nm using a diffractive CGH null lens. Of main concern is removal of large systematic errors resulting from surface deflections of the mirror due to gravity as well as smaller contributions from system misalignment and reference optic errors. We present our efforts to characterize these errors and remove their wavefront error contribution in post-processing as well as minimizing the uncertainty these calculations introduce. Data from Kodak and preliminary measurements from NASA Goddard will be included.

  13. Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy

    DOE PAGES

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; ...

    2016-11-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less

  14. Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.

    Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less

  15. Surface tension and negative pressure interior of a non-singular ‘black hole’

    NASA Astrophysics Data System (ADS)

    Mazur, Pawel O.; Mottola, Emil

    2015-11-01

    The constant density interior Schwarzschild solution for a static, spherically symmetric collapsed star has a divergent pressure when its radius R≤slant \\frac{9}{8}{R}s=\\frac{9}{4}{GM}. We show that this divergence is integrable, and induces a non-isotropic transverse stress with a finite redshifted surface tension on a spherical surface of radius {R}0=3R\\sqrt{1-\\frac{8}{9}\\frac{R }{{R}s}}. For r\\lt {R}0 the interior Schwarzschild solution exhibits negative pressure. When R={R}s, the surface is localized at the Schwarzschild radius itself, {R}0={R}s, and the solution has constant negative pressure p=-\\bar{ρ } everywhere in the interior r\\lt {R}s, thereby describing a gravitational condensate star, a fully collapsed non-singular state already inherent in and predicted by classical general relativity. The redshifted surface tension of the condensate star surface is given by {τ }s={{Δ }}κ /8π G, where {{Δ }}κ ={κ }+-{κ }-=2{κ }+=1/{R}s is the difference of equal and opposite surface gravities between the exterior and interior Schwarzschild solutions. The First Law, {{d}}M={{d}}{E}V+{τ }s {{d}}A is recognized as a purely mechanical classical relation at zero temperature and zero entropy, describing the volume energy and surface energy change respectively. The Schwarzschild time t of such a non-singular gravitational condensate star is a global time, fully consistent with unitary time evolution in quantum theory. A clear observational test of gravitational condensate stars with a physical surface versus black holes is the discrete surface modes of oscillation which should be detectable by their gravitational wave signatures.

  16. Miniature and Low-cost Wireless Sensor Platform for Environmental Monitoring

    DTIC Science & Technology

    2007-09-01

    Simple error correction algorithm Figure 19. Mechanical positioning of the sensor components Figure 20. Side view of the floater Figure 21. Floater ...battery pack), and the weight is about 0.5 lb. The sensor node is housed in a floater (buoy) with dimensions 12”x 12”x 6”. The cost of one such...gravity and the water displacement forces balanced when the floater is submerged to approximately one half of its height. To enhance stability in water

  17. The bricycle: a bicycle in zero gravity can be balanced or steered but not both

    NASA Astrophysics Data System (ADS)

    Dong, O.; Graham, C.; Grewal, A.; Parrucci, C.; Ruina, A.

    2014-12-01

    A bicycle or inverted pendulum can be balanced, that is kept nearly upright, by accelerating the base. This balance is achieved by steering on a bicycle. Simultaneously one can also control the lateral position of the base: changing of the track line of a bike or the position of hand under a balanced stick. We show here with theory and experiment that if the balance problem is removed, by making the system neutrally stable for balance, one cannot simultaneously maintain balance and control the position of the base. We made a bricycle, essentially a bicycle with springy training wheels. The stiffness of the training wheel suspension can be varied from near infinite, making the bricycle into a tricycle, to zero, making it effectively a bicycle. The springy training wheels effectively reduce or even negate gravity, at least for balance purposes. One might expect a smooth transition from tricycle to bicycle as the stiffness is varied, in terms of handling, balance and feel. Not so. At an intermediate stiffness, when gravity is effectively zeroed, riders can balance easily but no longer turn. Small turns cause an intolerable leaning. Thus there is a qualitative difference between bicycles and tricycles, a difference that cannot be met halfway.

  18. Zero-G Condensing Heat Exchanger with Integral Disinfection

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2012-01-01

    The system that operates in a zero gravity environment and has an integral ozone generating capability is disclosed. The system contributes to the control of metabolic water vapors in the air, and also provided disinfection of any resulting condensate within the system, as well as disinfection of the air stream that flows throughout the disclosed system.

  19. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  20. Direction-dependent arm kinematics reveal optimal integration of gravity cues.

    PubMed

    Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos

    2016-11-02

    The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort.

  1. Thermosolutal Marangoni convection short-time regimes - Proposals for drop tower experiments and real time computer simulation

    NASA Astrophysics Data System (ADS)

    Polezhaev, V. I.; Ermakov, M. K.

    1992-12-01

    Results are presented of a parametrical study of flow patterns, heat transfer, and time scales of thermosolutal Marangoni convection in a cavity with temperature and solutal gradients along the free surface and adiabatic bottom for the case of zero gravity. Nusselt number, concentration difference across the cavity, and flow/temperature fields for the different regimes are presented; they show the possibility to use Drop Tower 'Bremen' for measuring the developed secondary flow and heat/mass transfer due to thermosolutal Marangoni convection as well as the possibility to analyze and plan the drop tower for such experiments using the COMGA PC-based system.

  2. A zero-gravity demonstration of the collision and coalescence of water droplets

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Vaughan, O. H.; Smith, R. E.

    1974-01-01

    The mechanics of the collision and coalescence of liquid droplets is one of the main research areas in the fields of nuclear physics, astrophysics, meteorology and fluid mechanics. The crew members on the Skylab 3 and 4 missions were requested to perform demonstrations of the collision and coalescence of water droplets under the low gravity environment at orbital altitude. In Skylab 4 two water droplets with equal volumes, 30 cu cm each, were used. A dark colored droplet (contaminated with grape drink) moving with a velocity of 3.14 cm/sec collided with a stationary pink colored droplet (contaminated with strawberry drink) and coalescence occurred. Theoretical models are proposed to study the various stages of the collision-coalescence processes. Special considerations are concentrated in the investigation of the bounce-coalescence and coalescence-instability processes. The surface tension of the coalesced droplets was calculated to be 52 dynes/cm in perfect agreement with laboratory measurements made after the flight using a reproduction of the liquids.

  3. Influence of Thermocapillary Flow on Capillary Stability: Long Float-Zones in Low Gravity

    NASA Technical Reports Server (NTRS)

    Chen, Yi-Ju; Steen, Paul H.

    1996-01-01

    A model problem is posed to study the influence of flow on the interfacial stability of a nearly cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). The flow is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed shear stress mimics the thermocapillary stress induced on a float-zone by a ring heater (i.e. a full zone). Principal assumptions are (1) zero gravity, (2) creeping flow, and (3) that the imposed coupling at the free surface between flow and temperature fields is the only such coupling. A numerical solution, complemented by a bifurcation analysis, shows that bridges substantially longer than the Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through the stress-induced flow is responsible. Time-periodic standing waves are also predicted in certain parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space lab experiments (June 1994).

  4. Circular geodesics of naked singularities in the Kehagias-Sfetsos metric of Hořava's gravity

    NASA Astrophysics Data System (ADS)

    Vieira, Ronaldo S. S.; Schee, Jan; Kluźniak, Włodek; Stuchlík, Zdeněk; Abramowicz, Marek

    2014-07-01

    We discuss photon and test-particle orbits in the Kehagias-Sfetsos (KS) metric of Hořava's gravity. For any value of the Hořava parameter ω, there are values of the gravitational mass M for which the metric describes a naked singularity, and this is always accompanied by a vacuum "antigravity sphere" on whose surface a test particle can remain at rest (in a zero angular momentum geodesic), and inside which no circular geodesics exist. The observational appearance of an accreting KS naked singularity in a binary system would be that of a quasistatic spherical fluid shell surrounded by an accretion disk, whose properties depend on the value of M, but are always very different from accretion disks familiar from the Kerr-metric solutions. The properties of the corresponding circular orbits are qualitatively similar to those of the Reissner-Nordström naked singularities. When event horizons are present, the orbits outside the Kehagias-Sfetsos black hole are qualitatively similar to those of the Schwarzschild metric.

  5. Mars Surface Environmental Issues

    NASA Technical Reports Server (NTRS)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the health and safety of future human explorers.

  6. Visual gravity cues in the interpretation of biological movements: neural correlates in humans.

    PubMed

    Maffei, Vincenzo; Indovina, Iole; Macaluso, Emiliano; Ivanenko, Yuri P; A Orban, Guy; Lacquaniti, Francesco

    2015-01-01

    Our visual system takes into account the effects of Earth gravity to interpret biological motion (BM), but the neural substrates of this process remain unclear. Here we measured functional magnetic resonance (fMRI) signals while participants viewed intact or scrambled stick-figure animations of walking, running, hopping, and skipping recorded at normal or reduced gravity. We found that regions sensitive to BM configuration in the occipito-temporal cortex (OTC) were more active for reduced than normal gravity but with intact stimuli only. Effective connectivity analysis suggests that predictive coding of gravity effects underlies BM interpretation. This process might be implemented by a family of snapshot neurons involved in action monitoring. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Gaussian black holes in Rastall gravity

    NASA Astrophysics Data System (ADS)

    Spallucci, Euro; Smailagic, Anais

    In this short note we present the solution of Rastall gravity equations sourced by a Gaussian matter distribution. We find that the black hole metric shares all the common features of other regular, General Relativity BH solutions discussed in the literature: there is no curvature singularity and the Hawking radiation leaves a remnant at zero temperature in the form of a massive ordinary particle.

  8. Effects of varying gravity levels in parabolic flight on the size-mass illusion.

    PubMed

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects.

  9. Effects of Varying Gravity Levels in Parabolic Flight on the Size-Mass Illusion

    PubMed Central

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects. PMID:24901519

  10. Direct recovery of mean gravity anomalies from satellite to satellite tracking

    NASA Technical Reports Server (NTRS)

    Hajela, D. P.

    1974-01-01

    The direct recovery was investigated of mean gravity anomalies from summed range rate observations, the signal path being ground station to a geosynchronous relay satellite to a close satellite significantly perturbed by the short wave features of the earth's gravitational field. To ensure realistic observations, these were simulated with the nominal orbital elements for the relay satellite corresponding to ATS-6, and for two different close satellites (one at about 250 km height, and the other at about 900 km height) corresponding to the nominal values for GEOS-C. The earth's gravitational field was represented by a reference set of potential coefficients up to degree and order 12, considered as known values, and by residual gravity anomalies obtained by subtracting the anomalies, implied by the potential coefficients, from their terrestrial estimates. It was found that gravity anomalies could be recovered from strong signal without using any a-priori terrestrial information, i.e. considering their initial values as zero and also assigning them a zero weight matrix. While recovering them from weak signal, it was necessary to use the a-priori estimate of the standard deviation of the anomalies to form their a-priori diagonal weight matrix.

  11. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  12. Faraday instability in a near-critical fluid under weightlessness.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.

  13. OFO experimental techniques and preliminary conclusions - Is artificial gravity needed during prolonged weightlessness.

    NASA Technical Reports Server (NTRS)

    Gualtierotti, T.; Bracchi, F.

    1972-01-01

    The technique of single unit recording from body systems generating electrical pulses coherent with their basic function (CNS, muscles, sense organs) has been proved feasible during the OFO A orbital flight, an automatic physiological experiment. The results of recording 155 hours of orbital flight of pulses from the nerve fibres of four vestibular gravity sensors in two bull frogs indicate that the vestibular organ adjusts to zero g. As all the other biological changes observed during orbit are due to lack of exercise, it is concluded that artificial gravity might not be necessary during prolonged space missions or on low gravity celestial bodies.

  14. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  15. Flammability Limits of Gases Under Low Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.

    1985-01-01

    The purpose of this combustion science investigation is to determine the effect of zero, fractional, and super gravity on the flammability limits of a premixed methane air flame in a standard 51 mm diameter flammability tube and to determine, if possible, the fluid flow associated with flame passage under zero-g conditions and the density (and hence, temperature) profiles associated with the flame under conditions of incipient extinction. This is accomplished by constructing an appropriate apparatus for placement in NASA's Lewis Research Center Lear Jet facility and flying the prescribed g-trajectories while the experiment is being performed. Data is recorded photographically using the visible light of the flame. The data acquired is: (1) the shape and propagation velocity of the flame under various g-conditions for methane compositions that are inside the flammable limits, and (2) the effect of gravity on the limits. Real time accelerometer readings for the three orthogonal directions are displayed in full view of the cameras and the framing rate of the cameras is used to measure velocities.

  16. The Identification of Scientific Programs to Utilize the Space Environment

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Nerem, R. M.

    1976-01-01

    A program to identify and develop ideas for scientific experimentation on the long duration exposure facility (LDEF) was completed. Four research proposals were developed: (1) Ultra pure germanium gamma ray radiation detectors in the space environment, intended to develop and demonstrate an X-ray and gamma-ray spectroscopy system incorporating a temperature cyclable high-purity germanium detector and diode heat pipe cryogenic system for cooling, (2) growth, morphogenesis and metabolism of plant embryos in the zero-gravity environment, to investigate if the space environment induces mutations in the embryogenic cells so that mutants of commercial significance with desirable attributes may be obtained, (3) effect of zero gravity on the growth and pathogenicity of selected zoopathic fungi. It is possible that new kinds of treatment for candidiasis, and tichophytosis could eventuate from the results of the proposed studies, and (4) importance of gravity to survival strategies of small animals. Gravitational effects may be direct or mediate the selection of genetic variants that are preadapted to weightlessness.

  17. Liquid-bridge stability and breakup on surfaces with contact-angle hysteresis.

    PubMed

    Akbari, Amir; Hill, Reghan J

    2016-08-10

    We study the stability and breakup of liquid bridges with a free contact line on surfaces with contact-angle hysteresis (CAH) under zero-gravity conditions. Non-ideal surfaces exhibit CAH because of surface imperfections, by which the constraints on three-phase contact lines are influenced. Given that interfacial instabilities are constraint-sensitive, understanding how CAH affects the stability and breakup of liquid bridges is crucial for predicting the drop size in contact-drop dispensing. Unlike ideal surfaces on which contact lines are always free irrespective of surface wettability, contact lines may undergo transitions from pinned to free and vice versa during drop deposition on non-ideal surfaces. Here, we experimentally and theoretically examine how stability and breakup are affected by CAH, highlighting cases where stability is lost during a transition from a pinned-pinned (more constrained) to pinned-free (less constrained) interface-rather than a critical state. This provides a practical means of expediting or delaying stability loss. We also demonstrate how the dynamic contact angle can control the contact-line radius following stability loss.

  18. Development Status of Adjustable Grazing Incidence Optics for 0.5 Arcsecond X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Reid, Paul B.; Aldcroft, Thomas L.; Allured, Ryan; Cotroneo, Vincenzo; Johnson-Wilke, Raegan L.; Marquez, Vanessa; McMuldroch, Stuart; O'Dell, Stephen L.; Ramsey, Brian D.; Schwartz, Daniel A.; hide

    2014-01-01

    We describe progress in the development of adjustable grazing incidence X-ray optics for 0.5 arcsec resolution cosmic X-ray imaging. To date, no optics technology is available to blend high resolution imaging like the Chandra X-ray Observatory, with square meter collecting area. Our approach to achieve these goals simultaneously is to directly deposit thin film piezoelectric actuators on the back surface of thin, lightweight Wolter-I or Wolter- Schwarschild mirror segments. The actuators are used to correct mirror figure errors due to fabrication, mounting and alignment, using calibration and a one-time figure adjustment on the ground. If necessary, it will also be possible to correct for residual gravity release and thermal effects on-orbit. In this paper we discuss our most recent results measuring influence functions of the piezoelectric actuators using a Shack-Hartmann wavefront sensor. We describe accelerated and real-time lifetime testing of the piezoelectric material, and we also discuss changes to, and recent results of, our simulations of mirror correction.

  19. 3D geophysical insights into the Ciomadu volcano

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita

    2017-04-01

    RATIONALE Located at the south easternmost end of the Neogene to Quaternary volcanic chain of East Carpathians, the Ciomadu volcano (last erupted approx 30 ka ago) seems to represent the latest volcanic manifestation within the Carpatho-Pannonian region. Based on the interpretation of some large-scale electromagnetic and seismological surveys, the hypothesis of the in depth (8 -15 km) existence of a magma reservoir raises the volcanic hazard in the region. The close neighbourhood of the Vrancea active geodynamic zone, where intermediate-depth seismicity occurs within full intra-continental environment makes the study of the Ciomadu volcano of higher interest. METHOD During the time numerous geological investigations have been conducted in the area, but except for the previously mentioned large-scale electromagnetic and seismological approaches geophysical tools have been less employed. Relatively recent, within the frame of the INSTEC project, funded through a CNCS-UEFISCDI (Romanian Science Foundation) grant, the area has been subject to an integrated gravity and geomagnetic survey accompanied by outcrops sampling and lab determinations on rock physics. Field data have been highly processed and models of their sources have been constructed through 3D inversion techniques. RESULTS Overall, the potential fields have revealed a large gravity low covering the whole volcano area associating a residual geomagnetic anomaly with local effects mainly bordering the gravity anomaly. 3D inversion of the gravity data provided an intriguing image on the mass distribution within the volcanic structure, with underground densities much bellow the figures provided by the lab determinations on rock samples collected at the surface. The geometry of the revealed gravity source clearly suggests an andesitic/dacitic intrusion acceding to the surface along a deep fault that seems to belong to the alpine overthrust system of East Carpathians. Attempts to interpret the low value densities in the numerical model through the presence of a liquid phase in the underground failed due to the relatively shallow position of the gravity source (approx 2 km beneath the Sf. Ana lake) which should imply significant thermal manifestations at the surface (e.g. geysers), not known in the area. Consequently, the unusual lowering of density in the inner part of the magmatic body might be due to the fissuring and late circulation of hot hydrothermal solutions. Located within geothermal fields volcanic rocks (like andesites and dacites that dominate the Ciomadu structure) interact with thermal water and intensity of alteration depends on the water temperature. The development of smectite-filled micro-cracks may decrease density from 2.6 to 2.1 g/cm3, and the total transformation may provide a significant density change, especially in the inner (hotter) part of the assumed intrusive body, in full agreement with figures provided by numerical modelling: from 2.5-2.6 g/cm3 (fresh andesites) down to 1.1-1.0 g/cm3 (clays). The assumption is strongly supported by the geothermal setting of the area. Temperature determinations in some wells laterally located have indicated high value geothermal gradients (up to 250-400 °C/km). Acknowledgement. Data processing and modelling benefited the IT infrastructure CYBERDYN achieved through the grant POS CCE O 2.1.2. ID 593 (contract 182/2010)

  20. Gravity anomalies and lithospheric flexure around the Longmen Shan deduced from combinations of in situ observations and EGM2008 data

    NASA Astrophysics Data System (ADS)

    She, Yawen; Fu, Guangyu; Wang, Zhuohua; Liu, Tai; Xu, Changyi; Jin, Honglin

    2016-10-01

    The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. These new FGAs show pairs of positive and negative anomalies along the eastern edges of the Tibetan Plateau. The FGAs are used to calculate effective elastic thickness ( T e) and load ratios ( F) of the lithosphere. Admittance analysis indicates the T e of Longmen Shan (LMS) to be 6 km, and profile analysis indicates that the T e of the Sichuan Basin excesses 30 km. The load ratio ( F 1 = 1) confirms that the lithospheric flexure of the LMS area can be attributed solely to the surface load of the crust. [Figure not available: see fulltext. Caption: The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. With the new FGAs data, the lithospheric strength of the study area is studied by the authors, and they also give a combined model to illustrate the uplift mechanism of this area.

  1. Assessment of zero gravity effects on space worker health and safety

    NASA Technical Reports Server (NTRS)

    1980-01-01

    One objective of the study is to assess the effects of all currently known deviations from normal of medical, physiological, and biochemical parameters which appear to be due to zero gravity (zero-g) environment and to acceleration and deceleration to be experienced, as outlined in the references Solar Power Satellites (SPS) design, by space worker. Study results include identification of possible health or safety effects on space workers either immediate or delayed due to the zero gravity environment and acceleration and deceleration; estimation of the probability that an individual will be adversely affected; description of the possible consequence to work efficiency in persons adversely affected; and description of the possible/probable consequences to immediate and future health of individuals exposed to this environment. A research plan, which addresses the uncertainties in current knowledge regarding the health and safety hazards to exposed SPS space workers, is presented. Although most adverse affects experienced during space flight soon disappeared upon return to the Earth's environment, there remains a definite concern for the long-term effects to SPS space workers who might spend as much as half their time in space during a possible five year career period. The proposed 90 day up/90 day down cycle, coupled with the fact that most of the effects of weightlessness may persist throughout the flight along with the realization that recovery may occupy much of the terrestrial stay, may keep the SPS workers in a deviant physical condition or state of flux for 60 to 100% of their five year career.

  2. Use of coastal altimeter and tide gauge data for a seamless land-sea vertical datum in Taiwan

    NASA Astrophysics Data System (ADS)

    Yen-Ti, C.; Hwang, C.

    2017-12-01

    Conventional topographic and hydrographic mappings use two separate reference surfaces, called orthometric datum (TWVD2001 in Taiwan) and chart datum. In Taiwan, land elevations are heights tied to a leveling control network with its zero height at the mean sea surface of Keelung Harbor (realized by the height of Benchmark K999). Ocean depths are counted from the lowest tidal surface defined by tidal measurements near the sites of depth measurements. This paper usesa new method to construct a unified vertical datum for land elevations and ocean depths around Taiwan. First, we determine an optimal mean sea surface model (MSSHM) using refined offshore altimeter data. Then, the ellipsoidal heights of the mean sea levels at 36 tide gauges around Taiwan are determined using GPS measurements at their nearby benchmarks, and are then combined with the altimeter-derived MSSHM to generate a final MSSHM that has a smooth transition from land to sea. We also construct an improved ocean tide model to obtain various tidal surfaces. Using the latest land, shipborne, airborne and altimeter-derived gravity data, we construct a hybrid geoid model to define a vertical datum on land. The final MSSHM is the zero surface that defines ocean tidal heights and lowest tidal values in a ellipsoidal system that is fully consistent with the geodetic system of GNSS. The use of the MSSHM and the hybrid geoid model enables a seamless connection to combine or compare coastal land and sea elevations from a wide range of sources.

  3. The effects of prolonged weightlessness and reduced gravity environments on human survival.

    PubMed

    Taylor, R L

    1993-03-01

    The manned exploration of the solar system and the surfaces of some of the smaller planets and larger satellites requires that we are able to keep the adverse human physiological response to long term exposure to near zero and greatly reduced gravity environments within acceptable limits consistent with metabolic function. This paper examines the physiological changes associated with microgravity conditions with particular reference to the weightless demineralizatoin of bone (WDB). It is suggested that many of these changes are the result of physical/mechanical processes and are not primarily a medical problem. There are thus two immediately obvious and workable, if relatively costly, solutions to the problem of weightlessness. The provision of a near 1 g field during prolonged space flights, and/or the development of rapid transit spacecraft capable of significant acceleration and short flight times. Although these developments could remove or greatly ameliorate the effects of weightlessness during long-distance space flights there remains a problem relating to the long term colonization of the surfaces of Mars, the Moon, and other small solar system bodies. It is not yet known whether or not there is a critical threshold value of 'g' below which viable human physiological function cannot be sustained. If such a threshold exists permanent colonization may only be possible if the threshold value of 'g' is less than that at the surface of the planet on which we wish to settle.

  4. Interface for Physics Simulation Engines

    NASA Technical Reports Server (NTRS)

    Damer, Bruce

    2007-01-01

    DSS-Prototyper is an open-source, realtime 3D virtual environment software that supports design simulation for the new Vision for Space Exploration (VSE). This is a simulation of NASA's proposed Robotic Lunar Exploration Program, second mission (RLEP2). It simulates the Lunar Surface Access Module (LSAM), which is designed to carry up to four astronauts to the lunar surface for durations of a week or longer. This simulation shows the virtual vehicle making approaches and landings on a variety of lunar terrains. The physics of the descent engine thrust vector, production of dust, and the dynamics of the suspension are all modeled in this set of simulations. The RLEP2 simulations are drivable (by keyboard or joystick) virtual rovers with controls for speed and motor torque, and can be articulated into higher or lower centers of gravity (depending on driving hazards) to enable drill placement. Gravity also can be set to lunar, terrestrial, or zero-g. This software has been used to support NASA's Marshall Space Flight Center in simulations of proposed vehicles for robotically exploring the lunar surface for water ice, and could be used to model all other aspects of the VSE from the Ares launch vehicles and Crew Exploration Vehicle (CEV) to the International Space Station (ISS). This simulator may be installed and operated on any Windows PC with an installed 3D graphics card.

  5. Phase Zero Contracting Operations-Strategic and Integrative Planning for Contingency and Expeditionary Operations

    DTIC Science & Technology

    2013-10-01

    349–372 Phase Zero Contracting Operations (PZCO) FIGURE 4. CONTRACTING PHASE ZERO: PLAN, EXERCISE, REHEARSE, AND SYNCHRONIZE Note. BPA = Blanket...More Robust Construction Supplies; Oce Equipment; Quality of Life; and Morale, Welfare, and Recreation PO/TO/DO/ BPA Small Purchase Standard Vehicles PO...TO/DO/ BPA Small Purchase Standard Vehicles PO/TO/DO/ BPA Small Purchase Standard Vehicles PO/TO/DO/ BPA Small Purchase Food, Water, Billeting, Hygiene

  6. Dynamics of Sheared Granular Materials

    NASA Technical Reports Server (NTRS)

    Kondic, Lou; Utter, Brian; Behringer, Robert P.

    2002-01-01

    This work focuses on the properties of sheared granular materials near the jamming transition. The project currently involves two aspects. The first of these is an experiment that is a prototype for a planned ISS (International Space Station) flight. The second is discrete element simulations (DES) that can give insight into the behavior one might expect in a reduced-g environment. The experimental arrangement consists of an annular channel that contains the granular material. One surface, say the upper surface, rotates so as to shear the material contained in the annulus. The lower surface controls the mean density/mean stress on the sample through an actuator or other control system. A novel feature under development is the ability to 'thermalize' the layer, i.e. create a larger amount of random motion in the material, by using the actuating system to provide vibrations as well control the mean volume of the annulus. The stress states of the system are determined by transducers on the non-rotating wall. These measure both shear and normal components of the stress on different size scales. Here, the idea is to characterize the system as the density varies through values spanning dense almost solid to relatively mobile granular states. This transition regime encompasses the regime usually thought of as the glass transition, and/or the jamming transition. Motivation for this experiment springs from ideas of a granular glass transition, a related jamming transition, and from recent experiments. In particular, we note recent experiments carried out by our group to characterize this type of transition and also to demonstrate/ characterize fluctuations in slowly sheared systems. These experiments give key insights into what one might expect in near-zero g. In particular, they show that the compressibility of granular systems diverges at a transition or critical point. It is this divergence, coupled to gravity, that makes it extremely difficult if not impossible to characterize the transition region in an earth-bound experiment. In the DE modeling, we analyze dynamics of a sheared granular system in Couette geometry in two (2D) and three (3D) space dimensions. Here, the idea is to both better understand what we might encounter in a reduced-g environment, and at a deeper level to deduce the physics of sheared systems in a density regime that has not been addressed by past experiments or simulations. One aspect of the simulations addresses sheared 2D system in zero-g environment. For low volume fractions, the expected dynamics of this type of system is relatively well understood. However, as the volume fraction is increased, the system undergoes a phase transition, as explained above. The DES concentrate on the evolution of the system as the solid volume fraction is slowly increased, and in particular on the behavior of very dense systems. For these configurations, the simulations show that polydispersity of the sheared particles is a crucial factor that determines the system response. Figures 1 and 2 below, that present the total force on each grain, show that even relatively small (10 %) nonuniformity of the size of the grains (expected in typical experiments) may lead to significant modifications of the system properties, such as velocity profiles, temperature, force propagation, and formation shear bands. The simulations are extended in a few other directions, in order to provide additional insight to the experimental system analyzed above. In one direction, both gravity, and driving due to vibrations are included. These simulations allow for predictions on the driving regime that is required in the experiments in order to analyze the jamming transition. Furthermore, direct comparison of experiments and DES will allow for verification of the modeling assumptions. We have also extended our modeling efforts to 3D. The (preliminary) results of these simulations of an annular system in zero-g environment will conclude the presentation.

  7. Deployment/retraction ground testing of a large flexible solar array

    NASA Technical Reports Server (NTRS)

    Chung, D. T.

    1982-01-01

    The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.

  8. Geopotential Field Anomaly Continuation with Multi-Altitude Observations

    NASA Technical Reports Server (NTRS)

    Kim, Jeong Woo; Kim, Hyung Rae; von Frese, Ralph; Taylor, Patrick; Rangelova, Elena

    2012-01-01

    Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (Equivalent Point Source) inversion and the FT (Fourier Transform), as well as by SCHA (Spherical Cap Harmonic Analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation.

  9. Geopotential Field Anomaly Continuation with Multi-Altitude Observations

    NASA Technical Reports Server (NTRS)

    Kim, Jeong Woo; Kim, Hyung Rae; vonFrese, Ralph; Taylor, Patrick; Rangelova, Elena

    2011-01-01

    Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (Equivalent Point Source) inversion and the FT (Fourier Transform), as well as by SCHA (Spherical Cap Harmonic Analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation.

  10. Los Alamos RAGE Simulations of the HAIV Mission Concept

    NASA Technical Reports Server (NTRS)

    Weaver, Robert P.; Barbee, Brent W.; Wie, Bong; Zimmerman, Ben

    2015-01-01

    The mitigation of potentially hazardous objects (PHOs) can be accomplished by a variety of methods including kinetic impactors, gravity tractors and several nuclear explosion options. Depending on the available lead time prior to Earth impact, non- nuclear options can be very effective at altering a PHOs orbit. However if the warning time is short nuclear options are generally deemed most effective at mitigating the hazard. The NIAC mission concept for a nuclear mission has been presented at several meetings, including the last PDC (2013).We use the adaptive mesh hydrocode RAGE to perform detailed simulations of this Hypervelocity Asteroid Intercept Vehicle (HAIV) mission concept. We use the RAGE code to simulate the crater formation by the kinetic impactor as well as the explosion and energy coupling from the follower nuclear explosive device (NED) timed to detonate below the original surface to enhance the energy coupling. The RAGE code has been well validated for a wide variety of applications. A parametric study will be shown of the energy and momentum transfer to the target 100 m diameter object: 1) the HAIV mission as planned; 2) a surface explosion and 3) a subsurface (contained) explosion; both 2) and 3) use the same source energy as 1).Preliminary RAGE simulations show that the kinetic impactor will carve out a surface crater on the object and the subsequent NED explosion at the bottom of the crater transfers energy and momentum to the target effectively moving it off its Earth crossing orbit. Figure 1 shows the initial (simplified) RAGE 2D setup geometry for this study. Figure 2 shows the crater created by the kinetic impactor and Figure 3 shows the time sequence of the energy transfer to the target by the NED.

  11. Three-Dimensional Printing in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki

    2015-01-01

    The 3D printing in zero-g (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling additive manufacturing in the microgravity environment experienced on the International Space Station (ISS). This demonstration is the first step towards realizing a 'machine shop' in space, a critical enabling component of any deep space mission.

  12. Thermal and thermoelectric transport in nanoscale systems

    NASA Astrophysics Data System (ADS)

    Murphy, Padraig Gerard

    This thesis deals with transport in molecular junctions and nanowires. We show that a molecular junction can give large values of the thermoelectric figure of merit ZT, and so could be used as a solid state energy conversion device that operates close to the Carnot efficiency. The mechanism is similar to the Mahan-Sofo model for bulk thermoelectrics---the Lorenz ratio goes to zero, violating the Wiedemann-Franz law, while the thermopower remains non-zero. The molecular state through which charge is transported must be weakly coupled to the leads, and the energy level of the state must be of order kBT away from the Fermi energy of the leads. In practice, the figure of merit is limited by the phonon thermal conductance; we show that the largest possible ZT-G˜ph th-1/2 , where G˜phth is the phonon thermal conductance divided by the thermal conductance quantum. The thermal conductance by phonons of a quasi-one-dimensional solid with isotope or defect scattering is studied using the Landauer formalism for thermal transport. A scalable numerical transfer-matrix technique is developed and applied to model quasi-one-dimensional systems in order to confirm simple analytic predictions. We argue that existing thermal conductivity data on semiconductor nanowires, showing an unexpected linear temperature dependence, can be understood through a model that combines incoherent surface scattering for short-wavelength phonons with nearly ballistic long-wavelength phonons.

  13. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves

  14. Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms

    NASA Technical Reports Server (NTRS)

    Han, Olyvia; Kienholz, David; Janzen, Paul; Kidney, Scott

    2010-01-01

    Gravity-off-loading of deployable spacecraft mechanisms during ground testing is a long-standing problem. Deployable structures which are usually too weak to support their own weight under gravity require a means of gravity-off-loading as they unfurl. Conventional solutions to this problem have been helium-filled balloons or mechanical pulley/counterweight systems. These approaches, however, suffer from the deleterious effects of added inertia or friction forces. The changing form factor of the deployable structure itself and the need to track the trajectory of the center of gravity also pose a challenge to these conventional technologies. This paper presents a novel testing apparatus for high-fidelity zero-gravity simulation for special application to deployable space structures such as solar arrays, magnetometer booms, and robotic arms in class 100,000 clean room environments

  15. Underwater EIT Follow-on Project

    DTIC Science & Technology

    2009-01-01

    correlation value of 0.2. (White pixels indicate zero deviation from predicted transimpedance ; blue represents high deviation...34 Figure 50. Sample transimpedance measurements for high turbidity (top) and low turbidity (bottom) conditions. (These measurements...magnitudes of the transimpedance measurements. ... 40 Figure 67. A reconstruction image of rust level 0. The true target position is 2cm below the

  16. f(R) gravity on non-linear scales: the post-Friedmann expansion and the vector potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.B.; Bruni, M.; Koyama, K.

    2015-07-01

    Many modified gravity theories are under consideration in cosmology as the source of the accelerated expansion of the universe and linear perturbation theory, valid on the largest scales, has been examined in many of these models. However, smaller non-linear scales offer a richer phenomenology with which to constrain modified gravity theories. Here, we consider the Hu-Sawicki form of f(R) gravity and apply the post-Friedmann approach to derive the leading order equations for non-linear scales, i.e. the equations valid in the Newtonian-like regime. We reproduce the standard equations for the scalar field, gravitational slip and the modified Poisson equation in amore » coherent framework. In addition, we derive the equation for the leading order correction to the Newtonian regime, the vector potential. We measure this vector potential from f(R) N-body simulations at redshift zero and one, for two values of the f{sub R{sub 0}} parameter. We find that the vector potential at redshift zero in f(R) gravity can be close to 50% larger than in GR on small scales for |f{sub R{sub 0}}|=1.289 × 10{sup −5}, although this is less for larger scales, earlier times and smaller values of the f{sub R{sub 0}} parameter. Similarly to in GR, the small amplitude of this vector potential suggests that the Newtonian approximation is highly accurate for f(R) gravity, and also that the non-linear cosmological behaviour of f(R) gravity can be completely described by just the scalar potentials and the f(R) field.« less

  17. Demonstrations of Gravity-Independent Mobility and Drilling on Natural Rock using Microspines

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew; King, Jonathan P.; Thatte, Nitish

    2012-01-01

    The video presents microspine-based anchors be ing developed for gripping rocks on the surfaces of comets and asteroids, or for use on cliff faces and lava tubes on Mars. Two types of anchor prototypes are shown on supporting forces in all directions away from the rock; >160 N tangent, >150 N at 45?, and >180 N normal to the surface of the rock. A compliant robotic ankle with two active degrees of freedom interfaces these anchors to the Lemur IIB robot for future climbing trials. Finally, a rotary percussive drill is shown coring into rock regardless of gravitational orientation. As a harder- than-zero-g proof of concept, inverted drilling was performed creating 20mm diameter boreholes 83 mm deep in vesicular basalt samples while retaining 12 mm diameter rock cores in 3-6 pieces.

  18. A new optical head tracing reflected light for nanoprofiler

    NASA Astrophysics Data System (ADS)

    Okuda, K.; Okita, K.; Tokuta, Y.; Kitayama, T.; Nakano, M.; Kudo, R.; Yamamura, K.; Endo, K.

    2014-09-01

    High accuracy optical elements are applied in various fields. For example, ultraprecise aspherical mirrors are necessary for developing third-generation synchrotron radiation and XFEL (X-ray Free Electron LASER) sources. In order to make such high accuracy optical elements, it is necessary to realize the measurement of aspherical mirrors with high accuracy. But there has been no measurement method which simultaneously achieves these demands yet. So, we develop the nanoprofiler that can directly measure the any surfaces figures with high accuracy. The nanoprofiler gets the normal vector and the coordinate of a measurement point with using LASER and the QPD (Quadrant Photo Diode) as a detector. And, from the normal vectors and their coordinates, the three-dimensional figure is calculated. In order to measure the figure, the nanoprofiler controls its five motion axis numerically to make the reflected light enter to the QPD's center. The control is based on the sample's design formula. We measured a concave spherical mirror with a radius of curvature of 400 mm by the deflection method which calculates the figure error from QPD's output, and compared the results with those using a Fizeau interferometer. The profile was consistent within the range of system error. The deflection method can't neglect the error caused from the QPD's spatial irregularity of sensitivity. In order to improve it, we have contrived the zero method which moves the QPD by the piezoelectric motion stage and calculates the figure error from the displacement.

  19. Design and Analysis of Coordinated Bank-to-Turn (CBTT) Autopilots for Bank-to-Turn (BTT) Missiles.

    DTIC Science & Technology

    1983-12-01

    with the acceleration command shown in Figures 4.3 it was necessary to modify the antigravity command as follows to S..assure an anti-gravity bias of...and the kinematic cross-coupling of -B.P into a. Also the antigravity command coso cose is inserted into nz. This model is shown in Figure 4.1. The

  20. Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients

    NASA Astrophysics Data System (ADS)

    Yu, Mingbiao; Cai, Tijing

    2018-05-01

    The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.

  1. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  2. Analytical Study of Gravity Effects on Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Edelman, R. B.; Fortune, O.; Weilerstein, G.

    1972-01-01

    A mathematical model is presented for the description of axisymmetric laminar-jet diffusion flames. The analysis includes the effects of inertia, viscosity, diffusion, gravity and combustion. These mechanisms are coupled in a boundary layer type formulation and solutions are obtained by an explicit finite difference technique. A dimensional analysis shows that the maximum flame width radius, velocity and thermodynamic state characterize the flame structure. Comparisons with experimental data showed excellent agreement for normal gravity flames and fair agreement for steady state low Reynolds number zero gravity flames. Kinetics effects and radiation are shown to be the primary mechanisms responsible for this discrepancy. Additional factors are discussed including elipticity and transient effects.

  3. On estimating gravity anomalies: A comparison of least squares collocation with least squares techniques

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Lowrey, B.

    1976-01-01

    The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described, and its numerical properties are compared with the numerical properties of the conventional least squares estimator.

  4. On the Hamiltonian formalism of the tetrad-gravity with fermions

    NASA Astrophysics Data System (ADS)

    Lagraa, M. H.; Lagraa, M.

    2018-06-01

    We extend the analysis of the Hamiltonian formalism of the d-dimensional tetrad-connection gravity to the fermionic field by fixing the non-dynamic part of the spatial connection to zero (Lagraa et al. in Class Quantum Gravity 34:115010, 2017). Although the reduced phase space is equipped with complicated Dirac brackets, the first-class constraints which generate the diffeomorphisms and the Lorentz transformations satisfy a closed algebra with structural constants analogous to that of the pure gravity. We also show the existence of a canonical transformation leading to a new reduced phase space equipped with Dirac brackets having a canonical form leading to the same algebra of the first-class constraints.

  5. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-Chan; Noh, Hyerim

    2005-03-01

    We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein’s gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein’s gravity and others.

  6. Validity of the "Laplace Swindle" in Calculation of Giant-Planet Gravity Fields

    NASA Astrophysics Data System (ADS)

    Hubbard, William B.

    2014-11-01

    Jupiter and Saturn have large rotation-induced distortions, providing an opportunity to constrain interior structure via precise measurement of external gravity. Anticipated high-precision gravity measurements close to the surfaces of Jupiter (Juno spacecraft) and Saturn (Cassini spacecraft), possibly detecting zonal harmonics to J10 and beyond, will place unprecedented requirements on gravitational modeling via the theory of figures (TOF). It is not widely appreciated that the traditional TOF employs a formally nonconvergent expansion attributed to Laplace. This suspect expansion is intimately related to the standard zonal harmonic (J-coefficient) expansion of the external gravity potential. It can be shown (Hubbard, Schubert, Kong, and Zhang: Icarus, in press) that both Jupiter and Saturn are in the domain where Laplace's "swindle" works exactly, or at least as well as necessary. More highly-distorted objects such as rapidly spinning asteroids may not be in this domain, however. I present a numerical test for the validity and precision of TOF via polar "audit points". I extend the audit-point test to objects rotating differentially on cylinders, obtaining zonal harmonics to J20 and beyond. Models with only low-order differential rotation do not exhibit dramatic effects in the shape of the zonal harmonic spectrum. However, a model with Jupiter-like zonal winds exhibits a break in the zonal harmonic spectrum above about J10, and generally follows the more shallow Kaula power rule at higher orders. This confirms an earlier result obtained by a different method (Hubbard: Icarus 137, 357-359, 1999).

  7. Sediment on Mars: settling faster, moving slower

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.

    2013-12-01

    Using empirical approaches developed on Earth to assess Martian hydrology based on conglomerates such as those found at Gale crater may deliver false results because Martian gravity potentially alters flow-sediment interaction compared to Earth. In this study, we report the results of our Mars Sedimentation Experiments (MarsSedEx I and II) which used settling tubes during reduced gravity flights in November 2012 (and scheduled for November 2013) on board Zero g's G-Force 1. The settling velocity data collected during the flights are compared to several models for terrestrial settling velocities. The results indicate that settling velocities on Mars are underestimated by up to 30 to 50%, depending on the selected model. As a consequence, transport distances of sediment particles increase by a similar proportion in a given flow. We suspect that the underestimation of settling velocity is caused by poor capture of flow hydraulics under reduced gravity. While MarsSedEx I (and II) results are only very preliminary, they indicate that applying empirically derived models for Earth to conglomerates such as those found at Garle crater to derive properties of surface runoff carries the risk of significantly misjudging flow depth and velocities. In the light of the potentially strong influence of topography on runoff generation on Mars, we may therefore end up looking for water in the wrong place.

  8. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north-oriented frame

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue

    2018-04-01

    In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.

  9. Regional tectonic setting for the Trinidad earthquake swarms (2000-2012) from gravity and magnetic data

    USGS Publications Warehouse

    Finn, Carol A.; Kass, Mason A.; Smith, Bruce D.

    2015-01-01

    Earthquakes in the Raton basin near Trinidad, Colorado, (Figure 1) are located (Rubenstein et. al., 2014) near a major gravity and magnetic boundary. These earthquakes also occur in an area of hydrocarbon production that includes several high-capacity produced water injection wells. This presentation gives a very basic outline of the relation between the earthquakes, the potential field data, and possible basement structure.

  10. On a self-consistent representation of earth models, with an application to the computing of internal flattening

    NASA Astrophysics Data System (ADS)

    Denis, C.; Ibrahim, A.

    Self-consistent parametric earth models are discussed in terms of a flexible numerical code. The density profile of each layer is represented as a polynomial, and figures of gravity, mass, mean density, hydrostatic pressure, and moment of inertia are derived. The polynomial representation also allows computation of the first order flattening of the internal strata of some models, using a Gauss-Legendre quadrature with a rapidly converging iteration technique. Agreement with measured geophysical data is obtained, and algorithm for estimation of the geometric flattening for any equidense surface identified by its fractional radius is developed. The program can also be applied in studies of planetary and stellar models.

  11. Applicability of the control configured design approach to advanced earth orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.

    1978-01-01

    The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.

  12. Self-gravity in thin discs and edge effects: an extension of Paczynski's approximation

    NASA Astrophysics Data System (ADS)

    Trova, Audrey; Huré, Jean-Marc; Hersant, Franck

    2014-03-01

    Because hydrostatic equilibrium of gaseous discs is partly governed by the gravity field, we have estimated the component caused by a vertically homogeneous disc with particular attention to the outer regions where self-gravity appears most often. The accuracy of the integral formula is better than 1% regardless of the disc thickness, radial extension and radial density profile. At order zero, the field is even algebraic for thin discs and reads -4πGΣ(R) × fedges(R) at disc surface, which means a correction of Paczynski's formula by a multiplying factor fedges ≲ ½, which depends on the relative distance to the edges and the local disc thickness. For very centrally condensed discs, however, this local contribution can be surpassed by the action of mass stored in the inner regions, possibly resulting in fedges ≫ 1. A criterion setting the limit between these two regimes is derived. These results are robust in the sense that the details of vertical stratification are not critical. We briefly discuss how hydrostatic equilibrium is affected. In particular, the disc flaring probably does not reverse in the self-gravitating region, which contradicts what is usually obtained from Paczynski's formula. This suggests that i) these outer regions are probably not fully shadowed by the inner ones (when the disc is illuminated by a central star); and ii) the flared shape of discs does not firmly prove the absence or weakness of self-gravity.

  13. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2013-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry simulates a launch vehicle upper stage propellant tank and the maneuvers replicate those of real vehicles. The design includes inertial sensors, data acquisition, image capture and data storage interfaces to the SPHERES VERTIGO computer system on board the flight article assembly. The design also includes mechanical and electronic interfaces to the existing SPHERES hardware, which include self-contained packages that can operate in conjunction with the existing SPHERES electronics

  14. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2012-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the Office of the Chief Technologist (OCT) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1 ). The tank geometry simulates a launch vehicle upper stage propellant tank and the maneuvers replicate those of real vehicles. The design includes inertial sensors, data acquisition, image capture and data storage interfaces to the SPHERES VERTIGO computer system on board the flight article assembly. The design also includes mechanical and electronic interfaces to the existing SPHERES hardware, which include self-contained packages that can operate in conjunction with the existing SPHERES electronics.

  15. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    NASA Technical Reports Server (NTRS)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  16. NASA Tech Briefs, October 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Hybrid Architecture Active Wavefront Sensing and Control; Carbon-Nanotube-Based Chemical Gas Sensor; Aerogel-Positronium Technology for the Detection of Small Quantities of Organic and/or Toxic Materials; Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode; Inductive Non-Contact Position Sensor; High-Temperature Surface-Acoustic-Wave Transducer; Grid-Sphere Electrodes for Contact with Ionospheric Plasma; Enabling IP Header Compression in COTS Routers via Frame Relay on a Simplex Link; Ka-Band SiGe Receiver Front-End MMIC for Transponder Applications; Robust Optimization Design Algorithm for High-Frequency TWTs; Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain; Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space; BGen: A UML Behavior Network Generator Tool; Platform for Post-Processing Waveform-Based NDE; Electrochemical Hydrogen Peroxide Generator; Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures; Process to Create High-Fidelity Lunar Dust Simulants; Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives; InGaP Heterojunction Barrier Solar Cells; Straight-Pore Microfilter with Efficient Regeneration; Determining Shear Stress Distribution in a Laminate; Self-Adjusting Liquid Injectors for Combustors; Handling Qualities Prediction of an F-16XL-Based Reduced Sonic Boom Aircraft; Tele-Robotic ATHLETE Controller for Kinematics - TRACK; Three-Wheel Brush-Wheel Sampler; Heterodyne Interferometer Angle Metrology; Aligning Astronomical Telescopes via Identification of Stars; Generation of Optical Combs in a WGM Resonator from a Bichromatic Pump; Large-Format AlGaN PIN Photodiode Arrays for UV Images; Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems; On Calculating the Zero-Gravity Surface Figure of a Mirror; Optical Modification of Casimir Forces for Improved Function of Micro- and Nano-Scale Devices; Analysis, Simulation, and Verification of Knowledge-Based, Rule-Based, and Expert Systems; Core and Off-Core Processes in Systems Engineering; Digital Reconstruction Supporting Investigation of Mishaps; and Template Matching Approach to Signal Prediction.

  17. Preferred negative geotactic orientation in mobile cells: Tetrahymena results.

    PubMed Central

    Noever, D A; Cronise, R; Matsos, H C

    1994-01-01

    For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved alternating periods of low (0.01 g) and high (1.8 g; g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectories as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (if it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research. Images FIGURE 1 PMID:7858146

  18. Direction-dependent arm kinematics reveal optimal integration of gravity cues

    PubMed Central

    Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos

    2016-01-01

    The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort. DOI: http://dx.doi.org/10.7554/eLife.16394.001 PMID:27805566

  19. More on Weinberg's no-go theorem in quantum gravity

    NASA Astrophysics Data System (ADS)

    Nagahama, Munehiro; Oda, Ichiro

    2018-05-01

    We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.

  20. Heart Rate and Blood Pressure Variability under Moon, Mars and Zero Gravity Conditions During Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Aerts, Wouter; Joosen, Pieter; Widjaja, Devy; Varon, Carolina; Vandeput, Steven; Van Huffel, Sabine; Aubert, Andre E.

    2013-02-01

    Gravity changes during partial-G parabolic flights (0g -0.16g - 0.38g) lead to changes in modulation of the autonomic nervous system (ANS), studied via the heart rate variability (HRV) and blood pressure variability (BPV). HRV and BPV were assessed via classical time and frequency domain measures. Mean systolic and diastolic blood pressure show both increasing trends towards higher gravity levels. The parasympathetic and sympathetic modulation show both an increasing trend with decreasing gravity, although the modulation is sympathetic predominant during reduced gravity. For the mean heart rate, a non-monotonic relation was found, which can be explained by the increased influence of stress on the heart rate. This study shows that there is a relation between changes in gravity and modulations in the ANS. With this in mind, countermeasures can be developed to reduce postflight orthostatic intolerance.

  1. Paramagnetic Liquid Bridge in a Gravity-Compensating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mahajan, Milind P.; Tsige, Mesfin; Taylor, P. L.; Rosenblatt, Charles

    1999-01-01

    Magnetic levitation was used to stabilize cylindrical columns of a paramagnetic liquid in air between two solid supports. The maximum achievable length to diameter ratio R(sub max) was approx. (3.10 +/- 0.07), very close to the Rayleigh-Plateau limit of pi. For smaller R, the stability of the column was measured as a function of the Bond number, which could be continuously varied by adjusting the strength of the magnetic field. Liquid bridges supported by two solid surfaces have been attracting scientific attention since the time of Rayleigh and Plateau. For a cylindrical bridge of length L and diameter d, it was shown theoretically that in zero gravity the maximum slenderness ratio R (identically = L/d) is pi. The stability and ultimate collapse of such bridges is of interest because of their importance in a number of industrial processes and their potential for low gravity applications. In the presence of gravity, however, the cylindrical shape of an axisymmetric bridge tends to deform, limiting its stability and decreasing the maximum achievable value of R. Theoretical studies have discussed the stability and possible shapes of axisymmetric bridges. Experiments typically are performed in either a Plateau tank, in which the bridge is surrounded by a density-matched immiscible fluid, or in a space-borne microgravity environment. It has been shown, for example, that the stability limit R can be pushed beyond pi by using flow stabilization, by acoustic radiation pressure, or by forming columns in the presence of an axial electric field. In this work, magnetic levitation was used to simulate a low gravity environment and create quasi-cylindrical liquid columns in air. Use of a magnetic field permits us to continuously vary the Bond number B identically equal to (g)(rho)d(exp 2)/4(sigma), where g is the gravitational acceleration, rho is the density of the liquid, and sigma is the surface tension of the liquid in air. The dimensionless Bond number represents the relative importance of external forces acting on the liquid column to those due to surface tension. Our central result is that in a large magnetic field gradient we could create and stabilize columns of mixtures of water and paramagnetic manganese chloride tetrahydrate (MnCl2.4H2O), achieving a length to diameter ratio very close to pi.

  2. Real time control for NASA robotic gripper

    NASA Technical Reports Server (NTRS)

    Salter, Carole A.; Baras, John S.

    1990-01-01

    The ability to easily manipulate objects in a zero gravity environment will pay a key role in future space activities. Emphasis will be placed on robotic manipulation. This will serve to increase astronaut safety and utility in addition to several other benefits. The aim is to develop control laws for the zero gravity robotic end effectors. A hybrid force/position controller will be used. Sensory data available to the controller are obtained from an array of strain gauges and a linear potentiometer. Applying well known optimal control theoretical principles, the control which minimizes the transition time between positions is obtained. A robust force control scheme is developed which allows the desired holding force to be achieved smoothly without oscillation. In addition, an algorithm is found to determine contact force and contact location.

  3. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  4. Astronaut Edward White during training for first EVA

    NASA Image and Video Library

    1965-03-29

    S65-19504 (28 May 1965) --- Astronaut Edward H. White II, pilot for the Gemini-Titan 4 prime crew, is pictured during an extravehicular exercise in the Building 4 laboratory at the Manned Spacecraft Center in Houston, Texas. White is controlling about the yaw (vertical) axis while translating. He stands on a Balance Extravehicular Training Aircraft which is separated from the level steel floor by a .001th-inch cushion of air. In his right hand White holds a zero-gravity integral propulsion unit which is a self-maneuvering device used by an astronaut in a zero-gravity environment. This condition is simulated in this training exercise. White's spacesuit is pressurized to create a realistic training condition. The simulated umbilical line is floated on air with the aid of eleven small air pads.

  5. Detailed gravimetric geoid for the United States.

    NASA Technical Reports Server (NTRS)

    Strange, W. E.; Vincent, S. F.; Berry, R. H.; Marsh, J. G.

    1972-01-01

    A detailed gravimetric geoid was computed for the United States using a combination of satellite-derived spherical harmonic coefficients and 1 by 1 deg mean gravity values from surface gravimetry. Comparisons of this geoid with astrogeodetic geoid data indicate that a precision of plus or minus 2 meters has been obtained. Translations only were used to convert the NAD astrogeodetic geoid heights to geocentric astrogeodetic heights. On the basis of the agreement between the geocentric astrogeodetic geoid heights and the gravimetric geoid heights, no evidence is found for rotation in the North American datum. The value of the zero-order undulation can vary by 10 to 20 meters, depending on which investigator's station positions are used to establish it.

  6. The sdA problem - II. Photometric and spectroscopic follow-up

    NASA Astrophysics Data System (ADS)

    Pelisoli, Ingrid; Kepler, S. O.; Koester, D.; Castanheira, B. G.; Romero, A. D.; Fraga, L.

    2018-07-01

    The spectral classification `subdwarf A' (sdA) is given to stars showing H-rich spectra and sub-main-sequence surface gravities, but effective temperature lower than the zero-age horizontal branch. Their evolutionary origin is an enigma. In this work, we discuss the results of follow-up observations of selected sdAs. We obtained time-resolved spectroscopy for 24 objects and time-series photometry for another 19 objects. For two targets, we report both spectroscopy and photometry observations. We confirm seven objects to be new extremely low-mass white dwarfs (ELMs), one of which is a known eclipsing star. We also find the eighth member of the pulsating ELM class.

  7. Solid Hydrocarbon Assisted Reduction: A New Process of Generating Micron Scale Metal Particles

    DTIC Science & Technology

    2015-03-01

    Figure 4.  Stainless Steel Mesh and Sample Containment ................................. 14  Figure 5.  Zero Background XRD Sample Holder...from the oven. Later experiments with iron oxide employed T304 stainless steel mesh, basically fashioned into the same shape as that shown for...200X200S0021W48T by TWP Inc. in Berkeley, California. The stainless steel mesh was folded in three segments similar to the Grafoil it replaced. 14 Figure 4

  8. Visual analysis of flow boiling at different gravity levels in 4.0 mm tube

    NASA Astrophysics Data System (ADS)

    Valencia-Castillo, C. M.; Celata, G. P.; Saraceno, L.; Zummo, G.

    2014-11-01

    The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed during the parabolic flight campaign of October-November 2013. The paper will show the analysis of differences between the heat transfer coefficients and vapour bubble parameters at normal and at zero gravity. The results of 4.0 mm tube are presented and discussed. With respect to terrestrial gravity, heat transfer is systematically lower at microgravity in the range of the experimental conditions. Heat transfer differences for the two gravity conditions are related to the different bubble size in each of them. The size of a bubble in flow boiling is affected by the gravity level, being larger at low gravity, unless inertial forces are largely predominant over buoyancy and other forces acting on the bubble itself when detaching from a heated wall. Vapour bubble parameters (bubble diameter, bubble length, width, and nose velocity) have been measured.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jai-chan; Noh, Hyerim

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  10. Gauge symmetry and constraints structure for topologically massive AdS gravity: a symplectic viewpoint

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tzompantzi, Omar; Escalante, Alberto

    2018-05-01

    By applying the Faddeev-Jackiw symplectic approach we systematically show that both the local gauge symmetry and the constraint structure of topologically massive gravity with a cosmological constant Λ , elegantly encoded in the zero-modes of the symplectic matrix, can be identified. Thereafter, via a suitable partial gauge-fixing procedure, the time gauge, we calculate the quantization bracket structure (generalized Faddeev-Jackiw brackets) for the dynamic variables and confirm that the number of physical degrees of freedom is one. This approach provides an alternative to explore the dynamical content of massive gravity models.

  11. The influence of gravity level during directional solidification of immiscible alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Schmale, A. L.; Sandlin, A. C.

    1992-01-01

    During directional solidification of immiscible (hypermonotectic) alloys it is theoretically possible to establish a stable macroscopically-planar solidification front, and thus avoid sedimentation. Unfortunately, convective instabilities often occur which interfere with the directional solidification process. In this paper, stability conditions are discussed and results presented from directional solidification studies carried out aboard NASA's KC-135 zero-g aircraft. Samples were directionally solidified while the effective gravity level was varied from approximately 0.01 g for 25 s to 1.8 g for 45 s. Dramatic variations in microstructure were observed with gravity level during solidification.

  12. 14 CFR 25.25 - Weight limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... weights corresponding to the airplane operating conditions (such as ramp, ground or water taxi, takeoff... conditions (such as zero fuel weight, center of gravity position and weight distribution) must be established...

  13. 14 CFR 25.25 - Weight limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... weights corresponding to the airplane operating conditions (such as ramp, ground or water taxi, takeoff... conditions (such as zero fuel weight, center of gravity position and weight distribution) must be established...

  14. 14 CFR 25.25 - Weight limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... weights corresponding to the airplane operating conditions (such as ramp, ground or water taxi, takeoff... conditions (such as zero fuel weight, center of gravity position and weight distribution) must be established...

  15. Shape Memory Polymer Self-Deploying Membrane Reflectors

    DTIC Science & Technology

    2007-01-30

    stability relative to their [Candidate A] counterparts and very low moisture uptake. Initial attempts to incorporate [this particular constituent] were...specimen (Figure 19). The sample was then reheated and "deployed" (Figure 20) while being held with the bend axis oriented vertically such that gravity...addressed as a separate task for the purposes of describing Statement of Work content, material process development was conducted in parallel with and

  16. The Biomechanics of Exercise Countermeasures

    NASA Technical Reports Server (NTRS)

    Cavanagh, Peter R.; Arnold, Steven; Derr, Janice; Sharkey, Neil; Wu, Ge

    1999-01-01

    The Penn State Zero-gravity Simulator (PSZS) is a device developed by the Center for Locomotion Studies (CELOS) to enable ground studies of exercise countermeasures for the bone loss that has been shown to occur during long-term exposure to zero gravity (0G). The PSZS simulates 0G exercise by providing a suspension system that holds an individual in a horizontal (supine) position above the floor in order to enable exercise on a wall-mounted treadmill. Due to this orientation, exercise performed in the PSZS is free of the force of -ravity in the direction that would normally contribute to ground reaction forces. In order for movements to be more similar to those in 0G, a constant force suspension of each segment (equal to the segment weight) is provided regardless of limb position. During the preliminary development of the PSZS, CELOS researchers also designed an optional gravity-replacement simulation feature for the PSZS. This feature was a prototype tethering system that consisted of a spring tension system to pull an exercising individual toward the treadmill. The immediate application of the tethering system was to be the provision of gravity-replacement loading so that exercise in 0G- and 1G-loading conditions could be compared, and the PSZS could then be used to evaluate exercise countermeasures for bone loss during space flight. This tethering system would also be a model for the further refinement of gravity-replacement systems provided for astronaut usage while performing prescribed exercise countermeasures for bone loss during long-term space flights.

  17. Anomalous Subsidence at Rifted Continental Margins: Distinguishing Mantle Dynamic Topography from Anomalous Oceanic Crustal Thickness

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.

    2012-12-01

    It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.

  18. Severely Reduced Gravitropism in Dark-Grown Hypocotyls of a Starch-Deficient Mutant of Nicotiana sylvestris1

    PubMed Central

    Kiss, John Z.; Sack, Fred D.

    1990-01-01

    Gravitropism in dark-grown hypocotyls of the wild type was compared with a starch-deficient Nicotiana sylvestris mutant (NS 458) to test the effects of starch deficiency on gravity sensing. In a time course of curvature measured using infrared video, the response of the mutant was greatly reduced compared to the wild type; 72 hours after reorientation, curvature was about 10° for NS 458 and about 70° for wild type. In dishes maintained in a vertical orientation, wild-type hypocotyls were predominantly vertical, whereas NS 458 hypocotyls were severely disoriented with about 5 times more orientational variability than wild type. Since the growth rates were equal for both genotypes and phototropic curvature was only slightly inhibited in NS 458, the mutation probably affects gravity perception rather than differential growth. Our data suggest that starch deficiency reduces gravitropic sensitivity more in dark-grown hypocotyls than in dark- or light-grown roots in this mutant and support the hypothesis that amyloplasts function as statoliths in shoots as well as roots. Images Figure 2 Figure 3 Figure 4 PMID:11537476

  19. Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.

    2012-01-01

    Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA.

  20. Convectionless electrophoretic separation of biological preparations

    NASA Technical Reports Server (NTRS)

    Griffin, R. N.; Mccreight, L. R.

    1972-01-01

    Free electrophoresis in a zero gravity environment was investigated on the Apollo 14, and 16 flights. The Apollo 16 electrophoresis equipment and experiment are described along with the required ground-based testing.

  1. Combustion Integrated Rack (CIR)

    NASA Image and Video Library

    2016-06-22

    NASA Glenn engineer Chris Mroczka installs a gas-jet burner in a chamber within the center’s Combustion Integrated Rack. This chamber is where scientists conduct gaseous combustion experiments in a zero gravity environment.

  2. GRC-2015-C-00903

    NASA Image and Video Library

    2011-03-15

    NASA (Zin Technologies) engineer prepares Advanced Colloid Experiment Heated-2 samples that will be analyzed aboard the International Space Station using the zero-gravity Light Microscopy Module, LMM in the Fluids Integrated Rack, FIR

  3. Inertial waste separation system for zero G WMS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design, operation, and flight test are presented for an inertial waste separation system. Training personnel to use this system under simulated conditions is also discussed. Conclusions indicate that before the system is usable in zero gravity environments, a mirror for the user's guidance should be installed, the bounce cycle and bag changing system should be redesigned, and flange clips should be added to improve the user's balance.

  4. Estimating zero strain states of very soft tissue under gravity loading using digital image correlation⋆,⋆⋆,★

    PubMed Central

    Gao, Zhan; Desai, Jaydev P.

    2009-01-01

    This paper presents several experimental techniques and concepts in the process of measuring mechanical properties of very soft tissue in an ex vivo tensile test. Gravitational body force on very soft tissue causes pre-compression and results in a non-uniform initial deformation. The global Digital Image Correlation technique is used to measure the full field deformation behavior of liver tissue in uniaxial tension testing. A maximum stretching band is observed in the incremental strain field when a region of tissue passes from compression and enters a state of tension. A new method for estimating the zero strain state is proposed: the zero strain position is close to, but ahead of the position of the maximum stretching band, or in other words, the tangent of a nominal stress-stretch curve reaches minimum at λ ≳ 1. The approach, to identify zero strain by using maximum incremental strain, can be implemented in other types of image-based soft tissue analysis. The experimental results of ten samples from seven porcine livers are presented and material parameters for the Ogden model fit are obtained. The finite element simulation based on the fitted model confirms the effect of gravity on the deformation of very soft tissue and validates our approach. PMID:20015676

  5. Shuttle - Crew Candidates

    NASA Image and Video Library

    1979-03-01

    Astronaut -Candidate (ASCAN) Guion S. Bluford and Aviation Safety Officer Charles F. Hayes got a unique perspective of their environment during a zero- gravity flight. They are aboard a KC-135 Aircraft, which flies a special pattern repeatedly to afford a series of 30-seconds-of-weightlessness sessions. Astronauts Bluford and Hayes are being assisted by C. P. Stanley of the Photography Branch of the Photographic Technology Division (PTD) at Johnson Space Center (JSC). Some medical studies and a Motion Sickness Experiment were conducted on this particular flight. Astronaut Bluford is one of 20 Scientist/ASCAN's who began training at JSC, 07/1978. 1. Dr. Jeffrey A. Hoffman - Zero-G 2. ASCAN Shannon Lucid - Zero-G 3. ASCAN Guion Bluford - Zero-G

  6. Landing on Enceladus: Mission Design Parameters and Techniques

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2006-12-01

    Since Cassini/Huygens mission results revealed the intriguing nature of Enceladus, scientists have discussed various ways to obtain more detailed information about the south-polar geysers and subsurface conditions that produce them. This includes potential science instruments and investigations, and also the kinds of spacecraft platforms that could deliver and support the instruments. The three most commonly discussed platforms are Saturn orbiters that perform multiple close Enceladus flybys, Enceladus orbiters, and landers (soft or hard). Some high-value science investigations, such as producing an accurate description of the gravity field to infer internal structure, are best done from an orbiter. Some, such as seismic investigations, can be done only with a landed package. Unlike larger satellites such as Europa and Ganymede, Enceladus's low mass yields low surface gravity (~0.11 m/s2), low orbital speeds (<200 m/s), and other mission design characteristics that make it a manageable destination for a practical, high-value lander mission. The main mission design challenge is deceleration from Enceladus approach to a direct landing approach or orbit insertion. A Hohmann transfer from Titan approaches Enceladus with a V- infinity of >4 km/s, most of which would have to be decelerated away propulsively - a sizeable, multi-stage task for current propulsion systems - if no gravity-assist pump-down is used. Preliminary conclusions from JPL mission designers suggest that a pump-down tour could reduce that V-infinity to 2 km/s or less, possibly as little as 1 km/s if a lengthy pump-down is tolerable (Strange, Russell, and Lam, 2006). Once in orbit, landing from a moderately stable, 100-km circular orbit can be accomplished with as little as 210 m/s delta-V, a relatively simple task for a simple propulsion system. Temporary use of marginally stable orbits could reduce that figure. Low surface gravity allows use of small, light thrusters and provides ample reaction time for landing control systems.

  7. Automatic robotic arm operations and sampling in near zero gravity environment - functional tests results from Phobos-Grunt mission

    NASA Astrophysics Data System (ADS)

    Kozlova, Tatiana; Karol Seweryn, D..; Grygorczuk, Jerzy; Kozlov, Oleg

    The sample return missions have made a very significant progress to understanding of geology, the extra-terrestrial materials, processes occurring on surface and subsurface level, as well as of interactions between such materials and mechanisms operating there. The various sample return missions in the past (e.g. Apollo missions, Luna missions, Hayabusa mission) have provided scientists with samples of extra-terrestrial materials allowing to discover answers to critical scientific questions concerning the origin and evolution of the Solar System. Several new missions are currently planned: sample return missions, e.g Russian Luna-28, ESA Phootprint and MarcoPolo-R as well as both robotic and manned exploration missions to the Moon and Mars. One of the key challenges in such missions is the reliable sampling process which can be achieved by using many different techniques, e.g. static excavating technique (scoop), core drilling, sampling using dynamic mechanisms (penetrators), brushes and pneumatic systems. The effectiveness of any sampling strategy depends on many factors, including the required sample size, the mechanical and chemical soil properties (cohesive, hard or porous regolith, stones), the environment conditions (gravity, temperature, pressure, radiation). Many sampling mechanism have been studied, designed and built in the past, two techniques to collect regolith samples were chosen for the Phobos-Grunt mission. The proposed system consisted of a robotic arm with a 1,2m reach beyond the lander (IKI RAN); a tubular sampling device designed for collecting both regolith and small rock fragments (IKI RAN); the CHOMIK device (CBK PAN) - the low velocity penetrator with a single-sample container for collecting samples from the rocky surface. The functional tests were essential step in robotic arm, sampling device and CHOMIK device development process in the frame of Phobos-Grunt mission. Three major results were achieved: (i) operation scenario for autonomous sampling; (ii) technical characteristics of both devices, i.e. progress cycles of CHOMIK device in different materials and torque in the manipulator joints during sampling operations; (iii) confirmation of applicability of both devices to perform such type of tasks. The phases in operational scenario were prepared to meet mission and system requirements mainly connected with: (i) environment (near zero gravity, vacuum, dust), (ii) safety and (iii) to avoid common operation of both devices at the same time.

  8. Thermoelectricity near Anderson localization transitions

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kaoru; Aharony, Amnon; Entin-Wohlman, Ora; Hatano, Naomichi

    2017-10-01

    The electronic thermoelectric coefficients are analyzed in the vicinity of one and two Anderson localization thresholds in three dimensions. For a single mobility edge, we correct and extend previous studies and find universal approximants which allow us to deduce the critical exponent for the zero-temperature conductivity from thermoelectric measurements. In particular, we find that at nonzero low temperatures the Seebeck coefficient and the thermoelectric efficiency can be very large on the "insulating" side, for chemical potentials below the (zero-temperature) localization threshold. Corrections to the leading power-law singularity in the zero-temperature conductivity are shown to introduce nonuniversal temperature-dependent corrections to the otherwise universal functions which describe the Seebeck coefficient, the figure of merit, and the Wiedemann-Franz ratio. Next, the thermoelectric coefficients are shown to have interesting dependences on the system size. While the Seebeck coefficient decreases with decreasing size, the figure of merit first decreases but then increases, while the Wiedemann-Franz ratio first increases but then decreases as the size decreases. Small (but finite) samples may thus have larger thermoelectric efficiencies. In the last part we study thermoelectricity in systems with a pair of localization edges, the ubiquitous situation in random systems near the centers of electronic energy bands. As the disorder increases, the two thresholds approach each other, and then the Seebeck coefficient and the figure of merit increase significantly, as expected from the general arguments of Mahan and Sofo [J. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996), 10.1073/pnas.93.15.7436] for a narrow energy range of the zero-temperature metallic behavior.

  9. ASTRONAUT YOUNG, JOHN W. - ZERO-GRAVITY (ZERO-G) - KC-135

    NASA Image and Video Library

    1978-12-15

    S79-30347 (31 March 1979) --- Taking advantage of a brief period of zero-gravity afforded aboard a KC-135 flying a parabolic curve, the flight crew of the first space shuttle orbital flight test (STS-1) goes through a spacesuit donning exercise. Astronaut John W. Young has just entered the hard-material torso of the shuttle spacesuit by approaching it from below. He is assisted by astronaut Robert L. Crippen. The torso is held in place by a special stand here, simulating the function provided by the airlock wall aboard the actual shuttle craft. The life support system is mated to the torso on Earth and remains so during the flight, requiring this type of donning and doffing exercise. Note Crippen?s suit is the type to be used for intravehicular activity in the shirt sleeve environment to be afforded aboard shuttle. The suit worn by Young is for extravehicular activity (EVA). Young will be STS-1 commander and Crippen, pilot. They will man the space shuttle orbiter 102 Columbia. Photo credit: NASA

  10. Techniques for determination of impact forces during walking and running in a zero-G environment

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael; Walton, Marlei; Bishop, Phillip; Squires, William

    1992-01-01

    One of the deleterious adaptations to the microgravity conditions of space flight is the loss of bone mineral content. This loss appears to be at least partially attributable to the minimal skeletal axial loading concomitant with microgravity. The purpose of this study was to develop and fabricate the instruments and hardware necessary to quantify the vertical impact forces (Fz) imparted to users of the space shuttle passive treadmill during human locomotion in a three-dimensional zero-gravity environment. The shuttle treadmill was instrumented using a Kistler forceplate to measure vertical impact forces. To verify that the instruments and hardware were functional, they were tested both in the one-G environment and aboard the KC-135 reduced gravity aircraft. The magnitude of the impact loads generated in one-G on the shuttle treadmill for walking at 0.9 m/sec and running at 1.6 and 2.2 m/sec were 1.1, 1.7, and 1.7 G, respectively, compared with loads of 0.95, 1.2, and 1.5 G in the zero-G environment.

  11. Self-compensation for trefoil aberration of symmetric dioptric microlithographic lens

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Ho, Cheng-Fang; Hsu, Wei-Yao

    2017-08-01

    The i-line microlithographic lens with unity magnification can be applied for the 3D integrated circuit steppers. The configuration of the microlithographic lens can be divided into three types: the dioptric type, the catoptric type, and the mixed catoptric and dioptric type. The dioptric type with unity magnification is typically designed as symmetry about the aperture stop on both image and object sides to counterbalance aberrations effectively. The lens mounting is substantially critical for the diffraction-limit microlithographic lens, because mounting stresses and gravity degrade image quality severely. The surface deformation of the kinematic mounting is ultimately low, but the disadvantage is high cost and complicated structures. The three-point mounting belongs to the semi-kinematic mounting without over constrain to decrease the surface deformation significantly instead of the ring mounting; however, the disadvantage is the trefoil aberration caused from large-aperture lenses due to gravity. Clocking lenses is a practical method of compensating the surface figure error for optimum wavefront aberration during pre-assembly phase, and then the time and cost spent on the post-assembly for fine alignment reduce much. The self-compensation by two pairs of symmetric lenses on both sides with 60-degree angle difference is beneficial to compensate the trefoil aberration effectively, and it is a costeffective method to achieve the wavefront error close to the design value. In this study, the self-compensation method for the trefoil deformation of large-aperture lenses employed in the symmetric dioptric microlithographic lens is successfully verified in simulation.

  12. Lunar Bouguer gravity anomalies - Imbrian age craters

    NASA Technical Reports Server (NTRS)

    Dvorak, J.; Phillips, R. J.

    1978-01-01

    The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.

  13. New massive gravity and AdS(4) counterterms.

    PubMed

    Jatkar, Dileep P; Sinha, Aninda

    2011-04-29

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.

  14. Tracing Acoustic-Gravity Waves from the Ocean into the Ionosphere

    NASA Astrophysics Data System (ADS)

    Zabotin, N. A.; Godin, O. A.; Bullett, T. W.; Negrea, C.

    2013-12-01

    Ionospheric manifestations of tsunamis provide dramatic evidence of a connection between wave processes in the ocean and in the atmosphere. But tsunamis are only a transient feature of a more general phenomenon, infragravity waves (IGWs). IGWs are permanently present surface gravity waves in the ocean with periods longer than the longest periods (~30 s) of wind-generated waves. IGWs propagate transoceanic distances and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, atmosphere, and the solid Earth. The notion that tsunamis may generate waves in the upper atmosphere has existed for a long time but no quantitative coupling theory for the background waves has been proposed. We provide a strict physical justification for the influence of the background IGWs on the upper atmosphere. Taking into account both fluid compressibility and the gravity in a coupled atmosphere-ocean system, we show that there exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has evanescent waves in the atmosphere propagating horizontally along the ocean surface. At lower frequencies, IGWs continuously radiate their energy into the upper atmosphere in the form of acoustic gravity waves (AGWs). The transition frequency depends on the ocean depth; it varies slowly near 3 mHz for typical depth values and drops to zero sharply only for extremely large depths. Using semi-empirical model of the IGW power spectrum, we derive an estimate of the flux of the mechanical energy and mechanical momentum from the deep ocean into the atmosphere due to background IGWs and predict specific forcing on the atmosphere in coastal regions. We compare spectra of wave processes in the ionosphere measured using Dynasonde technique over Wallops Island, VA and San Juan, PR and interpret the differences in terms of the oceanic effects. We conclude that AGWs of oceanic origin may have an observable impact on the upper atmosphere and describe techniques for experimental verification of this finding.

  15. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2017-12-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  16. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2018-06-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  17. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  18. Research Update: Enhancement of figure of merit for energy-harvesters based on free-standing epitaxial Pb(Zr0.52Ti0.48)0.99Nb0.01O3 thin-film cantilevers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh D.; Houwman, Evert; Dekkers, Matthijn; Schlom, Darrell; Rijnders, Guus

    2017-07-01

    All-oxide free-standing cantilevers were fabricated with epitaxial (001)-oriented Pb(Zr0.52Ti0.48)O3 (PZT) and Pb(Zr0.52Ti0.48)0.99Nb0.01O3 (PNZT) as piezoelectric layers and SrRuO3 electrodes. The ferroelectric and piezoelectric hysteresis loops were measured. From the zero-bias values, the figure-of-merits (FOMs) for piezoelectric energy harvesting systems were calculated. For the PNZT cantilever, an extremely large value FOM = 55 GPa was obtained. This very high value is due to the large shifts of the hysteresis loops such that the zero-bias piezoelectric coefficient e31f is maximum and the zero-bias dielectric constant is strongly reduced compared to the value in the undoped PZT device. The results show that by engineering the self-bias field the energy-harvesting properties of piezoelectric systems can be increased significantly.

  19. Space habitats. [prognosis for space colonization

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.

    1978-01-01

    Differences between space industrialization and space colonization are outlined along with the physiological, psychological, and esthetic needs of the inhabitants of a space habitat. The detrimental effects of zero gravity on human physiology are reviewed, and the necessity of providing artificial gravity, an acceptable atmosphere, and comfortable relative humidity and temperature in a space habitat is discussed. Consideration is also given to social organization and governance, supply of food and water, and design criteria for space colonies.

  20. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Reduced-Gravity Program provides the unique weightless or zero-g environment of space flight for testing and training of human and hardware reactions. The reduced-gravity environment is obtained with a specially modified KC-135A turbojet transport which flies parabolic arcs to produce weightless periods of 20 to 25 seconds. KC-135A cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high. The image shows KC-135A in flight.

  1. Paul Weiss and the genesis of canonical quantization

    NASA Astrophysics Data System (ADS)

    Rickles, Dean; Blum, Alexander

    2015-12-01

    This paper describes the life and work of a figure who, we argue, was of primary importance during the early years of field quantisation and (albeit more indirectly) quantum gravity. A student of Dirac and Born, he was interned in Canada during the second world war as an enemy alien and after his release never seemed to regain a good foothold in physics, identifying thereafter as a mathematician. He developed a general method of quantizing (linear and non-linear) field theories based on the parameters labelling an arbitrary hypersurface. This method (the `parameter formalism' often attributed to Dirac), though later discarded, was employed (and viewed at the time as an extremely important tool) by the leading figures associated with canonical quantum gravity: Dirac, Pirani and Schild, Bergmann, DeWitt, and others. We argue that he deserves wider recognition for this and other innovations.

  2. Moon and Mars gravity environment during parabolic flights: a new European approach to prepare for planetary exploration

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Clervoy, Jean-Fran; Gharib, Thierry; Gai, Frederic; Mora, Christophe; Rosier, Patrice

    Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballis-tic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Ma-terial Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace will offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. Scientists are invited to submit experiment proposals to be conducted at these partial gravity levels. This paper presents the technical capabilities of the Airbus A300 Zero-G aircraft used by ESA to support and conduct investigations at Moon-, Mars-and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some Physiology and Technology experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.

  3. Dark energy domination in the Virgocentric flow

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2010-09-01

    Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.

  4. Aeolian processes aboard a space station: Saltation and particle trajectory analysis

    NASA Technical Reports Server (NTRS)

    White, B. R.; Greeley, R.; Iversen, J. D.; Leach, R. N.

    1986-01-01

    The Carousel wind tunnel (CWT) proposed to study aeolian processes aboard a space station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel test section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simulate flat plate turbulent boundary layer flow. The two dimensional flat plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricted to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.

  5. Aeolian processes aboard a Space Station: Saltation and particle trajectory analysis

    NASA Technical Reports Server (NTRS)

    White, Bruce R.; Greeley, Ronald; Iversen, James D.; Leach, R. N.

    1987-01-01

    The Carousel Wind Tunnel (CWT) proposed to study aeolian processes aboard a Space Station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simuate flat plate turbulent boundary layer flow. The two dimensional flate plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricated to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.

  6. Numerical study of gravity effects on phase separation in a swirl chamber.

    PubMed

    Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L

    2016-01-01

    The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.

  7. Developing a Campaign Plan to Target Centers of Gravity Within Economic Systems

    DTIC Science & Technology

    1995-05-01

    Conclusion 67 CHAPTER 7: CURRENT AND FUTURE CONCERNS 69 Decision Making and Planning 69 Conclusion 72 CHAPTER 8: CONCLUSION 73 APPENDIX A: STATISTICS 80...Terminology and Statistical Tests 80 Country Analysis 84 APPENDIX B 154 BIBLIOGRAPHY 157 VITAE 162 IV LIST OF FIGURES Figure 1. Air Campaign...This project furthers the original statistical effort and adds to this a campaign planning approach (including both systems and operational level

  8. Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul

    2016-07-01

    Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF fluid, called C30, has been developed to finish surfaces to ultra-low roughness (ULR) and has been used as the low removal rate fluid required for fine figure correction of mid-spatial frequency errors. This novel MRF fluid is able to achieve <4Å RMS on Nickel-plated Aluminum and even <1.5Å RMS roughness on Silicon, Fused Silica and other materials. C30 fluid is best utilized within a fine figure correction process to target mid-spatial frequency errors as well as smooth surface roughness 'for free' all in one step. In this paper we will discuss recent advancements in MRF technology and the ability to meet requirements for precision optics in low, mid and high spatial frequency regimes and how improved MRF performance addresses the need for achieving tight specifications required for astronomical optics.

  9. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, James D.; Greeley, Ronald

    1987-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  10. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.; Greeley, R.

    1986-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in Earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  11. Clean Room in the Zero Gravity Research Facility

    NASA Image and Video Library

    1968-07-21

    A technician prepares a test sample in the Zero Gravity Research Facility clean room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Zero Gravity Research Facility contained a drop tower which provided five seconds of microgravity during freefall in its 450-foot deep vacuum chamber. The facility has been used for a variety of studies relating to the behavior of fluids and flames in microgravity. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the special ten-second drops in which the package was pneumatically shot to the top of the tower then dropped. The facility also contained a control room, shop offices, tool and equipment rooms, and this clean room. The 242.5-foot long and 19.5-foot wide clean room was equipped with specialized cleaning equipment. In the 1960s the room was rated as a class 10,000 clean room, but I was capable of meeting the class 100 requirements. The room included a fume hood, ultrasonic cleaner, and a laminar flow station which operated as a class 100 environment. The environment in the clean room was maintained at 71° F and a relative humidity of 45- percent.

  12. Teleseismic body waves from dynamically rupturing shallow thrust faults: Are they opaque for surface-reflected phases?

    USGS Publications Warehouse

    Smith, D.E.; Aagaard, Brad T.; Heaton, T.H.

    2005-01-01

    We investigate whether a shallow-dipping thrust fault is prone to waveslip interactions via surface-reflected waves affecting the dynamic slip. If so, can these interactions create faults that are opaque to radiated energy? Furthermore, in this case of a shallow-dipping thrust fault, can incorrectly assuming a transparent fault while using dislocation theory lead to underestimates of seismic moment? Slip time histories are generated in three-dimensional dynamic rupture simulations while allowing for varying degrees of wave-slip interaction controlled by fault-friction models. Based on the slip time histories, P and SH seismograms are calculated for stations at teleseismic distances. The overburdening pressure caused by gravity eliminates mode I opening except at the tip of the fault near the surface; hence, mode I opening has no effect on the teleseismic signal. Normalizing by a Haskell-like traditional kinematic rupture, we find teleseismic peak-to-peak displacement amplitudes are approximately 1.0 for both P and SH waves, except for the unrealistic case of zero sliding friction. Zero sliding friction has peak-to-peak amplitudes of 1.6 for P and 2.0 for SH waves; the fault slip oscillates about its equilibrium value, resulting in a large nonzero (0.08 Hz) spectral peak not seen in other ruptures. These results indicate wave-slip interactions associated with surface-reflected phases in real earthquakes should have little to no effect on teleseismic motions. Thus, Haskell-like kinematic dislocation theory (transparent fault conditions) can be safety used to simulate teleseismic waveforms in the Earth.

  13. Helicopter Controllability

    DTIC Science & Technology

    1989-09-01

    106 3. Program CC Systems Technology, Inc. (STI) of Hawthorne, CA., develops and markets PC control system analysis and design software including...is marketed in Palo Alto, Ca., by Applied i and can be used for both linear and non- linear control system analysis. Using TUTSIM involves developing...gravity centroid ( ucg ) can be calculated as 112 n m pi - 2 zi acg n i (7-5) where pi = poles zi = zeroes n = number of poles m = number of zeroes If K

  14. Effect of gravity and microgravity on intracranial pressure

    PubMed Central

    Lawley, Justin S.; Petersen, Lonnie G.; Howden, Erin J.; Sarma, Satyam; Cornwell, William K.; Zhang, Rong; Whitworth, Louis A.; Williams, Michael A.

    2017-01-01

    Key Points Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure on Earth.Gravity has a profound effect on fluid distribution and pressure within the human circulation. In contrast to prevailing theory, we observed that microgravity reduces central venous and intracranial pressure.This being said, intracranial pressure is not reduced to the levels observed in the 90 deg seated upright posture on Earth. Thus, over 24 h in zero gravity, pressure in the brain is slightly above that observed on Earth, which may explain remodelling of the eye in astronauts. Abstract Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure (ICP). This syndrome is considered the most mission‐critical medical problem identified in the past decade of manned spaceflight. We recruited five men and three women who had an Ommaya reservoir inserted for the delivery of prophylactic CNS chemotherapy, but were free of their malignant disease for at least 1 year. ICP was assessed by placing a fluid‐filled 25 gauge butterfly needle into the Ommaya reservoir. Subjects were studied in the upright and supine position, during acute zero gravity (parabolic flight) and prolonged simulated microgravity (6 deg head‐down tilt bedrest). icp was lower when seated in the 90 deg upright posture compared to lying supine (seated, 4 ± 1 vs. supine, 15 ± 2 mmHg). Whilst lying in the supine posture, central venous pressure (supine, 7 ± 3 vs. microgravity, 4 ± 2 mmHg) and ICP (supine, 17 ± 2 vs. microgravity, 13 ± 2 mmHg) were reduced in acute zero gravity, although not to the levels observed in the 90 deg seated upright posture on Earth. Prolonged periods of simulated microgravity did not cause progressive elevations in ICP (supine, 15 ± 2 vs. 24 h head‐down tilt, 15 ± 4 mmHg). Complete removal of gravity does not pathologically elevate ICP but does prevent the normal lowering of ICP when upright. These findings suggest the human brain is protected by the daily circadian cycles in regional ICPs, without which pathology may occur. PMID:28092926

  15. Effect of gravity and microgravity on intracranial pressure.

    PubMed

    Lawley, Justin S; Petersen, Lonnie G; Howden, Erin J; Sarma, Satyam; Cornwell, William K; Zhang, Rong; Whitworth, Louis A; Williams, Michael A; Levine, Benjamin D

    2017-03-15

    Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure on Earth. Gravity has a profound effect on fluid distribution and pressure within the human circulation. In contrast to prevailing theory, we observed that microgravity reduces central venous and intracranial pressure. This being said, intracranial pressure is not reduced to the levels observed in the 90 deg seated upright posture on Earth. Thus, over 24 h in zero gravity, pressure in the brain is slightly above that observed on Earth, which may explain remodelling of the eye in astronauts. Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure (ICP). This syndrome is considered the most mission-critical medical problem identified in the past decade of manned spaceflight. We recruited five men and three women who had an Ommaya reservoir inserted for the delivery of prophylactic CNS chemotherapy, but were free of their malignant disease for at least 1 year. ICP was assessed by placing a fluid-filled 25 gauge butterfly needle into the Ommaya reservoir. Subjects were studied in the upright and supine position, during acute zero gravity (parabolic flight) and prolonged simulated microgravity (6 deg head-down tilt bedrest). ICP was lower when seated in the 90 deg upright posture compared to lying supine (seated, 4 ± 1 vs. supine, 15 ± 2 mmHg). Whilst lying in the supine posture, central venous pressure (supine, 7 ± 3 vs. microgravity, 4 ± 2 mmHg) and ICP (supine, 17 ± 2 vs. microgravity, 13 ± 2 mmHg) were reduced in acute zero gravity, although not to the levels observed in the 90 deg seated upright posture on Earth. Prolonged periods of simulated microgravity did not cause progressive elevations in ICP (supine, 15 ± 2 vs. 24 h head-down tilt, 15 ± 4 mmHg). Complete removal of gravity does not pathologically elevate ICP but does prevent the normal lowering of ICP when upright. These findings suggest the human brain is protected by the daily circadian cycles in regional ICPs, without which pathology may occur. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  16. Angular Motion of Projectiles with a Moving Internal Part.

    DTIC Science & Technology

    1977-02-01

    Ball Rotor T317 hellIntermal Projectile RingsM505 Fuze Quasi-linear Angular Motion N\\ ANSTRACT (-jCanhs si rveree side ff naeweemv end identify by...LIST OF FIGURES Figure Page 1. 20mm Shell T282E1 with Arming Ball Rotor .... .......... 20 2. Fast Mode Damping Rate for the 20mm T282E1...fuze has a spherical arming rotor in a cylindrical cavity with small but non-zero clearanc’es (Figure 1). The fourth sa.ell - the 8-inch T317 - showed

  17. Mathematical and computational studies of equilibrium capillary free surfaces

    NASA Technical Reports Server (NTRS)

    Albright, N.; Chen, N. F.; Concus, P.; Finn, R.

    1977-01-01

    The results of several independent studies are presented. The general question is considered of whether a wetting liquid always rises higher in a small capillary tube than in a larger one, when both are dipped vertically into an infinite reservoir. An analytical investigation is initiated to determine the qualitative behavior of the family of solutions of the equilibrium capillary free-surface equation that correspond to rotationally symmetric pendent liquid drops and the relationship of these solutions to the singular solution, which corresponds to an infinite spike of liquid extending downward to infinity. The block successive overrelaxation-Newton method and the generalized conjugate gradient method are investigated for solving the capillary equation on a uniform square mesh in a square domain, including the case for which the solution is unbounded at the corners. Capillary surfaces are calculated on the ellipse, on a circle with reentrant notches, and on other irregularly shaped domains using JASON, a general purpose program for solving nonlinear elliptic equations on a nonuniform quadrilaterial mesh. Analytical estimates for the nonexistence of solutions of the equilibrium capillary free-surface equation on the ellipse in zero gravity are evaluated.

  18. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  19. The Shape of Enceladus' Core: Predictions for Degree-2 Nonhydrostatic Gravity, and Role in Survival of the Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.

    2011-10-01

    The global shape of Enceladus is not consistent with a simultaneously hydrostatic and fully differentiated body, but hypotheses that Enceladus is either undifferentiated or preserves a globally unrelaxed figure from an earlier position closer to Saturn are implausible. Enceladus' geophysical activity (and surface) is best understood in the context of a differentiated (rock separated from ice) interior. Topographic profiles indicate that Enceladus' surface conforms to a triaxial shape, consistent with relaxation to a global geoid. Enceladus' rocky core need not be hydrostatic, however. A modestly "lumpy" core, either in terms of topography or density, and dynamically aligned, will act to enhance the global geoid. Explaining the global shape of Enceladus requires ~12 km of excess core polar ellipticity and ~5 km of excess core equatorial ellipticity, for a uniform density core. The stresses in Enceladus' core associated with this modest level of dynamically excess topography can be sustained indefinitely. Enceladus' icy shell should be isostatic with respect to the satellite's degree-2 gravity, but because the rocky core is not hydrostatic, Enceladus' degree-2 gravity coefficients J2 and C22 should not conform to the hydrostatic ratio of 10/3. The moments-of-inertia implied also indicate that Enceladus could be near a low-order spin-orbit librational resonance, and thus tidal heating associated with this resonance type could have contributed to the moon's phenomenal heat flow. Finally, the core c-axis will be depressed by some 8 km with respect to a hydrostatic shape. This true topographic variation can help preserve polar ocean remnants against freezing (and grounding elsewhere) during epochs of low tidal heating.

  20. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    NASA Technical Reports Server (NTRS)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

Top