Sample records for zero-point energy zpe

  1. Gravity and Zero Point Energy

    NASA Astrophysics Data System (ADS)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  2. Vibrational zero point energy for H-doped silicon

    NASA Astrophysics Data System (ADS)

    Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.

    2014-05-01

    Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.

  3. Zero point energy of polyhedral water clusters.

    PubMed

    Anick, David J

    2005-06-30

    Polyhedral water clusters (PWCs) are cage-like (H2O)n clusters where every O participates in exactly three H bonds. For a database of 83 PWCs, 8 < or = n < or = 20, geometry was optimized and zero point energy (ZPE) was calculated at the B3LYP/6-311++G** level. ZPE correlates negatively with electronic energy (E0): each increase of 1 kcal/mol in E0 corresponds to a decrease of about 0.11 kcal/mol in ZPE. For each n, a set of four connectivity parameters accounts for 98% or more of the variance in ZPE. Linear regression of ZPE against n and this set gives an RMS error of 0.13 kcal/mol. The contributions to ZPE from stretch modes only (ZPE(S)) and from torsional modes only (ZPE(T)) also correlate strongly with E0 and with each other.

  4. Zero-point energy conservation in classical trajectory simulations: Application to H2CO

    NASA Astrophysics Data System (ADS)

    Lee, Kin Long Kelvin; Quinn, Mitchell S.; Kolmann, Stephen J.; Kable, Scott H.; Jordan, Meredith J. T.

    2018-05-01

    A new approach for preventing zero-point energy (ZPE) violation in quasi-classical trajectory (QCT) simulations is presented and applied to H2CO "roaming" reactions. Zero-point energy may be problematic in roaming reactions because they occur at or near bond dissociation thresholds and these channels may be incorrectly open or closed depending on if, or how, ZPE has been treated. Here we run QCT simulations on a "ZPE-corrected" potential energy surface defined as the sum of the molecular potential energy surface (PES) and the global harmonic ZPE surface. Five different harmonic ZPE estimates are examined with four, on average, giving values within 4 kJ/mol—chemical accuracy—for H2CO. The local harmonic ZPE, at arbitrary molecular configurations, is subsequently defined in terms of "projected" Cartesian coordinates and a global ZPE "surface" is constructed using Shepard interpolation. This, combined with a second-order modified Shepard interpolated PES, V, allows us to construct a proof-of-concept ZPE-corrected PES for H2CO, Veff, at no additional computational cost to the PES itself. Both V and Veff are used to model product state distributions from the H + HCO → H2 + CO abstraction reaction, which are shown to reproduce the literature roaming product state distributions. Our ZPE-corrected PES allows all trajectories to be analysed, whereas, in previous simulations, a significant proportion was discarded because of ZPE violation. We find ZPE has little effect on product rotational distributions, validating previous QCT simulations. Running trajectories on V, however, shifts the product kinetic energy release to higher energy than on Veff and classical simulations of kinetic energy release should therefore be viewed with caution.

  5. Zero-point energy effects in anion solvation shells.

    PubMed

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  6. Zero-Point Energy Constraint for Unimolecular Dissociation Reactions. Giving Trajectories Multiple Chances To Dissociate Correctly.

    PubMed

    Paul, Amit K; Hase, William L

    2016-01-28

    A zero-point energy (ZPE) constraint model is proposed for classical trajectory simulations of unimolecular decomposition and applied to CH4* → H + CH3 decomposition. With this model trajectories are not allowed to dissociate unless they have ZPE in the CH3 product. If not, they are returned to the CH4* region of phase space and, if necessary, given additional opportunities to dissociate with ZPE. The lifetime for dissociation of an individual trajectory is the time it takes to dissociate with ZPE in CH3, including multiple possible returns to CH4*. With this ZPE constraint the dissociation of CH4* is exponential in time as expected for intrinsic RRKM dynamics and the resulting rate constant is in good agreement with the harmonic quantum value of RRKM theory. In contrast, a model that discards trajectories without ZPE in the reaction products gives a CH4* → H + CH3 rate constant that agrees with the classical and not quantum RRKM value. The rate constant for the purely classical simulation indicates that anharmonicity may be important and the rate constant from the ZPE constrained classical trajectory simulation may not represent the complete anharmonicity of the RRKM quantum dynamics. The ZPE constraint model proposed here is compared with previous models for restricting ZPE flow in intramolecular dynamics, and connecting product and reactant/product quantum energy levels in chemical dynamics simulations.

  7. Ubiquity of quantum zero-point fluctuations in dislocation glide

    NASA Astrophysics Data System (ADS)

    Landeiro Dos Reis, Marie; Choudhury, Anshuman; Proville, Laurent

    2017-03-01

    Modeling the dislocation glide through atomic scale simulations in Al, Cu, and Ni and in solid solution alloys Al(Mg) and Cu(Ag), we show that in the course of the plastic deformation the variation of the crystal zero-point energy (ZPE) and the dislocation potential energy barriers are of opposite sign. The multiplicity of situations where we have observed the same trend allows us to conclude that quantum fluctuations, giving rise to the crystal ZPE, make easier the dislocation glide in most materials, even those constituted of atoms heavier than H and He.

  8. A density functional theory study on the effect of zero-point energy corrections on the methanation profile on Fe(100).

    PubMed

    Govender, Ashriti; Ferré, Daniel Curulla; Niemantsverdriet, J W Hans

    2012-04-23

    The thermodynamics and kinetics of the surface hydrogenation of adsorbed atomic carbon to methane, following the reaction sequence C+4H(-->/<--)CH+3H(-->/<--)CH(2)+2H(-->/<--)CH(3)+H(-->/<--)CH(4), are studied on Fe(100) by means of density functional theory. An assessment is made on whether the adsorption energies and overall energy profile are affected when zero-point energy (ZPE) corrections are included. The C, CH and CH(2) species are most stable at the fourfold hollow site, while CH(3) prefers the twofold bridge site. Atomic hydrogen is adsorbed at both the twofold bridge and fourfold hollow sites. Methane is physisorbed on the surface and shows neither orientation nor site preference. It is easily desorbed to the gas phase once formed. The incorporation of ZPE corrections has a very slight, if any, effect on the adsorption energies and does not alter the trends with regards to the most stable adsorption sites. The successive addition of hydrogen to atomic carbon is endothermic up to the addition of the third hydrogen atom resulting in the methyl species, but exothermic in the final hydrogenation step, which leads to methane. The overall methanation reaction is endothermic when starting from atomic carbon and hydrogen on the surface. Zero-point energy corrections are rarely provided in the literature. Since they are derived from C-H bonds with characteristic vibrations on the order of 2500-3000 cm(-1), the equivalent ZPE of 1/2 hν is on the order of 0.2-0.3 eV and its effect on adsorption energy can in principle be significant. Particularly in reactions between CH(x) and H, the ZPE correction is expected to be significant, as additional C-H bonds are formed. In this instance, the methanation reaction energy of +0.77 eV increased to +1.45 eV with the inclusion of ZPE corrections, that is, less favourable. Therefore, it is crucial to include ZPE corrections when reporting reactions involving hydrogen-containing species. Copyright © 2012 WILEY-VCH Verlag Gmb

  9. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    PubMed

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  10. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH

    NASA Astrophysics Data System (ADS)

    Kolmann, Stephen J.; Jordan, Meredith J. T.

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  11. The effect of zero-point energy differences on the isotope dependence of the formation of ozone: a classical trajectory study.

    PubMed

    Schinke, Reinhard; Fleurat-Lessard, Paul

    2005-03-01

    The effect of zero-point energy differences (DeltaZPE) between the possible fragmentation channels of highly excited O(3) complexes on the isotope dependence of the formation of ozone is investigated by means of classical trajectory calculations and a strong-collision model. DeltaZPE is incorporated in the calculations in a phenomenological way by adjusting the potential energy surface in the product channels so that the correct exothermicities and endothermicities are matched. The model contains two parameters, the frequency of stabilizing collisions omega and an energy dependent parameter Delta(damp), which favors the lower energies in the Maxwell-Boltzmann distribution. The stabilization frequency is used to adjust the pressure dependence of the absolute formation rate while Delta(damp) is utilized to control its isotope dependence. The calculations for several isotope combinations of oxygen atoms show a clear dependence of relative formation rates on DeltaZPE. The results are similar to those of Gao and Marcus [J. Chem. Phys. 116, 137 (2002)] obtained within a statistical model. In particular, like in the statistical approach an ad hoc parameter eta approximately 1.14, which effectively reduces the formation rates of the symmetric ABA ozone molecules, has to be introduced in order to obtain good agreement with the measured relative rates of Janssen et al. [Phys. Chem. Chem. Phys. 3, 4718 (2001)]. The temperature dependence of the recombination rate is also addressed.

  12. Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity

    NASA Astrophysics Data System (ADS)

    Aldegunde, J.; Jambrina, P. G.; García, E.; Herrero, V. J.; Sáez-Rábanos, V.; Aoiz, F. J.

    2013-11-01

    The advent of very precise measurements of rate coefficients in reactions of muonium (Mu), the lightest hydrogen isotope, with H2 in its ground and first vibrational state and of kinetic isotope effects with respect to heavier isotopes has triggered a renewed interests in the field of muonic chemistry. The aim of the present article is to review the most recent results about the dynamics and mechanism of the reaction Mu+H2 to shed light on the importance of quantum effects such as tunnelling, the preservation of the zero point energy, and the vibrational adiabaticity. In addition to accurate quantum mechanical (QM) calculations, quasiclassical trajectories (QCT) have been run in order to check the reliability of this method for this isotopic variant. It has been found that the reaction with H2(v=0) is dominated by the high zero point energy (ZPE) of the products and that tunnelling is largely irrelevant. Accordingly, both QCT calculations that preserve the products' ZPE as well as those based on the Ring Polymer Molecular Dynamics methodology can reproduce the QM rate coefficients. However, when the hydrogen molecule is vibrationally excited, QCT calculations fail completely in the prediction of the huge vibrational enhancement of the reactivity. This failure is attributed to tunnelling, which plays a decisive role breaking the vibrational adiabaticity when v=1. By means of the analysis of the results, it can be concluded that the tunnelling takes place through the ν1=1 collinear barrier. Somehow, the tunnelling that is missing in the Mu+H2(v=0) reaction is found in Mu+H2(v=1).

  13. Trajectory dynamics study of the Ar + CH4 dissociation reaction at high temperatures: the importance of zero-point-energy effects.

    PubMed

    Marques, J M C; Martínez-Núñez, E; Fernandez-Ramos, A; Vazquez, S A

    2005-06-23

    Large-scale classical trajectory calculations have been performed to study the reaction Ar + CH4--> CH3 +H + Ar in the temperature range 2500 < or = T/K < or = 4500. The potential energy surface used for ArCH4 is the sum of the nonbonding pairwise potentials of Hase and collaborators (J. Chem. Phys. 2001, 114, 535) that models the intermolecular interaction and the CH4 intramolecular potential of Duchovic et al. (J. Phys. Chem. 1984, 88, 1339), which has been modified to account for the H-H repulsion at small bending angles. The thermal rate coefficient has been calculated, and the zero-point energy (ZPE) of the CH3 product molecule has been taken into account in the analysis of the results; also, two approaches have been applied for discarding predissociative trajectories. In both cases, good agreement is observed between the experimental and trajectory results after imposing the ZPE of CH3. The energy-transfer parameters have also been obtained from trajectory calculations and compared with available values estimated from experiment using the master equation formalism; in general, the agreement is good.

  14. Mixed quantum/classical investigation of the photodissociation of NH3(Ã) and a practical method for maintaining zero-point energy in classical trajectories

    NASA Astrophysics Data System (ADS)

    Bonhommeau, David; Truhlar, Donald G.

    2008-07-01

    The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode ν2 with n2=0,…,6 quanta of vibration) in the à electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTU /SD+trajectory projection onto ZPE orbit (TRAPZ) and FSTU /SD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH2 internal energy distributions obtained for n2=0 and n2>1, as observed in experiments. Distributions obtained for n2=1 present an intermediate behavior between distributions obtained for smaller and larger n2 values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH2 internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n2=0 and n2=6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching.

  15. Mixed quantum/classical investigation of the photodissociation of NH3(A) and a practical method for maintaining zero-point energy in classical trajectories.

    PubMed

    Bonhommeau, David; Truhlar, Donald G

    2008-07-07

    The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode nu(2) with n(2)=0,[ellipsis (horizontal)],6 quanta of vibration) in the A electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTUSD+trajectory projection onto ZPE orbit (TRAPZ) and FSTUSD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH(2) internal energy distributions obtained for n(2)=0 and n(2)>1, as observed in experiments. Distributions obtained for n(2)=1 present an intermediate behavior between distributions obtained for smaller and larger n(2) values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH(2) internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n(2)=0 and n(2)=6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching.

  16. Chemical Reaction Rates from Ring Polymer Molecular Dynamics: Zero Point Energy Conservation in Mu + H2 → MuH + H.

    PubMed

    Pérez de Tudela, Ricardo; Aoiz, F J; Suleimanov, Yury V; Manolopoulos, David E

    2012-02-16

    A fundamental issue in the field of reaction dynamics is the inclusion of the quantum mechanical (QM) effects such as zero point energy (ZPE) and tunneling in molecular dynamics simulations, and in particular in the calculation of chemical reaction rates. In this work we study the chemical reaction between a muonium atom and a hydrogen molecule. The recently developed ring polymer molecular dynamics (RPMD) technique is used, and the results are compared with those of other methods. For this reaction, the thermal rate coefficients calculated with RPMD are found to be in excellent agreement with the results of an accurate QM calculation. The very minor discrepancies are within the convergence error even at very low temperatures. This exceptionally good agreement can be attributed to the dominant role of ZPE in the reaction, which is accounted for extremely well by RPMD. Tunneling only plays a minor role in the reaction.

  17. Uncertainties in scaling factors for ab initio vibrational zero-point energies

    NASA Astrophysics Data System (ADS)

    Irikura, Karl K.; Johnson, Russell D.; Kacker, Raghu N.; Kessel, Rüdiger

    2009-03-01

    Vibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic. We report scaling factors for 32 combinations of theory and basis set, intended for predicting ZPEs from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with scaling factors for ZPE. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for B3LYP/6-31G(d) is 0.9757±0.0224 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted ZPEs. The proposed method for quantifying the uncertainties associated with scaling factors is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. We also present a new reference set of 60 diatomic and 15 polyatomic "experimental" ZPEs that includes estimated uncertainties.

  18. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    NASA Technical Reports Server (NTRS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  19. Zero point energy leakage in condensed phase dynamics: An assessment of quantum simulation methods for liquid water

    NASA Astrophysics Data System (ADS)

    Habershon, Scott; Manolopoulos, David E.

    2009-12-01

    The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.

  20. Zero point energy leakage in condensed phase dynamics: an assessment of quantum simulation methods for liquid water.

    PubMed

    Habershon, Scott; Manolopoulos, David E

    2009-12-28

    The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.

  1. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra.

    PubMed

    Marashdeh, Ali; Frankcombe, Terry J

    2008-06-21

    The dehydrogenation enthalpies of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH(4))(2) is exothermic, indicating a metastable hydride. Calculations for CaAlH(5) including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH(4) with CaH(2) is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH(4))(2) and CaAlH(5) calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH(5) is presented in the more useful standard setting of P2(1)c symmetry and the phonon density of states of CaAlH(5), significantly different to other common complex metal hydrides, is rationalized.

  2. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra

    NASA Astrophysics Data System (ADS)

    Marashdeh, Ali; Frankcombe, Terry J.

    2008-06-01

    The dehydrogenation enthalpies of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH4)2 is exothermic, indicating a metastable hydride. Calculations for CaAlH5 including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH4 with CaH2 is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH4)2 and CaAlH5 calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH5 is presented in the more useful standard setting of P21/c symmetry and the phonon density of states of CaAlH5, significantly different to other common complex metal hydrides, is rationalized.

  3. Effects of zero point vibration on the reaction dynamics of water dimer cations following ionization.

    PubMed

    Tachikawa, Hiroto

    2017-06-30

    Reactions of water dimer cation (H2O)2+ following ionization have been investigated by means of a direct ab initio molecular dynamics method. In particular, the effects of zero point vibration and zero point energy (ZPE) on the reaction mechanism were considered in this work. Trajectories were run on two electronic potential energy surfaces (PESs) of (H2O)2+: ground state ( 2 A″-like state) and the first excited state ( 2 A'-like state). All trajectories on the ground-state PES lead to the proton-transferred product: H 2 O + (Wd)-H 2 O(Wa) → OH(Wd)-H 3 O + (Wa), where Wd and Wa refer to the proton donor and acceptor water molecules, respectively. Time of proton transfer (PT) varied widely from 15 to 40 fs (average time of PT = 30.9 fs). The trajectories on the excited-state PES gave two products: an intermediate complex with a face-to-face structure (H 2 O-OH 2 ) + and a PT product. However, the proton was transferred to the opposite direction, and the reverse PT was found on the excited-state PES: H 2 O(Wd)-H 2 O + (Wa) → H 3 O + (Wd)-OH(Wa). This difference occurred because the ionizing water molecule in the dimer switched between the ground and excited states. The reaction mechanism of (H2O)2+ and the effects of ZPE are discussed on the basis of the results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    PubMed

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results

  5. Zero-point energy constraint in quasi-classical trajectory calculations.

    PubMed

    Xie, Zhen; Bowman, Joel M

    2006-04-27

    A method to constrain the zero-point energy in quasi-classical trajectory calculations is proposed and applied to the Henon-Heiles system. The main idea of this method is to smoothly eliminate the coupling terms in the Hamiltonian as the energy of any mode falls below a specified value.

  6. Water Electrolyzers and the Zero-Point Energy

    NASA Astrophysics Data System (ADS)

    King, M. B.

    The gas emitted from popular water electrolyzer projects manifests unusual energetic anomalies, which include vaporizing tungsten when used in a welding torch and running internal combustion engines on small quantities of the gas. Some claim to run generators in closed loop fashion solely on the gas from the electrolyzer, which is powered solely from the generator. Most investigators believe the energy is from burning hydrogen. A hypothesis is proposed that the dominant energy is not coming from hydrogen, but rather it is coming from charged water gas clusters, which activate and coherently trap zero-point energy.

  7. Proposed Use of Zero Bias Diode Arrays as Thermal Electric Noise Rectifiers and Non-Thermal Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2009-03-01

    The well known built-in voltage potential for some select semiconductor p-n junctions and various rectifying devices is proposed to be favorable for generating DC electricity at "zero bias" (with no DC bias voltage applied) in the presence of Johnson noise or 1/f noise which originates from the quantum vacuum (Koch et al., 1982). The 1982 Koch discovery that certain solid state devices exhibit measurable quantum noise has also recently been labeled a finding of dark energy in the lab (Beck and Mackey, 2004). Tunnel diodes are a class of rectifiers that are qualified and some have been credited with conducting only because of quantum fluctuations. Microwave diodes are also good choices since many are designed for zero bias operation. A completely passive, unamplified zero bias diode converter/detector for millimeter (GHz) waves was developed by HRL Labs in 2006 under a DARPA contract, utilizing a Sb-based "backward tunnel diode" (BTD). It is reported to be a "true zero-bias diode." It was developed for a "field radiometer" to "collect thermally radiated power" (in other words, 'night vision'). The diode array mounting allows a feed from horn antenna, which functions as a passive concentrating amplifier. An important clue is the "noise equivalent power" of 1.1 pW per root hertz and the "noise equivalent temperature difference" of 10° K, which indicate sensitivity to Johnson noise (Lynch, et al., 2006). There also have been other inventions such as "single electron transistors" that also have "the highest signal to noise ratio" near zero bias. Furthermore, "ultrasensitive" devices that convert radio frequencies have been invented that operate at outer space temperatures (3 degrees above zero point: 3° K). These devices are tiny nanotech devices which are suitable for assembly in parallel circuits (such as a 2-D array) to possibly produce zero point energy direct current electricity with significant power density (Brenning et al., 2006). Photovoltaic p-n junction

  8. Methods for Using Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules

    DTIC Science & Technology

    2014-08-20

    including zero-point energy ( ZPE ) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can...CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of

  9. Computational and Matrix Isolation Studies of (2- and 3-Furyl)methylene

    DTIC Science & Technology

    1994-01-01

    ynal, (Appendix 3) Simple HF calculations using the 6-31 G basis set + ZPE (zero point energy correction applied) predict 2.2 to be more stable in both...QCISD(T)/6-31 1 G** + ZPE predict the triplet to more stable by 2.9 Kcal/mol. However, calculations using MP4SDTQ/6-31 1 G + ZPE predict the singlet to...calculated frequencies were scaled by a factor of 0.9. 53 Table 2.30 Calculated ZPE for 2-Oxabicyclo(3.1.0]hexa-3,5-diene.a Zero Point Energy 49.9 (KcaVmol

  10. The vibrationally adiabatic torsional potential energy surface of trans-stilbene

    NASA Astrophysics Data System (ADS)

    Chowdary, Praveen D.; Martinez, Todd J.; Gruebele, Martin

    2007-05-01

    The effect of vibrational Zero Point Energy (ZPE) on the torsional barriers of trans-stilbene is studied in the adiabatic approximation. The two torsional modes corresponding to phenyl rotation are explicitly separated, and the remaining modes are treated as normal coordinates. ZPE reduces the adiabatic barrier along the in-phase torsion from 198 to 13 cm -1. A one-dimensional adiabatic potential for the anti-phase torsion, including the ZPE of the in-phase torsion, reduces the adiabatic barrier from 260 to 58 cm -1. Comparison with recent electronic structure benchmark calculations suggests that vibrational corrections play a significant role in trans-stilbene's experimentally observed planar structure.

  11. Uncertainty relations, zero point energy and the linear canonical group

    NASA Technical Reports Server (NTRS)

    Sudarshan, E. C. G.

    1993-01-01

    The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.

  12. On the contribution of vibrational anharmonicity to the binding energies of water clusters.

    PubMed

    Diri, Kadir; Myshakin, Evgeniy M; Jordan, Kenneth D

    2005-05-05

    The second-order vibrational perturbation theory method has been used together with the B3LYP and MP2 electronic structure methods to investigate the effects of anharmonicity on the vibrational zero-point energy (ZPE) contributions to the binding energies of (H2O)n, n = 2-6, clusters. For the low-lying isomers of (H2O)6, the anharmonicity correction to the binding energy is calculated to range from -248 to -355 cm(-1). It is also demonstrated that although high-order electron correlation effects are important for the individual vibrational frequencies, they are relatively unimportant for the net ZPE contributions to the binding energies of water clusters.

  13. Effect of Chlorine Substitution on Sulfide Reactivity with OH Radicals

    DTIC Science & Technology

    2008-09-01

    Single point energy: MP2/6-311+G(3df,2p) (LRG) • Zero Point Energy from a vibrational frequency analysis: MP2/6-31++G** ( ZPE ) • Extrapolated energy...E(QCI) + E(LARG) – E(SML) + ZPE • Characterize the TS • Use a three-point fit methodology – fit a harmonic potential to three CCSD single point

  14. Dissociation energies of six NO2 isotopologues by laser induced fluorescence spectroscopy and zero point energy of some triatomic molecules.

    PubMed

    Michalski, G; Jost, R; Sugny, D; Joyeux, M; Thiemens, M

    2004-10-15

    We have measured the rotationless photodissociation threshold of six isotopologues of NO2 containing 14N, 15N, 16O, and 18O isotopes using laser induced fluorescence detection and jet cooled NO2 (to avoid rotational congestion). For each isotopologue, the spectrum is very dense below the dissociation energy while fluorescence disappears abruptly above it. The six dissociation energies ranged from 25 128.56 cm(-1) for 14N16O2 to 25 171.80 cm(-1) for 15N18O2. The zero point energy for the NO2 isotopologues was determined from experimental vibrational energies, application of the Dunham expansion, and from canonical perturbation theory using several potential energy surfaces. Using the experimentally determined dissociation energies and the calculated zero point energies of the parent NO2 isotopologue and of the NO product(s) we determined that there is a common De = 26 051.17+/-0.70 cm(-1) using the Born-Oppenheimer approximation. The canonical perturbation theory was then used to calculate the zero point energy of all stable isotopologues of SO2, CO2, and O3, which are compared with previous determinations.

  15. Ab initio theoretical calculations of the electronic excitation energies of small water clusters.

    PubMed

    Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro

    2011-12-14

    A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.

  16. Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy.

    PubMed

    Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2016-03-03

    We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.

  17. Computational Chemistry Modeling of the Atmospheric Fate of Toxic Industrial Compounds (TICs)

    DTIC Science & Technology

    2007-06-01

    1+G(3df,2p) number of atoms and number of basis functions) of the (LRG) compounds under study precludes the use of coupled 0 Zero Point Energy ( ZPE ...overlap (NDDO) The extrapolated energy = E(QCI) + E(LRG) - Hamiltonian that is reparameterized to accurately E(SML) + ZPE reproduce coupled cluster

  18. Quantification of the Relationship between Surrogate Fuel Structure and Performance

    DTIC Science & Technology

    2012-07-31

    order to account for know deficiencies [18]. The frequencies are then used to calculate the zero point energy ( ZPE ). In the G3 theory HF/6-31G* was used...for the ZPE and the new procedure is likely to be more reliable. Also in contrast to previous G series composite methods, the Hartree–Fock energy...The total energy is obtained by adding the previously calculated ZPE . Durant and Rohlfing [38] reported that B3LYP density functional methods provide

  19. First-Principles Thermodynamics of Energetic Materials

    DTIC Science & Technology

    2012-01-01

    thermal and zero-point energy ( ZPE ) effects on the crystalline environment [8]. By including vdW, thermal, and ZPE effects into DFT (DFT+vdW+T...by their relation to experiment (triangles) pure DFT over-predicts, while DFT+vdW under-predicts the EOSs. Only when temperature and ZPE effects...crystals with ZPE effects still included. To get a sense of how the vdW damping function might affect the calculation of the dynamical matrix, the

  20. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    PubMed

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  1. Computational Prediction of Kinetic Rate Constants

    DTIC Science & Technology

    2006-11-30

    without requiring additional data. Zero-point energy ( ZPE ) anharmonicity has a large effect on the accuracy of approximate partition function estimates. If...the accurate ZPE is taken into account, separable approximation partition functions using the most accurate torsion treatment and harmonic treatments...for the remaining degrees of freedom agree with accurate QM partition functions to within a mean accuracy of 9%. If no ZPE anharmonicity correction

  2. Observable consequences of zero-point energy

    NASA Astrophysics Data System (ADS)

    Sen, Siddhartha; Gupta, Kumar S.

    2017-12-01

    Spectral line widths, the Lamb shift and the Casimir effect are generally accepted to be observable consequences of the zero-point electromagnetic (ZPEM) fields. A new class of observable consequences of ZPEM field at the mesoscopic scale were recently proposed and observed. Here, we extend this class of observable effects and predict that mesoscopic water layers should have a high value for its solid-liquid phase transition temperature, as illustrated by water inside a single-walled carbon nanotube (CNT). For this case, our analysis predicts that the phase transition temperature scales inversely with the square of the effective radius available for the water flow within the CNT.

  3. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  4. Accurate Anharmonic Zero-Point Energies for Some Combustion-Related Species from Diffusion Monte Carlo.

    PubMed

    Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J

    2017-06-08

    Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).

  5. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    DOE PAGES

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    2017-05-17

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  6. Observation of Dihalide Elimination Upon Electron Attachment to Oxalyl Chloride and Oxalyl Bromide, 300-550 K

    DTIC Science & Technology

    2006-05-10

    fragment CC120 and bromine The positive ion chemistry of oxalyl chloride has been analog CBrO. Total energies, enthalpies, and zero-point energy ( ZPE ...that Ar+ reacting with oxalyl bromide produced System G3a G2 b 70% CBrO+ and 30% Br+. trants-C2C1202(C2h, Ag) ZPE 0.019 93 0.019 93 COMPUTATIONAL...secondary ZPE 0.01708 0.01708 ions were carried out using the G3 compound method, pri- Total energy (0 K) -1146.717 00 -1145.904 66 marily in order to

  7. Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects.

    PubMed

    Hernández, Marta I; Bartolomei, Massimiliano; Campos-Martínez, José

    2015-10-29

    Recent progress in the production of new two-dimensional (2D) nanoporous materials is attracting considerable interest for applications to isotope separation in gases. In this paper we report a computational study of the transmission of (4)He and (3)He through the (subnanometer) pores of graphdiyne, a recently synthesized 2D carbon material. The He-graphdiyne interaction is represented by a force field parametrized upon ab initio calculations, and the (4)He/(3)He selectivity is analyzed by tunneling-corrected transition state theory. We have found that both zero point energy (of the in-pore degrees of freedom) and tunneling effects play an extraordinary role at low temperatures (≈20-30 K). However, both quantum features work in opposite directions in such a way that the selectivity ratio does not reach an acceptable value. Nevertheless, the efficiency of zero point energy is in general larger, so that (4)He tends to diffuse faster than (3)He through the graphdiyne membrane, with a maximum performance at 23 K. Moreover, it is found that the transmission rates are too small in the studied temperature range, precluding practical applications. It is concluded that the role of the in-pore degrees of freedom should be included in computations of the transmission probabilities of molecules through nanoporous materials.

  8. From Zero Energy Buildings to Zero Energy Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, Ben; Kutscher, Chuck; Macumber, Dan

    Some U.S. cities are planning advanced districts that have goals for zero energy, water, waste, and/or greenhouse gas emissions. From an energy perspective, zero energy districts present unique opportunities to cost-effectively achieve high levels of energy efficiency and renewable energy penetration across a collection of buildings that may be infeasible at the individual building scale. These high levels of performance are accomplished through district energy systems that harness renewable and wasted energy at large scales and flexible building loads that coordinate with variable renewable energy supply. Unfortunately, stakeholders face a lack of documented processes, tools, and best practices to assistmore » them in achieving zero energy districts. The National Renewable Energy Laboratory (NREL) is partnering on two new district projects in Denver: the National Western Center and the Sun Valley Neighborhood. We are working closely with project stakeholders in their zero energy master planning efforts to develop the resources needed to resolve barriers and create replicable processes to support future zero energy district efforts across the United States. Initial results of these efforts include the identification and description of key zero energy district design principles (maximizing building efficiency, solar potential, renewable thermal energy, and load control), economic drivers, and master planning principles. The work has also resulted in NREL making initial enhancements to the U.S. Department of Energy's open source building energy modeling platform (OpenStudio and EnergyPlus) with the long-term goal of supporting the design and optimization of energy districts.« less

  9. Ignition of Ionic Liquids. Volume 2

    DTIC Science & Technology

    2010-09-01

    TOFMS time-of-flight-mass-spectrometry TS transition state VUV vacuum ultraviolet ZPE zero-point energy Approved for public...energies ( ZPEs ) were scaled by a factor of 0.9613 and 0.9804, respectively, and when necessary intrinsic reaction coordinate (IRC) calculations were...oscillations in the PE reflect the vibration of the DNB molecule, including ZPE . The trajectory shows three dissociation steps, eliminating NO2 followed

  10. Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.

    PubMed

    Garashchuk, Sophya; Rassolov, Vitaly A

    2008-07-14

    Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.

  11. Cation-Cation pi-pi Stacking in Small Ionic Clusters of 1,2,4-Triazolium (Preprint)

    DTIC Science & Technology

    2007-07-12

    Figure 1 is 1.5 kcal/mol lower than that of the neutral one. Including zero point energies ( ZPE ) obtained with MP2/aug-cc-pVDZ harmonic vibrational...the ionic tetramer is lower than that of the neutral tetramer by 6.0, 7.6 and 8.0 kcal/mol, respectively. Including ZPE , these three values become

  12. On the contribution of intramolecular zero point energy to the equation of state of solid H2

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, V.; Etters, R. D.

    1978-01-01

    Experimental evidence shows that the internal zero-point energy of the H2 molecule exhibits a relatively strong pressure dependence in the solid as well as changing considerably upon condensation. It is shown that these effects contribute about 6% to the total sublimation energy and to the pressure in the solid state. Methods to modify the ab initio isolated pair potential to account for these environmental effects are discussed.

  13. Communication: A new ab initio potential energy surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction.

    PubMed

    Mancini, John S; Bowman, Joel M

    2013-03-28

    We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44,000 CCSD(T)-F12b∕aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm(-1). The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm(-1), in good agreement with the recent experimentally reported value of 1334 ± 10 cm(-1) [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010)]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C(2v) double-well saddle point and not the C(s) global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm(-1) above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm(-1), which we hope will stand as a benchmark for future experimental work.

  14. Wormholes or gravastars?

    NASA Astrophysics Data System (ADS)

    Garattini, Remo

    2013-09-01

    The one loop effective action in a Schwarzschild background is here used to compute the Zero Point Energy (ZPE) which is compared to the same one generated by an existing gravastar. We find that only when we set up a difference between ZPE in these different background we can have an indication on which configuration is favored. Such a ZPE difference represents the Casimir energy. Such an energy, being negative, can be considered as a part of the Dark Energy necessary for the topology change. It is also shown that the expression of the ZPE is equivalent to the one computed by means of a variational approach. To handle with ZPE divergences, we use the zeta function regularization. A renormalization procedure to remove the infinities together with a renormalization group equation is introduced. We find that the final configuration is dependent on the ratio between the radius of the wormhole augmented by the "brick wall" and the radius of the gravastar.

  15. The paradoxical zero reflection at zero energy

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Sharma, Vibhu; Sharma, Mayank; Singhal, Ankush; Kaiwart, Rahul; Priyadarshini, Pallavi

    2017-03-01

    Usually, the reflection probability R(E) of a particle of zero energy incident on a potential which converges to zero asymptotically is found to be 1: R(0)=1. But earlier, a paradoxical phenomenon of zero reflection at zero energy (R(0)=0) has been revealed as a threshold anomaly. Extending the concept of half-bound state (HBS) of 3D, here we show that in 1D when a symmetric (asymmetric) attractive potential well possesses a zero-energy HBS, R(0)=0 (R(0)\\ll 1). This can happen only at some critical values q c of an effective parameter q of the potential well in the limit E\\to {0}+. We demonstrate this critical phenomenon in two simple analytically solvable models: square and exponential wells. However, in numerical calculations, even for these two models R(0)=0 is observed only as extrapolation to zero energy from low energies, close to a precise critical value q c. By numerical investigation of a variety of potential wells, we conclude that for a given potential well (symmetric or asymmetric), we can adjust the effective parameter q to have a low reflection at a low energy.

  16. Quantum-Chemical Study of the Adsorption of DMMP and Sarin on gamma-Al2O3

    DTIC Science & Technology

    2007-02-01

    In this and in the following section, ∆Eads is not corrected for zero-point vibrational energy ( ZPE ); however, a counterpoise correction for basis set...Ångstroms and the bond angle is in degrees. Values in parentheses are BSSE-corrected (∆Eads C ) results. ∆Eads has not been corrected for ZPE . b 6-31G...sets. The ∆ Eads C values are given in parentheses. No ZPE corrections have been applied. e The basis sets used were 6-311G(df) for Sarin and for the Al

  17. Naked singularities are not singular in distorted gravity

    NASA Astrophysics Data System (ADS)

    Garattini, Remo; Majumder, Barun

    2014-07-01

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.

  18. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    PubMed

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  19. Investigation of ZPE and temperature effects on the Eley-Rideal recombination of hydrogen atoms on graphene using a multidimensional graphene-H-H potential

    NASA Astrophysics Data System (ADS)

    Sizun, M.; Bachellerie, D.; Aguillon, F.; Sidis, V.

    2010-09-01

    We study the Eley-Rideal recombination of H atoms on graphene under the physical conditions of the interstellar medium. Effects of the ZPE motions of the chemisorbed H atom and of the graphene thermal motions are investigated. Classical molecular dynamics calculations undertaken with the multidimensional potential of Bachellerie et al. [Phys. Chem. Chem. Phys. 11 (2009) 2715] are reported. The ZPE effects are the strongest. The closer the collision energy is to the classical reaction threshold the more sizeable the effects. The quantum reaction cross section is also estimated below and above the classical threshold using a capture model.

  20. Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.

    PubMed

    Brieuc, Fabien; Bronstein, Yael; Dammak, Hichem; Depondt, Philippe; Finocchi, Fabio; Hayoun, Marc

    2016-12-13

    The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems. This is a well-known problem in methods based on classical trajectories where part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. In some cases, the ZPEL can have dramatic consequences on the properties of the system. Thus, we investigate the ZPEL by testing the QTB method on selected systems with increasing complexity in order to study the conditions and the parameters that influence the leakage. We also analyze the consequences of the ZPEL on the structural and vibrational properties of the system. We find that the leakage is particularly dependent on the damping coefficient and that increasing its value can reduce and, in some cases, completely remove the ZPEL. When using sufficiently high values for the damping coefficient, the expected energy distribution among the vibrational modes is ensured. In this case, the QTB method gives very encouraging results. In particular, the structural properties are well-reproduced. The dynamical properties should be regarded with caution although valuable information can still be extracted from the vibrational spectrum, even for large values of the damping term.

  1. Changes in the zero-point energy of the protons as the source of the binding energy of water to A-phase DNA.

    PubMed

    Reiter, G F; Senesi, R; Mayers, J

    2010-10-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6  water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Å.

  2. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    PubMed

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  3. Zero-point fluctuations in naphthalene and their effect on charge transport parameters.

    PubMed

    Kwiatkowski, Joe J; Frost, Jarvist M; Kirkpatrick, James; Nelson, Jenny

    2008-09-25

    We calculate the effect of vibronic coupling on the charge transport parameters in crystalline naphthalene, between 0 and 400 K. We find that nuclear fluctuations can cause large changes in both the energy of a charge on a molecule and on the electronic coupling between molecules. As a result, nuclear fluctuations cause wide distributions of both energies and couplings. We show that these distributions have a small temperature dependence and that, even at high temperatures, vibronic coupling is dominated by the effect of zero-point fluctuations. Because of the importance of zero-point fluctuations, we find that the distributions of energies and couplings have substantial width, even at 0 K. Furthermore, vibronic coupling with high energy modes may be significant, even though these modes are never thermally activated. Our results have implications for the temperature dependence of charge mobilities in organic semiconductors.

  4. On energetic prerequisites of attracting electrons

    NASA Astrophysics Data System (ADS)

    Sundholm, Dage

    2014-06-01

    The internal reorganization energy and the zero-point vibrational energy (ZPE) of fractionally charged molecules embedded in molecular materials are discussed. The theory for isolated open quantum systems is taken as the starting point. It is shown that for isolated molecules the internal reorganization-energy function and its slope, i.e., the chemical potential of an open molecular system are monotonically decreasing functions with respect to increasing amount of negative excess charge (q) in the range of q = [0, 1]. Calculations of the ZPE for fractionally charged molecules show that the ZPE may have a minimum for fractional occupation. The calculations show that the internal reorganization energy and changes in the ZPE are of the same order of magnitude with different behavior as a function of the excess charge. The sum of the contributions might favor molecules with fractional occupation of the molecular units and partial delocalization of the excess electrons in solid-state materials also when considering Coulomb repulsion between the excess electrons. The fractional electrons are then coherently distributed on many molecules of the solid-state material forming a condensate of attracting electrons, which is crucial for the superconducting state.

  5. On energetic prerequisites of attracting electrons.

    PubMed

    Sundholm, Dage

    2014-06-21

    The internal reorganization energy and the zero-point vibrational energy (ZPE) of fractionally charged molecules embedded in molecular materials are discussed. The theory for isolated open quantum systems is taken as the starting point. It is shown that for isolated molecules the internal reorganization-energy function and its slope, i.e., the chemical potential of an open molecular system are monotonically decreasing functions with respect to increasing amount of negative excess charge (q) in the range of q = [0, 1]. Calculations of the ZPE for fractionally charged molecules show that the ZPE may have a minimum for fractional occupation. The calculations show that the internal reorganization energy and changes in the ZPE are of the same order of magnitude with different behavior as a function of the excess charge. The sum of the contributions might favor molecules with fractional occupation of the molecular units and partial delocalization of the excess electrons in solid-state materials also when considering Coulomb repulsion between the excess electrons. The fractional electrons are then coherently distributed on many molecules of the solid-state material forming a condensate of attracting electrons, which is crucial for the superconducting state.

  6. On energetic prerequisites of attracting electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundholm, Dage

    The internal reorganization energy and the zero-point vibrational energy (ZPE) of fractionally charged molecules embedded in molecular materials are discussed. The theory for isolated open quantum systems is taken as the starting point. It is shown that for isolated molecules the internal reorganization-energy function and its slope, i.e., the chemical potential of an open molecular system are monotonically decreasing functions with respect to increasing amount of negative excess charge (q) in the range of q = [0, 1]. Calculations of the ZPE for fractionally charged molecules show that the ZPE may have a minimum for fractional occupation. The calculations showmore » that the internal reorganization energy and changes in the ZPE are of the same order of magnitude with different behavior as a function of the excess charge. The sum of the contributions might favor molecules with fractional occupation of the molecular units and partial delocalization of the excess electrons in solid-state materials also when considering Coulomb repulsion between the excess electrons. The fractional electrons are then coherently distributed on many molecules of the solid-state material forming a condensate of attracting electrons, which is crucial for the superconducting state.« less

  7. NASA Net Zero Energy Buildings Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, S.; Scheib, J.; Torcellini, P.

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategicmore » approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.« less

  8. Zero Energy Use School.

    ERIC Educational Resources Information Center

    Nelson, Brian, Ed.; And Others

    The economic and physical realities of an energy shortage have caused many educators to consider alternative sources of energy when constructing their schools. This book contains studies and designs by fifth-year architecture students concerning the proposed construction of a zero energy-use elementary school in Albany, Oregon. "Zero energy…

  9. Zero-point Energy is Needed in Molecular Dynamics Calculations to Access the Saddle Point for H+HCN→H2CN* and cis/trans-HCNH* on a New Potential Energy Surface.

    PubMed

    Wang, Xiaohong; Bowman, Joel M

    2013-02-12

    We calculate the probabilities for the association reactions H+HCN→H2CN* and cis/trans-HCNH*, using quasiclassical trajectory (QCT) and classical trajectory (CT) calculations, on a new global ab initio potential energy surface (PES) for H2CN including the reaction channels. The surface is a linear least-squares fit of roughly 60 000 CCSD(T)-F12b/aug-cc-pVDZ electronic energies, using a permutationally invariant basis with Morse-type variables. The reaction probabilities are obtained at a variety of collision energies and impact parameters. Large differences in the threshold energies in the two types of dynamics calculations are traced to the absence of zero-point energy in the CT calculations. We argue that the QCT threshold energy is the realistic one. In addition, trajectories find a direct pathway to trans-HCNH, even though there is no obvious transition state (TS) for this pathway. Instead the saddle point (SP) for the addition to cis-HCNH is evidently also the TS for direct formation of trans-HCNH.

  10. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    PubMed

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  11. The localized quantum vacuum field

    NASA Astrophysics Data System (ADS)

    Dragoman, D.

    2008-03-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  12. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates.

    PubMed

    Cendagorta, Joseph R; Powers, Anna; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E

    2016-11-30

    Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H 2 and D 2 diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H 2 and D 2 as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H 2 and D 2 diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are strongly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the quantum rate compared to the classical rate, whereas at lower temperatures tunneling outcompetes the ZPE and as a result the quantum rate is greater than the classical rate.

  13. Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-05-01

    The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.

  14. Zero-Point Spin-Fluctuations of Single Adatoms.

    PubMed

    Ibañez-Azpiroz, Julen; Dos Santos Dias, Manuel; Blügel, Stefan; Lounis, Samir

    2016-07-13

    Stabilizing the magnetic signal of single adatoms is a crucial step toward their successful usage in widespread technological applications such as high-density magnetic data storage devices. The quantum mechanical nature of these tiny objects, however, introduces intrinsic zero-point spin-fluctuations that tend to destabilize the local magnetic moment of interest by dwindling the magnetic anisotropy potential barrier even at absolute zero temperature. Here, we elucidate the origins and quantify the effect of the fundamental ingredients determining the magnitude of the fluctuations, namely, the (i) local magnetic moment, (ii) spin-orbit coupling, and (iii) electron-hole Stoner excitations. Based on a systematic first-principles study of 3d and 4d adatoms, we demonstrate that the transverse contribution of the fluctuations is comparable in size to the magnetic moment itself, leading to a remarkable ≳50% reduction of the magnetic anisotropy energy. Our analysis gives rise to a comprehensible diagram relating the fluctuation magnitude to characteristic features of adatoms, providing practical guidelines for designing magnetically stable nanomagnets with minimal quantum fluctuations.

  15. Zero-point term and quantum effects in the Johnson noise of resistors: a critical appraisal

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes G.

    2016-05-01

    There is a longstanding debate about the zero-point term in the Johnson noise voltage of a resistor. This term originates from a quantum-theoretical treatment of the fluctuation-dissipation theorem (FDT). Is the zero-point term really there, or is it only an experimental artifact, due to the uncertainty principle, for phase-sensitive amplifiers? Could it be removed by renormalization of theories? We discuss some historical measurement schemes that do not lead to the effect predicted by the FDT, and we analyse new features that emerge when the consequences of the zero-point term are measured via the mean energy and force in a capacitor shunting the resistor. If these measurements verify the existence of a zero-point term in the noise, then two types of perpetual motion machines can be constructed. Further investigation with the same approach shows that, in the quantum limit, the Johnson-Nyquist formula is also invalid under general conditions even though it is valid for a resistor-antenna system. Therefore we conclude that in a satisfactory quantum theory of the Johnson noise, the FDT must, as a minimum, include also the measurement system used to evaluate the observed quantities. Issues concerning the zero-point term may also have implications for phenomena in advanced nanotechnology.

  16. Zero point and zero suffix methods with robust ranking for solving fully fuzzy transportation problems

    NASA Astrophysics Data System (ADS)

    Ngastiti, P. T. B.; Surarso, Bayu; Sutimin

    2018-05-01

    Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.

  17. Nuclear quantum effects on adsorption of H2 and isotopologues on metal ions

    NASA Astrophysics Data System (ADS)

    Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; Jakowski, Jacek; Garashchuk, Sophya

    2017-02-01

    The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of H2 and isotopologues on metal ions, are examined using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. The lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions. Analysis of the nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) performed for complexes of Li+ and Cu+2 with H2/D2/HD shows that the PES anharmonicity changes the ZPE by up to 9%.

  18. Measurements of the electric field of zero-point optical phonons in GaAs quantum wells support the Urbach rule for zero-temperature lifetime broadening.

    PubMed

    Bhattacharya, Rupak; Mondal, Richarj; Khatua, Pradip; Rudra, Alok; Kapon, Eli; Malzer, Stefan; Döhler, Gottfried; Pal, Bipul; Bansal, Bhavtosh

    2015-01-30

    We study a specific type of lifetime broadening resulting in the well-known exponential "Urbach tail" density of states within the energy gap of an insulator. After establishing the frequency and temperature dependence of the Urbach edge in GaAs quantum wells, we show that the broadening due to the zero-point optical phonons is the fundamental limit to the Urbach slope in high-quality samples. In rough analogy with Welton's heuristic interpretation of the Lamb shift, the zero-temperature contribution to the Urbach slope can be thought of as arising from the electric field of the zero-point longitudinal-optical phonons. The value of this electric field is experimentally measured to be 3  kV cm-1, in excellent agreement with the theoretical estimate.

  19. Structures, energetics, vibrational spectra of NH4+ (H2O)(n=4,6) clusters: Ab initio calculations and first principles molecular dynamics simulations.

    PubMed

    Karthikeyan, S; Singh, Jiten N; Park, Mina; Kumar, Rajesh; Kim, Kwang S

    2008-06-28

    Important structural isomers of NH(4) (+)(H(2)O)(n=4,6) have been studied by using density functional theory, Moller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH(4) (+)(H(2)O)(n=4,6) because otherwise wrong structures could be assigned for the most probable structures. For NH(4) (+)(H(2)O)(6), the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH(4) (+)(H(2)O)(4) and two lowest energy isomers of NH(4) (+)(H(2)O)(6) explains each experimental IR spectrum.

  20. Structures, energetics, vibrational spectra of NH4+(H2O)n=4,6 clusters: Ab initio calculations and first principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Karthikeyan, S.; Singh, Jiten N.; Park, Mina; Kumar, Rajesh; Kim, Kwang S.

    2008-06-01

    Important structural isomers of NH4+(H2O)n=4,6 have been studied by using density functional theory, Møller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH4+(H2O)n=4,6 because otherwise wrong structures could be assigned for the most probable structures. For NH4+(H2O)6, the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH4+(H2O)4 and two lowest energy isomers of NH4+(H2O)6 explains each experimental IR spectrum.

  1. Dynamically biased statistical model for the ortho/para conversion in the H2 + H3+ → H3+ + H2 reaction.

    PubMed

    Gómez-Carrasco, Susana; González-Sánchez, Lola; Aguado, Alfredo; Sanz-Sanz, Cristina; Zanchet, Alexandre; Roncero, Octavio

    2012-09-07

    In this work we present a dynamically biased statistical model to describe the evolution of the title reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305 (2007)]. A recent global potential energy surface is used here to calculate the capture probabilities, instead of the long-range ion-induced dipole interactions. The dynamical constraints are introduced by considering a scrambling matrix which depends on energy and determine the probability of the identity/hop/exchange mechanisms. These probabilities are calculated using QCT. It is found that the high zero-point energy of the fragments is transferred to the rest of the degrees of freedom, what shortens the lifetime of H(5)(+) complexes and, as a consequence, the exchange mechanism is produced with lower proportion. The zero-point energy (ZPE) is not properly described in quasi-classical trajectory calculations and an approximation is done in which the initial ZPE of the reactants is reduced in QCT calculations to obtain a new ZPE-biased scrambling matrix. This reduction of the ZPE is explained by the need of correcting the pure classical level number of the H(5)(+) complex, as done in classical simulations of unimolecular processes and to get equivalent quantum and classical rate constants using Rice-Ramsperger-Kassel-Marcus theory. This matrix allows to obtain a ratio of hop/exchange mechanisms, α(T), in rather good agreement with recent experimental results by Crabtree et al. [J. Chem. Phys. 134, 194311 (2011)] at room temperature. At lower temperatures, however, the present simulations predict too high ratios because the biased scrambling matrix is not statistical enough. This demonstrates the importance of applying quantum methods to simulate this reaction at the low temperatures of astrophysical interest.

  2. Dynamically biased statistical model for the ortho/para conversion in the H2+H3+ --> H3++ H2 reaction

    NASA Astrophysics Data System (ADS)

    Gómez-Carrasco, Susana; González-Sánchez, Lola; Aguado, Alfredo; Sanz-Sanz, Cristina; Zanchet, Alexandre; Roncero, Octavio

    2012-09-01

    In this work we present a dynamically biased statistical model to describe the evolution of the title reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305 (2007), 10.1063/1.2430711]. A recent global potential energy surface is used here to calculate the capture probabilities, instead of the long-range ion-induced dipole interactions. The dynamical constraints are introduced by considering a scrambling matrix which depends on energy and determine the probability of the identity/hop/exchange mechanisms. These probabilities are calculated using QCT. It is found that the high zero-point energy of the fragments is transferred to the rest of the degrees of freedom, what shortens the lifetime of H_5^+ complexes and, as a consequence, the exchange mechanism is produced with lower proportion. The zero-point energy (ZPE) is not properly described in quasi-classical trajectory calculations and an approximation is done in which the initial ZPE of the reactants is reduced in QCT calculations to obtain a new ZPE-biased scrambling matrix. This reduction of the ZPE is explained by the need of correcting the pure classical level number of the H_5^+ complex, as done in classical simulations of unimolecular processes and to get equivalent quantum and classical rate constants using Rice-Ramsperger-Kassel-Marcus theory. This matrix allows to obtain a ratio of hop/exchange mechanisms, α(T), in rather good agreement with recent experimental results by Crabtree et al. [J. Chem. Phys. 134, 194311 (2011), 10.1063/1.3587246] at room temperature. At lower temperatures, however, the present simulations predict too high ratios because the biased scrambling matrix is not statistical enough. This demonstrates the importance of applying quantum methods to simulate this reaction at the low temperatures of astrophysical interest.

  3. Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms.

    PubMed

    Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S

    2006-12-21

    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H(+)(H(2)O)(7). For H(+)(H(2)O)(7) the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Moller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H(+)(H(2)O)(7) [though nearly isoenergetic to the 3D structure for D(+)(D(2)O)(7)]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.

  4. Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms

    NASA Astrophysics Data System (ADS)

    Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S.

    2006-12-01

    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H+(H2O)7. For H+(H2O)7 the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Møller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H+(H2O)7 [though nearly isoenergetic to the 3D structure for D+(D2O)7]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.

  5. Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.

    PubMed

    Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael

    2009-04-14

    The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.

  6. Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes.

    PubMed

    Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan

    2013-05-10

    The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.

  7. U. S. goal: zero energy growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCulla, J.

    Commentary:as envisioned by the ford foundation's energy policy project, zero energy growth would not mean austerity, but a better living standard for everyone. With sufficient incentive, industry could cut energy demand by 10-15% by 1980. Upgraded federal housing admin. standards for new dwellings could require more insulation. Electric heat, an energy waster of growing prominence, should be curbed. The logic in federal support of zero economic growth is defined.

  8. Zero Energy Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, Benjamin J

    This presentation shows how NREL is approaching Zero Energy Districts, including key opportunities, design strategies, and master planning concepts. The presentation also covers URBANopt, an advanced analytical platform for district that is being developed by NREL.

  9. Investigating the significance of zero-point motion in small molecular clusters of sulphuric acid and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.

    2014-01-14

    The nucleation of particles from trace gases in the atmosphere is an important source of cloud condensation nuclei (CCN), and these are vital for the formation of clouds in view of the high supersaturations required for homogeneous water droplet nucleation. The methods of quantum chemistry have increasingly been employed to model nucleation due to their high accuracy and efficiency in calculating configurational energies; and nucleation rates can be obtained from the associated free energies of particle formation. However, even in such advanced approaches, it is typically assumed that the nuclei have a classical nature, which is questionable for some systems.more » The importance of zero-point motion (also known as quantum nuclear dynamics) in modelling small clusters of sulphuric acid and water is tested here using the path integral molecular dynamics (PIMD) method at the density functional theory (DFT) level of theory. We observe a small zero-point effect on the the equilibrium structures of certain clusters. One configuration is found to display a bimodal behaviour at 300 K in contrast to the stable ionised state suggested from a zero temperature classical geometry optimisation. The general effect of zero-point motion is to promote the extent of proton transfer with respect to classical behaviour. We thank Prof. Angelos Michaelides and his group in University College London (UCL) for practical advice and helpful discussions. This work benefited from interactions with the Thomas Young Centre through seminar and discussions involving the PIMD method. SMK was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. JLS and IJF were supported by the IMPACT scheme at UCL and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We are grateful for use of the UCL Legion High Performance Computing Facility and the

  10. Nuclear quantum effects on adsorption of H 2 and isotopologues on metal ions

    DOE PAGES

    Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; ...

    2017-01-03

    The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of Hmore » $$_2$$ and isotopologues on metal ions, are examined in this study using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. To estimate for the anharmonicity, a nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) have been employed for complexes of Li$^+$ and Cu$$^{+2}$$ with H$$_2$$, D$$_2$$, HD. The dynamics analysis shows that incorporation of the PES anharmonicity changes the ZPE by up to 9%. Finally, the lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions.« less

  11. Torsional energy levels of CH₃OH⁺/CH₃OD⁺/CD₃OD⁺ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations.

    PubMed

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-10-14

    The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.

  12. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation.

    PubMed

    Manzhos, Sergei; Carrington, Tucker

    2016-12-14

    We demonstrate that it is possible to use basis functions that depend on curvilinear internal coordinates to compute vibrational energy levels without deriving a kinetic energy operator (KEO) and without numerically computing coefficients of a KEO. This is done by using a space-fixed KEO and computing KEO matrix elements numerically. Whenever one has an excellent basis, more accurate solutions to the Schrödinger equation can be obtained by computing the KEO, potential, and overlap matrix elements numerically. Using a Gaussian basis and bond coordinates, we compute vibrational energy levels of formaldehyde. We show, for the first time, that it is possible with a Gaussian basis to solve a six-dimensional vibrational Schrödinger equation. For the zero-point energy (ZPE) and the lowest 50 vibrational transitions of H 2 CO, we obtain a mean absolute error of less than 1 cm -1 ; with 200 000 collocation points and 40 000 basis functions, most errors are less than 0.4 cm -1 .

  13. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Carrington, Tucker

    2016-12-01

    We demonstrate that it is possible to use basis functions that depend on curvilinear internal coordinates to compute vibrational energy levels without deriving a kinetic energy operator (KEO) and without numerically computing coefficients of a KEO. This is done by using a space-fixed KEO and computing KEO matrix elements numerically. Whenever one has an excellent basis, more accurate solutions to the Schrödinger equation can be obtained by computing the KEO, potential, and overlap matrix elements numerically. Using a Gaussian basis and bond coordinates, we compute vibrational energy levels of formaldehyde. We show, for the first time, that it is possible with a Gaussian basis to solve a six-dimensional vibrational Schrödinger equation. For the zero-point energy (ZPE) and the lowest 50 vibrational transitions of H2CO, we obtain a mean absolute error of less than 1 cm-1; with 200 000 collocation points and 40 000 basis functions, most errors are less than 0.4 cm-1.

  14. Refined energetic ordering for sulphate-water (n = 3-6) clusters using high-level electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin

    2012-10-01

    This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.

  15. NREL and Army Validate Energy Savings for Net Zero Energy Installations |

    Science.gov Websites

    News | NREL and Army Validate Energy Savings for Net Zero Energy Installations News Release : NREL and Army Validate Energy Savings for Net Zero Energy Installations October 27, 2014 The U.S. Army (Army) has partnered with the Energy Department's National Renewable Energy Laboratory (NREL) to

  16. Electronic zero-point fluctuation forces inside circuit components

    PubMed Central

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  17. Magnification of signatures of a topological phase transition by quantum zero point motion

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Ghaemi, Pouyan

    2015-08-01

    We show that the zero point motion of a vortex in superconducting doped topological insulators leads to significant changes in the electronic spectrum at the topological phase transition in this system. This topological phase transition is tuned by the doping level, and the corresponding effects are manifest in the density of states at energies which are on the order of the vortex fluctuation frequency. Although the electronic energy gap in the spectrum generated by a stationary vortex is but a small fraction of the bulk superconducting gap, the vortex fluctuation frequency may be much larger. As a result, this quantum zero point motion can induce a discontinuous change in the spectral features of the system at the topological vortex phase transition to energies which are well within the resolution of scanning tunneling microscopy. This discontinuous change is exclusive to superconducting systems in which we have a topological phase transition. Moreover, the phenomena studied in this paper present effects of Magnus forces on the vortex spectrum which are not present in the ordinary s -wave superconductors. Finally, we demonstrate explicitly that the vortex in this system is equivalent to a Kitaev chain. This allows for the mapping of the vortex fluctuating scenario in three dimensions into similar one-dimensional situations in which one may search for other novel signatures of topological phase transitions.

  18. Targeting Net Zero Energy for Military Installations (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burman, K.

    2012-05-01

    Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  19. Zero Energy Schools: Designing for the Future: Zero Energy Ready K-12 Schools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    Designing, building, and operating zero energy ready K-12 schools provides benefits for districts, students, and teachers. Optimizing energy efficiency is important in any building, but it's particularly important in K-12 schools. Many U.S. school districts struggle for funding, and improving a school building's energy efficiency can free up operational funds that may then be available for educational and other purposes.

  20. Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: accurate reduction in zero-point energy.

    PubMed

    Issack, Bilkiss B; Roy, Pierre-Nicholas

    2005-08-22

    An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.

  1. Comment on ‘The paradoxical zero reflection at zero energy’

    NASA Astrophysics Data System (ADS)

    van Dijk, W.; Nogami, Y.

    2017-05-01

    We point out that the anomalous threshold effect in one dimension occurs when the reflection probability at zero energy R(0) has some other value than unity, rather than R(0)=0 or R(0)\\ll 1 as implied by Ahmed et al in their paper entitled ‘The paradoxical zero reflection at zero energy’ (2017 Eur. J. Phys. 38 025401).

  2. Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Garattini, Remo

    2012-07-01

    Quantum Field Theory is plagued by divergences in the attempt to calculate physical quantities. Standard techniques of regularization and renormalization are used to keep under control such a problem. In this paper we would like to use a different scheme based on Modified Dispersion Relations (MDR) to remove infinities appearing in one loop approximation in contrast to what happens in conventional approaches. In particular, we apply the MDR regularization to the computation of the entropy of a Schwarzschild black hole from one side and the Zero Point Energy (ZPE) of the graviton from the other side. The graviton ZPE is connected to the cosmological constant by means of of the Wheeler-DeWitt equation.

  3. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.

    PubMed

    Ortmann, Frank; Roche, Stephan

    2013-02-22

    We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.

  4. High-energy zero-norm states and symmetries of string theory.

    PubMed

    Chan, Chuan-Tsung; Ho, Pei-Ming; Lee, Jen-Chi; Teraguchi, Shunsuke; Yang, Yi

    2006-05-05

    High-energy limit of zero-norm states in the old covariant first quantized spectrum of the 26D open bosonic string, together with the assumption of a smooth behavior of string theory in this limit, are used to derive infinitely many linear relations among the leading high-energy, fixed-angle behavior of four-point functions of different string states. As a result, ratios among all high-energy scattering amplitudes of four arbitrary string states can be calculated algebraically and the leading order amplitudes can be expressed in terms of that of four tachyons as conjectured by Gross in 1988. A dual calculation can also be performed and equivalent results are obtained by taking the high-energy limit of Virasoro constraints. Finally, we compute all high-energy scattering amplitudes of three tachyons and one massive state at the leading order by saddle-point approximation to verify our results.

  5. Energy of the quasi-free electron in supercritical krypton near the critical point.

    PubMed

    Li, Luxi; Evans, C M; Findley, G L

    2005-12-01

    Field ionization measurements of high-n CH(3)I and C(2)H(5)I Rydberg states doped into krypton are presented as a function of krypton number density along the critical isotherm. These data exhibit a decrease in the krypton-induced shift of the dopant ionization energy near the critical point. This change in shift is modeled to within +/-0.2% of experiment using a theory that accounts for the polarization of krypton by the dopant ion, the polarization of krypton by the quasi-free electron that arises from field ionization of the dopant, and the zero point kinetic energy of the free electron. The overall decrease in the shift of the dopant ionization energy near the critical point of krypton, which is a factor of 2 larger than that observed in argon, is dominated by the increase in the zero point kinetic energy of the quasi-free electron.

  6. Contrast Invariant Interest Point Detection by Zero-Norm LoG Filter.

    PubMed

    Zhenwei Miao; Xudong Jiang; Kim-Hui Yap

    2016-01-01

    The Laplacian of Gaussian (LoG) filter is widely used in interest point detection. However, low-contrast image structures, though stable and significant, are often submerged by the high-contrast ones in the response image of the LoG filter, and hence are difficult to be detected. To solve this problem, we derive a generalized LoG filter, and propose a zero-norm LoG filter. The response of the zero-norm LoG filter is proportional to the weighted number of bright/dark pixels in a local region, which makes this filter be invariant to the image contrast. Based on the zero-norm LoG filter, we develop an interest point detector to extract local structures from images. Compared with the contrast dependent detectors, such as the popular scale invariant feature transform detector, the proposed detector is robust to illumination changes and abrupt variations of images. Experiments on benchmark databases demonstrate the superior performance of the proposed zero-norm LoG detector in terms of the repeatability and matching score of the detected points as well as the image recognition rate under different conditions.

  7. Energy performance of net-zero and near net-zero energy homes in New England

    NASA Astrophysics Data System (ADS)

    Thomas, Walter D.

    Net-Zero Energy Homes (NZEHs) are homes that consume no more energy than they produce on site during the course of a year. They are well insulated and sealed, use energy efficient appliances, lighting, and mechanical equipment, are designed to maximize the benefits from day lighting, and most often use a combination of solar hot water, passive solar and photovoltaic (PV) panels to produce their on-site energy. To date, NZEHs make up a miniscule percentage of homes in the United States, and of those, few have had their actual performance measured and analyzed once built and occupied. This research focused on 19 NZEHs and near net-zero energy homes (NNZEHs) built in New England. This set of homes had varying designs, numbers of occupants, and installed technologies for energy production, space heating and cooling, and domestic hot water systems. The author worked with participating homeowners to collect construction and systems specifications, occupancy information, and twelve months of energy consumption, production and cost measurements, in order to determine whether the homes reached their respective energy performance design goals. The author found that six out of ten NZEHs achieved net-zero energy or better, while all nine of the NNZEHs achieved an energy density (kWh/ft 2/person) at least half as low as the control house, also built in New England. The median construction cost for the 19 homes was 155/ft 2 vs. 110/ft2 for the US average, their average monthly energy cost was 84% below the average for homes in New England, and their estimated CO2 emissions averaged 90% below estimated CO2 emissions from the control house. Measured energy consumption averaged 14% below predictions for the NZEHs and 38% above predictions for the NNZEHs, while generated energy was within +/- 10% of predicted for 17 out of 18 on-site PV systems. Based on these results, the author concludes that these types of homes can meet or exceed their designed energy performance (depending on

  8. A new approach to detecting gravitational waves via the coupling of gravity to the zero-point energy of the phonon modes of a superconductor

    NASA Astrophysics Data System (ADS)

    Inan, Nader A.

    The response of a superconductor to a gravitational wave is shown to obey a London-like constituent equation. The Cooper pairs are described by the Ginzburg-Landau free energy density embedded in curved spacetime. The lattice ions are modeled by quantum harmonic oscillators characterized by quasi-energy eigenvalues. This formulation is shown to predict a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is modulated by the gravitational wave. It is also shown that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a “charge separation effect” which can be used to detect the passage of a gravitational wave.

  9. Technical Feasibility Study for Zero Energy K-12 Schools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, Shanti D.; Torcellini, Paul A.; Bonnema, Eric

    A simulation-based technical feasibility study was completed to show the types of technologies required to achieve ZEB status with this building type. These technologies are prioritized across the building's subsystem such that design teams can readily integrate the ideas. Energy use intensity (EUI) targets were established for U.S. climate zones such that K-12 schools can be zero-ready or can procure solar panels or other renewable energy production sources to meet the zero energy building definition. Results showed that it is possible for K-12 schools to achieve zero energy when the EUI is between 20 and 26 kBtu/ft2/yr. Temperate climates requiredmore » a smaller percentage of solar panel coverage than very hot or very cold climates. The paper provides a foundation for technically achieving zero energy schools with a vision of transforming the school construction market to mainstream zero energy buildings within typical construction budgets.« less

  10. Quasiclassical trajectory study of the Cl+CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface.

    PubMed

    Castillo, J F; Aoiz, F J; Bañares, L

    2006-09-28

    An ab initio interpolated potential energy surface (PES) for the Cl+CH(4) reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl+CH(4) and Cl+CD(4) reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl+CH(4) and Cl+CD(4) reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH(4) molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH(3) and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift

  11. Quasiclassical trajectory study of the Cl +CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface

    NASA Astrophysics Data System (ADS)

    Castillo, J. F.; Aoiz, F. J.; Bañares, L.

    2006-09-01

    An ab initio interpolated potential energy surface (PES) for the Cl +CH4 reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl +CH4 and Cl +CD4 reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl +CH4 and Cl +CD4 reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH4 molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH3 and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from

  12. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Carter, Stuart; Tew, David P.

    2008-06-01

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and ``exact'' full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased ``fixed-node'' diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm-1 in Cartesian coordinates and 22.6 cm-1 in normal coordinates, with an uncertainty of 2-3 cm-1. This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm-1. The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm-1. These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm-1, and agree well with the experimental values of 21.6 and 2.9 cm-1 for the H and D transfer, respectively.

  13. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.

    PubMed

    Wang, Yimin; Braams, Bastiaan J; Bowman, Joel M; Carter, Stuart; Tew, David P

    2008-06-14

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.

  14. Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry.

    PubMed

    Johnson, K G; Neyenhuis, B; Mizrahi, J; Wong-Campos, J D; Monroe, C

    2015-11-20

    We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly pure quantum state with n=1 phonon and accurately measure thermal states ranging from near the zero-point energy to n[over ¯]~10^{4}, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. Apart from thermometry, these interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions.

  15. A Ring Polymer Molecular Dynamics Approach to Study the Transition between Statistical and Direct Mechanisms in the H2 + H3+ → H3+ + H2 Reaction.

    PubMed

    Suleimanov, Yury V; Aguado, Alfredo; Gómez-Carrasco, Susana; Roncero, Octavio

    2018-05-03

    Because of its fundamental importance in astrochemistry, the H 2 + H 3 + → H 3 + + H 2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H 5 + complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.

  16. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  17. The Pt site reactivity of the molecular graphs of Au6Pt isomers

    NASA Astrophysics Data System (ADS)

    Xu, Tianlv; Jenkins, Samantha; Xiao, Chen-Xia; Maza, Julio R.; Kirk, Steven R.

    2013-12-01

    Within the framework of the theory of atoms in molecules (QTAIM), in an exploratory study we propose a new measure of site reactivity equivalent to the atomic coordination number based purely on the electronic structure. It was found that the number of ring critical points (NNRCPs) positioned on the boundary of the atomic basin of the dopant (Pt) nucleus correlated very well with the relative zero point energy (ZPE) corrected energies. A weaker condition (i.e. than the number of associated bond paths) for the association of the dopant Pt nucleus with the Au6Pt molecular graph is found for NNRCP = 0.

  18. Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method

    NASA Astrophysics Data System (ADS)

    Li, Ailin; Yan, Tianying; Shen, Panwen

    Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.

  19. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.

    PubMed

    Barragán, Patricia; Pérez de Tudela, Ricardo; Qu, Chen; Prosmiti, Rita; Bowman, Joel M

    2013-07-14

    Diffusion Monte Carlo (DMC) and path-integral Monte Carlo computations of the vibrational ground state and 10 K equilibrium state properties of the H7 (+)/D7 (+) cations are presented, using an ab initio full-dimensional potential energy surface. The DMC zero-point energies of dissociated fragments H5 (+)(D5 (+))+H2(D2) are also calculated and from these results and the electronic dissociation energy, dissociation energies, D0, of 752 ± 15 and 980 ± 14 cm(-1) are reported for H7 (+) and D7 (+), respectively. Due to the known error in the electronic dissociation energy of the potential surface, these quantities are underestimated by roughly 65 cm(-1). These values are rigorously determined for first time, and compared with previous theoretical estimates from electronic structure calculations using standard harmonic analysis, and available experimental measurements. Probability density distributions are also computed for the ground vibrational and 10 K state of H7 (+) and D7 (+). These are qualitatively described as a central H3 (+)/D3 (+) core surrounded by "solvent" H2/D2 molecules that nearly freely rotate.

  20. Zero Energy Schools: Architects Take the Lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    Zero energy schools are possible and practical, and architects are leading the way. Imagine a school so inviting that students want to come to school. Now imagine this school housed in a beautiful, light-filled building that produces more energy on an annual basis than it uses. Finally, imagine that the district built this school on the same budget as a conventional school, using typical materials, equipment, and tradespeople. Sound too good to be true Discovery Elementary School in Arlington, Virginia, is living proof that zero energy (ZE) schools are feasible, affordable, and sensible.

  1. UVIS Photometric Zero Points

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2009-07-01

    This proposal obtains the photometric zero points in 53 of the 62 UVIS/WFC3 filters: the 18 broad-band filters, 8 medium-band filters, 16 narrow-band filters, and 11 of the 20 quad filters {those being used in cycle 17}. The observations will be primary obtained by observing the hot DA white dwarf standards GD153 and G191-B2B. A redder secondary standard, P330E, will be observed in a subset of the filters to provide color corrections. Repeat observations in 16 of the most widely used cycle 17 filters will be obtained once per month for the first three months, and then once every second month for the duration of cycle 17, alternating and depending on target availability. These observations will enable monitoring of the stability of the photometric system. Photometric transformation equations will be calculated by comparing the photometry of stars in two globular clusters, 47 Tuc and NGC 2419, to previous measurements with other telescopes/instruments.

  2. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  3. Symmetry breaking in the zero-energy Landau level in bilayer graphene.

    PubMed

    Zhao, Y; Cadden-Zimansky, P; Jiang, Z; Kim, P

    2010-02-12

    The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high-field regime, the eightfold degeneracy in the zero-energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding to filling factors nu=0, 1, 2, and 3. Measurements of the activation energy gaps for the nu=2 and 3 filling factors in tilted magnetic fields exhibit no appreciable dependence on the in-plane magnetic field, suggesting that these Landau level splittings are independent of spin. In addition, measurements taken at the nu=0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.

  4. Technical Feasibility Study for Zero Energy K-12 Schools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnema, Eric; Goldwasser, David; Torcellini, Paul

    This technical feasibility study provides documentation and research results supporting a possible set of strategies to achieve source zero energy K-12 school buildings as defined by the U.S. Department of Energy (DOE) zero energy building (ZEB) definition (DOE 2015a). Under this definition, a ZEB is an energy-efficient building in which, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

  5. Direct dynamics trajectory study of the reaction of formaldehyde cation with D2: vibrational and zero-point energy effects on quasiclassical trajectories.

    PubMed

    Liu, Jianbo; Song, Kihyung; Hase, William L; Anderson, Scott L

    2005-12-22

    Quasiclassical, direct dynamics trajectories have been used to study the reaction of formaldehyde cation with molecular hydrogen, simulating the conditions in an experimental study of H2CO+ vibrational effects on this reaction. Effects of five different H2CO+ modes were probed, and we also examined different approaches to treating zero-point energy in quasiclassical trajectories. The calculated absolute cross-sections are in excellent agreement with experiments, and the results provide insight into the reaction mechanism, product scattering behavior, and energy disposal, and how they vary with impact parameter and reactant state. The reaction is sharply orientation-dependent, even at high collision energies, and both trajectories and experiment find that H2CO+ vibration inhibits reaction. On the other hand, the trajectories do not reproduce the anomalously strong effect of nu2(+) (the CO stretch). The origin of the discrepancy and approaches for minimizing such problems in quasiclassical trajectories are discussed.

  6. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces.

    PubMed

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  7. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra

    2014-09-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  8. Zero Energy Schools--Beyond Platinum

    ERIC Educational Resources Information Center

    Hutton, Paul C.

    2011-01-01

    One of the fastest growing trends in school design is Net Zero Energy Schools. There are now at least a dozen or more schools completed or in construction that have achieved, or have committed to, this incredible level of energy efficiency. In this article, the author examines this trend and take a brief look at some of the exemplary projects that…

  9. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2016-09-14

    We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm -1 and the barrier for the double-proton transfer on the PES is 2848 cm -1 , in good agreement with the directly-calculated ab initio value of 2853 cm -1 . The zero-point vibrational energy of 15 337 ± 7 cm -1 is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm -1 , which is roughly twice the experimental value. The tunneling splittings of (DCOOH) 2 and (DCOOD) 2 from one to three mode calculations are, as expected, smaller than that for (HCOOH) 2 and consistent with experiment.

  10. Electronically Metastable Molecules of High Symmetry

    DTIC Science & Technology

    1990-01-01

    diminishes and hence the rate of predissociation of the Rydbergs is expected to become exceedingly small Do(H3 ),h, =E -2R_ -Dg o (H 2 ) - ZPE (H3*), (3) 72...measurements. The new dissociation energy [40] of H2 (4.4781 ± 0.0001 eV), value is also consistent with that predicted by ab in- and ZPE (H3") is the zero

  11. XZP + 1d and XZP + 1d-DKH basis sets for second-row elements: application to CCSD(T) zero-point vibrational energy and atomization energy calculations.

    PubMed

    Campos, Cesar T; Jorge, Francisco E; Alves, Júlia M A

    2012-09-01

    Recently, segmented all-electron contracted double, triple, quadruple, quintuple, and sextuple zeta valence plus polarization function (XZP, X = D, T, Q, 5, and 6) basis sets for the elements from H to Ar were constructed for use in conjunction with nonrelativistic and Douglas-Kroll-Hess Hamiltonians. In this work, in order to obtain a better description of some molecular properties, the XZP sets for the second-row elements were augmented with high-exponent d "inner polarization functions," which were optimized in the molecular environment at the second-order Møller-Plesset level. At the coupled cluster level of theory, the inclusion of tight d functions for these elements was found to be essential to improve the agreement between theoretical and experimental zero-point vibrational energies (ZPVEs) and atomization energies. For all of the molecules studied, the ZPVE errors were always smaller than 0.5 %. The atomization energies were also improved by applying corrections due to core/valence correlation and atomic spin-orbit effects. This led to estimates for the atomization energies of various compounds in the gaseous phase. The largest error (1.2 kcal mol(-1)) was found for SiH(4).

  12. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    PubMed

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  13. Computational study of Ca, Sr and Ba under pressure

    NASA Astrophysics Data System (ADS)

    Jona, F.; Marcus, P. M.

    2006-05-01

    A first-principles procedure for the calculation of equilibrium properties of crystals under hydrostatic pressure is applied to Ca, Sr and Ba. The procedure is based on minimizing the Gibbs free energy G (at zero temperature) with respect to the structure at a given pressure p, and hence does not require the equation of state to fix the pressure. The calculated lattice constants of Ca, Sr and Ba are shown to be generally closer to measured values than previous calculations using other procedures. In particular for Ba, where careful and extensive pressure data are available, the calculated lattice parameters fit measurements to about 1% in three different phases, both cubic and hexagonal. Rigid-lattice transition pressures between phases which come directly from the crossing of G(p) curves are not close to measured transition pressures. One reason is the need to include zero-point energy (ZPE) of vibration in G. The ZPE of cubic phases is calculated with a generalized Debye approximation and applied to Ca and Sr, where it produces significant shifts in transition pressures. An extensive tabulation is given of structural parameters and elastic constants from the literature, including both theoretical and experimental results.

  14. Zero-Point Calibration for AGN Black-Hole Mass Estimates

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Onken, C. A.

    2004-01-01

    We discuss the measurement and associated uncertainties of AGN reverberation-based black-hole masses, since these provide the zero-point calibration for scaling relationships that allow black-hole mass estimates for quasars. We find that reverberation-based mass estimates appear to be accurate to within a factor of about 3.

  15. Determination of point of zero charge of natural organic materials.

    PubMed

    Bakatula, Elisee Nsimba; Richard, Dominique; Neculita, Carmen Mihaela; Zagury, Gerald J

    2018-03-01

    This study evaluates different methods to determine points of zero charge (PZCs) on five organic materials, namely maple sawdust, wood ash, peat moss, compost, and brown algae, used for the passive treatment of contaminated neutral drainage effluents. The PZC provides important information about metal sorption mechanisms. Three methods were used: (1) the salt addition method, measuring the PZC; (2) the zeta potential method, measuring the isoelectric point (IEP); (3) the ion adsorption method, measuring the point of zero net charge (PZNC). Natural kaolinite and synthetic goethite were also tested with both the salt addition and the ion adsorption methods in order to validate experimental protocols. Results obtained from the salt addition method in 0.05 M NaNO 3 were the following: 4.72 ± 0.06 (maple sawdust), 9.50 ± 0.07 (wood ash), 3.42 ± 0.03 (peat moss), 7.68 ± 0.01 (green compost), and 6.06 ± 0.11 (brown algae). Both the ion adsorption and the zeta potential methods failed to give points of zero charge for these substrates. The PZC of kaolinite (3.01 ± 0.03) was similar to the PZNC (2.9-3.4) and fell within the range of values reported in the literature (2.7-4.1). As for the goethite, the PZC (10.9 ± 0.05) was slightly higher than the PZNC (9.0-9.4). The salt addition method has been found appropriate and convenient to determine the PZC of natural organic substrates.

  16. Large entropy derived from low-frequency vibrations and its implications for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Chen, Hongshan

    2018-02-01

    Adsorption and desorption are driven by the energy and entropy competition, but the entropy effect is often ignored in hydrogen storage and the optimal adsorption strength for the ambient storage is controversial in the literature. This letter investigated the adsorption states of the H2 molecule on M-B12C6N6 (M = Li, Na, Mg, Ca, and Sc) and analyzed the correlation among the zero point energy (ZPE), the entropy change, and the adsorption energy and their effects on the delivery capacities. The ZPE has large correction to the adsorption energy due to the light mass of hydrogen. The computations show that the potential energies along the spherical surface centered at the alkali metals are very flat and it leads to large entropy (˜70 J/mol.K) of the adsorbed H2 molecules. The entropy change can compensate the enthalpy change effectively, and the ambient storage can be realized with relatively weak adsorption of ΔH = -12 kJ/mol. The results are encouraging and instructive for the design of hydrogen storage materials.

  17. Astrophysical factors: Zero energy vs most effective energy

    NASA Astrophysics Data System (ADS)

    Liolios, Theodore E.

    2001-07-01

    Effective astrophysical factors for nonresonant astrophysical nuclear reaction are usually calculated with respect to a zero-energy limit. In the present work that limit is shown to be very disadvantageous compared to the more natural effective-energy limit. The latter is used in order to modify the thermonuclear reaction rate formula in stellar evolution codes so that it takes into account both plasma and laboratory screening effects.

  18. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  19. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  20. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  1. U.S. Department of Energy Zero Energy Ready Home Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VonThoma, E.; Mosiman, G.

    This report documents the process and outcomes involved in achieving the U.S. Department of Energy Zero Energy Ready Home (ZERH) program certification standards while helping homebuilders in Climate Zones 5 and 6 in the Upper Midwest achieve ZERH certification.

  2. Federal Campuses Handbook for Net Zero Energy, Water, and Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 2015, the U.S. Department of Energy’s Office Energy Efficiency and Renewable Energy (EERE) defined a zero energy campus as "an energy-efficient campus where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy campuses to federal sector campuses. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  3. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  4. The pH-dependent surface charging and points of zero charge: V. Update.

    PubMed

    Kosmulski, Marek

    2011-01-01

    The points of zero charge (PZC) and isoelectric points (IEP) from the recent literature are discussed. This study is an update of the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC, Boca Raton, FL, 2009] and of its previous update [J. Colloid Interface Sci. 337 (2009) 439]. In several recent publications, the terms PZC/IEP have been used outside their usual meaning. Only the PZC/IEP obtained according to the methods recommended by the present author are reported in this paper, and the other results are ignored. PZC/IEP of albite, sepiolite, and sericite, which have not been studied before, became available over the past 2 years. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. The environmental zero-point problem in evolutionary reaction norm modeling.

    PubMed

    Ergon, Rolf

    2018-04-01

    There is a potential problem in present quantitative genetics evolutionary modeling based on reaction norms. Such models are state-space models, where the multivariate breeder's equation in some form is used as the state equation that propagates the population state forward in time. These models use the implicit assumption of a constant reference environment, in many cases set to zero. This zero-point is often the environment a population is adapted to, that is, where the expected geometric mean fitness is maximized. Such environmental reference values follow from the state of the population system, and they are thus population properties. The environment the population is adapted to, is, in other words, an internal population property, independent of the external environment. It is only when the external environment coincides with the internal reference environment, or vice versa, that the population is adapted to the current environment. This is formally a result of state-space modeling theory, which is an important theoretical basis for evolutionary modeling. The potential zero-point problem is present in all types of reaction norm models, parametrized as well as function-valued, and the problem does not disappear when the reference environment is set to zero. As the environmental reference values are population characteristics, they ought to be modeled as such. Whether such characteristics are evolvable is an open question, but considering the complexity of evolutionary processes, such evolvability cannot be excluded without good arguments. As a straightforward solution, I propose to model the reference values as evolvable mean traits in their own right, in addition to other reaction norm traits. However, solutions based on an evolvable G matrix are also possible.

  6. Relationships for the impact sensitivities of energetic C-nitro compounds based on bond dissociation energy.

    PubMed

    Li, Jinshan

    2010-02-18

    The ZPE-corrected C-NO(2) bond dissociation energies (BDEs(ZPE)) of a series of model C-nitro compounds and 26 energetic C-nitro compounds have been calculated using density functional theory methods. Computed results show that for C-nitro compounds the UB3LYP calculated BDE(ZPE) is less than the UB3P86 using the 6-31G** basis set, and the UB3P86 BDE(ZPE) changes slightly with the basis set varying from 6-31G** to 6-31++G**. For the series of model C-nitro compounds with different chemical skeletons, it is drawn from NBO analysis that the order of BDE(ZPE) is not only in line with that of the NAO bond order but also with that of the energy gap between C-NO(2) bonding and antibonding orbitals. It is found that for the energetic C-nitro compounds whose drop energies (Es(dr)) are below 24.5 J a good linear correlation exists between E(dr) and BDE(ZPE), implying that these compounds ignite through the C-NO(2) dissociation mechanism. After excluding the so-called trinitrotoluene mechanism compounds, a polynomial correlation of ln(E(dr)) with the BDE(ZPE) calculated at density functional theory levels has been established successfully for the 18 C-NO(2) dissociation energetic C-nitro compounds.

  7. Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in the H3S superconductor.

    PubMed

    Jarlborg, Thomas; Bianconi, Antonio

    2016-04-20

    While 203 K high temperature superconductivity in H3S has been interpreted by BCS theory in the dirty limit here we focus on the effects of hydrogen zero-point-motion and the multiband electronic structure relevant for multigap superconductivity near Lifshitz transitions. We describe how the topology of the Fermi surfaces evolves with pressure giving different Lifshitz-transitions. A neck-disrupting Lifshitz-transition (type 2) occurs where the van Hove singularity, vHs, crosses the chemical potential at 210 GPa and new small 2D Fermi surface portions appear with slow Fermi velocity where the Migdal-approximation becomes questionable. We show that the neglected hydrogen zero-point motion ZPM, plays a key role at Lifshitz transitions. It induces an energy shift of about 600 meV of the vHs. The other Lifshitz-transition (of type 1) for the appearing of a new Fermi surface occurs at 130 GPa where new Fermi surfaces appear at the Γ point of the Brillouin zone here the Migdal-approximation breaks down and the zero-point-motion induces large fluctuations. The maximum Tc = 203 K occurs at 160 GPa where EF/ω0 = 1 in the small Fermi surface pocket at Γ. A Feshbach-like resonance between a possible BEC-BCS condensate at Γ and the BCS condensate in different k-space spots is proposed.

  8. Assessing the engineering performance of affordable net-zero energy housing

    NASA Astrophysics Data System (ADS)

    Wallpe, Jordan P.

    The purpose of this research was to evaluate affordable technologies that are capable of providing attractive, cost-effective energy savings to the housing industry. The research did so by investigating the 2011 Solar Decathlon competition, with additional insight from the Purdue INhome. Insight from the Purdue INhome verified the importance of using a three step design process to design a net-zero energy building. In addition, energy consumption values of the INhome were used to compare and contrast different systems used in other houses. Evaluation of unbiased competition contests gave a better understanding of how a house can realistically reach net-zero. Upon comparison, off-the-shelf engineering systems such as super-efficient HVAC units, heat pump hot water heaters, and properly designed photovoltaic arrays can affordably enable a house to become net-zero. These important and applicable technologies realized from the Solar Decathlon will reduce the 22 percent of all energy consumed through the residential sector in the United States. In conclusion, affordable net-zero energy buildings can be built today with commitment from design professionals, manufacturers, and home owners.

  9. Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.; Roberts, D.

    To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

  10. Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces

    NASA Astrophysics Data System (ADS)

    Loffreda, David

    2006-05-01

    Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.

  11. Thermodynamic stability of boron: the role of defects and zero point motion.

    PubMed

    van Setten, Michiel J; Uijttewaal, Matthé A; de Wijs, Gilles A; de Groot, Robert A

    2007-03-07

    Its low weight, high melting point, and large degree of hardness make elemental boron a technologically interesting material. The large number of allotropes, mostly containing over a hundred atoms in the unit cell, and their difficult characterization challenge both experimentalists and theoreticians. Even the ground state of this element is still under discussion. For over 30 years, scientists have attempted to determine the relative stability of alpha- and beta-rhombohedral boron. We use density functional calculations in the generalized gradient approximation to study a broad range of possible beta-rhombohedral structures containing interstitial atoms and partially occupied sites within a 105 atoms framework. The two most stable structures are practically degenerate in energy and semiconducting. One contains the experimental 320 atoms in the hexagonal unit cell, and the other contains 106 atoms in the triclinic unit cell. When populated with the experimental 320 electrons, the 106 atom structure exhibits a band gap of 1.4 eV and an in-gap hole trap at 0.35 eV above the valence band, consistent with known experiments. The total energy of these two structures is 23 meV/B lower than the original 105 atom framework, but it is still 1 meV/B above the alpha phase. Adding zero point energies finally makes the beta phase the ground state of elemental boron by 3 meV/B. At finite temperatures, the difference becomes even larger.

  12. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burman, K.; Kandt, A.; Lisell, L.

    2012-05-01

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaiimore » Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.« less

  13. Community-Wide Zero Energy Ready Home Standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herk, A.; Beggs, T.

    This report outlines the steps a developer can use when looking to create and implement higher performance standards such as the U.S. Department of Energy (DOE) Zero Energy Ready Home (ZERH) standards in a community. The report also describes the specific examples of how this process was followed by a developer, Forest City, in the Stapleton community in Denver, Colorado. IBACOS described the steps used to begin to bring the DOE ZERH standard to the Forest City Stapleton community based on 15 years of community-scale development work done by IBACOS. As a result of this prior IBACOS work, the teammore » gained an understanding of the various components that a master developer needs to consider and created strategies for incorporating those components in the initial phases of development to achieve higher performance buildings in the community. An automated scoring system can be used to perform an internal audit that provides a detailed and consistent evaluation of how several homes under construction or builders' floor plans compare with the requirements of the DOE Zero Energy Ready Home program. This audit can be performed multiple times at specific milestones during construction to allow the builder to make changes as needed throughout construction for the project to meet Zero Energy Ready Home standards. This scoring system also can be used to analyze a builder's current construction practices and design.« less

  14. Tight-binding modeling and low-energy behavior of the semi-Dirac point.

    PubMed

    Banerjee, S; Singh, R R P; Pardo, V; Pickett, W E

    2009-07-03

    We develop a tight-binding model description of semi-Dirac electronic spectra, with highly anisotropic dispersion around point Fermi surfaces, recently discovered in electronic structure calculations of VO2-TiO2 nanoheterostructures. We contrast their spectral properties with the well-known Dirac points on the honeycomb lattice relevant to graphene layers and the spectra of bands touching each other in zero-gap semiconductors. We also consider the lowest order dispersion around one of the semi-Dirac points and calculate the resulting electronic energy levels in an external magnetic field. In spite of apparently similar electronic structures, Dirac and semi-Dirac systems support diverse low-energy physics.

  15. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St.Paul, Minnesota; DOE Zero Energy Ready Home Case Study, Energy Efficiency & Renewable Energy (EERE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-06-01

    For this project Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to approach zero energy in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout rambler with all the creature comforts.

  16. Zero energy resonance and the logarithmically slow decay of unstable multilevel systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Manabu

    2006-08-15

    The long time behavior of the reduced time evolution operator for unstable multilevel systems is studied based on the N-level Friedrichs model in the presence of a zero energy resonance. The latter means the divergence of the resolvent at zero energy. Resorting to the technique developed by Jensen and Kato [Duke Math. J. 46, 583 (1979)], the zero energy resonance of this model is characterized by the zero energy eigenstate that does not belong to the Hilbert space. It is then shown that for some kinds of the rational form factors the logarithmically slow decay proportional to (log t){sup -1}more » of the reduced time evolution operator can be realized.« less

  17. Federal Existing Buildings Handbook for Net Zero Energy, Water, and Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy buildings to existing buildings in the federal sector. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  18. Federal New Buildings Handbook for Net Zero Energy, Water, and Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This document is focused on applying EERE’s definition of zero energy buildings to federal sector new buildings. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  19. Proton and deuteron position preferences in water clusters: an ab initio study.

    PubMed

    Anick, David J

    2005-12-22

    In order to explore the effect of H-to-D substitution on the zero-point energy (ZPE) of water clusters, Hessians were computed for a database of 53 optimized (H2O)n clusters, 5 < or = n < or = 21, at the B3LYP6-311 + + G** level. The 53 clusters contained 1524 protons, which were sorted into 18 categories according to the type of their donor O and (if not free) acceptor O. Letting deltaZPE[H]* denote the change in ZPE when the proton H* is replaced by D, mean values for deltaZPE[H*] for the H-bonded categories ranged from -2172 cal mol(-1) for H* in a DDAA-DDAA bond to -2118 for H* in a DAA-DDA bond. Mean value for H* free on DAA (respectively, DA) was -2018 (respectively, -1969). For DAA-DDA bonds, and for short H bonds in general, there was a strong inverse correlation between /deltaZPE[H*]/ and the O-H* distance. deltaZPE for multiple H-to-D substitutions was additive, except for a cooperativity effect of -13.7 to -19.7 cal mol(-1) when two substituted protons were in the same H2O unit and a much smaller cooperativity when one proton's donor was the other's acceptor. Implications of these data include a relative preference for D to occupy H bonded rather than free positions in finite water clusters, a value of 3.82 for the disproportionation equilibrium constant of mixed ice at 150 K, increased occupation by H at surface positions of mixed ice, and a larger average coordination number for liquid D2O than for liquid H2O.

  20. Zero Energy Building Pays for Itself: Odyssey Elementary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    Odyssey Elementary is a large public school in an area of Utah with a growing population. Created as a prototype for the Davis School District, Odyssey is a zero energy building whose design has already been copied for two other new schools, both of which are targeting zero energy. It has a unique design with four 'houses' (or classroom wings) featuring generously daylit classrooms. This design contributes to the school's energy efficiency. In an effort to integrate positive messages about fitness into the learning environment, each house has a different take on the theme of 'bodies in motion' in themore » natural world. In a postoccupancy survey of parents, students, and teachers, more than 87% were satisfied with the building overall.« less

  1. Small-aperture seismic array data processing using a representation of seismograms at zero-crossing points

    NASA Astrophysics Data System (ADS)

    Brokešová, Johana; Málek, Jiří

    2018-07-01

    A new method for representing seismograms by using zero-crossing points is described. This method is based on decomposing a seismogram into a set of quasi-harmonic components and, subsequently, on determining the precise zero-crossing times of these components. An analogous approach can be applied to determine extreme points that represent the zero-crossings of the first time derivative of the quasi-harmonics. Such zero-crossing and/or extreme point seismogram representation can be used successfully to reconstruct single-station seismograms, but the main application is to small-aperture array data analysis to which standard methods cannot be applied. The precise times of the zero-crossing and/or extreme points make it possible to determine precise time differences across the array used to retrieve the parameters of a plane wave propagating across the array, namely, its backazimuth and apparent phase velocity along the Earth's surface. The applicability of this method is demonstrated using two synthetic examples. In the real-data example from the Příbram-Háje array in central Bohemia (Czech Republic) for the Mw 6.4 Crete earthquake of October 12, 2013, this method is used to determine the phase velocity dispersion of both Rayleigh and Love waves. The resulting phase velocities are compared with those obtained by employing the seismic plane-wave rotation-to-translation relations. In this approach, the phase velocity is calculated by obtaining the amplitude ratios between the rotation and translation components. Seismic rotations are derived from the array data, for which the small aperture is not only an advantage but also an applicability condition.

  2. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov Websites

    -by-step information for decision making around net-zero energy building technologies. The past three improved insulation, windows, and heating and cooling systems. Despite these strides, energy use by energy building methodologies and technologies during a tour of the RSF's rooftop PV system. Photo by

  3. A multivariate relationship for the impact sensitivities of energetic N-nitrocompounds based on bond dissociation energy.

    PubMed

    Li, Jinshan

    2010-02-15

    The ZPE-corrected N-NO(2) bond dissociation energies (BDEs(ZPE)) of a series of model N-nitrocompounds and typical energetic N-nitrocompounds have been calculated using density functional theory methods. Computed results show that using the 6-31G** basis set the UB3LYP calculated BDE(ZPE) is similar to the B3PW91 but is less than the UB3P86 and that for both UB3P86 and UB3PW91 methods the 6-31G(**) calculated BDE(ZPE) is close to the 6-31++G(**). For the series of model N-nitrocompounds it is drawn from the NBO analysis that at the UB3LYP/6-31G(**) level the order of BDE(ZPE) is not only in line with that of bond order but also with that of the energy gap between N-NO(2) bond and antibond orbitals. For the typical energetic N-nitrocompounds the impact sensitivity is strongly related to the BDE(ZPE) indeed, and based on the BDEs(ZPE) calculated at different density functional theory levels this work has established a good multivariate correlation of impact sensitivity with molecular parameters, which provides a method to address the sensitivity problem.

  4. Thermal decomposition of 1,3,3-trinitroazetidine (TNAZ): A density functional theory and ab initio study

    NASA Astrophysics Data System (ADS)

    Veals, Jeffrey D.; Thompson, Donald L.

    2014-04-01

    Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO2 or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO2 elimination by N-N and C-N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO2 group elimination or by a concerted H-atom and nitroalkyl NO2 group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO2 elimination by N-N bond fission, HONO elimination involving the nitramine NO2 group, HONO elimination involving a nitroalkyl NO2 group, and finally NO2 elimination by C-N bond fission.

  5. The pH dependent surface charging and points of zero charge. VII. Update.

    PubMed

    Kosmulski, Marek

    2018-01-01

    The pristine points of zero charge (PZC) and isoelectric points (IEP) of metal oxides and IEP of other materials from the recent literature, and a few older results (overlooked in previous searches) are summarized. This study is an update of the previous compilations by the same author [Surface Charging and Points of Zero Charge, CRC, Boca Raton, 2009; J. Colloid Interface Sci. 337 (2009) 439; 353 (2011) 1; 426 (2014) 209]. The field has been very active, but most PZC and IEP are reported for materials, which are very well-documented already (silica, alumina, titania, iron oxides). IEP of (nominally) Gd 2 O 3 , NaTaO 3 , and SrTiO 3 have been reported in the recent literature. Their IEP were not reported in older studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A direct ab initio molecular dynamics (MD) study on the benzophenone-water 1 : 1 complex.

    PubMed

    Tachikawa, Hiroto; Iyama, Tetsuji; Kato, Kohichi

    2009-07-28

    Direct ab initio molecular dynamics (MD) method has been applied to a benzophenone-water 1 : 1 complex Bp(H(2)O) and free benzophenone (Bp) to elucidate the effects of zero-point energy (ZPE) vibration and temperature on the absorption spectra of Bp(H(2)O). The n-pi transition of free-Bp (S(1) state) was blue-shifted by the interaction with a water molecule, whereas three pi-pi transitions (S(2), S(3) and S(4)) were red-shifted. The effects of the ZPE vibration and temperature of Bp(H(2)O) increased the intensity of the n-pi transition of Bp(H(2)O) and caused broadening of the pi-pi transitions. In case of the temperature effect, the intensity of n-pi transition increases with increasing temperature. The electronic states of Bp(H(2)O) were discussed on the basis of the theoretical results.

  7. Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both.

    PubMed

    Wang, Qingfeng Kee; Bowman, Joel M

    2017-10-28

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO 2 -H 2 O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D 0 , of 787 cm -1 is obtained using that ZPE, D e , and the rigorous ZPEs of the monomers. Using a benchmark D e , D 0 is 758 cm -1 . Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO 2 hydrate clathrate CO 2 (H 2 O) 20 (5 12 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO 2 .

  8. Isotopic differentiation and sublattice melting in dense dynamic ice

    NASA Astrophysics Data System (ADS)

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2013-12-01

    The isotopes of hydrogen provide a unique exploratory laboratory for examining the role of zero point energy (ZPE) in determining the structural and dynamic features of the crystalline ices of water. There are two critical regions of high pressure: (i) near 1 TPa and (ii) near the predicted onset of metallization at around 5 TPa. At the lower pressure of the two, we see the expected small isotopic effects on phase transitions. Near metallization, however, the effects are much greater, leading to a situation where tritiated ice could skip almost entirely a phase available to the other isotopomers. For the higher pressure ices, we investigate in some detail the enthalpics of a dynamic proton sublattice, with the corresponding structures being quite ionic. The resistance toward diffusion of single protons in the ground state structures of high-pressure H2O is found to be large, in fact to the point that the ZPE reservoir cannot overcome these. However, the barriers toward a three-dimensional coherent or concerted motion of protons can be much lower, and the ensuing consequences are explored.

  9. Two-component, ab initio potential energy surface for CO2—H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both

    NASA Astrophysics Data System (ADS)

    Wang, Qingfeng Kee; Bowman, Joel M.

    2017-10-01

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO2—H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.

  10. Quantum memories with zero-energy Majorana modes and experimental constraints

    NASA Astrophysics Data System (ADS)

    Ippoliti, Matteo; Rizzi, Matteo; Giovannetti, Vittorio; Mazza, Leonardo

    2016-06-01

    In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the memory fidelity achievable via a read-out of the zero modes decays exponentially in time, independent from system size. We argue, however, that even in the presence of said experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.

  11. Measurements and theoretical interpretation of points of zero charge/potential of BSA protein.

    PubMed

    Salis, Andrea; Boström, Mathias; Medda, Luca; Cugia, Francesca; Barse, Brajesh; Parsons, Drew F; Ninham, Barry W; Monduzzi, Maura

    2011-09-20

    The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hückel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential). © 2011 American Chemical Society

  12. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies.

    PubMed

    Kepp, Kasper P

    2011-10-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.

  14. Trajectory Calculations for Bergman Cyclization Predict H/D Kinetic Isotope Effects Due to Nonstatistical Dynamics in the Product.

    PubMed

    Doubleday, Charles; Boguslav, Mayla; Howell, Caronae; Korotkin, Scott D; Shaked, David

    2016-06-22

    An unusual H/D kinetic isotope effect (KIE) is described, in which isotopic selectivity arises primarily from nonstatistical dynamics in the product. In DFT-based quasiclassical trajectories of Bergman cyclization of (Z)-3-hexen-1,5-diyne (1) at 470 K, the new CC bond retains its energy, and 28% of nascent p-benzyne recrosses back to the enediyne on a vibrational time scale. The competing process of intramolecular vibrational redistribution (IVR) in p-benzyne is too slow to prevent this. Deuteration increases the rate of IVR, which decreases the fraction of recrossing and increases the yield of statistical (trapable) p-benzyne, 2. Trapable yields for three isotopomers of 2 range from 72% to 86%. The resulting KIEs for Bergman cyclization differ substantially from KIEs predicted by transition state theory, which suggests that IVR in this reaction can be studied by conventional KIEs. Leakage of vibrational zero point energy (ZPE) into the reaction coordinate was probed by trajectories in which initial ZPE in the CH/CD stretching modes was reduced by 25%. This did not change the predicted KIEs.

  15. The Schrödinger Equation, the Zero-Point Electromagnetic Radiation, and the Photoelectric Effect

    NASA Astrophysics Data System (ADS)

    França, H. M.; Kamimura, A.; Barreto, G. A.

    2016-04-01

    A Schrödinger type equation for a mathematical probability amplitude Ψ( x, t) is derived from the generalized phase space Liouville equation valid for the motion of a microscopic particle, with mass M and charge e, moving in a potential V( x). The particle phase space probability density is denoted Q( x, p, t), and the entire system is immersed in the "vacuum" zero-point electromagnetic radiation. We show, in the first part of the paper, that the generalized Liouville equation is reduced to a simpler Liouville equation in the equilibrium limit where the small radiative corrections cancel each other approximately. This leads us to a simpler Liouville equation that will facilitate the calculations in the second part of the paper. Within this second part, we address ourselves to the following task: Since the Schrödinger equation depends on hbar , and the zero-point electromagnetic spectral distribution, given by ρ 0{(ω )} = hbar ω 3/2 π 2 c3, also depends on hbar , it is interesting to verify the possible dynamical connection between ρ 0( ω) and the Schrödinger equation. We shall prove that the Planck's constant, present in the momentum operator of the Schrödinger equation, is deeply related with the ubiquitous zero-point electromagnetic radiation with spectral distribution ρ 0( ω). For simplicity, we do not use the hypothesis of the existence of the L. de Broglie matter-waves. The implications of our study for the standard interpretation of the photoelectric effect are discussed by considering the main characteristics of the phenomenon. We also mention, briefly, the effects of the zero-point radiation in the tunneling phenomenon and the Compton's effect.

  16. Location of protons in N-H···N hydrogen-bonded systems: a theoretical study on intramolecular pyridine-dihydropyridine and pyridine-pyridinium pairs.

    PubMed

    Mori, Yukie; Takano, Keiko

    2012-08-21

    Two-dimensional potential energy surfaces (PESs) were calculated for the degenerate intramolecular proton transfer (PT) in two N-H···N hydrogen-bonded systems, (Z)-2-(2-pyridylmethylidene)-1,2-dihydropyridine (1) and monoprotonated di(2-pyridyl) ether (2), at the MP2/cc-pVDZ level of theory. The calculated PES had two minima in both cases. The energy barrier in 1 was higher than the zero-point energy (ZPE) level, while that in 2 was close to the ZPE. Vibrational wavefunctions were obtained by solving time-independent Schrödinger equations with the calculated PESs. The maximum points of the probability density were shifted from the energy minima towards the region where the covalent N-H bond was elongated and the N···N distance shortened. The effects of a polar solvent on the PES were investigated with the continuum or cluster models in such a way that the solute-solvent electrostatic interactions could be taken into account under non-equilibrated conditions. A solvated contact ion-pair was modelled by a cluster consisting of one cation 2, one chloride ion and 26 molecules of acetonitrile. The calculation with this model suggested that the bridging proton is localised in the deeper well due to the significant asymmetry of the PES and the high potential barrier.

  17. Zero field reversal probability in thermally assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  18. Efficient 3He/4He separation in a nanoporous graphenylene membrane.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-08-16

    Helium-3 is a precious noble gas, which is essential in many advanced technologies such as cryogenics, isotope labeling and nuclear weapons. The current imbalance of 3 He demand and supply shortage leads to the search for an efficient membrane with high performance for 3 He separation. In this study, based on first-principles calculations, we demonstrated that highly efficient 3 He harvesting can be achieved in a nanoporous graphenylene membrane with industrially-acceptable selectivity and permeance. The quantum tunneling effect leads to 3 He harvesting with high efficiency via kinetic sieving. Both the quantum tunneling effect and zero-point energy (ZPE) determine the 3 He/ 4 He separation via thermally-driven equilibrium sieving, where the ZPE effect dominates efficient 3 He/ 4 He separation between two reservoirs. The quantum effects revealed in this work suggest that the nanoporous graphenylene membrane is promising for efficient 3 He harvesting that can be exploited for industrial applications.

  19. Communication: rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited.

    PubMed

    Homayoon, Zahra; Jambrina, Pablo G; Aoiz, F Javier; Bowman, Joel M

    2012-07-14

    In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011)] various calculations of the rate coefficient for the Mu + H(2) → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H(2) and product MuH (∼0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.

  20. Communication: Rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra; Jambrina, Pablo G.; Aoiz, F. Javier; Bowman, Joel M.

    2012-07-01

    In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011), 10.1063/1.3611400] various calculations of the rate coefficient for the Mu + H2 → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H2 and product MuH (˜0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.

  1. Theory of the magnetic susceptibility including zero-point spin fluctuations of itinerant nearly ferromagnetic compounds

    NASA Astrophysics Data System (ADS)

    Konno, Rikio; Hatayama, Nobukuni; Takahashi, Yoshinori

    2018-05-01

    We have investigated the temperature dependence of the magnetic susceptibility of itinerant nearly ferromagnetic compounds based on the spin fluctuation theory. It is based on the conservation of the local spin amplitude that consists of both the thermal and the zero-point components. The linear dependence of the zero-point spin fluctuation amplitude on the inverse of magnetic susceptibility is usually assumed. The purpose of our present study is to include its higher order terms and to see their effects on the magnetic susceptibility. For the thermal amplitude, it shows T2-linear temperature dependence at low temperatures.

  2. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X=empty, H2O, NH3, H3O+: The importance of O-topology

    NASA Astrophysics Data System (ADS)

    Anick, David J.

    2010-04-01

    For (H2O)20X water clusters consisting of X enclosed by the 512 dodecahedral cage, X=empty, H2O, NH3, and H3O+, databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G∗∗. Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; |M|2, where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus |M| show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X=H3O+, one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H2O)20(NH4+) and (H2O)20(NH4+)(OH-) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H2O)20(NH4+) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low-energy water cluster geometries that may have wide applicability.

  3. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X = empty, H2O, NH3, H3O+: the importance of O-topology.

    PubMed

    Anick, David J

    2010-04-28

    For (H(2)O)(20)X water clusters consisting of X enclosed by the 5(12) dodecahedral cage, X = empty, H(2)O, NH(3), and H(3)O(+), databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G(**). Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; absolute value(M)(2), where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus absolute value(M) show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X = H(3)O(+), one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H(2)O)(20)(NH(4)(+)) and (H(2)O)(20)(NH(4)(+))(OH(-)) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H(2)O)(20)(NH(4)(+)) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low-energy

  4. Zero Thermal Noise in Resistors at Zero Temperature

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran

    2016-06-01

    The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.

  5. Quasisaddles as relevant points of the potential energy surface in the dynamics of supercooled liquids

    NASA Astrophysics Data System (ADS)

    Angelani, L.; Di Leonardo, R.; Ruocco, G.; Scala, A.; Sciortino, F.

    2002-06-01

    The supercooled dynamics of a Lennard-Jones model liquid is numerically investigated studying relevant points of the potential energy surface, i.e., the minima of the square gradient of total potential energy V. The main findings are (i) the number of negative curvatures n of these sampled points appears to extrapolate to zero at the mode coupling critical temperature Tc; (ii) the temperature behavior of n(T) has a close relationship with the temperature behavior of the diffusivity; (iii) the potential energy landscape shows a high regularity in the distances among the relevant points and in their energy location. Finally we discuss a model of the landscape, previously introduced by Madan and Keyes [J. Chem. Phys. 98, 3342 (1993)], able to reproduce the previous findings.

  6. Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction.

    PubMed

    Lyalin, Andrey; Nakayama, Akira; Uosaki, Kohei; Taketsugu, Tetsuya

    2013-02-28

    The catalytic activity for the oxygen reduction reaction (ORR) of both the pristine and defect-possessing hexagonal boron nitride (h-BN) monolayer and H-terminated nanoribbon have been studied theoretically using density functional theory. It is demonstrated that an inert h-BN monolayer can be functionalized and become catalytically active by nitrogen doping. It is shown that the energetics of adsorption of O(2), O, OH, OOH, and H(2)O on N atom impurities in the h-BN monolayer (N(B)@h-BN) is quite similar to that known for a Pt(111) surface. The specific mechanism of destructive and cooperative adsorption of ORR intermediates on the surface point defects is discussed. It is demonstrated that accounting for entropy and zero-point energy (ZPE) corrections results in destabilization of the ORR intermediates adsorbed on N(B)@h-BN, while solvent effects lead to their stabilization. Therefore, entropy, ZPE and solvent effects partly cancel each other and have to be taken into account simultaneously. Analysis of the free energy changes along the ORR pathway allows us to suggest that a N-doped h-BN monolayer can demonstrate catalytic properties for the ORR under the condition that electron transport to the catalytically active center is provided.

  7. Building America Case Study: New Town Builders' Power of Zero Energy Center, Denver, Colorado (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a 'Power of Zero Energy Center' linked to its model home in the Stapleton community of Denver. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for themore » homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. The case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.« less

  8. Stability of flat zero-energy states at the dirty surface of a nodal superconductor

    NASA Astrophysics Data System (ADS)

    Ikegaya, Satoshi; Asano, Yasuhiro

    2017-06-01

    We discuss the stability of highly degenerate zero-energy states that appear at the surface of a nodal superconductor preserving time-reversal symmetry. The existence of such surface states is a direct consequence of the nontrivial topological numbers defined in the restricted Brillouin zones in the clean limit. In experiments, however, potential disorder is inevitable near the surface of a real superconductor, which may lift the high degeneracy at zero energy. We show that an index defined in terms of the chiral eigenvalues of the zero-energy states can be used to measure the degree of degeneracy at zero energy in the presence of potential disorder. We also discuss the relationship between the index and the topological numbers.

  9. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, S.; Barnett, J.; Burman, K.

    2010-08-01

    The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zeromore » energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.« less

  10. Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging.

    PubMed

    Mort, Brendan C; Autschbach, Jochen

    2006-08-09

    Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.

  11. Use of a single trajectory to study product energy partitioning in unimolecular dissociation: mass effects for halogenated alkanes.

    PubMed

    Sun, Lipeng; Park, Kyoyeon; Song, Kihyung; Setser, Donald W; Hase, William L

    2006-02-14

    A single trajectory (ST) direct dynamics approach is compared with quasiclassical trajectory (QCT) direct dynamics calculations for determining product energy partitioning in unimolecular dissociation. Three comparisons are made by simulating C(2)H(5)F-->HF + C(2)H(4) product energy partitioning for the MP26-31G(*) and MP26-311 + + G(**) potential energy surfaces (PESs) and using the MP26-31G(*) PES for C(2)H(5)F dissociation as a model to simulate CHCl(2)CCl(3)-->HCl + C(2)Cl(4) dissociation and its product energy partitioning. The trajectories are initiated at the transition state with fixed energy in reaction-coordinate translation E(t) (double dagger). The QCT simulations have zero-point energy (ZPE) in the vibrational modes orthogonal to the reaction coordinate, while there is no ZPE for the STs. A semiquantitative agreement is obtained between the ST and QCT average percent product energy partitionings. The ST approach is used to study mass effects for product energy partitioning in HX(X = F or Cl) elimination from halogenated alkanes by using the MP26-31G(*) PES for C(2)H(5)F dissociation and varying the masses of the C, H, and F atoms. There is, at most, only a small mass effect for partitioning of energy to HX vibration and rotation. In contrast, there are substantial mass effects for partitioning to relative translation and the polyatomic product's vibration and rotation. If the center of mass of the polyatomic product is located away from the C atom from which HX recoils, the polyatomic has substantial rotation energy. Polyatomic products, with heavy atoms such as Cl atoms replacing the H atoms, receive substantial vibration energy that is primarily transferred to the wag-bend motions. For E(t) (double dagger) of 1.0 kcalmol, the ST calculations give average percent partitionings to relative translation, polyatomic vibration, polyatomic rotation, HX vibration, and HX rotation of 74.9%, 6.8%, 1.5%, 14.4%, and 2.4% for C(2)H(5)F dissociation and 39.7%, 38

  12. Reaction mechanism of guanidinoacetate methyltransferase, concerted or step-wise.

    PubMed

    Zhang, Xiaodong; Bruice, Thomas C

    2006-10-31

    We describe a quantum mechanics/molecular mechanics investigation of the guanidinoacetate methyltransferase catalyzed reaction, which shows that proton transfer from guanidinoacetate (GAA) to Asp-134 and methyl transfer from S-adenosyl-L-methionine (AdoMet) to GAA are concerted. By self-consistent-charge density functional tight binding/molecular mechanics, the bond lengths in the concerted mechanism's transition state are 1.26 A for both the OD1 (Asp-134)-H(E) (GAA) and H(E) (GAA)-N(E) (GAA) bonds, and 2.47 and 2.03 A for the S8 (AdoMet)-C9 (AdoMet) and C9 (AdoMet)-N(E) (GAA) bonds, respectively. The potential-energy barrier (DeltaE++) determined by single-point B3LYP/6-31+G*//MM is 18.9 kcal/mol. The contributions of the entropy (-TDeltaS++) and zero-point energy corrections Delta(ZPE)++ by normal mode analysis are 2.3 kcal/mol and -1.7 kcal/mol, respectively. Thus, the activation enthalpy of this concerted mechanism is predicted to be DeltaH++ = DeltaE++ plus Delta(ZPE)++ = 17.2 kcal/mol. The calculated free-energy barrier for the concerted mechanism is DeltaG++ = 19.5 kcal/mol, which is in excellent agreement with the value of 19.0 kcal/mol calculated from the experimental rate constant (3.8 +/- 0.2.min(-1)).

  13. Reaction mechanism of guanidinoacetate methyltransferase, concerted or step-wise

    PubMed Central

    Zhang, Xiaodong; Bruice, Thomas C.

    2006-01-01

    We describe a quantum mechanics/molecular mechanics investigation of the guanidinoacetate methyltransferase catalyzed reaction, which shows that proton transfer from guanidinoacetate (GAA) to Asp-134 and methyl transfer from S-adenosyl-l-methionine (AdoMet) to GAA are concerted. By self-consistent-charge density functional tight binding/molecular mechanics, the bond lengths in the concerted mechanism's transition state are 1.26 Å for both the OD1 (Asp-134)–HE (GAA) and HE (GAA)–NE (GAA) bonds, and 2.47 and 2.03 Å for the S8 (AdoMet)–C9 (AdoMet) and C9 (AdoMet)–NE (GAA) bonds, respectively. The potential-energy barrier (ΔE‡) determined by single-point B3LYP/6–31+G*//MM is 18.9 kcal/mol. The contributions of the entropy (−TΔS‡) and zero-point energy corrections Δ(ZPE)‡ by normal mode analysis are 2.3 kcal/mol and −1.7 kcal/mol, respectively. Thus, the activation enthalpy of this concerted mechanism is predicted to be ΔH‡ = ΔE‡ + Δ(ZPE)‡ = 17.2 kcal/mol. The calculated free-energy barrier for the concerted mechanism is ΔG‡ = 19.5 kcal/mol, which is in excellent agreement with the value of 19.0 kcal/mol calculated from the experimental rate constant (3.8 ± 0.2·min−1). PMID:17053070

  14. Quasiclassical trajectory studies of the O(3P) + CX4(vk = 0, 1) → OXv + CX3(n1n2n3n4) [X = H and D] reactions on an ab initio potential energy surface.

    PubMed

    Czakó, Gábor; Liu, Rui; Yang, Minghui; Bowman, Joel M; Guo, Hua

    2013-08-01

    We report quasiclassical trajectory calculations of the integral and differential cross sections and the mode-specific product state distributions for the "central-barrier" O((3)P) + CH4/CD4(vk = 0, 1) [k = 1, 2, 3, 4] reactions using a full-dimensional ab initio potential energy surface. The mode-specific vibrational distributions for the polyatomic methyl products are obtained by doing a normal-mode analysis in the Eckart frame, followed by standard histogram binning (HB) and energy-based Gaussian binning (1GB). The reactant bending excitations slightly enhance the reactivity, whereas stretching excitations activate the reaction more efficiently. None of the reactant vibrational excitations is as efficient as an equivalent amount of translational energy to promote the reactions. The excitation functions without product zero-point energy (ZPE) constraint are in good agreement with previous 8-dimensional quantum mechanical (QM) results for the ground-state and stretching-excited O + CH4 reactions, whereas for the bending-excited reactions the soft ZPE constraint, which is applied to the sum of the product vibrational energies, provides better agreement with the QM cross sections. All angular distributions show the dominance of backward scattering indicating a direct rebound mechanism, in agreement with experiment. The title reactions produce mainly OH/OD(v = 0) products for all the initial states. HB significantly overestimates the populations of OH/OD(v = 1), especially in the energetic threshold regions, whereas 1GB provides physically correct results. The CH3/CD3 vibrational distributions show dominant populations for ground (v = 0), umbrella-excited (v2 = 1, 2), in-plane-bending-excited (v4 = 1), and v2 + v4 methyl product states. Neither translational energy nor reactant vibrational excitation transfers significantly into product vibrations.

  15. DFT studies on the multi-channel reaction of CH3S+NO2

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun

    The mechanisms for the reaction of CH3S with NO2 are investigated at the QCISD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) on both single and triple potential energy surfaces (PESs). The geometries, vibrational frequencies, and zero-point energy (ZPE) correction of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d,p) level. More accurate energies are obtained at the QCISD(T)/6-311++G(d,p). The results show that 5 intermediates and 14 transition states are found. The reaction is more predominant on the single PES, while it is negligible on the triple PES. Without any barrier height for the whole process, the main channel of the reaction is to form CH3SONO and then dissociate to CH3SO+NO.

  16. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.

    PubMed

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-21

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  17. A quantitative relationship for the shock sensitivities of energetic compounds based on X-NO(2) (X=C, N, O) bond dissociation energy.

    PubMed

    Li, Jinshan

    2010-08-15

    The ZPE-corrected X-NO(2) (X=C, N, O) bond dissociation energies (BDEs(ZPE)) of 11 energetic nitrocompounds of different types have been calculated employing density functional theory methods. Computed results show that using the 6-31G** basis set the UB3LYP calculated BDE(ZPE) is less than the UB3P86. For these typical energetic nitrocompounds the shock-initiated pressure (P(98)) is strongly related to the BDE(ZPE) indeed, and a polynomial correlation of ln(P(98)) with the BDE(ZPE) has been established successfully at different density functional theory levels, which provides a method to address the shock sensitivity problem. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Energy Use Consequences of Ventilating a Net-Zero Energy House

    PubMed Central

    Ng, Lisa C.; Payne, W. Vance

    2016-01-01

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  19. Energy Use Consequences of Ventilating a Net-Zero Energy House.

    PubMed

    Ng, Lisa C; Payne, W Vance

    2016-03-05

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  20. A practical method to avoid zero-point leak in molecular dynamics calculations: application to the water dimer.

    PubMed

    Czakó, Gábor; Kaledin, Alexey L; Bowman, Joel M

    2010-04-28

    We report the implementation of a previously suggested method to constrain a molecular system to have mode-specific vibrational energy greater than or equal to the zero-point energy in quasiclassical trajectory calculations [J. M. Bowman et al., J. Chem. Phys. 91, 2859 (1989); W. H. Miller et al., J. Chem. Phys. 91, 2863 (1989)]. The implementation is made practical by using a technique described recently [G. Czako and J. M. Bowman, J. Chem. Phys. 131, 244302 (2009)], where a normal-mode analysis is performed during the course of a trajectory and which gives only real-valued frequencies. The method is applied to the water dimer, where its effectiveness is shown by computing mode energies as a function of integration time. Radial distribution functions are also calculated using constrained quasiclassical and standard classical molecular dynamics at low temperature and at 300 K and compared to rigorous quantum path integral calculations.

  1. Can two H2 molecules be inserted into C60 - an accurate first-principles exploration of structural, energetic and vibrational properties of the 2H2@C60 complex

    NASA Astrophysics Data System (ADS)

    Dolgonos, Grygoriy A.; Peslherbe, Gilles H.

    2016-10-01

    The 2H2@C60 minimum structure of C2 symmetry has been fully characterized at the density-fitting local second-order Møller-Plesset (DF-LMP2) level of theory. Its uncorrected and zero-point energy (ZPE) corrected complexation energies equal 1.9 and 6.2 kcal/mol, respectively, confirming the instability of the complex. This structure exhibits the largest intermolecular host-guest and guest-guest separations among all the complexes studied in this work. The calculated infrared spectrum of 2H2@C60 does not show any frequency shifts for the modes associated with radial or tangential displacements in C60 (except for one mode), but shows a weak red Hsbnd H vibrational frequency shift.

  2. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could makemore » in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.« less

  3. New Whole-House Solutions Case Study: New Town Builders' Power of Zero Energy Center - Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a "Power of Zero Energy Center" linked to its model home in the Stapleton community. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improvedmore » occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. This case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.« less

  4. DOE Zero Energy Ready Home Case Study: Greenhill Contracting, Inc., Hickory Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Greenhill Contracting built this 3,912-ft2 house in Gardiner, New York, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A highly efficient air-source heat pump heats and cools the home’s interior, while the roof-mounted photovoltaic system offsets electricity usage to cut energy bills to nearly zero. Many months the home owners see a credit on their utility bill.

  5. Threshold-adaptive canny operator based on cross-zero points

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Zhang, Xiuhua; Hong, Hanyu

    2018-03-01

    Canny edge detection[1] is a technique to extract useful structural information from different vision objects and dramatically reduce the amount of data to be processed. It has been widely applied in various computer vision systems. There are two thresholds have to be settled before the edge is segregated from background. Usually, by the experience of developers, two static values are set as the thresholds[2]. In this paper, a novel automatic thresholding method is proposed. The relation between the thresholds and Cross-zero Points is analyzed, and an interpolation function is deduced to determine the thresholds. Comprehensive experimental results demonstrate the effectiveness of proposed method and advantageous for stable edge detection at changing illumination.

  6. Representing and selecting vibrational angular momentum states for quasiclassical trajectory chemical dynamics simulations.

    PubMed

    Lourderaj, Upakarasamy; Martínez-Núñez, Emilio; Hase, William L

    2007-10-18

    Linear molecules with degenerate bending modes have states, which may be represented by the quantum numbers N and L. The former gives the total energy for these modes and the latter identifies their vibrational angular momentum jz. In this work, the classical mechanical analog of the N,L-quantum states is reviewed, and an algorithm is presented for selecting initial conditions for these states in quasiclassical trajectory chemical dynamics simulations. The algorithm is illustrated by choosing initial conditions for the N = 3 and L = 3 and 1 states of CO2. Applications of this algorithm are considered for initial conditions without and with zero-point energy (zpe) included in the vibrational angular momentum states and the C-O stretching modes. The O-atom motions in the x,y-plane are determined for these states from classical trajectories in Cartesian coordinates and are compared with the motion predicted by the normal-mode model. They are only in agreement for the N = L = 3 state without vibrational angular momentum zpe. For the remaining states, the Cartesian O-atom motions are considerably different from the elliptical motion predicted by the normal-mode model. This arises from bend-stretch coupling, including centrifugal distortion, in the Cartesian trajectories, which results in tubular instead of elliptical motion. Including zpe in the C-O stretch modes introduces considerable complexity into the O-atom motions for the vibrational angular momentum states. The short-time O-atom motions for these trajectories are highly irregular and do not appear to have any identifiable characteristics. However, the O-atom motions for trajectories integrated for substantially longer period of times acquire unique properties. With C-O stretch zpe included, the long-time O-atom motion becomes tubular for trajectories integrated to approximately 14 ps for the L = 3 states and to approximately 44 ps for the L = 1 states.

  7. Zero Energy Schools: The Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    School buildings have a lot of potential to achieve zero energy (ZE) in new construction as well as in retrofits. There are many examples of schools operating at ZE, and many technical resources available to guide school districts and their design and construction teams through the process. When school districts embark on the path to ZE, however, they often confront challenges related to processes and a perception that ZE buildings require 'new,' unconventional, and expensive technologies, materials, or equipment. Here are some of the challenges school districts and their design and construction teams commonly encounter, and the solutions they usemore » to overcome them.« less

  8. Establishing a Common Definition for Zero Energy Buildings: Time to Move the Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Kent; Torcellini, Paul; Taylor, Cody

    To change the current paradigm from buildings being consumers of energy to producers of energy requires a common language to facilitate market transformation. Common definitions help create market movement by sharing concepts across market actors. While the term 'zero energy buildings' has been in the marketplace for over 20 years, no common definition had been established. US DOE, last year, embarked on a process to evaluate current definitions and solicit industry input to formulate a common definition and nomenclature for zero energy buildings. This definition uses commonly available site measurements and national conversion factors to define zero energy buildings onmore » a source energy basis for a variety of boundary conditions including building, portfolio, campus, and community. Issues addressed include multiple fuel types, cogeneration, and renewable energy certificates. This paper describes the process used to arrive at the definition, looks at methods of calculating site to source energy conversions, and how boundary decisions affect a robust and stable definition that can be used to direct programs and policies for many years to come. This stability is critical to move building investments towards buildings that produce as much energy as they consume.« less

  9. Branch-point energies and the band-structure lineup at Schottky contacts and heterostrucures

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2011-06-01

    Empirical branch-point energies of Si, the group-III nitrides AlN, GaN, and InN, and the group-II and group-III oxides MgO, ZnO, Al2O3 and In2O3 are determined from experimental valance-band offsets of their heterostructures. For Si, GaN, and MgO, these values agree with the branch-point energies obtained from the barrier heights of their Schottky contacts. The empirical branch-point energies of Si and the group-III nitrides are in very good agreement with results of previously published calculations using quite different approaches such as the empirical tight-binding approximation and modern electronic-structure theory. In contrast, the empirical branch-point energies of the group-II and group-III oxides do not confirm the respective theoretical results. As at Schottky contacts, the band-structure lineup at heterostructures is also made up of a zero-charge-transfer term and an intrinsic electric-dipole contribution. Hence, valence-band offsets are not equal to the difference of the branch-point energies of the two semiconductors forming the heterostructure. The electric-dipole term may be described by the electronegativity difference of the two solids in contact. A detailed analysis of experimental Si Schottky barrier heights and heterostructure valence-band offsets explains and proves these conclusions.

  10. Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided?

    PubMed

    Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L

    2015-03-05

    We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.

  11. Army Reserve Expands Net Zero Energy, Water, Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  12. Noncovalent Hydrogen Isotope Effects

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Breslavskaya, N. N.

    2018-02-01

    Zero-point energies (ZPE) and isotope effects, induced by intermolecular, noncovalent vibrations, are computed and tested by experimental data. The ZPE differences of H- and D-complexes of water with hydrogen, methane, and water molecules are about 100-300 cal/mol; they result to isotope effects IE of 1.20-1.70. Semi-ionic bonds between metal ions and water ligands in M(H2O) 6 2+ complexes are much stronger; their ZPEs are about 12-14 kcal/mol per molecule and result to IE of 1.9-2.1 at 300 K. Protonated (deuterated) water and biwater exhibit the largest ZPE differences and isotope effects; the latter are 25-28 and 12-13 for water and biwater, respectively. Noncovalent IEs contribute markedly into the experimentally measured effects and explain many anomalous and even magic properties of the effects, such as the dependence of IE on the solvents and on the presence of the third substances, enormously large isotope effects at the mild conditions, the difference between IEs measured in the reactions of individual protiated and deuterated compounds and those measured in their mixture. Noncovalent IEs are not negligible and should be taken into account to make correct and substantiated conclusions on the reaction mechanisms. The kinetic equations are derived for the total isotope effects, which include noncovalent IEs as additive factors.

  13. DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes — First DOE Zero Energy Ready Home Retrofit, Garland, TX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This builder was honored with an Affordable Builder award in the 2014 Housing Innovation Awards, for the first retrofit home certified to the DOE Zero Energy Ready home requirements.The 60-year-old, three-bedroom ranch home is expected to save its homeowner more than $1,000 a year in utility bills compared to a home built to the current 2009 International Energy Conservation Code.

  14. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.

    In this paper, we study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. Finally, wemore » find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge “melting” above a critical temperature at which the magnetic symmetry is restored.« less

  15. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    DOE PAGES

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.; ...

    2015-08-26

    In this paper, we study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. Finally, wemore » find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge “melting” above a critical temperature at which the magnetic symmetry is restored.« less

  16. pH-dependent surface charging and points of zero charge. IV. Update and new approach.

    PubMed

    Kosmulski, Marek

    2009-09-15

    The recently published points of zero charge (PZC) and isoelectric points (IEPs) of various materials are compiled to update the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC Press, Boca Raton, FL, 2009]. Unlike in previous compilations by the same author [Chemical Properties of Material Surfaces, Dekker, New York, 2001; J. Colloid Interface Sci. 253 (2002) 77; J. Colloid Interface Sci. 275 (2004) 214; J. Colloid Interface Sci. 298 (2006) 730], the materials are sorted not only by the chemical formula, but also by specific product, that is, by brand name (commercially available materials), and by recipe (home-synthesized materials). This new approach indicated that the relatively consistent PZC/IEP reported in the literature for materials having the same chemical formula are due to biased choice of specimens to be studied. Specimens which have PZC/IEP close to the "recommended" value are selected more often than other specimens (PZC/IEP not reported before or PZC/IEP reported, but different from the "recommended" value). Thus, the previously published PZC/IEP act as a self-fulfilling prophecy.

  17. A Conversation on Zero Net Energy Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, Charles; Gupta, Smita; Torcellini, Paul

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute;more » Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.« less

  18. Towards zero-power ICT.

    PubMed

    Gammaitoni, Luca; Chiuchiú, D; Madami, M; Carlotti, G

    2015-06-05

    Is it possible to operate a computing device with zero energy expenditure? This question, once considered just an academic dilemma, has recently become strategic for the future of information and communication technology. In fact, in the last forty years the semiconductor industry has been driven by its ability to scale down the size of the complementary metal-oxide semiconductor-field-effect transistor, the building block of present computing devices, and to increase computing capability density up to a point where the power dissipated in heat during computation has become a serious limitation. To overcome such a limitation, since 2004 the Nanoelectronics Research Initiative has launched a grand challenge to address the fundamental limits of the physics of switches. In Europe, the European Commission has recently funded a set of projects with the aim of minimizing the energy consumption of computing. In this article we briefly review state-of-the-art zero-power computing, with special attention paid to the aspects of energy dissipation at the micro- and nanoscales.

  19. Towards zero-power ICT

    NASA Astrophysics Data System (ADS)

    Gammaitoni, Luca; Chiuchiú, D.; Madami, M.; Carlotti, G.

    2015-06-01

    Is it possible to operate a computing device with zero energy expenditure? This question, once considered just an academic dilemma, has recently become strategic for the future of information and communication technology. In fact, in the last forty years the semiconductor industry has been driven by its ability to scale down the size of the complementary metal-oxide semiconductor-field-effect transistor, the building block of present computing devices, and to increase computing capability density up to a point where the power dissipated in heat during computation has become a serious limitation. To overcome such a limitation, since 2004 the Nanoelectronics Research Initiative has launched a grand challenge to address the fundamental limits of the physics of switches. In Europe, the European Commission has recently funded a set of projects with the aim of minimizing the energy consumption of computing. In this article we briefly review state-of-the-art zero-power computing, with special attention paid to the aspects of energy dissipation at the micro- and nanoscales.

  20. Singularity-driven second- and third-harmonic generation at {epsilon}-near-zero crossing points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincenti, M. A.; Ceglia, D. de; Ciattoni, A.

    We show an alternative path to efficient second- and third-harmonic generation in proximity of the zero crossing points of the dielectric permittivity in conjunction with low absorption. Under these circumstances, any material, either natural or artificial, will show similar degrees of field enhancement followed by strong harmonic generation, without resorting to any resonant mechanism. The results presented in this paper provide a general demonstration of the potential that the zero-crossing-point condition holds for nonlinear optical phenomena. We investigate a generic Lorentz medium and demonstrate that a singularity-driven enhancement of the electric field may be achieved even in extremely thin layersmore » of material. We also discuss the role of nonlinear surface sources in a realistic scenario where a 20-nm layer of CaF{sub 2} is excited at 21 {mu}m, where {epsilon}{approx} 0. Finally, we show similar behavior in an artificial composite material that includes absorbing dyes in the visible range, provide a general tool for the improvement of harmonic generation using the {epsilon}{approx} 0 condition, and illustrate that this singularity-driven enhancement of the field lowers the thresholds for a plethora of nonlinear optical phenomena.« less

  1. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    NASA Astrophysics Data System (ADS)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  2. Zero-Energy Optical Logic: Can It Be Practical?

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John

    The thermodynamic “permission” to build a device that can evaluate a sequence of logic operations that operate at zero energy has existed for about 40 years. That is, physics allows it in principle. Conceptual solutions have been explored ever since then. A great number of important concepts were developed in so doing. Over the last four years, my colleagues and I have explored the possibility of a constructive proof. And we finally succeeded. Somewhat unexpectedly, we found such a proof and found that lossless logic systems could actually be built. And, as we had anticipated, it can only be implemented by optics. That raises a new question: Might an optical zero-energy logic system actually be good enough to displace electronic versions in some cases? In this paper, I do not even try to answer that question, but I do lay out some problems now blocking practical applications and show some promising approaches to solving them. The problems addressed are speed, size, and error rate. The anticipated speed problem simply vanishes, as it was an inference from the implicit assumption that the logic would be electronic. But the other two problems are real and must be addressed if energy-free logic is to have any significant applications. Initial steps in solving the size and error rate are addressed in more detail.

  3. DOE Zero Energy Ready Home Case Study: Alliance Green Builders, Casa Aguila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Alliance Green Builders built this 3,129-ft2 home in the hills above Ramona, California, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The home should perform far better than net zero thanks to a super-efficient building shell, a wind turbine, three suntracking solar photovoltaic arrays, and solar thermal water heating.

  4. Detection of explosives, nerve agents, and illicit substances by zero-energy electron attachment

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Darrach, M. R.

    2000-01-01

    The Reversal Electron Attachment Detection (READ) method, developed at JPL/Caltech, has been used to detect a variety of substances which have electron-attachment resonances at low and intermediate electron energies. In the case of zero-energy resonances, the cross section (hence attachment probability and instrument sensitivity) is mediated by the so-called s-wave phenomenon, in which the cross sections vary as the inverse of the electron velocity. Hence this is, in the limit of zero electron energy or velocity, one of the rare cases in atomic and molecular physics where one carries out detection via infinite cross sections.

  5. Effective response theory for zero-energy Majorana bound states in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei

    2015-05-01

    We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3 + 1)-dimensional superconductors. Starting in 4 + 1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an S U (2) 2 Kac-Moody current running along the defect line. The S U (2) 2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3 + 1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-antihedgehog pairs.

  6. Towards a Net Zero Building Cluster Energy Systems Analysis for US Army Installations

    DTIC Science & Technology

    2011-05-01

    depending on the alternative chosen. Since the proposed energy efficiency work includes the implementation of DOAS and high efficiency dehumidification ...cluster Net Zero fossil fuel energy. The recommended, integrated energy solution demonstrates that vastly improved energy efficiency and greenhouse gas

  7. Structure, Stabilities, Thermodynamic Properties, and IR Spectra of Acetylene Clusters (C2H2)n=2-5.

    PubMed

    Karthikeyan, S; Lee, Han Myoung; Kim, Kwang S

    2010-10-12

    There are no clear conclusions over the structures of the acetylene clusters. In this regard, we have carried out high-level calculations for acetylene clusters (C2H2)2-5 using dispersion-corrected density functional theory (DFT-D), Møller-Plesset second-order perturbation theory (MP2); and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] at the complete basis set limit. The lowest energy structure of the acetylene dimer has a T-shaped structure of C2v symmetry, but it is nearly isoenergetic to the displaced stacked structure of C2h symmetry. We find that the structure shows the quantum statistical distribution for configurations between the T-shaped and displaced stacked structures for which the average angle (|θ̃|) between two acetylene molecules would be 53-78°, close to the T-shaped structure. The trimer has a triangular structure of C3h symmetry. The tetramer has two lowest energy isomers of S4 and C2h symmetry in zero-point energy (ZPE)-uncorrected energy (ΔEe), but one lowest energy isomer of C2v symmetry in ZPE-corrected energy (ΔE0). For the pentamer, the global minimum structure is C1 symmetry with eight sets of T-type π-H interactions and a set of π-π interactions. Our high-level ab initio calculations are consistent with available experimental data.

  8. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    PubMed

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  9. Role of zero-point effects in stabilizing the ground state structure of bulk Fe2P

    NASA Astrophysics Data System (ADS)

    Bhat, Soumya S.; Gupta, Kapil; Bhattacharjee, Satadeep; Lee, Seung-Cheol

    2018-05-01

    Structural stability of Fe2P is investigated in detail using first-principles calculations based on density functional theory. While the orthorhombic C23 phase is found to be energetically more stable, the experiments suggest it to be hexagonal C22 phase. In the present study, we show that in order to obtain the correct ground state structure of Fe2P from the first-principles based methods it is utmost necessary to consider the zero-point effects such as zero-point vibrations and spin fluctuations. This study demonstrates an exceptional case where a bulk material is stabilized by quantum effects, which are usually important in low-dimensional materials. Our results also indicate the possibility of magnetic field induced structural quantum phase transition in Fe2P, which should form the basis for further theoretical and experimental efforts.

  10. Intelligent Controls for Net-Zero Energy Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less

  11. Precision zero-home locator

    DOEpatents

    Stone, William J.

    1986-01-01

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  12. Precision zero-home locator

    DOEpatents

    Stone, W.J.

    1983-10-31

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  13. Point of zero potential of single-crystal electrode/inert electrolyte interface.

    PubMed

    Zarzycki, Piotr; Preočanin, Tajana

    2012-03-15

    Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined. Here we show that PZP can be extracted from a single-crystal electrode potentiometric titration, assuming the stable electrochemical cell resistivity and lack of specific electrolyte ions sorption. Our method is based on determining a common intersection point of the electrochemical cell electromotive force at various ionic strengths, and it is illustrated for a few selected surfaces of rutile, hematite, silver chloride, and bromide monocrystals. In the case of metal oxides, we have observed the higher PZP values than those theoretically predicted using the MultiSite Complexation Model (MUSIC), that is, 8.4 for (001) hematite (MUSIC-predicted ~6), 8.7 for (110) rutile (MUSIC-predicted ~6), and about 7 for (001) rutile (MUSIC-predicted 6.6). In the case of silver halides, the order of estimated PZP values (6.4 for AgCl<6.5 for AgBr) agrees well with sequence estimated from the silver halide solubility products; however, the halide anions (Cl(-), Br(-)) are attracted toward surface much stronger than the Ag(+) cations. The observed PZPs sequence and strong anions affinity toward silver halide surface can be correlated with ions hydration energies. Presented approach is the complementary one to the hysteresis method reported previously [P. Zarzycki, S. Chatman, T. Preočanin, K.M. Rosso, Langmuir 27 (2011) 7986-7990]. A unique experimental characterization of specific crystal faces provided by these two methods is essential in deeper understanding of environmentally important processes, including migration of heavy and radioactive ions in soils and groundwaters. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Energy sustainable cities. From eco villages, eco districts towards zero carbon cities

    NASA Astrophysics Data System (ADS)

    Zaręba, Anna; Krzemińska, Alicja; Łach, Janusz

    2017-11-01

    Minimizing energy consumption is the effect of sustainable design technics as among many others: designing buildings with solar access and natural ventilation, using climate responsive design materials and effective insulation. Contemporary examples of zero-carbon cities: Masdar City, United Arab Emirates and Dongtan, China, confirm technical feasibility of renewable energy by implementation of solar PV and wind technologies. The ecological city - medium or high density urban settlement separated by greenspace causes the smallest possible ecological footprint on the surrounding countryside through efficient use of land and its resources, recycling used materials and converting waste to energy. This paper investigates the concept of energy sustainable cities, examines, how urban settlements might affect building energy design in eco-villages, eco-districts (e.g. Vauban, Freiburg in Germany, Bo01 Malmo in Sweden), and discuss the strategies for achieving Zero Emission Cities principles in densely populated areas. It is focused on low energy architectural design solutions which could be incorporated into urban settlements to create ecological villages, districts and cities, designed with consideration of environmental impact, required minimal inputs of energy, water, food, waste and pollution.

  15. "Vibrational bonding": a new type of chemical bond is discovered.

    PubMed

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  16. Accurate Determination of Tunneling-Affected Rate Coefficients: Theory Assessing Experiment.

    PubMed

    Zuo, Junxiang; Xie, Changjian; Guo, Hua; Xie, Daiqian

    2017-07-20

    The thermal rate coefficients of a prototypical bimolecular reaction are determined on an accurate ab initio potential energy surface (PES) using ring polymer molecular dynamics (RPMD). It is shown that quantum effects such as tunneling and zero-point energy (ZPE) are of critical importance for the HCl + OH reaction at low temperatures, while the heavier deuterium substitution renders tunneling less facile in the DCl + OH reaction. The calculated RPMD rate coefficients are in excellent agreement with experimental data for the HCl + OH reaction in the entire temperature range of 200-1000 K, confirming the accuracy of the PES. On the other hand, the RPMD rate coefficients for the DCl + OH reaction agree with some, but not all, experimental values. The self-consistency of the theoretical results thus allows a quality assessment of the experimental data.

  17. Quantum Mechanical Calculations of Monoxides of Silicon Carbide Molecules

    DTIC Science & Technology

    2003-03-01

    Data for CO Final Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -112.6850703739 2.02121 -1 2 DVZ...Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -363.7341927429 0.617643 -1 2 DVZ -363.7114852831 0 3 DVZ...Input Geometry Output Geometry Basis Set Final Energy (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE -1 2 O-C-Si Linear O-C-Si Linear DZV -401.5363

  18. Reliability and energy efficiency of zero energy homes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    2016-09-01

    Photovoltaic (PV) modules and systems are being installed increasingly on residential homes to increase the proportion of renewable energy in the energy mix. The ultimate goal is to attain sustainability without subsidy. The prices of PV modules and systems have declined substantially during the recent years. They will be reduced further to reach grid parity. Additionally the total consumed energy must be reduced by making the homes more energy efficient. FSEC/UCF Researchers have carried out research on development of PV cells and systems and on reducing the energy consumption in homes and by small businesses. Additionally, they have provided guidance on PV module and system installation and to make the homes energy efficient. The produced energy is fed into the utility grid and the consumed energy is obtained from the utility grid, thus the grid is assisting in the storage. Currently the State of Florida permits net metering leading to equal charge for the produced and consumed electricity. This paper describes the installation of 5.29 KW crystalline silicon PV system on a south-facing tilt at approximately latitude tilt on a single-story, three-bedroom house. It also describes the computer program on Building Energy Efficiency and the processes that were employed for reducing the energy consumption of the house by improving the insulation, air circulation and windows, etc. Finally it describes actual consumption and production of electricity and the installation of additional crystalline silicon PV modules and balance of system to make it a zero energy home.

  19. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Mazzuca, James W.; Haut, Nathaniel K.

    2018-06-01

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  20. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes.

    PubMed

    Mazzuca, James W; Haut, Nathaniel K

    2018-06-14

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  1. Design and optimization of zero-energy-consumption based solar energy residential building systems

    NASA Astrophysics Data System (ADS)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  2. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A o...

  3. Net Zero Energy Manufactured Homes May Be on their Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbride, Theresa L.; Dentz, Jordan

    This article, published in Home Energy Magazine, describes a research project sponsored by the U.S. Department of Energy's Building America program, to construct and test the first manufactured home in the United States built to the performance criteria of DOE's Zero Energy Ready Home program. A 15-month study was conducted to compare the real-world performance of the DOE Zero Energy Ready home and two other manufactured homes - one built to just above industry standard construction and one built to the ENERGY STAR Certified Home criteria. The homes were built by Clayton Homes' Southern Energy Division and testing was sponsoredmore » by DOE's Building America program and conducted by the Levy Partnership. The DOE ZERH had increased initial construction costs of $6,607 compared to the standard home versus $4,340 for the ENERGY STAR home but reduced energy bills by $50 per month compared to a $33/month savings for the ENERGY STAR home, and monthly savings will continue for the life of the home. Savings were especially noticeable in the summer in this cooling-dominated test location. The DOE ZERH cut cooling costs in half compared to the ENERGY STAR home which performed only slightly better than the standard home in summer, while winter savings between the two advanced homes were more similar. Two technology advances were tested in the DOE ZERH home. Instead of the typical ducted heating and cooling system, the DOE ZERH home was equipped with a ductless heat pump; to condition the bedroom, holes were cut into bedroom walls and small fans were installed to pull air into those rooms, while door undercuts and transfer grilles provide return paths. A novel dense-pack attic insulation was also implemented.« less

  4. DFT studies on the mechanism of the reaction of C2H5S with NO2

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun

    The mechanisms for the reaction of C2H5S with NO2 are investigated at the QCISD(T)/6-311++G(d, p)//B3LYP/6-311++G(d, p) level on both single and triple potential energy surfaces. The geometries, vibrational frequencies and zero-point energy (ZPE) corrections of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d, p) level. The results show that the reaction is more predominant on the single potential energy surface, while it is negligible on the triple potential energy surface. Without barrier height in the whole process, the major channel is R ? C2H5SONO (IM1 and IM2) ? P1 (C2H5SO+NO). With much heat released in the formation of C2H5SNO2 (IM3) and the transition state involved in the subsequent step more stable than reactants, P4 (CH3CHS + t-HONO) is subdominant product energetically.

  5. DOE Zero Energy Ready Home Case Study: Palo Duro Homes — Palo Duro Homes, Albuquerque, NM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-09-01

    This builder was honored for Most DOE Zero Energy Ready Homes Built in the 2014 Housing Innovation Awards. By July 2014, Palo Duro had completed 152 homes since the program began in 2013 (under the original program title DOE Challenge Home), all of them certified to the stringent efficiency requirements of DOE’s Zero Energy Ready Home program.

  6. Zero-point corrections for isotropic coupling constants for cyclohexadienyl radical, C₆H₇ and C₆H₆Mu: beyond the bond length change approximation.

    PubMed

    Hudson, Bruce S; Chafetz, Suzanne K

    2013-04-25

    Zero-point vibrational level averaging for electron spin resonance (ESR) and muon spin resonance (µSR) hyperfine coupling constants (HFCCs) are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on ¹³C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C₆H₇, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH₂ of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0), can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.

  7. Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.

    PubMed

    Doggen, E V H; Kinnunen, J J

    2013-07-12

    We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.

  8. Computation of deuterium isotope perturbation of 13C NMR chemical shifts of alkanes: a local mode zero-point level approach.

    PubMed

    Yang, Kin S; Hudson, Bruce

    2010-11-25

    Replacement of H by D perturbs the (13)C NMR chemical shifts of an alkane molecule. This effect is largest for the carbon to which the D is attached, diminishing rapidly with intervening bonds. The effect is sensitive to stereochemistry and is large enough to be measured reliably. A simple model based on the ground (zero point) vibrational level and treating only the C-H(D) degrees of freedom (local mode approach) is presented. The change in CH bond length with H/D substitution as well as the reduction in the range of the zero-point level probability distribution for the stretch and both bend degrees of freedom are computed. The (13)C NMR chemical shifts are computed with variation in these three degrees of freedom, and the results are averaged with respect to the H and D distribution functions. The resulting differences in the zero-point averaged chemical shifts are compared with experimental values of the H/D shifts for a series of cycloalkanes, norbornane, adamantane, and protoadamantane. Agreement is generally very good. The remaining differences are discussed. The proton spectrum of cyclohexane- is revisited and updated with improved agreement with experiment.

  9. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  10. Toward an interstellar mission: Zeroing in on the zero-point-field inertia resonance

    NASA Astrophysics Data System (ADS)

    Haisch, Bernhard; Rueda, Alfonso

    2000-01-01

    While still an admittedly remote possibility, the concept of an interstellar mission has become a legitimate topic for scientific discussion as evidenced by several recent NASA activities and programs. One approach is to extrapolate present-day technologies by orders of magnitude; the other is to find new regimes in physics and to search for possible new laws of physics. Recent work on the zero-point field (ZPF), or electromagnetic quantum vacuum, is promising in regard to the latter, especially concerning the possibility that the inertia of matter may, at least in part, be attributed to interaction between the quarks and electrons in matter and the ZPF. A NASA-funded study (independent of the BPP program) of this concept has been underway since 1996 at the Lockheed Martin Advanced Technology Center in Palo Alto and the California State University at Long Beach. We report on a new development resulting from this effort: that for the specific case of the electron, a resonance for the inertia-generating process at the Compton frequency would simultaneously explain both the inertial mass of the electron and the de Broglie wavelength of a moving electron as first measured by Davisson and Germer in 1927. This line of investigation is leading to very suggestive connections between electrodynamics, inertia, gravitation and the wave nature of matter. .

  11. Zero-field quantum critical point in Ce0.91Yb0.09CoIn5

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Adhikari, R. B.; Haney, D. J.; White, B. D.; Maple, M. B.; Dzero, M.; Almasan, C. C.

    2018-05-01

    We present results of specific heat, electrical resistance, and magnetoresistivity measurements on single crystals of the heavy-fermion superconducting alloy Ce0.91Yb0.09CoIn5 . Non-Fermi-liquid to Fermi-liquid crossovers are clearly observed in the temperature dependence of the Sommerfeld coefficient γ and resistivity data. Furthermore, we show that the Yb-doped sample with x =0.09 exhibits universality due to an underlying quantum phase transition without an applied magnetic field by utilizing the scaling analysis of γ . Fitting of the heat capacity and resistivity data based on existing theoretical models indicates that the zero-field quantum critical point is of antiferromagnetic origin. Finally, we found that at zero magnetic field the system undergoes a third-order phase transition at the temperature Tc 3≈7 K.

  12. Technology Solutions Case Study: Southern Energy Homes, First DOE Zero Energy Ready Manufactured Home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The country’s first Zero Energy Ready manufactured home that is certified by the U.S. Department of Energy (DOE) is up and running in Russellville, Alabama. The manufactured home was built by a partnership between Southern Energy Homes and the Advanced Residential Integrated Energy Solutions Collaborative (ARIES), which is a DOE Building America team. The effort was part of a three-home study including a standard-code manufactured home and an ENERGY STAR® manufactured home. Cooling-season results showed that the building used half the space-conditioning energy of a manufactured home built to the U.S. Department of Housing and Urban Development’s (HUD’s) Manufactured Homemore » Construction and Safety Standards. These standards are known collectively as the HUD Code, which is the building standard for all U.S. manufactured housing.« less

  13. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  14. Transformations, Inc.: Partnering to Build Net-Zero Energy Houses in Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ('Devens'), The Homes at Easthampton Meadow ('Easthampton') andPhase II of the Coppersmith Way Development ('Townsend'). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers tomore » specific research questions for homes with high R double stud walls and high efficiency ductlessair source heat pump systems ('mini-splits'); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less

  15. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answersmore » to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less

  16. Successfully Implementing Net-Zero Energy Policy through the Air Force Military Construction Program

    DTIC Science & Technology

    2013-03-01

    Meets Does not meet Does not meet Meets Renewable Farms Meets Meets Meets Meets On-Site (Distributed Generation) Meets* Meets* Meets Meets...independence, nor does it allow for net-zero energy installations. Developing centralized renewable energy farms is another method for obtaining...combination of centralized renewable energy farms and distributed generation methods. The specific combination of methods an installation will utilize

  17. Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters

    NASA Astrophysics Data System (ADS)

    Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid

    2014-04-01

    We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.

  18. The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases.

    PubMed

    Healy, Thomas W; Fuerstenau, Douglas W

    2007-05-01

    From our previous work on the role of the electrostatic field strength in controlling the pH of the iso-electric point (iep)/point-of-zero-charge (pzc) of polar solids we have extended the analysis to predict that the pH of the iep/pzc of a nonpolar solid, liquid or gas-aqueous interface should occur at pH 1.0-3.0, dependent on the value assigned to water molecules or clusters at the interface. Consideration of a wide range of experimental results covering nonpolar solids such as molybdenite, stibnite, paraffin, etc. as well as hydrocarbon liquids such as xylene, decalin, and long chain (>C8) alkane oils, as well as nitrogen and hydrogen gases, all in various simple 1:1 electrolyte solutions confirm the general validity of the result. We further consider various models of the origin of the charge on nonpolar material-water interfaces.

  19. A ring polymer molecular dynamics study of the isotopologues of the H + H2 reaction.

    PubMed

    Suleimanov, Yury V; de Tudela, Ricardo Pérez; Jambrina, Pablo G; Castillo, Jesús F; Sáez-Rábanos, Vicente; Manolopoulos, David E; Aoiz, F Javier

    2013-03-14

    The inclusion of Quantum Mechanical (QM) effects such as zero point energy (ZPE) and tunneling in simulations of chemical reactions, especially in the case of light atom transfer, is an important problem in computational chemistry. In this respect, the hydrogen exchange reaction and its isotopic variants constitute an excellent benchmark for the assessment of approximate QM methods. In particular, the recently developed ring polymer molecular dynamics (RPMD) technique has been demonstrated to give very good results for bimolecular chemical reactions in the gas phase. In this work, we have performed a detailed RPMD study of the H + H(2) reaction and its isotopologues Mu + H(2), D + H(2) and Heμ + H(2), at temperatures ranging from 200 to 1000 K. Thermal rate coefficients and kinetic isotope effects have been computed and compared with exact QM calculations as well as with quasiclassical trajectories and experiment. The agreement with the QM results is good for the heaviest isotopologues, with errors ranging from 15% to 45%, and excellent for Mu + H(2), with errors below 15%. We have seen that RPMD is able to capture the ZPE effect very accurately, a desirable feature of any method based on molecular dynamics. We have also verified Richardson and Althorpe's prediction [J. O. Richardson and S. C. Althorpe, J. Chem. Phys., 2009, 131, 214106] that RPMD will overestimate thermal rates for asymmetric reactions and underestimate them for symmetric reactions in the deep tunneling regime. The ZPE effect along the reaction coordinate must be taken into account when assigning the reaction symmetry in the multidimensional case.

  20. Dynamics of System of Systems and Applications to Net Zero Energy Facilities

    DTIC Science & Technology

    2017-10-05

    collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10

  1. U.S. Department of Energy Zero Energy Ready Home Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothgeb, Stacey K; Schirber, T.; Mosiman, G.

    The intention of this project is to assist home builders in the upper Midwest in achieving DOE Zero Energy Ready Home program certification, and to document the process and outcomes involved in meeting this rigorous standard. NorthernSTAR, in conjunction with our program partner Building Knowledge, Inc., provided technical support to the builders during the design and construction process. At the time of this publication, four qualifying homes have been completed and an additional three are currently under construction to be completed later this year. Three additional homes were excluded from certification due to the HVAC contractor not completing their requiredmore » credentialing until after completion of the homes, though the energy performance would have otherwise qualified the homes for program certification. Both Amaris Homes and Cobblestone Homes note that participation in the ZERH program provides them with competitive advantage in the market place at reasonable construction costs that also result in extremely satisfied clients who are willing to recommend the builders to friends and family.« less

  2. Quantum principle of sensing gravitational waves: From the zero-point fluctuations to the cosmological stochastic background of spacetime

    NASA Astrophysics Data System (ADS)

    Quiñones, Diego A.; Oniga, Teodora; Varcoe, Benjamin T. H.; Wang, Charles H.-T.

    2017-08-01

    We carry out a theoretical investigation on the collective dynamics of an ensemble of correlated atoms, subject to both vacuum fluctuations of spacetime and stochastic gravitational waves. A general approach is taken with the derivation of a quantum master equation capable of describing arbitrary confined nonrelativistic matter systems in an open quantum gravitational environment. It enables us to relate the spectral function for gravitational waves and the distribution function for quantum gravitational fluctuations and to indeed introduce a new spectral function for the zero-point fluctuations of spacetime. The formulation is applied to two-level identical bosonic atoms in an off-resonant high-Q cavity that effectively inhibits undesirable electromagnetic delays, leading to a gravitational transition mechanism through certain quadrupole moment operators. The overall relaxation rate before reaching equilibrium is found to generally scale collectively with the number N of atoms. However, we are also able to identify certain states of which the decay and excitation rates with stochastic gravitational waves and vacuum spacetime fluctuations amplify more significantly with a factor of N2. Using such favorable states as a means of measuring both conventional stochastic gravitational waves and novel zero-point spacetime fluctuations, we determine the theoretical lower bounds for the respective spectral functions. Finally, we discuss the implications of our findings on future observations of gravitational waves of a wider spectral window than currently accessible. Especially, the possible sensing of the zero-point fluctuations of spacetime could provide an opportunity to generate initial evidence and further guidance of quantum gravity.

  3. Zero kinetic energy photoelectron spectroscopy of triphenylene.

    PubMed

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-28

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S1 of the neutral molecule is of A1' symmetry and is therefore electric dipole forbidden in the D3h group. Consequently, there are no observable Franck-Condon allowed totally symmetric a1' vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E' third electronically excited state S3. The assignment of all vibrational bands as e' symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C2v and resulting in two nearly degenerate electronic states of A2 and B1 symmetry. Here we follow a crude treatment by assuming that all e' vibrational modes resolve into b2 and a1 modes in the C2v molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm(-1). The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  4. Isoelectric points and points of zero charge of metal (hydr)oxides: 50years after Parks' review.

    PubMed

    Kosmulski, Marek

    2016-12-01

    The pH-dependent surface charging of metal (hydr)oxides is reviewed on the occasion of the 50th anniversary of the publication by G.A. Parks: "Isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems" in Chemical Reviews. The point of zero charge (PZC) and isoelectric point (IEP) became standard parameters to characterize metal oxides in aqueous dispersions, and they define adsorption (surface excess) of ions, stability against coagulation, rheological properties of dispersions, etc. They are commonly used in many branches of science including mineral processing, soil science, materials science, geochemistry, environmental engineering, and corrosion science. Parks established standard procedures and experimental conditions which are required to obtain reliable and reproducible values of PZC and IEP. The field is very active, and the number of related papers exceeds 300 a year, and the standards established by Parks remain still valid. Relevant experimental techniques improved over the years, especially the measurements of electrophoretic mobility became easier and more reliable, are the numerical values of PZC and IEP compiled by Parks were confirmed by contemporary publications with a few exceptions. The present paper is an up-to-date compilation of the values of PZC and IEP of metal oxides. Unlike in former reviews by the same author, which were more comprehensive, only limited number of selected results are presented and discussed here. On top of the results obtained by means of classical methods (titration and electrokinetic methods), new methods and correlations found over the recent 50years are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.

  6. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2006-11-01

    development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.« less

  7. Vibrational spectroscopy of (SO4(2-)).(H2O)n clusters, n=1-5: harmonic and anharmonic calculations and experiment.

    PubMed

    Miller, Yifat; Chaban, Galina M; Zhou, Jia; Asmis, Knut R; Neumark, Daniel M; Gerber, R Benny

    2007-09-07

    The vibrational spectroscopy of (SO4(2-)).(H2O)n is studied by theoretical calculations for n=1-5, and the results are compared with experiments for n=3-5. The calculations use both ab initio MP2 and DFT/B3LYP potential energy surfaces. Both harmonic and anharmonic calculations are reported, the latter with the CC-VSCF method. The main findings are the following: (1) With one exception (H2O bending mode), the anharmonicity of the observed transitions, all in the experimental window of 540-1850 cm(-1), is negligible. The computed anharmonic coupling suggests that intramolecular vibrational redistribution does not play any role for the observed linewidths. (2) Comparison with experiment at the harmonic level of computed fundamental frequencies indicates that MP2 is significantly more accurate than DFT/B3LYP for these systems. (3) Strong anharmonic effects are, however, calculated for numerous transitions of these systems, which are outside the present observation window. These include fundamentals as well as combination modes. (4) Combination modes for the n=1 and n=2 clusters are computed. Several relatively strong combination transitions are predicted. These show strong anharmonic effects. (5) An interesting effect of the zero point energy (ZPE) on structure is found for (SO4(2-)).(H2O)(5): The global minimum of the potential energy corresponds to a C(s) structure, but with incorporation of ZPE the lowest energy structure is C2v, in accordance with experiment. (6) No stable structures were found for (OH-).(HSO4-).(H2O)n, for n

  8. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Jarlborg, Thomas

    2015-11-01

    Emerets's experiments on pressurized sulfur hydride have shown that H3S metal has the highest known superconducting critical temperature Tc = 203 K. The Emerets data show pressure induced changes of the isotope coefficient between 0.25 and 0.5, in disagreement with Eliashberg theory which predicts a nearly constant isotope coefficient.We assign the pressure dependent isotope coefficient to Lifshitz transitions induced by pressure and zero point lattice fluctuations. It is known that pressure could induce changes of the topology of the Fermi surface, called Lifshitz transitions, but were neglected in previous papers on the H3S superconductivity issue. Here we propose thatH3S is a multi-gap superconductor with a first condensate in the BCS regime (located in the large Fermi surface with high Fermi energy) which coexists with second condensates in the BCS-BEC crossover regime (located on the Fermi surface spots with small Fermi energy) near the and Mpoints.We discuss the Bianconi-Perali-Valletta (BPV) superconductivity theory to understand superconductivity in H3S since the BPV theory includes the corrections of the chemical potential due to pairing and the configuration interaction between different condensates, neglected by the Eliashberg theory. These two terms in the BPV theory give the shape resonance in superconducting gaps, similar to Feshbach resonance in ultracold fermionic gases, which is known to amplify the critical temperature. Therefore this work provides some key tools useful in the search for new room temperature superconductors.

  9. Three-part joint modeling methods for complex functional data mixed with zero-and-one-inflated proportions and zero-inflated continuous outcomes with skewness.

    PubMed

    Li, Haocheng; Staudenmayer, John; Wang, Tianying; Keadle, Sarah Kozey; Carroll, Raymond J

    2018-02-20

    We take a functional data approach to longitudinal studies with complex bivariate outcomes. This work is motivated by data from a physical activity study that measured 2 responses over time in 5-minute intervals. One response is the proportion of time active in each interval, a continuous proportions with excess zeros and ones. The other response, energy expenditure rate in the interval, is a continuous variable with excess zeros and skewness. This outcome is complex because there are 3 possible activity patterns in each interval (inactive, partially active, and completely active), and those patterns, which are observed, induce both nonrandom and random associations between the responses. More specifically, the inactive pattern requires a zero value in both the proportion for active behavior and the energy expenditure rate; a partially active pattern means that the proportion of activity is strictly between zero and one and that the energy expenditure rate is greater than zero and likely to be moderate, and the completely active pattern means that the proportion of activity is exactly one, and the energy expenditure rate is greater than zero and likely to be higher. To address these challenges, we propose a 3-part functional data joint modeling approach. The first part is a continuation-ratio model to reorder the ordinal valued 3 activity patterns. The second part models the proportions when they are in interval (0,1). The last component specifies the skewed continuous energy expenditure rate with Box-Cox transformations when they are greater than zero. In this 3-part model, the regression structures are specified as smooth curves measured at various time points with random effects that have a correlation structure. The smoothed random curves for each variable are summarized using a few important principal components, and the association of the 3 longitudinal components is modeled through the association of the principal component scores. The difficulties in

  10. Efficient hydrogen isotopologues separation through a tunable potential barrier: The case of a C2N membrane.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-05-03

    Isotopes separation through quantum sieving effect of membranes is quite promising for industrial applications. For the light hydrogen isotopologues (eg. H 2 , D 2 ), the confinement of potential wells in porous membranes to isotopologues was commonly regarded to be crucial for highly efficient separation ability. Here, we demonstrate from first-principles that a potential barrier is also favorable for efficient hydrogen isotopologues separation. Taking an already-synthesized two-dimensional carbon nitride (C 2 N-h2D) as an example, we predict that the competition between quantum tunneling and zero-point-energy (ZPE) effects regulated by the tensile strain leads to high selectivity and permeance. Both kinetic quantum sieving and equilibrium quantum sieving effects are considered. The quantum effects revealed in this work offer a prospective strategy for highly efficient hydrogen isotopologues separation.

  11. Net Zero Fort Carson: Integrating Energy, Water, and Waste Strategies to Lower the Environmental Impact of a Military Base

    EPA Science Inventory

    Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net z...

  12. Resonant paramagnetic enhancement of the thermal and zero-point Nyquist noise

    NASA Astrophysics Data System (ADS)

    França, H. M.; Santos, R. B. B.

    1999-01-01

    The interaction between a very thin macroscopic solenoid, and a single magnetic particle precessing in a external magnetic field B0, is described by taking into account the thermal and the zero-point fluctuations of stochastic electrodynamics. The inductor belongs to a RLC circuit without batteries and the random motion of the magnetic dipole generates in the solenoid a fluctuating current Idip( t), and a fluctuating voltage εdip( t), with spectral distribution quite different from the Nyquist noise. We show that the mean square value < Idip2> presents an enormous variation when the frequency of precession approaches the frequency of the circuit, but it is still much smaller than the Nyquist current in the circuit. However, we also show that < Idip2> can reach measurable values if the inductor is interacting with a macroscopic sample of magnetic particles (atoms or nuclei) which are close enough to its coils.

  13. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  14. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach

    PubMed Central

    Kneifel, Joshua; Webb, David

    2016-01-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  15. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach.

    PubMed

    Kneifel, Joshua; Webb, David

    2016-09-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  16. Phonon self-energy corrections to non-zero wavevector phonon modes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Araujo, Paulo; Mafra, Daniela; Sato, Kentaro; Saito, Richiiro; Kong, Jing; Dresselhaus, Mildred

    2012-02-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G'-band features originating from a double-resonant Raman process with q 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with non-zero wave-vectors (q 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.

  17. Overcharging and charge reversal in the electrical double layer around the point of zero charge.

    PubMed

    Guerrero-García, G Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Lozada-Cassou, Marcelo

    2010-02-07

    The ionic adsorption around a weakly charged spherical colloid, immersed in size-asymmetric 1:1 and 2:2 salts, is studied. We use the primitive model (PM) of an electrolyte to perform Monte Carlo simulations as well as theoretical calculations by means of the hypernetted chain/mean spherical approximation (HNC/MSA) and the unequal-radius modified Gouy-Chapman (URMGC) integral equations. Structural quantities such as the radial distribution functions, the integrated charge, and the mean electrostatic potential are reported. Our Monte Carlo "experiments" evidence that near the point of zero charge, the smallest ionic species is preferentially adsorbed onto the macroparticle, independently of the sign of the charge carried by this tiniest electrolytic component, giving rise to the appearance of the phenomena of charge reversal (CR) and overcharging (OC). Accordingly, colloidal CR, due to an excessive attachment of counterions, is observed when the macroion is slightly charged and the coions are larger than the counterions. In the opposite situation, i.e., if the counterions are larger than the coions, the central macroion acquires additional like-charge (coions) and hence becomes "overcharged," a feature theoretically predicted in the past [F. Jiménez-Angeles and M. Lozada-Cassou, J. Phys. Chem. B 108, 7286 (2004)]. In other words, here we present the first simulation data on OC in the PM electrical double layer, showing that close to the point of zero charge, this novel effect surges as a consequence of the ionic size asymmetry. We also find that the HNC/MSA theory captures well the CR and OC phenomena exhibited by the computer experiments, especially as the macroion's charge increases. On the contrary, even if URMGC also displays CR and OC, its predictions do not compare favorably with the Monte Carlo data, evidencing that the inclusion of hard-core correlations in Monte Carlo and HNC/MSA enhances and extends those effects. We explain our findings in terms of the

  18. A theoretical study of hydrogen complexes of the XH-pi type between propyne and HF, HCL or HCN.

    PubMed

    Tavares, Alessandra M; da Silva, Washington L V; Lopes, Kelson C; Ventura, Elizete; Araújo, Regiane C M U; do Monte, Silmar A; da Silva, João Bosco P; Ramos, Mozart N

    2006-05-15

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (pi type) complexes formed by propyne and a HX molecule, where X=F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RCtriple bondC and HX bond lengths. As compared to double-zeta (6-31G**), triple-zeta (6-311G**) basis set leads to an increase of RCtriple bondC bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, DeltaE: propynecdots, three dots, centeredHF>propynecdots, three dots, centeredHCl>propynecdots, three dots, centeredHCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on DeltaE. The smaller effect of ZPE is obtained for propynecdots, three dots, centeredHCN at HF/6-311++G** level, while the greatest difference is obtained at MP2/6-31G** level for propynecdots, three dots, centeredHF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for HX stretching frequency, which is shifted downward.

  19. A theoretical study of hydrogen complexes of the X sbnd H-π type between propyne and HF, HCL or HCN

    NASA Astrophysics Data System (ADS)

    Tavares, Alessandra M.; da Silva, Washington L. V.; Lopes, Kelson C.; Ventura, Elizete; Araújo, Regiane C. M. U.; do Monte, Silmar A.; da Silva, João Bosco P.; Ramos, Mozart N.

    2006-05-01

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (π type) complexes formed by propyne and a HX molecule, where X = F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RC tbnd C and HX bond lengths. As compared to double-ζ (6-31G **), triple-ζ (6-311G **) basis set leads to an increase of RC tbnd C bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, Δ E: propyne⋯HF > propyne⋯HCl > propyne⋯HCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on Δ E. The smaller effect of ZPE is obtained for propyne⋯HCN at HF/6-311++G ** level, while the greatest difference is obtained at MP2/6-31G ** level for propyne⋯HF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for H sbnd X stretching frequency, which is shifted downward.

  20. Motorizing fibres with geometric zero-energy modes

    NASA Astrophysics Data System (ADS)

    Baumann, Arthur; Sánchez-Ferrer, Antoni; Jacomine, Leandro; Martinoty, Philippe; Le Houerou, Vincent; Ziebert, Falko; Kulić, Igor M.

    2018-06-01

    Responsive materials1-3 have been used to generate structures with built-in complex geometries4-6, linear actuators7-9 and microswimmers10-12. These results suggest that complex, fully functional machines composed solely from shape-changing materials might be possible13. Nonetheless, to accomplish rotary motion in these materials still relies on the classical wheel and axle motifs. Here we explore geometric zero-energy modes to elicit rotary motion in elastic materials in the absence of a rigid wheel travelling around an axle. We show that prestrained polymer fibres closed into rings exhibit self-actuation and continuous motion when placed between two heat baths due to elastic deformations that arise from rotational-symmetry breaking around the rod's axis. Our findings illustrate a simple but robust model to create active motion in mechanically prestrained objects.

  1. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  2. Zero Energy Is an A+ for Education: Discovery Elementary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    Currently experiencing a population boom, Arlington County is facing massive growth in the next decade and is seeking to add half a million square feet in educational facilities. During competitive design procurement, one of the teams suggested a zero energy goal could be accomplished within the given budget. Proponents at the district level who had been championing energy efficiency were receptive because sustainability was a core value of the project from the start, but they were skeptical that it could be done within the budget aimed at LEED Silver. Not only did the project end up coming under budget, includingmore » the solar array, but the building is more efficient than the originally predicted. Now Discovery saves $100,000 per year in utility costs, enough to cover the salaries of two teachers.« less

  3. Zero-moment point determination of worst-case manoeuvres leading to vehicle wheel lift

    NASA Astrophysics Data System (ADS)

    Lapapong, S.; Brown, A. A.; Swanson, K. S.; Brennan, S. N.

    2012-01-01

    This paper proposes a method to evaluate vehicle rollover propensity based on a frequency-domain representation of the zero-moment point (ZMP). Unlike other rollover metrics such as the static stability factor, which is based on the steady-state behaviour, and the load transfer ratio, which requires the calculation of tyre forces, the ZMP is based on a simplified kinematic model of the vehicle and the analysis of the contact point of the vehicle relative to the edge of the support polygon. Previous work has validated the use of the ZMP experimentally in its ability to predict wheel lift in the time domain. This work explores the use of the ZMP in the frequency domain to allow a chassis designer to understand how operating conditions and vehicle parameters affect rollover propensity. The ZMP analysis is then extended to calculate worst-case sinusoidal manoeuvres that lead to untripped wheel lift, and the analysis is tested across several vehicle configurations and compared with that of the standard Toyota J manoeuvre.

  4. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    NASA Astrophysics Data System (ADS)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  5. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  6. DOE Zero Energy Ready Home Case Study: Cobblestone Homes — 2014 Model Home, Midland, MI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-09-01

    This builder's first DOE Zero Energy Ready Home won a Custom Builder award in the 2014 Housing Innovation Awards, scored HERS 49 without PV or HERS 44 with 1.4 kW of PV, and served as a prototype and energy efficiency demonstration model while performance testing was conducted.

  7. Zero-mode waveguides

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2007-02-20

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  8. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  9. Analysis on Zero Energy Consumption Strategy for Office Buildings Lighting in Lianyungang Area

    NASA Astrophysics Data System (ADS)

    Wu, Dongmei

    2018-01-01

    In recent years, the energy-saving environmental protection has aroused the people’s high concern, and set off a new application practice in China. By analyzing the advantages of the illumination condition in Lianyungang area and combining the content and form of office space, the author puts forward a series of ways and means of energy saving in office building lighting, in order to provide a way for reference to the goal of building Zero energy consumption in the office space environment under the background of green architecture.

  10. DOE Zero Energy Ready Home Case Study: Thrive Home Builders, Lowry Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Thrive Home Builders built this 4,119-ft2 home at the Lowry development in Denver, Colorado, to the high-performance criteria of the U.S. Department of Energy’s Zero Energy Ready Home Program. Despite the dense positioning of the homes, mono-plane roof designs afforded plenty of space for the 8.68 kW of photovoltaic panels. With the PV, the home achieves a Home Energy Rating System (HERS) score of 4 and the home owners should enjoy energy bills of about $-11 a year. Without the PV, the home would score a HERS 38 (far lower than the HERS 80 to 100 of typical new homes).

  11. New Whole-House Solutions Case Study: Tommy Williams Homes Initial Performance of Two Zero Energy Homes, Gainesville, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2011-11-01

    Tommy Williams Homes worked with PNNL, Florida HERO, Energy Smart Home Plans, and Florida Solar Energy Center to design and test two zero energy homes. Energy use was 30% lower in one home and 60% lower in the other.

  12. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2007-05-01

    development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In

  13. Vibrational spectroscopy of (SO42-).(H2O)n clusters, n=1-5: Harmonic and anharmonic calculations and experiment

    NASA Astrophysics Data System (ADS)

    Miller, Yifat; Chaban, Galina M.; Zhou, Jia; Asmis, Knut R.; Neumark, Daniel M.; Benny Gerber, R.

    2007-09-01

    The vibrational spectroscopy of (SO42-)•(H2O)n is studied by theoretical calculations for n =1-5, and the results are compared with experiments for n =3-5. The calculations use both ab initio MP2 and DFT/B3LYP potential energy surfaces. Both harmonic and anharmonic calculations are reported, the latter with the CC-VSCF method. The main findings are the following: (1) With one exception (H2O bending mode), the anharmonicity of the observed transitions, all in the experimental window of 540-1850cm-1, is negligible. The computed anharmonic coupling suggests that intramolecular vibrational redistribution does not play any role for the observed linewidths. (2) Comparison with experiment at the harmonic level of computed fundamental frequencies indicates that MP2 is significantly more accurate than DFT/B3LYP for these systems. (3) Strong anharmonic effects are, however, calculated for numerous transitions of these systems, which are outside the present observation window. These include fundamentals as well as combination modes. (4) Combination modes for the n=1 and n =2 clusters are computed. Several relatively strong combination transitions are predicted. These show strong anharmonic effects. (5) An interesting effect of the zero point energy (ZPE) on structure is found for (SO42-)•(H2O)5: The global minimum of the potential energy corresponds to a Cs structure, but with incorporation of ZPE the lowest energy structure is C2v, in accordance with experiment. (6) No stable structures were found for (OH-)•(HSO4-)•(H2O)n, for n ⩽5.

  14. Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica

    2008-06-16

    It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the majormore » professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.« less

  15. Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior

    DOE PAGES

    Brambleby, J.; Goddard, P. A.; Singleton, John; ...

    2017-01-05

    We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states andmore » highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.« less

  16. Proper and improper zero energy modes in Hartree-Fock theory and their relevance for symmetry breaking and restoration.

    PubMed

    Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E

    2013-10-21

    We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.

  17. Net Zero Ft. Carson: making a greener Army base

    EPA Science Inventory

    The US Army Net Zero program seeks to reduce the energy, water, and waste footprint of bases. Seventeen pilot bases aim to achieve 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases are pursuing Net Zero in a single secto...

  18. Temperature-dependent transitions between normal and inverse isotope effects pertaining to the interaction of H-H and C-H bonds with transition metal centers.

    PubMed

    Parkin, Gerard

    2009-02-17

    Deuterium kinetic isotope effects (KIEs) serve as versatile tools to infer details about reaction mechanisms and the nature of transition states, while equilibrium isotope effects (EIEs) associated with the site preferences of hydrogen and deuterium enable researchers to study aspects of molecular structure. Researchers typically interpret primary deuterium isotope effects based on two simple guidelines: (i) the KIE for an elementary reaction is normal (k(H)/k(D) > 1) and (ii) the EIE is dictated by deuterium preferring to be located in the site corresponding to the highest frequency oscillator. In this Account, we evaluate the applicability of these rules to the interactions of H-H and C-H bonds with a transition metal center. Significantly, experimental and computational studies question the predictability of primary EIEs in these systems based on the notion that deuterium prefers to occupy the highest frequency oscillator. In particular, the EIEs for (i) formation of sigma-complexes by coordination of H-H and C-H bonds and (ii) oxidative addition of dihydrogen exhibit unusual temperature dependencies, such that the same system may demonstrate both normal (i.e., K(H)/K(D) > 1) and inverse (i.e., K(H)/K(D) < 1) values. The transition between a normal and inverse EIE indicates that these systems do not demonstrate the typical monotonic variation predicted by the van't Hoff relationship. Instead, the calculated EIEs in these systems are 0 at 0 K, increase to a value greater than 1, and then decrease to unity at infinite temperature. This unusual behavior may be rationalized by considering the individual factors that contribute to the EIE. Specifically, the EIE may be expressed in the form EIE = SYM x MMI x EXC x ZPE (where SYM is the symmetry factor, MMI is the mass-moment of inertia term, EXC is the excitation term, and ZPE is the zero-point energy term), and the distinctive temperature profile results from the inverse ZPE (enthalpy) and normal [SYM x MMI x EXC

  19. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.

    PubMed

    D'Agostino, Delia; Parker, Danny

    2018-04-01

    This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.

  20. TOPICAL REVIEW: Experimental study of organic zero-gap conductor α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Tajima, Naoya; Kajita, Koji

    2009-04-01

    A zero-gap state with a Dirac cone type energy dispersion was discovered in the organic conductor α-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first two-dimensional (2D) zero-gap state discovered in bulk crystals with a layered structure. In contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The present system, therefore, provides a new type of massless Dirac fermion system with anisotropic Fermi velocity. This system exhibits remarkable transport phenomena characteristic to electrons on the Dirac cone type energy structure. The carrier density, written as n~T2, is a characteristic feature of the 2D zero-gap structure. On the other hand, the resistivity per layer (sheet resistance RS) is given as RS=h/e2 and is independent of temperature. The effect of a magnetic field on samples in the zero-gap system was examined. The difference between zero-gap conductors and conventional conductors is the appearance of a Landau level called the zero mode at the contact points when a magnetic field is applied normal to the conductive layer. Zero-mode Landau carriers give rise to strong negative out-of-plane magnetoresistance.

  1. Observation of zero-point quantum fluctuations of a single-molecule magnet through the relaxation of its nuclear spin bath.

    PubMed

    Morello, A; Millán, A; de Jongh, L J

    2014-03-21

    A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.

  2. Effect of chiral symmetry on chaotic scattering from Majorana zero modes.

    PubMed

    Schomerus, H; Marciani, M; Beenakker, C W J

    2015-04-24

    In many of the experimental systems that may host Majorana zero modes, a so-called chiral symmetry exists that protects overlapping zero modes from splitting up. This symmetry is operative in a superconducting nanowire that is narrower than the spin-orbit scattering length, and at the Dirac point of a superconductor-topological insulator heterostructure. Here we show that chiral symmetry strongly modifies the dynamical and spectral properties of a chaotic scatterer, even if it binds only a single zero mode. These properties are quantified by the Wigner-Smith time-delay matrix Q=-iℏS^{†}dS/dE, the Hermitian energy derivative of the scattering matrix, related to the density of states by ρ=(2πℏ)^{-1}TrQ. We compute the probability distribution of Q and ρ, dependent on the number ν of Majorana zero modes, in the chiral ensembles of random-matrix theory. Chiral symmetry is essential for a significant ν dependence.

  3. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li+-benzene

    NASA Astrophysics Data System (ADS)

    D'Arcy, Jordan H.; Kolmann, Stephen J.; Jordan, Meredith J. T.

    2015-08-01

    Quantum and anharmonic effects are investigated in (H2)2-Li+-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H2 molecule to the H2-Li+-benzene complex increases the ZPE of the system by 5.6 kJ mol-1 to 17.6 kJ mol-1. This ZPE is 42% of the total electronic binding energy of (H2)2-Li+-benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H2 to H2-Li+-benzene is 7.7 kJ mol-1, compared to 12.4 kJ mol-1 for the first H2 molecule. Anharmonicity is found to be even more important when a second (and subsequent) H2 molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H2 molecules are found at larger distance from the Li+ ion and are more confined in the θ coordinate than in H2-Li+-benzene. They also show that both H2 molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H2 molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H2)2-Li+-benzene PESs are developed. These use a modified Shepard interpolation for the Li+-benzene and H2-Li+-benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H2-H2 interaction. Because of the neglect of three-body H2, H2, Li+ terms, both fragment PESs lead to overbinding of the second H2 molecule by 1.5 kJ mol-1. Probability density histograms, however, indicate that the wavefunctions for the two H2 molecules are effectively identical on the "full" and fragment PESs. This suggests that the 1.5 kJ mol-1 error is

  4. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li(+)-benzene.

    PubMed

    D'Arcy, Jordan H; Kolmann, Stephen J; Jordan, Meredith J T

    2015-08-21

    Quantum and anharmonic effects are investigated in (H2)2-Li(+)-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H2 molecule to the H2-Li(+)-benzene complex increases the ZPE of the system by 5.6 kJ mol(-1) to 17.6 kJ mol(-1). This ZPE is 42% of the total electronic binding energy of (H2)2-Li(+)-benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H2 to H2-Li(+)-benzene is 7.7 kJ mol(-1), compared to 12.4 kJ mol(-1) for the first H2 molecule. Anharmonicity is found to be even more important when a second (and subsequent) H2 molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H2 molecules are found at larger distance from the Li(+) ion and are more confined in the θ coordinate than in H2-Li(+)-benzene. They also show that both H2 molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H2 molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H2)2-Li(+)-benzene PESs are developed. These use a modified Shepard interpolation for the Li(+)-benzene and H2-Li(+)-benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H2-H2 interaction. Because of the neglect of three-body H2, H2, Li(+) terms, both fragment PESs lead to overbinding of the second H2 molecule by 1.5 kJ mol(-1). Probability density histograms, however, indicate that the wavefunctions for the two H2 molecules are effectively identical on the "full" and fragment PESs. This suggests that

  5. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: energetics, occupancy, and vibrationally averaged cluster structures.

    PubMed

    Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko

    2008-12-28

    We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H(2) (p-H(2)) and ortho-D(2) (o-D(2)) molecules inside the large hexakaidecahedral (5(12)6(4)) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H(2))(n) and (o-D(2))(n) clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H(2))(4). At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H(2) or D(2) molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D(2) molecules, their mean distance from the cage center, the D(2)-D(2) separation, and the specific orientation and localization of the tetrahedral (D(2))(4) cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D(2) occupancy.

  6. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures

    NASA Astrophysics Data System (ADS)

    Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko

    2008-12-01

    We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.

  7. A Genuine Jahn-Teller System with Compressed Geometry and Quantum Effects Originating from Zero-Point Motion.

    PubMed

    Aramburu, José Antonio; García-Fernández, Pablo; García-Lastra, Juan María; Moreno, Miguel

    2016-07-18

    First-principle calculations together with analysis of the experimental data found for 3d(9) and 3d(7) ions in cubic oxides proved that the center found in irradiated CaO:Ni(2+) corresponds to Ni(+) under a static Jahn-Teller effect displaying a compressed equilibrium geometry. It was also shown that the anomalous positive g∥ shift (g∥ -g0 =0.065) measured at T=20 K obeys the superposition of the |3 z(2) -r(2) ⟩ and |x(2) -y(2) ⟩ states driven by quantum effects associated with the zero-point motion, a mechanism first put forward by O'Brien for static Jahn-Teller systems and later extended by Ham to the dynamic Jahn-Teller case. To our knowledge, this is the first genuine Jahn-Teller system (i.e. in which exact degeneracy exists at the high-symmetry configuration) exhibiting a compressed equilibrium geometry for which large quantum effects allow experimental observation of the effect predicted by O'Brien. Analysis of the calculated energy barriers for different Jahn-Teller systems allowed us to explain the origin of the compressed geometry observed for CaO:Ni(+) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Zero curvature-surface driven small objects

    NASA Astrophysics Data System (ADS)

    Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin

    2017-08-01

    In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.

  9. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department ofmore » Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the

  10. Hydrogen molecules inside fullerene C70: quantum dynamics, energetics, maximum occupancy, and comparison with C60.

    PubMed

    Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko; Lawler, Ronald; Turro, Nicholas J

    2010-07-21

    Recent synthesis of the endohedral complexes of C(70) and its open-cage derivative with one and two H(2) molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H(2) molecules in C(70) and C(60), which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H(2) (p-H(2)) molecules encapsulated in C(70) and for one and two p-H(2) molecules inside C(60). These calculations provide a quantitative description of the ground-state properties, energetics, and the translation-rotation (T-R) zero-point energies (ZPEs) of the nanoconfined p-H(2) molecules and of the spatial distribution of two p-H(2) molecules in the cavity of C(70). The energy of the global minimum on the intermolecular potential energy surface (PES) is negative for one and two H(2) molecules in C(70) but has a high positive value when the third H(2) is added, implying that at most two H(2) molecules can be stabilized inside C(70). By the same criterion, in the case of C(60), only the endohedral complex with one H(2) molecule is energetically stable. Our results are consistent with the fact that recently both (H(2))(n)@C(70) (n = 1, 2) and H(2)@C(60) were prepared, but not (H(2))(3)@C(70) or (H(2))(2)@C(60). The ZPE of the coupled T-R motions, from the DMC calculations, grows rapidly with the number of caged p-H(2) molecules and is a significant fraction of the well depth of the intermolecular PES, 11% in the case of p-H(2)@C(70) and 52% for (p-H(2))(2)@C(70). Consequently, the T-R ZPE represents a major component of the energetics of the encapsulated H(2) molecules. The inclusion of the ZPE nearly doubles the energy by which (p-H(2))(3)@C(70) is destabilized and increases by 66% the

  11. Flare cue symbology and EVS for zero-zero weather landing

    NASA Astrophysics Data System (ADS)

    French, Guy A.; Murphy, David M.; Ercoline, William R.

    2006-05-01

    When flying an airplane, landing is arguably the most difficult task a pilot can do. This applies to pilots of all skill levels particularly as the level of complexity in both the aircraft and environment increase. Current navigational aids, such as an instrument landing system (ILS), do a good job of providing safe guidance for an approach to an airfield. These aids provide data to primary flight reference (PFR) displays on-board the aircraft depicting through symbology what the pilot's eyes should be seeing. Piloting an approach under visual meteorological conditions (VMC) is relatively easy compared to the various complex instrument approaches under instrument meteorological conditions (IMC) which may include flying in zero-zero weather. Perhaps the most critical point in the approach is the transition to landing where the rate of closure between the wheels and the runway is critical to a smooth, accurate landing. Very few PFR's provide this flare cue information. In this study we will evaluate examples of flare cueing symbology for use in landing an aircraft in the most difficult conditions. This research is a part of a larger demonstration effort using sensor technology to land in zero-zero weather at airfields that offer no or unreliable approach guidance. Several problems exist when landing without visual reference to the outside world. One is landing with a force greater than desired at touchdown and another is landing on a point of the runway other than desired. We compare different flare cueing systems to one another and against a baseline for completing this complex approach task.

  12. The motion near L{sub 4} equilibrium point under non-point mass primaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id; Utama, J. A.; Madley, D.

    2015-09-30

    The Circular Restricted Three-Body Problem (CRTBP) possesses five equilibrium points, that comprise three collinear (L{sub 1}, L{sub 2}, and L{sub 3}) and two triangular points (L{sub 4} and L{sub 5}). The classical study (with the primaries are point mass) suggests that the equilibrium points may cause the velocity of infinitesimal object relatively becomes zero and reveals the zero velocity curve. We study the motion of infinitesimal object near triangular equilibrium point (L{sub 4}) and determine its zero velocity curve. We extend the study by taking into account the effects of radiation of the bigger primary (q{sub 1} ≠ 1, q{submore » 2} = 1) and oblateness of the smaller primary (A{sub 1} = 0, A{sub 2} ≠ 0). The location of L{sub 4} is analytically derived then the stability of L{sub 4} and its zero velocity curves are studied numerically. Our study suggests that the oblateness and the radiation of primaries may affect the stability and zero velocity curve around L{sub 4}.« less

  13. Zero-bias photocurrent in ferromagnetic topological insulator.

    PubMed

    Ogawa, N; Yoshimi, R; Yasuda, K; Tsukazaki, A; Kawasaki, M; Tokura, Y

    2016-07-20

    Magnetic interactions in topological insulators cause essential modifications in the originally mass-less surface states. They offer a mass gap at the Dirac point and/or largely deform the energy dispersion, providing a new path towards exotic physics and applications to realize dissipation-less electronics. The nonequilibrium electron dynamics at these modified Dirac states unveil additional functions, such as highly efficient photon to spin-current conversion. Here we demonstrate the generation of large zero-bias photocurrent in magnetic topological insulator thin films on mid-infrared photoexcitation, pointing to the controllable band asymmetry in the momentum space. The photocurrent spectra with a maximal response to the intra-Dirac-band excitations can be a sensitive measure for the correlation between Dirac electrons and magnetic moments.

  14. Aspects of the zero Λ limit in the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Caldeira Costa, R. N.

    2014-11-01

    We examine the correspondence between QFT observables and bulk solutions in the context of AdS/CFT in the limit as the cosmological constant Λ →0 . We focus specifically on the spacetime metric and a nonbackreacting scalar in the bulk, compute the one-point functions of the dual operators, and determine the necessary conditions for the correspondence to admit a well-behaved zero-Λ limit. We discuss holographic renormalization in this limit and find that it requires schemes that partially break diffeomorphism invariance of the bulk theory. In the specific case of three bulk dimensions, we compute the zero-Λ limit of the holographic Weyl anomaly and reproduce the central charge that arises in the central extension of bms3 . We compute holographically the energy and momentum of those QFT states dual to flat cosmological solutions and to the Kerr solution and find an agreement with the bulk theory. We also compute holographically the renormalized two-point function of a scalar operator in the zero-Λ limit and find it to be consistent with that of a conformal operator in two dimensions fewer. Finally, our results can be used in a new definition of asymptotic Ricci flatness at null infinity based on the zero-Λ limit of asymptotically Einstein manifolds.

  15. A DFT study for the structural and electronic properties of Zn m Se n nanoclusters

    NASA Astrophysics Data System (ADS)

    Yadav, Phool Singh; Pandey, Dheeraj Kumar

    2012-09-01

    An ab initio study has been performed for the stability, structural and electronic properties of 19 small zinc selenide Zn m Se n ( m + n = 2-4) nanoclusters. Out of these nanoclusters, one nanocluster is found to be unstable due to its imaginary vibrational frequency. A B3LYP-DFT/6-311G(3df) method is used in the optimization of the geometries of the nanoclusters. We have calculated the zero point energy (ZPE), which is ignored by the other workers. The binding energies (BE), HOMO-LUMO gaps and bond lengths have been obtained for all the optimized nanoclusters. For the same value of ` m' and ` n', we designate the most stable structure the one, which has maximum final binding energy (FBE) per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), dipole moments and charge on atoms have been investigated for the most stable nanoclusters. For the same value of ` m' and ` n', the nanocluster containing maximum number of Se atoms is found to be most stable.

  16. CH(X2∏, a4∑-) ... OH2 and CH2(X˜3B1, ã1A1) ... OH2 interactions. A first principles investigation

    NASA Astrophysics Data System (ADS)

    Tzeli, Demeter; Mavridis, Aristides

    We have investigated the interaction of the methylidene, CH(X2∏, a4∑-) and methylene, CH2(X˜3B1, ã1A1) with H2O, employing the (P)MPn (n = 2, 4) techniques in conjunction with the sequence of correlation consistent basis sets aug-cc-pVxZ, x = 2, 3, and 4. For the CH ... OH2 system, we have located four minima (m) and three transition states (ts) and for the CH2 ... OH2, five minima and four transition states. All our results have been corrected for zero-point energy (ZPE) and basis set superposition errors (BSSE), while for the most important m_ structures, we report complete basis set (CBS) interaction limits. We also report fully optimized geometries, harmonic frequencies, dipole moments, Mulliken charges, and potential energy curves. The highest CH(X2∏) ... OH2 (m1_2∏) and CH2(ã1A1) ... OH2 (m1_1A1) interactions are the result of electron transfer from the oxygen atom to the empty pπ orbitals of CH(X2∏) and CH2(ã1A1), respectively (ylide-like structures). At the (P)MP4/AQZ//MP2/ATZ level, including ZPE, BSSE, and CBS extrapolation, we obtain ΔE0(BSSE)+CBS = -9.36 kcal/mol at rC ... O = 1.752 Å, and -9.73 kcal/mol at rC ... O = 1.741 Å for the m1_2∏ and m1_1A1, respectively.

  17. Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation

    NASA Astrophysics Data System (ADS)

    Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.

    2016-06-01

    A lossy anisotropic epsilon-near-zero (ENZ) medium may lead to a counterintuitive phenomenon of omnidirectional bending-to-normal refraction [S. Feng, Phys. Rev. Lett. 108, 193904 (2012), 10.1103/PhysRevLett.108.193904], which offers a fabulous strategy for energy collimation and energy harvesting. Here, in the scope of effective medium theory, we systematically investigate two simple metamaterial configurations, i.e., metal-dielectric-layered structures and the wire medium, to explore the possibility of fulfilling the conditions of such an anisotropic lossy ENZ medium by playing with materials' parameters. Both realistic metamaterial structures and their effective medium equivalences have been numerically simulated, and the results are in excellent agreement with each other. Our study provides clear guidance and therefore paves the way towards the search for proper designs of anisotropic metamaterials for a decent effect of energy collimation and wave-front manipulation.

  18. Majorana Zero-Energy Mode and Fractal Structure in Fibonacci-Kitaev Chain

    NASA Astrophysics Data System (ADS)

    Ghadimi, Rasoul; Sugimoto, Takanori; Tohyama, Takami

    2017-11-01

    We theoretically study a Kitaev chain with a quasiperiodic potential, where the quasiperiodicity is introduced by a Fibonacci sequence. Based on an analysis of the Majorana zero-energy mode, we find the critical p-wave superconducting pairing potential separating a topological phase and a non-topological phase. The topological phase diagram with respect to Fibonacci potentials follow a self-similar fractal structure characterized by the box-counting dimension, which is an example of the interplay of fractal and topology like the Hofstadter's butterfly in quantum Hall insulators.

  19. Practical Application Limits of Fuel Cells and Batteries for Zero Emission Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnehan, John J.; Pratt, Joseph William

    Batteries and hydrogen fuel cells provide zero emission power at the point of use. They are studied as an alternative powerplant for maritime vessels by considering 14 case studies of various ship sizes and routes varying from small passenger vessels to the largest cargo ships. The method used was to compare the mass and volume of the required zero emission solution to the available mass and volume on an existing vessel considering its current engine and fuel storage systems. The results show that it is practically feasible to consider these zero emission technologies for most vessels in the world's fleet.more » Hydrogen fuel cells proved to be the most capable while battery systems showed an advantage for high power, short duration missions. The results provide a guide to ship designers to determine the most suitable types of zero emission powerplants to fit a ship based on its size and energy requirements.« less

  20. Nearly fully compressed 1053 nm pulses directly obtained from 800 nm laser-seeded photonic crystal fiber below zero dispersion point

    NASA Astrophysics Data System (ADS)

    Refaeli, Zaharit; Shamir, Yariv; Ofir, Atara; Marcus, Gilad

    2018-02-01

    We report a simple robust and broadly spectral-adjustable source generating near fully compressed 1053 nm 62 fs pulses directly out of a highly-nonlinear photonic crystal fiber. A dispersion-nonlinearity balance of 800 nm Ti:Sa 20 fs pulses was obtained initially by negative pre-chirping and then launching the pulses into the fibers' normal dispersion regime. Following a self-phase modulation spectral broadening, some energy that leaked below the zero dispersion point formed a soliton whose central wavelength could be tuned by Self-Frequency-Raman-Shift effect. Contrary to a common approach of power, or, fiber-length control over the shift, here we continuously varied the state of polarization, exploiting the Raman and Kerr nonlinearities responsivity for state of polarization. We obtained soliton pulses with central wavelength tuned over 150 nm, spanning from well below 1000 to over 1150 nm, of which we could select stable pulses around the 1 μm vicinity. With linewidth of > 20 nm FWHM Gaussian-like temporal-shape pulses with 62 fs duration and near flat phase structure we confirmed high quality pulse source. We believe such scheme can be used for high energy or high power glass lasers systems, such as Nd or Yb ion-doped amplifiers and systems.

  1. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, W.

    1985-02-08

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifer circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedstock loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point is offset by a compensating break point or zero.

  2. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  3. Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future

    NASA Astrophysics Data System (ADS)

    Kothari, S.; Bartsch, A.

    2016-12-01

    Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.

  4. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  5. Saddle point localization of molecular wavefunctions.

    PubMed

    Mellau, Georg Ch; Kyuberis, Alexandra A; Polyansky, Oleg L; Zobov, Nikolai; Field, Robert W

    2016-09-15

    The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the eigenstates of the model quartic potential and in the energy levels of the [H, C, N] potential energy surface. We model the spacing of the eigenenergies with the energy dependent classical oscillation frequency decreasing to zero at the saddle point. The eigenstates with the smallest spacing are localized at the saddle point. The analysis of the HCN ↔ HNC isomerization states shows that the eigenstates with small energy spacing relative to the effective (v1, v3, ℓ) bending potentials are highly localized in the bending coordinate at the transition state. These spectroscopically detectable states represent a chemical marker of the transition state in the eigenenergy spectrum. The method developed here provides a basis for modeling characteristic patterns in the eigenenergy spectrum of bound states.

  6. Experimental Study of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity

    NASA Technical Reports Server (NTRS)

    Shogin, B. A.; Jones, W. R., Jr.; Kingsbury, E. P.; Jansen, M. J.; Prahl, J. M.

    1998-01-01

    A capacitance technique was used to monitor the film thickness separating two steel balls while subjecting the ball-ball contact to highly stressed, zero entrainment velocity conditions. Tests were performed in a nitrogen atmosphere and utilized 52100 steel balls and a polyalphaolefin lubricant. Capacitance to film thickness accuracy was verified under pure rolling conditions using established EHL theory. Zero entrainment velocity tests were performed at sliding speeds from 6.0 to 10.0 m/s and for sustained amounts of time to 28.8 min. The protective lubricant film separating the specimens at zero entrainment velocity had a film thickness between 0.10 to 0.14 microns (4 to 6 micro in.), which corresponded to a k value of 4. The formation of an immobile surface film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at zero entrainment velocity conditions, relevant to the ball-ball contacts occurring in retainerless ball bearings.

  7. Possibility of exchange of a rectilinear three-body system with zero energy

    NASA Astrophysics Data System (ADS)

    Koda, Eiji

    The possibility of exchange for a rectilinear three-body system with zero energy is examined by introducing regularized coordinates which are closely related to McGehee's (1974) coordinates. It is shown that all of the HE(-)-HE(+) orbits are of exchange type in a critical system whose orbits of parabolic-parabolic escape type experience odd times of binary collision. No exchange occurs in critical systems whose orbits of parabolic-parabolic escape type experience even times of binary collision.

  8. Internal proton transfer and H2 rotations in the H5(+) cluster: a marked influence on its thermal equilibrium state.

    PubMed

    de Tudela, Ricardo Pérez; Barragán, Patricia; Prosmiti, Rita; Villarreal, Pablo; Delgado-Barrio, Gerardo

    2011-03-31

    Classical and path integral Monte Carlo (CMC, PIMC) "on the fly" calculations are carried out to investigate anharmonic quantum effects on the thermal equilibrium structure of the H5(+) cluster. The idea to follow in our computations is based on using a combination of the above-mentioned nuclear classical and quantum statistical methods, and first-principles density functional (DFT) electronic structure calculations. The interaction energies are computed within the DFT framework using the B3(H) hybrid functional, specially designed for hydrogen-only systems. The global minimum of the potential is predicted to be a nonplanar configuration of C(2v) symmetry, while the next three low-lying stationary points on the surface correspond to extremely low-energy barriers for the internal proton transfer and to the rotation of the H2 molecules, around the C2 axis of H5(+), connecting the symmetric C(2v) minima in the planar and nonplanar orientations. On the basis of full-dimensional converged PIMC calculations, results on the quantum vibrational zero-point energy (ZPE) and state of H5(+) are reported at a low temperature of 10 K, and the influence of the above-mentioned topological features of the surface on its probability distributions is clearly demonstrated.

  9. Technology Solutions Case Study: Zero Energy Ready Home and the Challenge of Hot Water on Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Production builders in the Stapleton community of Denver, Colorado, now build 2,300-ft2 or larger homes that earn the U.S. Environmental Protection Agency (EPA) ENERGY STAR® through the Certified Homes Program, Version 3. These builders are repositioning to build comparably sized homes to the standards of the U.S. Department of Energy’s (DOE’s) Zero Energy Ready Home (ZERH) program. Most ZERH criteria align closely with ENERGY STAR and are familiar to these builders.

  10. The Zero-Point Field and the NASA Challenge to Create the Space Drive

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard; Rueda, Alfonso

    1999-01-01

    This NASA Breakthrough Propulsion Physics Workshop seeks to explore concepts that could someday enable interstellar travel. The effective superluminal motion proposed by Alcubierre (1994) to be a possibility owing to theoretically allowed space-time metric distortions within general relativity has since been shown by Pfenning and Ford (1997) to be physically unattainable. A number of other hypothetical possibilities have been summarized by Millis (1997). We present herein an overview of a concept that has implications for radically new propulsion possibilities and has a basis in theoretical physics: the hypothesis that the inertia and gravitation of matter originate in electromagnetic interactions between the zero-point field (ZPF) and the quarks and electrons constituting atoms. A new derivation of the connection between the ZPF and inertia has been carried through that is properly co-variant, yielding the relativistic equation of motion from Maxwell's equations. This opens new possibilities, but also rules out the basis of one hypothetical propulsion mechanism: Bondi's "negative inertial mass," appears to be an impossibility.

  11. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St. Paul, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    For this project, Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to develop the first Zero Energy Ready Home (ZERH) in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout ranch-style home with all the creature comforts. Along with meeting ZERH standards, Amaris also achieved certifications for Leadership in Energy & Environmental Design for Homes v4, MN Green Path Emerald, and a Builders Association of the Twin Cities Reggie Award of Excellence. The home achieves a HERS score of 41 without photovoltaics; withmore » PV, the home achieves a HERS score of 5.« less

  12. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    PubMed

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (<0.7 mg/L) by IMA and advanced oxidation treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sampling saddle points on a free energy surface

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Chen, Ming; Yu, Tang-Qing; Tuckerman, Mark; E, Weinan

    2014-04-01

    Many problems in biology, chemistry, and materials science require knowledge of saddle points on free energy surfaces. These saddle points act as transition states and are the bottlenecks for transitions of the system between different metastable states. For simple systems in which the free energy depends on a few variables, the free energy surface can be precomputed, and saddle points can then be found using existing techniques. For complex systems, where the free energy depends on many degrees of freedom, this is not feasible. In this paper, we develop an algorithm for finding the saddle points on a high-dimensional free energy surface "on-the-fly" without requiring a priori knowledge the free energy function itself. This is done by using the general strategy of the heterogeneous multi-scale method by applying a macro-scale solver, here the gentlest ascent dynamics algorithm, with the needed force and Hessian values computed on-the-fly using a micro-scale model such as molecular dynamics. The algorithm is capable of dealing with problems involving many coarse-grained variables. The utility of the algorithm is illustrated by studying the saddle points associated with (a) the isomerization transition of the alanine dipeptide using two coarse-grained variables, specifically the Ramachandran dihedral angles, and (b) the beta-hairpin structure of the alanine decamer using 20 coarse-grained variables, specifically the full set of Ramachandran angle pairs associated with each residue. For the alanine decamer, we obtain a detailed network showing the connectivity of the minima obtained and the saddle-point structures that connect them, which provides a way to visualize the gross features of the high-dimensional surface.

  14. HIA 2016 DOE Zero Energy Ready Home Case Study: Imery & Co, High-performance Bungalow, Roswell, GA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Case study of a DOE 2016 Housing Innovation Award winning custom for buyer home in the mixed-humid climate that met the DOE Zero Energy Ready Home criteria and achieved a HERS 41 without PV or HERS 6 with PV.

  15. Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Qiao; Song, Ruizhuo

    2018-04-01

    In this paper, a novel adaptive dynamic programming (ADP) algorithm, called "iterative zero-sum ADP algorithm," is developed to solve infinite-horizon discrete-time two-player zero-sum games of nonlinear systems. The present iterative zero-sum ADP algorithm permits arbitrary positive semidefinite functions to initialize the upper and lower iterations. A novel convergence analysis is developed to guarantee the upper and lower iterative value functions to converge to the upper and lower optimums, respectively. When the saddle-point equilibrium exists, it is emphasized that both the upper and lower iterative value functions are proved to converge to the optimal solution of the zero-sum game, where the existence criteria of the saddle-point equilibrium are not required. If the saddle-point equilibrium does not exist, the upper and lower optimal performance index functions are obtained, respectively, where the upper and lower performance index functions are proved to be not equivalent. Finally, simulation results and comparisons are shown to illustrate the performance of the present method.

  16. Structures, Energetics, and IR Spectra of Monohydrated Inorganic Acids: Ab initio and DFT Study.

    PubMed

    Kołaski, Maciej; Zakharenko, Aleksey A; Karthikeyan, S; Kim, Kwang S

    2011-10-11

    We carried out extensive calculations of diverse inorganic acids interacting with a single water molecule, through a detailed analysis of many possible conformations. The optimized structures were obtained by using density functional theory (DFT) and the second order Møller-Plesset perturbation theory (MP2). For the most stable conformers, we calculated the interaction energies at the complete basis set (CBS) limit using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The -OH stretching harmonic and anharmonic frequencies are provided as fingerprints of characteristic conformers. The zero-point energy (ZPE) uncorrected/corrected (ΔEe/ΔE0) interaction energies and the enthalpies/free energies (ΔHr/ΔGr at room temperature and 1 bar) are reported. Various comparisons are made between many diverse inorganic acids (HmXOn where X = B/N/P/Cl/Br/I, m = 1-3, and n = 0-4) as well as other simple inorganic acids. In many cases, we find that the dispersion-driven van der Waals interactions between X in inorganic acid molecules and O in water molecules as well as the X(+)···O(-) electrostatic interactions are important.

  17. Entropy Growth in the Early Universe and Confirmation of Initial Big Bang Conditions

    NASA Astrophysics Data System (ADS)

    Beckwith, Andrew

    2009-09-01

    This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained via analogies with early-universe phase transitions. The role of Jack Ng's (2007, 2008a, 2008b) revised infinite quantum statistics in the physics of gravitational wave detection is acknowledged. Ng's infinite quantum statistics can be used to show that ΔS~ΔNgravitons is a startmg point to the increasing net universe cosmological entropy. Finally, in a nod to similarities AS ZPE analysis, it is important to note that the resulting ΔS~ΔNgravitons ≠ 1088, that in fact it is much lower, allowing for evaluating initial graviton production as an emergent field phenomena, which may be similar to how ZPE states can be used to extract energy from a vacuum if entropy is not maximized. The rapid increase in entropy so alluded to without near sudden increases to 1088 may be enough to allow successful modeling of relic graviton production for entropy in a manner similar to ZPE energy extraction from a vacuum state.

  18. Land Management Panel: Army’s Net Zero Installation Initiative

    DTIC Science & Technology

    2012-05-24

    same watershed so not to deplete the groundwater and surface water resources of that region in quantity or quality.  A Net Zero WASTE Installation...0.15 0.2 0.25 Assistant Secretary of the Army (Installations, Energy & Environment) Net Zero Waste A Net Zero WASTE Installation reduces, reuses...Net Zero Waste Strategy 17 Assistant Secretary of the Army (Installations, Energy & Environment) Waste Roadmaps Material flow analysis

  19. High-resolution studies of tropolone in the S0 and S1 electronic states: isotope driven dynamics in the zero-point energy levels.

    PubMed

    Keske, John C; Lin, Wei; Pringle, Wallace C; Novick, Stewart E; Blake, Thomas A; Plusquellic, David F

    2006-02-21

    Rotationally resolved microwave (MW) and ultraviolet (UV) spectra of jet-cooled tropolone have been obtained in S(0) and S(1) electronic states using Fourier-transform microwave and UV-laser/molecular-beam spectrometers. In the ground electronic state, the MW spectra of all heavy-atom isotopomers including one (18)O and four (13)C isotopomers were observed in natural abundance. The OD isotopomer was obtained from isotopically enriched samples. The two lowest tunneling states of each isotopomer except (18)O have been assigned. The observed inversion splitting for the OD isotopomer is 1523.227(5) MHz. For the asymmetric (13)C structures, the magnitudes of tunneling-rotation interactions are found to diminish with decreasing distance between the heavy atom and the tunneling proton. In the limit of closest approach, the 0(+) state of (18)O was well fitted to an asymmetric rotor Hamiltonian, reflecting significant changes in the tautomerization dynamics. Comparisons of the substituted atom coordinates with theoretical predictions at the MP2/aug-cc-pVTZ level of theory suggest the localized 0(+) and 0(-) wave functions of the heavier isotopes favor the C-OH and C=O forms of tropolone, respectively. The only exception occurs for the (13)C-OH and (13)C[Double Bond]O structures which correlate to the 0(-) and 0(+) states, respectively. These preferences reflect kinetic isotope effects as quantitatively verified by the calculated zero-point energy differences between members of the asymmetric atom pairs. From rotationally resolved data of the 0(+) <--0(+) and 0(-) <--0(-) bands in S(1), line-shape fits have yielded Lorentzian linewidths that differ by 12.2(16) MHz over the 19.88(4) cm(-1) interval in S(1). The fluorescence decay rates together with previously reported quantum yield data give nonradiative decay rates of 7.7(5) x 10(8) and 8.5(5) x 10(8) s(-1) for the 0(+) and 0(-) levels of the S(1) state of tropolone.

  20. On the use of the energy probability distribution zeros in the study of phase transitions

    NASA Astrophysics Data System (ADS)

    Mól, L. A. S.; Rodrigues, R. G. M.; Stancioli, R. A.; Rocha, J. C. S.; Costa, B. V.

    2018-04-01

    This contribution is devoted to cover some technical aspects related to the use of the recently proposed energy probability distribution zeros in the study of phase transitions. This method is based on the partial knowledge of the partition function zeros and has been shown to be extremely efficient to precisely locate phase transition temperatures. It is based on an iterative method in such a way that the transition temperature can be approached at will. The iterative method will be detailed and some convergence issues that has been observed in its application to the 2D Ising model and to an artificial spin ice model will be shown, together with ways to circumvent them.

  1. Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, R.; Hayter, S.; Hotchkiss, E.

    2014-10-01

    The federal government is mandated with improving efficiency of buildings, incorporating renewable energy, and achieving net-zero energy operations where possible. These challenges led GSA to consider aligning historic preservation renovations with net-zero energy goals. The Wayne N. Aspinall Federal Building and U.S. Courthouse (Aspinall Courthouse), in Grand Junction, Colorado, is an example of a renovation project that aimed to accomplish both historic preservation and net-zero energy goals.

  2. Gas phase hydrolysis of formaldehyde to form methanediol: impact of formic acid catalysis.

    PubMed

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2013-11-21

    We find that formic acid (FA) is very effective at facilitating diol formation through its ability to reduce the barrier for the formaldehyde (HCHO) hydrolysis reaction. The rate limiting step in the mechanism involves the isomerization of a prereactive collision complex formed through either the HCHO···H2O + FA and/or HCHO + FA···H2O pathways. The present study finds that the effective barrier height, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state (TS) and the HCHO···H2O + FA and HCHO + FA···H2O starting reagents, are respectively only ∼1 and ∼4 kcal/mol. These barriers are substantially lower than the ∼17 kcal/mol barrier associated with the corresponding step in the hydrolysis of HCHO catalyzed by a single water molecule (HCHO + H2O + H2O). The significantly lower barrier heights for the formic acid catalyzed pathway reveal a new important role that organic acids play in the gas phase hydrolysis of atmospheric carbonyl compounds.

  3. First-Principles Study of the Li-Mg-N-H System: Compound Structures and Hydrogen Storage Properties

    NASA Astrophysics Data System (ADS)

    Michel, Kyle; Ozolins, Vidvuds

    2009-03-01

    The Li-Mg-N-H system is studied with the addition of the Li4Mg(NH)3, MgNH, and Li4NH compounds using first-principles density-functional theory (DFT) calculations. A structure for the mixed imide Li4Mg(NH)3 is proposed, belonging to the Imm2 space group. A new structure for Li2Mg(NH)2 is given that has Pca21 symmetry; this compound has been previously reported as having Iba2 symmetry. The stability of the Li4Mg-imide is studied with respect to its decomposition reactions. The static, zero-point (ZPE), and vibrational energies of all relevant compounds belonging to this system are reported along with their predicted lowest-energy structures. Dehydrogenation reactions are presented that involve these phases and which are found to be spontaneously occurring within 400 K of room temperature. It is predicted that mixing LiH, LiNH2, and Li2Mg(NH)2 at 505 K will form Li4Mg(NH)3 with the release of 2.04 wt. % H2.

  4. Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates

    PubMed Central

    Rebnegger, Corinna; Vos, Tim; Graf, Alexandra B.; Valli, Minoska; Pronk, Jack T.

    2016-01-01

    ABSTRACT The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris. Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX/Smax) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (μ) of 0.025 h−1 to near-zero specific growth rates (μ < 0.001 h−1). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low μ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while μ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production

  5. Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herk, Anastasia

    IBACOS worked with builder Imagine Homes to evaluate the performance of an occupied new construction test house following construction of the house in the hot, humid climate of San Antonio, Texas. The project measures the effectiveness of a space conditioning strategy using a multihead mini-split heat pump (MSHP) system in a reduced-load home to achieve acceptable comfort levels (temperature and humidity) and energy performance. IBACOS collected long-term data and analyzed the energy consumption and comfort conditions of the occupied house after one year of operation. Although measured results indicate that the test system provides comfort both inside and outside themore » ASHRAE Standard 55-2010 range, the occupants of the house claimed both adequate comfort and appreciation of the ease of use and flexibility of the installed MSHP system. IBACOS also assisted the builder to evaluate design and specification changes necessary to comply with Zero Energy Ready Home, but the builder chose to not move forward with it because of concerns about the 'solar ready' requirements of the program.« less

  6. A maximally particle-hole asymmetric spectrum emanating from a semi-Dirac point.

    PubMed

    Quan, Yundi; Pickett, Warren E

    2018-02-21

    Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles. The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight binding model is used to study several characteristics of the dispersion and density of states. The model inspired generalization of sD dispersion to a general  ±[Formula: see text] form, for which analysis reveals that both n and m must be odd to provide a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three band system with interband coupling strength is presented and discussed.

  7. Building America Case Study: Zero Energy Ready Home and the Challenge of Hot Water on Demand, Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    "This report outlines the steps a developer can use when looking to create and implement higher performance standards such as the U.S. Department of Energy (DOE) Zero Energy Ready Home (ZERH) standards in a community. The report also describes the specific examples of how this process was followed by a developer, Forest City, in the Stapleton community in Denver, Colorado. IBACOS described the steps used to begin to bring the DOE ZERH standard to the Forest City Stapleton community based on 15 years of community-scale development work done by IBACOS. As a result of this prior IBACOS work, the teammore » gained an understanding of the various components that a master developer needs to consider and created strategies for incorporating those components in the initial phases of development to achieve higher performance buildings in the community. An automated scoring system can be used to perform an internal audit that provides a detailed and consistent evaluation of how several homes under construction or builders' floor plans compare with the requirements of the DOE Zero Energy Ready Home program. This audit can be performed multiple times at specific milestones during construction to allow the builder to make changes as needed throughout construction for the project to meet Zero Energy Ready Home standards. This scoring system also can be used to analyze a builder's current construction practices and design.« less

  8. Lean, Mean and Green: An Affordable Net Zero School

    ERIC Educational Resources Information Center

    Stanfield, Kenneth

    2010-01-01

    From its conception, Richardsville Elementary was designed to be an affordable net zero facility. The design team explored numerous energy saving strategies to dramatically reduce energy consumption. By reducing energy use to 19.31 kBtus annually, the net zero goal could be realized through the implementation of a solar array capable of producing…

  9. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, J.; VanGeet, O.; Simkus, S.

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or withinmore » a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.« less

  10. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    PubMed

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  11. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson — Church Community and Housing Corporation, Charlestown, RI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-09-01

    This DOE Zero Energy Ready Home garnered an Affordable Builder award in the 2014 Housing Innovation Awards, for its highly insulated construction, minisplit heat pump and water heater, and triple pane windows.

  12. D-tagatose is a bulk sweetener with zero energy determined in rats.

    PubMed

    Livesey, G; Brown, J C

    1996-06-01

    The ketohexose D-tagatose is readily oxidized but contributes poorly to lipid deposition. We therefore examined whether this sugar contributes to energy requirements by determining its net metabolizable energy value in rats. All substrate-induced energy losses from D-tagatose, with sucrose as reference standard, were determined as a single value accounting for the sum of the energy losses to feces, urine, gaseous hydrogen and methane and substrate-induced thermogenesis. A randomized parallel design involving two treatment periods (adaptation to D-tagatose and subsequent energy balance) and two control groups (to control for treatment effects in each period) was used. Rats consumed 1.8 g test carbohydrate daily as a supplement to a basal diet for a 40- or 41-d balance period after prior adaptation for 21 d. Growth, protein and lipid deposition were unaffected by supplementary gross energy intake from D-tagatose compared with an unsupplemented control, but sucrose significantly (P < 0.05) increased all three. Based on the changes induced in protein and fat gain during the balance period it was calculated that D-tagatose contributed -3 +/- 14% of its heat of combustion to net metabolizable energy, and therefore this ketohexose effectively has a zero energy value. D-Tagatose would potentially be helpful in body weight control, especially in diabetic subjects because of its antidiabetogenic effects.

  13. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  14. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  15. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  16. Zero Energy With an Affordable Price Tag: Friends School of Portland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    More than half of all operating school districts in the U.S. are in rural areas. These small schools operate at a different scale and have different needs than their city counterparts. In 2003-2004, 20% of public schools in the U.S. served fewer than 200 students(1). Although the Friends School of Portland - which was designed to achieve both zero energy performance and Passivhaus certification - is an independent school, it faced financial constraints similar to those faced by many other small schools throughout the country. The project was financed through a capital campaign and a mortgage that forced a hardmore » cost cap on the project, so the project team had to be diligent about every dollar that was spent. In its first year of operation, the school site energy use intensity was just 12 kbtu/ft2, a bit more than the 9 kbtu/ft2 predicted.« less

  17. DOE Zero Energy Ready Home Case Study: United Way of Long Island, United Veterans Beacon House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    United Way of Long Island’s Housing Development Corporation built this 3,719-ft2 two–story, 5-bedroom home in Huntington Station, New York, to the rigorous performance requirements of the U.S. Department of Energy’s Zero Energy Ready Home Program. The home is packed with high-performance features like LED lighting and ENERGY STAR appliances. The asymmetrical, optimally angled roof provides plenty of space for roof-mounted solar panels for electric generation and hot water.

  18. Structural zeroes and zero-inflated models.

    PubMed

    He, Hua; Tang, Wan; Wang, Wenjuan; Crits-Christoph, Paul

    2014-08-01

    In psychosocial and behavioral studies count outcomes recording the frequencies of the occurrence of some health or behavior outcomes (such as the number of unprotected sexual behaviors during a period of time) often contain a preponderance of zeroes because of the presence of 'structural zeroes' that occur when some subjects are not at risk for the behavior of interest. Unlike random zeroes (responses that can be greater than zero, but are zero due to sampling variability), structural zeroes are usually very different, both statistically and clinically. False interpretations of results and study findings may result if differences in the two types of zeroes are ignored. However, in practice, the status of the structural zeroes is often not observed and this latent nature complicates the data analysis. In this article, we focus on one model, the zero-inflated Poisson (ZIP) regression model that is commonly used to address zero-inflated data. We first give a brief overview of the issues of structural zeroes and the ZIP model. We then given an illustration of ZIP with data from a study on HIV-risk sexual behaviors among adolescent girls. Sample codes in SAS and Stata are also included to help perform and explain ZIP analyses.

  19. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    1999-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.

  20. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    2001-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.

  1. Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-11-01

    In 2009, Transformations, Inc. partnered with U.S. Department of Energy (DOE) Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE's Challenge Home. The super-insulated houses provide data for several research topicsmore » in a cold climate. BSC studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners' perceptions of equipment performance. BSC also examined the developer's financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.« less

  2. A maximally particle-hole asymmetric spectrum emanating from a semi-Dirac point

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren E.

    2018-02-01

    Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles. The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight binding model is used to study several characteristics of the dispersion and density of states. The model inspired generalization of sD dispersion to a general  ± \\sqrt{k_x2n +k_y2m} form, for which analysis reveals that both n and m must be odd to provide a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three band system with interband coupling strength is presented and discussed.

  3. Simple tunnel diode circuit for accurate zero crossing timing

    NASA Technical Reports Server (NTRS)

    Metz, A. J.

    1969-01-01

    Tunnel diode circuit, capable of timing the zero crossing point of bipolar pulses, provides effective design for a fast crossing detector. It combines a nonlinear load line with the diode to detect the zero crossing of a wide range of input waveshapes.

  4. The Tip of the Red Giant Branch Distances to Type Ia Supernova Host Galaxies. IV. Color Dependence and Zero-point Calibration

    NASA Astrophysics Data System (ADS)

    Jang, In Sung; Lee, Myung Gyoon

    2017-01-01

    We present a revised Tip of the Red Giant Branch (TRGB) calibration, accurate to 2.7% of distance. A modified TRGB magnitude corrected for its color dependence, the QT magnitude, is introduced for better measurement of the TRGB. We determine the color-magnitude relation of the TRGB from photometry of deep images of HST/ACS fields around eight nearby galaxies. The zero-point of the TRGB at the fiducial metallicity ([Fe/H] = -1.6 ({(V-I)}0,{TRGB}=1.5)) is obtained from photometry of two distance anchors, NGC 4258 (M106) and the Large Magellanic Cloud (LMC), to which precise geometric distances are known: MQT,TRGB = -4.023 ± 0.073 mag from NGC 4258 and MQT,TRGB = -4.004 ± 0.096 mag from the LMC. A weighted mean of the two zero-points is MQT,TRGB = -4.016 ± 0.058 mag. Quoted uncertainty is ˜2× smaller than those of previous calibrations. We compare the empirical TRGB calibration derived in this study with theoretical stellar models, finding that there are significant discrepancies, especially for red color ({({{F}}606{{W}}-{{F}}814{{W}})}0≳ 2.5). We provide the revised TRGB calibration in several magnitude systems for future studies.

  5. Photonic zero mode in a non-Hermitian photonic lattice.

    PubMed

    Pan, Mingsen; Zhao, Han; Miao, Pei; Longhi, Stefano; Feng, Liang

    2018-04-03

    Zero-energy particles (such as Majorana fermions) are newly predicted quasiparticles and are expected to play an important role in fault-tolerant quantum computation. In conventional Hermitian quantum systems, however, such zero states are vulnerable and even become vanishing if couplings with surroundings are of the same topological nature. Here we demonstrate a robust photonic zero mode sustained by a spatial non-Hermitian phase transition in a parity-time (PT) symmetric lattice, despite the same topological order across the entire system. The non-Hermitian-enhanced topological protection ensures the reemergence of the zero mode at the phase transition interface when the two semi-lattices under different PT phases are decoupled effectively in their real spectra. Residing at the midgap level of the PT symmetric spectrum, the zero mode is topologically protected against topological disorder. We experimentally validated the robustness of the zero-energy mode by ultrafast heterodyne measurements of light transport dynamics in a silicon waveguide lattice.

  6. ZeroCal: Automatic MAC Protocol Calibration

    NASA Astrophysics Data System (ADS)

    Meier, Andreas; Woehrle, Matthias; Zimmerling, Marco; Thiele, Lothar

    Sensor network MAC protocols are typically configured for an intended deployment scenario once and for all at compile time. This approach, however, leads to suboptimal performance if the network conditions deviate from the expectations. We present ZeroCal, a distributed algorithm that allows nodes to dynamically adapt to variations in traffic volume. Using ZeroCal, each node autonomously configures its MAC protocol at runtime, thereby trying to reduce the maximum energy consumption among all nodes. While the algorithm is readily usable for any asynchronous low-power listening or low-power probing protocol, we validate and demonstrate the effectiveness of ZeroCal on X-MAC. Extensive testbed experiments and simulations indicate that ZeroCal quickly adapts to traffic variations. We further show that ZeroCal extends network lifetime by 50% compared to an optimal configuration with identical and static MAC parameters at all nodes.

  7. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  8. DOE Zero Energy Ready Home Case Study: Healthy Efficient Homes - Spirit Lake, Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.

  9. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    NASA Astrophysics Data System (ADS)

    Malerød-Fjeld, Harald; Clark, Daniel; Yuste-Tirados, Irene; Zanón, Raquel; Catalán-Martinez, David; Beeaff, Dustin; Morejudo, Selene H.; Vestre, Per K.; Norby, Truls; Haugsrud, Reidar; Serra, José M.; Kjølseth, Christian

    2017-11-01

    Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

  10. Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, Robb

    2016-02-17

    Solar water heating systems are not new, but they have not become prevalent in most of the U.S. Most of the country is cold enough that indirect solar thermal systems are required for freeze protection, and average installed cost of these systems is $9,000 to $10,000 for typical systems on single-family homes. These costs can vary significantly in different markets and with different contractors, and federal and regional incentives can reduce these up-front costs by 50% or more. In western Massachusetts, an affordable housing developer built a community of 20 homes with a goal of approaching zero net energy consumption.more » In addition to excellent thermal envelopes and PV systems, the developer installed a solar domestic water heating system (SDHW) on each home. The Consortium for Advanced Residential Buildings (CARB), a research consortium funded by the U.S. Department of Energy Building America program, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.« less

  11. Workshop: Promoting Sustainability Through Net Zero Strategies

    EPA Science Inventory

    In 2011, EPA’s Office of Research and Development (ORD) signed an MOU with the U.S. Army to support the Army’s Net Zero initiative. The 17 Net Zero pilot installations aim to produce as much energy as used; limit freshwater use and increase water reuse; and reduce the generation ...

  12. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III

    1984-08-01

    The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.

  13. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation

  14. Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and

  15. Exponential protection of zero modes in Majorana islands.

    PubMed

    Albrecht, S M; Higginbotham, A P; Madsen, M; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Marcus, C M

    2016-03-10

    Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a 'Majorana island') that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.

  16. Phase space barriers and dividing surfaces in the absence of critical points of the potential energy: Application to roaming in ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauguière, Frédéric A. L., E-mail: frederic.mauguiere@bristol.ac.uk; Collins, Peter, E-mail: peter.collins@bristol.ac.uk; Wiggins, Stephen, E-mail: stephen.wiggins@mac.com

    We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition from reactants to products near a critical point of the potential energy surface. We investigate the problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant manifold exists at large atom-diatom distances, away from any critical points on the potential. This normally hyperbolic invariantmore » manifold is the anchor for the construction of a dividing surface in phase space, which defines the outer or loose transition state governing capture dynamics. We present an algorithm for sampling an approximate capture dividing surface, and apply our methods to the recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero total angular momentum. We have located the normally hyperbolic invariant manifold from which the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories for ozone in general, but with particular emphasis on the roaming trajectories.« less

  17. Nonlinear system guidance in the presence of transmission zero dynamics

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Hunt, L. R.; Su, R.

    1995-01-01

    An iterative procedure is proposed for computing the commanded state trajectories and controls that guide a possibly multiaxis, time-varying, nonlinear system with transmission zero dynamics through a given arbitrary sequence of control points. The procedure is initialized by the system inverse with the transmission zero effects nulled out. Then the 'steady state' solution of the perturbation model with the transmission zero dynamics intact is computed and used to correct the initial zero-free solution. Both time domain and frequency domain methods are presented for computing the steady state solutions of the possibly nonminimum phase transmission zero dynamics. The procedure is illustrated by means of linear and nonlinear examples.

  18. Universal energy spectrum from point sources

    NASA Technical Reports Server (NTRS)

    Tomozawa, Yukio

    1992-01-01

    The suggestion is made that the energy spectrum from point sources such as galactic black hole candidates (GBHC) and active galactic nuclei (AGN) is universal on the average, irrespective of the species of the emitted particles, photons, nucleons, or others. The similarity between the observed energy spectra of cosmic rays, gamma-rays, and X-rays is discussed. In other words, the existing data for gamma-rays and X-rays seem to support the prediction. The expected data from the Gamma Ray Observatory are to provide a further test.

  19. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    PubMed

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  20. Evaluation of temperature and relative humidity on two types of zero energy cool chamber (ZECC) in South Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Dirpan, Andi; Tahir Sapsal, Muhammad; Kadir Muhammad, Abdul; Tahir, Mulyati M.; Rahimuddin

    2017-12-01

    Zero Energy Cool Chamber (ZECC) is a cooling chamber for storing fruits and vegetables from the viewpoints of low cost and energy savings. The aim of the present study is to evaluate temperature and relative humidity (RH) on two types of zero energy cool chamber (ZECC) in South Sulawesi, Indonesia. The first category was placed underground while the second category was on the surface. Then, the performance of the ZECC was measured by calculating temperature and relative humidity. The results show that the ZECC was constructed on the surface produce lower temperature and higher RH compare to ZECC which placed underground. In average, the temperature in the outside (28.0°C) is greater than in inside (26.2°C) of the ZECC. On the other hand, the relative humidity in the outside (72.9%) is less than in inside (87.2%) of the ZECC. It was concluded that the ZECC where was constructed on the surface is more suitable than ZECC in the underground for decreasing temperature and increasing relative humidity.

  1. An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis.

    PubMed

    Bofill, Josep Maria; Ribas-Ariño, Jordi; García, Sergio Pablo; Quapp, Wolfgang

    2017-10-21

    The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ-function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.

  2. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    PubMed

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  3. Determining Absolute Zero Using a Tuning Fork

    ERIC Educational Resources Information Center

    Goldader, Jeffrey D.

    2008-01-01

    The Celsius and Kelvin temperature scales, we tell our students, are related. We explain that a change in temperature of 1 degree C corresponds to a change of 1 Kelvin and that atoms and molecules have zero kinetic energy at zero Kelvin, -273 degrees C. In this paper, we will show how students can derive the relationship between the Celsius and…

  4. Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring

    NASA Astrophysics Data System (ADS)

    Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico

    2017-04-01

    We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.

  5. Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene.

    PubMed

    Cannuccia, Elena; Marini, Andrea

    2011-12-16

    The quantum zero-point motion of the carbon atoms is shown to induce strong effects on the optical and electronic properties of diamond and trans-polyacetylene, a conjugated polymer. By using an ab initio approach, we interpret the subgap states experimentally observed in diamond in terms of entangled electron-phonon states. These states also appear in trans-polyacetylene causing the formation of strong structures in the band structure that even call into question the accuracy of the band theory. This imposes a critical revision of the results obtained for carbon-based nanostructures by assuming the atoms frozen in their equilibrium positions. © 2011 American Physical Society

  6. Characteristics of buoyancy force on stagnation point flow with magneto-nanoparticles and zero mass flux condition

    NASA Astrophysics Data System (ADS)

    Uddin, Iftikhar; Khan, Muhammad Altaf; Ullah, Saif; Islam, Saeed; Israr, Muhammad; Hussain, Fawad

    2018-03-01

    This attempt dedicated to the solution of buoyancy effect over a stretching sheet in existence of MHD stagnation point flow with convective boundary conditions. Thermophoresis and Brownian motion aspects are included. Incompressible fluid is electrically conducted in the presence of varying magnetic field. Boundary layer analysis is used to develop the mathematical formulation. Zero mass flux condition is considered at the boundary. Non-linear ordinary differential system of equations is constructed by means of proper transformations. Interval of convergence via numerical data and plots are developed. Characteristics of involved variables on the velocity, temperature and concentration distributions are sketched and discussed. Features of correlated parameters on Cf and Nu are examined by means of tables. It is found that buoyancy ratio and magnetic parameters increase and reduce the velocity field. Further opposite feature is noticed for higher values of thermophoresis and Brownian motion parameters on concentration distribution.

  7. Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes -- Appendix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    This document is a set of appendices presenting technical discussion and references as a companion to the 'Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes' publication.

  8. A survey of noninteractive zero knowledge proof system and its applications.

    PubMed

    Wu, Huixin; Wang, Feng

    2014-01-01

    Zero knowledge proof system which has received extensive attention since it was proposed is an important branch of cryptography and computational complexity theory. Thereinto, noninteractive zero knowledge proof system contains only one message sent by the prover to the verifier. It is widely used in the construction of various types of cryptographic protocols and cryptographic algorithms because of its good privacy, authentication, and lower interactive complexity. This paper reviews and analyzes the basic principles of noninteractive zero knowledge proof system, and summarizes the research progress achieved by noninteractive zero knowledge proof system on the following aspects: the definition and related models of noninteractive zero knowledge proof system, noninteractive zero knowledge proof system of NP problems, noninteractive statistical and perfect zero knowledge, the connection between noninteractive zero knowledge proof system, interactive zero knowledge proof system, and zap, and the specific applications of noninteractive zero knowledge proof system. This paper also points out the future research directions.

  9. A Survey of Noninteractive Zero Knowledge Proof System and Its Applications

    PubMed Central

    Wu, Huixin; Wang, Feng

    2014-01-01

    Zero knowledge proof system which has received extensive attention since it was proposed is an important branch of cryptography and computational complexity theory. Thereinto, noninteractive zero knowledge proof system contains only one message sent by the prover to the verifier. It is widely used in the construction of various types of cryptographic protocols and cryptographic algorithms because of its good privacy, authentication, and lower interactive complexity. This paper reviews and analyzes the basic principles of noninteractive zero knowledge proof system, and summarizes the research progress achieved by noninteractive zero knowledge proof system on the following aspects: the definition and related models of noninteractive zero knowledge proof system, noninteractive zero knowledge proof system of NP problems, noninteractive statistical and perfect zero knowledge, the connection between noninteractive zero knowledge proof system, interactive zero knowledge proof system, and zap, and the specific applications of noninteractive zero knowledge proof system. This paper also points out the future research directions. PMID:24883407

  10. Zero-multipole summation method for efficiently estimating electrostatic interactions in molecular system.

    PubMed

    Fukuda, Ikuo

    2013-11-07

    The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.

  11. Identification of bearing faults using time domain zero-crossings

    NASA Astrophysics Data System (ADS)

    William, P. E.; Hoffman, M. W.

    2011-11-01

    In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels.

  12. Theoretical studies of mechanisms of cycloaddition reaction between difluoromethylene carbene and acetone

    NASA Astrophysics Data System (ADS)

    Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua

    Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.

  13. Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros.

    PubMed

    Kassahun, Wondwosen; Neyens, Thomas; Molenberghs, Geert; Faes, Christel; Verbeke, Geert

    2014-11-10

    Count data are collected repeatedly over time in many applications, such as biology, epidemiology, and public health. Such data are often characterized by the following three features. First, correlation due to the repeated measures is usually accounted for using subject-specific random effects, which are assumed to be normally distributed. Second, the sample variance may exceed the mean, and hence, the theoretical mean-variance relationship is violated, leading to overdispersion. This is usually allowed for based on a hierarchical approach, combining a Poisson model with gamma distributed random effects. Third, an excess of zeros beyond what standard count distributions can predict is often handled by either the hurdle or the zero-inflated model. A zero-inflated model assumes two processes as sources of zeros and combines a count distribution with a discrete point mass as a mixture, while the hurdle model separately handles zero observations and positive counts, where then a truncated-at-zero count distribution is used for the non-zero state. In practice, however, all these three features can appear simultaneously. Hence, a modeling framework that incorporates all three is necessary, and this presents challenges for the data analysis. Such models, when conditionally specified, will naturally have a subject-specific interpretation. However, adopting their purposefully modified marginalized versions leads to a direct marginal or population-averaged interpretation for parameter estimates of covariate effects, which is the primary interest in many applications. In this paper, we present a marginalized hurdle model and a marginalized zero-inflated model for correlated and overdispersed count data with excess zero observations and then illustrate these further with two case studies. The first dataset focuses on the Anopheles mosquito density around a hydroelectric dam, while adolescents' involvement in work, to earn money and support their families or themselves, is

  14. Zero frequency modes of the Maclaurin spheroids

    NASA Astrophysics Data System (ADS)

    Baumgart, D.; Friedman, J. L.

    1986-05-01

    The location of all zero-frequency modes of oscillation along the Maclaurin sequence are found for modes corresponding to oblate spheroidal harmonics with indices (l,m) where l less than 6 (equivalently, for modes described by Lagrangian displacements whose components in Cartesian coordinates are polynomials of degree less than or equal to 5). These points of zero frequency mark the onset of instability in each mode in the context of general relativity, or when a gravitational radiation reaction term is adjointed to the Newtonian theory.

  15. Analysis of the Effect of Zero-Emission Vehicle Policies: State-Level Incentives and the California Zero-Emission Vehicle Regulations

    EIA Publications

    2017-01-01

    The U.S. Energy Information Administration (EIA) contracted with Leidos to analyze the effect of California zero-emission vehicle regulations (ZEVR) and state-level incentives on zero-emission and plug-in hybrid vehicle sales. Leidos worked to review the effect of state-level incentives by: *Conducting a review on the available incentives on zero-emission vehicles and related transitional vehicle types such has plug-in hybrid electric vehicles *Quantifying the effective monetary value of these different incentives *Evaluating the combined values of these incentives in each state on an example sale of a Nissan Leaf and Chevrolet Volt

  16. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of

  17. The zero-bias anomaly of point contacts with ferromagnetic Ni and with the heavy-fermion antiferromagnet CeAl2

    NASA Astrophysics Data System (ADS)

    Gloos, Kurt; Huupponen, Jouko

    2010-01-01

    We have investigated spear-anvil type point-contacts between ferromagnetic nickel as well as the heavy-fermion antiferromagnet CeAl2 and various simple metals (Cu, Ta, Nb). Contacts with small resistance usually showed electron-phonon scattering, Andreev reflection in case of superconducting counter-electrodes, as well as anomalies due to magnetic ordering. With increasing contact resistance (decreasing contact size) a zero-bias anomaly appeared in both Ni and CeAl2 contacts. It is conventionally attributed to resonant scattering at two-level systems or at magnetic impurities (Kondo effect). At contacts of ~ 1 nm diameter it suppressed completely all other spectral features. We discuss whether those mechanisms are relevant here and what alternatives there might be.

  18. Polymeric quantum mechanics and the zeros of the Riemann zeta function

    NASA Astrophysics Data System (ADS)

    Berra-Montiel, Jasel; Molgado, Alberto

    We analyze the Berry-Keating model and the Sierra and Rodríguez-Laguna Hamiltonian within the polymeric quantization formalism. By using the polymer representation, we obtain for both models, the associated polymeric quantum Hamiltonians and the corresponding stationary wave functions. The self-adjointness condition provides a proper domain for the Hamiltonian operator and the energy spectrum, which turned out to be dependent on an introduced scale parameter. By performing a counting of semiclassical states, we prove that the polymer representation reproduces the smooth part of the Riemann-von Mangoldt formula, and also introduces a correction depending on the energy and the scale parameter. This may shed some light on the understanding of the fluctuation behavior of the zeros of the Riemann function from a purely quantum point of view.

  19. Integration of net zero energy building with smart grid to improve regional electrification ratio towards sustainable development

    NASA Astrophysics Data System (ADS)

    Latief, Yusuf; Berawi, Mohammed Ali; Supriadi, Leni; Bintang Koesalamwardi, Ario; Petroceany, Jade; Herzanita, Ayu

    2017-12-01

    Indonesia is currently encouraging its physical, social and economy development. Physical development for economic development have to be supported by energy availability. For Indonesia, 90% of electrification ratio is still become an important task that has to be completed by the Government. However, the effort to increase electrification can become an environmental problem if it’s done with BAU scenario. The by-product of electric generation is the GHG, which increasing every year since 2006 from various sectors i.e. industry, housing, commercial, transportation, and energy. Net Zero Energy Building (NZEB) is an energy efficient building which can produce energy independently from clean and renewable sources. The energy that is generated by NZEB can be used for the building itself, and can be exported to the central grid. The integration of NZEB and Smart Grid can solve today’s issue on electrification ratio. Literature study will find benchmarks which can be applied in Indonesia along with possible obstacles in applying this technology.

  20. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Arcy, Jordan H.; Kolmann, Stephen J.; Jordan, Meredith J. T.

    Quantum and anharmonic effects are investigated in (H{sub 2}){sub 2}–Li{sup +}–benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H{sub 2} molecule to the H{sub 2}–Li{sup +}–benzene complex increases the ZPE of the system by 5.6 kJ mol{sup −1} to 17.6 kJ mol{sup −1}. This ZPE is 42% of the total electronic binding energymore » of (H{sub 2}){sub 2}–Li{sup +}–benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H{sub 2} to H{sub 2}–Li{sup +}–benzene is 7.7 kJ mol{sup −1}, compared to 12.4 kJ mol{sup −1} for the first H{sub 2} molecule. Anharmonicity is found to be even more important when a second (and subsequent) H{sub 2} molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H{sub 2} molecules are found at larger distance from the Li{sup +} ion and are more confined in the θ coordinate than in H{sub 2}–Li{sup +}–benzene. They also show that both H{sub 2} molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H{sub 2} molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H{sub 2}){sub 2}–Li{sup +}–benzene PESs are developed. These use a modified Shepard interpolation for the Li{sup +}–benzene and H{sub 2}–Li{sup +}–benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H{sub 2}–H{sub 2} interaction. Because of the neglect of three-body H{sub 2}, H{sub 2}, Li{sup +} terms, both fragment PESs lead to

  2. Shot noise in systems with semi-Dirac points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Feng; Wang, Juan

    2014-08-14

    We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L{sup 1∕2}. Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly withmore » L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points.« less

  3. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, andmore » passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the

  4. Theory of First Order Chemical Kinetics at the Critical Point of Solution.

    PubMed

    Baird, James K; Lang, Joshua R

    2017-10-26

    Liquid mixtures, which have a phase diagram exhibiting a miscibility gap ending in a critical point of solution, have been used as solvents for chemical reactions. The reaction rate in the forward direction has often been observed to slow down as a function of temperature in the critical region. Theories based upon the Gibbs free energy of reaction as the driving force for chemical change have been invoked to explain this behavior. With the assumption that the reaction is proceeding under relaxation conditions, these theories expand the free energy in a Taylor series about the position of equilibrium. Since the free energy is zero at equilibrium, the leading term in the Taylor series is proportional to the first derivative of the free energy with respect to the extent of reaction. To analyze the critical behavior of this derivative, the theories exploit the principle of critical point isomorphism, which is thought to govern all critical phenomena. They find that the derivative goes to zero in the critical region, which accounts for the slowing down observed in the reaction rate. As has been pointed out, however, most experimental rate investigations have been carried out under irreversible conditions as opposed to relaxation conditions [Shen et al. J. Phys. Chem. A 2015, 119, 8784-8791]. Below, we consider a reaction governed by first order kinetics and invoke transition state theory to take into account the irreversible conditions. We express the apparent activation energy in terms of thermodynamic derivatives evaluated under standard conditions as well as the pseudoequilibrium conditions associated with the reactant and the activated complex. We show that these derivatives approach infinity in the critical region. The apparent activation energy follows this behavior, and its divergence accounts for the slowing down of the reaction rate.

  5. HIA 2016 DOE Zero Energy Ready Home Case Study: United Way of Long Island, United Veterans, Beacon House, Deer Park, NY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Case study of a DOE 2016 Housing Innovation Award winning affordable home in the mixed-humid climate that met the DOE Zero Energy Ready Home criteria and achieved a HERS 32 without PV or HERS 9 with PV.

  6. Exact master equation and non-Markovian decoherence dynamics of Majorana zero modes under gate-induced charge fluctuations

    NASA Astrophysics Data System (ADS)

    Lai, Hon-Lam; Yang, Pei-Yun; Huang, Yu-Wei; Zhang, Wei-Min

    2018-02-01

    In this paper, we use the exact master equation approach to investigate the decoherence dynamics of Majorana zero modes in the Kitaev model, a 1D p -wave spinless topological superconducting chain (TSC) that is disturbed by gate-induced charge fluctuations. The exact master equation is derived by extending Feynman-Vernon influence functional technique to fermionic open systems involving pairing excitations. We obtain the exact master equation for the zero-energy Bogoliubov quasiparticle (bogoliubon) in the TSC, and then transfer it into the master equation for the Majorana zero modes. Within this exact master equation formalism, we can describe in detail the non-Markovian decoherence dynamics of the zero-energy bogoliubon as well as Majorana zero modes under local perturbations. We find that at zero temperature, local charge fluctuations induce level broadening to one of the Majorana zero modes but there is an isolated peak (localized bound state) located at zero energy that partially protects the Majorana zero mode from decoherence. At finite temperatures, the zero-energy localized bound state does not precisely exist, but the coherence of the Majorana zero mode can still be partially but weakly protected, due to the sharp dip of the spectral density near the zero frequency. The decoherence will be enhanced as one increases the charge fluctuations and/or the temperature of the gate.

  7. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    PubMed

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  8. Chaos in a restricted problem of rotation of a rigid body with a fixed point

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; Kilin, A. A.; Mamaev, I. S.

    2008-06-01

    In this paper, we consider the transition to chaos in the phase portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotization are indicated: (1) the growth of the homoclinic structure and (2) the development of cascades of period doubling bifurcations. On the zero level of the area integral, an adiabatic behavior of the system (as the energy tends to zero) is noted. Meander tori induced by the break of the torsion property of the mapping are found.

  9. Army Net Zero Prove Out. Net Zero Energy Best Practices

    DTIC Science & Technology

    2014-11-18

    energy which is then used to drive a heat engine to generate electrical power. Geothermal Power – These systems use thermal energy generated and...stored in the earth as a generating source for electricity. Several pilot installations are investigating this technology by conducting geothermal ...concentrate solar thermal energy which is then used to drive a heat engine to generate electrical power. • Geothermal Power - These systems use thermal energy

  10. Complexes and saddle point structures, vibrational frequencies and relative energies of intermediates for CH2Br + HBr «-» CH3Br + Br

    NASA Astrophysics Data System (ADS)

    Espinosa-Garcia, J.

    Ab initio molecular orbital theory was used to study parts of the reaction between the CH2Br radical and the HBr molecule, and two possibilities were analysed: attack on the hydrogen and attack on the bromine of the HBr molecule. Optimized geometries and harmonic vibrational frequencies were calculated at the second-order Moller-Plesset perturbation theory levels, and comparison with available experimental data was favourable. Then single-point calculations were performed at several higher levels of calculation. In the attack on the hydrogen of HBr, two stationary points were located on the direct hydrogen abstraction reaction path: a very weak hydrogen bonded complex of reactants, C···HBr, close to the reactants, followed by the saddle point (SP). The effects of level of calculation (method + basis set), spin projection, zeropoint energy, thermal corrections (298K), spin-orbit coupling and basis set superposition error (BSSE) on the energy changes were analysed. Taking the reaction enthalpy (298K) as reference, agreement with experiment was obtained only when high correlation energy and large basis sets were used. It was concluded that at room temperature (i.e., with zero-point energy and thermal corrections), when the BSSE was included, the complex disappears and the activation enthalpy (298K) ranges from 0.8kcal mol-1 to 1.4kcal mol-1 above the reactants, depending on the level of calculation. It was concluded also that this result is the balance of a complicated interplay of many factors, which are affected by uncertainties in the theoretical calculations. Finally, another possible complex (X complex), which involves the alkyl radical being attracted to the halogen end of HBr (C···BrH), was explored also. It was concluded that this X complex does not exist at room temperature.

  11. The stationary points and structure of high-energy scattering amplitude

    NASA Astrophysics Data System (ADS)

    Samokhin, A. P.; Petrov, V. A.

    2018-06-01

    The ISR and the 7 TeV LHC data indicate that the differential cross-section of elastic proton-proton scattering remains almost energy-independent at the transferred momentum t ≈ - 0.21GeV2 at the level of ≈ 7.5 mb /GeV2. This property of dσ / dt (the "first" stationary point) appears due to the correlated growth of the total cross-section and the local slope parameter and can be expressed as a relation between the latter quantities. We anticipate that this property will be true up to 13 TeV. This enables us to normalize the preliminary TOTEM data for dσ / dt at 13 TeV and 0.05 < | t | < 3.4GeV2 and predict the values of dσ / dt at this energy. These data give an evidence of the second stationary point at t ≈ - 2.3GeV2 at the level of ≈ 33 nb /GeV2. The energy evolution of dσ / dt looks as if the high energy elastic scattering amplitude is a sum of two similar terms. We argue that the existence of the two stationary points and the two-component structure of the high energy elastic scattering amplitude are general properties for all elastic processes.

  12. Analytic second derivatives of the energy in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Nakata, Hiroya; Nagata, Takeshi; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Nakamura, Shinichiro

    2013-04-01

    We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in SN2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm-1 in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed.

  13. Zero-crossing statistics for non-Markovian time series.

    PubMed

    Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias

    2018-03-01

    In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

  14. Zero-crossing statistics for non-Markovian time series

    NASA Astrophysics Data System (ADS)

    Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias

    2018-03-01

    In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

  15. 78 FR 72673 - Zero Rate Reactive Power Rate Schedules; Notice of Staff Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD14-1-000] Zero Rate Reactive Power Rate Schedules; Notice of Staff Workshop This notice establishes the location and date for... located at: https://www.ferc.gov/whats-new/registration/zero-rate-12-11-13-form.asp . The workshop will...

  16. A Robust Zero-Watermarking Algorithm for Audio

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhu, Jie

    2007-12-01

    In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.

  17. The patient-zero problem with noisy observations

    NASA Astrophysics Data System (ADS)

    Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; Ingrosso, Alessandro; Zecchina, Riccardo

    2014-10-01

    A belief propagation approach has been recently proposed for the patient-zero problem in SIR epidemics. The patient-zero problem consists of finding the initial source of an epidemic outbreak given observations at a later time. In this work, we study a more difficult but related inference problem, in which observations are noisy and there is confusion between observed states. In addition to studying the patient-zero problem, we also tackle the problem of completing and correcting the observations to possibly find undiscovered infected individuals and false test results. Moreover, we devise a set of equations, based on the variational expression of the Bethe free energy, to find the patient-zero along with maximum-likelihood epidemic parameters. We show, by means of simulated epidemics, that this method is able to infer details on the past history of an epidemic outbreak based solely on the topology of the contact network and a single snapshot of partial and noisy observations.

  18. Third-Order Incremental Dual-Basis Set Zero-Buffer Approach: An Accurate and Efficient Way To Obtain CCSD and CCSD(T) Energies.

    PubMed

    Zhang, Jun; Dolg, Michael

    2013-07-09

    An efficient way to obtain accurate CCSD and CCSD(T) energies for large systems, i.e., the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), has been developed and tested. This approach combines the powerful incremental scheme with the dual-basis set method, and along with the new proposed K-means clustering (KM) method and zero-buffer (B0) approximation, can obtain very accurate absolute and relative energies efficiently. We tested the approach for 10 systems of different chemical nature, i.e., intermolecular interactions including hydrogen bonding, dispersion interaction, and halogen bonding; an intramolecular rearrangement reaction; aliphatic and conjugated hydrocarbon chains; three compact covalent molecules; and a water cluster. The results show that the errors for relative energies are <1.94 kJ/mol (or 0.46 kcal/mol), for absolute energies of <0.0026 hartree. By parallelization, our approach can be applied to molecules of more than 30 atoms and more than 100 correlated electrons with high-quality basis set such as cc-pVDZ or cc-pVTZ, saving computational cost by a factor of more than 10-20, compared to traditional implementation. The physical reasons of the success of the inc3-db-B0 approach are also analyzed.

  19. Cation-Cation pi-pi Stacking in Small Ionic Clusters of 1,2,4-Triazolium

    DTIC Science & Technology

    2008-01-01

    ZPE ) obtained with MP2/aug-cc-pVDZ harmonic vibrational frequencies, the ionic tetramer is 1.2 kcal/mol lower in energy than that of the neutral one...respectively. Including ZPE , these three values become 5.7, 7.3, and 7.7 kcal/mol, respectively. Further corrections for the basis set effects from aug-cc-pVDZ

  20. Experimental Determination of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity

    NASA Technical Reports Server (NTRS)

    Shogrin, Bradley A.; Jones, William R., Jr.; Kingsbury, Edward P.; Prahl, Joseph M.

    1999-01-01

    A capacitance technique was used to monitor the film thickness separating two steel balls of a unique tribometer while subjecting the ball-ball contact to highly stressed, zero entrainment velocity (ZEV) conditions. All tests were performed under a N2 purge (R.H. < 1.0%) and utilized 52100 steel balls (R(sub a) = 0.02 mm). Tribometer operations and capacitance-to-film-thickness accuracy were verified by comparing the film thickness approximations to established theoretical predictions for test conditions involving pure rolling. Pure rolling experiments were performed under maximum contact stresses and entrainment velocities of 1.0 GPa and 1.0 m/s to 3.0 m/s, respectively. All data from these baseline tests conformed to theory. ZEV tests were initiated after calibration of the tribometer and verification of film thickness approximation accuracy. Maximum contact stresses up to 0.57 GPa were supported at zero entrainment velocity with sliding speeds from 6.0 to 10.0 m/s for sustained amounts of time up to 28.8 minutes. The protective lubricating film separating the specimens at ZEV had a thickness between 0.10 and 0.14 mm (4 to 6 min), which corresponds to an approximate L-value of 4. The film thickness did not have a strong dependence upon variations of load or speed. Decreasing the sliding speed from 10.0 m/s to 1 m/s revealed a rapid loss in load support between 3.0 and 1.0 m/s. The formation of an immobile film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at these zero entrainment velocity conditions, relevant to the ball-ball contact application in retainerless ball bearings.

  1. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    NASA Astrophysics Data System (ADS)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  2. 75 FR 68607 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-001] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing November 1, 2010. Take notice that on October 28, 2010, CenterPoint Energy--Illinois Gas Transmission Company submitted a revised...

  3. Zero kinetic energy spectroscopy: mass-analyzed threshold ionization spectra of chromium sandwich complexes with alkylbenzenes, (η(6)-RPh)(2)Cr (R = Me, Et, i-Pr, t-Bu).

    PubMed

    Ketkov, Sergey Y; Selzle, Heinrich L; Cloke, F Geoffrey N; Markin, Gennady V; Shevelev, Yury A; Domrachev, Georgy A; Schlag, Edward W

    2010-10-28

    For over 25 years zero kinetic energy (ZEKE) spectroscopy has yielded a rich foundation of high-resolution results of molecular ions. This was based on the discovery in the late 60's of long-lived ion states throughout the ionization continuum of molecular ions. Here, an example is chosen from another fundamental system pioneered at this university. The mass-analyzed threshold ionization (MATI) spectra of jet-cooled chromium bisarene complexes (η(6)-RPh)(2)Cr (R = Me (1), Et (2), i-Pr (3), and t-Bu (4)) have been measured and interpreted on the basis of DFT calculations. The MATI spectra of complexes 1 and 2 appear to reveal features arising from ionizations of the isomers formed by the rotation of one arene ring relative to the other. The 1 and 2 MATI spectra show two intense peaks corresponding to the 0(0)(0) ionizations with inverse intensity ratios. As indicated by the DFT calculations, the intensity ratio change on going from 1 to 2 results from different isomers contributing to each MATI peak. The ionization energies corresponding to the 0(0)(0) peaks are 42746 ± 5 and 42809 ± 5 cm(-1) for compound 1 and 42379 ± 5 and 42463 ± 5 cm(-1) for complex 2. The 1 and 2 spectra show also the weaker features representing transitions to the vibrationally excited cationic levels, the signals of individual rotamers being detected and assigned on the basis of calculated vibrational frequencies. The MATI spectra of compounds 3 and 4 reveal only one strong peak because of close ionization potentials of the isomers contributing to the MATI signal. The 3 and 4 ionization energies are 42104 ± 5 and 41917 ± 5 cm(-1), respectively. The precise values of ionization energies obtained from the MATI spectra reveal a nonlinear dependence of the IE on the number of Me groups in the alkyl substituents of (η(6)-RPh)(2)Cr. This can be explained by an increase in the molecular zero point energies on methylation of the substituents.

  4. Photonic simulation of topological superconductor edge state and zero-energy mode at a vortex

    PubMed Central

    Tan, Wei; Chen, Liang; Ji, Xia; Lin, Hai-Qing

    2014-01-01

    Photonic simulations of quantum Hall edge states and topological insulators have inspired considerable interest in recent years. Interestingly, there are theoretical predictions for another type of topological states in topological superconductors, but debates over their experimental observations still remain. Here we investigate the photonic analogue of the px + ipy model of topological superconductor. Two essential characteristics of topological superconductor, particle-hole symmetry and px + ipy pairing potentials, are well emulated in photonic systems. Its topological features are presented by chiral edge state and zero-energy mode at a vortex. This work may fertilize the study of photonic topological states, and open up the possibility for emulating wave behaviors in superconductors. PMID:25488408

  5. New Whole-House Case Study: Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-11-01

    In 2009, Transformations, Inc. partnered with Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE’s Challenge Home. The super-insulated houses provide data for several research topics in a cold climate. BSCmore » studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners’ perceptions of equipment performance. BSC also examined the developer’s financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.« less

  6. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.

    PubMed

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto

    2011-02-28

    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  7. Constraints on texture zero and cofactor zero models for neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  8. Near Zero Energy House (NZEH) Design Optimization to Improve Life Cycle Cost Performance Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.

    2018-03-01

    Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.

  9. Renormalized Energy Concentration in Random Matrices

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Serfaty, Sylvia

    2013-05-01

    We define a "renormalized energy" as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of Sandier and Serfaty (From the Ginzburg-Landau model to vortex lattice problems, 2012; 1D log-gases and the renormalized energy, 2013). Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β-sine processes on the real line ( β = 1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the β = 2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.

  10. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Astrophysics Data System (ADS)

    Ravex, Alain; Flachbart, Robin; Holt, Barney

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6

  11. The melting point of lithium: an orbital-free first-principles molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Hung, Linda; Huang, Chen

    2013-08-25

    The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453more » K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.« less

  12. 76 FR 70713 - Carbon Zero, LLC; Notice of Application Tendered for Filing With the Commission and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14308-000] Carbon Zero, LLC.... c. Date Filed: October 24, 2011. d. Applicant: Carbon Zero, LLC. e. Name of Project: Vermont Tissue..., Carbon Zero, LLC, P.O. Box 338, North Bennington, VT 05257; (802) 442-0311; [email protected] . i. FERC...

  13. Symmetry-protected zero-mode laser with a tunable spatial profile

    NASA Astrophysics Data System (ADS)

    Ge, Li

    Majorana zero modes in condense matter systems have attracted considerable interest in topological quantum computation. In contrast, while robust zero modes have been observed in various photonic lattices, it remains an open question whether they can be used for the same purpose. To advance significantly the state-of-the-art in zero-mode photonics, new inspirations are needed for a better design and control of photonic systems. Using the zero modes protected by non-Hermitian particle-hole symmetry in a photonic lattice and the spatial degrees of freedom they offer, we propose a single-mode, fixed-frequency, and spatially tunable zero-mode laser. The system does not need to have zero modes before a localized pump is applied; they are created by the spontaneous restoration of particle-hole symmetry. By modifying this process using different pump configurations, we present a versatile way to tune the spatial profile of our zero-mode laser, with its lasing frequency pinned at the zero energy. Such a zero-mode laser may find applications in telecommunication, where spatial encoding is held by some to be last frontier of signal processing. This project is supported by the NSF under Grant No. DMR-1506987.

  14. Technical and economic analysis use of flare gas into alternative energy as a breakthrough in achieving zero routine flaring

    NASA Astrophysics Data System (ADS)

    Petri, Y.; Juliza, H.; Humala, N.

    2018-03-01

    The activity of exploring natural oil and gas will produce gas flare 0.584 MMSCFD. A gas flare is the combustion of gas remaining to avoid poisonous gas like H2S and CO which is very dangerous for human and environmental health. The combustion can bring about environmental pollution and losses because it still contains valuable energy. It needs the policy to encourage the use of flare gas with Zero Routine Flaring and green productivity to reduce waste and pollution. The objective of the research was to determine the use of gas flare so that it will have economic value and can achieve Zero Routine Flaring. It was started by analysing based on volume or rate and composition gas flare was used to determine technical feasibility, and the estimation of the gas reserves as the determination of the economy of a gas well. The results showed that the use of flare gas as fuel for power generation feasible to be implemented technically and economically with Internal Rate of Return (IRR) 19.32% and the Payback Period (PP) 5 year. Thus, it can increase gas flare value economically and can achieve a breakthrough in Zero Routine Flaring.

  15. Zero energy-storage ballast for compact fluorescent lamps

    DOEpatents

    Schultz, William Newell; Thomas, Robert James

    1999-01-01

    A CFL ballast includes complementary-type switching devices connected in series with their gates connected together at a control node. The switching devices supply a resonant tank circuit which is tuned to a frequency near, but slightly lower than, the resonant frequency of a resonant control circuit. As a result, the tank circuit restarts oscillations immediately following each zero crossing of the bus voltage. Such rapid restarts avoid undesirable flickering while maintaining the operational advantages and high efficacy of the CFL ballast.

  16. DOE Zero Energy Ready Home Case Study: John Hubert Associates — EXIT-0 House, North Cape May, NJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This house is the first DOE Zero Energy Ready Home for this builder and won a Custom Builder award in the 2014 Housing Innovation Awards. The 1,871-ft2 home features advanced-framed above-grade walls with R-21 fiberglass batt plus an R-3.6-insulated coated OSB sheathing, R-18 rigid-foam-insulated crawlspace walls, solar water heating, a high-efficiency heat pump, an HRV, and mostly LED lighting.

  17. Business Solutions Case Study: Marketing Zero Energy Homes: LifeStyle Homes, Melbourne, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Building America research has shown that high-performance homes can potentially give builders an edge in the marketplace and can boost sales. But it doesn't happen automatically. It requires a tailored, easy to understand marketing campaign and sometimes a little flair. This case study highlights LifeStyle Homes’ successful marketing approach for their SunSmart home package, which has helped to boost sales for the company. SunSmart marketing includes a modified logo, weekly blog, social media, traditional advertising, website, and sales staff training. Marketing focuses on quality, durability, healthy indoor air, and energy efficiency with an emphasis on the surety of third-party verificationmore » and the scientific approach to developing the SunSmart package. With the introduction of SunSmart, LifeStyle began an early recovery, nearly doubling sales in 2010; SunSmart sales now exceed 300 homes, including more than 20 zero energy homes. Completed homes in 2014 far outpaced the national (19%) and southern census region (27%) recovery rates for the same period. As technology improves and evolves, this builder will continue to collaborate with Building America.« less

  18. Explicit hydration of ammonium ion by correlated methods employing molecular tailoring approach

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Verma, Rahul; Wagle, Swapnil; Gadre, Shridhar R.

    2017-11-01

    Explicit hydration studies of ions require accurate estimation of interaction energies. This work explores the explicit hydration of the ammonium ion (NH4+) employing Møller-Plesset second order (MP2) perturbation theory, an accurate yet relatively less expensive correlated method. Several initial geometries of NH4+(H2O)n (n = 4 to 13) clusters are subjected to MP2 level geometry optimisation with correlation consistent aug-cc-pVDZ (aVDZ) basis set. For large clusters (viz. n > 8), molecular tailoring approach (MTA) is used for single point energy evaluation at MP2/aVTZ level for the estimation of MP2 level binding energies (BEs) at complete basis set (CBS) limit. The minimal nature of the clusters upto n ≤ 8 is confirmed by performing vibrational frequency calculations at MP2/aVDZ level of theory, whereas for larger clusters (9 ≤ n ≤ 13) such calculations are effected via grafted MTA (GMTA) method. The zero point energy (ZPE) corrections are done for all the isomers lying within 1 kcal/mol of the lowest energy one. The resulting frequencies in N-H region (2900-3500 cm-1) and in O-H stretching region (3300-3900 cm-1) are in found to be in excellent agreement with the available experimental findings for 4 ≤ n ≤ 13. Furthermore, GMTA is also applied for calculating the BEs of these clusters at coupled cluster singles and doubles with perturbative triples (CCSD(T)) level of theory with aVDZ basis set. This work thus represents an art of the possible on contemporary multi-core computers for studying explicit molecular hydration at correlated level theories.

  19. Zero/zero rotorcraft certification issues. Volume 2: Plenary session presentations

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1988-01-01

    This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is that zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will extremely low visibility operations be economically feasible. This is Volume 2 of three. It presents the operator perspectives (system needs), applicable technology and zero/zero concepts developed in the first 12 months of research of this project.

  20. 77 FR 34380 - CenterPoint Energy Gas Transmission Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... injection and since CenterPoint can no longer purchase replacement parts for the existing compressor unit... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-467-000] CenterPoint... May 22, 2012, CenterPoint Energy Gas Transmission Company, LLC (CenterPoint), 1111 Louisiana Street...

  1. Solvent effects on the excited-state double proton transfer mechanism in the 7-azaindole dimer: a TDDFT study with the polarizable continuum model.

    PubMed

    Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2017-08-30

    Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.

  2. Zero energy-storage ballast for compact fluorescent lamps

    DOEpatents

    Schultz, W.N.; Thomas, R.J.

    1999-08-31

    A CFL ballast includes complementary-type switching devices connected in series with their gates connected together at a control node. The switching devices supply a resonant tank circuit which is tuned to a frequency near, but slightly lower than, the resonant frequency of a resonant control circuit. As a result, the tank circuit restarts oscillations immediately following each zero crossing of the bus voltage. Such rapid restarts avoid undesirable flickering while maintaining the operational advantages and high efficacy of the CFL ballast. 4 figs.

  3. New Whole-House Solutions Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Springer and A. German

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. An objective of this project was to gain a highly visible foothold for residential buildings built to themore » DOE ZERH specification that can be used to encourage participation by other California builders.« less

  4. Teacher Candidates Research, Teach, and Learn in the Nation's First Net Zero School

    ERIC Educational Resources Information Center

    Murley, Lisa D.; Gandy, S. Kay; Huss, Jeanine M.

    2017-01-01

    Teacher candidates conducted field hours in the nation's first net zero school, which uses the same amount of energy, measured annually, as it produces. These teacher candidates saw firsthand integration of the net zero advantages by completing a Collaborative Research Project and a Net Zero Lesson, which incorporated the use of the net zero…

  5. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace.

    PubMed

    Pyshkin, P V; Luo, Da-Wei; Jing, Jun; You, J Q; Wu, Lian-Ao

    2016-11-25

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.

  6. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    NASA Astrophysics Data System (ADS)

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  7. Experimental Determination of Dynamical Lee-Yang Zeros

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Maisi, Ville F.; Pekola, Jukka P.; Garrahan, Juan P.; Flindt, Christian

    2017-05-01

    Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros—complex singularities of the free energy in systems of finite size—have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize nonequilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such nonequilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.

  8. 77 FR 14009 - Carbon Zero, LLC.; Notice of Application Tendered for Filing With the Commission, Intent To Waive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14308-001] Carbon Zero, LLC...: February 17, 2012. d. Applicant: Carbon Zero, LLC. e. Name of Project: Vermont Tissue Mill Hydroelectric.... 791(a)-825(r). h. Applicant Contact: William F. Scully, Carbon Zero, LLC., P.O. Box 338, North...

  9. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    NASA Astrophysics Data System (ADS)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  10. 75 FR 14206 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-266 And 50-301; NRC-2010-0123 FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant to...

  11. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er2O3.

    PubMed

    Huang, Bolong

    2016-05-11

    We investigated the mechanism of the intrinsic persistent luminescence of Er2O3 in the A-type lattice based on first-principles calculations. We found that the native point defects were engaged in mutual subtle interactions in the form of chemical reactions between different charge states. The release of energy related to lattice distortion facilitates the conversion of energy for electrons to be transported between the valence band and the trap levels or even between the deep trap levels so as to generate persistent luminescence. The defect transitions that take place along the zero-phonon line release energy to enable optical transitions, with the exact amount of negative effective correlation energy determined by the lattice distortions. Our calculations on the thermodynamic transition levels confirm that both the visible and NIR experimentally observed intrinsic persistent luminescence (phosphor or afterglow) are related to the thermodynamic transition levels of oxygen-related defects, and the thermodynamic transition levels within different charge states for these defects are independent of the chemical potentials of the given species. Lattice distortion defects such as anion Frenkel (a-Fr) pair defects play an important role in transporting O-related defects between different lattice sites. To obtain red persistent luminescence that matches the biological therapeutic window, it is suggested to increase the electron transition levels between high-coordinated O vacancies and related metastable a-Fr defects; a close-packed core-shell structure is required to quench low-coordinated O-related defects so as to reduce the green band luminescence. We further established a conversed chain reaction (CCR) model to interpret the energy conversion process of persistent luminescence in terms of the inter-reactions of native point defects between different charge states. It is advantageous to use the study of defect levels combined with formation energies to suggest limits

  12. Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels.

    PubMed

    Huang, Bolong; Sun, Mingzi

    2017-04-05

    An energy conversion model has been established for the intrinsic persistent luminescence in solids related to the native point defect levels, formations, and transitions. In this study, we showed how the recombination of charge carriers between different defect levels along the zero phonon line (ZPL) can lead to energy conversions supporting the intrinsic persistent phosphorescence in solids. This suggests that the key driving force for this optical phenomenon is the pair of electrons hopping between different charged defects with negative-U eff . Such a negative correlation energy will provide a sustainable energy source for electron-holes to further recombine in a new cycle with a specific quantum yield. This will help us to understand the intrinsic persistent luminescence with respect to native point defect levels as well as the correlations of electronics and energetics.

  13. Net-Zero Energy Home Grows Up: Lessons and Puzzles from 10 Years of Data; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparn, Bethany; Earle, Lieko; Christensen, Craig

    In 2005, Habitat for Humanity of Metro Denver, with support from NREL and other partners, built one of the first homes in the US to achieve net-zero energy based on monitored data. A family of three moved into the house when it was completed and lives there still. The home has been monitored continuously for the past ten years. Although PV production has remained steady, net energy performance has varied each year. The home was a net producer of energy annually in each of the first three years and in the ninth year, but not in years four through eight.more » Over the years, the PV system provided between 124% and 64% of the home source energy use. Electricity use in the home increased steadily during the first eight years, even though no significant new appliance was introduced into the house, such as a window air conditioner. Miscellaneous electric loads and space heating, both strongly dependent on occupant behavior, appear to be primarily responsible for the observed increase in energy use. An interesting aspect of this case study is how, even within a single family, natural changes in occupant lifestyles over time (e.g., kids growing up, schedules changing) can substantially impact the overall energy intensity of a home. Data from the last ten years will be explored for lessons learned that can improve the way we design low-load homes without sacrificing comfort or convenience for the occupants, and how we can make realistic predictions of long-term energy performance.« less

  14. A Net-Zero Energy Home Grows Up: Lessons and Puzzles from 10 Years of Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparn, Bethany; Earle, Lieko; Christensen, Craig

    In 2005, Habitat for Humanity of Metro Denver, with support from NREL and other partners, built one of the first homes in the US to achieve net-zero energy based on monitored data. A family of three moved into the house when it was completed and lives there still. The home has been monitored continuously for the past ten years. Although PV production has remained steady, net energy performance has varied each year. The home was a net producer of energy annually in each of the first three years and in the ninth year, but not in years four through eight.more » Over the years, the PV system provided between 124% and 64% of the home source energy use. Electricity use in the home increased steadily during the first eight years, even though no significant new appliance was introduced into the house, such as a window air conditioner. Miscellaneous electric loads and space heating, both strongly dependent on occupant behavior, appear to be primarily responsible for the observed increase in energy use. An interesting aspect of this case study is how, even within a single family, natural changes in occupant lifestyles over time (e.g., kids growing up, schedules changing) can substantially impact the overall energy intensity of a home. Data from the last ten years will be explored for lessons learned that can improve the way we design low-load homes without sacrificing comfort or convenience for the occupants, and how we can make realistic predictions of long-term energy performance.« less

  15. When zero is greater than one: consumer misinterpretations of nutrition labels.

    PubMed

    Graham, Dan J; Mohr, Gina S

    2014-12-01

    Front-of-package (FOP) nutrition labels are increasingly used by food manufacturers. A call to regulate the content and format of these labels resulted in recommendations by the Institute of Medicine (IOM) for standardized FOP labels that clearly communicate packaged foods' healthfulness. It is currently unclear how consumers would interpret and use these proposed labels. This research addresses psychological factors affecting the efficacy of FOP label use. It was hypothesized that IOM's proposed 0- to 3-point rating scale would produce the zero-comparison effect, leading to more favorable evaluations than are warranted for the least healthful products (i.e., those earning zero nutritional points). In two studies (Study 1, n = 68; Study 2, n = 101), participants evaluated products containing FOP labels on the basis of IOM recommendations. Primary outcomes were perceived product healthfulness and purchase intentions. Study 1 demonstrated that less-healthful products were rated by study participants to be equally healthful as more-healthful products. The relationship between FOP rating and purchase intentions was mediated by perceived healthfulness. Biases in product healthfulness ratings were exacerbated for consumers with higher (vs. lower) health concern. Study 2 demonstrated that by changing the rating scale from 0-3 to 1-4, consumers avoid the zero-comparison effect and accurately evaluate products' healthfulness. This research has implications for theory and policy in the domains of nutrition labeling and consumer health. Specifically, FOP labels can help consumers identify healthful options, but products receiving zero nutritional points may be misidentified as healthful; a simple label modification can prevent this confusion.

  16. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    NASA Astrophysics Data System (ADS)

    Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.

    2008-01-01

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.

  17. Acoustic power of a moving point source in a moving medium

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Sarris, I. I.

    1976-01-01

    The acoustic power output of a moving point-mass source in an acoustic medium which is in uniform motion and infinite in extent is examined. The acoustic medium is considered to be a homogeneous fluid having both zero viscosity and zero thermal conductivity. Two expressions for the acoustic power output are obtained based on a different definition cited in the literature for the average energy-flux vector in an acoustic medium in uniform motion. The acoustic power output of the source is found by integrating the component of acoustic intensity vector in the radial direction over the surface of an infinitely long cylinder which is within the medium and encloses the line of motion of the source. One of the power expressions is found to give unreasonable results even though the flow is uniform.

  18. Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Masdemont, J. J.; Gómez, G.; Macau, E. E.; Winter, O. C.

    2014-11-01

    Assume a constellation of satellites is flying near a given nominal trajectory around L4 or L5 in the Earth-Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4 or L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth-Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.

  19. On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.

    PubMed

    Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y

    2014-03-26

    We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.

  20. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace

    PubMed Central

    Pyshkin, P. V.; Luo, Da-Wei; Jing, Jun; You, J. Q.; Wu, Lian-Ao

    2016-01-01

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol. PMID:27886234

  1. Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Ekadashi; Brown, Alex, E-mail: alex.brown@ualberta.ca

    2016-05-07

    A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm{sup −1}) up to 10 000 cm{sup −1} above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxationmore » with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm{sup −1} above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control.« less

  2. Vibrational structure of vinyl chloride cation studied by using one-photon zero-kinetic energy photoelectron spectroscopy.

    PubMed

    Zhang, Ping; Li, Juan; Mo, Yuxiang

    2007-09-06

    The vibrational structure of vinyl chloride cation, CH(2)CHCl+ (X(2)A' '), has been studied by vacuum ultraviolet (VUV) zero-kinetic energy (ZEKE) photoelectron spectroscopy. Among nine symmetric vibrational modes, the fundamental frequencies of six modes have been determined. The first overtone of the out-of-plane CH(2) twist vibrational mode has been also measured. In addition to these, the combination and overtone bands of the above vibrational modes about 4500 cm(-1) above the ground state have been observed in the ZEKE spectrum. The vibrational band intensities of the ZEKE spectrum can be described approximately by the Franck-Condon factors with harmonic approximation. The ZEKE spectrum has been assigned based on the harmonic frequencies and Franck-Condon factors from theoretical calculations. The ionization energy (IE) of CH(2)CHCl is determined as 80705.5 +/- 2.5 (cm(-1)) or 10.0062 +/- 0.0003 (eV).

  3. 2014 Zero Waste Strategic Plan Executive Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wrons, Ralph J.

    Sandia National Laboratories/New Mexico is located in Albuquerque, New Mexico, primarily on Department of Energy (DOE) permitted land on approximately 2,800 acres of Kirtland Air Force Base. There are approximately 5.5 million square feet of buildings, with a workforce of approximately 9200 personnel. Sandia National Laboratories Materials Sustainability and Pollution Prevention (MSP2) program adopted in 2008 an internal team goal for New Mexico site operations for Zero Waste to Landfill by 2025. Sandia solicited a consultant to assist in the development of a Zero Waste Strategic Plan. The Zero Waste Consultant Team selected is a partnership of SBM Management Servicesmore » and Gary Liss & Associates. The scope of this Plan is non-hazardous solid waste and covers the life cycle of material purchases to the use and final disposal of the items at the end of their life cycle.« less

  4. Calculation of zero-offset vertical seismic profiles generated by a horizontal point force acting on the surface of an elastic half-space

    USGS Publications Warehouse

    Hsi-Ping, Liu

    1990-01-01

    Impulse responses including near-field terms have been obtained in closed form for the zero-offset vertical seismic profiles generated by a horizontal point force acting on the surface of an elastic half-space. The method is based on the correspondence principle. Through transformation of variables, the Fourier transform of the elastic impulse response is put in a form such that the Fourier transform of the corresponding anelastic impulse response can be expressed as elementary functions and their definite integrals involving distance angular frequency, phase velocities, and attenuation factors. These results are used for accurate calculation of shear-wave arrival rise times of synthetic seismograms needed for data interpretation of anelastic-attenuation measurements in near-surface sediment. -Author

  5. Ground-state-entanglement bound for quantum energy teleportation of general spin-chain models

    NASA Astrophysics Data System (ADS)

    Hotta, Masahiro

    2013-03-01

    Many-body quantum systems in the ground states have zero-point energy due to the uncertainty relation. In many cases, the system in the ground state accompanies spatially entangled energy density fluctuation via the noncommutativity of the energy density operators, though the total energy takes a fixed value, i.e., the lowest eigenvalue of the Hamiltonian. Quantum energy teleportation (QET) is a protocol for the extraction of the zero-point energy out of one subsystem using information of a remote measurement of another subsystem. From an operational viewpoint of protocol users, QET can be regarded as an effective rapid energy transportation without breaking all physical laws, including causality and local energy conservation. In the protocol, the ground-state entanglement plays a crucial role. In this paper, we show analytically for a general class of spin-chain systems that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET. The result may also deepen our understanding of the energy density fluctuation in condensed-matter systems from a perspective of quantum information theory.

  6. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2018-01-01

    Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

  7. Statistical model and first-principles simulation on concentration of HenV cluster and He bubble formation in α-Fe and W

    NASA Astrophysics Data System (ADS)

    Liu, Yue-Lin; Yu, Yang; Dai, Zhen-Hong

    2015-01-01

    Using first-principles calculations, we investigate the stabilities of He and Hen-vacancy (HenV) clusters in α-Fe and W. Vacancy formation energies are 2.08 eV in α-Fe and 3.11 eV in W, respectively. Single He in both α-Fe and W prefers to occupy the tetrahedral interstitial site. We recalculated the He solution energy considering the effect of zero-point energy (ZPE). The ZPEs of He in α-Fe and W at the tetrahedral (octahedral) interstitial site are 0.072 eV (0.031 eV) and 0.078 eV (0.034 eV), respectively. The trapping energies of single He at vacancy in α-Fe and W are -2.39 eV and -4.55 eV, respectively. By sequentially adding He into vacancy, a monovacancy trap up to 10 He atoms distributing in the vacancy vicinity. Based on the above results combined with statistical model, we evaluate the concentrations of all relevant HenV clusters as a function of He chemical potential. The critical HenV concentration is found to be ∼10-40 (atomic) at the critical temperature T = 600 K in α-Fe and T = 1600 K in W, respectively. Beyond the critical HenV concentrations, considerable HenV aggregate to form HenVm clusters. By further growing of HenVm, the HenVm clusters grow bigger resulting in the larger He bubble formation.

  8. Do semiclassical zero temperature black holes exist?

    PubMed

    Anderson, P R; Hiscock, W A; Taylor, B E

    2000-09-18

    The semiclassical Einstein equations are solved to first order in epsilon = Planck's over 2pi/M2 for the case of a Reissner-Nordström black hole perturbed by the vacuum stress energy of quantized free fields. Massless and massive fields of spin 0, 1/2, and 1 are considered. We show that in all physically realistic cases, macroscopic zero temperature black hole solutions do not exist. Any static zero temperature semiclassical black hole solutions must then be microscopic and isolated in the space of solutions; they do not join smoothly onto the classical extreme Reissner-Nordström solution as epsilon-->0.

  9. Polish Experience of Implementing Vision Zero.

    PubMed

    Jamroz, Kazimierz; Michalski, Lech; Żukowska, Joanna

    2017-01-01

    The aim of this study is to present an outline and the principles of Poland's road safety strategic programming as it has developed over the last 25 years since the first Integrated Road Safety System with a strong focus on Sweden's "Vision Zero". Countries that have successfully improved road safety have done so by following strategies centred around the idea that people are not infallible and will make mistakes. The human body can only take a limited amount of energy upon impact, so roads, vehicles and road safety programmes must be designed to address this. The article gives a summary of Poland's experience of programming preventative measures that have "Vision Zero" as their basis. It evaluates the effectiveness of relevant programmes.

  10. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.

    PubMed

    Cheung, W M; Chan, K S

    2017-06-01

    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  11. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    NASA Astrophysics Data System (ADS)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  12. Marangoni bubble motion in zero gravity. [Lewis zero gravity drop tower

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Dewitt, K. J.

    1979-01-01

    It was shown experimentally that the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low gravity environment. A mathematical model consisting of the Navier-Stokes and thermal energy equations, together with the appropriate boundary conditions for both media, is presented. Parameter perturbation theory is used to solve this boundary value problem; the expansion parameter is the Marangoni number. The zeroth, first, and second order approximations for the velocity, temperature and pressure distributions in the liquid and in the bubble, and the deformation and terminal velocity of the bubble are determined. Experimental zero gravity data for a nitrogen bubble in ethylene glycol, ethanol, and silicone oil subjected to a linear temperature gradient were obtained using the NASA Lewis zero gravity drop tower. Comparison of the zeroth order analytical results for the bubble terminal velocity showed good agreement with the experimental measurements. The first and second order solutions for the bubble deformation and bubble terminal velocity are valid for liquids having Prandtl numbers on the order of one, but there is a lack of appropriate data to test the theory fully.

  13. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  14. Two-Point Resistance of a Non-Regular Cylindrical Network with a Zero Resistor Axis and Two Arbitrary Boundaries

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Zhong

    2017-03-01

    We study a problem of two-point resistance in a non-regular m × n cylindrical network with a zero resistor axis and two arbitrary boundaries by means of the Recursion-Transform method. This is a new problem never solved before, the Green’s function technique and the Laplacian matrix approach are invalid in this case. A disordered network with arbitrary boundaries is a basic model in many physical systems or real world systems, however looking for the exact calculation of the resistance of a binary resistor network is important but difficult in the case of the arbitrary boundaries, the boundary is like a wall or trap which affects the behavior of finite network. In this paper we obtain a general resistance formula of a non-regular m × n cylindrical network, which is composed of a single summation. Further, the current distribution is given explicitly as a byproduct of the method. As applications, several interesting results are derived by making special cases from the general formula. Supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK20161278

  15. Design options analysis for a zero energy block of flats in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Soulti, Eleni

    Human activities and to a smaller degree other reasons have led to climate change. This is evident in meteorological phenomena and natural procedures which are constantly subject to modifications. Recent studies prove that a great percentage of the CO2 emissions, which are partly responsible for the climate change, are produced by buildings. In fact, a big part of them belongs to the residential sector. Countries like UK are quite aware of this problem, its causes, its consequences, as well as of some remedies that can at least limit the damage. Therefore, they develop the appropriate legislation, in an effort to decrease the problems and limit its causes. Greece, on the other hand, has been quite ineffective until now. Hopefully the new legislation will constrain the causes of the problem, in all sectors, including the building domain. This study involves designing a zero energy block of flats in Athens, with climatic data and environmental parameters taken into consideration from the initial steps of the design procedure. Appropriate software has been used in order to observe the improvement of thermal comfort conditions by changing the building design and using various strategies for passive cooling and heating. The predicted consumption of electricity, heating and cooling loads have been calculated and renewable sources of energy have been used in order to meet those needs. The economical analysis demonstrated that this type of building, is not only energy efficient and thermally comfortable for its occupants, but also economically profitable, especially with regard to the benefit of the occupants and the environment. In fact, it is only 11.2% more expensive to construct such a building, while its energy performance reduces the amount of CO2 emissions. The aim is to widely implement this type of buildings, which can have a significant effect on environmental, economical and social development related issues.

  16. Thermal Simulation of a Zero Energy Glazed Pavilion in Sofia, Bulgaria. New Strategies for Energy Management by Means of Water Flow Glazing

    NASA Astrophysics Data System (ADS)

    del Ama Gonzalo, Fernando; Hernandez Ramos, Juan A.; Moreno, Belen

    2017-10-01

    The building sector is primarily responsible for a major part of total energy consumption. The European Energy Performance of Buildings Directives (EPBD) emphasized the need to reduce the energy consumption in buildings, and put forward the rationale for developing Near to Zero Energy Buildings (NZEB). Passive and active strategies help architects to minimize the use of active HVAC systems, taking advantage of the available natural resources such as solar radiation, thermal variability and daylight. The building envelope plays a decisive role in passive and active design strategies. The ideal transparent façade would be one with optical properties, such as Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT), that could readily adapt in response to changing climatic conditions or occupant preferences. The aim of this article consists of describing the system to maintain a small glazed pavilion located in Sofia (Bulgaria) at the desired interior temperature over a whole year. The system comprises i) the use of Water Flow Glazing facades (WFG) and Radiant Interior Walls (RIW), ii) the use of free cooling devices along with traditional heat pump connected to photo-voltaic panels and iii) the use of a new Energy Management System that collects data and acts accordingly by controlling all components. The effect of these strategies and the use of active systems, like Water Flow Glazing, are analysed by means of simulating the prototype over one year. Summer and Winter energy management strategies are discussed in order to change the SHGC value of the Water Flow Glazing and thus, reduce the required energy to maintain comfort conditions.

  17. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  18. Annual Performance of a Two-Speed, Dedicated Dehumidification Heat Pump in the NIST Net-Zero Energy Residential Test Facility

    PubMed Central

    Payne, W. Vance

    2017-01-01

    A 2715 ft2 (252 m2), two story, residential home of the style typical of the Gaithersburg, Maryland area was constructed in 2012 to demonstrate technologies for net-zero energy (NZE) homes (or ZEH). The NIST Net-Zero Energy Residential Test Facility (NZERTF) functions as a laboratory to support the development and adoption of cost-effective NZE designs, technologies, construction methods, and building codes. The primary design goal was to meet the comfort and functional needs of the simulated occupants. The first annual test period began on July 1, 2013 and ended June 30, 2014. During the first year of operation, the home's annual energy consumption was 13039 kWh (4.8 kWh ft-2, 51.7 kWh m-2), and the 10.2 kW solar photovoltaic system generated an excess of 484 kWh. During this period the heating and air conditioning of the home was performed by a novel air-source heat pump that utilized a reheat heat exchanger to allow hot compressor discharge gas to reheat the supply air during a dedicated dehumidification mode. During dedicated dehumidification, room temperature air was supplied to the living space until the relative humidity setpoint of 50% was satisfied. The heat pump consumed a total of 6225 kWh (2.3 kWh ft-2, 24.7 kWh m-2) of electrical energy for cooling, heating, and dehumidification. Annual cooling efficiency was 10.1 Btu W-1h-1 (2.95 W W-1), relative to the rated SEER of the heat pump of 15.8 Btu W-1h-1 (4.63 W W-1). Annual heating efficiency was 7.10 Btu W-1h-1 (2.09 W W-1), compared with the unit's rated HSPF of 9.05 Btu W-1h-1 (2.65 W W-1). These field measured efficiency numbers include dedicated dehumidification operation and standby energy use for the year. Annual sensible heat ratio was approximately 70%. Standby energy consumption was 5.2 % and 3.5 % of the total electrical energy used for cooling and heating, respectively. PMID:28729740

  19. Annual Performance of a Two-Speed, Dedicated Dehumidification Heat Pump in the NIST Net-Zero Energy Residential Test Facility.

    PubMed

    Payne, W Vance

    2016-01-01

    A 2715 ft 2 (252 m 2 ), two story, residential home of the style typical of the Gaithersburg, Maryland area was constructed in 2012 to demonstrate technologies for net-zero energy (NZE) homes (or ZEH). The NIST Net-Zero Energy Residential Test Facility (NZERTF) functions as a laboratory to support the development and adoption of cost-effective NZE designs, technologies, construction methods, and building codes. The primary design goal was to meet the comfort and functional needs of the simulated occupants. The first annual test period began on July 1, 2013 and ended June 30, 2014. During the first year of operation, the home's annual energy consumption was 13039 kWh (4.8 kWh ft -2 , 51.7 kWh m -2 ), and the 10.2 kW solar photovoltaic system generated an excess of 484 kWh. During this period the heating and air conditioning of the home was performed by a novel air-source heat pump that utilized a reheat heat exchanger to allow hot compressor discharge gas to reheat the supply air during a dedicated dehumidification mode. During dedicated dehumidification, room temperature air was supplied to the living space until the relative humidity setpoint of 50% was satisfied. The heat pump consumed a total of 6225 kWh (2.3 kWh ft -2, 24.7 kWh m -2 ) of electrical energy for cooling, heating, and dehumidification. Annual cooling efficiency was 10.1 Btu W -1 h -1 (2.95 W W -1 ), relative to the rated SEER of the heat pump of 15.8 Btu W -1 h -1 (4.63 W W -1 ). Annual heating efficiency was 7.10 Btu W -1 h -1 (2.09 W W -1 ), compared with the unit's rated HSPF of 9.05 Btu W -1 h -1 (2.65 W W -1 ). These field measured efficiency numbers include dedicated dehumidification operation and standby energy use for the year. Annual sensible heat ratio was approximately 70%. Standby energy consumption was 5.2 % and 3.5 % of the total electrical energy used for cooling and heating, respectively.

  20. Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain.

    PubMed

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2013-07-01

    We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising model. At long times, the generating function takes on a large-deviation form and the associated cumulant generating function has singularities corresponding to continuous trajectory (or "space-time") phase transitions between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions from the finite-time behavior of measurable quantities.

  1. New mechanism for autocatalytic decomposition of H2CO3 in the vapor phase.

    PubMed

    Ghoshal, Sourav; Hazra, Montu K

    2014-04-03

    In this article, we present high level ab initio calculations investigating the energetics of a new autocatalytic decomposition mechanism for carbonic acid (H2CO3) in the vapor phase. The calculation have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets as well as at the CCSD(T)/aug-cc-pVTZ level. The present study suggests that this new decomposition mechanism is effectively a near-barrierless process at room temperature and makes vapor phase of H2CO3 unstable even in the absence of water molecules. Our calculation at the MP2/aug-cc-pVTZ level predicts that the effective barrier, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, is nearly zero for the autocatalytic decomposition mechanism. The results at the CCSD(T)/aug-cc-pVTZ level of calculations suggest that the effective barrier, as defined above, is sensitive to some extent to the levels of calculations used, nevertheless, we find that the effective barrier height predicted at the CCSD(T)/aug-cc-pVTZ level is very small or in other words the autocatalytic decomposition mechanism presented in this work is a near-barrierless process as mentioned above. Thus, we suggest that this new autocatalytic decomposition mechanism has to be considered as the primary mechanism for the decomposition of carbonic acid, especially at its source, where the vapor phase concentration of H2CO3 molecules reaches its highest levels.

  2. Spectral Irradiance Calibration in the Infrared. XVII. Zero-Magnitude Broadband Flux Reference for Visible-to-Infrared Photometry

    DTIC Science & Technology

    2010-12-01

    Air Force Reseach Laboratory, Hanscom AFB, MA 928, 2010 December © 2010, The American Astronomical Society. 14. ABSTRACT The absolutely calibrated...the visible and Sirius (a CMa) in the infrared. The resulting zero-point SED tests well against solar analog data presented by Rieke et al. while also...resulting zero-point SED tests well against solar analog data presented by Rieke et al. while also maintaining an unambiguous link to specific

  3. One-point fluctuation analysis of the high-energy neutrino sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feyereisen, Michael R.; Ando, Shin'ichiro; Tamborra, Irene, E-mail: m.r.feyereisen@uva.nl, E-mail: tamborra@nbi.ku.dk, E-mail: s.ando@uva.nl

    2017-03-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even with low statistics and in the absence of point source detection. Besides the veto-passing atmospheric foregrounds, we adopt a simple model of the high-energy neutrino background by assuming two main extra-galactic components: star-forming galaxies and blazars. By leveraging multi-wavelength data from Herschel and Fermi , we predict the spectral and anisotropic probability distributions for theirmore » expected neutrino counts in IceCube. We find that star-forming galaxies are likely to remain a diffuse background due to the poor angular resolution of IceCube, and we determine an upper limit on the number of shower events that can reasonably be associated to blazars. We also find that upper limits on the contribution of blazars to the measured flux are unfavourably affected by the skewness of the blazar flux distribution. One-point event clustering and likelihood analyses of the IceCube HESE data suggest that this method has the potential to dramatically improve over more conventional model-based analyses, especially for the next generation of neutrino telescopes.« less

  4. Planar zeros in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    Jiménez, Diego Medrano; Vera, Agustín Sabio; Vázquez-Mozo, Miguel Á.

    2016-09-01

    Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU( N) with N = 2 , 3 , 5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.

  5. On a method for generating inequalities for the zeros of certain functions

    NASA Astrophysics Data System (ADS)

    Gatteschi, Luigi; Giordano, Carla

    2007-10-01

    In this paper we describe a general procedure which yields inequalities satisfied by the zeros of a given function. The method requires the knowledge of a two-term approximation of the function with bound for the error term. The method was successfully applied many years ago [L. Gatteschi, On the zeros of certain functions with application to Bessel functions, Nederl. Akad. Wetensch. Proc. Ser. 55(3)(1952), Indag. Math. 14(1952) 224-229] and more recently too [L. Gatteschi and C. Giordano, Error bounds for McMahon's asymptotic approximations of the zeros of the Bessel functions, Integral Transform Special Functions, 10(2000) 41-56], to the zeros of the Bessel functions of the first kind. Here, we present the results of the application of the method to get inequalities satisfied by the zeros of the derivative of the function . This function plays an important role in the asymptotic study of the stationary points of the solutions of certain differential equations.

  6. The Atomization Energy of Mg4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.

  7. Multiple zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1974-01-01

    For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.

  8. Expanding space-time and variable vacuum energy

    NASA Astrophysics Data System (ADS)

    Parmeggiani, Claudio

    2017-08-01

    The paper describes a cosmological model which contemplates the presence of a vacuum energy varying, very slightly (now), with time. The constant part of the vacuum energy generated, some 6 Gyr ago, a deceleration/acceleration transition of the metric expansion; so now, in an aged Universe, the expansion is inexorably accelerating. The vacuum energy varying part is instead assumed to be eventually responsible of an acceleration/deceleration transition, which occurred about 14 Gyr ago; this transition has a dynamic origin: it is a consequence of the general relativistic Einstein-Friedmann equations. Moreover, the vacuum energy (constant and variable) is here related to the zero-point energy of some quantum fields (scalar, vector, or spinor); these fields are necessarily described in a general relativistic way: their structure depends on the space-time metric, typically non-flat. More precisely, the commutators of the (quantum field) creation/annihilation operators are here assumed to depend on the local value of the space-time metric tensor (and eventually of its curvature); furthermore, these commutators rapidly decrease for high momentum values and they reduce to the standard ones for a flat metric. In this way, the theory is ”gravitationally” regularized; in particular, the zero-point (vacuum) energy density has a well defined value and, for a non static metric, depends on the (cosmic) time. Note that this varying vacuum energy can be negative (Fermi fields) and that a change of its sign typically leads to a minimum for the metric expansion factor (a ”bounce”).

  9. 77 FR 76026 - Carbon Zero, LLC; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14308-001-VT] Carbon Zero, LLC; Notice of Availability of Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission) regulations, 18 CFR Part...

  10. Optimized Latching Control of Floating Point Absorber Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om

    2018-03-01

    There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.

  11. Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2005-07-12

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  12. Working towards a zero waste environment in Taiwan.

    PubMed

    Young, Chea-Yuan; Ni, Shih-Piao; Fan, Kuo-Shuh

    2010-03-01

    It is essential to the achievement of zero waste that emphasis is concentrated on front-end preventions rather than end-of-pipe (EOP) treatment. Zero waste is primarily based on cleaner production, waste management, the reduction of unnecessary consumption and the effective utilization of waste materials. The aim of this study was to briefly review the tasks undertaken and future plans for achieving zero waste in Taiwan. Waste prevention, source reduction, waste to product, waste to energy, EOP treatment, and adequate disposal are the sequential principal procedures to achieve the goal of zero waste. Six strategies have been adopted to implement the zero waste policy in Taiwan. These are regulatory amendments, consumption education, financial incentives, technical support, public awareness, and tracking and reporting. Stepwise targets have been set for 2005, 2007, 2011, and 2020 for both the municipal solid waste (MSW) and industrial waste to reach the goal of zero waste. The eventual aim is to achieve 70% MSW minimization and 85% industrial waste minimization by 2020. Although tools and measures have been established, some key programmes have higher priority. These include the establishment of a waste recycling programme, promotion of cleaner production, a green procurement programme, and promotion of public awareness. Since the implementation of the zero waste policy started in 2003, the volume of MSW for landfill and incineration has declined dramatically. The recycling and/or minimization of MSW quantity in 2007 was 37%, which is much higher than the goal of 25%. Industrial waste reached almost 76% minimization by the end of 2006, which is 1 year before the target year.

  13. Detailed study of the water trimer potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.E.; Schaefer, H.F. III

    The potential energy surface of the water trimer has been studied through the use of ab initio quantum mechanical methods. Five stationary points were located, including one minimum and two transition states. All geometries were optimized at levels up to the double-[Zeta] plus polarization plus diffuse (DZP + diff) single and double excitation coupled cluster (CCSD) level of theory. CCSD single energy points were obtained for the minimum, two transition states, and the water monomer using the triple-[Zeta] plus double polarization plus diffuse (TZ2P + diff) basis at the geometries predicted by the DZP + diff CCSD method. Reported aremore » the following: geometrical parameters, total and relative energies, harmonic vibrational frequencies and infrared intensities for the minimum, and zero point vibrational energies for the minimum, two transition states, and three separated water molecules. 27 refs., 5 figs., 10 tabs.« less

  14. Stevia, Nature’s Zero-Calorie Sustainable Sweetener

    PubMed Central

    Ashwell, Margaret

    2015-01-01

    Stevia is a plant native to South America that has been used as a sweetener for hundreds of years. Today, zero-calorie stevia, as high-purity stevia leaf extract, is being used globally to reduce energy and added sugar content in foods and beverages. This article introduces stevia, explaining its sustainable production, metabolism in the body, safety assessment, and use in foods and drinks to assist with energy reduction. The article also summarizes current thinking of the evidence for the role of nonnutritive sweeteners in energy reduction. Overall, stevia shows promise as a new tool to help achieve weight management goals. PMID:27471327

  15. Apollo-Soyuz pamphlet no. 8: Zero-g technology. [experimental designispace processing and aerospace engineering

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The behavior of liquids in zero gravity environments is discussed with emphasis on foams, wetting, and wicks. A multipurpose electric furnace (MA-010) for the high temperature processing of metals and salts in zero-g is described. Experiments discussed include: monolectic and synthetic alloys (MA-041); multiple material melting point (MA-150); zero-g processing of metals (MA-070); surface tension induced convection (MA-041); halide eutectic growth; interface markings in crystals (MA-060); crystal growth from the vapor phase (MA-085); and photography of crystal growth (MA-028).

  16. Structure, stability, thermodynamic properties, and infrared spectra of the protonated water octamer H(+)(H2O)8.

    PubMed

    Karthikeyan, S; Park, Mina; Shin, Ilgyou; Kim, Kwang S

    2008-10-16

    We investigated various two-dimensional (2D) and three-dimensional (3D) structures of H (+)(H 2O) 8, using density functional theory (DFT), Moller-Plesset second-order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)). The 3D structure is more stable than the 2D structure at all levels of theory on the Born-Oppenheimer surface. With the zero-point energy (ZPE) correction, the predicted structure varies depending on the level of theory. The DFT employing Becke's three parameters with Lee-Yang-Parr functionals (B3LYP) favors the 2D structure. At the complete basis set (CBS) limit, the MP2 calculation favors the 3D structure by 0.29 kcal/mol, and the CCSD(T) calculation favors the 3D structure by 0.27 kcal/mol. It is thus expected that both 2D and 3D structures are nearly isoenergetic near 0 K. At 100 K, all the calculations show that the 2D structure is much more stable in free binding energy than the 3D structure. The DFT and MP2 vibrational spectra of the 2D structure are consistent with the experimental spectra. First-principles Car-Parrinello molecular dynamics (CPMD) simulations show that the 2D Zundel-type vibrational spectra are in good agreement with the experiment.

  17. LIF excitation spectra for S 0 → S 1 transition of deuterated anthranilic acid COOD, ND 2 in supersonic-jet expansion

    NASA Astrophysics Data System (ADS)

    Kolek, Przemysław; Leśniewski, Sebastian; Andrzejak, Marcin; Góra, Maciej; Cias, Pawel; Weģrzynowicz, Adam; Najbar, Jan

    2010-12-01

    Laser induced fluorescence (LIF) excitation spectrum for the S 0 → S 1 transition of anthranilic acid molecules deuterated in the substituent groups (COOD, ND 2) was investigated. Analysis of the LIF spectrum allowed for the assignment of the six most prominent fundamental in-plane modes of frequencies up to ca. 850 cm. The experimental results show good correlation with the frequency changes upon deuteration computed with CIS (CI-Singles) and TD-DFT for the S 1 state. Deuteration induced red-shifts of the identified fundamental bands are used for examination of the alternative assignments proposed in earlier studies. Potential energy distributions (PED) and overlaps of the in-plane normal modes with frequencies below 850 cm indicate that the correspondence of the respective vibrations of the deuterated and non-deuterated molecule is very good. A blue-shift of the 00 transition due to the isotopic substitution, is equal to 47 cm. This relatively large value is caused primarily by a significant decrease of the N-H stretching frequency associated with the increase of strength of the intramolecular hydrogen bond upon the electronic excitation. The deuteration shift of the 00 band was interpreted in terms of the differences of the zero point energy (ZPE) between the S 0 and S 1 electronic states, computed with DFT and TD-DFT methods, respectively.

  18. Adsorption of dissolved aluminum on sapphire-c and kaolinite: implications for points of zero charge of clay minerals

    PubMed Central

    2014-01-01

    starting point of an experiment favor the dissolution of aluminum, dissolved Al may remain in the experimental system and interact with the target surfaces. The systems are then no longer pristine and points of zero charge or sorption data are those of aluminum-bearing systems. PMID:25045321

  19. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2006-12-01

    development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In

  20. The Trouble with Zero

    ERIC Educational Resources Information Center

    Lewis, Robert

    2015-01-01

    The history of the number zero is an interesting one. In early times, zero was not used as a number at all, but instead was used as a place holder to indicate the position of hundreds and tens. This article briefly discusses the history of zero and challenges the thinking where divisions using zero are used.