Sample records for zero-voltage-switching flyback converter

  1. Novel zero voltage transition pulse width modulation flyback converter

    NASA Astrophysics Data System (ADS)

    Adib, Ehsan; Farzanehfard, Hosein

    2010-09-01

    In this article, a new zero voltage (ZV) transition flyback converter is introduced which uses a simple auxiliary circuit. In this converter, ZV switching condition is achieved for the converter switch while zero current switching condition is attained for the auxiliary switch. There is no additional voltage and current stress on the main switch. Main diode, auxiliary circuit voltage and current ratings are low. The proposed converter is analysed and design procedure is discussed. The presented experimental results of a prototype converter justify the theoretical analysis.

  2. High Efficiency Single Output ZVS-ZCS Voltage Doubled Flyback Converter

    NASA Astrophysics Data System (ADS)

    Kaliyaperumal, Deepa; Saju, Hridya Merin; Kumar, M. Vijaya

    2016-06-01

    A switch operating at high switching frequency increases the switching losses of the converter resulting in lesser efficiency. Hence this paper proposes a new topology which has resonant switches [zero voltage switching (ZVS)] in the primary circuit to eliminate the above said disadvantages, and voltage doubler zero current switching (ZCS) circuit in the secondary to double the output voltage, and hence the output power, power density and efficiency. The design aspects of the proposed topology for a single output of 5 V at 50 kHz, its simulation and hardware results are discussed in detail. The analysis of the results obtained from a 2.5 W converter reveals the superiority of the proposed converter.

  3. dc analysis and design of zero-voltage-switched multi-resonant converters

    NASA Astrophysics Data System (ADS)

    Tabisz, Wojciech A.; Lee, Fred C.

    Recently introduced multiresonant converters (MRCs) provide zero-voltage switching (ZVS) of both active and passive switches and offer a substantial reduction of transistor voltage stress and an increase of load range, compared to their quasi-resonant converter counterparts. Using the resonant switch concept, a simple, generalized analysis of ZVS MRCs is presented. The conversion ratio and voltage stress characteristics are derived for basic ZVS MRCs, including buck, boost, and buck/boost converters. Based on the analysis, a design procedure that optimizes the selection of resonant elements for maximum conversion efficiency is proposed.

  4. Planar LTCC transformers for high voltage flyback converters: Part II.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schofield, Daryl; Schare, Joshua M., Ph.D.; Slama, George

    This paper is a continuation of the work presented in SAND2007-2591 'Planar LTCC Transformers for High Voltage Flyback Converters'. The designs in that SAND report were all based on a ferrite tape/dielectric paste system originally developed by NASCENTechnoloy, Inc, who collaborated in the design and manufacturing of the planar LTCC flyback converters. The output/volume requirements were targeted to DoD application for hard target/mini fuzing at around 1500 V for reasonable primary peak currents. High voltages could be obtained but with considerable higher current. Work had begun on higher voltage systems and is where this report begins. Limits in material propertiesmore » and processing capabilities show that the state-of-the-art has limited our practical output voltage from such a small part volume. In other words, the technology is currently limited within the allowable funding and interest.« less

  5. State-plane analysis of zero-voltage-switching resonant dc/dc power converters

    NASA Astrophysics Data System (ADS)

    Kazimierczuk, Marian K.; Morse, William D.

    The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.

  6. A zero-voltage-switched three-phase interleaved buck converter

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Ching; Huang, Bing-Siang; Lin, Jing-Yuan; Pham, Phu Hieu; Chen, Po-Hao; Chiu, Huang-Jen

    2018-04-01

    This paper proposes a three-phase interleaved buck converter which is composed of three identical paralleled buck converters. The proposed solution has three shunt inductors connected between each other of three basic buck conversion units. With the help of the shunt inductors, the MOSFET parasitic capacitances will resonate to achieve zero-voltage-switching. Furthermore, the decreasing rate of the current through the free-wheeling diodes is limited, and therefore, their reverse-recovery losses can be minimised. The active power switches are controlled by interleaved pulse-width modulation signals to reduce the input and output current ripples. Therefore, the filtering capacitances on the input and output sides can be reduced. The power efficiency is measured to be as high as 98% in experiment with a prototype circuit.

  7. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  8. Planar LTCC transformers for high voltage flyback converters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schofield, Daryl; Schare, Joshua M.; Glass, Sarah Jill

    This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstratedmore » LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.« less

  9. A soft switching with reduced voltage stress ZVT-PWM full-bridge converter

    NASA Astrophysics Data System (ADS)

    Sahin, Yakup; Ting, Naim Suleyman; Acar, Fatih

    2018-04-01

    This paper introduces a novel active snubber cell for soft switching pulse width modulation DC-DC converters. In the proposed converter, the main switch is turned on under zero voltage transition and turned off under zero voltage switching (ZVS). The auxiliary switch is turned on under zero current switching (ZCS) and turned off under zero current transition. The main diode is turned on under ZVS and turned off under ZCS. All of the other semiconductors in the converter are turned on and off with soft switching. There is no extra voltage stress on the semiconductor devices. Besides, the proposed converter has simple structure and ease of control due to common ground. The detailed theoretical analysis of the proposed converter is presented and also verified with both simulation and experimental study at 100 kHz switching frequency and 600 W output power. Furthermore, the efficiency of the proposed converter is 95.7% at nominal power.

  10. Series transistors isolate amplifier from flyback voltage

    NASA Technical Reports Server (NTRS)

    Banks, W.

    1967-01-01

    Circuit enables high sawtooth currents to be passed through a deflection coil and isolate the coil driving amplifier from the flyback voltage. It incorporates a switch consisting of transistors in series with the driving amplifier and deflection coil. The switch disconnects the deflection coil from the amplifier during the retrace time.

  11. Utilizing zero-sequence switchings for reversible converters

    DOEpatents

    Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.

    2004-12-14

    A method for providing additional dc inputs or outputs (49, 59) from a dc-to-ac inverter (10) for controlling motor loads (60) comprises deriving zero-sequence components (V.sub.ao, V.sub.bo, and V.sub.co) from the inverter (10) through additional circuit branches with power switching devices (23, 44, 46), transforming the voltage between a high voltage and a low voltage using a transformer or motor (42, 50), converting the low voltage between ac and dc using a rectifier (41, 51) or an H-bridge (61), and providing at least one low voltage dc input or output (49, 59). The transformation of the ac voltage may be either single phase or three phase. Where less than a 100% duty cycle is acceptable, a two-phase modulation of the switching signals controlling the inverter (10) reduces switching losses in the inverter (10). A plurality of circuits for carrying out the invention are also disclosed.

  12. Radiation Effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25

  13. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  14. Hybrid switch for resonant power converters

    DOEpatents

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  15. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  16. Impact analysis of tap switch out of step for converter transformer

    NASA Astrophysics Data System (ADS)

    Hong-yue, ZHANG; Zhen-hua, ZHANG; Zhang-xue, XIONG; Gao-wang, YU

    2017-06-01

    AC transformer load regulation is mainly used to adjust the load side voltage level, improve the quality of power supply, the voltage range is relatively narrow. In DC system, converter transformer is the core equipment of AC and DC power converter and inverter. converter transformer tap adjustment can maintain the normal operation of the converter in small angle range control, the absorption of reactive power, economic operation, valve less stress, valve damping circuit loss, AC / DC harmonic component is also smaller. In this way, the tap switch action is more frequent, and a large range of the tap switch adjustment is required. Converter transformer with a more load voltage regulation switch, the voltage regulation range of the switch is generally 20~30%, the adjustment of each file is 1%~2%. Recently it is often found that the tap switch of Converter Transformers is out of step in Converter station. In this paper, it is analyzed in detail the impact of tap switch out of step for differential protection, overexcitation protection and zero sequence over current protection. Analysis results show that: the tap switch out of step has no effect on the differential protection and the overexcitation protection including the tap switch. But the tap switch out of step has effect on zero sequence overcurrent protection of out of step star-angle converter transformer. The zero sequence overcurrent protection will trip when the tap switch out of step is greater than 3 for out of step star-angle converter transformer.

  17. Voltage equaliser for Li-Fe battery

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Chuang, Ping-Hao

    2013-10-01

    In this article, a voltage equaliser is proposed for a battery string with four Li-Fe batteries. The proposed voltage equaliser is developed from a flyback converter, which comprises a transformer, a power electronic switch and a resonant clamped circuit. The transformer contains a primary winding and four secondary windings with the same number of turns connected to each battery. The resonant clamped circuit is for recycling the energy of leakage inductance of the transformer and for performing zero-voltage switching (ZVS) of the power electronic switch. When the power electronic switch is switched on, the energy is stored in the transformer; and when the power electronic switch is switched off, the energy stored in the transformer will automatically charge the battery whose voltage is the lowest. In this way, the voltage of individual batteries in the battery string is balanced. The salient features of the proposed voltage equaliser are that only one switch is used, the energy stored in the leakage inductance of the transformer can be recycled and ZVS is obtained. A prototype is developed and tested to verify the performance of the proposed voltage equaliser. The experimental results show that the proposed voltage equaliser achieves the expected performance.

  18. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    NASA Astrophysics Data System (ADS)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  19. Gas tube-switched high voltage DC power converter

    DOEpatents

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  20. Soft switching resonant converter with duty-cycle control in DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-01-01

    Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.

  1. The simulation on diode-clamped five-level converters common-mode voltage suppression with zero-vector PWM strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggao; Gao, Yanli; Long, Lizhong

    2012-04-01

    More and more researchers have great concern on the issue of Common-mode voltage (CMV) in high voltage large power converter. A novel common-mode voltage suppression scheme based on zero-vector PWM strategy (ZVPWM) is present in this paper. Taking a diode-clamped five-level converter as example, the principle of zero vector PWM common-mode voltage (ZCMVPWM) suppression method is studied in detail. ZCMVPWM suppression strategy is including four important parts, which are locating the sector of reference voltage vector, locating the small triangular sub-sector of reference voltage vector, reference vector synthesis, and calculating the operating time of vector. The principles of four important pars are illustrated in detail and the corresponding MATLAB models are established. System simulation and experimental results are provided. It gives some consultation value for the development and research of multi-level converters.

  2. Analysis of Fixed Duty Cycle Hysteretic Flyback Converter for Firing Set Applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Thomas Michael

    2017-05-01

    This paper analyzes several performance aspects of the fixed-duty-cycle, hysteretic flyback converter topology typically used in firing sets. Topologies with and without active pulse-by-pulse current limiting are considered, and closed-form expressions in terms of basic operating parameters are derived.

  3. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    NASA Astrophysics Data System (ADS)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  4. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  5. Isolated and soft-switched power converter

    DOEpatents

    Peng, Fang Zheng; Adams, Donald Joe

    2002-01-01

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  6. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-07-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  7. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-01-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  8. Inverting Quasi-Resonant Switched-Capacitor Bidirectional Converter and Its Application to Battery Equalization

    NASA Astrophysics Data System (ADS)

    Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin

    The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).

  9. A Compact, Soft-Switching DC-DC Converter for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Button, Robert; Redilla, Jack; Ayyanar, Raja

    2003-01-01

    A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.

  10. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  11. A high-voltage supply used on miniaturized RLG

    NASA Astrophysics Data System (ADS)

    Miao, Zhifei; Fan, Mingming; Wang, Yuepeng; Yin, Yan; Wang, Dongmei

    2016-01-01

    A high voltage power supply used in laser gyro is proposed in this paper. The power supply which uses a single DC 15v input and fly-back topology is adopted in the main circuit. The output of the power supply achieve high to 3.3kv voltage in order to light the RLG. The PFM control method is adopted to realize the rapid switching between the high voltage state and the maintain state. The resonant chip L6565 is used to achieve the zero voltage switching(ZVS), so the consumption is reduced and the power efficiency is improved more than 80%. A special circuit is presented in the control portion to ensure symmetry of the two RLG's arms current. The measured current accuracy is higher than 5‰ and the current symmetry of the two RLG's arms up to 99.2%.

  12. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  13. A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin

    2016-11-01

    Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.

  14. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of themore » one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.« less

  15. A new very high voltage semiconductor switch

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1985-01-01

    A new family of semiconductor switches using double injection techniques and compensated deep impurities is described. They have the potential to raise switching voltages a factor of 10 higher (up to 100 kV) than p-n junction devices while exhibiting extremely low (or zero) forward voltage. Several potential power switching applications are indicated.

  16. Triple voltage dc-to-dc converter and method

    DOEpatents

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  17. The 77 K operation of a multi-resonant power converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The liquid-nitrogen temperature (77 K) operation of a 55 W, 200 kHz, 48/28 V zero-voltage switching multi-resonant dc/dc converter designed with commercially available components is reported. Upon dipping the complete converter (power and control circuits) into liquid-nitrogen, the converter performance improved as compared to the room-temperature operation. The switching frequency, resonant frequency, and the characteristic impedance did not change significantly. Accordingly, the zero-voltage switching was maintained from no-load to full-load for the specified line variations. Cryoelectronics can provide high density power converters, especially for high power applications.

  18. Flyback CCM inverter for AC module applications: iterative learning control and convergence analysis

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Ho; Kim, Minsung

    2017-12-01

    This paper presents an iterative learning controller (ILC) for an interleaved flyback inverter operating in continuous conduction mode (CCM). The flyback CCM inverter features small output ripple current, high efficiency, and low cost, and hence it is well suited for photovoltaic power applications. However, it exhibits the non-minimum phase behaviour, because its transfer function from control duty to output current has the right-half-plane (RHP) zero. Moreover, the flyback CCM inverter suffers from the time-varying grid voltage disturbance. Thus, conventional control scheme results in inaccurate output tracking. To overcome these problems, the ILC is first developed and applied to the flyback inverter operating in CCM. The ILC makes use of both predictive and current learning terms which help the system output to converge to the reference trajectory. We take into account the nonlinear averaged model and use it to construct the proposed controller. It is proven that the system output globally converges to the reference trajectory in the absence of state disturbances, output noises, or initial state errors. Numerical simulations are performed to validate the proposed control scheme, and experiments using 400-W AC module prototype are carried out to demonstrate its practical feasibility.

  19. Bidirectional DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  20. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    NASA Astrophysics Data System (ADS)

    Padhee, Varsha

    Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any

  1. Low Cost Embedded Controlled Full Bridge LC Parallel Resonant Converter

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, P.; Reddy, S.

    2009-01-01

    In this paper the converter requirements for an optimum control of an electrolyser linked with a DC bus are analyzed and discussed. An electrolyser is a part of renewable energy system which generates hydrogen from water electrolysis. The hydrogen generating device is part of a complex system constituted by a supplying photovoltaic plant, the grid and a fuel cell battery. The characterization in several operative conditions of an actual industrial electrolyser is carried out in order to design and optimize the DC/DC converter. A dedicated zero voltage switching DC/DC converter is presented and simulated inside the context of the distributed energy production and storage system. The proposed supplying converter gives a stable output voltage and high circuit efficiency in all the proposed simulated scenarios. The adopted DC/DC converter is realized in a full-bridge topology technique in order to achieve zero voltage switching for the power switches and to regulate the output voltage. This converter has advantages like high power density, low EMI and reduced switching stresses. The simulation results are verified with the experimental results.

  2. Bidirectional buck boost converter

    DOEpatents

    Esser, Albert Andreas Maria

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.

  3. Bidirectional buck boost converter

    DOEpatents

    Esser, A.A.M.

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.

  4. Comparison of converter topologies for charging capacitors used in pulsed load applications

    NASA Technical Reports Server (NTRS)

    Nelms, R. M.; Schatz, J. E.; Pollard, Barry

    1991-01-01

    The authors present a qualitative comparison of different power converter topologies which may be utilized for charging capacitors in pulsed power applications requiring voltages greater than 1 kV. The operation of the converters in capacitor charging applications is described, and relevant advantages are presented. All of the converters except one may be classified in the high-frequency switching category. One of the benefits from high-frequency operation is a reduction in size and weight. The other converter discussed is a member of the command resonant changing category. The authors first describe a boost circuit which functions as a command resonant charging circuit and utilizes a single pulse of current to charge the capacitor. The discussion of high-frequency converters begins with the flyback and Ward converters. Then, the series, parallel, and series/parallel resonant converters are examined.

  5. Transformerless dc-Isolated Converter

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1987-01-01

    Efficient voltage converter employs capacitive instead of transformer coupling to provide dc isolation. Offers buck/boost operation, minimal filtering, and low parts count, with possible application in photovoltaic power inverters, power supplies and battery charges. In photovoltaic inverter circuit with transformerless converter, Q2, Q3, Q4, and Q5 form line-commutated inverter. Switching losses and stresses nil because switching performed when current is zero.

  6. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-01-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  7. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  8. Improved Transient and Steady-State Performances of Series Resonant ZCS High-Frequency Inverter-Coupled Voltage Multiplier Converter with Dual Mode PFM Control Scheme

    NASA Astrophysics Data System (ADS)

    Chu, Enhui; Gamage, Laknath; Ishitobi, Manabu; Hiraki, Eiji; Nakaoka, Mutsuo

    The A variety of switched-mode high voltage DC power supplies using voltage-fed type or current-fed type high-frequency transformer resonant inverters using MOS gate bipolar power transistors; IGBTs have been recently developed so far for a medical-use X-ray high power generator. In general, the high voltage high power X-ray generator using voltage-fed high frequency inverter with a high voltage transformer link has to meet some performances such as (i) short rising period in start transient of X-ray tube voltage (ii) no overshoot transient response in tube voltage, (iii) minimized voltage ripple in periodic steady-state under extremely wide load variations and filament heater current fluctuation conditions of the X-ray tube. This paper presents two lossless inductor snubber-assisted series resonant zero current soft switching high-frequency inverter using a diode-capacitor ladder type voltage multiplier called Cockcroft-Walton circuit, which is effectively implemented for a high DC voltage X-ray power generator. This DC high voltage generator which incorporates pulse frequency modulated series resonant inverter using IGBT power module packages is based on the operation principle of zero current soft switching commutation scheme under discontinuous resonant current and continuous resonant current transition modes. This series capacitor compensated for transformer resonant power converter with a high frequency transformer linked voltage boost multiplier can efficiently work a novel selectively-changed dual mode PFM control scheme in order to improve the start transient and steady-state response characteristics and can completely achieve stable zero current soft switching commutation tube filament current dependent for wide load parameter setting values with the aid of two lossless inductor snubbers. It is proved on the basis of simulation and experimental results in which a simple and low cost control implementation based on selectively-changed dual-mode PFM for

  9. PV source based high voltage gain current fed converter

    NASA Astrophysics Data System (ADS)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  10. Testing Single Phase IGBT H-Bridge Switch Plates for the High Voltage Converter Modulator at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplov, Vladimir V; Anderson, David E; Solley, Dennis J

    2014-01-01

    Three IGBT H-bridge switching networks are used in each High Voltage Converter Modulator (HVCM) system at the Spallation Neutron Source (SNS) to generate drive currents to three boost transformer primaries switching between positive and negative bus voltages at 20 kHz. Every switch plate assembly is tested before installing it into an operational HVCM. A Single Phase Test Stand has been built for this purpose, and it is used for adjustment, measurement and testing of different configurations of switch plates. This paper will present a description of the Test Stand configuration and discuss the results of testing switch plates with twomore » different types of IGBT gate drivers currently in use on the HVCM systems. Comparison of timing characteristics of the original and new drivers and the resulting performance reinforces the necessity to replace the original H-bridge network drivers with the upgraded units.« less

  11. Load insensitive electrical device. [power converters for supplying direct current at one voltage from a source at another voltage

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C. (Inventor)

    1974-01-01

    A class of power converters is described for supplying direct current at one voltage from a source at another voltage. It includes a simple passive circuit arrangement of solid-state switches, inductors, and capacitors by which the output voltage of the converter tends to remain constant in spite of changes in load. The switches are sensitive to the current flowing in the circuit and are employed to permit the charging of capacitance devices in accordance with the load requirements. Because solid-state switches (such as SCR's) may be used with relatively high voltage and because of the inherent efficiency of the invention that permits relatively high switching frequencies, power supplies built in accordance with the invention, together with their associated cabling, can be substantially lighter in weight for a given output power level and efficiency of operation than systems of the prior art.

  12. A 10 kW dc-dc converter using IGBTs with active snubbers. [Insulated Gate Bipolar Transistor

    NASA Technical Reports Server (NTRS)

    Masserant, Brian J.; Shriver, Jeffrey L.; Stuart, Thomas A.

    1993-01-01

    This full bridge dc-dc converter employs zero voltage switching (ZVS) on one leg and zero current switching (ZCS) on the other. This technique produces exceptionally low IGBT switching losses through the use of an active snubber that recycles energy back to the source. Experimental results are presented for a 10 kW, 20 kHz converter.

  13. Studies of ZVS soft switching of dual-active-bridge isolated bidirectional DC-DC converters

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Zhao, Feng; Shi, Qibiao; Wen, Xuhui

    2018-05-01

    To operate dual-active-bridge isolated bidirectional dc- dc converter (DAB) at high efficiency, the two bridge switches must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. This paper proposes a new perspective on realizing ZVS in dead-time. An exact theoretical analysis and mathematical mode is built to explain the process of ZVS switching in dead-time under Single Phase Shift (SPS) control strategy. In order to assure the two bridge switches operate on soft switching, every SPS switching point is analyzed. Generally, dead-time will be determined when the power electronic devices is selected. The key factor to realizing ZVS is the size of the end time of resonance comparing to dead-time. Through detailed analysis, it can obtain the conditions of all switches achieving ZVS turn-on and turn-off. Finally, simulation validates the theoretical analysis and some advice are given to realize the ZVS soft switching.

  14. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    NASA Astrophysics Data System (ADS)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  15. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    1982-01-01

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  16. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Astrophysics Data System (ADS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  17. Switched-capacitor isolated LED driver

    DOEpatents

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  18. Operation of a voltage source converter at increased utility voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaura, V.; Blasko, V.

    1997-01-01

    The operation of a voltage source converter (VSC) with regeneration capability, controllable power factor, and low distortion of utility currents is analyzed at increased utility voltage. Increase in the utility voltage causes a VSC to saturate and enter a nonlinear mode of operation. To operate under elevated utility, two steps are taken: (1) a pulse width modulation (PWM) algorithm is implemented which extends the linear region of operation by 15% and (2) a PWM saturation regulator is used to control the reactive current at higher utility voltages. The PWM algorithm reduces the switching losses by at least 33% and themore » effect of blanking time by one-third. All analytical results are experimentally verified on a 100 kW three-phase VSC.« less

  19. SSP Technology Investigation of a High-Voltage DC-DC Converter

    NASA Technical Reports Server (NTRS)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  20. Hybrid zero-voltage switching (ZVS) control for power inverters

    DOEpatents

    Amirahmadi, Ahmadreza; Hu, Haibing; Batarseh, Issa

    2016-11-01

    A power inverter combination includes a half-bridge power inverter including first and second semiconductor power switches receiving input power having an intermediate node therebetween providing an inductor current through an inductor. A controller includes input comparison circuitry receiving the inductor current having outputs coupled to first inputs of pulse width modulation (PWM) generation circuitry, and a predictive control block having an output coupled to second inputs of the PWM generation circuitry. The predictive control block is coupled to receive a measure of Vin and an output voltage at a grid connection point. A memory stores a current control algorithm configured for resetting a PWM period for a switching signal applied to control nodes of the first and second power switch whenever the inductor current reaches a predetermined upper limit or a predetermined lower limit.

  1. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  2. Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)

    NASA Astrophysics Data System (ADS)

    Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli

    2017-06-01

    The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.

  3. Charge-pump voltage converter

    DOEpatents

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  4. Quasi-multi-pulse voltage source converter design with two control degrees of freedom

    NASA Astrophysics Data System (ADS)

    Vural, A. M.; Bayindir, K. C.

    2015-05-01

    In this article, the design details of a quasi-multi-pulse voltage source converter (VSC) switched at line frequency of 50 Hz are given in a step-by-step process. The proposed converter is comprised of four 12-pulse converter units, which is suitable for the simulation of single-/multi-converter flexible alternating current transmission system devices as well as high voltage direct current systems operating at the transmission level. The magnetic interface of the converter is originally designed with given all parameters for 100 MVA operation. The so-called two-angle control method is adopted to control the voltage magnitude and the phase angle of the converter independently. PSCAD simulation results verify both four-quadrant converter operation and closed-loop control of the converter operated as static synchronous compensator (STATCOM).

  5. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  6. Regulated dc-to-dc converter for voltage step-up or step-down with input-output isolation

    NASA Technical Reports Server (NTRS)

    Feng, S. Y.; Wilson, T. G. (Inventor)

    1973-01-01

    A closed loop regulated dc-to-dc converter employing an unregulated two winding inductive energy storage converter is provided by using a magnetically coupled multivibrator acting as duty cycle generator to drive the converter. The multivibrator is comprised of two transistor switches and a saturable transformer. The output of the converter is compared with a reference in a comparator which transmits a binary zero until the output exceeds the reference. When the output exceeds the reference, the binary output of the comparator drives transistor switches to turn the multivibrator off. The multivibrator is unbalanced so that a predetermined transistor will always turn on first when the binary feedback signal becomes zero.

  7. A multioutput LLC-type parallel resonant converter

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Lee, C. Q.; Upadhyay, Anand K.

    1992-07-01

    When an LLC-type parallel resonant converter (LLC-PRC) operates above resonant frequency, the switching transistors can be turned off at zero voltage. Further study reveals that the LLC-PRC possesses the advantage of lower converter voltage gain as compared with the conventional PRC. Based on analytic results, a complete set of design curves is obtained, from which a systematic design procedure is developed. Experimental results from a 150 W 150 kHz multioutput LLC-type PRC power supply are presented.

  8. A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications

    PubMed Central

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  9. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  10. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  11. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  12. Design, Control, and Modeling of a New Voltage Source Converter for HVDC System

    NASA Astrophysics Data System (ADS)

    Mohan, Madhan; Singh, Bhim; Ketan Panigrahi, Bijaya

    2013-05-01

    Abstract: A New Voltage Source Converter (VSC) based on neutral clamped three-level circuit is proposed for High Voltage DC (HVDC) system. The proposed VSC is designed in a multipulse configuration. The converter is operated by Fundamental Frequency Switching (FFS). A new control method is developed for achieving all the necessary control aspects of HVDC system such as independent real and reactive power control, bidirectional real and reactive power control. The basic of the control method is varying the pulse width and by keeping the dc link voltage constant. The steady state and dynamic performances of HVDC system interconnecting two different frequencies network are demonstrated for active and reactive power control. Total number of transformers used in this system are reduced to half in comparison with the two-level VSCs for both active and reactive power control. The performance of the HVDC system is improved in terms of reduced harmonics level even at fundamental frequency switching. The harmonic performance of the designed converter is also studied for different value of the dead angle (β), and the optimized range of the dead angle is achieved for varying reactive power requirement. Simulation results are presented for the designed three level multipulse voltage source converters with the proposed control algorithm.

  13. Load-Dependent Soft-Switching Method of Half-Bridge Current Doubler for High-Voltage Point-of-Load Converter in Data Center Power Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yutian; Yang, Fei; Tolbert, Leon M.

    With the increased cloud computing and digital information storage, the energy requirement of data centers keeps increasing. A high-voltage point of load (HV POL) with an input series output parallel structure is proposed to convert 400 to 1 VDC within a single stage to increase the power conversion efficiency. The symmetrical controlled half-bridge current doubler is selected as the converter topology in the HV POL. A load-dependent soft-switching method has been proposed with an auxiliary circuit that includes inductor, diode, and MOSFETs so that the hard-switching issue of typical symmetrical controlled half-bridge converters is resolved. The operation principles of themore » proposed soft-switching half-bridge current doubler have been analyzed in detail. Then, the necessity of adjusting the timing with the loading in the proposed method is analyzed based on losses, and a controller is designed to realize the load-dependent operation. A lossless RCD current sensing method is used to sense the output inductor current value in the proposed load-dependent operation. In conclusion, experimental efficiency of a hardware prototype is provided to show that the proposed method can increase the converter's efficiency in both heavy- and light-load conditions.« less

  14. Load-Dependent Soft-Switching Method of Half-Bridge Current Doubler for High-Voltage Point-of-Load Converter in Data Center Power Supplies

    DOE PAGES

    Cui, Yutian; Yang, Fei; Tolbert, Leon M.; ...

    2016-06-14

    With the increased cloud computing and digital information storage, the energy requirement of data centers keeps increasing. A high-voltage point of load (HV POL) with an input series output parallel structure is proposed to convert 400 to 1 VDC within a single stage to increase the power conversion efficiency. The symmetrical controlled half-bridge current doubler is selected as the converter topology in the HV POL. A load-dependent soft-switching method has been proposed with an auxiliary circuit that includes inductor, diode, and MOSFETs so that the hard-switching issue of typical symmetrical controlled half-bridge converters is resolved. The operation principles of themore » proposed soft-switching half-bridge current doubler have been analyzed in detail. Then, the necessity of adjusting the timing with the loading in the proposed method is analyzed based on losses, and a controller is designed to realize the load-dependent operation. A lossless RCD current sensing method is used to sense the output inductor current value in the proposed load-dependent operation. In conclusion, experimental efficiency of a hardware prototype is provided to show that the proposed method can increase the converter's efficiency in both heavy- and light-load conditions.« less

  15. Design and dSpace interfacing of current fed high gain dc to dc boost converter for low voltage applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Debraj; Das, Subhrajit; Arunkumar, G.; Elangovan, D.; Ragunath, G.

    2017-11-01

    In this paper a current fed interleaved DC - DC boost converter which has an isolated topology and used for high voltage step up is proposed. A basic DC to DC boost converter converts uncontrolled DC voltage into controlled DC voltage of higher magnitude. Whereas this topology has the advantages of lower input current ripple, lesser output voltage, lesser stress on switches, faster transient response, improved reliability and much lesser electromagnetic emission over the conventional DC to DC boost converter. Most important benefit of this interleaved DC to DC boost converter is much higher efficiency. The input current is divided into two paths, substantially ohmic loss (I2R) and inductor ac loss gets reduced and finally the system achieves much higher efficiency. With recent mandates on energy saving interleaved DC to DC boost converter may be used as a very powerful tool to maintain good power density keeping the input current manageable. Higher efficiency also allows higher switching frequency and as a result the topology becomes more compact and cost friendly. The proposed topology boosts 48v DC to 200 V DC. Switching frequency is 100 kHz and PSIM 9.1 Platform has been used for the simulation.

  16. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  17. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  18. Dual-bridge LLC-SRC with extended voltage range for deeply depleted PEV battery charging

    NASA Astrophysics Data System (ADS)

    Shahzad, M. Imran; Iqbal, Shahid; Taib, Soib

    2017-11-01

    This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50-420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50-125, 125-250 and 250-420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.

  19. Design and Implementation of an Innovative Residential PV System

    NASA Astrophysics Data System (ADS)

    Najm, Elie Michel

    This work focuses on the design and implementation of an innovative residential PV system. In chapter one, after an introduction related to the rapid growth of solar systems' installations, the most commonly used state of the art solar power electronics' configurations are discussed, which leads to introducing the proposed DC/DC parallel configuration. The advantages and disadvantages of each of the power electronics' configurations are deliberated. The scope of work in the power electronics is defined in this chapter to be related to the panel side DC/DC converter. System integration and mechanical proposals are also within the scope of work and are discussed in later chapters. Operation principle of a novel low cost PV converter is proposed in chapter 2. The proposal is based on an innovative, simplified analog implementation of a master/slave methodology resulting in an efficient, soft-switched interleaved variable frequency flybacks, operating in the boundary conduction mode (BCM). The scheme concept and circuit configuration, operation principle and theoretical waveforms, design equations, and design considerations are presented. Furthermore, design examples are also given, illustrating the significance of the newly derived frequency equation for flybacks operating in BCM. In chapters 3, 4, and 5, the design implementation and optimization of the novel DC/DC converter illustrated in chapter 2 are discussed. In chapter 3, a detailed variable frequency BCM flyback design model leading to optimizing the component selections and transformer design, detailed in chapter 4, is presented. Furthermore, in chapter 4, the method enabling the use of lower voltage rating switching devices is also discussed. In chapter 5, circuitry related to Start-UP, drive for the main switching devices, zero-voltage-switching (ZVS) as well as turn OFF soft switching and interleaving control are fully detailed. The experimental results of the proposed DC/DC converter are presented in

  20. Analysis of series resonant converter with series-parallel connection

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Huang, Chien-Lan

    2011-02-01

    In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.

  1. Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid

    2018-05-01

    The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.

  2. Zero-static power radio-frequency switches based on MoS2 atomristors.

    PubMed

    Kim, Myungsoo; Ge, Ruijing; Wu, Xiaohan; Lan, Xing; Tice, Jesse; Lee, Jack C; Akinwande, Deji

    2018-06-28

    Recently, non-volatile resistance switching or memristor (equivalently, atomristor in atomic layers) effect was discovered in transitional metal dichalcogenides (TMD) vertical devices. Owing to the monolayer-thin transport and high crystalline quality, ON-state resistances below 10 Ω are achievable, making MoS 2 atomristors suitable as energy-efficient radio-frequency (RF) switches. MoS 2 RF switches afford zero-hold voltage, hence, zero-static power dissipation, overcoming the limitation of transistor and mechanical switches. Furthermore, MoS 2 switches are fully electronic and can be integrated on arbitrary substrates unlike phase-change RF switches. High-frequency results reveal that a key figure of merit, the cutoff frequency (f c ), is about 10 THz for sub-μm 2 switches with favorable scaling that can afford f c above 100 THz for nanoscale devices, exceeding the performance of contemporary switches that suffer from an area-invariant scaling. These results indicate a new electronic application of TMDs as non-volatile switches for communication platforms, including mobile systems, low-power internet-of-things, and THz beam steering.

  3. On Application of Model Predictive Control to Power Converter with Switching

    NASA Astrophysics Data System (ADS)

    Zanma, Tadanao; Fukuta, Junichi; Doki, Shinji; Ishida, Muneaki; Okuma, Shigeru; Matsumoto, Takashi; Nishimori, Eiji

    This paper concerns a DC-DC converter control. In DC-DC converters, there exist both continuous components such as inductance, conductance and resistance and discrete ones, IGBT and MOSFET as semiconductor switching elements. Such a system can be regarded as a hybrid dynamical system. Thus, this paper presents a dc-dc control technique based on the model predictive control. Specifically, a case in which the load of the dc-dc converter changes from active to sleep is considered. In the case, a control method which makes the output voltage follow to the reference quickly in transition, and the switching frequency be constant in steady state. In addition, in applying the model predictive control to power electronics circuits, the switching characteristic of the device and the restriction condition for protection are also considered. The effectiveness of the proposed method is illustrated by comparing a conventional method through some simulation results.

  4. Modeling development of converter topologies and control for BTB voltage source converters. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, L.

    1998-08-01

    This report presents the results of an investigation into the merits of using a back-to-back voltage source converter (BTB-VSC) as an alternative to a conventional back-to-back high voltage DC link (HVDC). The report presents the basic benefits of the new technology along with the basic control blocks needed to implement the design. The report also describes a model of the BTB-VSC implemented in EMTDC{trademark} and discusses the use of the model. Simulation results, showing how the model responds to various control actions and system disturbances, are presented. This modeling work developed a detailed EMTDC{trademark} model using the appropriate converter technologymore » and magnetic interface configuration. Various possible converter and magnetic interface configurations were examined and the most promising configuration was used for the model. The chosen configuration minimizes the number of high voltage transformers needed and minimizes the complexity non-standard interfacing transformers. There is no need for transformers with phase shifts other than zero or thirty degrees (wye-wye or wye-delta). The only non-standard feature is the necessity of bringing the neutral side of the high voltage winding on the wye-wye unit out through bushings and to insulate the wye-wye transformer for the system voltage which is twice the transformer winding voltage. The developed EMTDC{trademark} model was used to demonstrate the possibility of achieving independent control of the real power transmitted and the voltages at the AC terminals. The model also demonstrates the ability to interconnect weak AC systems without the necessity of additional voltage support equipment as is the case with the conventional back-to-back DC interconnection. The model has been shown to work with short circuit ratios less than 2 based on the total rating of the high voltage transformers.« less

  5. Dead-time optimisation with reducing voltage distortion for nine-switch inverter

    NASA Astrophysics Data System (ADS)

    Alizadeh Pahlavani, Mohamadreza; Sanatgar Hasankiadeh, Meisam; Bali Lashak, Aref

    2018-03-01

    Nine-switch inverter with two sets of three-phase outputs is an improved topology proposed in place of the 12-switch back-to-back converters and has therefore attracted much attention in recent years. This inverter can be used with two conventional pulse width modulation approaches: different frequency and the constant frequency. One disadvantage of using this modulation method is the possibility of short-circuits in the legs (shoot-through), which decreases the reliability of converter and system. This paper presents a new modulation technique, in which switching pulses of nine-switch inverter are produced by not only the original carrier signals but also through two auxiliary carrier signals. In this method, adjustable three-phase voltages are produced in the inverter's terminals, and so there is no possibility of any shoot-through in the inverter's legs. The suggested reliable modulation approach does not rely on any information about the load polarity, as switching is performed by a simple and reliable algorithm. The result is the considerably better waveform quality of the output voltages in comparison with other methods. To verify the analysis, an experimental platform based on DSP is built. The simulation and experimental results are given to demonstrate the effectiveness and feasibility of this new approach.

  6. A miniature transformer/dc-dc converter for implantable medical devices

    NASA Astrophysics Data System (ADS)

    Mohammed, Osama A.; Jones, W. Kinzy

    1988-11-01

    This paper presents a new technique for the design of a miniature dc-dc converter used in energy producing implantable devices such as defibrillators and advanced pacemakers. This converter is inserted in such a device and is used to boost the voltage from a low voltage implanted battery to high voltage energy storage capacitors in a short period of time. The stored energy is then delivered, when needed, through an energy delivery circuit in order to stimulate or defibrillate the heart. The converter takes the form of a flyback topology which includes a miniature transformer and a specialized control circuit. The transformer was designed using a new numerical synthesis method which utilizes finite elements and dynamic programming for predicting the geometries of the transformer's magnetic circuit. The final transformer design satisfied the performance criteria and provided means for selecting the converter components. The obtained performance results for the transformer and the dc-dc converter were in excellent agreement with laboratory performance tests.

  7. An improved push-pull voltage fed converter using a tapped output-filter inductor

    NASA Technical Reports Server (NTRS)

    Wester, G. W.

    1983-01-01

    A new concept of using a tapped output-filter inductor and an auxiliary commutating diode to reduce the likelihood of transformer core saturation in a push-pull, voltage-fed converter is presented. The linearized circuit model and transfer functions are derived with a hybrid approach using both state-space and circuit averaging. Operation of the new converter - including parasitic effects - is discussed, and a design equation for inductor tap ratio is established. It is predicted and experimentally confirmed that the new converter has more symmetrical transformer core operation, and the potential exits for lower transistor turnon current and reduced transistor voltage stress. These benefits reduce switching loss and enhance transistor reliability.

  8. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  9. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  10. Light-weight DC to very high voltage DC converter

    DOEpatents

    Druce, Robert L.; Kirbie, Hugh C.; Newton, Mark A.

    1998-01-01

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.

  11. Bridgeless SEPIC PFC Converter for Multistring LED Driver

    NASA Astrophysics Data System (ADS)

    Jha, Aman; Singh, Bhim

    2018-05-01

    This paper deals with Power Factor Correction (PFC) in Low Voltage High Current (LVHC) multi-string light emitting diode (LED) using a bridgeless (BL) single ended primary inductance converter (SEPIC). This application is designed for large area LED lighting with illumination control. A multi-mode LED dimming technique is used for the lighting control. The BL-SEPIC PFC converter is used as a load emulator for high power factor. The regulated low voltage from flyback converter is a source power to the synchronous buck converters for multi-string LED driver and forced cooling system for LED junction. The BL-SEPIC PFC converter inductor design is based on Discontinuous Inductor Current Modes (DICM) which provides good PFC at low cost. Test results are found quite satisfactory for universal input AC (90-265 V). There is significant improvement in the power factor and input current Total Harmonic Distortion (THD) with good margin of harmonic limits for lighting IEC 61000-3-2 Class C.

  12. Light-weight DC to very high voltage DC converter

    DOEpatents

    Druce, R.L.; Kirbie, H.C.; Newton, M.A.

    1998-06-30

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

  13. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System.

    PubMed

    Shen, Chih-Lung; Liou, Heng

    2017-11-15

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%.

  14. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System

    PubMed Central

    Shen, Chih-Lung; Liou, Heng

    2017-01-01

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%. PMID:29140282

  15. Experimental Discussion on a 6-kW, 2-kWh Battery Energy Storage System Using a Bidirectional Isolated DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Abe, Takahiro; Tan, Nadia Mei Lin; Akagi, Hirofumi

    This paper presents an experimental discussion on a 6-kW, full-bridge, zero-voltage switching bidirectional isolated dc/dc converter for a 53.2-V, 2-kWh Li-ion battery energy storage system. The combination of high-frequency switching devices, 600-V/200-A IGBTs and 100-V/500-A MOSFETs with a high-frequency transformer reduces the weight and physical size of the bidirectional isolated dc/dc converter. The dc voltage on the high-voltage side of the converter is controlled in a range of 300V to 355V as the battery voltage on the low-voltage side varies from 50V to 59V. Experimental verification of bidirectional power flow into (battery charging) or out of (battery discharging) the Li-ion battery bank is also presented. The maximal efficiency of the dc/dc converter is measured to be 98.1% during charging and 98.2% during discharging, excluding the gate drive loss and control circuit loss.

  16. Voltage-Boosting Driver For Switching Regulator

    NASA Technical Reports Server (NTRS)

    Trump, Ronald C.

    1990-01-01

    Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.

  17. An Integrated Multilevel Converter with Sigma Delta Control for LED Lighting

    NASA Astrophysics Data System (ADS)

    Gerber, Daniel L.

    High brightness LEDs have become a mainstream lighting technology due to their efficiency, life span, and environmental benefits. As such, the lighting industry values LED drivers with low cost, small form factor, and long life span. Additional specifications that define a high quality LED driver are high efficiency, high power factor, wide-range dimming, minimal flicker, and a galvanically isolated output. The flyback LED driver is a popular topology that satisfies all these specifications, but it requires a bulky and costly flyback transformer. In addition, its passive methods for cancelling AC power ripple require electrolytic capacitors, which have been known to have life span issues. This dissertation details the design, construction, and verification of a novel LED driver that satisfies all the specifications. In addition, it does not require a flyback transformer or electrolytic capacitors, thus marking an improvement over the flyback driver on size, cost, and life span. This dissertation presents an integrated circuit (IC) LED driver, which features a pair of generalized multilevel converters that are controlled via sigma-delta modulation. The first is a multilevel rectifier responsible for power factor correction (PFC) and dimming. The PFC rectifier employs a second order sigma-delta loop to precisely control the input current harmonics and amplitude. The second is a bidirectional multilevel inverter used to cancel AC power ripple from the DC bus. This ripple-cancellation module transfers energy to and from a storage capacitor. It uses a first order sigma-delta loop with a preprogrammed waveform to swing the storage capacitor voltage. The system also contains an output stage that powers the LEDs with DC and provides for galvanic isolation. The output stage consists of an H-bridge stack that connects to the output through a small toroid transformer. The IC LED driver was simulated and prototyped on an ABCD silicon test chip. Testing and verification

  18. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  19. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.

    PubMed

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-14

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.

  20. Implementation of Four-Phase Interleaved Balance Charger for Series-Connected Batteries with Power Factor Correction

    NASA Astrophysics Data System (ADS)

    Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.

    2017-11-01

    A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.

  1. High power density dc/dc converter: Selection of converter topology

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  2. Performance analysis of cascaded h-bridge multilevel inverter using mixed switching frequency with various dc-link voltages

    NASA Astrophysics Data System (ADS)

    Citarsa, I. B. F.; Satiawan, I. N. W.; Wiryajati, I. K.; Supriono

    2016-01-01

    Multilevel inverters have been widely used in many applications since the technology is advantageous to increase the converter capability as well as to improve the output voltage quality. According to the applied switching frequency, multilevel modulations can be subdivided into three classes, i.e: fundamental switching frequency, high switching frequency and mixed switching frequency. This paper investigates the performance of cascaded H-bridge (CHB) multilevel inverter that is modulated using mixed switching frequency (MSF) PWM with various dc-link voltage ratios. The simulation results show the nearly sinusoidal load output voltages are successfully achieved. It is revealed that there is improvement in output voltages quality in terms of THD and low-order harmonics content. The CHB inverter that is modulated using MSF PWM with equal dc-link voltage ratio (½ Vdc: ½ Vdc) produces output voltage with the lowest low-order harmonics (less than 1% of fundamental) while the CHB inverter that is modulated using MSF PWM with un-equal dc-link voltage ratio (2/3 Vdc: 1/3 Vdc) produces a 7-level output voltage with the lowest THD (16.31%) compared to the other PWM methods. Improvement of the output voltage quality here is also in line with improvement of the number of available levels provided in the output voltage. Here only 2 cells H-bridge inverter (contain 8 switches) are needed to produce a 7- level output voltage, while in the conventional CHB inverter at least 3 cells of H-bridge inverter (contain 12 switches) are needed to produce a 7-level output voltage. Hence it is valuable in term of saving number of component.

  3. Inner surface flash-over of insulator of low-inductance high-voltage self-breakdown gas switch and its application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-bo, E-mail: walkman67@163.com; Liu, Jin-liang

    2014-04-15

    In this paper, the inner surface flash-over of high-voltage self-breakdown switch, which is used as a main switch of pulse modulator, is analyzed in theory by employing the method of distributed element equivalent circuit. Moreover, the field distortion of the switch is simulated by using software. The results of theoretical analysis and simulation by software show that the inner surface flash-over usually starts at the junction points among the stainless steel, insulator, and insulation gas in the switch. A switch with improved structure is designed and fabricated according to the theoretical analysis and simulation results. Several methods to avoid innermore » surface flash-over are used to improve the structure of switch. In experiment, the inductance of the switch is no more than 100 nH, the working voltage of the switch is about 600 kV, and the output voltage and current of the accelerator is about 500 kV and 50 kA, respectively. And the zero-to-peak rise time of output voltage at matched load is less than 30 ns due to the small inductance of switch. The original switch was broken-down after dozens of experiments, and the improved switch has been worked more than 200 times stably.« less

  4. Cascaded resonant bridge converters

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  5. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  6. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  7. High-voltage, high-current, solid-state closing switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  8. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  9. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  10. Compact high voltage solid state switch

    DOEpatents

    Glidden, Steven C.

    2003-09-23

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  11. Effect of pole zero location on system dynamics of boost converter for micro grid

    NASA Astrophysics Data System (ADS)

    Lavanya, A.; Vijayakumar, K.; Navamani, J. D.; Jayaseelan, N.

    2018-04-01

    Green clean energy like photo voltaic, wind energy, fuel cell can be brought together by microgrid.For low voltage sources like photovoltaic cell boost converter is very much essential. This paper explores the dynamic analysis of boost converter in a continuous conduction mode (CCM). The transient performance and stability analysis is carried out in this paper using time domain analysis and frequency domain analysis techniques. Boost converter is simulated using both PSIM and MATLAB software. Furthermore, state space model obtained and the transfer function is derived. The converter behaviour when a step input is applied is analyzed and stability of the converter is analyzed from bode plot frequency for open loop. Effect of the locations of poles and zeros in the transfer function of boost converter and how the performance parameters are affected is discussed in this paper. Closed loop performance with PI controller is also analyzed for boost converter.

  12. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  13. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  14. Fast simulation techniques for switching converters

    NASA Technical Reports Server (NTRS)

    King, Roger J.

    1987-01-01

    Techniques for simulating a switching converter are examined. The state equations for the equivalent circuits, which represent the switching converter, are presented and explained. The uses of the Newton-Raphson iteration, low ripple approximation, half-cycle symmetry, and discrete time equations to compute the interval durations are described. An example is presented in which these methods are illustrated by applying them to a parallel-loaded resonant inverter with three equivalent circuits for its continuous mode of operation.

  15. Zero-state Markov switching count-data models: an empirical assessment.

    PubMed

    Malyshkina, Nataliya V; Mannering, Fred L

    2010-01-01

    In this study, a two-state Markov switching count-data model is proposed as an alternative to zero-inflated models to account for the preponderance of zeros sometimes observed in transportation count data, such as the number of accidents occurring on a roadway segment over some period of time. For this accident-frequency case, zero-inflated models assume the existence of two states: one of the states is a zero-accident count state, which has accident probabilities that are so low that they cannot be statistically distinguished from zero, and the other state is a normal-count state, in which counts can be non-negative integers that are generated by some counting process, for example, a Poisson or negative binomial. While zero-inflated models have come under some criticism with regard to accident-frequency applications - one fact is undeniable - in many applications they provide a statistically superior fit to the data. The Markov switching approach we propose seeks to overcome some of the criticism associated with the zero-accident state of the zero-inflated model by allowing individual roadway segments to switch between zero and normal-count states over time. An important advantage of this Markov switching approach is that it allows for the direct statistical estimation of the specific roadway-segment state (i.e., zero-accident or normal-count state) whereas traditional zero-inflated models do not. To demonstrate the applicability of this approach, a two-state Markov switching negative binomial model (estimated with Bayesian inference) and standard zero-inflated negative binomial models are estimated using five-year accident frequencies on Indiana interstate highway segments. It is shown that the Markov switching model is a viable alternative and results in a superior statistical fit relative to the zero-inflated models.

  16. Bidirectional dc-to-dc Power Converter

    NASA Technical Reports Server (NTRS)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  17. An All-Digital Fast Tracking Switching Converter with a Programmable Order Loop Controller for Envelope Tracking RF Power Amplifiers

    PubMed Central

    Anabtawi, Nijad; Ferzli, Rony; Harmanani, Haidar M.

    2017-01-01

    This paper presents a step down, switched mode power converter for use in multi-standard envelope tracking radio frequency power amplifiers (RFPA). The converter is based on a programmable order sigma delta modulator that can be configured to operate with either 1st, 2nd, 3rd or 4th order loop filters, eliminating the need for a bulky passive output filter. Output ripple, sideband noise and spectral emission requirements of different wireless standards can be met by configuring the modulator’s filter order and converter’s sampling frequency. The proposed converter is entirely digital and is implemented in 14nm bulk CMOS process for post layout verification. For an input voltage of 3.3V, the converter’s output can be regulated to any voltage level from 0.5V to 2.5V, at a nominal switching frequency of 150MHz. It achieves a maximum efficiency of 94% at 1.5 W output power. PMID:28919657

  18. Novel bidirectional DC-DC converters based on the three-state switching cell

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, José Carlos; Robles Balestero, Juan Paulo; Lessa Tofoli, Fernando

    2016-05-01

    It is well known that there is an increasing demand for bidirectional DC-DC converters for applications that range from renewable energy sources to electric vehicles. Within this context, this work proposes novel DC-DC converter topologies that use the three-state switching cell (3SSC), whose well-known advantages over conventional existing structures are ability to operate at high current levels, while current sharing is maintained by a high frequency transformer; reduction of cost and dimensions of magnetics; improved distribution of losses, with consequent increase of global efficiency and reduction of cost associated to the need of semiconductors with lower current ratings. Three distinct topologies can be derived from the 3SSC: one DC-DC converter with reversible current characteristic able to operate in the first and second quadrants; one DC-DC converter with reversible voltage characteristic able to operate in the first and third quadrants and one DC-DC converter with reversible current and voltage characteristics able to operate in four quadrants. Only the topology with bidirectional current characteristic is analysed in detail in terms of the operating stages in both nonoverlapping and overlapping modes, while the design procedure of the power stage elements is obtained. In order to validate the theoretical assumptions, an experimental prototype is also implemented, so that relevant issues can be properly discussed.

  19. Extremum seeking-based optimization of high voltage converter modulator rise-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinker, Alexander; Bland, Michael; Krstic, Miroslav

    2013-02-01

    We digitally implement an extremum seeking (ES) algorithm, which optimizes the rise time of the output voltage of a high voltage converter modulator (HVCM) at the Los Alamos Neutron Science Center (LANSCE) HVCM test stand by iteratively, simultaneously tuning the first 8 switching edges of each of the three phase drive waveforms (24 variables total). We achieve a 50 μs rise time, which is reduction in half compared to the 100 μs achieved at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Considering that HVCMs typically operate with an output voltage of 100 kV, with a 60Hz repetitionmore » rate, the 50 μs rise time reduction will result in very significant energy savings. The ES algorithm will prove successful, despite the noisy measurements and cost calculations, confirming the theoretical results that the algorithm is not affected by noise whose frequency components are independent of the perturbing frequencies.« less

  20. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.; Woodcock, G. R.

    1980-01-01

    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

  1. Auxiliary quasi-resonant dc tank electrical power converter

    DOEpatents

    Peng, Fang Z.

    2006-10-24

    An auxiliary quasi-resonant dc tank (AQRDCT) power converter with fast current charging, voltage balancing (or charging), and voltage clamping circuits is provided for achieving soft-switched power conversion. The present invention is an improvement of the invention taught in U.S. Pat. No. 6,111,770, herein incorporated by reference. The present invention provides faster current charging to the resonant inductor, thus minimizing delay time of the pulse width modulation (PWM) due to the soft-switching process. The new AQRDCT converter includes three tank capacitors or power supplies to achieve the faster current charging and minimize the soft-switching time delay. The new AQRDCT converter further includes a voltage balancing circuit to charge and discharge the three tank capacitors so that additional isolated power supplies from the utility line are not needed. A voltage clamping circuit is also included for clamping voltage surge due to the reverse recovery of diodes.

  2. Design and development of repetitive capacitor charging power supply based on series-parallel resonant converter topology.

    PubMed

    Patel, Ankur; Nagesh, K V; Kolge, Tanmay; Chakravarthy, D P

    2011-04-01

    LCL resonant converter based repetitive capacitor charging power supply (CCPS) is designed and developed in the division. The LCL converter acts as a constant current source when switching frequency is equal to the resonant frequency. When both resonant inductors' values of LCL converter are same, it results in inherent zero current switching (ZCS) in switches. In this paper, ac analysis with fundamental frequency approximation of LCL resonant tank circuit, frequency dependent of current gain converter followed by design, development, simulation, and practical result is described. Effect of change in switching frequency and resonant frequency and change in resonant inductors ratio on CCPS will be discussed. An efficient CCPS of average output power of 1.2 kJ/s, output voltage 3 kV, and 300 Hz repetition rate is developed in the division. The performance of this CCPS has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. These results indicate that this design is very feasible for use in capacitor-charging applications. © 2011 American Institute of Physics

  3. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  4. Modelling, analyses and design of switching converters

    NASA Technical Reports Server (NTRS)

    Cuk, S. M.; Middlebrook, R. D.

    1978-01-01

    A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.

  5. Switch failure diagnosis based on inductor current observation for boost converters

    NASA Astrophysics Data System (ADS)

    Jamshidpour, E.; Poure, P.; Saadate, S.

    2016-09-01

    Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.

  6. High Voltage, Solid-State Switch for Fusion Science Applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Prager, James; Miller, Kenneth E.; Slobodov, Ilia

    2017-10-01

    Eagle Harbor Technologies, Inc. is developing a series stack of solid-state switches to produce a single high voltage switch that can be operated at over 35 kV. During the Phase I program, EHT developed two high voltage switch modules: one with isolated power gate drive and a second with inductively coupled gate drive. These switches were tested at 15 kV and up to 300 A at switching frequencies up to 500 kHz for 10 ms bursts. Robust switching was demonstrated for both IGBTs and SiC MOSFETs. During the Phase II program, EHT will develop a higher voltage switch (>35 kV) that will be suitable for high pulsed and average power applications. EHT will work with LTX to utilize these switches to design, build, and test a pulsed magnetron driver that will be delivered to LTX before the completion of the program. EHT will present data from the Phase I program as well as preliminary results from the start of the Phase II program. With support of DOE SBIR.

  7. Power converter

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1981-01-01

    A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.

  8. Predicting performance of power converters operating with switching frequencies in the vicinity of 100 kHZ

    NASA Technical Reports Server (NTRS)

    Bahler, D. D.; Owen, H. A., Jr.; Wilson, T. G.

    1978-01-01

    A model describing the turning-on period of a power switching transistor in an energy storage voltage step-up converter is presented. Comparisons between an experimental layout and the circuit model during the turning-on interval demonstrate the ability of the model to closely predict the effects of circuit topology on the performance of the converter. A phenomenon of particular importance that is observed in the experimental circuits and is predicted by the model is the deleterious feedback effect of the parasitic emitter lead inductance on the base current waveform during the turning-on interval.

  9. Model-Based Dead Time Optimization for Voltage-Source Converters Utilizing Silicon Carbide Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zheyu; Lu, Haifeng; Costinett, Daniel J.

    Dead time significantly affects the reliability, power quality, and efficiency of voltage-source converters. For silicon carbide (SiC) devices, considering the high sensitivity of turn-off time to the operating conditions (> 5× difference between light load and full load) and characteristics of inductive loads (> 2× difference between motor load and inductor), as well as large additional energy loss induced by the freewheeling diode conduction during the superfluous dead time (~15% of the switching loss), then the traditional fixed dead time setting becomes inappropriate. This paper introduces an approach to adaptively regulate the dead time considering the current operating condition andmore » load characteristics via synthesizing online monitored turn-off switching parameters in the microcontroller with an embedded preset optimization model. Here, based on a buck converter built with 1200-V SiC MOSFETs, the experimental results show that the proposed method is able to ensure reliability and reduce power loss by 12% at full load and 18.2% at light load (8% of the full load in this case study).« less

  10. Model-Based Dead Time Optimization for Voltage-Source Converters Utilizing Silicon Carbide Semiconductors

    DOE PAGES

    Zhang, Zheyu; Lu, Haifeng; Costinett, Daniel J.; ...

    2016-12-29

    Dead time significantly affects the reliability, power quality, and efficiency of voltage-source converters. For silicon carbide (SiC) devices, considering the high sensitivity of turn-off time to the operating conditions (> 5× difference between light load and full load) and characteristics of inductive loads (> 2× difference between motor load and inductor), as well as large additional energy loss induced by the freewheeling diode conduction during the superfluous dead time (~15% of the switching loss), then the traditional fixed dead time setting becomes inappropriate. This paper introduces an approach to adaptively regulate the dead time considering the current operating condition andmore » load characteristics via synthesizing online monitored turn-off switching parameters in the microcontroller with an embedded preset optimization model. Here, based on a buck converter built with 1200-V SiC MOSFETs, the experimental results show that the proposed method is able to ensure reliability and reduce power loss by 12% at full load and 18.2% at light load (8% of the full load in this case study).« less

  11. A voltage-division-type low-jitter self-triggered repetition-rate switch.

    PubMed

    Su, Jian-Cang; Zeng, Bo; Gao, Peng-Cheng; Li, Rui; Wu, Xiao-Long; Zhao, Liang

    2016-10-01

    A voltage-division-type (V/N) low-jitter self-triggered multi-stage switch is put forward. It comprises of a triggered corona gap, several quasi-uniform-field gaps, and an inversion inductor. When the corona gap is in the stage of self-breakdown, the multi-stage gaps are triggered and the switch is closed via an over-voltage. This type of V/N switch has the advantage of compact structure since the auxiliary components like the gas-blowing system and the triggered system are eliminated from the whole system. It also has advantages such as low breakdown jitter and high energy efficiency. The dependence of the self-triggered voltage on the over-voltage factor and the switch operating voltage is deduced. A switch of this type is designed and fabricated and experiments to research its characteristics are conducted. The results show that this switch can operate on a voltage of 1 MV at 50 Hz and can generate 1000 successive pulses with a jitter as low as 3% and an energy efficiency as high as 90%. This V/N switch can work under a high repetition rate with a long lifetime.

  12. Derivation of linearized transfer functions for switching-mode regulations. Phase A: Current step-up and voltage step-up converters

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1981-01-01

    Small-signal models are derived for the power stage of the voltage step-up (boost) and the current step-up (buck) converters. The modeling covers operation in both the continuous-mmf mode and the discontinuous-mmf mode. The power stage in the regulated current step-up converter on board the Dynamics Explorer Satellite is used as an example to illustrate the procedures in obtaining the small-signal functions characterizing a regulated converter.

  13. An Integrated Programmable Wide-range PLL for Switching Synchronization in Isolated DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Fard, Miad

    In this thesis, two Phase-Locked-Loop (PLL) based synchronization schemes are introduced and applied to a bi-directional Dual-Active-Bridge (DAB) dc-dc converter with an input voltage up to 80 V switching in the range of 250 kHz to 1 MHz. The two schemes synchronize gating signals across an isolated boundary without the need for an isolator per transistor. The Power Transformer Sensing (PTS) method utilizes the DAB power transformer to indirectly sense switching on the secondary side of the boundary, while the Digital Isolator Sensing (DIS) method utilizes a miniature transformer for synchronization and communication at up to 100 MHz. The PLL is implemented on-chip, and is used to control an external DAB power-stage. This work will lead to lower cost, high-frequency isolated dc-dc converters needed for a wide variety of emerging low power applications where isolator cost is relatively high and there is a demand for the reduction of parts.

  14. HOLLOTRON switch for megawatt lightweight space inverters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Goebel, D. M.; Schumacher, R. W.

    1991-01-01

    The feasibility of satisfying the switching requirements for a megawatt ultralight inverter system using HOLLOTRON switch technology was determined. The existing experimental switch hardware was modified to investigate a coaxial HOLLOTRON switch configuration and the results were compared with those obtained for a modified linear HOLLOTRON configuration. It was concluded that scaling the HOLLOTRON switch to the current and voltage specifications required for a megawatt converter system is indeed feasible using a modified linear configuration. The experimental HOLLOTRON switch operated at parameters comparable to the scaled coaxial HOLLOTRON. However, the linear HOLLOTRON data verified the capability for meeting all the design objectives simultaneously including current density (greater than 2 A/sq cm), voltage (5 kV), switching frequency (20 kHz), switching time (300 ns), and forward voltage drop (less than or equal to 20 V). Scaling relations were determined and a preliminary design was completed for an engineering model linear HOLLOTRON switch to meet the megawatt converter system specifications.

  15. Liquid Nitrogen as Fast High Voltage Switching Medium

    NASA Astrophysics Data System (ADS)

    Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.

    2002-12-01

    Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).

  16. Ping-pong auto-zero amplifier with glitch reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Mark R

    A ping-pong amplifier with reduced glitching is described. The ping-pong amplifier includes a nulling amplifier coupled to a switching network. The switching network is used to auto-zero a ping amplifier within a ping-pong amplifier. The nulling amplifier drives the output of a ping amplifier to a proper output voltage level during auto-zeroing of the ping amplifier. By being at a proper output voltage level, glitches associated with transitioning between a ping amplifier and a pong amplifier are reduced or eliminated.

  17. Highly-Efficient and Modular Medium-Voltage Converters

    DTIC Science & Technology

    2015-09-28

    HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction," IEEE Trans. Ind...Electron., vol. 29, pp. 77-88, Jan 2014. [10] M. Guan and Z. Xu, "Modeling and control of a modular multilevel converter -based HVDC system under...34 Modular multilevel converter design for VSC HVDC applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp.

  18. Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling

    NASA Astrophysics Data System (ADS)

    Bansal, Deepak; Bajpai, Anuroop; Kumar, Prem; Kaur, Maninder; Kumar, Amit; Chandran, Achu; Rangra, Kamaljit

    2017-02-01

    Variation in actuation voltage for RF MEMS switches is observed as a result of stress-generated buckling of MEMS structures. Large voltage driven RF-MEMS switches are a major concern in space bound communication applications. In this paper, we propose a low voltage driven RF MEMS capacitive switch with the introduction of perforations and reinforcement. The performance of the fabricated switch is compared with conventional capacitive RF MEMS switches. The pull-in voltage of the switch is reduced from 70 V to 16.2 V and the magnitude of deformation is reduced from 8 µm to 1 µm. The design of the reinforcement frame enhances the structural stiffness by 46 % without affecting the high frequency response of the switch. The measured isolation and insertion loss of the reinforced switch is more than 20 dB and 0.4 dB over the X band range.

  19. High-voltage, low-inductance gas switch

    DOEpatents

    Gruner, Frederick R.; Stygar, William A.

    2016-03-22

    A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.

  20. High voltage coaxial switch

    DOEpatents

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  1. High voltage coaxial switch

    DOEpatents

    Rink, John P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  2. Efficient III-Nitride MIS-HEMT devices with high-κ gate dielectric for high-power switching boost converter circuits

    NASA Astrophysics Data System (ADS)

    Mohanbabu, A.; Mohankumar, N.; Godwin Raj, D.; Sarkar, Partha; Saha, Samar K.

    2017-03-01

    The paper reports the results of a systematic theoretical study on efficient recessed-gate, double-heterostructure, and normally-OFF metal-insulator-semiconductor high-electron mobility transistors (MIS-HEMTs), HfAlOx/AlGaN on Al2O3 substrate. In device architecture, a thin AlGaN layer is used in the AlGaN graded barrier MIS-HEMTs that offers an excellent enhancement-mode device operation with threshold voltage higher than 5.3 V and drain current above 0.64 A/mm along with high on-current/off-current ratio over 107 and subthreshold slope less than 73 mV/dec. In addition, a high OFF-state breakdown voltage of 1200 V is achieved for a device with a gate-to-drain distance and field-plate length of 15 μm and 5.3 μm, respectively at a drain current of 1 mA/mm with a zero gate bias, and the substrate grounded. The numerical device simulation results show that in comparison to a conventional AlGaN/GaN MIS-HEMT of similar design, a graded barrier MIS-HEMT device exhibits a better interface property, remarkable suppression of leakage current, and a significant improvement of breakdown voltage for HfAlOx gate dielectric. Finally, the benefit of HfAlOx graded-barrier AlGaN MIS-HEMTs based switching devices is evaluated on an ultra-low-loss converter circuit.

  3. Determination of appropriate DC voltage for switched mode power supply (SMPS) loads

    NASA Astrophysics Data System (ADS)

    Setiawan, Eko Adhi; Setiawan, Aiman; Purnomo, Andri; Djamal, Muchlishah Hadi

    2017-03-01

    Nowadays, most of modern and efficient household electronic devices operated based on Switched Mode Power Supply (SMPS) technology which convert AC voltage from the grid to DC voltage. Based on theory and experiment, SMPS loads could be supplied by DC voltage. However, the DC voltage rating to energize electronic home appliances is not standardized yet. This paper proposed certain method to determine appropriate DC voltage, and investigated comparison of SMPS power consumption which is supplied from AC and DC voltage. To determine the appropriate DC voltage, lux value of several lamps which have same specification energized by using AC voltage and the results is using as reference. Then, the lamps were supplied by various DC voltage to obtain the trends of the lux value to the applied DC voltage. After that, by using the trends and the reference lux value, the appropriate DC voltage can be determined. Furthermore, the power consumption on home appliances such as mobile phone, laptop and personal computer by using AC voltage and the appropriate DC voltage were conducted. The results show that the total power consumption of AC system is higher than DC system. The total power (apparent power) consumed by the lamp, mobile phone and personal computer which operated in 220 VAC were 6.93 VA, 34.31 VA and 105.85 VA respectively. On the other hand, under 277 VDC the load consumption were 5.83 W, 19.11 W and 74.46 W respectively.

  4. Protection relay of phase-shifting device with thyristor switch for high voltage power transmission lines

    NASA Astrophysics Data System (ADS)

    Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.

    2014-12-01

    Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.

  5. 60 V tolerance full symmetrical switch for battery monitor IC

    NASA Astrophysics Data System (ADS)

    Zhang, Qidong; Yang, Yintang; Chai, Changchun

    2017-06-01

    For stacked battery monitoring IC high speed and high precision voltage acquisition requirements, this paper introduces a kind of symmetrical type high voltage switch circuit. This kind of switch circuit uses the voltage following structure, which eliminates the leakage path of input signals. At the same time, this circuit adopts a high speed charge pump structure, in any case the input signal voltage is higher than the supply voltage, it can fast and accurately turn on high voltage MOS devices, and convert the battery voltage to an analog to digital converter. The proposed high voltage full symmetry switch has been implemented in a 0.18 μm BCD process; simulated and measured results show that the proposed switch can always work properly regardless of the polarity of the voltage difference between the input signal ports and an input signal higher than the power supply. Project supported by the National Natural Science Foundation of China (No. 61334003).

  6. Novel control system of the high-voltage IGBT-switch

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Mamontov, Y. I.; Gusev, A. I.; Pedos, M. S.

    2017-05-01

    HV solid-state switch control circuit was developed and tested. The switch was made with series connection IGBT-transistors. The distinctive feature of the circuit is an ability to fine-tune the switching time of every transistor. Simultaneous switching provides balancing of the dynamic voltage at all switch elements. A separate control board switches on and off every transistor. On and off signals from the main conductor are sent to the board by current pulses of different polarity. A positive pulse provides the transistor switch-on, while a negative pulse provides their switch-off. The time interval between pulses defines the time when the switch is turned on. The minimum time when the switch is turned on equals to a few microseconds, while the maximum time is not limited. This paper shows the test results of 4 kV switch prototype. The switch was used to produce rectangular pulses of a microsecond range under resistive load. The possibility to generate the damped harmonic oscillations was also tested. On the basis of this approach, positive testing results open up a possibility to design switches under an operating voltage of tens kilovolts.

  7. Bidirectional converter for high-efficiency fuel cell powertrain

    NASA Astrophysics Data System (ADS)

    Fardoun, Abbas A.; Ismail, Esam H.; Sabzali, Ahmad J.; Al-Saffar, Mustafa A.

    2014-03-01

    In this paper, a new wide conversion ratio step-up and step-down converter is presented. The proposed converter is derived from the conventional Single Ended Primary Inductor Converter (SEPIC) topology and it is integrated with a capacitor-diode voltage multiplier, which offers a simple structure, reduced electromagnetic interference (EMI), and reduced semiconductors' voltage stresses. Other advantages include: continuous input and output current, extended step-up and step-down voltage conversion ratio without extreme low or high duty-cycle, simple control circuitry, and near-zero input and output ripple currents compared to other converter topologies. The low charging/discharging current ripple and wide gain features result in a longer life-span and lower cost of the energy storage battery system. In addition, the "near-zero" ripple capability improves the fuel cell durability. Theoretical analysis results obtained with the proposed structure are compared with other bi-direction converter topologies. Simulation and experimental results are presented to verify the performance of the proposed bi-directional converter.

  8. Reducing Ripple In A Switching Voltage Regulator

    NASA Technical Reports Server (NTRS)

    Paulkovich, John; Rodriguez, G. Ernest

    1994-01-01

    Ripple voltage in output of switching voltage regulator reduced substantially by simple additional circuitry adding little to overall weight and size of regulator. Heretofore, additional filtering circuitry needed to obtain comparable reductions in ripple typically as large and heavy as original regulator. Current opposing ripple current injected into filter capacitor.

  9. A dc to dc converter

    NASA Astrophysics Data System (ADS)

    Willis, A. E.; Gould, J. M.; Matheney, J. L.; Garrett, H.

    1984-01-01

    The object of the invention is to provide an improved converter for converting one direct current voltage to another. A plurality of phased square wave voltages are provided from a ring counter through amplifiers to a like plurality of output transformers. Each of these transformers has two windings, and S(1) winding and an S(2) winding. The S(1) windings are connected in series, then the S(2) windings are connected in series, and finally, the two sets of windings are connected in series. One of six SCRs is connected between each two series connected windings to a positive output terminal and one of diodes is connected between each set of two windings of a zero output terminal. By virtue of this configuration, a quite high average direct current voltage is obtained, which varies between full voltage and two-thirds full voltage rather than from full voltage to zero. Further, its variation, ripple frequency, is reduced to one-sixth of that present in a single phase system. Application to raising battery voltage for an ion propulsion system is mentioned.

  10. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  11. Low-voltage high-reliability MEMS switch for millimeter wave 5G applications

    NASA Astrophysics Data System (ADS)

    Shekhar, Sudhanshu; Vinoy, K. J.; Ananthasuresh, G. K.

    2018-07-01

    Lack of reliability of radio-frequency microelectromechanical systems (RF MEMS) switches has inhibited their commercial success. Dielectric stiction/breakdown and mechanical shock due to high actuation voltage are common impediments in capacitive MEMS switches. In this work, we report low-actuation voltage RF MEMS switch and its reliability test. Experimental characterization of fabricated devices demonstrate that proposed MEMS switch topology needs very low voltage (4.8 V) for actuation. The mechanical resonant frequency, f 0, quality factor, Q, and switching time are measured to be 8.35 kHz, 1.2, and 33 microsecond, respectively. These MEMS switches have high reliability in terms of switching cycles. Measurements are performed using pulse waveform of magnitude of 6 V under hot-switching condition. Temperature measurement results confirm that the reported switch topology has good thermal stability. The robustness in terms of the measured pull-in voltage shows a variation of 0.08 V °C‑1. Lifetime measurement results after 10 million switching cycles demonstrate insignificant change in the RF performance without any failure. Experimental results show that low voltage improves the lifetime. Low insertion loss (less than 0.6 dB) and improved isolation (above 40 dB) in the frequency range up to 60 GHz have been reported. Measured RF characteristics in the frequency range from 10 MHz to 60 GHz support that these MEMS switches are favorable choice for mm-wave 5G applications.

  12. Voltage-Driven Magnetization Switching and Spin Pumping in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Daichi; Nomura, Kentaro

    2016-10-01

    We demonstrate electrical magnetization switching and spin pumping in magnetically doped Weyl semimetals. The Weyl semimetal is a three-dimensional gapless topological material, known to have nontrivial coupling between the charge and the magnetization due to the chiral anomaly. By solving the Landau-Lifshitz-Gilbert equation for a multilayer structure of a Weyl semimetal, an insulator and a metal while taking the charge-magnetization coupling into account, magnetization dynamics is analyzed. It is shown that the magnetization dynamics can be driven by the electric voltage. Consequently, switching of the magnetization with a pulsed electric voltage can be achieved, as well as precession motion with an applied oscillating electric voltage. The effect requires only a short voltage pulse and may therefore be energetically favorable for us in spintronics devices compared to conventional spin-transfer torque switching.

  13. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  14. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  15. Push-pull switching power amplifier

    NASA Technical Reports Server (NTRS)

    Cuk, Slobodan M. (Inventor)

    1980-01-01

    A true push-pull switching power amplifier is disclosed utilizing two dc-to-dc converters. Each converter is comprised of two inductances, one inductance in series with a DC source and the other inductor in series with the output load, and an electrical energy transferring device with storage capability, namely storage capacitance, with suitable switching means between the inductances to obtain DC level conversion, where the switching means allows bidirectional current (and power) flow, and the switching means of one dc-to-dc converter is driven by the complement of a square-wave switching signal for the other dc-to-dc converter for true push-pull operation. For reduction of current ripple, the inductances in each of the two converters may be coupled, and with proper design of the coupling, the ripple can be reduced to zero at either the input or the output, but preferably the output.

  16. Single Active Switch PV Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanan, V. R.; Pan, Zhiguo

    This report presents a new PV inverter topology that uses only one active switch instead of 7 active switches in a conventional PV inverter. It has a buck boost converter and operates at discontinuous current control mode, which can reduce the output stage from an active switch bridge to a thyristor bridge. This concept, if successfully demonstrated, may have great cost and size/weight benefits over conventional solutions. Since the proposed topology is completely different from the traditional boost converter plus voltage source inverter approach, there is no existing control/modulation scheme available. A new modulation scheme for both the main switchmore » and the thyristors has been developed. An active clamping circuit has also been proposed to reduce switching losses and voltage spike during the switching transient. A simulation model has been set up to validate the control algorithm and clamping circuit. Simulated results show that a proposed 10 kW PV inverter can reach 5% total harmonic distortion (THD), 98.8% peak efficiency with only one main active switch, and an inductor weighing less than 3 kg. Based on that, a 10 kW prototype converter has been designed and built.« less

  17. Modeling of switching regulator power stages with and without zero-inductor-current dwell time

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Yu, Y.

    1979-01-01

    State-space techniques are employed to derive accurate models for the three basic switching converter power stages: buck, boost, and buck/boost operating with and without zero-inductor-current dwell time. A generalized procedure is developed which treats the continuous-inductor-current mode without dwell time as a special case of the discontinuous-current mode when the dwell time vanishes. Abrupt changes of system behavior, including a reduction of the system order when the dwell time appears, are shown both analytically and experimentally. Merits resulting from the present modeling technique in comparison with existing modeling techniques are illustrated.

  18. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, T.E.

    1994-07-26

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET. 2 figs.

  19. Analysis of high voltage step-up nonisolated DC-DC boost converters

    NASA Astrophysics Data System (ADS)

    Alisson Alencar Freitas, Antônio; Lessa Tofoli, Fernando; Junior, Edilson Mineiro Sá; Daher, Sergio; Antunes, Fernando Luiz Marcelo

    2016-05-01

    A high voltage step-up nonisolated DC-DC converter based on coupled inductors suitable to photovoltaic (PV) systems applications is proposed in this paper. Considering that numerous approaches exist to extend the voltage conversion ratio of DC-DC converters that do not use transformers, a detailed comparison is also presented among the proposed converter and other popular topologies such as the conventional boost converter and the quadratic boost converter. The qualitative analysis of the coupled-inductor-based topology is developed so that a design procedure can be obtained, from which an experimental prototype is implemented to validate the theoretical assumptions.

  20. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensationti

    PubMed Central

    Matko, Vojko; Milanović, Miro

    2014-01-01

    This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 μH to 2–560 kHz. PMID:25325334

  1. A PIPO Boost Converter with Low Ripple and Medium Current Application

    NASA Astrophysics Data System (ADS)

    Bandri, S.; Sofian, A.; Ismail, F.

    2018-04-01

    This paper presents a Parallel Input Parallel Output (PIPO) boost converter is proposed to gain power ability of converter, and reduce current inductors. The proposed technique will distribute current for n-parallel inductor and switching component. Four parallel boost converters implement on input voltage 20.5Vdc to generate output voltage 28.8Vdc. The PIPO boost converter applied phase shift pulse width modulation which will compare with conventional PIPO boost converters by using a similar pulse for every switching component. The current ripple reduction shows an advantage PIPO boost converter then conventional boost converter. Varies loads and duty cycle will be simulated and analyzed to verify the performance of PIPO boost converter. Finally, the unbalance of current inductor is able to be verified on four area of duty cycle in less than 0.6.

  2. Voltage controlled Bi-mode resistive switching effects in MnO2 based devices

    NASA Astrophysics Data System (ADS)

    Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.

    2018-01-01

    In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.

  3. Two new families of high-gain dc-dc power electronic converters for dc-microgrids

    NASA Astrophysics Data System (ADS)

    Prabhala, Venkata Anand Kishore

    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.

  4. A 25-kW Series-Resonant Power Converter

    NASA Technical Reports Server (NTRS)

    Frye, R. J.; Robson, R. R.

    1986-01-01

    Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.

  5. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, P.; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  6. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, Patti; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  7. A fault-tolerant strategy based on SMC for current-controlled converters

    NASA Astrophysics Data System (ADS)

    Azer, Peter M.; Marei, Mostafa I.; Sattar, Ahmed A.

    2018-05-01

    The sliding mode control (SMC) is used to control variable structure systems such as power electronics converters. This paper presents a fault-tolerant strategy based on the SMC for current-controlled AC-DC converters. The proposed SMC is based on three sliding surfaces for the three legs of the AC-DC converter. Two sliding surfaces are assigned to control the phase currents since the input three-phase currents are balanced. Hence, the third sliding surface is considered as an extra degree of freedom which is utilised to control the neutral voltage. This action is utilised to enhance the performance of the converter during open-switch faults. The proposed fault-tolerant strategy is based on allocating the sliding surface of the faulty leg to control the neutral voltage. Consequently, the current waveform is improved. The behaviour of the current-controlled converter during different types of open-switch faults is analysed. Double switch faults include three cases: two upper switch fault; upper and lower switch fault at different legs; and two switches of the same leg. The dynamic performance of the proposed system is evaluated during healthy and open-switch fault operations. Simulation results exhibit the various merits of the proposed SMC-based fault-tolerant strategy.

  8. Design of an Integrated Thermoelectric Generator Power Converter for Ultra-Low Power and Low Voltage Body Energy Harvesters aimed at EEG/ECG Active Electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2014-11-01

    This paper describes a design procedure for an efficient body thermal energy harvesting integrated power converter. This procedure is based on loss examination for a selfpowered medical device. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. It is found that it is possible to optimize converter's working frequency with proper design of its pulse generator circuit. At selected frequency, it has been demonstrated that wide area voltage doubler can be eliminated at the expense of wider switches. With this method, more than 60% efficiency is achieved in simulation for just 20mV transducer output voltage and 30% of entire chip area is saved.

  9. Modulation and control of matrix converter for aerospace application

    NASA Astrophysics Data System (ADS)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix

  10. ZERO SUPPRESSION FOR RECORDERS

    DOEpatents

    Fort, W.G.S.

    1958-12-30

    A zero-suppression circuit for self-balancing recorder instruments is presented. The essential elements of the circuit include a converter-amplifier having two inputs, one for a reference voltage and the other for the signal voltage under analysis, and a servomotor with two control windings, one coupled to the a-c output of the converter-amplifier and the other receiving a reference input. Each input circuit to the converter-amplifier has a variable potentiometer and the sliders of the potentiometer are ganged together for movement by the servoinotor. The particular noveity of the circuit resides in the selection of resistance values for the potentiometer and a resistor in series with the potentiometer of the signal circuit to ensure the full value of signal voltage variation is impressed on a recorder mechanism driven by servomotor.

  11. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  12. A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research.

    PubMed

    Zeng, Bo; Su, Jian-cang; Cheng, Jie; Wu, Xiao-long; Li, Rui; Zhao, Liang; Fang, Jin-peng; Wang, Li-min

    2015-04-01

    A multifunctional high voltage apparatus for experimental researches on surface flashover switch and high voltage insulation in vacuum has been developed. The apparatus is composed of five parts: pulse generating unit, axial field unit, radial field unit, and two switch units. Microsecond damped ringing pulse with peak-to-peak voltage 800 kV or unipolar pulse with maximum voltage 830 kV is generated, forming transient axial or radial electrical field. Different pulse waveforms and field distributions make up six experimental configurations in all. Based on this apparatus, preliminary experiments on vacuum surface flashover switch with different flashover dielectric materials have been conducted in the axial field unit, and nanosecond pulse is generated in the radial field unit which makes a pulse transmission line in the experiment. Basic work parameters of this kind of switch such as lifetime, breakdown voltage are obtained.

  13. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  14. Analysis and Control of Pulse-Width Modulated AC to DC Voltage Source Converters.

    NASA Astrophysics Data System (ADS)

    Wu, Rusong

    The pulse width modulated AC to DC voltage source converter is comprehensively analyzed in the thesis. A general mathematical model of the converter is first established, which is discontinuous, time-variant and non-linear. The following three techniques are used to obtain closed form solutions: Fourier analysis, transformation of reference frame and small signal linearization. Three models, namely, a steady-state DC model, a low frequency small signal AC model and a high frequency model, are consequently developed. Finally, three solution sets, namely, the steady-state solution, various dynamic transfer functions and the high frequency harmonic components, are obtained from the three models. Two control strategies, the Phase and Amplitude Control (PAC) and a new proposed strategy, Predicted Current Control with a Fixed Switching Frequency (PCFF), are investigated. Based on the transfer functions derived from the above mentioned analysis, regulators for a closed-loop control are designed. A prototype circuit is built to experimentally verify the theoretical predictions. The analysis and experimental results show that both strategies produce nearly sinusoidal line current with unity power factor on the utility side in both rectifying and regenerating operations and concurrently provide a regulated DC output voltage on the load side. However the proposed PCFF control has a faster and improved dynamic response over the PAC control. Moreover it is also easier to be implemented. Therefore, the PCFF control is preferable to the PAC control. As an example of application, a configuration of variable DC supply under PCFF control is proposed. The quasi-optimal dynamic response obtained shows that the PWM AC to DC converter lays the foundation for building a four-quadrant, fast-dynamic system, and the PCFF control is an effective strategy for improving dynamic performances not only as applied to the AC to DC converter, but also as applied to the DC to DC chopper or other

  15. Electronics drivers for high voltage dielectric electro active polymer (DEAP) applications

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Andersen, Michael A. E.

    2015-04-01

    Dielectric electro active polymer (DEAP) can be used in actuation, sensing and energy harvesting applications, but driving the DEAP based actuators and generators has three main challenges from a power electronics standpoint, i.e. high voltage (around 2.5 kV), nonlinearity, and capacitive behavior. In this paper, electronics divers for heating valves, loud speakers, incremental motors, and energy harvesting are reviewed, studied and developed in accordance with their corresponding specifications. Due to the simplicity and low power capacity (below 10W), the reversible Fly-back converters with both magnetic and piezoelectric transformers are employed for the heating valve and incremental motor application, where only ON/OFF regulation is adopted for energy saving; as for DEAP based energy harvesting, the noisolated Buck/Boost converter is used, due to the system high power capacity (above 100W), but the voltage balancing across the series-connected high voltage IGBTs is a critical issue and accordingly a novel gate driver circuitry is proposed and equipped; due to the requirements of the audio products, such as low distortion and noise, the multi-level Buck converter based Class-D amplifier, because of its high control linearity, is implemented for the loud speaker applications. A synthesis among those converter topologies and control techniques is given; therefore, for those DEAP based applications, their diversity and similarity of electronics drivers, as well as the key technologies employed are analyzed. Therefore a whole picture of how to choose the proper topologies can be revealed. Finally, the design guidelines in order to achieve high efficiency and reliability are discussed.

  16. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    NASA Astrophysics Data System (ADS)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  17. A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C.

    1988-01-01

    The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.

  18. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Improved resistive switching characteristics of a Pt/HfO2/Pt resistor by controlling anode interface with forming and switching polarity

    NASA Astrophysics Data System (ADS)

    Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho

    2018-03-01

    The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.

  20. An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2014-01-01

    This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.

  1. High static gain single-phase PFC based on a hybrid boost converter

    NASA Astrophysics Data System (ADS)

    Flores Cortez, Daniel; Maccarini, Marcello C.; Mussa, Samir A.; Barbi, Ivo

    2017-05-01

    In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc-dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.

  2. Class E/F switching power amplifiers

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Aoki, Ichiro (Inventor); Rutledge, David B. (Inventor); Kee, Scott David (Inventor)

    2004-01-01

    The present invention discloses a new family of switching amplifier classes called class E/F amplifiers. These amplifiers are generally characterized by their use of the zero-voltage-switching (ZVS) phase correction technique to eliminate of the loss normally associated with the inherent capacitance of the switching device as utilized in class-E amplifiers, together with a load network for improved voltage and current wave-shaping by presenting class-F.sup.-1 impedances at selected overtones and class-E impedances at the remaining overtones. The present invention discloses a several topologies and specific circuit implementations for achieving such performance.

  3. The development of high-voltage repetitive low-jitter corona stabilized triggered switch

    NASA Astrophysics Data System (ADS)

    Geng, Jiuyuan; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao; Chen, Rong

    2018-04-01

    The high-power switch plays an important part in a pulse power system. With the trend of pulse power technology toward modularization, miniaturization, and accuracy control, higher requirements on electrical trigger and jitter of the switch have been put forward. A high-power low-jitter corona-stabilized triggered switch (CSTS) is designed in this paper. This kind of CSTS is based on corona stabilized mechanism, and it can be used as a main switch of an intense electron-beam accelerator (IEBA). Its main feature was the use of an annular trigger electrode instead of a traditional needle-like trigger electrode, taking main and side trigger rings to fix the discharging channels and using SF6/N2 gas mixture as its operation gas. In this paper, the strength of the local field enhancement was changed by a trigger electrode protrusion length Dp. The differences of self-breakdown voltage and its stability, delay time jitter, trigger requirements, and operation range of the switch were compared. Then the effect of different SF6/N2 mixture ratio on switch performance was explored. The experimental results show that when the SF6 is 15% with the pressure of 0.2 MPa, the hold-off voltage of the switch is 551 kV, the operating range is 46.4%-93.5% of the self-breakdown voltage, the jitter is 0.57 ns, and the minimum trigger voltage requirement is 55.8% of the peak. At present, the CSTS has been successfully applied to an IEBA for long time operation.

  4. The development of high-voltage repetitive low-jitter corona stabilized triggered switch.

    PubMed

    Geng, Jiuyuan; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao; Chen, Rong

    2018-04-01

    The high-power switch plays an important part in a pulse power system. With the trend of pulse power technology toward modularization, miniaturization, and accuracy control, higher requirements on electrical trigger and jitter of the switch have been put forward. A high-power low-jitter corona-stabilized triggered switch (CSTS) is designed in this paper. This kind of CSTS is based on corona stabilized mechanism, and it can be used as a main switch of an intense electron-beam accelerator (IEBA). Its main feature was the use of an annular trigger electrode instead of a traditional needle-like trigger electrode, taking main and side trigger rings to fix the discharging channels and using SF 6 /N 2 gas mixture as its operation gas. In this paper, the strength of the local field enhancement was changed by a trigger electrode protrusion length Dp. The differences of self-breakdown voltage and its stability, delay time jitter, trigger requirements, and operation range of the switch were compared. Then the effect of different SF 6 /N 2 mixture ratio on switch performance was explored. The experimental results show that when the SF 6 is 15% with the pressure of 0.2 MPa, the hold-off voltage of the switch is 551 kV, the operating range is 46.4%-93.5% of the self-breakdown voltage, the jitter is 0.57 ns, and the minimum trigger voltage requirement is 55.8% of the peak. At present, the CSTS has been successfully applied to an IEBA for long time operation.

  5. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    DOEpatents

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  6. A novel power converter for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang

    A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.

  7. Frequency to Voltage Converter Analog Front-End Prototype

    NASA Technical Reports Server (NTRS)

    Mata, Carlos; Raines, Matthew

    2012-01-01

    The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.

  8. Ultralow-voltage design of graphene PN junction quantum reflective switch transistor

    NASA Astrophysics Data System (ADS)

    Sohier, Thibault; Yu, Bin

    2011-05-01

    We propose the concept of a graphene-based quantum reflective switch (QRS) for low-power logic application. With the unique electronic properties of graphene, a tilted PN junction is used to implement logic switch function with 103 ON/OFF ratio. Carriers are reflected on an electrostatically induced potential step with strong incidence-angle-dependency due to the widening of classically forbidden energies. Optimized design of the device for ultralow-voltage operating has been conducted. The device is constantly ON with a turning-off gate voltage around 180 mV using thin HfO2 as the gate dielectric. The results suggest a class of logic switch devices operating with micropower dissipation.

  9. Compact atmospheric pressure plasma self-resonant drive circuits

    NASA Astrophysics Data System (ADS)

    Law, V. J.; Anghel, S. D.

    2012-02-01

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency.

  10. Compensation of voltage drops in solid-state switches used with thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1972-01-01

    Seebeck effect solid state switch was developed eliminating thermoelectric generator switch voltage drops. Semiconductor switches were fabricated from materials with large Seebeck coefficients, arranged such that Seebeck potential is generated with such polarity that current flow is aided.

  11. Liquid flyback booster pre-phase: A study assessment

    NASA Technical Reports Server (NTRS)

    Peterson, W.; Ankney, W.; Bell, J.; Berning, M.; Bryant, L.; Bufkin, A.; Cain, L.; Caram, J.; Cockrell, B.; Curry, D.

    1994-01-01

    The concept of a flyback booster has been around since early in the shuttle program. The original two-stage shuttle concepts used a manned flyback booster. These boosters were eliminated from the program for funding and size reasons. The current shuttle uses two Redesigned Solid Rocket Motors (RSRM's), which are recovered and refurbished after each flight; this is one of the major cost factors of the program. Replacement options have been studied over the past ten years. The conclusion reached by the most recent study is that the liquid flyback booster (LFBB) is the only competitive option from a life-cycle cost perspective. The purpose of this study was to assess the feasibility and practicality of LFBB's. The study provides an expansion of the recommendations made during the aforementioned study. The primary benefits are the potential for enhanced reusability and a reduction of recurring costs. The potential savings in vehicle turnaround could offset the up-front costs. Development of LFBB's requires a commitment to the shuttle program for 20 to 30 years. LFBB's also offer enhanced safety and abort capabilities. Currently, any failure of an RSRM can be considered catastrophic, since there are no intact abort capabilities during the burn of the RSRM's. The performance goal of the LFBB's was to lift a fully loaded orbiter under optimal conditions, so as not to be the limiting factor of the performance capability of the shuttle. In addition, a final benefit is the availability of growth paths for applications other than shuttle.

  12. Simultaneous DC and three phase output using hybrid converter

    NASA Astrophysics Data System (ADS)

    Surenderanath, S.; Rathnavel, P.; Prakash, G.; Rayavel, P.

    2018-04-01

    This Paper introduces new hybrid converter topologies which can supply simultaneously three phase AC as well as DC from a single DC source. The new Hybrid Converter is derived from the single switch controlled Boost converter by replacing the controlled switch with voltage source inverter (VSI). This new hybrid converter has the advantages like reduced number of switches as compared with conventional design having separate converter for supplying three phase AC and DC loads, provide DC and three AC outputs with an increased reliability, resulting from the inherent shoot through protection in the inverter stage. The proposed converter, studied in this paper, is called Boost-Derived Hybrid Converter (BDHC) as it is obtained from the conventional boost topology. A DSPIC based feedback controller is designed to regulate the DC as well as AC outputs. The proposed Converter can supply DC and AC loads at 95 V and 35 V (line to ground) respectively from a 48 V DC source.

  13. Series resonant converter with auxiliary winding turns: analysis, design and implementation

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-05-01

    Conventional series resonant converters have researched and applied for high-efficiency power units due to the benefit of its low switching losses. The main problems of series resonant converters are wide frequency variation and high circulating current. Thus, resonant converter is limited at narrow input voltage range and large input capacitor is normally adopted in commercial power units to provide the minimum hold-up time requirement when AC power is off. To overcome these problems, the resonant converter with auxiliary secondary windings are presented in this paper to achieve high voltage gain at low input voltage case such as hold-up time duration when utility power is off. Since the high voltage gain is used at low input voltage cased, the frequency variation of the proposed converter compared to the conventional resonant converter is reduced. Compared to conventional resonant converter, the hold-up time in the proposed converter is more than 40ms. The larger magnetising inductance of transformer is used to reduce the circulating current losses. Finally, a laboratory prototype is constructed and experiments are provided to verify the converter performance.

  14. A Comparison of High-Voltage Switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, K.W.; Scott, G.L.

    1999-02-01

    This report summarizes our work on high-voltage switches during the past few years. With joint funding from the Department of Energy (DOE) and the Department of Defense (DOD), we tested a wide variety of switches to a common standard. This approach permitted meaningful comparisons between disparate switches. Most switches were purchased from commercial sources, though some were experimental devices. For the purposes of this report, we divided the switches into three generic types (gas, vacuum, and semiconductor) and selected data that best illustrates important strengths and weaknesses of each switch type. Test techniques that indicate the state of health ofmore » the switches are emphasized. For example, a good indicator of residual gas in a vacuum switch is the systematic variation of the switching delay in response to changes in temperature and/or operating conditions. We believe that the presentation of this kind of information will help engineers to select and to test switches for their particular applications. Our work was limited to switches capable of driving slappers. Also known as exploding-foil initiators, slappers are detonators that initiate a secondary explosive by direct impact with a small piece of matter moving at the detonation velocity (several thousands of meters per second). A slapper is desirable for enhanced safety (no primary explosive), but it also places extra demands on the capacitor-discharge circuit to deliver a fast-rising current pulse (greater than 10 A/ns) of several thousand amperes. The required energy is substantially less than one joule; but this energy is delivered in less than one microsecond, taking the peak power into the megawatt regime. In our study, the switches operated in the 1 kV to 3 kV range and were physically small, roughly 1 cm{sup 3} or less. Although a fuze functions only once in actual use, multiple-shot capability is important for production testing and for research work. For this reason, we restricted this

  15. Novel switching method for single-phase NPC three-level inverter with neutral-point voltage control

    NASA Astrophysics Data System (ADS)

    Lee, June-Seok; Lee, Seung-Joo; Lee, Kyo-Beum

    2018-02-01

    This paper proposes a novel switching method with the neutral-point voltage control in a single-phase neutral-point-clamped three-level inverter (SP-NPCI) used in photovoltaic systems. A proposed novel switching method for the SP-NPCI improves the efficiency. The main concept is to fix the switching state of one leg. As a result, the switching loss decreases and the total efficiency is improved. In addition, it enables the maximum power-point-tracking operation to be performed by applying the proposed neutral-point voltage control algorithm. This control is implemented by modifying the reference signal. Simulation and experimental results provide verification of the performance of a novel switching method with the neutral-point voltage control.

  16. Voltage switching of a VO{sub 2} memory metasurface using ionic gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, M. D.; Liu, M. K.; Chapler, B. C.

    2014-07-28

    We demonstrate an electrolyte-based voltage tunable vanadium dioxide (VO{sub 2}) memory metasurface. Large spatial scale, low voltage, non-volatile switching of terahertz (THz) metasurface resonances is achieved through voltage application using an ionic gel to drive the insulator-to-metal transition in an underlying VO{sub 2} layer. Positive and negative voltage application can selectively tune the metasurface resonance into the “off” or “on” state by pushing the VO{sub 2} into a more conductive or insulating regime respectively. Compared to graphene based control devices, the relatively long saturation time of resonance modification in VO{sub 2} based devices suggests that this voltage-induced switching originates primarilymore » from electrochemical effects related to oxygen migration across the electrolyte–VO{sub 2} interface.« less

  17. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  18. Switch wear leveling

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  19. Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination

    DOEpatents

    Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy

    2009-04-14

    DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

  20. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  1. Characterization and snubbing of a bidirectional MCT in a resonant ac link converter

    NASA Technical Reports Server (NTRS)

    Lee, Tony; Elbuluk, Malik E.; Zinger, Donald S.

    1993-01-01

    The MOS-Controlled Thyristor (MCT) is emerging as a powerful switch that combines the better characteristics of existing power devices. A study of switching stresses on an MCT switch under zero voltage resonant switching is presented. The MCT is used as a bidirectional switch in an ac/ac pulse density modulated inverter for induction motor drive. Current and voltage spikes are observed and analyzed with variations in the timing of the switching. Different snubber circuit configurations are under investigation to minimize the effect of these transients. The results will be extended to study and test the MCT switching in a medium power (5 hp) induction motor drive.

  2. Voltage-Controlled Switching and Thermal Effects in VO2 Nano-Gap Junctions

    DTIC Science & Technology

    2014-06-09

    Voltage-controlled switching and thermal effects in VO2 nano-gap junctions Arash Joushaghani,1 Junho Jeong,1 Suzanne Paradis,2 David Alain,2 J...2014) Voltage-controlled switching in lateral VO2 nano-gap junctions with different gap lengths and thermal properties was investigated. The effect of...indicate that the VO2 phase transition was likely initiated electroni- cally, which was sometimes followed by a secondary thermally-induced transition

  3. Low Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Anglada-Sanchez, Carlos R.; Perez-Feliciano, David; Ray, Biswajit

    1997-01-01

    The low temperature operation of a 48 W, 50 kHz, 36/12 V pulse width modulated (PWM) buck de-de power converter designed with standard commercially available components and devices is reported. The efficiency of the converter increased from 85.6% at room temperature (300 K) to 92.0% at liquid nitrogen temperature (77 K). The variation of power MOSFET, diode rectifier, and output filter inductor loss with temperature is discussed. Relevant current, voltage. and power waveforms are also included.

  4. Power flow controller with a fractionally rated back-to-back converter

    DOEpatents

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  5. Optical zero-differential pressure switch and its evaluation in a multiple pressure measuring system

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1977-01-01

    The design of a clamped-diaphragm pressure switch is described in which diaphragm motion is detected by a simple fiber-optic displacement sensor. The switch was evaluated in a pressure measurement system where it detected the zero crossing of the differential pressure between a static test pressure and a tank pressure that was periodically ramped from near zero to fullscale gage pressure. With a ramping frequency of 1 hertz and a full-scale tank pressure of 69 N/sq cm gage (100 psig), the switch delay was as long as 2 milliseconds. Pressure measurement accuracies were 0.25 to 0.75 percent of full scale. Factors affecting switch performance are also discussed.

  6. Ultra high voltage MOS controlled 4H-SiC power switching devices

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Capell, C.; Van Brunt, E.; Jonas, C.; O'Loughlin, M.; Clayton, J.; Lam, K.; Pala, V.; Hull, B.; Lemma, Y.; Lichtenwalner, D.; Zhang, Q. J.; Richmond, J.; Butler, P.; Grider, D.; Casady, J.; Allen, S.; Palmour, J.; Hinojosa, M.; Tipton, C. W.; Scozzie, C.

    2015-08-01

    Ultra high voltage (UHV, >15 kV) 4H-silicon carbide (SiC) power devices have the potential to significantly improve the system performance, reliability, and cost of energy conversion systems by providing reduced part count, simplified circuit topology, and reduced switching losses. In this paper, we compare the two MOS based UHV 4H-SiC power switching devices; 15 kV 4H-SiC MOSFETs and 15 kV 4H-SiC n-IGBTs. The 15 kV 4H-SiC MOSFET shows a specific on-resistance of 204 mΩ cm2 at 25 °C, which increased to 570 mΩ cm2 at 150 °C. The 15 kV 4H-SiC MOSFET provides low, temperature-independent, switching losses which makes the device more attractive for applications that require higher switching frequencies. The 15 kV 4H-SiC n-IGBT shows a significantly lower forward voltage drop (VF), along with reasonable switching performance, which make it a very attractive device for high voltage applications with lower switching frequency requirements. An electrothermal analysis showed that the 15 kV 4H-SiC n-IGBT outperforms the 15 kV 4H-SiC MOSFET for applications with switching frequencies of less than 5 kHz. It was also shown that the use of a carrier storage layer (CSL) can significantly improve the conduction performance of the 15 kV 4H-SiC n-IGBTs.

  7. Method and system for a gas tube-based current source high voltage direct current transmission system

    DOEpatents

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  8. Using a PFET To Commutate an SCR

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Ripple, W. E.

    1984-01-01

    Accidental turn-on prevented. PFET diverts load current around SCR to prevent false SCR triggering from current and voltage switching transients. New circuit used in all types of single phase and polyphase inverters and in buck-boost-, and flyback regulators.

  9. The Series Connected Buck Boost Regulator Concept for High Efficiency Light Weight DC Voltage Regulation

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2003-01-01

    Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.

  10. Raman spectrum method for characterization of pull-in voltages of graphene capacitive shunt switches

    NASA Astrophysics Data System (ADS)

    Li, Peng; You, Zheng; Cui, Tianhong

    2012-12-01

    An approach using Raman spectrum method is reported to measure pull-in voltages of graphene capacitive shunt switches. When the bias excesses the pull-in voltage, the Raman spectrum's intensity largely decreases. Two factors that contribute to the intensity reduction are investigated. Moreover, by monitoring the frequency shift of G peak and 2D band, we are able to detect the pull-in voltage and measure the strain change in graphene beams during switching.

  11. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  12. Modeling the full-bridge series-resonant power converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1982-01-01

    A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.

  13. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  14. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

  15. Design and Development of a Series Switch for High Voltage in RF Heating

    NASA Astrophysics Data System (ADS)

    Patel, Himanshu K.; Shah, Deep; Thacker, Mauli; Shah, Atman

    2013-02-01

    Plasma is the fourth state of matter. To sustain plasma in its ionic form very high temperature is essential. RF heating systems are used to provide the required temperature. Arching phenomenon in these systems can cause enormous damage to the RF tube. Heavy current flows across the anode-cathode junction, which need to be suppressed in minimal time for its protection. Fast-switching circuit breakers are used to cut-off the load from the supply in cases of arching. The crowbar interrupts the connection between the high voltage power supply (HVPS) and the RF tube for a temporary period between which the series switch has to open. The crowbar shunts the current across the load but in the process leads to short circuiting the HVPS. Thus, to protect the load as well as the HVPS a series switch is necessary. This paper presents the design and development of high voltage Series Switch for the high power switching applications. Fiber optic based Optimum triggering scheme is designed and tested to restrict the time delay well within the stipulated limits. The design is well supported with the experimental results for the whole set-up along with the series switch at various voltage level before its approval for operation at 5.2 kV.

  16. Voltage-Controlled On/Off Switching of Ferromagnetism in Manganite Supercapacitors.

    PubMed

    Molinari, Alan; Hahn, Horst; Kruk, Robert

    2018-01-01

    The ever-growing technological demand for more advanced microelectronic and spintronic devices keeps catalyzing the idea of controlling magnetism with an electric field. Although voltage-driven on/off switching of magnetization is already established in some magnetoelectric (ME) systems, often the coupling between magnetic and electric order parameters lacks an adequate reversibility, energy efficiency, working temperature, or switching speed. Here, the ME performance of a manganite supercapacitor composed of a ferromagnetic, spin-polarized ultrathin film of La 0.74 Sr 0.26 MnO 3 (LSMO) electrically charged with an ionic liquid electrolyte is investigated. Fully reversible, rapid, on/off switching of ferromagnetism in LSMO is demonstrated in combination with a shift in Curie temperature of up to 26 K and a giant ME coupling coefficient of ≈226 Oe V -1 . The application of voltages of only ≈2 V results in ultralow energy consumptions of about 90 µJ cm -2 . This work provides a step forward toward low-power, high-endurance electrical switching of magnetism for the development of high-performance ME spintronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reference voltage calculation method based on zero-sequence component optimisation for a regional compensation DVR

    NASA Astrophysics Data System (ADS)

    Jian, Le; Cao, Wang; Jintao, Yang; Yinge, Wang

    2018-04-01

    This paper describes the design of a dynamic voltage restorer (DVR) that can simultaneously protect several sensitive loads from voltage sags in a region of an MV distribution network. A novel reference voltage calculation method based on zero-sequence voltage optimisation is proposed for this DVR to optimise cost-effectiveness in compensation of voltage sags with different characteristics in an ungrounded neutral system. Based on a detailed analysis of the characteristics of voltage sags caused by different types of faults and the effect of the wiring mode of the transformer on these characteristics, the optimisation target of the reference voltage calculation is presented with several constraints. The reference voltages under all types of voltage sags are calculated by optimising the zero-sequence component, which can reduce the degree of swell in the phase-to-ground voltage after compensation to the maximum extent and can improve the symmetry degree of the output voltages of the DVR, thereby effectively increasing the compensation ability. The validity and effectiveness of the proposed method are verified by simulation and experimental results.

  18. An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2015-12-01

    This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.

  19. Indirect current control with separate IZ drop compensation for voltage source converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanetkar, V.R.; Dawande, M.S.; Dubey, G.K.

    1995-12-31

    Indirect Current Control (ICC) of boost type Voltage Source Converters (VSCs) using separate compensation of line IZ voltage drop is presented. A separate bi-directional VSC is used to produce the compensation voltage. This simplifies the ICC regulator scheme as the power flow is controlled through single modulation index. Experimental verification is provided for bi-directional control of the power flow.

  20. Application of interleaved flyback micro inverter in a grid connected system

    NASA Astrophysics Data System (ADS)

    Brindha, R.; Ananthichristy, A.; Poornima, P. U.; Madhana, M.; Ashok Rathish, S.; Ragavi, Selvam

    2018-04-01

    The two control strategies CCM and DCM have various effects on the loss distribution and efficiency and thus were studied for the interleaved flyback micro inverter concentrating on the loss analysis under different load conditions. The dominant losses with heavy load include the conduction loss and the transformer loss in case of the interleaved flyback micro inverter; whereas driving of gate loss, the turn-off loss in the transformer core loss and in the powermosfets are included in the dominant losses with light load. A new hybrid control strategy which has the one-phase DCM and two-phase DCM control reduces the dominant losses in order to improving the efficiency based on the load in wide load range is proposed here.

  1. Voltage source ac-to-dc converters for high-power transmitters

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  2. Zero voltage mass spectrometry probes and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  3. Synchronous Controlled Switching by VCB with Electromagnetic Operation Mechanism

    NASA Astrophysics Data System (ADS)

    Horinouchi, Katsuhiko; Tsukima, Mitsuru; Tohya, Nobumoto; Inoue, Ryuuichi; Sasao, Hiroyuki

    Synchronously controlled switching to suppress transient overvoltage and overcurrent resulting from when the circuit breakers on medium voltage systems are closed is described. Firstly, by simulation it is found that if the closing time is synchronously controlled so that the contacts of the circuit breaker close completely at the instant when the voltage across contacts of the breaker at each of the three individual phases are zero, the resulting overvoltage and overcurrent is significantly suppressed when compared to conventional three phase simultaneous closing. Next, an algorithm for determining the closing timing based on a forecasted voltage zero waveform, obtained from voltage sampling data, is presented. Finally, a synchronous closing experiment of voltage 22kV utilizing a controller to implement the algorithm and a VCB with an electromagnetic operation mechanism is presented. The VCB was successfully closed at the zero point within a tolerance range of 200 microseconds.

  4. State Recognition of High Voltage Isolation Switch Based on Background Difference and Iterative Search

    NASA Astrophysics Data System (ADS)

    Xu, Jiayuan; Yu, Chengtao; Bo, Bin; Xue, Yu; Xu, Changfu; Chaminda, P. R. Dushantha; Hu, Chengbo; Peng, Kai

    2018-03-01

    The automatic recognition of the high voltage isolation switch by remote video monitoring is an effective means to ensure the safety of the personnel and the equipment. The existing methods mainly include two ways: improving monitoring accuracy and adopting target detection technology through equipment transformation. Such a method is often applied to specific scenarios, with limited application scope and high cost. To solve this problem, a high voltage isolation switch state recognition method based on background difference and iterative search is proposed in this paper. The initial position of the switch is detected in real time through the background difference method. When the switch starts to open and close, the target tracking algorithm is used to track the motion trajectory of the switch. The opening and closing state of the switch is determined according to the angle variation of the switch tracking point and the center line. The effectiveness of the method is verified by experiments on different switched video frames of switching states. Compared with the traditional methods, this method is more robust and effective.

  5. Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction.

    PubMed

    Bi, Hai; Palma, Carlos-Andres; Gong, Yuxiang; Hasch, Peter; Elbing, Mark; Mayor, Marcel; Reichert, Joachim; Barth, Johannes V

    2018-04-11

    Precisely controlling well-defined, stable single-molecule junctions represents a pillar of single-molecule electronics. Early attempts to establish computing with molecular switching arrays were partly challenged by limitations in the direct chemical characterization of metal-molecule-metal junctions. While cryogenic scanning probe studies have advanced the mechanistic understanding of current- and voltage-induced conformational switching, metal-molecule-metal conformations are still largely inferred from indirect evidence. Hence, the development of robust, chemically sensitive techniques is instrumental for advancement in the field. Here we probe the conformation of a two-state molecular switch with vibrational spectroscopy, while simultaneously operating it by means of the applied voltage. Our study emphasizes measurements of single-molecule Raman spectra in a room-temperature stable single-molecule switch presenting a signal modulation of nearly 2 orders of magnitude.

  6. Burnout sensitivity of power MOSFETs operating in a switching converter

    NASA Astrophysics Data System (ADS)

    Tastet, P.; Garnier, J.; Constans, H.; Tizon, A. H.

    1994-06-01

    Heavy ion tests of a switching converter using power MOSFETs have allowed us to identify the main parameters which affect the burnout sensitivity of these components. The differences between static and dynamic conditions are clarified in this paper.

  7. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters.

    PubMed

    Rodríguez, Juan; Lamar, Diego G; Aller, Daniel G; Miaja, Pablo F; Sebastián, Javier

    2018-04-07

    Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMC dc-dc ) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMC dc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMC dc-dc are presented: increasing the order of the SMC dc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting.

  8. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters

    PubMed Central

    2018-01-01

    Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMCdc-dc) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMCdc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMCdc-dc are presented: increasing the order of the SMCdc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting. PMID:29642455

  9. A miniature high-efficiency fully digital adaptive voltage scaling buck converter

    NASA Astrophysics Data System (ADS)

    Li, Hangbiao; Zhang, Bo; Luo, Ping; Zhen, Shaowei; Liao, Pengfei; He, Yajuan; Li, Zhaoji

    2015-09-01

    A miniature high-efficiency fully digital adaptive voltage scaling (AVS) buck converter is proposed in this paper. The pulse skip modulation with flexible duty cycle (FD-PSM) is used in the AVS controller, which simplifies the circuit architecture (<170 gates) and greatly saves the die area and the power consumption. The converter is implemented in a 0.13-μm one-poly-eight-metal (1P8 M) complementary metal oxide semiconductor process and the active on-chip area of the controller is only 0.003 mm2, which is much smaller. The measurement results show that when the operating frequency of the digital load scales dynamically from 25.6 MHz to 112.6 MHz, the supply voltage of which can be scaled adaptively from 0.84 V to 1.95 V. The controller dissipates only 17.2 μW, while the supply voltage of the load is 1 V and the operating frequency is 40 MHz.

  10. Analysis and Design of Symmetrical Capacitor Diode Voltage Multiplier Driven by LCL-T Resonant Converter

    NASA Astrophysics Data System (ADS)

    Malviya, Devesh; Borage, Mangesh Balkrishna; Tiwari, Sunil

    2017-12-01

    This paper investigates the possibility of application of Resonant Immittance Converters (RICs) as a current source for the current-fed symmetrical Capacitor-Diode Voltage Multiplier (CDVM) with LCL-T Resonant Converter (RC) as an example. Firstly, detailed characterization of the current-fed symmetrical CDVM is carried out using repeated simulations followed by the normalization of the simulation results in order to derive the closed-form curve fit equations to predict the operating modes, output voltage and ripple in terms of operating parameters. RICs, due to their ability to convert voltage source into a current source, become a possible candidate for the realization of current source for the current-fed symmetrical CDVM. Detailed analysis, optimization and design of LCL-T RC with CDVM is performed in this paper. A step by step design procedure for the design of CDVM and the converter is proposed. A 5-stage prototype symmetrical CDVM driven by LCL-T RC to produce 2.5 kV, 50 mA dc output voltage is designed, built and tested to validate the findings of the analysis and simulation.

  11. An inductor-based converter with EMI reduction for low-voltage thermoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Chuang; Zhao, Kai; Li, Zunchao

    2017-07-01

    This paper presents a self-powered inductor-based converter which harvests thermoelectric energy and boosts extremely low voltage to a typical voltage level for supplying body sensor nodes. Electromagnetic interference (EMI) of the converter is reduced by spreading spectrum of fundamental frequency and harmonics via pseudo-random modulation, which is obtained via combining the linear feedback shift register and digitally controlled oscillator. Besides, the methods, namely extracting energy near MPP and reducing the power dissipation, are employed to improve the power efficiency. The presented inductor-based converter is designed and verified in CSMC CMOS 0.18-µm 1P6M process. The results reveal that it achieves the high efficiency and EMI reduction at the same time.

  12. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  13. Liquid Flyback Booster Pre-Phase A Study Assessment. Volume 1

    NASA Technical Reports Server (NTRS)

    Peterson, W.; Ankney, W.; Bell, J.; Berning, M.; Bryant, L.; Bufkin, A.; Cain, L.; Caram, J.; Cockrell, B.; Curry, D.; hide

    1994-01-01

    Mw concept of a flyback booster has been around since early in the Shuttle program. The original two-stage Shuttle concepts used a manned flyback booster. These boosters were eliminated from the program for funding and size reasons. The current Shuttle uses two Redesigned Solid Rocket Motors (RSRMs), which are recovered and refurbished after each flight; this is one of the major cost factors of the program. Replacement options have been studied over the past ten years. The conclusion reached by the most recent study is that the liquid flyback booster (LFBB) is the only competitive option from a life-cycle cost perspective. The purpose of this study was to assess the feasibility and practicality of LFBBs. The study provides an expansion of the recommendations made during the during the aforementioned study. The primary benefits are the potential for enhanced reusability and a reuction of recurring costs. The potential savings in vehicle turnaround could offset the up-front costs. Development of LFBBs requires a commitment to the Shuttle program for 20 to 30 years. LFBBs also offer enhanced safety and abort capabilities. Currently, any failure of an RSRM can be considered catastrophic since them we no intact abort capabilities during the burn of the RSRMS. The performance goal of the LFBBs was to lift a fully loaded Orbiter under optimal conditions, so as not to be the limiting factor of the performance capability of the Shuttle. In addition, a final benefit is the availability of growth paths for applications other than the Shuttle.

  14. On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems

    NASA Astrophysics Data System (ADS)

    Martínez-García, Herminio; García-Vílchez, Encarna

    2017-11-01

    This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.

  15. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  16. A Fourier analysis for a fast simulation algorithm. [for switching converters

    NASA Technical Reports Server (NTRS)

    King, Roger J.

    1988-01-01

    This paper presents a derivation of compact expressions for the Fourier series analysis of the steady-state solution of a typical switching converter. The modeling procedure for the simulation and the steady-state solution is described, and some desirable traits for its matrix exponential subroutine are discussed. The Fourier analysis algorithm was tested on a phase-controlled parallel-loaded resonant converter, providing an experimental confirmation.

  17. Allosteric substrate switching in a voltage-sensing lipid phosphatase.

    PubMed

    Grimm, Sasha S; Isacoff, Ehud Y

    2016-04-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.

  18. Allosteric substrate switching in a voltage sensing lipid phosphatase

    PubMed Central

    Grimm, Sasha S.; Isacoff, Ehud Y.

    2016-01-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis. PMID:26878552

  19. Optimized MPPT algorithm for boost converters taking into account the environmental variables

    NASA Astrophysics Data System (ADS)

    Petit, Pierre; Sawicki, Jean-Paul; Saint-Eve, Frédéric; Maufay, Fabrice; Aillerie, Michel

    2016-07-01

    This paper presents a study on the specific behavior of the Boost DC-DC converters generally used for powering conversion of PV panels connected to a HVDC (High Voltage Direct Current) Bus. It follows some works pointing out that converter MPPT (Maximum Power Point Tracker) is severely perturbed by output voltage variations due to physical dependency of parameters as the input voltage, the output voltage and the duty cycle of the PWM switching control of the MPPT. As a direct consequence many converters connected together on a same load perturb each other because of the output voltage variations induced by fluctuations on the HVDC bus essentially due to a not insignificant bus impedance. In this paper we show that it is possible to include an internal computed variable in charge to compensate local and external variations to take into account the environment variables.

  20. Characteristic investigation and control of a modular multilevel converter-based HVDC system under single-line-to-ground fault conditions

    DOE PAGES

    Shi, Xiaojie; Wang, Zhiqiang; Liu, Bo; ...

    2014-05-16

    This paper presents the analysis and control of a multilevel modular converter (MMC)-based HVDC transmission system under three possible single-line-to-ground fault conditions, with special focus on the investigation of their different fault characteristics. Considering positive-, negative-, and zero-sequence components in both arm voltages and currents, the generalized instantaneous power of a phase unit is derived theoretically according to the equivalent circuit model of the MMC under unbalanced conditions. Based on this model, a novel double-line frequency dc-voltage ripple suppression control is proposed. This controller, together with the negative-and zero-sequence current control, could enhance the overall fault-tolerant capability of the HVDCmore » system without additional cost. To further improve the fault-tolerant capability, the operation performance of the HVDC system with and without single-phase switching is discussed and compared in detail. Lastly, simulation results from a three-phase MMC-HVDC system generated with MATLAB/Simulink are provided to support the theoretical analysis and proposed control schemes.« less

  1. Light weight, high power, high voltage dc/dc converter technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  2. Aerodynamic control, recovery, and sensor design for a first stage flyback booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The mission of the flyback group is to control and recover the first stage of a commercially developed winged booster launched from a B-52 at 40,000 ft and Mach 0.8. First-stage separation occurs at 210,000 ft and Mach 8.7; the second and third stages will continue deployment of their 600 lb payload into low Earth orbit. The job of the flyback group begins at this point, employing a modified control system developed to stabilize and maneuver the separated first-stage vehicle to a suitable landing site approximately 130 miles from the launch point over the Pacific Ocean. This multidisciplinary design was accomplished by four subgroups: aerodynamic design/vehicle configuration (ADVC), trajectory optimization, controls, and thermal management.

  3. A Double-Pole High Voltage High Current Switch

    DTIC Science & Technology

    2005-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A DOUBLE- POLE HIGH...December 2005 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: A Double- Pole High Voltage High Current Switch 6. AUTHOR(S...to divert heavy charged particles, e.g. Cu+. 15. NUMBER OF PAGES 68 14. SUBJECT TERMS Double- Pole , Pulse Forming Inductive Network, PFIN

  4. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  5. Experimental Verification of a Dynamic Voltage Restorer Capable of Significantly Reducing an Energy-Storage Element

    NASA Astrophysics Data System (ADS)

    Jimichi, Takushi; Fujita, Hideaki; Akagi, Hirofumi

    This paper deals with a dynamic voltage restorer (DVR) characterized by installing the shunt converter at the load side. The DVR can compensate for the load voltage when a voltage sag appears in the supply voltage. An existing DVR requires a large capacitor bank or other energy-storage elements such as double-layer capacitors or batteries. The DVR presented in this paper requires only a small dc capacitor intended for smoothing the dc-link voltage. Moreover, three control methods for the series converter are compared and discussed to reduce the series-converter rating, paying attention to the zero-sequence voltages included in the supply voltage and the compensating voltage. Experimental results obtained from a 200-V, 5-kW laboratory system are shown to verify the viability of the system configuration and the control methods.

  6. Zero energy-storage ballast for compact fluorescent lamps

    DOEpatents

    Schultz, William Newell; Thomas, Robert James

    1999-01-01

    A CFL ballast includes complementary-type switching devices connected in series with their gates connected together at a control node. The switching devices supply a resonant tank circuit which is tuned to a frequency near, but slightly lower than, the resonant frequency of a resonant control circuit. As a result, the tank circuit restarts oscillations immediately following each zero crossing of the bus voltage. Such rapid restarts avoid undesirable flickering while maintaining the operational advantages and high efficacy of the CFL ballast.

  7. Design of an Auto-zeroed, Differential, Organic Thin-film Field-effect Transistor Amplifier for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Binkley, David M.; Verma, Nikhil; Crawford, Robert L.; Brandon, Erik; Jackson, Thomas N.

    2004-01-01

    Organic strain gauge and other sensors require high-gain, precision dc amplification to process their low-level output signals. Ideally, amplifiers would be fabricated using organic thin-film field-effect transistors (OTFT's) adjacent to the sensors. However, OTFT amplifiers exhibit low gain and high input-referred dc offsets that must be effectively managed. This paper presents a four-stage, cascaded differential OTFT amplifier utilizing switched capacitor auto-zeroing. Each stage provides a nominal voltage gain of four through a differential pair driving low-impedance active loads, which provide common-mode output voltage control. p-type pentacence OTFT's are used for the amplifier devices and auto-zero switches. Simulations indicate the amplifier provides a nominal voltage gain of 280 V/V and effectively amplifies a 1-mV dc signal in the presence of 500-mV amplifier input-referred dc offset voltages. Future work could include the addition of digital gain calibration and offset correction of residual offsets associated with charge injection imbalance in the differential circuits.

  8. A voltage to frequency converter for astronomical photometry

    NASA Technical Reports Server (NTRS)

    Dunham, E.; Elliot, J. L.

    1978-01-01

    A voltage to frequency converter (VFC) for general use with photomultipliers is described. For high light levels, when the dead-time corrections for a photon counter would be excessive, the VFC maintains a linear response and allows the recording of data at high time resolution. Results of laboratory tests are given for the signal-to-noise characteristics, linearity, stability, and transient response of the VFC when used in conjunction with EMI 9658 and RCA C31034 photomultipliers.

  9. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    NASA Astrophysics Data System (ADS)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  10. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.

    PubMed

    Niroui, Farnaz; Wang, Annie I; Sletten, Ellen M; Song, Yi; Kong, Jing; Yablonovitch, Eli; Swager, Timothy M; Lang, Jeffrey H; Bulović, Vladimir

    2015-08-25

    Abrupt switching behavior and near-zero leakage current of nanoelectromechanical (NEM) switches are advantageous properties through which NEMs can outperform conventional semiconductor electrical switches. To date, however, typical NEMs structures require high actuation voltages and can prematurely fail through permanent adhesion (defined as stiction) of device components. To overcome these challenges, in the present work we propose a NEM switch, termed a "squitch," which is designed to electromechanically modulate the tunneling current through a nanometer-scale gap defined by an organic molecular film sandwiched between two electrodes. When voltage is applied across the electrodes, the generated electrostatic force compresses the sandwiched molecular layer, thereby reducing the tunneling gap and causing an exponential increase in the current through the device. The presence of the molecular layer avoids direct contact of the electrodes during the switching process. Furthermore, as the layer is compressed, the increasing surface adhesion forces are balanced by the elastic restoring force of the deformed molecules which can promote zero net stiction and recoverable switching. Through numerical analysis, we demonstrate the potential of optimizing squitch design to enable large on-off ratios beyond 6 orders of magnitude with operation in the sub-1 V regime and with nanoseconds switching times. Our preliminary experimental results based on metal-molecule-graphene devices suggest the feasibility of the proposed tunneling switching mechanism. With optimization of device design and material engineering, squitches can give rise to a broad range of low-power electronic applications.

  11. Analysis and development of fourth order LCLC resonant based capacitor charging power supply for pulse power applications.

    PubMed

    Naresh, P; Hitesh, C; Patel, A; Kolge, T; Sharma, Archana; Mittal, K C

    2013-08-01

    A fourth order (LCLC) resonant converter based capacitor charging power supply (CCPS) is designed and developed for pulse power applications. Resonant converters are preferred t utilize soft switching techniques such as zero current switching (ZCS) and zero voltage switching (ZVS). An attempt has been made to overcome the disadvantages in 2nd and 3rd resonant converter topologies; hence a fourth order resonant topology is used in this paper for CCPS application. In this paper a novel fourth order LCLC based resonant converter has been explored and mathematical analysis carried out to calculate load independent constant current. This topology provides load independent constant current at switching frequency (fs) equal to resonant frequency (fr). By changing switching condition (on time and dead time) this topology has both soft switching techniques such as ZCS and ZVS for better switching action to improve the converter efficiency. This novel technique has special features such as low peak current through switches, DC blocking for transformer, utilizing transformer leakage inductance as resonant component. A prototype has been developed and tested successfully to charge a 100 μF capacitor to 200 V.

  12. Zero energy-storage ballast for compact fluorescent lamps

    DOEpatents

    Schultz, W.N.; Thomas, R.J.

    1999-08-31

    A CFL ballast includes complementary-type switching devices connected in series with their gates connected together at a control node. The switching devices supply a resonant tank circuit which is tuned to a frequency near, but slightly lower than, the resonant frequency of a resonant control circuit. As a result, the tank circuit restarts oscillations immediately following each zero crossing of the bus voltage. Such rapid restarts avoid undesirable flickering while maintaining the operational advantages and high efficacy of the CFL ballast. 4 figs.

  13. Unity power factor converter

    NASA Technical Reports Server (NTRS)

    Wester, Gene W. (Inventor)

    1980-01-01

    A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.

  14. Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1976-01-01

    A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.

  15. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng

    2011-12-01

    switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing

  16. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  17. Integration of planar transformer and/or planar inductor with power switches in power converter

    DOEpatents

    Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi

    2007-10-30

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  18. Assumption or Fact? Line-to-Neutral Voltage Expression in an Unbalanced 3-Phase Circuit during Inverter Switching

    ERIC Educational Resources Information Center

    Masrur, M. A.

    2009-01-01

    This paper discusses the situation in a 3-phase motor or any other 3-phase system operating under unbalanced operating conditions caused by an open fault in an inverter switch. A dc voltage source is assumed as the input to the inverter, and under faulty conditions of the inverter switch, the actual voltage applied between the line to neutral…

  19. Prognostic health monitoring in switch-mode power supplies with voltage regulation

    NASA Technical Reports Server (NTRS)

    Hofmeister, James P (Inventor); Judkins, Justin B (Inventor)

    2009-01-01

    The system includes a current injection device in electrical communication with the switch mode power supply. The current injection device is positioned to alter the initial, non-zero load current when activated. A prognostic control is in communication with the current injection device, controlling activation of the current injection device. A frequency detector is positioned to receive an output signal from the switch mode power supply and is able to count cycles in a sinusoidal wave within the output signal. An output device is in communication with the frequency detector. The output device outputs a result of the counted cycles, which are indicative of damage to an a remaining useful life of the switch mode power supply.

  20. Wind Farm Stabilization by using DFIG with Current Controlled Voltage Source Converters Taking Grid Codes into Consideration

    NASA Astrophysics Data System (ADS)

    Okedu, Kenneth Eloghene; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    Recent wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage is recovered. However, fixed speed wind turbine generator system using induction generator (IG) has the stability problem similar to the step-out phenomenon of a synchronous generator. On the other hand, doubly fed induction generator (DFIG) can control its real and reactive powers independently while being operated in variable speed mode. This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs, without incorporating additional FACTS devices. A new current controlled voltage source converter (CC-VSC) scheme is proposed to control the converters of DFIG and the performance is verified by comparing the results with those of voltage controlled voltage source converter (VC-VSC) scheme. Another salient feature of this study is to reduce the number of proportionate integral (PI) controllers used in the rotor side converter without degrading dynamic and transient performances. Moreover, DC-link protection scheme during grid fault can be omitted in the proposed scheme which reduces overall cost of the system. Extensive simulation analyses by using PSCAD/EMTDC are carried out to clarify the effectiveness of the proposed CC-VSC based control scheme of DFIGs.

  1. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  2. A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition.

    PubMed

    Dong, Kaichen; Choe, Hwan Sung; Wang, Xi; Liu, Huili; Saha, Bivas; Ko, Changhyun; Deng, Yang; Tom, Kyle B; Lou, Shuai; Wang, Letian; Grigoropoulos, Costas P; You, Zheng; Yao, Jie; Wu, Junqiao

    2018-04-01

    Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳10 6 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO 2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    NASA Astrophysics Data System (ADS)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  4. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  5. Optimization of Passive Voltage Multipliers for Fast Start-up and Multi-voltage Power Supplies in Electromagnetic Energy Harvesting Systems

    NASA Astrophysics Data System (ADS)

    Yang, G.; Stark, B. H.; Burrow, S. G.; Hollis, S. J.

    2014-11-01

    This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up.

  6. Novel Modulation Method for Multidirectional Matrix Converter

    PubMed Central

    Misron, Norhisam; Aris, Ishak Bin; Yamada, Hiroaki

    2014-01-01

    This study presents a new modulation method for multidirectional matrix converter (MDMC), based on the direct duty ratio pulse width modulation (DDPWM). In this study, a new structure of MDMC has been proposed to control the power flow direction through the stand-alone battery based system and hybrid vehicle. The modulation method acts based on the average voltage over one switching period concept. Therefore, in order to determine the duty ratio for each switch, the instantaneous input voltages are captured and compared with triangular waveform continuously. By selecting the proper switching pattern and changing the slope of the carriers, the sinusoidal input current can be synthesized with high power factor and desired output voltage. The proposed system increases the discharging time of the battery by injecting the power to the system from the generator and battery at the same time. Thus, it makes the battery life longer and saves more energy. This paper also derived necessary equation for proposed modulation method as well as detail of analysis and modulation algorithm. The theoretical and modulation concepts presented have been verified in MATLAB simulation. PMID:25298969

  7. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  8. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested

  9. An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.

    PubMed

    Korzun, A M; Rozinov, S V; Abashin, G I

    1997-01-01

    The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.

  10. On the transient dynamics of piezoelectric-based, state-switched systems

    NASA Astrophysics Data System (ADS)

    Lopp, Garrett K.; Kelley, Christopher R.; Kauffman, Jeffrey L.

    2018-01-01

    This letter reports on the induced mechanical transients for piezoelectric-based, state-switching approaches utilizing both experimental tests and a numerical model that more accurately captures the dynamics associated with a switch between stiffness states. Currently, switching models instantaneously dissipate the stored piezoelectric voltage, resulting in a discrete change in effective stiffness states and a discontinuity in the system dynamics during the switching event. The proposed model allows for a rapid but continuous voltage dissipation and the corresponding variation between stiffness states, as one sees in physical implementations. This rapid variation in system stiffness when switching at a point of non-zero strain leads to high-frequency, large-amplitude transients in the system acceleration response. Utilizing a fundamental piezoelectric bimorph, a comparison between the numerical and experimental results reveals that these mechanical transients are much stronger than originally anticipated and masked by measurement hardware limitations, thus highlighting the significance of an appropriate system model governing the switch dynamics. Such a model enables designers to analyze systems that incorporate piezoelectric-based state switching with greater accuracy to ensure that these transients do not degrade the intended performance. Finally, if the switching does create unacceptable transients, controlling the duration of voltage dissipation enables control over the frequency content and peak amplitudes associated with the switch-induced acceleration transients.

  11. A No-Arc DC Circuit Breaker Based on Zero-Current Interruption

    NASA Astrophysics Data System (ADS)

    Xiang, Xuewei; Chai, Jianyun; Sun, Xudong

    2017-05-01

    A dc system has no natural current zero-crossing point, so a dc arc is more difficult to extinguish than an ac arc. In order to effectively solve the problem of the dc arc, this paper proposes a dc circuit breaker (DCCB) capable of implementing a no-arc interruption. The proposed DCCB includes a main branch consisting of a mechanical switch, a diode and a current-limiting inductor, a semi-period resonance circuit consisting of a diode, an inductor and a capacitor, and a buffer branch consisting of a capacitor, a thyristor and a resistor. The mechanical switch is opened in a zero-current state, and the overvoltage caused by the counter electromotive force of the inductor does not exist. Meanwhile, the capacitor has a buffering effect on the voltage. The rising of the voltage of the mechanical switch is slower than the rising of the insulating strength of a contact gap of the mechanical switch, resulting in the contact gap not able to be broken down. Thus, the arc cannot be generated. The simulation results show that the proposed DCCB does not generate the arc in the interruption process, the rise rate of the short circuit current can be effectively limited, and the short circuit fault point can be rapidly isolated from the dc power supply.

  12. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Merrill Skeist; Richard H.; Anthony G.P. Marini

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a seriesmore » L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in

  13. Simulation comparison of proportional integral derivative and fuzzy logic in controlling AC-DC buck boost converter

    NASA Astrophysics Data System (ADS)

    Faisal, A.; Hasan, S.; Suherman

    2018-03-01

    AC-DC converter is widely used in the commercial industry even for daily purposes. The AC-DC converter is used to convert AC voltage into DC. In order to obtain the desired output voltage, the converter usually has a controllable regulator. This paper discusses buck boost regulator with a power MOSFET as switching component which is adjusted based on the duty cycle of pulse width modulation (PWM). The main problems of the buck boost converter at start up are the high overshoot, the long peak time and rise time. This paper compares the effectiveness of two control techniques: proportional integral derivative (PID) and fuzzy logic control in controlling the buck boost converter through simulations. The results show that the PID is more sensitive to voltage change than fuzzy logic. However, PID generates higher overshoot, long peak time and rise time. On the other hand, fuzzy logic generates no overshoot and shorter rise time.

  14. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    NASA Astrophysics Data System (ADS)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-01-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  15. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    NASA Astrophysics Data System (ADS)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-06-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  16. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Pei, Chengquan; Tian, Jinshou; Liu, Zhen; Qin, Hong; Wu, Shengli

    2017-04-01

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  17. Synthesis and implementation of state-trajectory control law for dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Huffman, S. D.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    Mathematical representations of a state-plane switching boundary employed in a state-trajectory control law for dc-to-dc converters are derived. Two approaches to implementing the control law are discussed; one approach employs a digital processor and the other uses analog computational circuits. Performance characteristics of experimental voltage step-up dc-to-dc converters operating under the control of each of these implementations are presented.

  18. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.

    PubMed

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-08-28

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

  19. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures

    PubMed Central

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-01-01

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682

  20. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  1. Voltage-controlled magnetization switching in MRAMs in conjunction with spin-transfer torque and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.

    2016-11-01

    Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.

  2. Investigation of high-voltage pulse trigger generator based on photo-conductive semiconductor switch

    NASA Astrophysics Data System (ADS)

    Chu, Xu; Liu, Jin-Liang; Wang, Lang-Ning; Qiu, Yong-Feng

    2018-06-01

    The trigger to generate high-voltage pulse is one of the most important parts in a pulsed-power system, especially for the conduction characteristics of the main switch. However, traditional triggers usually have the drawbacks of large structure and worse long-term working stability, which goes against the demands of pulsed-power system miniaturization and stability. In the paper, a pulse trigger using photo-conductive semiconductor switch was developed, which is of small size, stable performance and steep leading edge of the output pulse rise. It is found that the output trigger pulse rise time is 14 ns, and the jitter of 20 shots is 330 ps. Applying the designed pulsed trigger in a field distortion switch and a triggered vacuum switch, experiments show that the switches could be triggered stably with reduced jitter.

  3. High power density dc-to-dc converters for aerospace applications

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    Three dc-to-dc converter topologies aimed at high-power high-frequency applications are introduced. Major system parasitics, namely, the leakage inductance of the transformer and the device output capacitance are efficiently utilized. Of the three circuits, the single-phase and three-phase versions of the dual active bridge topology demonstrate minimal stresses, better utilization of the transformer, bidirectional, and buck-boost modes of operation. All circuits operate at a constant switching frequency, thus simplifying design of the reactive elements. The power transfer characteristics and soft-switching regions on the Vout-Iout plane are identified. Two coaxial transformers with different cross-sections were built for a rating of 50 kVA. Based on the single-phase dual active bridge topology, a 50 kW, 50 kHz converter operating at an input voltage of 200 Vdc and an output voltage of 1600 Vdc was fabricated. Characteristics of current-fed output make the dual active bridge topologies amenable to paralleling and hence extension to megawatt power levels. Projections to a 1 MW system operating from a 500 Vdc input, at an output voltage of 10 kVdc and a switching frequency of 50 kHz, using MOS-controlled thyristors, coaxially wound transformers operating at three times the present current density with cooling, and multilayer ceramic capacitors, suggests an overall power density of 0.075 to 0.08 kg/kW and an overall efficiency of 96 percent.

  4. Unity power factor switching regulator

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1983-01-01

    A single or multiphase boost chopper regulator operating with unity power factor, for use such as to charge a battery is comprised of a power section for converting single or multiphase line energy into recharge energy including a rectifier (10), one inductor (L.sub.1) and one chopper (Q.sub.1) for each chopper phase for presenting a load (battery) with a current output, and duty cycle control means (16) for each chopper to control the average inductor current over each period of the chopper, and a sensing and control section including means (20) for sensing at least one load parameter, means (22) for producing a current command signal as a function of said parameter, means (26) for producing a feedback signal as a function of said current command signal and the average rectifier voltage output over each period of the chopper, means (28) for sensing current through said inductor, means (18) for comparing said feedback signal with said sensed current to produce, in response to a difference, a control signal applied to the duty cycle control means, whereby the average inductor current is proportionate to the average rectifier voltage output over each period of the chopper, and instantaneous line current is thereby maintained proportionate to the instantaneous line voltage, thus achieving a unity power factor. The boost chopper is comprised of a plurality of converters connected in parallel and operated in staggered phase. For optimal harmonic suppression, the duty cycles of the switching converters are evenly spaced, and by negative coupling between pairs 180.degree. out-of-phase, peak currents through the switches can be reduced while reducing the inductor size and mass.

  5. A micro-power precision amplifier for converting the output of light sensors to a voltage readable by miniature data loggers.

    PubMed

    Phillips, Nathan; Bond, Barbara J.

    1999-07-01

    To record photosynthetically active radiation (PAR) simultaneously at a number of points throughout a forest canopy, we developed a simple, inexpensive (< $10 US) current-to-voltage converter that processes the current generated by a photodiode radiation sensor to a voltage range that is recordable with a miniature data logger. The converter, which weighs less than 75 g and has a volume of only 100 cm(3), is built around an ultra-low power OP-90 precision operational amplifier, which consumes less than 0.5 mA at 9 V when converting the output of a Li-Cor LI-190SA quantum sensor exposed to photosynthetically active radiation (PAR) of 2500 &mgr;mol m(-2) s(-1) or only 5 &mgr;A in low light. A small 9-V battery thus powers the amplifier for more than 1000 h of continuous operation. Correlations between photometer readings and voltage output from the current-to-voltage converter were high and linear at both high and low PAR. Sixteen Li-Cor LI-190SA quantum sensors each equipped with current-to-voltage converters and connected to a miniature data logger were deployed in the upper branches of a Panamanian tropical rainforest canopy. Each unit performed reliably during a one- or two-week evaluation.

  6. Delayed avalanche breakdown of high-voltage silicon diodes: Various structures exhibit different picosecond-range switching behavior

    NASA Astrophysics Data System (ADS)

    Brylevskiy, Viktor; Smirnova, Irina; Gutkin, Andrej; Brunkov, Pavel; Rodin, Pavel; Grekhov, Igor

    2017-11-01

    We present a comparative study of silicon high-voltage diodes exhibiting the effect of delayed superfast impact-ionization breakdown. The effect manifests itself in a sustainable picosecond-range transient from the blocking to the conducting state and occurs when a steep voltage ramp is applied to the p+-n-n+ diode in the reverse direction. Nine groups of diodes with graded and abrupt pn-junctions have been specially fabricated for this study by different techniques from different Si substrates. Additionally, in two groups of these structures, the lifetime of nonequilibrium carriers was intentionally reduced by electron irradiation. All diodes have identical geometrical parameters and similar stationary breakdown voltages. Our experimental setup allows measuring both device voltage and current during the kilovolt switching with time resolution better than 50 ps. Although all devices are capable of forming a front with kilovolt amplitude and 100 ps risetime in the in-series load, the structures with graded pn-junctions have anomalously large residual voltage. The Deep Level Transient Spectroscopy study of all diode structures has been performed in order to evaluate the effect of deep centers on device performance. It was found that the presence of deep-level electron traps negatively correlates with parameters of superfast switching, whereas a large concentration of recombination centers created by electron irradiation has virtually no influence on switching characteristics.

  7. Study of the generator/motor operation of induction machines in a high frequency link space power system

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Sood, Pradeep K.

    1987-01-01

    Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment.

  8. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  9. A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Park, Jae-Hyoung; Lee, Hee-Chul; Park, Yong-Hee; Kim, Yong-Dae; Ji, Chang-Hyeon; Bu, Jonguk; Nam, Hyo-Jin

    2006-11-01

    In this paper, a fully wafer-level packaged RF MEMS switch has been demonstrated, which has low operation voltage, using a piezoelectric actuator. The piezoelectric actuator was designed to operate at low actuation voltage for application to advanced mobile handsets. The dc contact type RF switch was packaged using the wafer-level bonding process. The CPW transmission lines and piezoelectric actuators have been fabricated on separate wafers and assembled together by the wafer-level eutectic bonding process. A gold and tin composite was used for eutectic bonding at a low temperature of 300 °C. Via holes interconnecting the electrical contact pads through the wafer were filled completely with electroplated copper. The fully wafer-level packaged RF MEMS switch showed an insertion loss of 0.63 dB and an isolation of 26.4 dB at 5 GHz. The actuation voltage of the switch was 5 V. The resonant frequency of the piezoelectric actuator was 38.4 kHz and the spring constant of the actuator was calculated to be 9.6 N m-1. The size of the packaged SPST (single-pole single-through) switch was 1.2 mm × 1.2 mm including the packaging sealing rim. The effect of the proposed package structure on the RF performance was characterized with a device having CPW through lines and vertical feed lines excluding the RF switches. The measured packaging loss was 0.2 dB and the return loss was 33.6 dB at 5 GHz.

  10. Power flow control based solely on slow feedback loop for heart pump applications.

    PubMed

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  11. High power density dc/dc converter: Component selection and design

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1989-01-01

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  12. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    NASA Astrophysics Data System (ADS)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  13. Reverse matrix converter control method for PMSM drives using DPC

    NASA Astrophysics Data System (ADS)

    Bak, Yeongsu; Lee, Kyo-Beum

    2018-05-01

    This paper proposes a control method for a reverse matrix converter (RMC) that drives a three-phase permanent magnet synchronous motor (PMSM). In this proposed method, direct power control (DPC) is used to control the voltage source rectifier of the RMC. The RMC is an indirect matrix converter operating in the boost mode, in which the power-flow directions of the input and output are switched. It has a minimum voltage transfer ratio of 1/0.866 in a linear-modulation region. In this paper, a control method that uses DPC as an additional control method is proposed in order to control the RMC driving a PMSM in the output stage. Simulations and experimental results verify the effectiveness of the proposed control method.

  14. Resistive Switching and Voltage Induced Modulation of Tunneling Magnetoresistance in Nanosized Perpendicular Organic Spin Valves

    NASA Astrophysics Data System (ADS)

    Schmidt, Georg; Goeckeritz, Robert; Homonnay, Nico; Mueller, Alexander; Fuhrmann, Bodo

    Resistive switching has already been reported in organic spin valves (OSV), however, its origin is still unclear. We have fabricated nanosized OSV based on La0.7Sr0.3MnO3/Alq3/Co. These devices show fully reversible resistive switching of up to five orders of magnitude. The magnetoresistance (MR) is modulated during the switching process from negative (-70%) to positive values (+23%). The results are reminiscent of experiments claiming magnetoelectric coupling in LSMO based tunneling structures using ferroelectric barriers. By analyzing the I/V characteristics of the devices we can show that transport is dominated by tunneling through pinholes. The resistive switching is caused by voltage induced creation and motion of oxygen vacancies at the LSMO surface, however, the resulting tunnel barrier is complemented by a second adjacent barrier in the organic semiconductor. Our model shows that the barrier in the organic material is constant, causing the initial MR while the barrier in the LMSO can be modulated by the voltage resulting in the resistive switching and the modulation of the MR as the coupling to the states in the LSMO changes. A switching caused by LSMO only is also supported by the fact that replacing ALQ3 by H2PC yields almost identical results. Supported by the DFG in the SFB762.

  15. State-plane trajectories used to observe and control the behavior of a voltage step-up dc-to-dc converter

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Wilson, T. G.

    1976-01-01

    State-plane analysis techniques are employed to study the voltage step up energy storage dc-to-dc converter. Within this framework, an example converter operating under the influence of a constant on time and a constant frequency controller is examined. Qualitative insight gained through this approach is used to develop a conceptual free running control law for the voltage step up converter which can achieve steady state operation in one on/off cycle of control. Digital computer simulation data is presented to illustrate and verify the theoretical discussions presented.

  16. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core.

    PubMed

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  17. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  18. Evaluation of resistive switching properties of Si-rich oxide embedded with Ti nanodots by applying constant voltage and current

    NASA Astrophysics Data System (ADS)

    Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.

  19. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    NASA Astrophysics Data System (ADS)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  20. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system.

    PubMed

    Jiang, J; Ma, G M; Luo, D P; Li, C R; Li, Q M; Wang, W

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  1. Fiber optic crossbar switch for automatically patching optical signals

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1983-01-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  2. Method and apparatus for controlling LCL converters using asymmetric voltage cancellation techniques

    DOEpatents

    Wu, Hunter; Sealy, Kylee Devro; Sharp, Bryan Thomas; Gilchrist, Aaron

    2016-01-26

    A method and apparatus for LCL resonant converter control utilizing Asymmetric Voltage Cancellation is described. The methods to determine the optimal trajectory of the control variables are discussed. Practical implementations of sensing load parameters are included. Simple PI, PID and fuzzy logic controllers are included with AVC for achieving good transient response characteristics with output current regulation.

  3. IGBT Switching Characteristic Curve Embedded Half-Bridge MMC Modelling and Real Time Simulation Realization

    NASA Astrophysics Data System (ADS)

    Zhengang, Lu; Hongyang, Yu; Xi, Yang

    2017-05-01

    The Modular Multilevel Converter (MMC) is one of the most attractive topologies in recent years for medium or high voltage industrial applications, such as high voltage dc transmission (HVDC) and medium voltage varying speed motor drive. The wide adoption of MMCs in industry is mainly due to its flexible expandability, transformer-less configuration, common dc bus, high reliability from redundancy, and so on. But, when the sub module number of MMC is more, the test of MMC controller will cost more time and effort. Hardware in the loop test based on real time simulator will save a lot of time and money caused by the MMC test. And due to the flexible of HIL, it becomes more and more popular in the industry area. The MMC modelling method remains an important issue for the MMC HIL test. Specifically, the VSC model should realistically reflect the nonlinear device switching characteristics, switching and conduction losses, tailing current, and diode reverse recovery behaviour of a realistic converter. In this paper, an IGBT switching characteristic curve embedded half-bridge MMC modelling method is proposed. This method is based on the switching curve referring and sample circuit calculation, and it is sample for implementation. Based on the proposed method, a FPGA real time simulation is carried out with 200ns sample time. The real time simulation results show the proposed method is correct.

  4. A MEMS Interface IC With Low-Power and Wide-Range Frequency-to-Voltage Converter for Biomedical Applications.

    PubMed

    Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2016-04-01

    This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW.

  5. Cascaded Converters for Integration and Management of Grid Level Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Alaas, Zuhair

    This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter

  6. Analysis and Design of Bridgeless Switched Mode Power Supply for Computers

    NASA Astrophysics Data System (ADS)

    Singh, S.; Bhuvaneswari, G.; Singh, B.

    2014-09-01

    Switched mode power supplies (SMPSs) used in computers need multiple isolated and stiffly regulated output dc voltages with different current ratings. These isolated multiple output dc voltages are obtained by using a multi-winding high frequency transformer (HFT). A half-bridge dc-dc converter is used here for obtaining different isolated and well regulated dc voltages. In the front end, non-isolated Single Ended Primary Inductance Converters (SEPICs) are added to improve the power quality in terms of low input current harmonics and high power factor (PF). Two non-isolated SEPICs are connected in a way to completely eliminate the need of single-phase diode-bridge rectifier at the front end. Output dc voltages at both the non-isolated and isolated stages are controlled and regulated separately for power quality improvement. A voltage mode control approach is used in the non-isolated SEPIC stage for simple and effective control whereas average current control is used in the second isolated stage.

  7. Giant thermal spin torque assisted magnetic tunnel junction switching

    NASA Astrophysics Data System (ADS)

    Pushp, Aakash

    Spin-polarized charge-currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer-torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin-currents from temperature gradients, and their associated thermal-spin-torques (TSTs) have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge-currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. Reference: A. Pushp*, T. Phung*, C. Rettner, B. P. Hughes, S.-H. Yang, S. S. P. Parkin, 112, 6585-6590 (2015).

  8. An improved switching converter model using discrete and average techniques

    NASA Technical Reports Server (NTRS)

    Shortt, D. J.; Lee, F. C.

    1982-01-01

    The nonlinear modeling and analysis of dc-dc converters has been done by averaging and discrete-sampling techniques. The averaging technique is simple, but inaccurate as the modulation frequencies approach the theoretical limit of one-half the switching frequency. The discrete technique is accurate even at high frequencies, but is very complex and cumbersome. An improved model is developed by combining the aforementioned techniques. This new model is easy to implement in circuit and state variable forms and is accurate to the theoretical limit.

  9. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    NASA Astrophysics Data System (ADS)

    Cui, B. S.; Guo, X. B.; Wu, K.; Li, D.; Zuo, Y. L.; Xi, L.

    2016-03-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe65Co35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (~4 GPa for PI as compared to ~180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work.

  10. Modeling and sizing the coil in boost converters dedicated to photovoltaic sources

    NASA Astrophysics Data System (ADS)

    Atik, Lotfi; Fares, Mohammed Amine; Zaraket, Jean; Bachir, Ghalem; Aillerie, Michel

    2018-05-01

    The coil is a very important element in a wide range of power electrical systems as such as those used in converter or inverter dedicated to extract and to adapt the value and the shape of the intensity and the voltage delivered by renewable energy sources. Thus, knowing its behavior in converters is paramount to obtain a maximum conversion efficiency and reliability. In this context, this paper presents a global study of a DC/DC boost converter dedicated to photovoltaic sources based on the modeling of the behavior of the coil or the inductance as a function of the switching frequency.

  11. Dynamical mechanical characteristic simulation and analysis of the low voltage switch under vibration and shock conditions

    NASA Astrophysics Data System (ADS)

    Miao, Xiaodan; Han, Feng

    2017-04-01

    The low voltage switch has widely application especially in the hostile environment such as large vibration and shock conditions. In order to ensure the validity of the switch in the hostile environment, it is necessary to predict its mechanical characteristic. In traditional method, the complex and expensive testing system is build up to verify its validity. This paper presented a method based on finite element analysis to predict the dynamic mechanical characteristic of the switch by using ANSYS software. This simulation could provide the basis for the design and optimization of the switch to shorten the design process to improve the product efficiency.

  12. Magnetic field dependence of spin torque switching in nanoscale magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Rowlands, Graham; Katine, Jordan; Langer, Juergen; Krivorotov, Ilya

    2012-02-01

    Magnetic random access memory based on spin transfer torque effect in nanoscale magnetic tunnel junctions (STT-RAM) is emerging as a promising candidate for embedded and stand-alone computer memory. An important performance parameter of STT-RAM is stability of its free magnetic layer against thermal fluctuations. Measurements of the free layer switching probability as a function of sub-critical voltage at zero effective magnetic field (read disturb rate or RDR measurements) have been proposed as a method for quantitative evaluation of the free layer thermal stability at zero voltage. In this presentation, we report RDR measurement as a function of external magnetic field, which provide a test of the RDR method self-consistency and reliability.

  13. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  14. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  15. Inherent overload protection for the series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1983-01-01

    The overload characteristics of the full bridge series resonant power converter are considered. This includes analyses of the two most common control methods presently in use. The first of these uses a current zero crossing detector to synchronize the control signals and is referred to as the alpha controller. The second is driven by a voltage controlled oscillator and is referred to as the gamma controller. It is shown that the gamma controller has certain reliability advantages in that it can be designed with inherent short circuit protection. Experimental results are included for an 86 kHz converter using power metal-oxide-semiconductor field-effect transistors (MOSFETs).

  16. Efficiency and weight of voltage multiplier type ultra lightweight dc-dc converters

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1975-01-01

    An analytical and experimental study was made of a capacitor-diode voltage multiplier without a transformer which offers the possibility of high efficiency with light weight. The dc-dc conversion efficiencies of about 94 percent were achieved at output powers of 150 watts at 1000 volts using 8x multiplication. A detailed identification of losses was made, including forward drop losses in component, switching losses, reverse junction capacitance charging losses, and charging losses in the main ladder capacitors.

  17. Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect

    NASA Astrophysics Data System (ADS)

    Guha, K.; Laskar, N. M.; Gogoi, H. J.; Borah, A. K.; Baishnab, K. L.; Baishya, S.

    2017-11-01

    This paper presents a new method for the design, modelling and optimization of a uniform serpentine meander based MEMS shunt capacitive switch with perforation on upper beam. The new approach is proposed to improve the Pull-in Voltage performance in a MEMS switch. First a new analytical model of the Pull-in Voltage is proposed using the modified Mejis-Fokkema capacitance model taking care of the nonlinear electrostatic force, the fringing field effect due to beam thickness and etched holes on the beam simultaneously followed by the validation of same with the simulated results of benchmark full 3D FEM solver CoventorWare in a wide range of structural parameter variations. It shows a good agreement with the simulated results. Secondly, an optimization method is presented to determine the optimum configuration of switch for achieving minimum Pull-in voltage considering the proposed analytical mode as objective function. Some high performance Evolutionary Optimization Algorithms have been utilized to obtain the optimum dimensions with less computational cost and complexity. Upon comparing the applied algorithms between each other, the Dragonfly Algorithm is found to be most suitable in terms of minimum Pull-in voltage and higher convergence speed. Optimized values are validated against the simulated results of CoventorWare which shows a very satisfactory results with a small deviation of 0.223 V. In addition to these, the paper proposes, for the first time, a novel algorithmic approach for uniform arrangement of square holes in a given beam area of RF MEMS switch for perforation. The algorithm dynamically accommodates all the square holes within a given beam area such that the maximum space is utilized. This automated arrangement of perforation holes will further improve the computational complexity and design accuracy of the complex design of perforated MEMS switch.

  18. Quench dynamics in superconducting nanojunctions: Metastability and dynamical Yang-Lee zeros

    NASA Astrophysics Data System (ADS)

    Souto, R. Seoane; Martín-Rodero, A.; Yeyati, A. Levy

    2017-10-01

    We study the charge transfer dynamics following the formation of a phase or voltage biased superconducting nanojunction using a full counting statistics analysis. We demonstrate that the evolution of the zeros of the generating function allows one to identify the population of different many body states much in the same way as the accumulation of Yang-Lee zeros of the partition function in equilibrium statistical mechanics is connected to phase transitions. We give an exact expression connecting the dynamical zeros to the charge transfer cumulants and discuss when an approximation based on "dominant" zeros is valid. We show that, for generic values of the parameters, the system gets trapped into a metastable state characterized by a nonequilibrium population of the many body states which is dependent on the initial conditions. We study in particular the effect of the switching rates in the dynamics showing that, in contrast to intuition, the deviation from thermal equilibrium increases for the slower rates. In the voltage biased case the steady state is reached independent of the initial conditions. Our method allows us to obtain accurate results for the steady state current and noise in quantitative agreement with steady state methods developed to describe the multiple Andreev reflections regime. Finally, we discuss the system dynamics after a sudden voltage drop showing the possibility of tuning the many body states population by an appropriate choice of the initial voltage, providing a feasible experimental way to access the quench dynamics and control the state of the system.

  19. A tubular flux-switching permanent magnet machine

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, W.; Clark, R.; Atallah, K.; Howe, D.

    2008-04-01

    The paper describes a novel tubular, three-phase permanent magnet brushless machine, which combines salient features from both switched reluctance and permanent magnet machine technologies. It has no end windings and zero net radial force and offers a high power density and peak force capability, as well as the potential for low manufacturing cost. It is, therefore, eminently suitable for a variety of applications, ranging from free-piston energy converters to active vehicle suspensions.

  20. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes

  1. Reduction in the write error rate of voltage-induced dynamic magnetization switching using the reverse bias method

    NASA Astrophysics Data System (ADS)

    Ikeura, Takuro; Nozaki, Takayuki; Shiota, Yoichi; Yamamoto, Tatsuya; Imamura, Hiroshi; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2018-04-01

    Using macro-spin modeling, we studied the reduction in the write error rate (WER) of voltage-induced dynamic magnetization switching by enhancing the effective thermal stability of the free layer using a voltage-controlled magnetic anisotropy change. Marked reductions in WER can be achieved by introducing reverse bias voltage pulses both before and after the write pulse. This procedure suppresses the thermal fluctuations of magnetization in the initial and final states. The proposed reverse bias method can offer a new way of improving the writing stability of voltage-driven spintronic devices.

  2. A Consideration of Stable Operating Power Limits of HVDC System Composed of Voltage Source Converters

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroo; Takahashi, Choei; Kishibe, Hideto; Sato, Hiromichi

    The stable operating power limits of a small scale HVDC system composed of voltage source converters (VSC-HVDC system) are analyzed with a simple model. The VSC-HVDC system could operate where the AC system must be somewhat larger in capacity than the VSC-HVDC system capacity. The stable operating power limits were between one and two times the SCR (short circuit ratio). When the inverter of the VSC-HVDC system was operated with lead reactive (capacitive) power control conditions, the stable operating limits were increased through AC voltage stabilization. When the inverter was a STATCOM operation, it could operate regardless of the SCR but regions within allowable AC voltage variations.

  3. Precision zero-home locator

    DOEpatents

    Stone, William J.

    1986-01-01

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  4. Precision zero-home locator

    DOEpatents

    Stone, W.J.

    1983-10-31

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  5. Contact effects in light activated GaAs switches

    NASA Astrophysics Data System (ADS)

    Durkin, P. S.

    1985-05-01

    The purpose of this work was to examine the effects of various types of contacts on the switching behavior of a light-triggered power switch. The switch was constructed from a homogeneous wafer of chromium-doped gallium arsenide; the contacts were either ohmic, non-ohmic, or Schottky barriers. These were formed on the wafer in two geometries; both contacts on one side, and one contact spacings were used to permit the effects of the location of the existing laser pulse to be studied. A high voltage power supply (zero to 20 kV) was employed as the bias supply. A Nd:YAG laser, in the pulsed mode, was used to trigger the switch, which was mounted on a cold finger cooled to near liquid nitrogen temperature. Cooling reduced the dark current to manageable values (less than 1 micro A), and also reduced the avalanche breakdown voltage. The results of the measurements indicate that ohmic contacts produced more reliable switching than the non-ohmic or Schottky contacts, in as much as the shape of the output current pulse was better, and the number of pulses which the switches could sustain before the pulse shape deteriorated was greater, for the ohmic contacts. Surface discharge between the one-sided contacts obscured any differences in switching characteristics which might have depended on the location of the pulsed light excitation, so that no correlation between position and behavior could be obtained.

  6. Zero temperature coefficient of resistance of the electrical-breakdown path in ultrathin hafnia

    NASA Astrophysics Data System (ADS)

    Zhang, H. Z.; Ang, D. S.

    2017-09-01

    The recent widespread attention on the use of the non-volatile resistance switching property of a microscopic oxide region after electrical breakdown for memory applications has prompted basic interest in the conduction properties of the breakdown region. Here, we report an interesting crossover from a negative to a positive temperature dependence of the resistance of a breakdown region in ultrathin hafnia as the applied voltage is increased. As a consequence, a near-zero temperature coefficient of resistance is obtained at the crossover voltage. The behavior may be modeled by (1) a tunneling-limited transport involving two farthest-spaced defects along the conduction path at low voltage and (2) a subsequent transition to a scattering-limited transport after the barrier is overcome by a larger applied voltage.

  7. Voltage-induced switching of an antiferromagnetically ordered topological Dirac semimetal

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Kang, Kisung; Schleife, André; Gilbert, Matthew J.

    2018-04-01

    An antiferromagnetic semimetal has been recently identified as a new member of topological semimetals that may host three-dimensional symmetry-protected Dirac fermions. A reorientation of the Néel vector may break the underlying symmetry and open a gap in the quasiparticle spectrum, inducing the (semi)metal-insulator transition. Here, we predict that such a transition may be controlled by manipulating the chemical potential location of the material. We perform both analytical and numerical analysis on the thermodynamic potential of the model Hamiltonian and find that the gapped spectrum is preferred when the chemical potential is located at the Dirac point. As the chemical potential deviates from the Dirac point, the system shows a possible transition from the gapped to the gapless phase and switches the corresponding Néel vector configuration. We perform density functional theory calculations to verify our analysis using a realistic material and discuss a two terminal transport measurement as a possible route to identify the voltage-induced switching of the Néel vector.

  8. Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors

    DOEpatents

    Degtiarenko, Pavel V [Williamsburg, VA; Popov, Vladimir E [Newport News, VA

    2011-03-22

    A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.

  9. Voltage- and current-activated metal-insulator transition in VO2-based electrical switches: a lifetime operation analysis.

    PubMed

    Crunteanu, Aurelian; Givernaud, Julien; Leroy, Jonathan; Mardivirin, David; Champeaux, Corinne; Orlianges, Jean-Christophe; Catherinot, Alain; Blondy, Pierre

    2010-12-01

    Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal-insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal-insulator transition in VO 2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs) in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO 2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO 2 -based switching (more than 260 million cycles without failure) compared with the voltage-activated mode (breakdown at around 16 million activation cycles). The evolution of the electrical self-oscillations of a VO 2 -based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  10. Switches from pi- to sigma-bonding complexes controlled by gate voltages.

    PubMed

    Matsui, Eriko; Harnack, Oliver; Matsuzawa, Nobuyuki N; Yasuda, Akio

    2005-10-01

    A conjugated polymer/metal ion/liquid-crystal molecular system was set between source and drain electrodes with a 100 nm gap. When gate voltage (Vg) increases, the current between source and drain electrodes increases. Infrared spectra show this system to be composed of pi and sigma complexes. At Vg = 0, the pi complex dominates the sigma complex, whereas the sigma complex becomes dominant when Vg is switched on. Calculations found that the pi complex has lower conductivity than the sigma complex.

  11. Switching of actin-myosin motors by voltage-induced pH bias in vitro.

    PubMed

    Hatori, Kuniyuki; Iwase, Takahiro; Wada, Reito

    2016-08-01

    ATP-driven motor proteins, which function in cell motility and organelle transport, have potential applications as bio-inspired micro-devices; however, their control remains unsatisfactory. Here, we show rapid-velocity control of actin filaments interacting with myosin motors using voltage applied to Pt electrodes in an in vitro motility system, by which immediate increases and decreases in velocity were induced beside the cathode and anode, respectively. Indicator dye revealed pH changes after voltage application, and alternate voltage switching allowed actin filaments to cyclically alter their velocity in response to these changes. This principle provides a basis for on-demand control of not only motor proteins but also pH-sensitive events at a microscopic level. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Investigating the Effect of Voltage-Switching on Low-Energy Task Scheduling in Hard Real-Time Systems

    DTIC Science & Technology

    2005-01-01

    We investigate the effect of voltage-switching on task execution times and energy consumption for dual-speed hard real - time systems , and present a...scheduling algorithm and apply it to two real-life task sets. Our results show that energy can be conserved in embedded real - time systems using energy...aware task scheduling. We also show that switching times have a significant effect on the energy consumed in hard real - time systems .

  13. Fully parameterized model of a voltage-driven capacitive coupled micromachined ohmic contact switch for RF applications

    NASA Astrophysics Data System (ADS)

    Heeb, Peter; Tschanun, Wolfgang; Buser, Rudolf

    2012-03-01

    A comprehensive and completely parameterized model is proposed to determine the related electrical and mechanical dynamic system response of a voltage-driven capacitive coupled micromechanical switch. As an advantage over existing parameterized models, the model presented in this paper returns within few seconds all relevant system quantities necessary to design the desired switching cycle. Moreover, a sophisticated and detailed guideline is given on how to engineer a MEMS switch. An analytical approach is used throughout the modelling, providing representative coefficients in a set of two coupled time-dependent differential equations. This paper uses an equivalent mass moving along the axis of acceleration and a momentum absorption coefficient. The model describes all the energies transferred: the energy dissipated in the series resistor that models the signal attenuation of the bias line, the energy dissipated in the squeezed film, the stored energy in the series capacitor that represents a fixed separation in the bias line and stops the dc power in the event of a short circuit between the RF and dc path, the energy stored in the spring mechanism, and the energy absorbed by mechanical interaction at the switch contacts. Further, the model determines the electrical power fed back to the bias line. The calculated switching dynamics are confirmed by the electrical characterization of the developed RF switch. The fabricated RF switch performs well, in good agreement with the modelled data, showing a transition time of 7 µs followed by a sequence of bounces. Moreover, the scattering parameters exhibit an isolation in the off-state of >8 dB and an insertion loss in the on-state of <0.6 dB up to frequencies of 50 GHz. The presented model is intended to be integrated into standard circuit simulation software, allowing circuit engineers to design the switch bias line, to minimize induced currents and cross actuation, as well as to find the mechanical structure dimensions

  14. Voltage mode electronically tunable full-wave rectifier

    NASA Astrophysics Data System (ADS)

    Petrović, Predrag B.; Vesković, Milan; Đukić, Slobodan

    2017-01-01

    The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.

  15. Modeling, Development and Control of Multilevel Converters for Power System Application =

    NASA Astrophysics Data System (ADS)

    Vahedi, Hani

    The main goal of this project is to develop a multilevel converter topology to be useful in power system applications. Although many topologies are introduced rapidly using a bunch of switches and isolated dc sources, having a single-dc-source multilevel inverter is still a matter of controversy. In fact, each isolated dc source means a bulky transformer and a rectifier that have their own losses and costs forcing the industries to avoid entering in this topic conveniently. On the other hand, multilevel inverters topologies with single-dc-source require associated controllers to regulate the dc capacitors voltages in order to have multilevel voltage waveform at the output. Thus, a complex controller would not interest investors properly. Consequently, developing a single-dc-source multilevel inverter topology along with a light and reliable voltage control is still a challenging topic to replace the 2-level inverters in the market effectively. The first effort in this project was devoted to the PUC7 inverter to design a simple and yet efficient controller. A new modelling is performed on the PUC7 inverter and it has been simplified to first order system. Afterwards, a nonlinear cascaded controller is designed and applied to regulate the capacitor voltage at 1/3 of the DC source amplitude and to generate 7 identical voltage levels at the output supplying different type of loads such as RL or rectifier harmonic ones. In next work, the PUC5 topology is proposed as a remedy to the PUC7 that requires a complicated controller to operate properly. The capacitor voltage is regulated at half of dc source amplitude to generate 5 voltage levels at the output. Although the 7-level voltage waveform is replaced by a 5-level one in PUC5 topology, it is shown that the PUC5 needs a very simple and reliable voltage balancing technique due to having some redundant switching states. Moreover, a sensor-less voltage balancing technique is designed and implemented on the PUC5 inverter

  16. Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor

    NASA Astrophysics Data System (ADS)

    Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat

    2018-03-01

    The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.

  17. Microwave-Induced Magneto-Oscillations and Signatures of Zero-Resistance States in Phonon-Drag Voltage in Two-Dimensional Electron Systems

    NASA Astrophysics Data System (ADS)

    Levin, A. D.; Momtaz, Z. S.; Gusev, G. M.; Raichev, O. E.; Bakarov, A. K.

    2015-11-01

    We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.

  18. Microwave-Induced Magneto-Oscillations and Signatures of Zero-Resistance States in Phonon-Drag Voltage in Two-Dimensional Electron Systems.

    PubMed

    Levin, A D; Momtaz, Z S; Gusev, G M; Raichev, O E; Bakarov, A K

    2015-11-13

    We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.

  19. Study of DC Circuit Breaker of H2-N2 Mixture Gas for High Voltage

    NASA Astrophysics Data System (ADS)

    Shiba, Yuji; Morishita, Yukinaga; Kaneko, Shuhei; Okabe, Shigemitsu; Mizoguchi, Hitoshi; Yanabu, Satoru

    Global warming caused by CO2 etc. is a field where the concern is very high. Especially, automobile emissions are problem for it. Therefore, the hybrid car is widely development and used recently. Hybrid car used electric power and gasoline. So, the car reduces CO2. Hybrid car has engine and motor. To rotate the motor, hybrid car has battery. This battery is large capacity. Therefore, the relay should interrupt high DC current for the switch of the motor and the engine. So, hybrid car used hydrogen gas filling relay We studied interruption test for the research of a basic characteristic of hydrogen gas. DC current has not current zero point. So, it is necessary to make the current zero by high arc voltage and forcible current zero point. The loss coefficient and arc voltage of hydrogen is high. Therefore, we studied interruption test for used high arc voltage. We studied interruption test and dielectric breakdown test of air, pure Hydrogen, and Hydrogen- nitrogen mixture gas. As a result, we realized H2-N2(80%-20%) is the best gas.

  20. Solar fed DC-DC single ended primary inductance converter for low power applications

    NASA Astrophysics Data System (ADS)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  1. Performance of a spacecraft DC-DC converter breadboard modified for low temperature operation

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Stell, Chris; Patterson, Richard; Ray, Biswajit

    1996-01-01

    A 1OW 3OV/5.OV push-pull dc-dc converter breadboard, designed by the Jet Propulsion Laboratory (JPL) with a +50 C to +5 C operating range for the Cassini space probe, was characterized for lower operating temperatures. The breadboard converter which failed to operate for temperatures below -125 C was then modified to operate at temperatures approaching that of liquid nitrogen (LN2). Associated with this low operating temperature range (greater than -196 C) was a variety of performance problems such as significant change in output voltage, converter switching instability, and failure to restart at temperatures below -154 C. An investigation into these problems yielded additional modifications to the converter which improved low temperature performance even further.

  2. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE PAGES

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.; ...

    2017-05-17

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  3. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  4. Digital scale converter

    DOEpatents

    Upton, Richard G.

    1978-01-01

    A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.

  5. Caracterisation des mecanismes d'usure en cavitation de revetements HVOF a base de CaviTec

    NASA Astrophysics Data System (ADS)

    Lavigne, Sebastien

    The increasing demand for high performance power conversion systems continuously pushes for improvement in efficiency and power density. This dissertation focuses on a topological effort to efficiently utilize the active and passive devices. In particular, a hybrid approach is adopted, where both capacitors and inductors are used in the voltage conversion and power transfer process. Conventional capacitor-based converters, called switched-capacitor (SC) converters, suffer from poor efficiency due to the inevitable charge redistribution process. With a strategic placement of one or more inductors, the charge redistribution loss can be eliminated by inductively charging/discharging the capacitors, a process called soft-charging operation. As a result, the capacitor size can be greatly reduced without reducing the efficiency. A general analytical framework is presented, which determines whether an arbitrary SC topology is able to achieve full soft-charging operation with a single inductor. For topologies that cannot, a split-phase control technique is introduced, which amends existing two-phase controls to completely eliminate the charge redistribution loss. In addition, alternative placements of inductors are explored to extend the family of hybrid converters. The hybrid converters can have two modes of operation, the fixed-ratio mode and pulse width modulated (PWM) mode. The fixed-conversion-ratio hybrid converters operate in a similar manner to that of a conventional SC converter, with the addition of a soft-charging inductor. The switching frequency of such converters can be adjusted to operate in either zero current switching (ZCS) mode or continuous conduction mode (CCM), which allows for the trade-off of switching loss and conduction loss. It is shown that the capacitor and inductor values can be selected to achieve a minimal passive component volume, which can be significantly smaller than that of a conventional SC converter or a magnetic-based converter. On

  6. Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry.

    PubMed

    Lee, Chanwoo; Kim, Inpyo; Choi, Wonsup; Shin, Hyunjung; Cho, Jinhan

    2009-04-21

    We describe a novel and versatile approach for preparing resistive switching memory devices based on binary transition metal oxides (TMOs). Titanium isopropoxide (TIPP) was spin-coated onto platinum (Pt)-coated silicon substrates using a sol-gel process. The sol-gel-derived layer was converted into a TiO2 film by thermal annealing. A top electrode (Ag electrode) was then coated onto the TiO2 films to complete device fabrication. When an external bias was applied to the devices, a switching phenomenon independent of the voltage polarity (i.e., unipolar switching) was observed at low operating voltages (about 0.6 VRESET and 1.4 VSET). In addition, it was confirmed that the electrical properties (i.e., retention time, cycling test and switching speed) of the sol-gel-derived devices were comparable to those of vacuum deposited devices. This approach can be extended to a variety of binary TMOs such as niobium oxides. The reported approach offers new opportunities for preparing the binary TMO-based resistive switching memory devices allowing a facile solution processing.

  7. Static DC to DC Power Conditioning-Active Ripple Filter, 1 MHZ DC to DC Conversion, and Nonlinear Analysis. Ph.D. Thesis; [voltage regulation and conversion circuitry for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Sander, W. A., III

    1973-01-01

    Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.

  8. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  9. The BepiColombo Laser Altimeter (BeLA) power converter module (PCM): Concept and characterisation.

    PubMed

    Rodrigo, J; Gasquet, E; Castro, J-M; Herranz, M; Lara, L-M; Muñoz, M; Simon, A; Behnke, T; Thomas, N

    2017-03-01

    This paper presents the principal considerations when designing DC-DC converters for space instruments, in particular for the power converter module as part of the first European space laser altimeter: "BepiColombo Laser Altimeter" on board the European Space Agency-Japan Aerospace Exploration Agency (JAXA) mission BepiColombo. The main factors which determine the design of the DC-DC modules in space applications are printed circuit board occupation, mass, DC-DC converter efficiency, and environmental-survivability constraints. Topics included in the appropriated DC-DC converter design flow are hereby described. The topology and technology for the primary and secondary stages, input filters, transformer design, and peripheral components are discussed. Component selection and design trade-offs are described. Grounding, load and line regulation, and secondary protection circuitry (under-voltage, over-voltage, and over-current) are then introduced. Lastly, test results and characterization of the final flight design are also presented. Testing of the inrush current, the regulated output start-up, and the switching function of the power supply indicate that these performances are fully compliant with the requirements.

  10. Improved frequency/voltage converters for fast quartz crystal microbalance applications.

    PubMed

    Torres, R; García, J V; Arnau, A; Perrot, H; Kim, L To Thi; Gabrielli, C

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1 kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10 mVHz, for a frequency shift resolution of 0.1 Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5 to 10 MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  11. Improved frequency/voltage converters for fast quartz crystal microbalance applications

    NASA Astrophysics Data System (ADS)

    Torres, R.; García, J. V.; Arnau, A.; Perrot, H.; Kim, L. To Thi; Gabrielli, C.

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10mV/Hz, for a frequency shift resolution of 0.1Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5to10MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  12. Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

    PubMed

    Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli

    2015-01-01

    We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.

  13. Modelling and simulation of current fed dc to dc converter for PHEV applications using renewable source

    NASA Astrophysics Data System (ADS)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    With the current rate of depletion of the fossil fuel the need to switch on to the renewable energy sources is the need of the hour. Thus the need for new and efficient converters arises so as to replace the existing less efficient diesel and petroleum IC engines with renewable energy sources. The PHEVs, which have been launched in the market, and Upcoming PHEVs have converters around 380V to 400V generated with a power range between 2KW to 2.8KW. The fundamental target of this paper is to plan a productive converter keeping in mind cost and size restriction. In this paper, a two-stage dc-dc converter is proposed. The proposed converter is utilized to venture up a voltage from 24V (photovoltaic source) to a yield voltage of 400V to take care of a power demand of 2.4kW for a plug-in hybrid electric vehicle (PHEV) application considering the real time scenario of PHEV. This paper talks about in detail why the current fed converter is utilized alongside a voltage doubler thus minimizing the transformer turns thereby reducing the overall size of the final product. Simulation results along with calculation for the duty cycle of the firing sequence for different value of transformer turns are presented for a prototype unit.

  14. A new mathematical model and control of a three-phase AC-DC voltage source converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasko, V.; Kaura, V.

    1997-01-01

    A new mathematical model of the power circuit of a three-phase voltage source converter (VSC) was developed in the stationary and synchronous reference frames. The mathematical model was then used to analyze and synthesize the voltage and current control loops for the VSC. Analytical expressions were derived for calculating the gains and time constants of the current and voltage regulators. The mathematical model was used to control a 140-kW regenerative VSC. The synchronous reference frame model was used to define feedforward signals in the current regulators to eliminate the cross coupling between the d and q phases. It allowed themore » reduction of the current control loop to first-order plants and improved their tracking capability. The bandwidths of the current and voltage-control loops were found to be approximately 20 and 60 times (respectively) smaller than the sampling frequency. All control algorithms were implemented in a digital-signal processor. All results of the analysis were experimentally verified.« less

  15. Dynamic Performance of a Back-to-Back HVDC Station Based on Voltage Source Converters

    NASA Astrophysics Data System (ADS)

    Khatir, Mohamed; Zidi, Sid-Ahmed; Hadjeri, Samir; Fellah, Mohammed-Karim

    2010-01-01

    The recent developments in semiconductors and control equipment have made the voltage source converter based high voltage direct current (VSC-HVDC) feasible. This new DC transmission is known as "HVDC Light or "HVDC Plus by leading vendors. Due to the use of VSC technology and pulse width modulation (PWM) the VSC-HVDC has a number of potential advantages as compared with classic HVDC. In this paper, the scenario of back-to-back VSC-HVDC link connecting two adjacent asynchronous AC networks is studied. Control strategy is implemented and its dynamic performances during disturbances are investigated in MATLAB/Simulink program. The simulation results have shown good performance of the proposed system under balanced and unbalanced fault conditions.

  16. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  17. Power Control of New Wind Power Generation System with Induction Generator Excited by Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori

    This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.

  18. Effective switching frequency multiplier inverter

    DOEpatents

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  19. High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.

    PubMed

    Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo

    2015-03-25

    A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Poly-4-vinylphenol (PVP) and Poly(melamine-co-formaldehyde) (PMF)-Based Atomic Switching Device and Its Application to Logic Gate Circuits with Low Operating Voltage.

    PubMed

    Kang, Dong-Ho; Choi, Woo-Young; Woo, Hyunsuk; Jang, Sungkyu; Park, Hyung-Youl; Shim, Jaewoo; Choi, Jae-Woong; Kim, Sungho; Jeon, Sanghun; Lee, Sungjoo; Park, Jin-Hong

    2017-08-16

    In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (10 5 ), excellent cyclic endurance (>10 3 ), and long retention time (>10 4 s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.

  1. A Solution-Processed Ultrafast Optical Switch Based on a Nanostructured Epsilon-Near-Zero Medium.

    PubMed

    Guo, Qiangbing; Cui, Yudong; Yao, Yunhua; Ye, Yuting; Yang, Yue; Liu, Xueming; Zhang, Shian; Liu, Xiaofeng; Qiu, Jianrong; Hosono, Hideo

    2017-07-01

    All the optical properties of materials are derived from dielectric function. In spectral region where the dielectric permittivity approaches zero, known as epsilon-near-zero (ENZ) region, the propagating light within the material attains a very high phase velocity, and meanwhile the material exhibits strong optical nonlinearity. The interplay between the linear and nonlinear optical response in these materials thus offers unprecedented pathways for all-optical control and device design. Here the authors demonstrate ultrafast all-optical modulation based on a typical ENZ material of indium tin oxide (ITO) nanocrystals (NCs), accessed by a wet-chemistry route. In the ENZ region, the authors find that the optical response in these ITO NCs is associated with a strong nonlinear character, exhibiting sub-picosecond response time (corresponding to frequencies over 2 THz) and modulation depth up to ≈160%. This large optical nonlinearity benefits from the highly confined geometry in addition to the ENZ enhancement effect of the ITO NCs. Based on these ENZ NCs, the authors successfully demonstrate a fiber optical switch that allows switching of continuous laser wave into femtosecond laser pulses. Combined with facile processibility and tunable optical properties, these solution-processed ENZ NCs may offer a scalable and printable material solution for dynamic photonic and optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Forback DC-to-DC converter

    NASA Technical Reports Server (NTRS)

    Lukemire, Alan T. (Inventor)

    1995-01-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  3. A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching.

    PubMed

    Jiao, Xiangyu; Sun, Ruijuan; Cheng, Yaya; Li, Fengyu; Du, Xin; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji

    2017-05-19

    Controlled-release systems based on mesoporous silica nanomaterials (MSNs) have drawn great attention owing to their potential biomedical applications. Various switches have been designed to control the release of cargoes through the construction of physical blocking units on the surface of MSNs. However, such physical blockages are limited by poor sealing ability and low biocompatibility, and most of them lack closure ability. Herein, a voltage-responsive controlled-release system was constructed by functionalizing the nanopore of MSNs with ferrocene. The system realized free-blockage controlled release and achieved pulsatile release. The nanopores of the ferrocene-functionalized MSNs were hydrophobic enough to prevent invasion of the solution. Once a suitable voltage was applied, the nanopores became hydrophilic, which was followed by invasion of the solution and the release of the cargos. Moreover, pulsatile release was realized, which avoided unexpected release after the stimulus disappeared. Thus, we believe that our studies provide new insight into highly effective blockage for MSNs. Furthermore, the voltage-responsive release system is expected to find use in electrical stimulation combination therapy and bioelectricity-responsive release. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. BiCMOS circuit technology for a 704 MHz ATM switch LSI

    NASA Astrophysics Data System (ADS)

    Ohtomo, Yusuke; Yasuda, Sadayuki; Togashi, Minoru; Ino, Masayuki; Tanabe, Yasuyuki; Inoue, Jun-Ichi; Nogawa, Masafumi; Hino, Shigeki

    1994-05-01

    This paper describes BiCMOS level-converter circuits and clock circuits that increase VLSI interface speed to 1 GHz, and their application to a 704 MHz ATM switch LSI. An LSI with high speed interface requires a BiCMOS multiplexer/demultiplexer (MUX/DEMUX) on the chip to reduce internal operation speed. A MUX/DEMUX with minimum power dissipation and a minimum pattern area can be designed using the proposed converter circuits. The converter circuits, using weakly cross-coupled CMOS inverters and a voltage regulator circuit, can convert signal levels between LCML and positive CMOS at a speed of 500 MHz. Data synchronization in the high speed region is ensured by a new BiCMOS clock circuit consisting of a pure ECL path and retiming circuits. The clock circuit reduces the chip latency fluctuation of the clock signal and absorbs the delay difference between the ECL clock and data through the CMOS circuits. A rerouting-Banyan (RRB) ATM switch, employing both the proposed converter circuits and the clock circuits, has been fabricated with 0.5 micron BiCMOS technology. The LSI, composed of CMOS 15 K gate LOGIC, 8 Kb RAM, 1 Kb FIFO and ECL 1.6 K gate LOGIC, achieved an operation speed of 704-MHz with power dissipation of 7.2 W.

  5. Control Strategy of Active Power Filter Based on Modular Multilevel Converter

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng

    2018-03-01

    To improve the capacity, pressure resistance and the equivalent switching frequency of active power filter (APF), a control strategy of APF based on Modular Multilevel Converter (MMC) is presented. In this Control Strategy, the indirect current control method is used to achieve active current and reactive current decoupling control; Voltage Balance Control Strategy is to stabilize sub-module capacitor voltage, the predictive current control method is used to Track and control of harmonic currents. As a result, the harmonic current is restrained, and power quality is improved. Finally, the simulation model of active power filter controller based on MMC is established in Matlab/Simulink, the simulation proves that the proposed strategy is feasible and correct.

  6. Design and Implementation of Readout Circuit with Threshold Voltage Compensation on Glass Substrate for Touch Panel Applications

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ta; Ker, Ming-Dou; Wang, Tzu-Ming

    2011-03-01

    A new on-panel readout circuit with threshold voltage compensation for capacitive sensor in low temperature polycrystalline silicon (poly-Si) thin-film transistor (LTPS-TFT) process has been proposed. In order to compensate the threshold voltage variation from LTPS process variation, the proposed readout circuit applies a novel compensation approach with switch capacitor technique. In addition, a 4-bit analog-to-digital converter (ADC) is added to identify different sensed capacitor values and further enhances the overall resolution of touch panel.

  7. Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level T-S fuzzy PI control.

    PubMed

    Almasi, Omid Naghash; Fereshtehpoor, Vahid; Khooban, Mohammad Hassan; Blaabjerg, Frede

    2017-03-01

    In this paper, a new modified fuzzy Two-Level Control Scheme (TLCS) is proposed to control a non-inverting buck-boost converter. Each level of fuzzy TLCS consists of a tuned fuzzy PI controller. In addition, a Takagi-Sugeno-Kang (TSK) fuzzy switch proposed to transfer the fuzzy PI controllers to each other in the control system. The major difficulty in designing fuzzy TLCS which degrades its performance is emerging unwanted drastic oscillations in the converter output voltage during replacing the controllers. Thereby, the fuzzy PI controllers in each level of TLCS structure are modified to eliminate these oscillations and improve the system performance. Some simulations and digital signal processor based experiments are conducted on a non-inverting buck-boost converter to support the effectiveness of the proposed TLCS in controlling the converter output voltage. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A Transformerless Hybrid Active Filter Capable of Complying with Harmonic Guidelines for Medium-Voltage Motor Drives

    NASA Astrophysics Data System (ADS)

    Kondo, Ryota; Akagi, Hirofumi

    This paper presents a transformerless hybrid active filter that is integrated into medium-voltage adjustable-speed motor drives for fans, pumps, and compressors without regenerative braking. The authors have designed and constructed a three-phase experimental system rated at 400V and 15kW, which is a downscaled model from a feasible 6.6-kV 1-MW motor drive system. This system consists of the hybrid filter connecting a passive filter tuned to the 7th harmonic filter in series with an active filter that is based on a three-level diode-clamped PWM converter, as well as an adjustable-speed motor drive in which a diode rectifier is used as the front end. The hybrid filter is installed on the ac side of the diode rectifier with no line-frequency transformer. The downscaled system has been exclusively tested so as to confirm the overall compensating performance of the hybrid filter and the filtering performance of a switching-ripple filter for mitigating switching-ripple voltages produced by the active filter. Experimental results verify that the hybrid filter achieves harmonic compensation of the source current in all the operating regions from no-load to the rated-load conditions, and that the switching-ripple filter reduces the switching-ripple voltages as expected.

  9. An improved switching converter model. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Shortt, D. J.

    1982-01-01

    The nonlinear modeling and analysis of dc-dc converters in the continuous mode and discontinuous mode was done by averaging and discrete sampling techniques. A model was developed by combining these two techniques. This model, the discrete average model, accurately predicts the envelope of the output voltage and is easy to implement in circuit and state variable forms. The proposed model is shown to be dependent on the type of duty cycle control. The proper selection of the power stage model, between average and discrete average, is largely a function of the error processor in the feedback loop. The accuracy of the measurement data taken by a conventional technique is affected by the conditions at which the data is collected.

  10. A Single Phase 7-Level Cascade Inverter Topology with Reduced Number of Switches on Resistive Load by Using PWM

    NASA Astrophysics Data System (ADS)

    Hamzah, H. H.; Ponniran, A.; Kasiran, A. N.; Harimon, M. A.; Gendum, D. A.; Yatim, M. H.

    2018-04-01

    This paper discussing design principles of inverter structure with reduced number of semiconductor devices of seven levels symmetric H-bridge multilevel inverter (MLI) topology. The aim of this paper is to design an inverter circuit with reduction of semiconductor losses, converter size and development cost. The H-bridge and auxiliary structures were considered in order to achieve seven levels output voltage. The performance of design circuit is compared with conventional seven levels structure in terms of voltage output. The circuit development consists of seven switches and three diode. A basic modulation technique is used to confirm the designed circuit. The results show that the designed circuit is able to convert seven level output voltage with low total harmonics distortion (THD) in voltage fundamental output. According to the results, fundamental output voltage is increased up to 8.314%, and the THD is decreased up to 0.81% compared to the conventional seven level inverter.

  11. Specification, Measurement, and Control of Electrical Switching Transients

    NASA Technical Reports Server (NTRS)

    Javor, K.

    1999-01-01

    There have been several instances of susceptibility to switching transients. The Space Shuttle Spacelab Remote Acquisition Unit (RAU-A standard interface between Spacelab payloads and the Shuttle communications system) will shut down if the input 28 Vdc bus drops below 22 volts for more than 80 gs. Although a MIL-STD-461 derivative CS06 requirement was levied on the RAU, it failed to find this susceptibility. A heavy payload on one aircraft sags the 28 volt bus below 20 volts for milliseconds. Dc-dc converters have an operating voltage. A typical 28 Vdc-to-5 Vdc converter operates within tolerance when input potential is between 17-40 Vdc, A hold-up capacitor can be used to extend the time this range is presented to the convener when the line potential sags or surges outside this range. The designer must know the range of normal transients in order to choose the correct value of hold-up. This report describes the phenomena of electrical power bus transients induced by the switching of loads both on and off the bus, and control thereof.

  12. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  13. Bilayer-Spanning DNA Nanopores with Voltage-Switching between Open and Closed State

    PubMed Central

    2014-01-01

    Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology. PMID:25338165

  14. Bilayer-spanning DNA nanopores with voltage-switching between open and closed state.

    PubMed

    Seifert, Astrid; Göpfrich, Kerstin; Burns, Jonathan R; Fertig, Niels; Keyser, Ulrich F; Howorka, Stefan

    2015-02-24

    Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology.

  15. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.

  16. Power Quality Improvement Using an Enhanced Network-Side-Shunt-Connected Dynamic Voltage Restorer

    NASA Astrophysics Data System (ADS)

    Fereidouni, Alireza; Masoum, Mohammad A. S.; Moghbel, Moayed

    2015-10-01

    Among the four basic dynamic voltage restorer (DVR) topologies, the network-side shunt-connected DVR (NSSC-DVR) has a relatively poor performance and is investigated in this paper. A new configuration is proposed and implemented for NSSC-DVR to enhance its performance in compensating (un)symmetrical deep and long voltage sags and mitigate voltage harmonics. The enhanced NSSC-DVR model includes a three-phase half-bridge semi-controlled network-side-shunt-connected rectifier and a three-phase full-bridge series-connected inverter implemented with a back-to-back configuration through a bidirectional buck-boost converter. The network-side-shunt-connected rectifier is employed to inject/draw the required energy by NSSC-DVR to restore the load voltage to its pre-fault value under sag/swell conditions. The buck-boost converter is responsible for maintaining the DC-link voltage of the series-connected inverter at its designated value in order to improve the NSSC-DVR capability in compensating deep and long voltage sags/swells. The full-bridge series-connected inverter permits to compensate unbalance voltage sags containing zero-sequence component. The harmonic compensation of the load voltage is achieved by extracting harmonics from the distorted network voltage using an artificial neural network (ANN) method called adaptive linear neuron (Adaline) strategy. Detailed simulations are performed by SIMULINK/MATLAB software for six case studies to verify the highly robustness of the proposed NSSC-DVR model under various conditions.

  17. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    PubMed Central

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  18. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  19. Electrical switching in cadmium boracite single crystals

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.

  20. Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo

    2015-05-01

    This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.

  1. Modeling synchronous voltage source converters in transmission system planning studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosterev, D.N.

    1997-04-01

    A Voltage Source Converter (VSC) can be beneficial to power utilities in many ways. To evaluate the VSC performance in potential applications, the device has to be represented appropriately in planning studies. This paper addresses VSC modeling for EMTP, powerflow, and transient stability studies. First, the VSC operating principles are overviewed, and the device model for EMTP studies is presented. The ratings of VSC components are discussed, and the device operating characteristics are derived based on these ratings. A powerflow model is presented and various control modes are proposed. A detailed stability model is developed, and its step-by-step initialization proceduremore » is described. A simplified stability model is also derived under stated assumptions. Finally, validation studies are performed to demonstrate performance of developed stability models and to compare it with EMTP simulations.« less

  2. High-power converters for space applications

    NASA Technical Reports Server (NTRS)

    Park, J. N.; Cooper, Randy

    1991-01-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  3. R dump converter without DC link capacitor for an 8/6 SRM: experimental investigation.

    PubMed

    Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran

    2015-01-01

    The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation.

  4. Investigations into the use of energy storage in power system applications

    NASA Astrophysics Data System (ADS)

    Leung, Ka Kit

    to allow zero voltage switching of inverter main switches without imposing excessive voltage and current stresses. Finally, in practice the battery terminal voltage fluctuates significantly as large current is being drawn or absorbed by the battery bank. When a hysteresis controller is used to control the supply line current, the ripple magnitude and frequency of the controlled current is highly dependent on the battery voltage, line inductance and the band limits of the controller. Even when these parameters are constant, the switching frequency can vary over quite a large range. A novel method is proposed to overcome this problem by controlling the dc voltage level by means of a dc-dc converter to provide a controllable voltage at the inverter dc terminal irrespective of the battery voltage variations. By proper control of the magnitude and frequency of the output of the DC-DC converter, the switching frequency can be made close to constant. A mathematical proof has been formulated and results from the simulation confirm that using the proposed technique, the frequency band has been significantly reduced and for the theoretical case, a single switching frequency is observed. The main disadvantage is the need to have an extra dc-dc converter, but this is relatively cheap and easy to obtain.

  5. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  6. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  7. Modeling of switching regulator power stages with and without zero-inductor-current dwell time

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Yu, Y.; Triner, J. E.

    1976-01-01

    State space techniques are employed to derive accurate models for buck, boost, and buck/boost converter power stages operating with and without zero-inductor-current dwell time. A generalized procedure is developed which treats the continuous-inductor-current mode without the dwell time as a special case of the discontinuous-current mode, when the dwell time vanishes. An abrupt change of system behavior including a reduction of the system order when the dwell time appears is shown both analytically and experimentally.

  8. Circuit for Full Charging of Series Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ott, William E.; Saunders, David L.

    2007-01-01

    An advanced charger has been proposed for a battery that comprises several lithium-ion cells in series. The proposal is directed toward charging the cells in as nearly an optimum manner as possible despite unit-to-unit differences among the nominally identical cells. The particular aspect of the charging problem that motivated the proposal can be summarized as follows: During bulk charging (charging all the cells in series at the same current), the voltages of individual cells increase at different rates. Once one of the cells reaches full charge, bulk charging must be stopped, leaving other cells less than fully charged. To make it possible to bring all cells up to full charge once bulk charging has been completed, the proposed charger would include a number of top-off chargers one for each cell. The top-off chargers would all be powered from the same DC source, but their outputs would be DC-isolated from each other and AC-coupled to their respective cells by means of transformers, as described below. Each top-off charger would include a flyback transformer, an electronic switch, and an output diode. For suppression of undesired electromagnetic emissions, each top-off charger would also include (1) a resistor and capacitor configured to act as a snubber and (2) an inductor and capacitor configured as a filter. The magnetic characteristics of the flyback transformer and the duration of its output pulses determine the energy delivered to the lithium-ion cell. It would be necessary to equip the cell with a precise voltage monitor to determine when the cell reaches full charge. In response to a full-charge reading by this voltage monitor, the electronic switch would be held in the off state. Other cells would continue to be charged similarly by their top-off chargers until their voltage monitors read full charge.

  9. Additional Electrochemical Treatment Effects on the Switching Characteristics of Anodic Porous Alumina Resistive Switching Memory

    NASA Astrophysics Data System (ADS)

    Otsuka, Shintaro; Takeda, Ryouta; Furuya, Saeko; Shimizu, Tomohiro; Shingubara, Shouso; Iwata, Nobuyuki; Watanabe, Tadataka; Takano, Yoshiki; Takase, Kouichi

    2012-06-01

    We have investigated the current-voltage characteristics of a resistive switching memory (ReRAM), especially the reproducibility of the switching voltage between an insulating state and a metallic state. The poor reproducibility hinders the practical use of this memory. According to a filament model, the variation of the switching voltage may be understood in terms of the random choice of filaments with different conductivities and lengths at each switching. A limitation of the number of conductive paths is expected to lead to the suppression of the variation of switching voltage. In this study, two strategies for the limitation have been proposed using an anodic porous alumina (APA). The first is the reduction of the number of conductive paths by restriction of the contact area between the top electrodes and the insulator. The second is the lowering of the resistivity of the insulator, which makes it possible to grow filaments with the same characteristics by electrochemical treatments using a pulse-electroplating technique.

  10. Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)

    NASA Astrophysics Data System (ADS)

    Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.

    2007-12-01

    The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.

  11. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption

    NASA Astrophysics Data System (ADS)

    Cheng, Xian; Duan, Xiongying; Liao, Minfu; Huang, Zhihui; Luo, Yan; Zou, Jiyan

    2013-08-01

    Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.

  12. Zero Thermal Noise in Resistors at Zero Temperature

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran

    2016-06-01

    The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.

  13. Power-MOSFET Voltage Regulator

    NASA Technical Reports Server (NTRS)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  14. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, Anthony N.; Watson, James A.; Sampayan, Stephen E.

    1994-01-01

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load.

  15. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, A.N.; Watson, J.A.; Sampayan, S.E.

    1994-09-13

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load. 4 figs.

  16. Implementation of 3 T Lactate-Edited 3D 1H MR Spectroscopic Imaging with Flyback Echo-Planar Readout for Gliomas Patients

    PubMed Central

    Chen, Albert P.; Zierhut, Matthew L.; Ozturk-Isik, Esin; Vigneron, Daniel B.; Nelson, Sarah J.

    2010-01-01

    The purpose of this study was to implement a new lactate-edited 3D 1H magnetic resonance spectroscopic imaging (MRSI) sequence at 3 T and demonstrate the feasibility of using this sequence for measuring lactate in patients with gliomas. A 3D PRESS MRSI sequence incorporating shortened, high bandwidth 180° pulses, new dual BASING lactate-editing pulses, high bandwidth very selective suppression (VSS) pulses and a flyback echo-planar readout was implemented at 3 T. Over-prescription factor of PRESS voxels was optimized using phantom to minimize chemical shift artifacts. The lactate-edited flyback sequence was compared with lactate-edited MRSI using conventional elliptical k-space sampling in a phantom and volunteers, and then applied to patients with gliomas. The results demonstrated the feasibility of detecting lactate within a short scan time of 9.5 min in both phantoms and patients. Over-prescription of voxels gave less chemical shift artifacts allowing detection of lactate on the majority of the selected volume. The normalized SNR of brain metabolites using the flyback encoding were comparable to the SNR of brain metabolites using conventional phase encoding MRSI. The specialized lactate-edited 3D MRSI sequence was able to detect lactate in brain tumor patients at 3 T. The implementation of this technique means that brain lactate can be evaluated in a routine clinical setting to study its potential as a marker for prognosis and response to therapy. PMID:20652745

  17. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  18. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    NASA Astrophysics Data System (ADS)

    Göckeritz, Robert; Homonnay, Nico; Müller, Alexander; Fuhrmann, Bodo; Schmidt, Georg

    2016-04-01

    Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La0.7Sr0.3MnO3/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La0.7Sr0.3MnO3 surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  19. Picosecond High Pressure Gas Switch Experiment

    DTIC Science & Technology

    1993-06-01

    the calculated pulse waveform for a much higher voltage and pressure switch . Also, a discussion of the modifications made on an existing pulse...s 80 8 ~ 60 J 40 .. : ~--~: __ ~’----~-~ 0.1 10 100 1000 Frequency Figure 7. Output switch recovery. Conclusion The high- pressure switch has...effective in matching experimental results, and should thus be useful in the design of high-voltage and pressure switch configurations

  20. Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter.

    PubMed

    Lin, Chia-Chi; Kuo, Hao-Chung; Peng, Peng-Chun; Lin, Gong-Ru

    2008-03-31

    Optically injection-locked single-wavelength gain-switching VCSEL based all-optical converter is demonstrated to generate RZ data at 2.5 Gbit/s with bit-error-rate of 10(-9) under receiving power of -29.3 dBm. A modified rate equation model is established to elucidate the optical injection induced gain-switching and NRZ-to-RZ data conversion in the VCSEL. The peak-to-peak frequency chirp of the VCSEL based NRZ-to-RZ is 4.5 GHz associated with a reduced frequency chirp rate of 178 MHz/ps at input optical NRZ power of -21 dBm, which is almost decreasing by a factor of 1/3 comparing with chirp on the SOA based NRZ-to-RZ converter reported previously. The power penalty of the BER measured back-to-back is about 2 dB from 1 Gbit/s to 2.5 Gbit/s.

  1. [Development of residual voltage testing equipment].

    PubMed

    Zeng, Xiaohui; Wu, Mingjun; Cao, Li; He, Jinyi; Deng, Zhensheng

    2014-07-01

    For the existing measurement methods of residual voltage which can't turn the power off at peak voltage exactly and simultaneously display waveforms, a new residual voltage detection method is put forward in this paper. First, the zero point of the power supply is detected with zero cross detection circuit and is inputted to a single-chip microcomputer in the form of pulse signal. Secend, when the zero point delays to the peak voltage, the single-chip microcomputer sends control signal to power off the relay. At last, the waveform of the residual voltage is displayed on a principal computer or oscilloscope. The experimental results show that the device designed in this paper can turn the power off at peak voltage and is able to accurately display the voltage waveform immediately after power off and the standard deviation of the residual voltage is less than 0.2 V at exactly one second and later.

  2. A study on thermal characteristics analysis model of high frequency switching transformer

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyung; Jung, Tae-Uk

    2015-05-01

    Recently, interest has been shown in research on the module-integrated converter (MIC) in small-scale photovoltaic (PV) generation. In an MIC, the voltage boosting high frequency transformer should be designed to be compact in size and have high efficiency. In response to the need to satisfy these requirements, this paper presents a coupled electromagnetic analysis model of a transformer connected with a high frequency switching DC-DC converter circuit while considering thermal characteristics due to the copper and core losses. A design optimization procedure for high efficiency is also presented using this design analysis method, and it is verified by the experimental result.

  3. Enhancement of macroscopic quantum tunneling in the higher-order phase switches of Bi2212 intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kitano, Haruhisa; Yamaguchi, Ayami; Takahashi, Yusaku; Umegai, Shunpei; Watabe, Yuji; Ohnuma, Haruka; Hosaka, Kazutaka; Kakehi, Daiki

    2018-03-01

    The macroscopic quantum tunneling (MQT) in the current-biased intrinsic Josephson junctions (IJJs) of high-T c cuprates has attracted much attention for decades. Although the MQT for the phase switches from the zero to the first voltage state (1st SW) in the multiple-branched I-V curves is well explained by the conventional theory, the occurrence of MQT for the higher order switches such as the switch from the 1st to 2nd voltage state (2nd SW) has been still debated. Here, we present an experimental study on the phase switches of small IJJs fabricated from underdoped Bi2Sr2(Ca,Y)Cu2Oy. We observed the single photon transition between quantized energy levels in the 3rd phase switches at 59.15 GHz and 2 K. The comparison with the previous studies on the nearly optimal-doped Bi2Sr2CaCu2Oy clearly suggests a possibility that the MQT rate for the higher-order phase switches is commonly enhanced by the effective suppression of the energy barrier for the higher-order phase escape due to the phase-running state after the 1st SW, in spite of the large difference in a critical current density and T c.

  4. Developing a pulse trigger generator for a three-electrode spark-gap switch in a transversely excited atmospheric CO2 laser.

    PubMed

    Wang, Jingyuan; Guo, Lihong; Zhang, Xingliang

    2016-04-01

    To improve the probability and stability of breakdown discharge in a three-electrode spark-gap switch for a high-power transversely excited atmospheric CO2 laser and to improve the efficiency of its trigger system, we developed a high-voltage pulse trigger generator based on a two-transistor forward converter topology and a multiple-narrow-pulse trigger method. Our design uses a narrow high-voltage pulse (10 μs) to break down the hyperbaric gas between electrodes of the spark-gap switch; a dry high-voltage transformer is used as a booster; and a sampling and feedback control circuit (mainly consisting of a SG3525 and a CD4098) is designed to monitor the spark-gap switch and control the frequency and the number of output pulses. Our experimental results show that this pulse trigger generator could output high-voltage pulses (number is adjusted) with an amplitude of >38 kV and a width of 10 μs. Compared to a conventional trigger system, our design had a breakdown probability increased by 2.7%, an input power reduced by 1.5 kW, an efficiency increased by 0.12, and a loss reduced by 1.512 kW.

  5. Thin TiOx layer as a voltage divider layer located at the quasi-Ohmic junction in the Pt/Ta2O5/Ta resistance switching memory.

    PubMed

    Li, Xiang Yuan; Shao, Xing Long; Wang, Yi Chuan; Jiang, Hao; Hwang, Cheol Seong; Zhao, Jin Shi

    2017-02-09

    Ta 2 O 5 has been an appealing contender for the resistance switching random access memory (ReRAM). The resistance switching (RS) in this material is induced by the repeated formation and rupture of the conducting filaments (CFs) in the oxide layer, which are accompanied by the almost inevitable randomness of the switching parameters. In this work, a 1 to 2 nm-thick Ti layer was deposited on the 10 nm-thick Ta 2 O 5 RS layer, which greatly improved the RS performances, including the much-improved switching uniformity. The Ti metal layer was naturally oxidized to TiO x (x < 2) and played the role of a series resistor, whose resistance value was comparable to the on-state resistance of the Ta 2 O 5 RS layer. The series resistor TiO x efficiently suppressed the adverse effects of the voltage (or current) overshooting at the moment of switching by the appropriate voltage partake effect, which increased the controllability of the CF formation and rupture. The switching cycle endurance was increased by two orders of magnitude even during the severe current-voltage sweep tests compared with the samples without the thin TiO x layer. The Ti deposition did not induce any significant overhead to the fabrication process, making the process highly promising for the mass production of a reliable ReRAM.

  6. GaN transistors on Si for switching and high-frequency applications

    NASA Astrophysics Data System (ADS)

    Ueda, Tetsuzo; Ishida, Masahiro; Tanaka, Tsuyoshi; Ueda, Daisuke

    2014-10-01

    In this paper, recent advances of GaN transistors on Si for switching and high-frequency applications are reviewed. Novel epitaxial structures including superlattice interlayers grown by metal organic chemical vapor deposition (MOCVD) relieve the strain and eliminate the cracks in the GaN over large-diameter Si substrates up to 8 in. As a new device structure for high-power switching application, Gate Injection Transistors (GITs) with a p-AlGaN gate over an AlGaN/GaN heterostructure successfully achieve normally-off operations maintaining high drain currents and low on-state resistances. Note that the GITs on Si are free from current collapse up to 600 V, by which the drain current would be markedly reduced after the application of high drain voltages. Highly efficient operations of an inverter and DC-DC converters are presented as promising applications of GITs for power switching. The high efficiencies in an inverter, a resonant LLC converter, and a point-of-load (POL) converter demonstrate the superior potential of the GaN transistors on Si. As for high-frequency transistors, AlGaN/GaN heterojuction field-effect transistors (HFETs) on Si designed specifically for microwave and millimeter-wave frequencies demonstrate a sufficiently high output power at these frequencies. Output powers of 203 W at 2.5 GHz and 10.7 W at 26.5 GHz are achieved by the fabricated GaN transistors. These devices for switching and high-frequency applications are very promising as future energy-efficient electronics because of their inherent low fabrication cost and superior device performance.

  7. A 10-kW series resonant converter design, transistor characterization, and base-drive optimization

    NASA Technical Reports Server (NTRS)

    Robson, R. R.; Hancock, D. J.

    1982-01-01

    The development, components, and performance of a transistor-based 10 kW series resonant converter for use in resonant circuits in space applications is described. The transistors serve to switch on the converter current, which has a half-sinusoid waveform when the transistor is in saturation. The goal of the program was to handle an input-output voltage range of 230-270 Vdc, an output voltage range of 200-500 Vdc, and a current limit range of 0-20 A. Testing procedures for the D60T and D7ST transistors are outlined and base drive waveforms are presented. The total device dissipation was minimized and found to be independent of the regenerative feedback ratio at lower current levels. Dissipation was set at within 10% and rise times were found to be acceptable. The finished unit displayed a 91% efficiency at full power levels of 500 V and 20 A and 93.7% at 500 V and 10 A.

  8. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    PubMed Central

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-01-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or ‘Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices. PMID:25088796

  9. Voltage control of metal-insulator transition and non-volatile ferroelastic switching of resistance in VOx/PMN-PT heterostructures.

    PubMed

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X

    2014-08-04

    The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  10. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    PubMed Central

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-01-01

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/Hz at 50 kHz, which corresponds to 100 μg/Hz. PMID:28042830

  11. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    PubMed

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  12. R Dump Converter without DC Link Capacitor for an 8/6 SRM: Experimental Investigation

    PubMed Central

    Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran

    2015-01-01

    The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation. PMID:25642452

  13. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  14. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  15. Plasma-Induced Nonvolatile Resistive Switching with Extremely Low SET Voltage in TiOxFy with AgF Nanoparticles.

    PubMed

    Sun, Xiangyu; Wu, Chuangui; Shuai, Yao; Pan, Xinqiang; Luo, Wenbo; You, Tiangui; Bogusz, Agnieszka; Du, Nan; Li, Yanrong; Schmidt, Heidemarie

    2016-12-07

    Low power consumption is crucial for the application of resistive random access memory. In this work, we present the bipolar resistive switching in an Ag/TiO x F y /Ti/Pt stack with extremely low switch-on voltage of 0.07 V. Operating current as low as 10 nA was also obtained by conductive atomic force microscopy. The highly defective TiO x F y layer was fabricated by plasma treatment using helium, oxygen, and carbon tetrafluoride orderly. During the electroforming process, AgF nanoparticles were formed due to the diffusion of Ag + which reacted with the adsorbed F - in the TiO x F y layer. These nanoparticles are of great importance to resistive switching performance because they are believed to be conductive phases and become part of the conducting path when the sample is switched to a low-resistance state.

  16. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  17. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, Daniel A.; Moss, William C.; Valk, Theodore C.; Conder, Alan D.

    1995-01-01

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch.

  18. Research on fault characteristics about switching component failures for distribution electronic power transformers

    NASA Astrophysics Data System (ADS)

    Sang, Z. X.; Huang, J. Q.; Yan, J.; Du, Z.; Xu, Q. S.; Lei, H.; Zhou, S. X.; Wang, S. C.

    2017-11-01

    The protection is an essential part for power device, especially for those in power grid, as the failure may cost great losses to the society. A study on the voltage and current abnormality in the power electronic devices in Distribution Electronic Power Transformer (D-EPT) during the failures on switching components is presented, as well as the operational principles for 10 kV rectifier, 10 kV/400 V DC-DC converter and 400 V inverter in D-EPT. Derived from the discussion on the effects of voltage and current distortion, the fault characteristics as well as a fault diagnosis method for D-EPT are introduced.

  19. Circulating Current Suppressing Control’s Impact on Arm Inductance Selection for Modular Multilevel Converter

    DOE PAGES

    Li, Yalong; Jones, Edward A.; Wang, Fred

    2016-10-13

    Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less

  20. Research of an electromagnetically actuated spark gap switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tianyang; Chen, Dongqun, E-mail: csycdq@163.com; Liu, Jinliang

    2013-11-15

    As an important part of pulsed power systems, high-voltage and high-current triggered spark gap switch and its trigger system are expected to achieve a compact structure. In this paper, a high-voltage, high-current, and compact electromagnetically actuated spark gap switch is put forward, and it can be applied as a part of an intense electron-beam accelerator (IEBA). A 24 V DC power supply is used to trigger the switch. The characteristics of the switch were measured for N{sub 2} when the gas pressure is 0.10–0.30 MPa. The experimental results showed that the voltage/pressure (V/p) curve of the switch was linear relationship.more » The operating ranges of the switch were 21%–96%, 21%–95%, 21%–95%, 19%–95%, 17%–95%, and 16%–96% of the switch's self-breakdown voltage when the gas pressures were 0.10, 0.14, 0.18, 0.22, 0.26, and 0.30 MPa, respectively. The switch and its trigger system worked steadily and reliably with a peak voltage of 30 kV, a peak current of 60 kA in the IEBA when the pressure of N{sub 2} in the switch was 0.30 MPa.« less

  1. Diplexer switch

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.; Parker, T. W.

    1977-01-01

    Switch achieves high isolation and continuous input/output matching by using resonant coupling structure of diplexer. Additionally, dc bias network used to control switch is decoupled from RF input and output lines. Voltage transients in external circuits are thus minimized.

  2. High PRF high current switch

    DOEpatents

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  3. High voltage electrical amplifier having a short rise time

    DOEpatents

    Christie, David J.; Dallum, Gregory E.

    1991-01-01

    A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.

  4. Series-Connected Buck Boost Regulators

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2005-01-01

    A series-connected buck boost regulator (SCBBR) is an electronic circuit that bucks a power-supply voltage to a lower regulated value or boosts it to a higher regulated value. The concept of the SCBBR is a generalization of the concept of the SCBR, which was reported in "Series-Connected Boost Regulators" (LEW-15918), NASA Tech Briefs, Vol. 23, No. 7 (July 1997), page 42. Relative to prior DC-voltage-regulator concepts, the SCBBR concept can yield significant reductions in weight and increases in power-conversion efficiency in many applications in which input/output voltage ratios are relatively small and isolation is not required, as solar-array regulation or battery charging with DC-bus regulation. Usually, a DC voltage regulator is designed to include a DC-to-DC converter to reduce its power loss, size, and weight. Advances in components, increases in operating frequencies, and improved circuit topologies have led to continual increases in efficiency and/or decreases in the sizes and weights of DC voltage regulators. The primary source of inefficiency in the DC-to-DC converter portion of a voltage regulator is the conduction loss and, especially at high frequencies, the switching loss. Although improved components and topology can reduce the switching loss, the reduction is limited by the fact that the converter generally switches all the power being regulated. Like the SCBR concept, the SCBBR concept involves a circuit configuration in which only a fraction of the power is switched, so that the switching loss is reduced by an amount that is largely independent of the specific components and circuit topology used. In an SCBBR, the amount of power switched by the DC-to-DC converter is only the amount needed to make up the difference between the input and output bus voltage. The remaining majority of the power passes through the converter without being switched. The weight and power loss of a DC-to-DC converter are determined primarily by the amount of power

  5. Study of a control strategy for grid side converter in doubly- fed wind power system

    NASA Astrophysics Data System (ADS)

    Zhu, D. J.; Tan, Z. L.; Yuan, F.; Wang, Q. Y.; Ding, M.

    2016-08-01

    The grid side converter is an important part of the excitation system of doubly-fed asynchronous generator used in wind power system. As a three-phase voltage source PWM converter, it can not only transfer slip power in the form of active power, but also adjust the reactive power of the grid. This paper proposed a control approach for improving its performance. In this control approach, the dc voltage is regulated by a sliding mode variable structure control scheme and current by a variable structure controller based on the input output linearization. The theoretical bases of the sliding mode variable structure control were introduced, and the stability proof was presented. Switching function of the system has been deduced, sliding mode voltage controller model has been established, and the output of the outer voltage loop is the instruction of the inner current loop. Affine nonlinear model of two input two output equations on d-q axis for current has been established its meeting conditions of exact linearization were proved. In order to improve the anti-jamming capability of the system, a variable structure control was added in the current controller, the control law was deduced. The dual-loop control with sliding mode control in outer voltage loop and linearization variable structure control in inner current loop was proposed. Simulation results demonstrate the effectiveness of the proposed control strategy even during the dc reference voltage and system load variation.

  6. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, D.A.; Moss, W.C.; Valk, T.C.; Conder, A.D.

    1995-11-21

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch. 13 figs.

  7. Megavolt, Multigigawatt Pulsed Plasma Switch

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Choi, Sang H.; Song, Kyo D.

    1996-01-01

    Plasma switch proposed for use in high-voltage, high-current pulse power system. Designed not only to out-perform conventional spark-gap switch but also relatively compact and lightweight. Features inverse-pinch configuration to prevent constriction of current sheets into filaments, plus multiple-ring-electrode structure to resist high-voltage breakdown.

  8. Electron tunnelling through single azurin molecules can be on/off switched by voltage pulses

    NASA Astrophysics Data System (ADS)

    Baldacchini, Chiara; Kumar, Vivek; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2015-05-01

    Redox metalloproteins are emerging as promising candidates for future bio-optoelectronic and nano-biomemory devices, and the control of their electron transfer properties through external signals is still a crucial task. Here, we show that a reversible on/off switching of the electron current tunnelling through a single protein can be achieved in azurin protein molecules adsorbed on gold surfaces, by applying appropriate voltage pulses through a scanning tunnelling microscope tip. The observed changes in the hybrid system tunnelling properties are discussed in terms of long-sustained charging of the protein milieu.

  9. Zero field reversal probability in thermally assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  10. Ultrafast Power Processor for Smart Grid Power Module Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAITRA, ARINDAM; LITWIN, RAY; lai, Jason

    This project’s goal was to increase the switching speed and decrease the losses of the power semiconductor devices and power switch modules necessary to enable Smart Grid energy flow and control equipment such as the Ultra-Fast Power Processor. The primary focus of this project involves exploiting the new silicon-based Super-GTO (SGTO) technology and build on prototype modules already being developed. The prototype super gate-turn-off thyristor (SGTO) has been tested fully under continuously conducting and double-pulse hard-switching conditions for conduction and switching characteristics evaluation. The conduction voltage drop measurement results indicate that SGTO has excellent conduction characteristics despite inconsistency among somemore » prototype devices. Tests were conducted with two conditions: (1) fixed gate voltage and varying anode current condition, and (2) fixed anode current and varying gate voltage condition. The conduction voltage drop is relatively a constant under different gate voltage condition. In terms of voltage drop as a function of the load current, there is a fixed voltage drop about 0.5V under zero current condition, and then the voltage drop is linearly increased with the current. For a 5-kV voltage blocking device that may operate under 2.5-kV condition, the projected voltage drop is less than 2.5 V under 50-A condition, or 0.1%. If the device is adopted in a converter operating under soft-switching condition, then the converter can achieve an ultrahigh efficiency, typically above 99%. The two-pulse switching test results indicate that SGTO switching speed is very fast. The switching loss is relatively low as compared to that of the insulated-gate-bipolar-transistors (IGBTs). A special phenomenon needs to be noted is such a fast switching speed for the high-voltage switching tends to create an unexpected Cdv/dt current, which reduces the turn-on loss because the dv/dt is negative and increases the turn-off loss because the dv

  11. A 1 MW, 100 kV, less than 100 kg space based dc-dc power converter

    NASA Technical Reports Server (NTRS)

    Cooper, J. R.; White, C. W.

    1991-01-01

    A 1 MW dc-dc power converter has been designed which has an input voltage of 5 kV +/-3 percent, an output voltage of 100 kV +/- 0.25 percent, and a run time of 1000 s at full power. The estimated system mass is 83.8 kg, giving a power density of 11.9 kW/kg. The system exceeded the weight goal of 10 kW/kg through the use of innovative components and system concepts. The system volume is approximately 0.1 cu m, and the overall system efficiency is estimated to be 87 percent. Some of the unique system features include a 50-kHz H-bridge inverter using MOS-controlled thyristors as the switching devices, a resonance transformer to step up the voltage, open-cycle cryogenic hydrogen gas cooling, and a nonrigid, inflatable housing which provides on-demand pressurization of the power converter local environment. This system scales very well to higher output powers. The weight of the 10-MW system with the same input and output voltage requirements and overall system configuration is estimated to be 575.3 kg. This gives a power density of 17.4 kW/kg, significantly higher than the 11.9 kW/kg estimated at 1 MW.

  12. A 1 MW, 100 kV, less than 100 kg space based dc-dc power converter

    NASA Astrophysics Data System (ADS)

    Cooper, J. R.; White, C. W.

    A 1 MW dc-dc power converter has been designed which has an input voltage of 5 kV +/-3 percent, an output voltage of 100 kV +/- 0.25 percent, and a run time of 1000 s at full power. The estimated system mass is 83.8 kg, giving a power density of 11.9 kW/kg. The system exceeded the weight goal of 10 kW/kg through the use of innovative components and system concepts. The system volume is approximately 0.1 cu m, and the overall system efficiency is estimated to be 87 percent. Some of the unique system features include a 50-kHz H-bridge inverter using MOS-controlled thyristors as the switching devices, a resonance transformer to step up the voltage, open-cycle cryogenic hydrogen gas cooling, and a nonrigid, inflatable housing which provides on-demand pressurization of the power converter local environment. This system scales very well to higher output powers. The weight of the 10-MW system with the same input and output voltage requirements and overall system configuration is estimated to be 575.3 kg. This gives a power density of 17.4 kW/kg, significantly higher than the 11.9 kW/kg estimated at 1 MW.

  13. Negative voltage modulated multi-level resistive switching by using a Cr/BaTiOx/TiN structure and quantum conductance through evidence of H2O2 sensing mechanism.

    PubMed

    Chakrabarti, Somsubhra; Ginnaram, Sreekanth; Jana, Surajit; Wu, Zong-Yi; Singh, Kanishk; Roy, Anisha; Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Yang, Jer-Ren

    2017-07-05

    Negative voltage modulated multi-level resistive switching with quantum conductance during staircase-type RESET and its transport characteristics in Cr/BaTiO x /TiN structure have been investigated for the first time. The as-deposited amorphous BaTiO x film has been confirmed by high-resolution transmission electron microscopy. X-ray photo-electron spectroscopy shows different oxidation states of Ba in the switching material, which is responsible for tunable more than 10 resistance states by varying negative stop voltage owing to slow decay value of RESET slope (217.39 mV/decade). Quantum conductance phenomenon has been observed in staircase RESET cycle of the memory devices. By inspecting the oxidation states of Ba + and Ba 2+ through measuring H 2 O 2 with a low concentration of 1 nM in electrolyte/BaTiO x /SiO 2 /p-Si structure, the switching mechanism of each HRS level as well as the multi-level phenomenon has been explained by gradual dissolution of oxygen vacancy filament. Along with negative stop voltage modulated multi-level, current compliance dependent multi-level has also been demonstrated and resistance ratio up to 2000 has been achieved even for a thin (<5 nm) switching material. By considering oxidation-reduction of the conducting filaments, the current-voltage switching curve has been simulated as well. Hence, multi-level resistive switching of Cr/BaTiO x /TiN structure implies the promising applications in high dense, multistate non-volatile memories in near future.

  14. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  15. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  16. Parametric study of minimum reactor mass in energy-storage dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1981-01-01

    Closed-form analytical solutions for the design equations of a minimum-mass reactor for a two-winding voltage-or-current step-up converter are derived. A quantitative relationship between the three parameters - minimum total reactor mass, maximum output power, and switching frequency - is extracted from these analytical solutions. The validity of the closed-form solution is verified by a numerical minimization procedure. A computer-aided design procedure using commercially available toroidal cores and magnet wires is also used to examine how the results from practical designs follow the predictions of the analytical solutions.

  17. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  18. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  19. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  20. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.

    1999-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  1. Electromechanical systems with transient high power response operating from a resonant ac link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.

  2. Zero-bias microwave detectors based on array of nanorectifiers coupled with a dipole antenna

    NASA Astrophysics Data System (ADS)

    Kasjoo, Shahrir R.; Singh, Arun K.; Mat Isa, Siti S.; Ramli, Muhammad M.; Mohamad Isa, Muammar; Ahmad, Norhawati; Mohd Nor, Nurul I.; Khalid, Nazuhusna; Song, Ai Min

    2016-04-01

    We report on zero-bias microwave detection using a large array of unipolar nanodevices, known as the self-switching diodes (SSDs). The large array was realized in a single lithography step without the need of interconnection layers, hence allowing for a simple and low-cost fabrication process. The SSD array was coupled with a narrowband dipole antenna with a resonant frequency of 890 MHz, to form a simple rectenna (rectifying antenna). The extrinsic voltage responsivity and noise-equivalent-power (NEP) of the rectenna were ∼70 V/W and ∼0.18 nW/Hz1/2, respectively, measured in the far-field region at unbiased condition. Nevertheless, the estimated intrinsic voltage responsivity can achieve up to ∼5 kV/W with NEP of ∼2.6 pW/Hz1/2.

  3. All-optical 4-bit binary to binary coded decimal converter with the help of semiconductor optical amplifier-assisted Sagnac switch

    NASA Astrophysics Data System (ADS)

    Bhattachryya, Arunava; Kumar Gayen, Dilip; Chattopadhyay, Tanay

    2013-04-01

    All-optical 4-bit binary to binary coded decimal (BCD) converter has been proposed and described, with the help of semiconductor optical amplifier (SOA)-assisted Sagnac interferometric switches in this manuscript. The paper describes all-optical conversion scheme using a set of all-optical switches. BCD is common in computer systems that display numeric values, especially in those consisting solely of digital logic with no microprocessor. In many personal computers, the basic input/output system (BIOS) keep the date and time in BCD format. The operations of the circuit are studied theoretically and analyzed through numerical simulations. The model accounts for the SOA small signal gain, line-width enhancement factor and carrier lifetime, the switching pulse energy and width, and the Sagnac loop asymmetry. By undertaking a detailed numerical simulation the influence of these key parameters on the metrics that determine the quality of switching is thoroughly investigated.

  4. Improved multi-level capability in Si3N4-based resistive switching memory using continuous gradual reset switching

    NASA Astrophysics Data System (ADS)

    Kim, Sungjun; Park, Byung-Gook

    2017-01-01

    In this letter, we compare three different types of reset switching behavior in a bipolar resistive random-access memory (RRAM) system that is housed in a Ni/Si3N4/Si structure. The abrupt, step-like gradual and continuous gradual reset transitions are largely determined by the low-resistance state (LRS). For abrupt reset switching, the large conducting path shows ohmic behavior or has a weak nonlinear current-voltage (I-V) characteristics in the LRS. For gradual switching, including both the step-like and continuous reset types, trap-assisted direct tunneling is dominant in the low-voltage regime, while trap-assisted Fowler-Nordheim tunneling is dominant in the high-voltage regime, thus causing nonlinear I-V characteristics. More importantly, we evaluate the multi-level capabilities of the two different gradual switching types, including both step-like and continuous reset behavior, using identical and incremental voltage conditions. Finer control of the conductance level with good uniformity is achieved in continuous gradual reset switching when compared to that in step-like gradual reset switching. For continuous reset switching, a single conducting path, which initially has a tunneling gap, gradually responds to pulses with even and identical amplitudes, while for step-like reset switching, the multiple conducting paths only respond to incremental pulses to obtain effective multi-level states.

  5. Analysis of a modular generator for high-voltage, high-frequency pulsed applications, using low voltage semiconductors (< 1 kV) and series connected step-up (1:10) transformers.

    PubMed

    Redondo, L M; Fernando Silva, J; Margato, E

    2007-03-01

    This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.

  6. A Smart Load Interface and Voltage Regulator for Electrostatic Vibration Energy Harvester

    NASA Astrophysics Data System (ADS)

    Bedier, Mohammed; Basset, Philippe; Galayko, Dimitri

    2016-11-01

    This paper presents a new implementation in ams 0.35μm HV technology of a complete energy management system for an electrostatic vibrational energy harvester (e-VEH). It is based on the Bennet's doubler architecture and includes a load voltage regulator (LVR) and a smart Load Interface (LI) that are self-controlled with internal voltages for maximum power point tracking (MMPT). The CMOS implementation makes use of an energy harvester that is capable of producing up to 1.8μW at harmonic excitation, given its internal voltage is kept within its optimum. An intermediate LI stage and its controller makes use of a high side switch with zero static power level shifter, and a low power hysteresis comparator. A full circuit level simulation with a VHDL-AMS model of the e-VEH presented was successfully achieved, indicating that the proposed load interface controller consumes less than 100nW average power. Moreover, a LVR regulates the buffer and discharge the harvested energy into a generic resistive load maintaining the voltage within a nominal value of 2 Volts.

  7. Computer controlled performance mapping of thermionic converters: effect of collector, guard-ring potential imbalances on the observed collector current-density, voltage characteristics and limited range performance map of an etched-rhenium, niobium planar converter

    NASA Technical Reports Server (NTRS)

    Manista, E. J.

    1972-01-01

    The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.

  8. Tunable magnetization of infrared epsilon-near-zero media via field-effect modulation

    NASA Astrophysics Data System (ADS)

    Salary, Mohammad Mahdi; Mosallaei, Hossein

    2018-04-01

    In this letter, we demonstrate that field effect modulation enables electrical tuning of the effective permeability of epsilon-near-zero (ENZ) media at infrared frequencies. In particular, hexagonal silicon carbide (6H-SiC) is incorporated as an epsilon-near-zero host in a gated 6H-SiC/SiO2/Si heterostructure. The change in the applied voltage leads to a change in the carrier concentration of the accumulation layer formed at the interface of 6H-SiC and SiO2 which can alter the effective permeability of the heterostructure by virtue of the photonic doping effect. We will rigorously model and analyze the structure by linking charge transport and electromagnetic models. The presented mechanism allows for tuning the impedance and magnetization of ENZ materials in real-time while capturing extreme cases of epsilon-and-mu-near-zero and magnetic conductor. As such, it can be used for various applications such as real-time engineering of thermal emission, dynamic switching, reconfigurable tunneling, and holography.

  9. Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng

    2017-07-01

    Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.

  10. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    This paper presents a computational study of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magnetomechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.25; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping.

  11. Design of DC-contact RF MEMS switch with temperature stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junfeng; Nanjing Electronic Devices Institute, Nanjing, 210016; Li, Zhiqun, E-mail: zhiqunli@seu.edu.cn

    In order to improve the temperature stability of DC-contact RF MEMS switch, a thermal buckle-beam structure is implemented. The stability of the switch pull-in voltage versus temperature is not only improved, but also the impact of stress and stress gradient on the drive voltage is suppressed. Test results show that the switch pull-in voltage is less sensitive to temperature between -20 °C and 100 °C. The variable rate of pull-in voltage to temperature is about -120 mV/°C. The RF performance of the switch is stable, and the isolation is almost independent of temperature. After being annealed at 280 °C formore » 12 hours, our switch samples, which are suitable for packaging, have less than 1.5% change in the rate of pull-in voltage.« less

  12. Flexible, ferroelectric nanoparticle doped polymer dispersed liquid crystal devices for lower switching voltage and nanoenergy generation

    NASA Astrophysics Data System (ADS)

    Nimmy John, V.; Varanakkottu, Subramanyan Namboodiri; Varghese, Soney

    2018-06-01

    Flexible polymer dispersed liquid crystal (F-PDLC) devices were fabricated using transparent conducting ITO/PET film. Polymerization induced phase separation (PIPS) method was used for pure and ferroelectric BaTiO3 (BTO) and ZnO doped PDLC devices. The distribution of nanoparticles in the PDLC and the formation of micro cavities were studied using field emission scanning electron microscopy (FESEM). It was observed that the addition of ferroelectric BTO nanoparticles has reduced the threshold voltage (Vth) and saturation voltage (Vsat) of FNP-PDLC by 85% and 41% respectively due to the spontaneous polarization of ferroelectric nanoparticles. The ferroelectric properties of BTO and ZnO in the fabricated devices were investigated using dynamic contact electrostatic force microscopy (DC EFM). Flexing the device can generate a potential due to the piezo-tribo electric effect of the ferroelectric nanomaterial doped in the PDLC matrix, which could be utilized as an energy generating system. The switching voltage after multiple flexing was also studied and found to be in par with non-flexing situations.

  13. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  14. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  15. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  16. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  17. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  18. Piezo Voltage Controlled Planar Hall Effect Devices

    PubMed Central

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  19. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  20. Delta connected resonant snubber circuit

    DOEpatents

    Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.

    1998-01-20

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.

  1. Delta connected resonant snubber circuit

    DOEpatents

    Lai, Jih-Sheng; Peng, Fang Zheng; Young, Sr., Robert W.; Ott, Jr., George W.

    1998-01-01

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  2. AC to DC Bridgeless Boost Converter for Ultra Low Input Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Dawam, A. H. A.; Muhamad, M.

    2018-03-01

    This paper presents design of circuit which converts low input AC voltage to a higher output DC voltage. A buck-boost topology and boost topology are combined to condition cycle of an AC input voltage. the unique integration of a combining circuit of buck-boost and boost circuit have been proposed in order to introduce a new direct ac-dc power converter topology without conventional diode bridge rectifier. The converter achieved to convert a milli-volt scale of input AC voltage into a volt scale of output DC voltages which is from 400mV to 3.3V.

  3. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, G.K.; Renak, T.W.

    1999-04-06

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.

  4. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels.

    PubMed

    Schewe, Marcus; Nematian-Ardestani, Ehsan; Sun, Han; Musinszki, Marianne; Cordeiro, Sönke; Bucci, Giovanna; de Groot, Bert L; Tucker, Stephen J; Rapedius, Markus; Baukrowitz, Thomas

    2016-02-25

    Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Interleaved power converter

    DOEpatents

    Zhu, Lizhi

    2007-11-13

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  6. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  7. Electroforming and Switching in Oxides of Transition Metals: The Role of Metal Insulator Transition in the Switching Mechanism

    NASA Astrophysics Data System (ADS)

    Chudnovskii, F. A.; Odynets, L. L.; Pergament, A. L.; Stefanovich, G. B.

    1996-02-01

    Electroforming and switching effects in sandwich structures based on anodic films of transition metal oxides (V, Nb, Ti, Fe, Ta, W, Zr, Hf, Mo) have been studied. After being electroformed, some materials exhibited current-controlled negative resistance with S-shapedV-Icharacteristics. For V, Fe, Ti, and Nb oxides, the temperature dependences of the threshold voltage have been measured. As the temperature increased,Vthdecreased to zero at a critical temperatureT0, which depended on the film material. Comparison of theT0values with the temperatures of metal-insulator phase transition for some compounds (Tt= 120 K for Fe3O4, 340 K for VO2, ∼500 K for Ti2O3, and 1070 K for NbO2) showed that switching was related to the transition in the applied electric field. Channels consisting of the above-mentioned lower oxides were formed in the initial anodic films during the electroforming. The possibility of formation of these oxides with a metal-insulator transition was confirmed by thermodynamic calculations.

  8. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  9. Microbial fuel cells as power supply of a low-power temperature sensor

    NASA Astrophysics Data System (ADS)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  10. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  11. High-Voltage MOSFET Switching Circuit

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A.

    1995-01-01

    Circuit reliably switches power at supply potential of minus 1,500 V, with controlled frequency and duty cycle. Used in argon-plasma ion-bombardment equipment for texturing copper electrodes, as described in "Texturing Copper To Reduce Secondary Emission of Electrons" (LEW-15898), also adapted to use in powering gaseous flash lamps and stroboscopes.

  12. Apparatus for Controlling Low Power Voltages in Space Based Processing Systems

    NASA Technical Reports Server (NTRS)

    Petrick, David J. (Inventor)

    2017-01-01

    A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.

  13. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    PubMed

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  14. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

    PubMed Central

    Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  15. Interface Engineering with MoS2 -Pd Nanoparticles Hybrid Structure for a Low Voltage Resistive Switching Memory.

    PubMed

    Wang, Xue-Feng; Tian, He; Zhao, Hai-Ming; Zhang, Tian-Yu; Mao, Wei-Quan; Qiao, Yan-Cong; Pang, Yu; Li, Yu-Xing; Yang, Yi; Ren, Tian-Ling

    2018-01-01

    Metal oxide-based resistive random access memory (RRAM) has attracted a lot of attention for its scalability, temperature robustness, and potential to achieve machine learning. However, a thick oxide layer results in relatively high program voltage while a thin one causes large leakage current and a small window. Owing to these fundamental limitations, by optimizing the oxide layer itself a novel interface engineering idea is proposed to reduce the programming voltage, increase the uniformity and on/off ratio. According to this idea, a molybdenum disulfide (MoS 2 )-palladium nanoparticles hybrid structure is used to engineer the oxide/electrode interface of hafnium oxide (HfO x )-based RRAM. Through its interface engineering, the set voltage can be greatly lowered (from -3.5 to -0.8 V) with better uniformity under a relatively thick HfO x layer (≈15 nm), and a 30 times improvement of the memory window can be obtained. Moreover, due to the atomic thickness of MoS 2 film and high transmittance of ITO, the proposed RRAM exhibits high transparency in visible light. As the proposed interface-engineering RRAM exhibits good transparency, low SET voltage, and a large resistive switching window, it has huge potential in data storage in transparent circuits and wearable electronics with relatively low supply voltage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measuring Multi-Megavolt Diode Voltages

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.; Swanekamp, S. B.; Weber, B. V.; Commisso, R. J.; Hinshelwood, D. D.; Stephanakis, S. J.

    2002-12-01

    The voltage in high-power diodes can be determined by measuring the Compton electrons generated by the diode's bremsstrahlung radiation. This technique is implemented with a Compton-Hall (C-H) voltmeter that collimates the bremsstrahlung onto a Compton target and bends the emitted Compton electron orbits off to the side with an applied magnetic field off to Si pin diode detectors. Voltage is determined from the ratio of the Compton electron dose to the forward x-ray dose. The instrument's calibration and response are determined from coupled electron/photon transport calculations. The applicable voltage range is tuned by adjusting the position of the electron detector relative to the Compton target or by varying the magnetic field strength. The instrument was used to obtain time-dependent voltage measurements for a pinched-beam diode whose voltage is enhanced by an upstream opening switch. In this case, plasmas and vacuum electron flow from the opening switch make it difficult to determine the voltage accurately from electrical measurements. The C-H voltmeter gives voltages that are significantly higher than those obtained from electrical measurements but are consistent with measurements of peak voltage based on nuclear activation of boron-nitride targets.

  17. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  18. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  19. Wide Bandgap Extrinsic Photoconductive Switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, James S.

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the widemore » bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.« less

  20. SEM analysis of ionizing radiation effects in an analog to digital converter /AD571/

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Perret, J.; Evans, K. C.

    1981-01-01

    The considered investigation is concerned with the study of the total-dose degradation mechanisms in an IIL analog to digital (A/D) converter. The A/D converter is a 10 digit device having nine separate functional units on the chip which encompass several hundred transistors and circuit elements. It was the objective of the described research to find the radiation sensitive elements by a systematic search of the devices on the LSI chip. The employed technique using a scanning electron microscope to determine the functional blocks of an integrated circuit which are sensitive to ionizing radiation and then progressively zeroing in on the soft components within those blocks, proved extremely successful on the AD571. Four functional blocks were found to be sensitive to radiation, including the Voltage Reference, DAC, IIL Clock, and IIL SAR.

  1. High-Yield, Zero-Leakage Expression System with a Translational Switch Using Site-Specific Unnatural Amino Acid Incorporation

    PubMed Central

    Minaba, Masaomi

    2014-01-01

    Synthetic biologists construct complex biological circuits by combinations of various genetic parts. Many genetic parts that are orthogonal to one another and are independent of existing cellular processes would be ideal for use in synthetic biology. However, our toolbox is still limited with respect to the bacterium Escherichia coli, which is important for both research and industrial use. The site-specific incorporation of unnatural amino acids is a technique that incorporates unnatural amino acids into proteins using a modified exogenous aminoacyl-tRNA synthetase/tRNA pair that is orthogonal to any native pairs in a host and is independent from other cellular functions. Focusing on the orthogonality and independency that are suitable for the genetic parts, we designed novel AND gate and translational switches using the unnatural amino acid 3-iodo-l-tyrosine incorporation system in E. coli. A translational switch was turned on after addition of 3-iodo-l-tyrosine in the culture medium within minutes and allowed tuning of switchability and translational efficiency. As an application, we also constructed a gene expression system that produced large amounts of proteins under induction conditions and exhibited zero-leakage expression under repression conditions. Similar translational switches are expected to be applicable also for eukaryotes such as yeasts, nematodes, insects, mammalian cells, and plants. PMID:24375139

  2. Optically-switched submillimeter-wave oscillator and radiator having a switch-to-switch propagation delay

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G. (Inventor); Maserjian, Joseph (Inventor)

    1995-01-01

    A submillimeter wave-generating integrated circuit includes an array of N photoconductive switches biased across a common voltage source and an optical path difference from a common optical pulse of repetition rate f sub 0 providing a different optical delay to each of the switches. In one embodiment, each incoming pulse is applied to successive ones of the N switches with successive delays. The N switches are spaced apart with a suitable switch-to-switch spacing so as to generate at the output load or antenna radiation of a submillimeter wave frequency f on the order of N f sub 0. Preferably, the optical pulse has a repetition rate of at least 10 GHz and N is of the order of 100, so that the circuit generates radiation of frequency of the order of or greater than 1 Terahertz.

  3. A study of Schwarz converters for nuclear powered spacecraft

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; Schwarze, Gene E.

    1987-01-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation; parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  4. Tests of a low-pressure switch protected by a saturating inductor

    NASA Astrophysics Data System (ADS)

    Lauer, E. J.; Birx, D. L.

    Low pressure switches and magnetic switches were tested as possible replacements for the high pressure switches currently used on Experimental Test Accelerator and Advanced Test Accelerator. When the low pressure switch is used with a low impedance transmission line, runaway electrons form a pinched electron beam which damages the anode. The use of the low pressure switch as the first switch in the pulsed power chain was tested; i.e., the switch would be used to connect a charged capacitor across the primary winding of a step up transformer. An inductor with a saturating core is connected in series so that, initially, there is a large inductive voltage drop. As a result, there is small voltage across the switch. By the time the inductor core saturates, the switch has developed sufficient ionization so that the switch voltage remains small, even with peak current, and an electron beam is not produced.

  5. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function

    PubMed Central

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-01-01

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm. PMID:25928061

  6. Switching dynamics of TaOx-based threshold switching devices

    NASA Astrophysics Data System (ADS)

    Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek

    2018-03-01

    Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.

  7. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  8. Sliding-mode control of single input multiple output DC-DC converter.

    PubMed

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  9. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  10. Low Temperature Performance of High Power Density DC/DC Converter Modules

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  11. Switching synchronization in one-dimensional memristive networks

    NASA Astrophysics Data System (ADS)

    Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.

    2015-11-01

    We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aeloiza, Eddy C.; Burgos, Rolando P.

    A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured tomore » pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.« less

  13. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  14. Single Event Burnout in DC-DC Converters for the LHC Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudio H. Rivetta et al.

    High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.

  15. Improved Electro-Optical Switches

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N.; Cooper, Ronald F.

    1994-01-01

    Improved single-pole, double-throw electro-optical switches operate in switching times less than microsecond developed for applications as optical communication systems and networks of optical sensors. Contain no moving parts. In comparison with some prior electro-optical switches, these are simpler and operate with smaller optical losses. Beam of light switched from one output path to other by applying, to electro-optical crystal, voltage causing polarization of beam of light to change from vertical to horizontal.

  16. Manually operated coded switch

    DOEpatents

    Barnette, Jon H.

    1978-01-01

    The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

  17. Modeling, Dynamics, Bifurcation Behavior and Stability Analysis of a DC-DC Boost Converter in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.

    A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.

  18. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  19. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  20. Low voltage arc formation in railguns

    DOEpatents

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.