Sample records for zervamicin paramagnetic relaxation

  1. Water diffusion-exchange effect on the paramagnetic relaxation enhancement in off-resonance rotating frame

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang; Ji, Tongyu

    2007-06-01

    The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1

  2. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

  3. Diffusional mechanisms augment the fluorine magnetic resonance relaxation in paramagnetic perfluorocarbon nanoparticles that provides a “relaxation switch” for detecting cellular endosomal activation

    PubMed Central

    Hu, Lingzhi; Zhang, Lei; Chen, Junjie; Lanza, Gregory M.; Wickline, Samuel A.

    2011-01-01

    Purpose To develop a physical model for the 19F relaxation enhancement in paramagnetic perfluorocarbon nanoparticles (PFC NP) and demonstrate its application in monitoring cellular endosomal functionality through a “19F relaxation switch” phenomenon. Materials and Methods An explicit expression for 19F longitudinal relaxation enhancement was derived analytically. Monte-Carlo simulation was performed to confirm the gadolinium induced magnetic field inhomogenity inside the PFC NP. Field dependent T1 measurements for three types of paramagnetic PFC NPs were carried out to validate the theoretical prediction. Based on the physical model, 19F and 1H relaxation properties of macrophage internalized paramagnetic PFC NPs were measured to evaluate the intracellular process of NPs by macrophages in vitro. Results The theoretical description was confirmed experimentally by field-dependent T1 measurements. The shortening of 19F T1 was found to be attributed to the Brownian motion of PFC molecules inside the NP in conjunction with their ability to permeate into the lipid surfactant coating. A dramatic change of 19F T1 was observed upon endocytosis, revealing the transition from intact bound PFC NP to processed constituents. Conclusion The proposed first-principle analysis of 19F spins in paramagnetic PFC NP relates their structural parameters to the special MR relaxation features. The demonstrated “19F relaxation switch” phenomenon is potentially useful for monitoring cellular endosomal functionality. PMID:21761488

  4. THE INTERACTION OF PARAMAGNETIC RELAXATION REAGENTS WITH INTRA- AND INTERMOLECULAR HYDROGEN BONDED PHENOLS

    EPA Science Inventory

    Intermolecular electron-nuclear 13-C relaxation times (T(1)sup e's) from solutions containing the paramagnetic relaxation reagent (PARR), Cr(acac)3, used in conjunction with 13-C T(1)'s in diamagnetic solutions (intramolecular 13-C - (1)H dipolar T(1)'s) provide a significant inc...

  5. Nitroxide paramagnet-induced para-ortho conversion and nuclear spin relaxation of H2 in organic solvents.

    PubMed

    Sartori, Elena; Ruzzi, Marco; Lawler, Ronald G; Turro, Nicholas J

    2008-09-24

    The kinetics of para-ortho conversion and nuclear spin relaxation of H 2 in chloroform- d 1 were investigated in the presence of nitroxides as paramagnetic catalysts. The back conversion from para-hydrogen ( p-H 2) to ortho-hydrogen ( o-H 2) was followed by NMR by recording the increase in the intensity of the signal of o-H 2 at regular intervals of time. The nitroxides proved to be hundreds of times more effective at inducing relaxation among the spin levels of o-H 2 than they are in bringing about transitions between p-H 2 and the levels of o-H 2. The value of the encounter distance d between H 2 and the paramagnetic molecule, calculated from the experimental bimolecular conversion rate constant k 0, using the Wigner theory of para-ortho conversion, agrees perfectly with that calculated from the experimental relaxivity R 1 using the force free diffusion theory of spin-lattice relaxation.

  6. Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li3N

    NASA Astrophysics Data System (ADS)

    Fix, M.; Jesche, A.; Jantz, S. G.; Bräuninger, S. A.; Klauss, H.-H.; Manna, R. S.; Pietsch, I. M.; Höppe, H. A.; Canfield, P. C.

    2018-02-01

    We report on isothermal magnetization, Mössbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrystalline Li2(Li1 -xFex) N with x =0 and x ≈0.30 . Magnetic hysteresis emerges at temperatures below T ≈50 K with coercivity fields of up to μ0H =11.6 T at T =2 K and magnetic anisotropy energies of 310 K (27 meV). The ac susceptibility is strongly frequency-dependent (f =10 -10 000 Hz) and reveals an effective energy barrier for spin reversal of Δ E ≈1100 K (90 meV). The relaxation times follow Arrhenius behavior for T >25 K . For T <10 K , however, the relaxation times of τ ≈1010 s are only weakly temperature-dependent, indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 J molFe-1 K-1, which significantly exceeds R ln 2 , the value expected for the entropy of a ground-state doublet. Thermal expansion and magnetostriction indicate a weak magnetoelastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2(Li1 -xFex) N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.

  7. Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li 3 N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, M.; Jesche, A.; Jantz, S. G.

    We report on isothermal magnetization, Mössbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrystalline Li 2 ( Li 1-xFe x) N with x = 0 and x ≈ 0.30 . Magnetic hysteresis emerges at temperatures below T ≈ 50 K with coercivity fields of up to μ 0H = 11.6 T at T = 2 K and magnetic anisotropy energies of 310 K (27 meV). The ac susceptibility is strongly frequency-dependent (f = 10 – 10 000 Hz) and reveals an effective energy barrier for spin reversal ofmore » Δ E ≈ 1100 K (90 meV). The relaxation times follow Arrhenius behavior for T > 25 K . For T < 10 K , however, the relaxation times of τ ≈ 10 10s are only weakly temperature-dependent, indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 J mol -1 Fe K -1, which significantly exceeds R ln 2 , the value expected for the entropy of a ground-state doublet. Thermal expansion and magnetostriction indicate a weak magnetoelastic coupling in accordance with slow relaxation of the magnetization. The classification of Li 2 ( Li 1-xFe x) N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.« less

  8. Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li 3 N

    DOE PAGES

    Fix, M.; Jesche, A.; Jantz, S. G.; ...

    2018-02-23

    We report on isothermal magnetization, Mössbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrystalline Li 2 ( Li 1-xFe x) N with x = 0 and x ≈ 0.30 . Magnetic hysteresis emerges at temperatures below T ≈ 50 K with coercivity fields of up to μ 0H = 11.6 T at T = 2 K and magnetic anisotropy energies of 310 K (27 meV). The ac susceptibility is strongly frequency-dependent (f = 10 – 10 000 Hz) and reveals an effective energy barrier for spin reversal ofmore » Δ E ≈ 1100 K (90 meV). The relaxation times follow Arrhenius behavior for T > 25 K . For T < 10 K , however, the relaxation times of τ ≈ 10 10s are only weakly temperature-dependent, indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 J mol -1 Fe K -1, which significantly exceeds R ln 2 , the value expected for the entropy of a ground-state doublet. Thermal expansion and magnetostriction indicate a weak magnetoelastic coupling in accordance with slow relaxation of the magnetization. The classification of Li 2 ( Li 1-xFe x) N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.« less

  9. Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Gang Ho; Chang, Yongmin

    2015-07-01

    In this mini review, magnetic resonance imaging (MRI) contrast agents based on lanthanideoxide (Ln2O3) nanoparticles are described. Ln2O3 (Ln = Gd, Dy, Ho, and Er) nanoparticles are paramagnetic, but show appreciable magnetic moments at room temperature and even at ultrasmall particle diameters. Among Ln2O3 nanoparticles, Gd2O3 nanoparticles show larger longitudinal water proton relaxivity (r1) values than Gd-chelates because of the large amount of Gd in the nanoparticle, and the other Ln2O3 nanoparticles (Ln = Dy, Ho, and Er) show appreciable transverse water proton relaxivity (r2) values. Therefore, Gd2O3 nanoparticles are potential T1 MRI contrast agents while the other Ln2O3 nanoparticles are potential T2 MRI contrast agents at high MR fields.

  10. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit.

    PubMed

    Ceccon, Alberto; Marius Clore, G; Tugarinov, Vitali

    2016-09-01

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ 2 (app) ) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k ex between the species is fast on the PRE time scale (k ex ≫ Γ2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789-5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd(3+), we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k ex ≫ Γ2) the ratio of the apparent proton to carbon methyl PREs, ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γΗ/γC)(2). However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ2 is comparable in magnitude to k ex) the ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ) ratio provides a reliable measure of the 'true' methyl PREs.

  11. A Paramagnetic Molecular Voltmeter

    PubMed Central

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  12. Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide.

    PubMed

    Oktaviani, Nur Alia; Risør, Michael W; Lee, Young-Ho; Megens, Rik P; de Jong, Djurre H; Otten, Renee; Scheek, Ruud M; Enghild, Jan J; Nielsen, Niels Chr; Ikegami, Takahisa; Mulder, Frans A A

    2015-06-01

    Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T 1 values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in 'proton-less' NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α1-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h.

  13. Dynamics of paramagnetic agents by off-resonance rotating frame technique in the presence of magnetization transfer effect

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2007-02-01

    The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.

  14. Improved paramagnetic chelate for molecular imaging with MRI

    NASA Astrophysics Data System (ADS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  15. Measurement of Rate Constants for Homodimer Subunit Exchange Using Double Electron-Electron Resonance and Paramagnetic Relaxation Enhancements

    PubMed Central

    Yang, Yunhuang; Ramelot, Theresa A.; Ni, Shuisong; McCarrick, Robert M.; Kennedy, Michael A.

    2013-01-01

    Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k−1;, which was 0.037 ± 0.005 min−1 derived from DEER experiments with a corresponding half-life time of 18.7 minutes. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein-protein and protein-DNA complex studies. PMID:23180051

  16. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR.

    PubMed

    Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter

    2012-06-06

    Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Dynamics of paramagnetic agents by off-resonance rotating frame technique

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2006-12-01

    Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields ( B0 > 3 T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude ω1 and pulse duration τ. The choices of ω1 and τ are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle θ and off-resonance pulse duration τ. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R1 ρ/ R1, the ratio of the off-resonance rotating frame relaxation rate constant R1 ρ verse the laboratory frame relaxation rate constant R1, three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time τR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.

  18. Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Andreas, Loren B.; Smith, Albert A.; Ni, Qing Zhe; Griffin, Robert G.

    2014-03-01

    The effects of nuclear signal quenching induced by the presence of a paramagnetic polarizing agent are documented for conditions used in magic angle spinning (MAS)-dynamic nuclear polarization (DNP) experiments on homogeneous solutions. In particular, we present a detailed analysis of three time constants: (1) the longitudinal build-up time constant TB for 1H; (2) the rotating frame relaxation time constant T1ρ for 1H and 13C and (3) T2 of 13C, the transverse relaxation time constant in the laboratory frame. These relaxation times were measured during microwave irradiation at a magnetic field of 5 T (140 GHz) as a function of the concentration of four polarizing agents: TOTAPOL, 4-amino-TEMPO, trityl (OX063), and Gd-DOTA and are compared to those obtained for a sample lacking paramagnetic doping. We also report the EPR relaxation time constants T1S and T2S, the DNP enhancements, ε, and the parameter E, defined below, which measures the sensitivity enhancement for the four polarizing agents as a function of the electron concentration. We observe substantial intensity losses (paramagnetic quenching) with all of the polarizing agents due to broadening mechanisms and cross relaxation during MAS. In particular, the monoradical trityl and biradical TOTAPOL induce ∼40% and 50% loss of signal intensity. In contrast there is little suppression of signal intensity in static samples containing these paramagnetic species. Despite the losses due to quenching, we find that all of the polarizing agents provide substantial gains in signal intensity with DNP, and in particular that the net enhancement is optimal for biradicals that operate with the cross effect. We discuss the possibility that much of this polarization loss can be regained with the development of instrumentation and methods to perform electron decoupling.

  19. Characterization of the Interaction between the Salmonella Type III Secretion System Tip Protein SipD and the Needle Protein PrgI by Paramagnetic Relaxation Enhancement*

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Tang, Chun; De Guzman, Roberto N.

    2011-01-01

    Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus. PMID:21138848

  20. Paramagnetic NMR Investigation of Dendrimer-Based Host-Guest Interactions

    PubMed Central

    Wang, Fei; Shao, Naimin; Cheng, Yiyun

    2013-01-01

    In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the 1H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE) was observed between TEMPO-NH2, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and 1H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems. PMID:23762249

  1. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  2. Dual excitation acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  3. Dual excitation acoustic paramagnetic logging tool

    DOEpatents

    Vail, W.B. III.

    1989-02-14

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be performed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described. 6 figs.

  4. Suppression of Raman electron spin relaxation of radicals in crystals. Comparison of Cu2+ and free radical relaxation in triglycine sulfate and Tutton salt single crystals.

    PubMed

    Hoffmann, S K; Goslar, J; Lijewski, S

    2011-08-31

    Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu(2+) ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)(2)Zn(SO4)2 ⋅ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu(2+) ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu(2+) ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)(2)Zn(SO4)2 ⋅ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays.

  5. Spatially resolved nuclear spin relaxation, electron spin relaxation and light absorption in swift heavy ion irradiated LiF crystals.

    PubMed

    Stork, H; Dinse, K-P; Ditter, M; Fujara, F; Masierak, W; Neumann, R; Schuster, B; Schwartz, K; Trautmann, C

    2010-05-12

    Spatially resolved (19)F and (7)Li spin-lattice relaxation rates are measured for LiF single crystals after irradiation with two kinds of swift heavy ions ((12)C of 133 MeV and (208)Pb of 1.78 GeV incident energy). Like in earlier studies on (130)Xe and (238)U irradiated LiF crystals, we found a strong enhancement of the nuclear spin-lattice relaxation rate within the ion penetration depth and a slight--but still significant--enhancement beyond. By evaluating the nuclear relaxation rate enhancement within the ion range after irradiation with different projectiles, a universal relationship between the spin-lattice relaxation rate and the dose is deduced. The results of accompanying X-band electron paramagnetic resonance relaxation measurements and optical absorption spectroscopy are included in a physical interpretation of this relationship. Also the reason for the enhanced relaxation rate beyond the ion range is further discussed.

  6. Utilizing tagged paramagnetic shift reagents to monitor protein dynamics by NMR.

    PubMed

    Ye, Libin; Van Eps, Ned; Li, Xiang; Ernst, Oliver P; Prosser, R Scott

    2017-11-01

    Calmodulin is a ubiquitous calcium sensor protein, known to serve as a critical interaction hub with a wide range of signaling partners. While the holo form of calmodulin (CaM-4Ca 2+ ) has a well-defined ground state structure, it has been shown to undergo exchange, on a millisecond timescale, to a conformation resembling that of the peptide bound state. Tagged paramagnetic relaxation agents have been previously used to identify long-range dipolar interactions through relaxation effects on nuclear spins of interest. In the case of calmodulin, this lead to the determination of the relative orientation of the N- and C-terminal domains and the presence of a weakly populated peptide bound like state. Here, we make use of pseudocontact shifts from a tagged paramagnetic shift reagent which allows us to define minor states both in 13 C and 15 N NMR spectra and through 13 C- and 15 N-edited 1 H-CPMG relaxation dispersion measurements. This is validated by pulsed EPR (DEER) spectroscopy which reveals an ensemble consisting of a compact peptide-bound like conformer, an intermediate peptide-bound like conformer, and a (dumbbell-like) extended ground state conformer of CaM-4Ca 2+ , where addition of the MLCK peptide increases the population of the peptide-bound conformers. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Paramagnetic Ce3 + optical emitters in garnets: Optically detected magnetic resonance study and evidence of Gd-Ce cross-relaxation effects

    NASA Astrophysics Data System (ADS)

    Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, G. R.; Badalyan, A. G.; Romanov, N. G.; Petrosyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.

    2017-06-01

    Paramagnetic Ce3 +optical emitters have been studied by means of optically detected magnetic resonance (ODMR) via Ce3 + spin-dependent emission in cerium-doped garnet crystals which were both gadolinium free and contain gadolinium in a concentration from the lowest (0.1%) to 100%, i.e., to the superparamagnetic state. It has been shown that the intensity of photoluminescence excited by circularly polarized light into Ce3 + absorption bands can be used for selective monitoring the population of the Ce3 + ground-state spin sublevels. Direct evidence of the cross-relaxation effects in garnet crystals containing two electron spin systems, i.e., the simplest one of Ce3 + ions with the effective spin S =1/2 and the system of Gd3 + ions with the maximum spin S =7/2 , has been demonstrated. Magnetic resonance of Gd3 + has been found by monitoring Ce3 + emission in cerium-doped garnet crystals with gadolinium concentrations of 0.1 at. %, 4%-8%, and 100%, which implies the impact of the Gd3 + spin polarization on the optical properties of Ce3 +. Strong internal magnetic fields in superparamagnetic crystals were shown to modify the processes of recombination between UV-radiation-induced electron and hole centers that lead to the recombination-induced Ce3 + emission. Observation of spikes and subsequent decay in the cross-relaxation-induced ODMR signals under pulsed microwave excitation is suggested to be an informative method to investigate transient processes in the many-spin system of Ce3 +, Gd3 +, and electron and hole radiation-induced centers.

  8. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.

    PubMed

    Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng

    2018-02-01

    Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.

  9. NOTE: The effects of paramagnetic contrast agents on metabolite protons in aqueous solution

    NASA Astrophysics Data System (ADS)

    Murphy, Philip S.; Leach, Martin O.; Rowland, Ian J.

    2002-03-01

    The longitudinal (R1) and transverse (R2) relaxivities of the clinically used contrast agents Gd(DTPA)2-, Gd(DOTA)- and Gd(DTPA-BMA) have been determined in mixed aqueous metabolite solutions for choline, creatine and N-acetylaspartate. Measurements were performed at 1.5 T using a STEAM sequence on 25 mM metabolite solutions at pH = 7.4 and 22 °C. The data showed that for all the contrast agents and metabolites, R1 ~ R2. The largest range of relaxivity values was found for Gd(DTPA)2-, where R2 = 6.8 +/- 0.3 mM-1 s-1 for choline and 1.5 +/- 0.4 mM-1 s-1 for N-acetylaspartate. Variation in relaxivity values was attributed primarily to differences between the charges of the paramagnetic agent and metabolite. The maximum potential influence of the contrast agents on in vivo metabolite signals was calculated using the measured relaxivities.

  10. Studying the Structure and Dynamics of Biomolecules by Using Soluble Paramagnetic Probes

    PubMed Central

    Hocking, Henry G; Zangger, Klaus; Madl, Tobias

    2013-01-01

    Characterisation of the structure and dynamics of large biomolecules and biomolecular complexes by NMR spectroscopy is hampered by increasing overlap and severe broadening of NMR signals. As a consequence, the number of available NMR spectroscopy data is often sparse and new approaches to provide complementary NMR spectroscopy data are needed. Paramagnetic relaxation enhancements (PREs) obtained from inert and soluble paramagnetic probes (solvent PREs) provide detailed quantitative information about the solvent accessibility of NMR-active nuclei. Solvent PREs can be easily measured without modification of the biomolecule; are sensitive to molecular structure and dynamics; and are therefore becoming increasingly powerful for the study of biomolecules, such as proteins, nucleic acids, ligands and their complexes in solution. In this Minireview, we give an overview of the available solvent PRE probes and discuss their applications for structural and dynamic characterisation of biomolecules and biomolecular complexes. PMID:23836693

  11. Paramagnetic Gd IIIFe III heterobimetallic complexes of DTPA-bis-salicylamide

    NASA Astrophysics Data System (ADS)

    Aime, S.; Botta, M.; Fasano, M.; Terreno, E.

    1993-08-01

    The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS) 2], able to form stable heterobimetallic complexes with Gd 3+ and Fe 3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with Fe III ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H 2O)-Gd-DTPA(PAS) 2] 2-Fe(H 2O) 2 or [(H 2O)-Gd-DTPA(PAS) 2] 3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd 3+ and Fe 3+ paramagnetic ions have been clearly distinguished and analysed.

  12. Study of the effects of hydroxyapatite nanocrystal codoping by pulsed electron paramagnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Gafurov, M. R.; Biktagirov, T. B.; Mamin, G. V.; Shurtakova, D. V.; Klimashina, E. S.; Putlyaev, V. I.; Orlinskii, S. B.

    2016-03-01

    The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during "wet" synthesis by CO 3 2- carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin-spin relaxation) of the NO 3 2- nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion-cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.

  13. Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem; Martin, P. G.; Lazarian, A.

    2014-07-20

    We present a novel method to measure the strength of interstellar magnetic fields using ultraviolet (UV) polarization of starlight that is in part produced by weakly aligned, small dust grains. We begin with calculating the degrees of the paramagnetic alignment of small (size a ∼ 0.01 μm) and very small (a ∼ 0.001 μm) grains in the interstellar magnetic field due to the Davis-Greenstein relaxation and resonance relaxation. To calculate the degrees of paramagnetic alignment, we use Langevin equations and take into account various interaction processes essential for the rotational dynamics of small grains. We find that the alignment ofmore » small grains is necessary to reproduce the observed polarization in the UV, although the polarization arising from these small grains is negligible at the optical and infrared (IR) wavelengths. Based on fitting theoretical models to observed extinction and polarization curves, we find that the best-fit model for the case with the peak wavelength of polarization λ{sub max} < 0.55 μm requires a higher degree of alignment of small grains than for the typical case with λ{sub max} = 0.55 μm. We interpret the correlation between the systematic increase of the UV polarization relative to maximum polarization (i.e., of p(6 μm{sup –1})/p{sub max}) with λ{sub max}{sup −1} for cases of low λ{sub max} by appealing to the higher degree of alignment of small grains. We utilize the correlation of the paramagnetic alignment of small grains with the magnetic field strength B to suggest a new way to measure B using the observable parameters λ{sub max} and p(6 μm{sup –1})/p{sub max}.« less

  14. Spin relaxation measurements of electrostatic bias in intermolecular exploration

    NASA Astrophysics Data System (ADS)

    Teng, Ching-Ling; Bryant, Robert G.

    2006-04-01

    We utilize the paramagnetic contribution to proton spin-lattice relaxation rate constants induced by freely diffusing charged paramagnetic centers to investigate the effect of charge on the intermolecular exploration of a protein by the small molecule. The proton NMR spectrum provided 255 resolved resonances that report how the explorer molecule local concentration varies with position on the surface. The measurements integrate over local dielectric constant variations, and, in principle, provide an experimental characterization of the surface free energy sampling biases introduced by the charge distribution on the protein. The experimental results for ribonuclease A obtained using positive, neutral, and negatively charged small nitroxide radicals are qualitatively similar to those expected from electrostatic calculations. However, while systematic electrostatic trends are apparent, the three different combinations of the data sets do not yield internally consistent values for the electrostatic contribution to the intermolecular free energy. We attribute this failure to the weakness of the electrostatic sampling bias for charged nitroxides in water and local variations in effective translational diffusion constant at the water-protein interface, which enters the nuclear spin relaxation equations for the nitroxide-proton dipolar coupling.

  15. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    PubMed

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications.

    PubMed

    Terreno, Enzo; Delli Castelli, Daniela; Cabella, Claudia; Dastrù, Walter; Sanino, Alberto; Stancanello, Joseph; Tei, Lorenzo; Aime, Silvio

    2008-10-01

    This article illustrates some innovative applications of liposomes loaded with paramagnetic lanthanide-based complexes in MR molecular imaging field. When a relatively high amount of a Gd(III) chelate is encapsulated in the vesicle, the nanosystem can simultaneously affect both the longitudinal (R(1)) and the transverse (R(2)) relaxation rate of the bulk H2O H-atoms, and this finding can be exploited to design improved thermosensitive liposomes whose MRI response is not longer dependent on the concentration of the probe. The observation that the liposome compartmentalization of a paramagnetic Ln(III) complex induce a significant R(2) enhancement, primarily caused by magnetic susceptibility effects, prompted us to test the potential of such agents in cell-targeting MR experiments. The results obtained indicated that these nanoprobes may have a great potential for the MR visualization of cellular targets (like the glutamine membrane transporters) overexpressing in tumor cells. Liposomes loaded with paramagnetic complexes acting as NMR shift reagents have been recently proposed as highly sensitive CEST MRI agents. The main peculiarity of CEST probes is to allow the MR visualization of different agents present in the same region of interest, and this article provides an illustrative example of the in vivo potential of liposome-based CEST agents.

  17. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  18. Model-free nuclear magnetic resonance study of intermolecular free energy landscapes in liquids with paramagnetic Ln3+ spotlights: theory and application to Arg-Gly-Asp.

    PubMed

    Fries, Pascal H

    2012-01-28

    We propose an easily applicable method for investigating the pair distribution function of a lanthanide Ln(3+) complex LnL (L = ligand) with respect to any solvent or solute molecule A carrying observable nuclear spins. Let r be the distance of Ln(3+) to the observed nuclear spin I. We derive a simple expression of the experimental value of the configurational average of 1/r(6) in terms of longitudinal paramagnetic relaxation (rate) enhancements (PREs) of the spin I measured on a standard high-resolution NMR spectrometer and due to well-chosen concentrations of LnL complexes in which Ln(3+) is a fast-relaxing paramagnetic lanthanide or the slowly-relaxing gadolinium Gd(3+). The derivation is justified in the general case of a molecule A which is by turns in a bound state where it follows the complex and a free state where it moves independently. It rests on the expression of the underlying PRE theory in terms of the angle-dependent pair distribution function of LnL and A. The simplifications of this theory in the high-field regime and under the condition of fast exchange between bound and free states are carefully discussed. We also show that original information on the angle dependence of the molecular pair distribution function can be gained from the measured paramagnetic dipolar shifts induced by complexed fast-relaxing Ln(3+) ions. The method is illustrated by the case study of the anionic Lnttha(3-) = [Ln(3+)(ttha)](3-) (ttha(6-) = triethylene tetraamine hexacetate) complex interacting with the biologically important tripeptide Arg-Gly-Asp (RGD) which carries peripheral ionic groups. The usefulness of an auxiliary reference outer sphere probe solute is emphasized. © 2012 American Institute of Physics

  19. Speeding up NMR by in Situ Photo-Induced Reversible Acceleration of T1 -Relaxation (PIRAT).

    PubMed

    Stadler, Eduard; Dommaschk, Marcel; Frühwirt, Philipp; Herges, Rainer; Gescheidt, Georg

    2018-03-05

    Increasing the signal-to-noise ratio is one of the major goals in the field of NMR spectroscopy. In this proof of concept, we accelerate relaxation during an NMR pulse sequence using photo-generated paramagnetic states of an inert sensitizer. For the follow-up acquisition period, the system is converted to a diamagnetic state. The reversibility of the photo-induced switching allows extensive repetition required for multidimensional NMR. We thus eliminate the obstacle of line-broadening by the presence of paramagnetic species. In this contribution, we show how cycling of synchronized light/pulse sequences leads to an enhanced efficiency in multidimensional NMR. Our approach utilizes a molecular spin switch reversibly altering between a paramagnetic and diamagnetic state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Paramagnetic Spin Seebeck Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Pearson, John E.; Bhattacharya, Anand

    2015-05-01

    We report the observation of the longitudinal spin Seebeck effect in paramagnetic insulators. By using a microscale on-chip local heater, we generate a large thermal gradient confined to the chip surface without a large increase in the total sample temperature. Using this technique at low temperatures (< 20 K), we resolve the paramagnetic spin Seebeck effect in the insulating paramagnets Gd3Ga5O12 (gadolinium gallium garnet) and DyScO3 (DSO), using either W or Pt as the spin detector layer. By taking advantage of the strong magnetocrystalline anisotropy of DSO, we eliminate contributions from the Nernst effect in W or Pt, which producesmore » a phenomenologically similar signal.« less

  1. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  2. Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule

    NASA Astrophysics Data System (ADS)

    Teeling-Smith, Richelle M.; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A.; Šimon, Marek; Bhallamudi, Vidya P.; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G.; Hammel, P. Chris

    2016-05-01

    A key limitation of electron paramagnetic resonance (EPR), an established and powerful tool for studying atomic-scale biomolecular structure and dynamics is its poor sensitivity, samples containing in excess of 10^12 labeled biomolecules are required in typical experiments. In contrast, single molecule measurements provide improved insights into heterogeneous behaviors that can be masked by ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. We report EPR measurements of a single labeled biomolecule that merge these two powerful techniques. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy (NV) centers, and optically detect the paramagnetic resonance of NV spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic time scale for reorientation of the nanodiamond probe is slow compared to the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond labeled DNA provides the foundation for the development of single molecule magnetic resonance studies of complex biomolecular systems.

  3. Magnetic Resonance T1 Relaxation Time of Venous Thrombus Is Determined by Iron Processing and Predicts Susceptibility to Lysis

    PubMed Central

    Modarai, Bijan; Blume, Ulrike; Humphries, Julia; Patel, Ashish S.; Phinikaridou, Alkystis; Evans, Colin E.; Mattock, Katherine; Grover, Steven P.; Ahmad, Anwar; Lyons, Oliver T.; Attia, Rizwan Q.; Renné, Thomas; Premaratne, Sobath; Wiethoff, Andrea J.; Botnar, René M.; Schaeffter, Tobias; Waltham, Matthew; Smith, Alberto

    2014-01-01

    Background The magnetic resonance longitudinal relaxation time (T1) changes with thrombus age in humans. In this study, we investigate the possible mechanisms that give rise to the T1 signal in venous thrombi and whether changes in T1 relaxation time are informative of the susceptibility to lysis. Methods and Results Venous thrombosis was induced in the vena cava of BALB/C mice, and temporal changes in T1 relaxation time correlated with thrombus composition. The mean T1 relaxation time of thrombus was shortest at 7days following thrombus induction and returned to that of blood as the thrombus resolved. T1 relaxation time was related to thrombus methemoglobin formation and further processing. Studies in inducible nitric oxide synthase (iNOS−/−)–deficient mice revealed that inducible nitric oxide synthase mediates oxidation of erythrocyte lysis–derived iron to paramagnetic Fe3+, which causes thrombus T1 relaxation time shortening. Studies using chemokine receptor-2–deficient mice (Ccr2−/−) revealed that the return of the T1 signal to that of blood is regulated by removal of Fe3+ by macrophages that accumulate in the thrombus during its resolution. Quantification of T1 relaxation time was a good predictor of successful thrombolysis with a cutoff point of <747 ms having a sensitivity and specificity to predict successful lysis of 83% and 94%, respectively. Conclusions The source of the T1 signal in the thrombus results from the oxidation of iron (released from the lysis of trapped erythrocytes in the thrombus) to its paramagnetic Fe3+ form. Quantification of T1 relaxation time appears to be a good predictor of the success of thrombolysis. PMID:23820077

  4. Bayesian Modeling of NMR Data: Quantifying Longitudinal Relaxation in Vivo, and in Vitro with a Tissue-Water-Relaxation Mimic (Crosslinked Bovine Serum Albumin).

    PubMed

    Meinerz, Kelsey; Beeman, Scott C; Duan, Chong; Bretthorst, G Larry; Garbow, Joel R; Ackerman, Joseph J H

    2018-01-01

    Recently, a number of MRI protocols have been reported that seek to exploit the effect of dissolved oxygen (O 2 , paramagnetic) on the longitudinal 1 H relaxation of tissue water, thus providing image contrast related to tissue oxygen content. However, tissue water relaxation is dependent on a number of mechanisms, and this raises the issue of how best to model the relaxation data. This problem, the model selection problem, occurs in many branches of science and is optimally addressed by Bayesian probability theory. High signal-to-noise, densely sampled, longitudinal 1 H relaxation data were acquired from rat brain in vivo and from a cross-linked bovine serum albumin (xBSA) phantom, a sample that recapitulates the relaxation characteristics of tissue water in vivo . Bayesian-based model selection was applied to a cohort of five competing relaxation models: (i) monoexponential, (ii) stretched-exponential, (iii) biexponential, (iv) Gaussian (normal) R 1 -distribution, and (v) gamma R 1 -distribution. Bayesian joint analysis of multiple replicate datasets revealed that water relaxation of both the xBSA phantom and in vivo rat brain was best described by a biexponential model, while xBSA relaxation datasets truncated to remove evidence of the fast relaxation component were best modeled as a stretched exponential. In all cases, estimated model parameters were compared to the commonly used monoexponential model. Reducing the sampling density of the relaxation data and adding Gaussian-distributed noise served to simulate cases in which the data are acquisition-time or signal-to-noise restricted, respectively. As expected, reducing either the number of data points or the signal-to-noise increases the uncertainty in estimated parameters and, ultimately, reduces support for more complex relaxation models.

  5. Paramagnetic resonance studies of bistrispyrazolylborate cobalt(II) and related derivatives

    NASA Astrophysics Data System (ADS)

    Myers, William K.

    Herein, a systematic frozen solution electron-nuclear double resonance (ENDOR) study of high-spin Co(II) complexes is reported to demonstrate the efficacy of methyl substitutions as a means of separating dipolar and contact coupling, and further, to increase the utility of high-spin Co(II) as a spectroscopic probe for the ubiquitous, but spectroscopically-silent Zn(II) metalloenzymes. High-spin (hs) Co(II) has been subject of paramagnetic resonance studies for over 50 years and has been used as a spectroscopic probe for Zn metalloenzymes for over 35 years. However, as will be seen, the inherent complexity of the electronic properties of the cobaltous ion remains to be exploited to offer a wealth of information on Zn(II) enzymatic environments. Specifically, ENDOR measurements on bistrispyrazolylborate cobalt(II) confirm the utility of the novel method of methyl substitution to differentiate dipolar and Fermi contact couplings. An extensive set of electron paramagnetic resonance (EPR) simulations were performed. Software was developed to implement an ENDOR control interface. Finally, proton relaxation measurements were made in the range of 12-42 MHz, which were accounted for with the large g-value anisotropy of the Co(II) compounds. Taken as a whole, these studies point to the rich complexity of the electronic structure of high-spin cobalt(II) and, when sufficiently well-characterized, the great utility it has as a surrogate of biological Zn(II).

  6. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, D., E-mail: danuta.kruk@matman.uwm.edu.pl; Hoffmann, S. K.; Goslar, J.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recentlymore » presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.« less

  7. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Xu, C.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Y. T.; Helm, M.; Zhou, Shengqiang; Kühne, H.

    2017-11-01

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13C nuclear spin-lattice relaxation rate 1/T1 by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of 1/T1 below about 10 K can well be described by a thermally activated form, \

  8. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    NASA Astrophysics Data System (ADS)

    Costabel, Stephan; Weidner, Christoph; Müller-Petke, Mike; Houben, Georg

    2018-03-01

    The capability of nuclear magnetic resonance (NMR) relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite), and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny-Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation in the gravel pack of

  9. Relaxation-based distance measurements between a nitroxide and a lanthanide spin label

    NASA Astrophysics Data System (ADS)

    Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.

    2008-10-01

    Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.

  10. Identification of irradiated cashew nut by electron paramagnetic resonance spectroscopy.

    PubMed

    Sanyal, Bhaskar; Sajilata, M G; Chatterjee, Suchandra; Singhal, Rekha S; Variyar, Prasad S; Kamat, M Y; Sharma, Arun

    2008-10-08

    Cashew nut samples were irradiated at gamma-radiation doses of 0.25, 0.5, 0.75, and 1 kGy, the permissible dose range for insect disinfestation of food commodities. A weak and short-lived triplet (g = 2.004 and hfcc = 30 G) along with an anisotropic signal (g perpendicular = 2.0069 and g parallel = 2.000) were produced immediately after irradiation. These signals were assigned to that of cellulose and CO 2 (-) radicals. However, the irradiated samples showed a dose-dependent increase of the central line (g = 2.0045 +/- 0.0002). The nature of the free radicals formed during conventional processing such as thermal treatment was investigated and showed an increase in intensity of the central line (g = 2.0045) similar to that of irradiation. Characteristics of the free radicals were studied by their relaxation and thermal behaviors. The present work explores the possibility to identify irradiated cashew nuts from nonirradiated ones by the thermal behaviors of the radicals beyond the period, when the characteristic electron paramagnetic resonance spectral lines of the cellulose free radicals have essentially disappeared. In addition, this study for the first time reports that relaxation behavior of the radicals could be a useful tool to distinguish between roasted and irradiated cashew nuts.

  11. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle

    PubMed Central

    Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity. PMID:27479128

  12. Nuclear spin relaxation in ligands outside of the first coordination sphere in a gadolinium (III) complex: Effects of intermolecular forces

    NASA Astrophysics Data System (ADS)

    Kruk, Danuta; Kowalewski, Jozef

    2002-07-01

    This article describes paramagnetic relaxation enhancement (PRE) in systems with high electron spin, S, where there is molecular interaction between a paramagnetic ion and a ligand outside of the first coordination sphere. The new feature of our treatment is an improved handling of the electron-spin relaxation, making use of the Redfield theory. Following a common approach, a well-defined second coordination sphere is assumed, and the PRE contribution from these more distant and shorter-lived ligands is treated in a way similar to that used for the first coordination sphere. This model is called "ordered second sphere," OSS. In addition, we develop here a formalism similar to that of Hwang and Freed [J. Chem. Phys. 63, 4017 (1975)], but accounting for the electron-spin relaxation effects. We denote this formalism "diffuse second sphere," DSS. The description of the dynamics of the intermolecular dipole-dipole interaction is based on the Smoluchowski equation, with a potential of mean force related to the radial distribution function. We have used a finite-difference method to calculate numerically a correlation function for translational motion, taking into account the intermolecular forces leading to an arbitrary radial distribution of the ligand protons. The OSS and DSS models, including the Redfield description of the electron-spin relaxation, were used to interpret the PRE in an aqueous solution of a slowly rotating gadolinium (III) complex (S=7/2) bound to a protein.

  13. Ethylene Glycol Quenching of Nitrogenase Catalysis: An Electron Paramagnetic Resonance Spectroscopic Study of Nitrogenase Turnover States and CO Bonding.

    PubMed

    Hales, Brian J

    2015-07-14

    Most hydrophilic organic solvents inhibit enzymatic activity. Nitrogenase is shown to be approximately 3 times more sensitive to organic inhibition than most other soluble enzymes. Ethylene glycol (EG) is demonstrated to rapidly inhibit nitrogenase activity without uncoupling ATP hydrolysis. Our data suggest the mechanism of inhibition is EG's blocking of binding of MgATP to the nitrogenase Fe protein. EG quenching allows, for the first time, the observation of the relaxation of the intermediate reaction states at room temperature. Electron paramagnetic resonance (EPR) spectroscopy is used to monitor the room-temperature decay of the nitrogenase turnover states following EG quenching of catalytic activity. The return of the intermediate states to the resting state occurs in multiple phases over 2 h. During the initial stage, nitrogenase still possesses the ability to generate CO-induced EPR signals even though catalytic activity has ceased. During the last phase of relaxation, the one-electron reduced state of the MoFe protein (E1) relaxes to the resting state (E0) in a slow first-order reaction.

  14. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    PubMed

    Zhang, Z T; Xu, C; Dmytriieva, D; Molatta, S; Wosnitza, J; Wang, Y T; Helm, M; Zhou, Shengqiang; Kühne, H

    2017-10-20

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13 C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13 C nuclear spin-lattice relaxation rate [Formula: see text] by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of [Formula: see text] below about 10 K can well be described by a thermally activated form, [Formula: see text], yielding a singular Zeeman energy of ([Formula: see text]) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments.

  15. Direct Simulation of Magnetic Resonance Relaxation Rates and Line Shapes from Molecular Trajectories

    PubMed Central

    Rangel, David P.; Baveye, Philippe C.; Robinson, Bruce H.

    2012-01-01

    We simulate spin relaxation processes, which may be measured by either continuous wave or pulsed magnetic resonance techniques, using trajectory-based simulation methodologies. The spin–lattice relaxation rates are extracted numerically from the relaxation simulations. The rates obtained from the numerical fitting of the relaxation curves are compared to those obtained by direct simulation from the relaxation Bloch–Wangsness–Abragam– Redfield theory (BWART). We have restricted our study to anisotropic rigid-body rotational processes, and to the chemical shift anisotropy (CSA) and a single spin–spin dipolar (END) coupling mechanisms. Examples using electron paramagnetic resonance (EPR) nitroxide and nuclear magnetic resonance (NMR) deuterium quadrupolar systems are provided. The objective is to compare those rates obtained by numerical simulations with the rates obtained by BWART. There is excellent agreement between the simulated and BWART rates for a Hamiltonian describing a single spin (an electron) interacting with the bath through the chemical shift anisotropy (CSA) mechanism undergoing anisotropic rotational diffusion. In contrast, when the Hamiltonian contains both the chemical shift anisotropy (CSA) and the spin–spin dipolar (END) mechanisms, the decay rate of a single exponential fit of the simulated spin–lattice relaxation rate is up to a factor of 0.2 smaller than that predicted by BWART. When the relaxation curves are fit to a double exponential, the slow and fast rates extracted from the decay curves bound the BWART prediction. An extended BWART theory, in the literature, includes the need for multiple relaxation rates and indicates that the multiexponential decay is due to the combined effects of direct and cross-relaxation mechanisms. PMID:22540276

  16. NMR relaxation studies in doped poly-3-methylthiophene

    NASA Astrophysics Data System (ADS)

    Singh, K. Jugeshwar; Clark, W. G.; Gaidos, G.; Reyes, A. P.; Kuhns, P.; Thompson, J. D.; Menon, R.; Ramesh, K. P.

    2015-05-01

    NMR relaxation rates (1 /T1 ), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T1 is classified into three regimes: (a) For T <(g μBB /2 kB ) , the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. 1H - T1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g μBB /2 kB ) relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the P F6 reorientation. The cross relaxation among the 1H and 19F nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra- and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T1-1 on temperature shows that at low temperature [T <(g μBB /2 kB ) ] the system shows three dimensions and changes to quasi one dimension at

  17. A Comparative Study of T1 and T2 Relaxation in Shale

    NASA Astrophysics Data System (ADS)

    Keating, K.; Obasi, C. C.; Pashin, J. C.

    2015-12-01

    Nuclear magnetic resonance (NMR) relaxation measurement have been used extensively in petroleum and, more recently, in groundwater resource evaluation to estimate the porosity, pore-size distributions, permeability, fluid saturation, and fluid mobility. In shale, the transverse decay rate of NMR signal is sensitive to the microporosity, but is also affected by the paramagnetic contributions of clay and other iron-bearing minerals. Furthermore, contrasts in the magnetic susceptibility of the mineral matrix and pore fluids that result in an inhomogeneous magnetic field within the pore space results in an extra term in transverse relaxation. These issues can cause errors in NMR-based estimates of pore-size distribution and permeability. In this study we compare T1 and T2 relaxation time distributions in order to study the molecular mechanism of relaxation in brine-saturated mixtures of clay and other common minerals. We collected measurements on a range of mixtures of clay minerals common in shale (illite, glauconite, celadonite, chamosite, montmorillonite and kaolinite) and pyrite. To constrain the interpretation of the NMR data, we measured the magnetic susceptibility and surface area of all samples. We are confident that by accounting for the presence and variations of clay and pyrite in shale, we can substantially improve both the NMR estimate of pore-size distribution and permeability.

  18. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein ubiquinone oxidoreductase (ETF QO)

    NASA Astrophysics Data System (ADS)

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  19. Electron Spin Relaxation Enhancement Measurements of Interspin Distances in Human, Porcine, and Rhodobacter Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETF-QO)

    PubMed Central

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-01-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S]2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S]+ cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S]+ between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S]+ were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S]+ and obtain point dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present. PMID:18037314

  20. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO).

    PubMed

    Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  1. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Faucher, Luc; Gossuin, Yves; Hocq, Aline; Fortin, Marc-André

    2011-07-01

    Ultra-small gadolinium oxide nanoparticles (US-Gd2O3) are used to provide 'positive' contrast effects in magnetic resonance imaging (MRI), and are being considered for molecular and cellular imaging applications. However, these nanoparticles can aggregate over time in aqueous medium, as well as when internalized into cells. This study is aimed at measuring in vitro, in aqueous medium, the impact of aggregation on the relaxometric properties of paramagnetic US-Gd2O3 particles. First, the nanoparticle core size as well as aggregation behaviour was assessed by HRTEM. DLS (hydrodynamic diameter) was used to measure the hydrodynamic diameter of nanoparticles and nanoaggregates. The relaxometric properties were measured by NMRD profiling, as well as with 1H NMR relaxometers. Then, the positive contrast enhancement effect was assessed by using magnetic resonance scanners (at 1.5 and 7 T). At every magnetic field, the longitudinal relaxivity (r1) decreased upon agglomeration, while remaining high enough to provide positive contrast. On the other hand, the transverse relaxivity (r2) slightly decreased at 0.47 and 1.41 T, but it was enhanced at higher fields (7 and 11.7 T) upon agglomeration. All NMRD profiles revealed a characteristic relaxivity peak in the range 60-100 MHz, suggesting the possibility to use US-Gd2O3 as an efficient 'positive-T1' contrast agent at clinical magnetic fields (1-3 T), in spite of aggregation.

  2. Excitations and relaxation dynamics in multiferroic GeV4S8 studied by terahertz and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.

    2017-10-01

    We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.

  3. Ligand protons in a frozen solution of copper histidine relax via a T1e-driven three-spin mechanism

    NASA Astrophysics Data System (ADS)

    Stoll, S.; Epel, B.; Vega, S.; Goldfarb, D.

    2007-10-01

    Davies electron-nuclear double resonance spectra can exhibit strong asymmetries for long mixing times, short repetition times, and large thermal polarizations. These asymmetries can be used to determine nuclear relaxation rates in paramagnetic systems. Measurements of frozen solutions of copper(L-histidine)2 reveal a strong field dependence of the relaxation rates of the protons in the histidine ligand, increasing from low (g‖) to high (g⊥) field. It is shown that this can be attributed to a concentration-dependent T1e-driven relaxation process involving strongly mixed states of three spins: the histidine proton, the Cu(II) electron spin of the same complex, and another distant electron spin with a resonance frequency differing from the spectrometer frequency approximately by the proton Larmor frequency. The protons relax more efficiently in the g⊥ region, since the number of distant electrons able to participate in this relaxation mechanism is higher than in the g‖ region. Analytical expressions for the associated nuclear polarization decay rate Teen-1 are developed and Monte Carlo simulations are carried out, reproducing both the field and the concentration dependences of the nuclear relaxation.

  4. Electron Spin Relaxation Rates for High-Spin Fe(III) in Iron Transferrin Carbonate and Iron Transferrin Oxalate

    PubMed Central

    Gaffney, Betty Jean; Eaton, Gareth R.; Eaton*, Sandra S.

    2005-01-01

    To optimize simulations of CW EPR spectra for high-spin Fe(III) with zero-field splitting comparable to the EPR quantum, information is needed on the factors that contribute to the line shapes and line widths. Continuous wave electron paramagnetic resonance (EPR) spectra obtained for iron transferrin carbonate from 4 to 150 K and for iron transferrin oxalate from 4 to 100 K did not exhibit significant temperature dependence of the line shape, which suggested that the line shapes were not relaxation determined. To obtain direct information concerning the electron spin relaxation rates, electron spin echo and inversion recovery EPR were used to measure T1 and Tm for the high-spin Fe(III) in iron transferrin carbonate and iron transferrin oxalate between 5 and 20–30 K. For comparison with the data for the transferrin complexes, relaxation times were obtained for tris(oxalato)ferrate(III). The relaxation rates are similar for the three complexes and do not exhibit a strong dependence on position in the spectrum. Extrapolation of the observed temperature dependence of the relaxation rates to higher temperatures gives values consistent with the conclusion that the CW line shapes are not relaxation determined up to 150 K. PMID:16429607

  5. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    NASA Astrophysics Data System (ADS)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  6. Buckling of paramagnetic chains in soft gels

    NASA Astrophysics Data System (ADS)

    Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.

    We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

  7. Electron paramagnetic resonance of several lunar rock samples

    NASA Technical Reports Server (NTRS)

    Marov, P. N.; Dubrov, Y. N.; Yermakov, A. N.

    1974-01-01

    The results are presented of investigating lunar rock samples returned by the Luna 16 automatic station, using electron paramagnetic resonance (EPR). The EPR technique makes it possible to detect paramagnetic centers and investigate their nature, with high sensitivity. Regolith (finely dispersed material) and five particles from it, 0.3 mm in size, consisting mostly of olivine, were investigated with EPR.

  8. Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Ji, Lei; Zhang, Bingbo; Yin, Peihao; Qiu, Yanyan; Song, Daqian; Zhou, Juying; Li, Qi

    2013-05-01

    Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd3+) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd3+ with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s-1 per mM Gd3+, respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s-1 per mM Gd3+, respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd3+. In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd3+. All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd3+ present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.

  9. Mechanisms of relaxation and spin decoherence in nanomagnets

    NASA Astrophysics Data System (ADS)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  10. Paramagnetic and Diamagnetic Materials

    ERIC Educational Resources Information Center

    Thompson, Frank

    2011-01-01

    Paramagnetic and diamagnetic materials are now generally known as the "Cinderella" materials of the magnetic world. However, susceptibility measurements made on these materials in the past have revealed many details about the molecular bonding and the atomic structure of the so-called "transition" elements. Indeed, the magnetic moment of neodymium…

  11. Measurement of short transverse relaxation times by pseudo-echo nutation experiments.

    PubMed

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-05-03

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R 1 and R 2 . A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R 1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Temperature dependence of proton NMR relaxation times at earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd

    The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  13. Paramagnetic Europium Salen Complex and Sickle-Cell Anemia

    NASA Astrophysics Data System (ADS)

    Wynter, Clive I.; Ryan, D. H.; May, Leopold; Oliver, F. W.; Brown, Eugene; Hoffman, Eugene J.; Bernstein, David

    2005-04-01

    A new europium salen complex, Eu(salen)2NH4, was synthesized, and its composition was confirmed by chemical analysis and infrared spectroscopy. Further characterization was carried out by 151 Eu Mössbauer spectroscopy and magnetic susceptibility measurements. Mössbauer spectroscopic measurements were made at varying temperatures between 9 K and room temperature and a value of Debye temperature of 133 ±5 K was computed. Both Mössbauer and magnetic susceptibility measurements confirmed the paramagnetic behavior of this complex and the trivalent state of the europium ion. In view of the fact that the "odd" paramagnetic molecule NO has been shown to reverse sickling of red blood cells in sickle cell anemia, the interaction between the paramagnetic europium salen complex and sickle cells was examined after incubation with this europium complex and shown to have similar effects.

  14. Spectral analysis of paramagnetic centers induced in human tooth enamel by x-rays and gamma radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, I. I.

    2010-03-01

    Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.

  15. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity

    NASA Astrophysics Data System (ADS)

    Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A. S.; Carlos, Luis D.; Trifonov, Alexander A.; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel

    2011-03-01

    This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd

  16. Measured Electron Spin Relaxation Rates in Frozen Solutions of Azurin, VITAMIN-B12R, and Nitrosyl Ferrous Myoglobin.

    NASA Astrophysics Data System (ADS)

    Muench, Philip James

    Rates in frozen glycerin/water solutions at temperatures between 1.4 K and 20 K are reported for a copper-containing protein, azurin, and a cobalt-containing biomolecular complex, vitamin B_{rm 12r}, the paramagnetic product of the photolysis of coenzyme B_{12}. Results are interpreted in terms of a spectral dimensionality. Rates are also reported for nitrosyl ferrous myoglobin in frozen water solution, which exhibits a dominant one-phonon relaxation process up to 20 K and thus does not reveal spectral dimensionality. The anomalous variation of rate with temperature observed in several iron-containing proteins is not conspicuous here. In a model two-phonon mechanism of relaxation, temperature dependence is fixed by a spectral dimensionality, m, which specifies the variation of vibrational density of states with frequency rho(nu ) ~ nu ^{rm m-1} and is named in analogy with the Debye density of states in 1-, 2-, and 3-dimensional crystals. At sufficiently high temperatures, a non-resonant two-phonon process (Raman) should dominate the relaxation of a paramagnetic ion unless low-lying (under ^{~}70 cm^ {-1}) electronic states are present, as in many rare earths and in high spin ferric complexes, including many ferric proteins. The temperature dependence of the Raman rate for a Kramers ion (odd number of electrons) is T^{rm 3+2m} if temperature is sufficiently lower than Theta = hnu_{rm max} /k, the Debye temperature. The values of m from relaxation data on frozen solutions of a protein have sometimes been dependent upon solvent conditions. The maximum values of m for heme proteins, iron-sulfur proteins, and one copper -and-iron-containing protein, have ranged from about 1.3 to 1.8. Pulse saturation/recovery was used. The recoveries were not exponential, but rates were estimated from semilogarithmic displays of signals or from numerical fitting. The temperature dependence of the rates for azurin between 1.5 K and 22 K can be fit with a spectral dimensionality of 3 and

  17. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging.

    PubMed

    Epel, Boris; Halpern, Howard J

    2015-05-01

    Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Facilitated Protein Association via Engineered Target Search Pathways Visualized by Paramagnetic NMR Spectroscopy.

    PubMed

    An, So Young; Kim, Eun-Hee; Suh, Jeong-Yong

    2018-06-05

    Proteins assemble to form functional complexes via the progressive evolution of nonspecific complexes formed by transient encounters. This target search process generally involves multiple routes that lead the initial encounters to the final complex. In this study, we have employed NMR paramagnetic relaxation enhancement to visualize the encounter complexes between histidine-containing phosphocarrier protein and the N-terminal domain of enzyme I and demonstrate that protein association can be significantly enhanced by engineering on-pathways. Specifically, mutations in surface charges away from the binding interface can elicit new on-pathway encounter complexes, increasing their binding affinity by an order of magnitude. The structure of these encounter complexes indicates that such on-pathways extend the built-in target search process of the native protein complex. Furthermore, blocking on-pathways by countering mutations reverts their binding affinity. Our study thus illustrates that protein interactions can be engineered by rewiring the target search process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    PubMed

    Zhang, Zhi Tao; Xu, C; Dmytriieva, Daryna; Molatta, Sebastian; Wosnitza, J; Wang, Y T; Helm, Manfred; Zhou, Shengqiang; Kuehne, Hannes

    2017-09-18

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by $^{13}$C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the $^{13}$C nuclear spin-lattice relaxation rate $1/T_{1}$ by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of $1/T_{1}$ below about 10 K can well be described by a thermally activated form, $1/T_{1}\\propto\\exp(-\\Delta/k_{B}T)$, yielding a singular Zeeman energy of ($0.41\\pm0.01$) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments. © 2017 IOP Publishing Ltd.

  20. Disequilibrium, complexity, the Schottky effect, and q-entropies, in paramagnetism

    NASA Astrophysics Data System (ADS)

    Pennini, F.; Plastino, A.

    2017-12-01

    We investigate connections between statistical quantifiers and paramagnetism. More concretely, we apply the notions of (i) disequilibrium and (ii) statistical complexity, to a paramagnetic system of non-coupled dipoles. Interesting insights are thereby obtained. In particular, we encounter a kind of criticality, not associated to the temperature but to the disequilibrium.

  1. Paramagnetic Manganese in the Atherosclerotic Plaque of Carotid Arteries

    PubMed Central

    Chelyshev, Yury; Ignatyev, Igor; Zanochkin, Alexey; Mamin, Georgy; Sorokin, Boris; Sorokina, Alexandra; Lyapkalo, Natalya; Gizatullina, Nazima; Orlinskii, Sergei

    2016-01-01

    The search for adequate markers of atherosclerotic plaque (AP) instability in the context of assessment of the ischemic stroke risk in patients with atherosclerosis of the carotid arteries as well as for solid physical and chemical factors that are connected with the AP stability is extremely important. We investigate the inner lining of the carotid artery specimens from the male patients with atherosclerosis (27 patients, 42–64 years old) obtained during carotid endarterectomy by using different analytical tools including ultrasound angiography, X-ray analysis, immunological, histochemical analyses, and high-field (3.4 T) pulse electron paramagnetic resonance (EPR) at 94 GHz. No correlation between the stable and unstable APs in the sense of the calcification is revealed. In all of the investigated samples, the EPR spectra of manganese, namely, Mn2+ ions, are registered. Spectral and relaxation characteristics of Mn2+ ions are close to those obtained for the synthetic (nano) hydroxyapatite species but differ from each other for stable and unstable APs. This demonstrates that AP stability could be specified by the molecular organization of their hydroxyapatite components. The origin of the obtained differences and the possibility of using EPR of Mn2+ as an AP stability marker are discussed. PMID:28078287

  2. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent

    NASA Astrophysics Data System (ADS)

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-01

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.

  3. Cancer detection based on Raman spectra super-paramagnetic clustering

    NASA Astrophysics Data System (ADS)

    González-Solís, José Luis; Guizar-Ruiz, Juan Ignacio; Martínez-Espinosa, Juan Carlos; Martínez-Zerega, Brenda Esmeralda; Juárez-López, Héctor Alfonso; Vargas-Rodríguez, Héctor; Gallegos-Infante, Luis Armando; González-Silva, Ricardo Armando; Espinoza-Padilla, Pedro Basilio; Palomares-Anda, Pascual

    2016-08-01

    The clustering of Raman spectra of serum sample is analyzed using the super-paramagnetic clustering technique based in the Potts spin model. We investigated the clustering of biochemical networks by using Raman data that define edge lengths in the network, and where the interactions are functions of the Raman spectra's individual band intensities. For this study, we used two groups of 58 and 102 control Raman spectra and the intensities of 160, 150 and 42 Raman spectra of serum samples from breast and cervical cancer and leukemia patients, respectively. The spectra were collected from patients from different hospitals from Mexico. By using super-paramagnetic clustering technique, we identified the most natural and compact clusters allowing us to discriminate the control and cancer patients. A special interest was the leukemia case where its nearly hierarchical observed structure allowed the identification of the patients's leukemia type. The goal of this study is to apply a model of statistical physics, as the super-paramagnetic, to find these natural clusters that allow us to design a cancer detection method. To the best of our knowledge, this is the first report of preliminary results evaluating the usefulness of super-paramagnetic clustering in the discipline of spectroscopy where it is used for classification of spectra.

  4. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOEpatents

    Doctor, Richard D.

    1988-01-01

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadropole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin.

  5. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOEpatents

    Doctor, R.D.

    1988-10-18

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  6. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOEpatents

    Doctor, R.D.

    1986-07-24

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic-particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  7. Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.

    PubMed

    Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S

    2013-05-08

    We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.

  8. Relaxation of the environment of Gd3+ and Eu2+ impurity ions in the Y3Al5O12 garnet

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Artyomov, M. Yu.; Potapov, A. P.; Chernyshev, V. A.; Fokin, A. V.; Serdtsev, A. V.

    2017-05-01

    The second-rank spin Hamiltonian parameters of Gd3+ and Eu2+ orthorhombic centers in crystals of the yttrium aluminum garnet Y3Al5O12 have been analyzed within the framework of the superposition model for the zero-field splitting of the ground state. It has been shown that the description of the experimental data in this model is possible only under the assumption of relaxation of the ligand environment of the paramagnetic impurity.

  9. Mechanical membrane for the separation of a paramagnetic constituent from a fluid

    DOEpatents

    Maurice, David

    2017-05-02

    The disclosure provides an apparatus and method for the separation of a paramagnetic component from a mixture using a mechanical membrane apparatus. The mechanical membrane comprises a supporting material having a plurality of pores where each pore is surrounded by a plurality of magnetic regions. The magnetic regions augment a magnetic field on one side of the supporting material while mitigating the field to near zero on the opposite side. In operation, a flow of fluid such as air comprising a paramagnetic component such as O.sub.2 is directed toward the mechanical membrane, and the paramagnetic component is typically attracted toward a magnetic field surrounding a pore while dimagnetic components such as N.sub.2 are generally repelled. As some portion of the fluid passes through the plurality of magnetic apertures to the opposite side of the mechanical membrane, the mechanical membrane generates a fluid enriched in the paramagnetic component. Alternately, the magnetic field may act to repel the paramagnetic component while diamagnetic components such as N.sub.2 are generally unaffected and pass to the opposite side of the mechanical membrane.

  10. Monitoring changes of paramagnetically-shifted 31P signals in phospholipid vesicles

    NASA Astrophysics Data System (ADS)

    Joyce, Rebecca E.; Williams, Thomas L.; Serpell, Louise C.; Day, Iain J.

    2016-03-01

    Phospholipid vesicles are commonly used as biomimetics in the investigation of the interaction of various species with cell membranes. In this letter we present a 31P NMR investigation of a simple vesicle system using a paramagnetic shift reagent to probe the inner and outer layers of the lipid bilayer. Time-dependent changes in the 31P NMR signal are observed, which differ whether the paramagnetic species is inside or outside the vesicle, and on the choice of buffer solution used. An interpretation of these results is given in terms of the interaction of the paramagnetic shift reagent with the lipids.

  11. Ionic liquids and solids with paramagnetic anions.

    PubMed

    Krieger, Brenna M; Lee, Heather Y; Emge, Thomas J; Wishart, James F; Castner, Edward W

    2010-08-21

    Four paramagnetic ionic compounds have been prepared and their magnetic, structural and thermal properties have been investigated. The four compounds are methylbutylpyrrolidinium tetrachloroferrate(III) ([Pyrr(14)](+)/[FeCl(4)](-)), methyltributylammonium tetrachloroferrate(III) ([N(1444)](+)/[FeCl(4)](-)), butylmethylimidazolium tetrachloroferrate(III) ([bmim](+)/[FeCl(4)](-)) and tetrabutylammonium bromotrichloroferrate(III) ([N(4444)](+)/[FeBrCl(3)](-)). Temperature-dependent studies of their magnetic behaviors show that all four compounds are paramagnetic at ambient temperatures. Glass transitions are observed for only two of the four compounds, [Pyrr(14)](+)/[FeCl(4)](-) and [bmim](+)/[FeCl(4)](-). Crystal structures for [Pyrr(14)](+)/[FeCl(4)](-) and [N(1444)](+)/[FeCl(4)](-) are compared with the previously reported [N(4444)](+)/[FeBrCl(3)](-).

  12. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas

    NASA Astrophysics Data System (ADS)

    Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara

    2018-06-01

    SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

  13. Application of Electron Paramagnetic Resonance to Study of Gallstones

    NASA Astrophysics Data System (ADS)

    Kiselev, S. A.; Tsyro, L. V.; Afanasiev, D. A.; Unger, F. G.; Soloviev, M. M.

    2014-03-01

    We present the results of an electron paramagnetic resonance (EPR) study of mixed cholesterol gallstones. We have established that free radicals are distributed nonuniformly within the interior of the stone. The type and number of paramagnetic centers depend on the pigment content in the selected layer. We show that the parameters of the sextet lines in the EPR spectrum of the pigment are close to the parameters of lines in the spectrum of a brown pigment stone.

  14. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy.

    PubMed

    Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus

    2012-06-01

    The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.

  15. Resonance spectra of a paramagnetic probe dissolved in a viscous medium

    NASA Technical Reports Server (NTRS)

    Kaplan, J. I.; Gelerinter, E.; Fryburg, G. C.

    1972-01-01

    A model is presented for calculating the paramagnetic resonance (EPR) spectrum of vanadyl acetylacetonate (VAAC) dissolved in either a liquid crystal or isotropic solvent. It employs density matrix formulation in the rotating reference frame. The molecules occupy several discrete angles with respect to the magnetic field and can relax to neighboring positions in a characteristic time tau(theta). The form of tau(theta) is found from a diffusion approach, and the magnitude of tau(theta) is a measure of how freely the VAAC probe tumbles in the solvent. Spectra are predicted for values of tau between 10 to the minus 11th power sec and 10 to the minus 7th power sec. The EPR spectrum, in the isotropic case, is obtained be summing the contributions from the allowed angles weighted by the polar volume element, sin theta. When applying the model to the nematic liquid crystal case it is also necessary to multiply by the Saupe distribution function. For this case tau(theta) is obtained from the diffusion approach in which two diffusion constants are employed to reflect the difference in the parallel and perpendicular components of the viscosity.

  16. A model of magnetic and relaxation properties of the mononuclear [Pc2Tb](-)TBA+ complex.

    PubMed

    Reu, O S; Palii, A V; Ostrovsky, S M; Tregenna-Piggott, P L W; Klokishner, S I

    2012-10-15

    The present work is aimed at the elaboration of the model of magnetic properties and magnetic relaxation in the mononuclear [Pc(2)Tb](-)TBA(+) complex that displays single-molecule magnet properties. We calculate the Stark structure of the ground (7)F(6) term of the Tb(3+) ion in the exchange charge model of the crystal field, taking account for covalence effects. The ground Stark level of the complex possesses the maximum value of the total angular momentum projection, while the energies of the excited Stark levels increase with decreasing |M(J)| values, thus giving rise to a barrier for the reversal of magnetization. The one-phonon transitions between the Stark levels of the Tb(3+) ion induced by electron-vibrational interaction are shown to lead to magnetization relaxation in the [Pc(2)Tb](-)TBA(+) complex. The rates of all possible transitions between the low-lying Stark levels are calculated in the temperature range 14 Krelaxation time of magnetization, we solve the set of master equations for the populations of the Stark levels. The relaxation time is shown to diminish from 3.2 × 10(-2) s to 1.52 × 10(-4) s as the temperature increases from 27 K to 40 K. The obtained values of the relaxation time are in satisfactory agreement with the observed ones. The developed model also provides satisfactory description of the dc-magnetic data and paramagnetic shifts.

  17. Magnetic resonance force microscopy with a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  18. Dedicated Co-deposition System for Metallic Paramagnetic Films

    DOE PAGES

    Jaeckel, F.; Kotsubo, V.; Hall, J. A.; ...

    2012-01-27

    Here, we describe a dedicated co-sputtering/ion-mill system developed to study metallic paramagnetic films for use in magnetic microcalorimetry. Small-diameter sputtering guns allow study of several precious-metal-based paramagnetic alloy systems within a reasonable budget. We demonstrated safe operation of a 1" sputtering gun at >5x the rated maximum power, achieving deposition rates up to ~900 Å/min/gun (Cu) in our co-sputtering geometry. Demonstrated co-sputtering deposition ratios up to 100:1 allow accurate tuning of magnetic dopant concentration and eliminate the difficulty of preparing homogeneous alloy targets of extreme dilution.

  19. Magnetic resonance force microscopy with a paramagnetic probe

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  20. Magnetic resonance force microscopy with a paramagnetic probe

    DOE PAGES

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  1. Van vleck paramagnetism in orthorhombic TiO2 (Brookite)

    USGS Publications Warehouse

    Senftle, F.E.; Thorpe, A.N.

    1968-01-01

    The magnetic susceptibility of the orthorhombic form of titanium dioxide has been measured from 5 to 300??K. After deducting the temperature-dependent component, which is probably due to defects or impurities, and the free-ion diamagnetic component, the Van Vleck paramagnetism was estimated to be 33??10-6 emu/mole. Comparison is made between this value and the Van Vleck paramagnetism of strontium titanate and the two tetragonal forms of titanium dioxide: rutile and anatase. ?? 1968 The American Physical Society.

  2. Influence of Free Radicals on the Intrinsic MRI Relaxation Properties.

    PubMed

    Tain, Rong-Wen; Scotti, Alessandro M; Li, Weiguo; Zhou, Xiaohong Joe; Cai, Kejia

    2017-01-01

    Free radicals are critical contributors in various conditions including normal aging, Alzheimer's disease, cancer, and diabetes. Currently there is no non-invasive approach to image tissue free radicals based on endogenous contrast due to their extremely short lifetimes and low in vivo concentrations. In this study we aim at characterizing the influence of free radicals on the MRI relaxation properties. Phantoms containing free radicals were created by treating egg white with various H 2 O 2 concentrations and scanned on a 9.4 T MRI scanner at room temperature. T 1 and T 2 relaxation maps were generated from data acquired with an inversion recovery sequence with varied inversion times and a multi-echo spin echo sequence with varied echo times (TEs), respectively. Results demonstrated that free radicals express a strong shortening effect on T 1 , which was proportional to the H 2 O 2 concentration, and a relatively small reduction in T 2 (<10%). Furthermore, the sensitivity of this approach in the detection of free radicals was estimated to be in the pM range that is within the physiological range of in vivo free radical expression. In conclusion, the free radicals show a strong paramagnetic effect that may be utilized as an endogenous MRI contrast for its non-invasive in vivo imaging.

  3. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent.

    PubMed

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-15

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Paramagnetic, silicon quantum dots for magnetic resonance and two photon imaging of macrophages

    PubMed Central

    Tu, Chuqiao; Ma, Xuchu; Pantazis, Periklis; Kauzlarich, Susan M.; Louie, Angelique Y.

    2010-01-01

    Quantum dots (QDs) are an attractive platform for building multimodality imaging probes, but the toxicity for typical cadmium QDs limits enthusiasm for their clinical use. Nontoxic, silicon QDs are more promising but tend to require short wavelength excitations which are subject to tissue scattering and autofluorescence artifacts. Herein, we report the synthesis of paramagnetic, manganese-doped, silicon QDs ((SiMn QDs) and demonstrate that they are detectable by both MRI and near infrared excited, two-photon imaging. The SiMn QDs are coated with dextran sulfate to target them to scavenger receptors on macrophages, a biomarker of vulnerable plaques. TEM images show that isolated QDs have an average core diameter of 4.3 ± 1.0 nm and the hydrodynamic diameters of coated nanoparticles range from 8.3 to 43 nm measured by Dynamic Light Scattering (DLS). The SiMn QDs have an r1 relaxivity of 25.50 ± 1.44 mM−1s−1 and an r2 relaxivity of 89.01 ± 3.26 mM−1s−1 (37 °C, 1.4 T). They emit strong fluorescence at 441 nm with a quantum yield of 8.1% in water. Cell studies show that the probes specifically accumulate in macrophages by a receptor-mediated process, are nontoxic to mammalian cells, and produce distinct contrast in both T1-weighted magnetic resonance and single- or two-photon excitation fluorescence images. These QDs have promising diagnostic potential as high macrophage density is associated with atherosclerotic plaques vulnerable to rupture. PMID:20092250

  5. Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages.

    PubMed

    Tu, Chuqiao; Ma, Xuchu; Pantazis, Periklis; Kauzlarich, Susan M; Louie, Angelique Y

    2010-02-17

    Quantum dots (QDs) are an attractive platform for building multimodality imaging probes, but the toxicity for typical cadmium QDs limits enthusiasm for their clinical use. Nontoxic, silicon QDs are more promising but tend to require short-wavelength excitations which are subject to tissue scattering and autofluorescence artifacts. Herein, we report the synthesis of paramagnetic, manganese-doped, silicon QDs (Si(Mn) QDs) and demonstrate that they are detectable by both MRI and near-infrared excited, two-photon imaging. The Si(Mn) QDs are coated with dextran sulfate to target them to scavenger receptors on macrophages, a biomarker of vulnerable plaques. TEM images show that isolated QDs have an average core diameter of 4.3 +/- 1.0 nm and the hydrodynamic diameters of coated nanoparticles range from 8.3 to 43 nm measured by dynamic light scattering (DLS). The Si(Mn) QDs have an r(1) relaxivity of 25.50 +/- 1.44 mM(-1) s(-1) and an r(2) relaxivity of 89.01 +/- 3.26 mM(-1) s(-1) (37 degrees C, 1.4 T). They emit strong fluorescence at 441 nm with a quantum yield of 8.1% in water. Cell studies show that the probes specifically accumulate in macrophages by a receptor-mediated process, are nontoxic to mammalian cells, and produce distinct contrast in both T(1)-weighted magnetic resonance and single- or two-photon excitation fluorescence images. These QDs have promising diagnostic potential as high macrophage density is associated with atherosclerotic plaques vulnerable to rupture.

  6. RELAX: detecting relaxed selection in a phylogenetic framework.

    PubMed

    Wertheim, Joel O; Murrell, Ben; Smith, Martin D; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2015-03-01

    Relaxation of selective strength, manifested as a reduction in the efficiency or intensity of natural selection, can drive evolutionary innovation and presage lineage extinction or loss of function. Mechanisms through which selection can be relaxed range from the removal of an existing selective constraint to a reduction in effective population size. Standard methods for estimating the strength and extent of purifying or positive selection from molecular sequence data are not suitable for detecting relaxed selection, because they lack power and can mistake an increase in the intensity of positive selection for relaxation of both purifying and positive selection. Here, we present a general hypothesis testing framework (RELAX) for detecting relaxed selection in a codon-based phylogenetic framework. Given two subsets of branches in a phylogeny, RELAX can determine whether selective strength was relaxed or intensified in one of these subsets relative to the other. We establish the validity of our test via simulations and show that it can distinguish between increased positive selection and a relaxation of selective strength. We also demonstrate the power of RELAX in a variety of biological scenarios where relaxation of selection has been hypothesized or demonstrated previously. We find that obligate and facultative γ-proteobacteria endosymbionts of insects are under relaxed selection compared with their free-living relatives and obligate endosymbionts are under relaxed selection compared with facultative endosymbionts. Selective strength is also relaxed in asexual Daphnia pulex lineages, compared with sexual lineages. Endogenous, nonfunctional, bornavirus-like elements are found to be under relaxed selection compared with exogenous Borna viruses. Finally, selection on the short-wavelength sensitive, SWS1, opsin genes in echolocating and nonecholocating bats is relaxed only in lineages in which this gene underwent pseudogenization; however, selection on the functional

  7. Effect of magnetic coupling on non-radiative relaxation time of Fe3+ sites on LaAl1-xFexO3 pigments

    NASA Astrophysics Data System (ADS)

    Novatski, A.; Somer, A.; Maranha, F. G.; de Souza, E. C. F.; Andrade, A. V. C.; Antunes, S. R. M.; Borges, C. P. F.; Dias, D. T.; Medina, A. N.; Astrath, N. G. C.

    2018-02-01

    Inorganic pigments of the system LaAl1-xFexO3 were prepared by the Pechini and the Solid State Reaction (SSR) methods. Magnetic interactions and non-radiative relaxation time were analyzed by means of phase-resolved photoacoustic spectroscopy and electron paramagnetic resonance (EPR) techniques. EPR results show a change in the magnetic behavior from paramagnetic (x = 0.2 and 0.4) to antiferromagnetic (x = 1.0), which is believed to be a result of the SSR preparation method. Trends in the optical absorption bands of the Fe3+ are attributed to their electronic transitions, and the increase in the band's intensity at 480 and 550 nm was assigned to the increase in the magnetic coupling between Fe-Fe. The phase-resolved method is capable of distinguishing between the two preparation methods, and it is possible to infer that SSR modifies the magnetic coupling of Fe-Fe with x.

  8. Separation of diamagnetic and paramagnetic anisotropy by high-field, low-temperature torque measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Volkmar; Hirt, Ann M.; Rosselli, Pascal; Martín-Hernández, Fátima

    2007-01-01

    The anisotropy of magnetic susceptibility (AMS) of rocks can be composed of contributions from ferromagnetic, paramagnetic and diamagnetic minerals. However, in general the AMS of only one fraction is of interest. While there are several approaches to isolate the ferromagnetic contribution to the AMS, the separation of the diamagnetic from the paramagnetic contribution is still problematic. A new method for the separation of these two contributions based on high-field torque measurements at room and low-temperature is presented. The paramagnetic anisotropy increases at low temperature according to the Curie-Weiss law, whereas the diamagnetic contribution is temperature independent. If the paramagnetic AMS is due to perfectly oblate or prolate minerals and the ratio of the susceptibility differences at two temperatures is known, paramagnetic and diamagnetic AMS can be separated. When measuring in fields high enough to saturate the ferromagnetic phases all three contributions to the AMS can be separated. The separation of paramagnetic and diamagnetic AMS is demonstrated on natural crystals and synthetic calcite-muscovite aggregates. A high-field torque magnetometer, equipped with a cryostat for measurements at 77 K, allows sensitive measurements at two different temperatures. The sensitivity at 77 K is 3 × 10-7 J and standard-sized (palaeomagnetic) samples of 11.4 cm3 can be measured. This new method is especially suited for the investigation of diamagnetic fabrics of impure carbonate rocks.

  9. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    PubMed

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  10. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocker, J.; Cornu, D.; Kieseritzky, E.

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of themore » resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect

  11. Optical detection of paramagnetic centres: From crystals to glass-ceramics

    NASA Astrophysics Data System (ADS)

    Rogulis, Uldis

    2016-07-01

    An unambiguous attribution of the absorption spectra to definite paramagnetic centres identified by the EPR techniques in the most cases is problematic. This problem may be solved by applying of a direct measurement techniques—the EPR detected via the magnetic circular dichroism, or briefly MCD-EPR. The present survey reports on the advantages and disadvantages applying the MCD-EPR techniques to simple and complex paramagnetic centres in crystals as well as glasses and glass-ceramics.

  12. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  13. Quasiclassical Theory on Third-Harmonic Generation in Conventional Superconductors with Paramagnetic Impurities

    NASA Astrophysics Data System (ADS)

    Jujo, Takanobu

    2018-02-01

    We investigate the third-harmonic generation (THG) of s-wave superconductors under microwave pulse irradiation. We consider the effect of paramagnetic impurities on the THG intensity of dirty superconductors. The nonlinear response function is calculated using the method of the quasiclassical Green function. It is shown that the amplitude mode is included as the vertex correction and makes a predominant contribution to the THG intensity. When the effect of paramagnetic impurities is weak, the THG intensity shows a peak at the temperature at which the superconducting gap is about the same as the frequency of the incident pulse, similarly to in experiments. As the effect of paramagnetic impurities is strengthened, the peak of the THG intensity disappears. This indicates that time-reversal symmetry breaking due to paramagnetic impurities eliminates the well-defined amplitude mode. The result of our calculation shows that the existence of the amplitude mode can be confirmed through the THG intensity. The result of a semiquantitative calculation is in good agreement with the experimental result, and it also shows that the diamagnetic term is negligible.

  14. Point defects in crystalline zircon (zirconium silicate), ZrSiO4: electron paramagnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Tennant, W. C.; Claridge, R. F. C.; Walsby, C. J.; Lees, N. S.

    This article outlines the present state of knowledge of paramagnetic defects in crystalline zircon as obtained mainly, but not exclusively, from electron paramagnetic resonance (EPR) studies in crystalline zircon (zirconium silicate, ZrSiO4). The emphasis is on single-crystal studies where, in principle, unambiguous analysis is possible. Firstly, the crystallography of zircon is presented. Secondly, the relationships between available crystal-site symmetries and the symmetries of observed paramagnetic species in zircon, and how these observations lead to unambiguous assignments of point-group symmetries for particular paramagnetic species are detailed. Next, spin-Hamiltonian (SH) analysis is discussed with emphasis on the symmetry relationships that necessarily exist amongst the Laue classes of the crystal sites in zircon, the paramagnetic species occupying those sites and the SH itself. The final sections of the article then survey the results of EPR studies on zircon over the period 1960-2002.

  15. Electron paramagnetic resonance of a 10B-containing heterocyclic radical

    NASA Astrophysics Data System (ADS)

    Eaton, Sandra S.; Ngendahimana, Thacien; Eaton, Gareth R.; Jupp, Andrew R.; Stephan, Douglas W.

    2018-05-01

    Electron paramagnetic resonance measurements for a 10B-containing heterocyclic phenanthrenedione radical, (C6F5)2B(O2C14H8), were made at X-band in 9:1 toluene:dichloromethane from 10 to 293 K and in toluene from 180 to 293 K. In well-deoxygenated 0.1 mM toluene solution at room temperature hyperfine couplings to 10B, four pairs of protons and five pairs of fluorines contribute to a continuous wave spectrum with many resolved lines. Hyperfine couplings were adjusted to provide the best fit for spectra of the radical enriched in 10B and the analogous radical synthesized with 10,11B in natural abundance, resulting in small refinements of the hyperfine coupling constants previously reported for the natural abundance sample. Electron spin relaxation rates at temperatures between 15 and 293 K were similar for samples containing 10B and natural isotope abundance. Analysis of electron spin echo envelope modulation and hyperfine correlation spectroscopy data at 80 K found Axx = -7.5 ± 0.3, Ayy = -8.5 ± 0.3, and Azz = -10.8 ± 0.3 MHz for 11B, which indicates small spin density on the boron. The spin echo and hyperfine spectroscopy data for the 10B -containing radical are consistent with the factor of 2.99 smaller hyperfine values for 10B than for 11B.

  16. CARRIER-LATTICE RELAXATION FOR BROADENING EPR LINEWIDTH IN Nd0.55Sr0.45MnO3

    NASA Astrophysics Data System (ADS)

    Fan, Jiyu; Zhang, Xiyuan; Tong, Wei; Zhang, Lei; Zhang, Weichun; Zhu, Yan; Shi, Yangguang; Hu, Dazhi; Hong, Bo; Ying, Yao; Ling, Langsheng; Pi, Li; Zhang, Yuheng

    2013-12-01

    In this paper, we report the electron paramagnetic resonance (EPR) study of perovskite manganite Nd0.55Sr0.45MnO3. Experimental data reveal that the EPR linewidth broadens with a quasilinear manner up to 480 K. The broadening of the EPR linewidth can be understood in terms of the shortening of carrier-lattice relaxation time due to the occurrence of strong carrier-phonon interactions. Two same activation energies obtained respectively from the temperature dependence of EPR intensity and resistivity indicate that the linewidth variation is correlated to the small polaron hopping. Therefore, the carrier-lattice coupling play a major role for deciding its magnetism in the present system.

  17. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    PubMed

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-04

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.

  18. Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.

    PubMed

    Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori

    2011-12-05

    We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

  19. Nuclear relaxation behavior of the superconducting cuprates: Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Walstedt, R. E.; Bell, R. F.; Mitzi, D. B.

    1991-10-01

    Nuclear-magnetic-resonance data are presented and analyzed for the high-Tc compound Bi2Sr2CaCu2O8 for two oxygen doping levels. Both sample conditions lead to spin-gap behavior for the NMR shift, with a precursive downturn in the data at T>Tc. In addition, the relaxation times T1 obey the relation (T1T)-1~Ks(T) at low temperatures (T<~100 K), where Ks(T) is the spin paramagnetic shift. This relation, which is also obeyed by other superconductors, is argued to be related to the spin-gap effects and thus incompatible with a Fermi-liquid approach to the understanding of these systems.

  20. Ionic Liquids and Solids with Paramagnetic Anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, Jr., E.W.; Wishart, J.; Krieger, B.M.

    2010-06-18

    Four paramagnetic ionic compounds have been prepared and their magnetic, structural and thermal properties have been investigated. The four compounds are methylbutylpyrrolidinium tetrachloroferrate(III) ([Pyrr{sub 14}]{sup +}/[FeCl{sub 4}]{sup -}), methyltributylammonium tetrachloroferrate(III) ([N{sub 1444}]{sup +}/[FeCl{sub 4}]{sup -}), butylmethylimidazolium tetrachloroferrate(III) ([bmim]{sup +}/[FeCl{sub 4}]{sup -}) and tetrabutylammonium bromotrichloroferrate(III) ([N{sub 4444}]{sup +}/[FeBrCl{sub 3}]{sup -}). Temperature-dependent studies of their magnetic behaviors show that all four compounds are paramagnetic at ambient temperatures. Glass transitions are observed for only two of the four compounds, [Pyrr{sub 14}]{sup +}/[FeCl{sub 4}]{sup -} and [bmim]{sup +}/[FeCl{sub 4}]{sup -}. Crystal structures for [Pyrr{sub 14}]{sup +}/[FeCl{sub 4}]{sup -} and [N{sub 1444}]{sup +}/[FeCl{sub 4}]{sup -}more » are compared with the previously reported [N{sub 4444}]{sup +}/[FeBrCl{sub 3}]{sup -}.« less

  1. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    PubMed

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Paramagnetic resonance and susceptibility of ilmenite, FeTiO3 crystal

    NASA Technical Reports Server (NTRS)

    Mcdonald, P. F.; Parasiris, A.; Pandey, R. K.; Gries, B. L.; Kirk, W. P.

    1991-01-01

    Large high-purity single crystals of FeTiO3 with ilmenite structure have been grown from a stoichiometric melt of Fe2O3 and TiO2 under an inert atmosphere using the modified Czochralski technique. Susceptibility and X-band paramagnetic resonance studies have been performed. Susceptibility measurements indicate a Neel temperature of about 59 K. The paramagnetic resonance spectrum for magnetic field perpendicular to the crystal c axis consists of a portion of a single, very intense approximately Lorentzian absorption line with its peak at about 600 G and half width at half maximum almost 1200 G. The absorption extends to zero magnetic field. For magnetic field approximately parallel to the c axis, the paramagnetic absorption is much smaller and may be considered a superposition of two approximately Lorentzian line shapes. The magnetic resonance measurements indicate a weak temperature dependence and large angular anisotropy.

  3. After stress comes relax(ation)

    NASA Astrophysics Data System (ADS)

    Isa, Lucio

    2015-11-01

    Viscoelastic materials take a finite time to relax and dissipate stress and this time scale is directly connected to the microstructure of the material itself. In their paper, Gomez-Solano and Bechinger (2015 New J. Phys. 17 103032) perform ‘miniaturized’ mechanical tests on a range of viscoelastic materials by dragging a micron-sized bead across them using optical tweezers. Upon switching off all the external forces, they watch the bead recoil to its original position and by tracking its motion they pinpoint the relaxation time of the material. These experiments open up a new range of possibilities to characterize stress relaxation at the microscale just by watching it.

  4. Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance

    DTIC Science & Technology

    1997-12-01

    Armed Forces Rad I Research Institute Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance A...of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance Authored by Scientific Center of Radiation Medicine Academy of Medical...libraries associated with the U.S. Government’s Depository Library System. Preface On April 26, 1986, Reactor #4 at the Chernobyl Nuclear Power Plant near

  5. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  6. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Slow magnetic relaxation in a dimeric Mn2Ca2 complex enabled by the large Mn(iii) rhombicity.

    PubMed

    Arauzo, Ana; Bartolomé, Elena; Benniston, Andrew C; Melnic, Silvia; Shova, Sergiu; Luzón, Javier; Alonso, Pablo J; Barra, Anne-Laure; Bartolomé, Juan

    2017-01-17

    In this paper we present the characterization of a complex with the formula [Mn 2 Ca 2 (hmp) 6 (H 2 O) 4 (CH 3 CN) 2 ](ClO 4 ) 4 (1), where hmp-H = 2-(hydroxymethyl)pyridine. Compound 1 crystallizes in the monoclinic space group C2/c with the cation lying on an inversion centre. Static magnetic susceptibility, magnetization and heat capacity measurements reflect a unique Mn(iii) valence state, and single-ion ligand field parameters with remarkable large rhombic distortion (D/k B = -6.4 K, E/k B = -2.1 K), in good agreement with the high-field electron paramagnetic resonance experiments. At low temperature Mn 2 Ca 2 cluster behaves as a system of ferromagnetically coupled (J/k B = 1.1 K) Mn dimers with a S T = 4 and m T = ±4 ground state doublet. Frequency dependent ac susceptibility measurements reveal the slow magnetic relaxation characteristic of a single molecule magnet (SMM) below T = 4 K. At zero magnetic field, an Orbach-type spin relaxation process (τ ∼ 10 -5 s) with an activation energy E a = 5.6 K is observed, enabled by the large E/D rhombicity of the Mn(iii) ions. Upon the application of a magnetic field, a second, very slow process (τ ∼ 0.2 s) is observed, attributed to a direct relaxation mechanism with enhanced relaxation time owing to the phonon bottleneck effect.

  8. Spin injection and spin transport in paramagnetic insulators

    DOE PAGES

    Okamoto, Satoshi

    2016-02-22

    We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transition temperature, it decreases monotonically and disappears at zero temperature. We also analyze the bulk spin conductance. We show that the conductance becomes zero at zero temperature as predictedmore » by linear spin wave theory but increases with temperature and is maximized around the magnetic transition temperature. These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators.« less

  9. Separation of Diamagnetic and Paramagnetic Fabrics Reveals Strain Directions in Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Issachar, R.; Levi, T.; Marco, S.; Weinberger, R.

    2018-03-01

    We present a new procedure for separating magnetic fabrics in coccolith-bearing chalk samples, demonstrated in the case studies of three sites located within the Dead Sea Fault (DSF) plate boundary. The separation is achieved by combining measurements of room temperature and low-temperature anisotropy of magnetic susceptibility (RT-AMS and LT-AMS, respectively) with anisotropy of anhysteretic remanence magnetization (AARM). The LT-AMS, measured at 77 K, enhances the fabric of paramagnetic clay minerals. The AARM represents the fabric of ferromagnetic Fe oxides. By subtracting the paramagnetic and ferromagnetic fabrics from the RT-AMS, the diamagnetic fabric is separated. In the studied samples, we found that the ferromagnetic contribution to the bulk magnetic fabric is negligible and could be excluded from the subtraction procedure. Our analysis indicates that in chalks with a negligible ferromagnetic contribution, diamagnetic fabric predominates the rock bulk magnetic fabric, if the mean susceptibility is <-6 × 10-6 SI, whereas with a mean susceptibility >11 × 10-6 SI, paramagnetic fabric predominates. In the studied rocks, the paramagnetic clay minerals preserve the original depositional fabric, whereas the diamagnetic minerals show a tectonic fabric. We propose a mechanism by which coccolith rotation under tectonic strain contributes to the development of the diamagnetic fabric parallel to the shortening direction. We infer that the diamagnetic fabrics of the studied rocks indicate strain regime of approximately N-S horizontal shortening near strands of the DSF system. This suggests a deflection of the regional principal strain axes near the DSF. The diamagnetic fabric is more sensitive to tectonic strain than paramagnetic fabric in chalks and provides a valuable strain indicator near major faults.

  10. Relaxation-Induced Anxiety: Paradoxical Anxiety Enhancement Due to Relaxation Training.

    ERIC Educational Resources Information Center

    Heide, Frederick J.; Borkovec, T. D.

    1983-01-01

    Documented relaxation-induced anxiety in 14 subjects suffering from tension who were given training in progressive relaxation and mantra meditation. Four of the subjects displayed clinical evidence of an anxiety reaction during a preliminary practice period. Progressive relaxation produced less evidence of relaxation-induced anxiety. (Author/JAC)

  11. Paramagnetic particles and mixing in micro-scale flows.

    PubMed

    Calhoun, R; Yadav, A; Phelan, P; Vuppu, A; Garcia, A; Hayes, M

    2006-02-01

    Mixing in microscale flows with rotating chains of paramagnetic particles can be enhanced by adjusting the ratio of viscous to magnetic forces so that chains dynamically break and reform. Lattice Boltzmann (LB) simulations were used to calculate the interaction between the fluid and suspended paramagnetic particles under the influence of a rotating magnetic field. Fluid velocities obtained from the LB simulations are used to solve the advection diffusion equation for massless tracer particles. At relatively high Mason numbers, small chains result in low edge velocities, and hence mixing is slower than at other Mason numbers. At low Mason numbers, long, stable chains form and produce little mixing toward the center of the chains. A peak in mixing rate is observed when chains break and reform. The uniformity of mixing is greater at higher Mason numbers because more small chains result in a larger number of small mixing areas.

  12. Electron paramagnetic resonance of natural and gamma-irradiated alunite and kaolin mineral powders

    NASA Astrophysics Data System (ADS)

    Koksal, F.; Koseoglu, R.; Saka, I.; Basaran, E.; Sener, F.

    2004-06-01

    Natural alunite and kaolin minerals obtained from West Anatolia were investigated by electron paramagnetic resonance (EPR) in natural and gamma-irradiated states at room temperature and at 113 K. The paramagnetic centres at ambient temperature in natural alunite were attributed to the (C) over dot H 2OH, (C) over dot O-3(-), (S) over dot O-2(-), (C) over dot O-2(-) and [AlO4 ](0) radicals. In natural kaolin, the paramagnetic centres were attributed to the (C) over dot O-3(-), (S) over dot O-2(-) (C) over dot O-2(-) and [AlO4](0) radicals. The gamma-irradiation does not produce any detectable effects on these radicals. At 113 K, the lines for (C) over dot H2OH could not be observed well, probably due to the anisotropic behaviour of the hyperfine interaction of the methylene protons, but the lines for [AlO4](0) centres were found to be perfectly observable at above 20 mW microwave power in both alunite and kaolin powders before and after gamma-irradiation. The EPR parameters of the observed paramagnetic centres were reported.

  13. Trispyrazolylborate Complexes: An Advanced Synthesis Experiment Using Paramagnetic NMR, Variable-Temperature NMR, and EPR Spectroscopies

    ERIC Educational Resources Information Center

    Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.

    2017-01-01

    A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…

  14. Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release.

    PubMed

    Bettini, Simona; Bonfrate, Valentina; Syrgiannis, Zois; Sannino, Alessandro; Salvatore, Luca; Madaghiele, Marta; Valli, Ludovico; Giancane, Gabriele

    2015-09-14

    A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery.

  15. Breathing and Relaxation

    MedlinePlus

    ... Programs Health Information Doctors & Departments Clinical Research & Science Education & Training Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ...

  16. Spin relaxation in geometrically frustrated pyrochlores

    NASA Astrophysics Data System (ADS)

    Dunsiger, Sarah Ruth

    This thesis describes muSR experiments which focus on systems where the magnetic ions occupy the vertices of edge or corner sharing triangular units, in particular the pyrochlores A2B2O7. The scientific interest in pyrochlores is based on the fact that they display novel magnetic behaviour at low temperatures due to geometrical frustration. The ground state of these systems is sensitively dependent on such factors as the range of the spin-spin interactions, disorder, anisotropy, thermal and quantum fluctuations. For example, Y2Mo2O7 shows many features reminiscent of a conventional spin glass, even though this material has nominally zero chemical disorder. It is found that the muon spin polarisation obeys a time-field scaling relation which indicates that the spin-spin autocorrelation function has a power law form in time, in stark contrast with the exponential form often assumed for conventional magnets above their transition temperature. Gd2Ti2O7 shows long range order, but only at a temperature much lower than its Curie-Weiss temperature, a signature of a frustrated system. In the paramagnetic regime, it is well described by an isotropic Heisenberg Hamiltonian with nearest neighbour couplings in the presence of a Zeeman interaction, from which the spin-spin autocorrelation function may be calculated as a power series in time. The muon spin relaxation rate decreases with magnetic field as the Zeeman energy becomes comparable with the exchange coupling between Gd spins. Thus, an independent measure of the exchange coupling or equivalently the Gd spin fluctuation rate is extracted. By contrast, Tb2Ti2O7 has been identified as a type of cooperative paramagnet. Short range correlations develop below 50 K. However, there is no long range ordering down to very low temperatures (0.075 K). The Tb3+ ion is subject to strong crystal electric field effects: point charge calculations indicate that this system is Ising like at low temperatures. Thus this system may be

  17. Paramagnetic or diamagnetic persistent currents? A topological point of view

    NASA Astrophysics Data System (ADS)

    Waintal, Xavier

    2009-03-01

    A persistent current flows at low temperatures in small conducting rings when they are threaded by a magnetic flux. I will discuss the sign of this persistent current (diamagnetic or paramagnetic response) in the special case of N electrons in a one dimensional ring [1]. One dimension is very special in the sense that the sign of the persistent current is entirely controlled by the topology of the system. I will establish lower bounds for the free energy in the presence of arbitrary electron-electron interactions and external potentials. Those bounds are the counterparts of upper bounds derived by Leggett using another topological argument. Rings with odd (even) numbers of polarized electrons are always diamagnetic (paramagnetic). The situation is more interesting with unpolarized electrons where Leggett upper bound breaks down: rings with N=4n exhibit either paramagnetic behavior or a superconductor-like current-phase relation. The topological argument provides a rigorous justification for the phenomenological Huckel rule which states that cyclic molecules with 4n + 2 electrons like benzene are aromatic while those with 4n electrons are not. [4pt] [1] Xavier Waintal, Geneviève Fleury, Kyryl Kazymyrenko, Manuel Houzet, Peter Schmitteckert, and Dietmar Weinmann Phys. Rev. Lett.101, 106804 (2008).

  18. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.

    PubMed

    Paratala, Bhavna S; Jacobson, Barry D; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.

  19. Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    PubMed Central

    Paratala, Bhavna S.; Jacobson, Barry D.; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents. PMID:22685555

  20. Classical topological paramagnetism

    NASA Astrophysics Data System (ADS)

    Bondesan, R.; Ringel, Z.

    2017-05-01

    Topological phases of matter are one of the hallmarks of quantum condensed matter physics. One of their striking features is a bulk-boundary correspondence wherein the topological nature of the bulk manifests itself on boundaries via exotic massless phases. In classical wave phenomena, analogous effects may arise; however, these cannot be viewed as equilibrium phases of matter. Here, we identify a set of rules under which robust equilibrium classical topological phenomena exist. We write simple and analytically tractable classical lattice models of spins and rotors in two and three dimensions which, at suitable parameter ranges, are paramagnetic in the bulk but nonetheless exhibit some unusual long-range or critical order on their boundaries. We point out the role of simplicial cohomology as a means of classifying, writing, and analyzing such models. This opens an experimental route for studying strongly interacting topological phases of spins.

  1. Thermodynamic stability and relaxation studies of small, triaza-macrocyclic Mn(II) chelates.

    PubMed

    de Sá, Arsénio; Bonnet, Célia S; Geraldes, Carlos F G C; Tóth, Éva; Ferreira, Paula M T; André, João P

    2013-04-07

    Due to its favorable relaxometric properties, Mn(2+) is an appealing metal ion for magnetic resonance imaging (MRI) contrast agents. This paper reports the synthesis and characterization of three new triazadicarboxylate-type ligands and their Mn(2+) chelates (NODAHep, 1,4,7-triazacyclononane-1,4-diacetate-7-heptanil; NODABA, 1,4,7-triazacyclononane-1,4-diacetate-7-benzoic acid; and NODAHA, 1,4,7-triazacyclononane-1,4-diacetate-7-hexanoic acid). The protonation constants of the ligands and the stability constants of the chelates formed with Mn(2+) and the endogenous Zn(2+) ion have been determined by potentiometry. In overall, the thermodynamic stability of the chelates is lower than that of the corresponding NOTA analogues (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetate), consistent with the decreased number of coordinating carboxylate groups. Variable temperature (1)H NMRD and (17)O NMR measurements have been performed on the paramagnetic chelates to provide information on the water exchange rates and the rotational dynamics. The values of the (17)O chemical shifts are consistent with the presence of one water molecule in the first coordination sphere of Mn(2+). The three complexes are in the slow to intermediate regime for the water exchange rate, and they all display relatively high rotational correlation times, which explain the relaxivity values between 4.7 and 5.8 mM(-1) s(-1) (20 MHz and 298 K). These relaxivities are higher than expected for Mn(2+) chelates of such size and comparable to those of small monohydrated Gd(3+) complexes. The amphiphilic [Mn(NODAHep)] forms micelles above 22 mM (its critical micellar concentration was determined by relaxometry and fluorescence), and interacts with HSA via its alkylic carbon chain providing a 60% relaxivity increase at 20 MHz due to a longer tumbling time.

  2. Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Mihalceanu, Laura; Vasyuchka, Vitaliy I.; Bozhko, Dmytro A.; Langner, Thomas; Nechiporuk, Alexey Yu.; Romanyuk, Vladyslav F.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    Low-energy consumption enabled by charge-free information transport, which is free from Joule heating, and the ability to process phase-encoded data through the use of nanometer-sized interference devices operating at GHz and THz frequencies are just a few benefits of spin-wave-based technologies. Moreover, when approaching cryogenic temperatures, quantum phenomena in spin-wave systems pave the path towards quantum information processing. In view of these applications, the lifetime of magnons—spin-wave quanta—is of high relevance for the fields of magnonics, magnon spintronics, and quantum computing. Here, the relaxation behavior of parametrically excited magnons having wave numbers from zero up to 6 ×105rad cm-1 was experimentally investigated in the temperature range from 20 to 340 K in single-crystal yttrium iron garnet (YIG) films of different thickness epitaxially grown on gallium gadolinium garnet (GGG) substrates as well as in a bulk YIG crystal—the magnonic materials featuring the lowest magnetic damping thus far known. Due to magnon-magnon interactions, the relaxation rate of the parametric magnons increases with an increase of their wave numbers. In the thinner samples, this increase is less pronounced, which can be associated with a stronger quantization of their magnon spectra. For the YIG films, we have found a significant increase in the magnon relaxation rate below 150 K—up to eight times the reference value at 340 K—in the entire range of probed wave numbers, which is in direct opposition to that in ultrapure YIG crystals. This increase is related to rare-earth impurities contaminating the YIG samples with a slight contribution caused by the coupling of spin waves to the spin system of the paramagnetic GGG substrate at the lowest temperatures.

  3. An EPR study on tea: Identification of paramagnetic species, effect of heat and sweeteners

    NASA Astrophysics Data System (ADS)

    Bıyık, Recep; Tapramaz, Recep

    2009-10-01

    Tea ( Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn 2+ and Fe 3+ centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 °C and the semiquinone radical lives up to 140 °C while Mn 2+ sextet disappears just above 100 °C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn 2+ and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe 3+ line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  4. An EPR study on tea: identification of paramagnetic species, effect of heat and sweeteners.

    PubMed

    Biyik, Recep; Tapramaz, Recep

    2009-10-15

    Tea (Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn(2+) and Fe(3+) centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 degrees C and the semiquinone radical lives up to 140 degrees C while Mn(2+) sextet disappears just above 100 degrees C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn(2+) and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe(3+) line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  5. Differentiable McCormick relaxations

    DOE PAGES

    Khan, Kamil A.; Watson, Harry A. J.; Barton, Paul I.

    2016-05-27

    McCormick's classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick's relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiablemore » variant of McCormick's original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Furthermore, extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.« less

  6. Equation of state of paramagnetic CrN from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Steneteg, Peter; Alling, Björn; Abrikosov, Igor A.

    2012-04-01

    The equation of state for chromium nitride has been debated in the literature in connection with a proposed collapse of its bulk modulus following the pressure-induced transition from the paramagnetic cubic phase to the antiferromagnetic orthorhombic phase [F. Rivadulla , Nature Mater.1476-112210.1038/nmat2549 8, 947 (2009); B. Alling , Nature Mater.1476-112210.1038/nmat2722 9, 283 (2010)]. Experimentally the measurements are complicated due to the low transition pressure, while theoretically the simulation of magnetic disorder represents a major challenge. Here a first-principles method is suggested for the calculation of thermodynamic properties of magnetic materials in their high-temperature paramagnetic phase. It is based on ab initio molecular dynamics and simultaneous redistributions of the disordered but finite local magnetic moments. We apply this disordered local moments molecular dynamics method to the case of CrN and simulate its equation of state. In particular the debated bulk modulus is calculated in the paramagnetic cubic phase and is shown to be very similar to that of the antiferromagnetic orthorhombic CrN phase for all considered temperatures.

  7. Hyperfine Structure and Exchange Narrowing of Paramagnetic Resonance

    DOE R&D Accomplishments Database

    Townes, C. H.; Turkevich, J.

    1950-01-01

    Discussion of electronic paramagnetic resonance for the free radical ?, ?-diphenyl ?-picryl hydrazyl as observed by its effect on the transmission of microwave through a TE{sub 01} cavity with a small amount of the free radical placed approximately on the axis of the cavity; the half-width of this resonance at half maximum absorption was 1.45 oersteds.

  8. Upcycling : converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pol, V.

    2010-06-15

    The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative 'upcycling' processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactormore » under autogenic pressure (1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LDPE, HDPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires.« less

  9. Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres.

    PubMed

    Pol, Vilas Ganpat

    2010-06-15

    The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative "upcycling" processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactor under autogenic pressure ( approximately 1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LDPE, HDPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires.

  10. Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen.

    PubMed

    Zhang, Mingjia; Wang, Xiaoxiong; Sun, Huijuan; Wang, Ning; Lv, Qing; Cui, Weiwei; Long, Yunze; Huang, Changshui

    2017-09-14

    The new two-dimensional graphitic material, graphdiyne, has attracted great interest recently due to the superior intrinsic semiconductor properties. Here we investigate the magnetism of pure graphdiyne material and find it demonstrating a remarkable paramagnetic characteristic, which can be attributed to the appearance of special sp-hybridized carbon atoms. On this basis, we further introduce nitrogen with 5.29% N/C ratio into graphdiyne followed by simply annealing in a dopant source and realize a twofold enhancement of saturation moment at 2 K. Associate with the density of states calculation, we investigate the influence of the nitrogen atom doping sites on paramagnetism, and further reveal the important role of doped nitrogen atom on benzene ring in improving local magnetic moment. These results can not only help us deeply understand the intrinsic magnetism of graphdiyne, but also open an efficient way to improve magnetism of graphdiyne by hetero atom doping, like nitrogen doping, which may promote the potential application of graphdiyne in spintronics.

  11. Effects of progressive relaxation and classical music on measurements of attention, relaxation, and stress responses.

    PubMed

    Scheufele, P M

    2000-04-01

    The present experiment examined relaxation using different experimental conditions to test whether the effects of individual elements of relaxation could be measured, whether specific effects were revealed, or whether relaxation resulted from a generalized "relaxation response." Sixty-seven normal, male volunteers were exposed to a stress manipulation and then to one of two relaxation (Progressive Relaxation, Music) or control (Attention Control, Silence) conditions. Measurements of attention, relaxation, and stress responses were obtained during each phase of the experiment. All four groups exhibited similar performance on behavioral measures of attention that suggested a reduction in physiological arousal following their relaxation or control condition, as well as a decreased heart rate. Progressive Relaxation, however, resulted in the greatest effects on behavioral and self-report measures of relaxation, suggesting that cognitive cues provided by stress management techniques contribute to relaxation.

  12. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  13. Paramagnetic-to-nonmagnetic transition in antiperovskite nitride Cr3GeN studied by 14N-NMR and µSR

    NASA Astrophysics Data System (ADS)

    Takao, K.; Liu, Z.; Uji, K.; Waki, T.; Tabata, Y.; Watanabe, I.; Nakamura, H.

    2017-06-01

    The antiperovskite-related nitride Cr3GeN forms a tetragonal structure with the space group P\\bar{4}{2}1m at room temperature. It shows a tetragonal (P\\bar{4}{2}1m) to tetragonal (I4/mcm) structural transition with a large hysteresis at 300-400 K. The magnetic susceptibility of Cr3GeN shows Curie-Weiss type temperature dependence at high temperature, but is almost temperature-independent below room temperature. We carried out µSR and 14N-NMR microscopy measurements to reveal the magnetic ground state of Cr3GeN. Gradual muon spin relaxation, which is nearly temperature-independent below room temperature, was observed, indicating that Cr3GeN is magnetically inactive. In the 14N-NMR measurement, a quadrupole-split spectrum was obtained at around 14 K = 0. The temperature dependence of 14(1/T1) satisfies the Korringa relation. These experimental results indicate that the ground state of Cr3GeN is Pauli paramagnetic, without antiferromagnetic long-range order.

  14. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  15. Mechanism for the occurrence of paramagnetic planes within magnetically ordered cerium systems

    NASA Astrophysics Data System (ADS)

    Kioussis, Nicholas; Cooper, Bernard R.; Banerjea, Amitava

    1988-11-01

    Hybridization of moderately delocalized f electrons with band electrons gives rise to a highly anisotropic two-ion interaction. Previously it has been shown that such an interaction explains the experimentally observed unusual magnetic behavior of CeBi, yielding a phase transition from a higher-temperature type-I (↑↓) to a lower-temperature type-IA (↑↑↓↓) antiferromagnetic structure. If the hybridization-mediated interaction is the key to understanding the magnetic behavior of such moderately delocalized f-electron systems, we should expect to be able to understand on this basis the even more unusual magnetic behavior of CeSb. In CeSb, there is a sequence of magnetic structures in which the higher-temperature structures involve a periodic stacking of paramagnetic \\{001\\} planes alternating with magnetically ordered \\{001\\} planes of [001]-moment alignment. In this paper we show that such a coexistence of paramagnetic and magnetically ordered Ce3+ sites can be understood on the basis of the hybridization-mediated interionic interaction when there are cubic crystal-field (CF) interactions of comparable strength. The tendency to form paramagnetic planes is found to increase with increasing CF strength (Γ7 ground state); and the stability of the up-down paramagnetic plane arrangement at high temperatures is shown to arise from the reconciliation of the magnetic ordering with the CF interactions. We also find that for a certain range of parameters a different novel situation occurs, with a fully nonmagnetic (singlet) ground state for the Ce3+ ion. This singlet state is not Kondo-like, and occurs in such a way that the system would be expected to fluctuate between two differently polarized states, one of which is the singlet state.

  16. Susceptibility cancellation of a microcoil wound with a paramagnetic-liquid-filled copper capillary

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki; Takasaki, Tomoya; Takegoshi, K.

    2015-09-01

    Even though microcoils improve the sensitivity of NMR measurement of tiny samples, magnetic-field inhomogeneity due to the bulk susceptibility effect of the coil material can cause serious resonance-line broadening. Here, we propose to fabricate the microcoil using a thin, hollow copper capillary instead of a wire and fill paramagnetic liquid inside the capillary, so as to cancel the diamagnetic contribution of the copper. Susceptibility cancellation is demonstrated using aqueous solution of NiSO4. In addition, the paramagnetic liquid serves as coolant when it is circulated through the copper capillary, effectively transferring the heat generated by radiofrequency pulses.

  17. Structural Relaxation of Vit4Amorphous Alloy by the Enthalpy Relaxation

    NASA Astrophysics Data System (ADS)

    O'Reilly, James; Hammond, Vincent

    2002-03-01

    The structural relaxation of an amorphous alloy designated Vit4 has been investigated as a function of thermal history using differential scanning calorimetry. Results indicate that the width of the glass transition region is approximately 30 °C, which is broader than molecular or polymeric glasses but similar to inorganic glasses. The broad transition implies a large distribution of relaxation times, a low activation energy, or a combination of these effects. The Tool-Narayanaswamy model for structural relaxation has been used to analyze the change in fictive temperature that occurs for a series of cooling rates. The activation energy calculated from these data the is 187 kJ/mol, a value that is low compared to other glasses. Using optimization programs, the other relaxation parameters, the characteristic relaxation time, the non-linearity parameter, x, and the fractional exponent of distribution of relaxation times, b, were determined from the experimental specific heat curves. Although the parameters were in good agreement with values typical of other glassy materials, there appears to be less correlation between them than is observed in molecular and polymeric glasses. The results obtained in this study indicate that the structural relaxation of Vit 4 is similar to other glasses except for a low activation energy with high glass transition. This could be due to a low free volume or configurational entropy. The width of the glass transition could result from a large distribution of relaxation times or a low activation energy. The exponent of the distribution of relaxation times, b, is 0.45±0.1 and the non-linearity parameter, x =0.5±0.2. The structural relaxation of Vit 4 is dominated by a low activation energy which is related to the atomic jump motion of hard spheres. The DCp at Tg should be 11.7 J/mol. deg per bead according to Wunderlich’s rule. This means that the change in Cp at Tg in Vit4 can be accounted for by one bead although there are five metal

  18. Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine

    2017-09-01

    Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.

  19. Hyperfine Interactions in the Electron Paramagnetic Resonance Spectra of Point Defects in Wide-Band-Gap Semiconductors

    DTIC Science & Technology

    2014-09-18

    compensation) during growth due to their preferred trivalent charge states. The electron paramagnetic resonance spectrum of the singly ionized chromium ...neutral nitrogen acceptor in ZnO . . . . . . . . . . . . . . . . . . 45 16 Spectrum of the singly ionized chromium acceptor in TiO2 . . . . . . . . . 49...is a single crystal of magnesium oxide that has been doped with chromium . Chromium Cr3+ substitutes for magnesium Mg2+ and creates a paramagnetic

  20. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  1. Paramagnetic and glass transitions in sudoku

    NASA Astrophysics Data System (ADS)

    Williams, A.; Ackland, G. J.

    2012-09-01

    We study the statistical mechanics of a model glassy system based on sudoku, a familiar and popular mathematical puzzle. Sudoku puzzles provide a very rare example of a class of frustrated systems with a unique ground state without symmetry. Here, the puzzle is recast as a thermodynamic system where the number of violated rules defines the energy. We use Monte Carlo simulation to show that the “sudoku Hamiltonian” exhibits two transitions as a function of temperature, a paramagnetic, and a glass transition. Of these, the intermediate condensed phase is the only one that visits the ground state (i.e., it solves the puzzle, though this is not the purpose of the study). Both transitions are associated with an entropy change, paramagnetism measured from the dynamics of the Monte Carlo run, showing a peak in specific heat, while the residual glass entropy is determined by finding multiple instances of the glass by repeated annealing. There are relatively few such simple models for frustrated or glassy systems that exhibit both ordering and glass transitions; sudoku puzzles are unique for the ease with which they can be obtained, with the proof of the existence of a unique ground state via the satisfiability of all constraints. Simulations suggest that in the glass phase there is an increase in information entropy with lowering temperature. In fact, we have shown that sudoku puzzles have the type of rugged energy landscape with multiple minima that typifies glasses in many physical systems. This puzzling result is a manifestation of the paradox of the residual glass entropy. These readily available puzzles can now be used as solvable model Hamiltonian systems for studying the glass transition.

  2. Equivalent Relaxations of Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, S; Low, SH; Teeraratkul, T

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results implymore » that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.« less

  3. OCT-based approach to local relaxations discrimination from translational relaxation motions

    NASA Astrophysics Data System (ADS)

    Matveev, Lev A.; Matveyev, Alexandr L.; Gubarkova, Ekaterina V.; Gelikonov, Grigory V.; Sirotkina, Marina A.; Kiseleva, Elena B.; Gelikonov, Valentin M.; Gladkova, Natalia D.; Vitkin, Alex; Zaitsev, Vladimir Y.

    2016-04-01

    Multimodal optical coherence tomography (OCT) is an emerging tool for tissue state characterization. Optical coherence elastography (OCE) is an approach to mapping mechanical properties of tissue based on OCT. One of challenging problems in OCE is elimination of the influence of residual local tissue relaxation that complicates obtaining information on elastic properties of the tissue. Alternatively, parameters of local relaxation itself can be used as an additional informative characteristic for distinguishing the tissue in normal and pathological states over the OCT image area. Here we briefly present an OCT-based approach to evaluation of local relaxation processes in the tissue bulk after sudden unloading of its initial pre-compression. For extracting the local relaxation rate we evaluate temporal dependence of local strains that are mapped using our recently developed hybrid phase resolved/displacement-tracking (HPRDT) approach. This approach allows one to subtract the contribution of global displacements of scatterers in OCT scans and separate the temporal evolution of local strains. Using a sample excised from of a coronary arteria, we demonstrate that the observed relaxation of local strains can be reasonably fitted by an exponential law, which opens the possibility to characterize the tissue by a single relaxation time. The estimated local relaxation times are assumed to be related to local biologically-relevant processes inside the tissue, such as diffusion, leaking/draining of the fluids, local folding/unfolding of the fibers, etc. In general, studies of evolution of such features can provide new metrics for biologically-relevant changes in tissue, e.g., in the problems of treatment monitoring.

  4. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    PubMed Central

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  5. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    ERIC Educational Resources Information Center

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  6. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Cancer.gov

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  7. Different structure of the complexes of two cytochrome P-450 isozymes with acetanilide by 1H-NMR relaxation and spectrophotometry.

    PubMed

    Woldman YaYu; Weiner, L M; Lyakhovich, V V

    1993-05-28

    The functional and spectral characteristics of the interaction of acetanilide with phenobarbital- and methylcholanthrene- induced rat liver microsomes, as well as with corresponding major isozymes (cytochromes P-450b and P-450c) have been compared. The magnitude of the reverse 1st type binding spectra proved to be negatively correlated with the acetanilide oxidation on isozymes under study. The data on paramagnetic relaxation of acetanilide protons in the presence of P-450 have shown the structure of the enzyme-substrate complex to be different for two isozymes, acetanilide molecule being closer to Fe ion in the active site in the case of P-450c, which is active towards acetanilide oxidation. For the P-450c-acetanilide complex the group oxidized (phenyl) is the closest to Fe ion.

  8. The effects of progressive muscle relaxation and autogenic relaxation on young soccer players' mood states.

    PubMed

    Hashim, Hairul Anuar; Hanafi Ahmad Yusof, Hazwani

    2011-06-01

    This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players' mood states.

  9. Electron paramagnetic resonance in Cu-doped ZnO

    NASA Astrophysics Data System (ADS)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  10. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    PubMed

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  11. The Effects of Progressive Muscle Relaxation and Autogenic Relaxation on Young Soccer Players’ Mood States

    PubMed Central

    Hashim, Hairul Anuar; Hanafi@Ahmad Yusof, Hazwani

    2011-01-01

    Purpose This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. Methods Sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Results Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. Conclusion These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players’ mood states. PMID:22375225

  12. Microscale Demonstration of the Paramagnetism of Liquid Oxygen with a Neodymium Magnet

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2007-01-01

    A microscale classroom demonstration of the paramagnetic behavior of various samples of liquid oxygen with neodymium magnet is being presented. The experiment should be done with extreme caution, as liquid oxygen reacts violently with organic matters.

  13. The role of spinning electrons in paramagnetic phenomena

    NASA Technical Reports Server (NTRS)

    Bose, D. M.

    1986-01-01

    An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagne elements is given.

  14. Experimental application of thermosensitive paramagnetic liposomes for monitoring magnetic resonance imaging guided thermal ablation.

    PubMed

    Frich, Lars; Bjørnerud, Atle; Fossheim, Sigrid; Tillung, Terje; Gladhaug, Ivar

    2004-12-01

    The use of a liposomal paramagnetic agent with a T(1)-relaxivity that increases markedly at temperatures above the phase transition temperature (T(m)) of the liposomal membrane was evaluated during magnetic resonance imaging (MRI) guided hyperthermia ablation. A neodymium-yttrium aluminum garnet (Nd-YAG) laser unit and a radiofrequency ablation system were used for tissue ablation in eight rabbit livers in vivo. One ablation was made in each animal prior to administration of the liposomal agent. Liposomes with a T(m) of 57 degrees C containing gadodiamide (GdDTPA-BMA) were injected iv, and two additional ablations were performed. T(1)-weighted scans were performed in heated tissue, after tissue temperature had normalized, and 15-20 min after normalization of tissue temperature. Increase in signal intensity (DeltaSI) for ablations prior to injection of the agent was 13.0% (SD = 5.7) for the laser group and 9.1% (SD = 7.9) for the radiofrequency group. Signal intensity after administration of the agent unrelated to heating was not statistically significant (DeltaSI = 1.4%, P = 0.35). For ablations made after injection of the agent, a significant increase was found in the laser (DeltaSI = 34.5%, SD = 11.9) and radiofrequency group (DeltaSI = 21.6%, SD = 22.7). The persistent signal enhancement found in areas exposed to a temperature above the threshold temperature above T(m) allows thermal monitoring of MRI guided thermal ablation. (c) 2004 Wiley-Liss, Inc.

  15. Molecular modeling of biomolecules by paramagnetic NMR and computational hybrid methods.

    PubMed

    Pilla, Kala Bharath; Gaalswyk, Kari; MacCallum, Justin L

    2017-11-01

    The 3D atomic structures of biomolecules and their complexes are key to our understanding of biomolecular function, recognition, and mechanism. However, it is often difficult to obtain structures, particularly for systems that are complex, dynamic, disordered, or exist in environments like cell membranes. In such cases sparse data from a variety of paramagnetic NMR experiments offers one possible source of structural information. These restraints can be incorporated in computer modeling algorithms that can accurately translate the sparse experimental data into full 3D atomic structures. In this review, we discuss various types of paramagnetic NMR/computational hybrid modeling techniques that can be applied to successful modeling of not only the atomic structure of proteins but also their interacting partners. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Enhanced Positive-Contrast Visualization of Paramagnetic Contrast Agents Using Phase Images

    PubMed Central

    Mills, Parker H.; Ahrens, Eric T.

    2009-01-01

    Iron oxide–based MRI contrast agents are increasingly being used to noninvasively track cells, target molecular epitopes, and monitor gene expression in vivo. Detecting regions of contrast agent accumulation can be challenging if resulting contrast is subtle relative to endogenous tissue hypointensities. A postprocessing method is presented that yields enhanced positive-contrast images from the phase map associated with T2*-weighted MRI data. As examples, the method was applied to an agarose gel phantom doped with superparamagnetic iron-oxide nanoparticles and in vivo and ex vivo mouse brains inoculated with recombinant viruses delivering transgenes that induce overexpression of paramagnetic ferritin. Overall, this approach generates images that exhibit a 1- to 8-fold improvement in contrast-to-noise ratio in regions where paramagnetic agents are present compared to conventional magnitude images. This approach can be used in conjunction with conventional T2* pulse sequences, requires no prescans or increased scan time, and can be applied retrospectively to previously acquired data. PMID:19780169

  17. [Indications for relaxation in geriatrics].

    PubMed

    Richard, J; Picot, A; de Bus, P; Andreoli, A; Dalakaki, X

    1975-11-01

    On a three years base experience in the geriatiic department of Geneva's University Psychiatric Clinic the paper studies the problem of selecting aged patients to be treated by relaxation according to the method of J. De Ajuriaguerra et M. Cahen. Observations are presented in an attempt to define three main points: a) the role played by relaxation when there is an objective [corrected] impairment of the body's integrity; b) relaxation effect on aged persons neurotic states evolution; c) the reality of considering dementia as a counter-indication of relaxation therapy. These remarks complete those presented previously about the training of therapists in relaxation, the type of control to be organized for them and their patients, the technical management of the cure, the place of relaxation in the post graduate psychiatric training, the effects of the therapy on the patients human environnement behavior in and out of the hospital, the way body is perceived through relaxation by the aged patients and it's consequences on the adjustment of an aging person.

  18. Time scales of relaxation dynamics during transient conditions in two-phase flow: RELAXATION DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlüter, Steffen; Berg, Steffen; Li, Tianyi

    2017-06-01

    The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, andmore » relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.« less

  19. The Effect of Electronic Paramagnetism on Nuclear Magnetic Resonance Frequencies in Metals

    DOE R&D Accomplishments Database

    Townes, C. H.; Herring, C.; Knight, W. D.

    1950-09-22

    Observations on the shifts of nuclear resonances in metals ( Li{sup 7}, Na{sup 23}, Cu {sup 63}, Be{sup 9}, Pb{sup 207}, Al{sup 27}, and Ca{sup 69} ) due to free electron paramagnetism; comparison with theoretical values.

  20. Slow secondary relaxation in a free-energy landscape model for relaxation in glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Diezemann, Gregor; Mohanty, Udayan; Oppenheim, Irwin

    1999-02-01

    Within the framework of a free-energy landscape model for the relaxation in supercooled liquids the primary (α) relaxation is modeled by transitions among different free-energy minima. The secondary (β) relaxation then corresponds to intraminima relaxation. We consider a simple model for the reorientational motions of the molecules associated with both processes and calculate the dielectric susceptibility as well as the spin-lattice relaxation times. The parameters of the model can be chosen in a way that both quantities show a behavior similar to that observed in experimental studies on supercooled liquids. In particular we find that it is not possible to obtain a crossing of the time scales associated with α and β relaxation. In our model these processes always merge at high temperatures and the α process remains above the merging temperature. The relation to other models is discussed.

  1. Anomalous relaxation in fractal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, S.; Yonezawa, F.

    1995-03-01

    For the purpose of studying some interesting properties of anomalous relaxation in fractal structures, we carry out Monte Carlo simulations of random walks on two-dimensional fractal structures (Sierpinski carpets with different cutouts and site-percolation clusters in a square lattice at the critical concentration). We find that the relaxation is of the Cole-Cole type [J. Chem. Phys. 9, 341 (1941)], which is one of the empirical laws of anomalous relaxation. Scaling properties are found in the relaxation function as well as in the particle density. We also find that, in strucures with almost the same fractal dimension, relaxation in structures withmore » dead ends is slower than that in structures without them. This paper ascertains that the essential aspects of the anomalous relaxation due to many-body effects can be explained in the framework of the one-body model.« less

  2. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Hogg, Neil

    2010-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems. PMID:20304044

  3. Phospholipid bilayer relaxation dynamics as revealed by the pulsed electron-electron double resonance of spin labels

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Dzuba, S. A.

    2012-10-01

    Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.

  4. TEACHING NEUROMUSCULAR RELAXATION.

    ERIC Educational Resources Information Center

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  5. Investigating the Distribution of Stable Paramagnetic Species in an Apple Seed Using X-Band EPR and EPR Imaging.

    PubMed

    Nakagawa, Kouichi; Epel, Boris

    2017-03-01

    This study investigated the location and distribution of paramagnetic species in apple seeds using electron paramagnetic resonance (EPR) and X-band (9 GHz) EPR imaging (EPRI). EPR primarily detected two paramagnetic species per measured seed. These two different radical species were assigned as stable radicals and Mn 2+ species based on the g values and hyperfine components. The signal from the stable radical was noted at g ≈ 2.00 and was strong and relatively stable. The subsequent noninvasive EPRI of the radical present in each seed revealed that the stable radicals were located primarily in the seed coat, with very few radicals observed in the cotyledon of the seed. These results indicate that the stable radical species were only found within the seed coat, and few radical species were found in other seed parts.

  6. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase.

    PubMed

    Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B

    2013-11-30

    This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids. Copyright © 2013. Published by Elsevier Inc.

  7. Electron paramagnetic resonance and FT-IR spectroscopic studies of glycine anhydride and betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Kartal, Zeki; Aydın, Murat

    2015-12-01

    Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).

  8. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  9. Fermionic spin liquid analysis of the paramagnetic state in volborthite

    NASA Astrophysics Data System (ADS)

    Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek

    2017-10-01

    Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.

  10. Long-range dynamical magnetic order and spin tunneling in the cooperative paramagnetic states of the pyrochlore analogous spinel antiferromagnets CdYb2X4 (X =S or Se)

    NASA Astrophysics Data System (ADS)

    Dalmas de Réotier, P.; Marin, C.; Yaouanc, A.; Ritter, C.; Maisuradze, A.; Roessli, B.; Bertin, A.; Baker, P. J.; Amato, A.

    2017-10-01

    Magnetic systems with spins sitting on a lattice of corner sharing regular tetrahedra have been particularly prolific for the discovery of new magnetic states for the last two decades. The pyrochlore compounds have offered the playground for these studies, while little attention has been comparatively devoted to other compounds where the rare earth R occupies the same sublattice, e.g., the spinel chalcogenides Cd R2X4 (X =S or Se ). Here, we report measurements performed on powder samples of this series with R =Yb using specific heat, magnetic susceptibility, neutron diffraction, and muon-spin-relaxation measurements. The two compounds are found to be magnetically similar. They long-range order into structures described by the Γ5 irreducible representation. The magnitude of the magnetic moment at low temperature is 0.77 (1) and 0.62 (1) μB for X =S and Se , respectively. Persistent spin dynamics is present in the ordered states. The spontaneous field at the muon site is anomalously small, suggesting magnetic moment fragmentation. A double spin-flip tunneling relaxation mechanism is suggested in the cooperative paramagnetic state up to 10 K. The magnetic space groups into which magnetic moments of systems of corner-sharing regular tetrahedra order are provided for a number of insulating compounds characterized by null propagation wave vectors.

  11. Relaxation Dynamics in Heme Proteins.

    NASA Astrophysics Data System (ADS)

    Scholl, Reinhard Wilhelm

    A protein molecule possesses many conformational substates that are likely arranged in a hierarchy consisting of a number of tiers. A hierarchical organization of conformational substates is expected to give rise to a multitude of nonequilibrium relaxation phenomena. If the temperature is lowered, transitions between substates of higher tiers are frozen out, and relaxation processes characteristic of lower tiers will dominate the observational time scale. This thesis addresses the following questions: (i) What is the energy landscape of a protein? How does the landscape depend on the environment such as pH and viscosity, and how can it be connected to specific structural parts? (ii) What relaxation phenomena can be observed in a protein? Which are protein specific, and which occur in other proteins? How does the environment influence relaxations? (iii) What functional form best describes relaxation functions? (iv) Can we connect the motions to specific structural parts of the protein molecule, and are these motions important for the function of the protein?. To this purpose, relaxation processes after a pressure change are studied in carbonmonoxy (CO) heme proteins (myoglobin-CO, substrate-bound and substrate-free cytochrome P450cam-CO, chloroperoxidase-CO, horseradish peroxidase -CO) between 150 K and 250 K using FTIR spectroscopy to monitor the CO bound to the heme iron. Two types of p -relaxation experiments are performed: p-release (200 to ~eq40 MPa) and p-jump (~eq40 to 200 MPa) experiments. Most of the relaxations fall into one of three groups and are characterized by (i) nonexponential time dependence and non-Arrhenius temperature dependence (FIM1( nu), FIM1(Gamma)); (ii) exponential time dependence and non-Arrhenius temperature dependence (FIM0(A_{i}to A_{j})); exponential time dependence and Arrhenius temperature dependence (FIMX( nu)). The influence of pH is studied in myoglobin-CO and shown to have a strong influence on the substate population of the

  12. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system.

    PubMed

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Deng, Jiao-Yu; Cui, Zong-Qiang; Yang, Rui-Fu; Wang, Xu-Ying; Wei, Hong-Ping; Zhang, Xian-En

    2013-04-15

    There is an urgent need for convenient, sensitive, and specific methods to detect the spores of Bacillus anthracis, the causative agent of anthrax, because of the bioterrorism threat posed by this bacterium. In this study, we firstly develop a super-paramagnetic lateral-flow immunological detection system for B. anthracis spores. This system involves the use of a portable magnetic assay reader, super-paramagnetic iron oxide particles, lateral-flow strips and two different monoclonal antibodies directed against B. anthracis spores. This detection system specifically recognises as few as 400 pure B. anthracis spores in 30 min. This system has a linear range of 4×10³-10⁶ CFU ml⁻¹ and reproducible detection limits of 200 spores mg⁻¹ milk powder and 130 spores mg⁻¹ soil for simulated samples. In addition, this approach shows no obvious cross-reaction with other related Bacillus spores, even at high concentrations, and has no significant dependence on the duration of the storage of the immunological strips. Therefore, this super-paramagnetic lateral-flow immunological detection system is a promising tool for the rapid and sensitive detection of Bacillus anthracis spores under field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Multiferroic composites for magnetic data storage beyond the super-paramagnetic limit

    NASA Astrophysics Data System (ADS)

    Vopson, M. M.; Zemaityte, E.; Spreitzer, M.; Namvar, E.

    2014-09-01

    Ultra high-density magnetic data storage requires magnetic grains of <5 nm diameters. Thermal stability of such small magnetic grain demands materials with very large magneto-crystalline anisotropy, which makes data write process almost impossible, even when Heat Assisted Magnetic Recording (HAMR) technology is deployed. Here, we propose an alternative method of strengthening the thermal stability of the magnetic grains via elasto-mechanical coupling between the magnetic data storage layer and a piezo-ferroelectric substrate. Using Stoner-Wohlfarth single domain model, we show that the correct tuning of this coupling can increase the effective magneto-crystalline anisotropy of the magnetic grains making them stable beyond the super-paramagnetic limit. However, the effective magnetic anisotropy can also be lowered or even switched off during the write process by simply altering the applied voltage to the substrate. Based on these effects, we propose two magnetic data storage protocols, one of which could potentially replace HAMR technology, with both schemes promising unprecedented increases in the data storage areal density beyond the super-paramagnetic size limit.

  14. Effect of the lattice dynamics on the electronic structure of paramagnetic NiO within the disordered local moment picture

    NASA Astrophysics Data System (ADS)

    Mozafari, Elham; Alling, Björn; Belov, Maxim P.; Abrikosov, Igor A.

    2018-01-01

    Using the disordered local moments approach in combination with the ab initio molecular dynamics method, we simulate the behavior of a paramagnetic phase of NiO at finite temperatures to investigate the effect of magnetic disorder, thermal expansion, and lattice vibrations on its electronic structure. In addition, we study its lattice dynamics. We verify the reliability of our theoretical scheme via comparison of our results with available experiment and earlier theoretical studies carried out within static approximations. We present the phonon dispersion relations for the paramagnetic rock-salt (B1) phase of NiO and demonstrate that it is dynamically stable. We observe that including the magnetic disorder to simulate the paramagnetic phase has a small yet visible effect on the band gap. The amplitude of the local magnetic moment of Ni ions from our calculations for both antiferromagnetic and paramagnetic phases agree well with other theoretical and experimental values. We demonstrate that the increase of temperature up to 1000 K does not affect the electronic structure strongly. Taking into account the lattice vibrations and thermal expansion at higher temperatures have a major impact on the electronic structure, reducing the band gap from ˜3.5 eV at 600 K to ˜2.5 eV at 2000 K. We conclude that static lattice approximations can be safely employed in simulations of the paramagnetic state of NiO up to relatively high temperatures (˜1000 K), but as we get closer to the melting temperature vibrational effects become quite large and therefore should be included in the calculations.

  15. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  16. Chloride channel blockade relaxes airway smooth muscle and potentiates relaxation by β-agonists

    PubMed Central

    Yim, Peter; Rinderspacher, Alison; Fu, Xiao Wen; Zhang, Yi; Landry, Donald W.; Emala, Charles W.

    2014-01-01

    Severe bronchospasm refractory to β-agonists continues to cause significant morbidity and mortality in asthmatic patients. We questioned whether chloride channels/transporters are novel targets for the relaxation of airway smooth muscle (ASM). We have screened a library of compounds, derivatives of anthranilic and indanyloxyacetic acid, that were originally developed to antagonize chloride channels in the kidney. We hypothesized that members of this library would be novel calcium-activated chloride channel blockers for the airway. The initial screen of this compound library identified 4 of 20 compounds that relaxed a tetraethylammonium chloride-induced contraction in guinea pig tracheal rings. The two most effective compounds, compounds 1 and 13, were further studied for their potential to either prevent the initiation of or relax the maintenance phase of an acetylcholine (ACh)-induced contraction or to potentiate β-agonist-mediated relaxation. Both relaxed an established ACh-induced contraction in human and guinea pig ex vivo ASM. In contrast, the prevention of an ACh-induced contraction required copretreatment with the sodium-potassium-chloride cotransporter blocker bumetanide. The combination of compound 13 and bumetanide also potentiated relaxation by the β-agonist isoproterenol in guinea pig tracheal rings. Compounds 1 and 13 hyperpolarized the plasma cell membrane of human ASM cells and blocked spontaneous transient inward currents, a measure of chloride currents in these cells. These functional and electrophysiological data suggest that modulating ASM chloride flux is a novel therapeutic target in asthma and other bronchoconstrictive diseases. PMID:24879056

  17. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  18. Light-adaptation of photosystem II is mediated by the plastoquinone pool.

    PubMed

    Ahrling, Karin A; Peterson, Sindra

    2003-07-01

    During the first few enzymatic turnovers after dark-adaptation of photosystem II (PSII), the relaxation rate of the EPR signals from the Mn cluster and Y(D)(*) are significantly enhanced. This light-adaptation process has been suggested to involve the appearance of a new paramagnet on the PSII donor side [Peterson, S., Ahrling, K., Högblom, J., and Styring, S. (2003) Biochemistry 42, 2748-2758]. In the present study, a correlation is established between the observed relaxation enhancement and the redox state of the quinone pool. It is shown that the addition of quinol to dark-adapted PSII membrane fragments induces relaxation enhancement already after a single oxidation of the Mn, comparable to that observed after five oxidations in samples with quinones (PPBQ or DQ) added. The saturation behavior of Y(D)(*) revealed that with quinol added in the dark, a single flash was necessary for the relaxation enhancement to occur. The quinol-induced relaxation enhancement of PSII was also activated by illumination at 200 K. Whole thylakoids, with no artificial electron acceptor present but with an intact plastoquinone pool, displayed the same relaxation enhancement on the fifth flash as membrane fragments with exogenous quinones present. We conclude that (i) reduction of the quinone pool induces the relaxation enhancement of the PSII donor-side paramagnets, (ii) light is required for the quinol to effect the relaxation enhancement, and (iii) light-adaptation occurs in the intact thylakoid system, when the endogenous plastoquinone pool is gradually reduced by PSII turnover. It seems clear that a species on the PSII donor side is reduced by the quinol, to become a potent paramagnetic relaxer. On the basis of XANES reports, we suggest that this species may be the Mn ions not involved in the cyclic redox changes of the oxygen-evolving complex.

  19. Superparamagnetic And Paramagnetic MRI Contrast Agents: Application Of Rapid Magnetic Resonance Imaging To Assess Renal Function

    NASA Astrophysics Data System (ADS)

    Carvlin, Mark J.; Renshaw, Perry F.; Arger, Peter; Kundel, Harold L.; Dougherty, Larry; Axel, Leon; Kassab, Eleanor; Moore, Bethanne

    1988-06-01

    The paramagnetic chelate complex, gadolinium-diethylene-triamine-pentaacetic acid, Gd-DTPA, and superparamagnetic particles, such as those composed of dextran coated magnetite, function as magnetic resonance contrast agents by changing the relaxation rates, 1/T1 and 1/T2. The effects that these agents have upon MR signal intensity are determined by: the inherent biophysical properties of the tissue being imaged, the concentration of the contrast agent and the data acquisition scheme (pulse sequence parameters) employed. Following the time course of MR signal change in the first minutes after the injection of contrast agent(s) allows a dynamic assessment of organ functions in a manner analogous to certain nuclear medicine studies. In order to study renal function, sequential MR fast scan images, gradient echo (TR=35/TE=7 msec, flip angle=25 degrees), were acquired, one every 12 seconds, after intravenous injection of Gd-DTPA and/or dextran-magnetite. Gd-DTPA, which is freely filtered at the glomerulus and is neither secreted nor reabsorbed, provides information concerning renal perfusion, glomerular filtration and tubular concentrating ability. Dextran-magnetite (200 A diameter), which is primarily contained within the intravascular space shortly after injection, provides information on blood flow to and distribution within the kidney. The MR signal change observed after administration of contrast agents varied dramatically depending upon the agents injected and the imaging parameters used. Hence a broad range of physiolgic processes may be described using these techniques, i.e. contrast agent enhanced functional MR examinations.

  20. The spatial effect of protein deuteration on nitroxide spin-label relaxation: Implications for EPR distance measurement

    PubMed Central

    El Mkami, Hassane; Ward, Richard; Bowman, Andrew; Owen-Hughes, Tom; Norman, David G.

    2014-01-01

    Pulsed electron–electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems. PMID:25310878

  1. Dynamic Structural Changes of SiO₂ Supported Pt-Ni Bimetallic Catalysts over Redox Treatments Revealed by NMR and EPR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Suochang; Walter, Eric D.; Zhao, Zhenchao

    2015-08-18

    SiO 2 supported Pt-Ni bimetallic catalysts with different nickel loadings were prepared and their structural changes after redox treatments were studied by XRD, NMR, and EPR. It is found that the paramagnetic Ni species are mainly located on the surface of silica lattice. The relaxation of detected 29Si nuclei in our samples is mainly governed by a spin-diffusion mechanism. The paramagnetic effects are reflected in the spin-lattice relaxation of Q 4 species, with the oxidized samples presenting faster relaxation rates than the corresponding reduced ones. Meanwhile the Q 3 species, which are in close contact with the paramagnetic nickel ions,more » are “spectrally invisible”. In reducing atmosphere Ni gradually diffuses into Pt NPs to form PtNi alloys. While under oxidization treatment, the alloyed Ni atoms migrate outward from the core of Pt NPs and are oxidized. The main EPR spectrum results from reduced nickel species, and the reduced samples show stronger EPR signal than the corresponding oxidized ones. However, in the reduced samples, the superparamagnetic or ferromagnetic metallic Ni particles were inside the PtNi NPs, making their influence on the 29Si relaxation in the SiO 2 support weaker than the oxidized samples.« less

  2. Interactions of solvent with the heme region of methemoglobin and fluoro-methemoglobin.

    PubMed

    Koenig, S H; Brown, R D; Lindstrom, T R

    1981-06-01

    It is now more than 20 years since Davidson and collaborators (1957, Biochim. Biophys, Acta. 26:370-373; J. Mol. Biol. 1:190-191) applied the theoretical ideas of Bloembergen et al. (1948. Phys. Rev. 73:679-712) on outer sphere magnetic relaxation of solvent protons to studies of solutions of methemoglobin. From then on, there has been debate regarding the relative contributions to paramagnetic solvent proton relaxation by inner sphere (ligand-exchange) effects and by outer sphere (diffusional) effects in methemoglobin solutions. Gupta and Mildvan (1975. J. Biol. Chem 250:146-253) extended the early measurements, attributed the relatively small paramagnetic effects to exchange with solvent of the water ligand of the heme-Fe3+ ion, and interpreted their data to indicate cooperativity and an alkaline Bohr effect in the presence of inositol hexaphosphate. They neglected the earlier discussions entirely, and made no reference to outer sphere effects. We have measured the relaxation rate of solvent protons as a function of magnetic field for solutions of methemoglobin, under a variety of conditions of pH and temperature, and have given careful consideration to the relatively large diamagnetic corrections that are necessary by making analogous measurements on oxyhemoglobin, carbonmonoxyhemoglobin, and cyano- and azide-methemoglobin. (The latter two, because of their short electronic relaxation times, behave as though diamagnetic). We show that the paramagnetic contribution to solvent relaxation can be dominated by outer sphere effects, a result implying that many conclusions, including those of Gupta and Mildvan, require reexamination. Finally, we present data for fluoro-methemoglobin, which relaxes solvent protons an order of magnitude better than does methemoglobin. Here one has a startling breakdown of the dogma that has been the basis for interpreting many ligand-replacement studies; in contrast to the prevailing view that replacement of a water ligand of a protein

  3. Idiosyncratic reality claims, relaxation dispositions, and ABC relaxation theory: happiness, literal christianity, miraculous powers, metaphysics, and the paranormal.

    PubMed

    Smith, Jonathan C; Karmin, Aaron D

    2002-12-01

    This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.

  4. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  5. The dual role of paramagnetic particles for integrated lysis and measurement in a rapid immunoassay for intracellular proteins.

    PubMed

    Sharif, Elham; Kiely, Janice; Wraith, Patrick; Luxton, Richard

    2013-05-01

    A novel, integrated lysis and immunoassay methodology and system for intracellular protein measurement are described. The method uses paramagnetic particles both as a lysis agent and assay label resulting in a rapid test requiring minimal operator intervention, the test being homogeneous and completed in less than 10 min. A design study highlights the critical features of the magnetic detection system used to quantify the paramagnetic particles and a novel frequency-locked loop-based magnetometer is presented. A study of paramagnetic particle enhanced lysis demonstrates that the technique is more than twice as efficient at releasing intracellular protein as ultrasonic lysis alone. Results are presented for measurements of intracellular prostate specific antigen in an LNCAP cell line. This model was selected to demonstrate the rapidity and efficiency of intracellular protein quantification. It was shown that, on average, LNCAP cells contained 0.43 fg of prostate specific antigen. This system promises an attractive solution for applications that require a rapid determination of intracellular proteins.

  6. The relationships between suggestibility, influenceability, and relaxability.

    PubMed

    Polczyk, Romuald; Frey, Olga; Szpitalak, Malwina

    2013-01-01

    This research explores the relationships between relaxability and various aspects of suggestibility and influenceability. The Jacobson Progressive Muscle Relaxation procedure was used to induce relaxation. Tests of direct suggestibility, relating to the susceptibility of overt suggestions, and indirect suggestibility, referring to indirect hidden influence, as well as self-description questionnaires on suggestibility and the tendency to comply were used. Thayer's Activation-Deactivation Adjective Check List, measuring various kinds of activation and used as a pre- and posttest, determined the efficacy of the relaxation procedure. Indirect, direct, and self-measured suggestibility proved to be positively related to the ability to relax, measured by Thayer's subscales relating to emotions. Compliance was not related to relaxability. The results are discussed in terms of the aspects of relaxation training connected with suggestibility.

  7. Low-temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol

    NASA Astrophysics Data System (ADS)

    Kveder, Marina; Merunka, Dalibor; Jokić, Milan; Rakvin, Boris

    2008-03-01

    X -band electron paramagnetic resonance spectroscopy was used to study the spectral properties of a nitroxide spin probe in ethanol glass and crystalline ethanol, at 5-11.5K . The different anisotropy of molecular packing in the two host matrices was evidenced by different rigid limit values for maximal hyperfine splitting in the signal of the spin probe. The significantly shorter phase memory time Tm for the spin probe dissolved in crystalline ethanol, as compared to ethanol glass, was discussed in terms of contribution from spectral diffusion. The effect of low-frequency dynamics was manifested in the temperature dependence of Tm and in the difference between the data measured at different spectral positions. This phenomenon was addressed within the framework of the slow-motional isotropic diffusion model [S. Lee and S. Z. Tang, Phys. Rev. B 31, 1308 (1985)] predicting the spin probe dynamics within the millisecond range, at very low temperatures. The shorter spin-lattice relaxation time of the spin probe in ethanol glass was interpreted in terms of enhanced energy exchange between the spin system and the lattice in the glass matrix due to boson peak excitations.

  8. Rindler fluid with weak momentum relaxation

    NASA Astrophysics Data System (ADS)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong; Zhang, Yun-Long

    2018-01-01

    We realize the weak momentum relaxation in Rindler fluid, which lives on the time-like cutoff surface in an accelerating frame of flat spacetime. The translational invariance is broken by massless scalar fields with weak strength. Both of the Ward identity and the momentum relaxation rate of Rindler fluid are obtained, with higher order correction in terms of the strength of momentum relaxation. The Rindler fluid with momentum relaxation could also be approached through the near horizon limit of cutoff AdS fluid with momentum relaxation, which lives on a finite time-like cutoff surface in Anti-de Sitter(AdS) spacetime, and further could be connected with the holographic conformal fluid living on AdS boundary at infinity. Thus, in the holographic Wilson renormalization group flow of the fluid/gravity correspondence with momentum relaxation, the Rindler fluid can be considered as the Infrared Radiation(IR) fixed point, and the holographic conformal fluid plays the role of the ultraviolet(UV) fixed point.

  9. [Amelanotic melanoma and nuclear magnetic resonance tomography--case report].

    PubMed

    Schilling, A; Seiler, T; Bende, T; Wollensak, J

    1989-01-01

    In MRI choroidal melanoma shows a very short relaxation time (T2), shorter than that of any other intraocular tumor. This short T2 time is referred to the high concentration of paramagnetic melanine in this tumor. Therefore, it is of interest to measure the relaxation time in an amelanotic melanoma and compare it with the histological analysis. The duration of T2 for the amelanotic melanoma examined ranged from 130 to 160 ms. The small concentration of melanine is not a sufficient explanation, but it is possible that there are some precursors of melanine with paramagnetic characteristics.

  10. Paramagnetic Defects in Electron-Irradiated Yttria-Stabilized Zirconia: Effect of Yttria Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costantini, Jean-Marc; Beuneu, Francois; Morrison-Smith, Sarah

    2011-01-01

    We have studied the effect of the yttria content on the paramagnetic centres in electron-irradiated yttria-stabilized zirconia (ZrO2: Y3+) or YSZ. Single crystals with 9.5 mol% or 18 mol% Y2O3 were irradiated with electrons of 1.0, 1.5, 2.0 and 2.5 MeV. The paramagnetic centre production was studied by X-band EPR spectroscopy. The same paramagnetic centres were identified for both chemical compositions, namely two electron centres, i.e. i) F+-type centres (involving singly ionized oxygen vacancies), and ii) so-called T centres (Zr3+ in a trigonal symmetry site), and hole-centres. A strong effect is observed on the production of hole-centres which are stronglymore » enhanced when doubling the yttria content. However, no striking effect is found on the electron centres (except the enhancement of an extra line associated to the F+-type centres). It is concluded that hole-centres are produced by inelastic interactions, whereas F+-type centres are produced by elastic collisions with no effect of the yttria content on the defect production rate. In the latter case, the threshold displacement energy (Ed) of oxygen is estimated from the electron-energy dependence of the F+-type centre production rate, with no significant effect of the yttria content on Ed. An Ed value larger than 120 eV is found. Accordingly, classical molecular dynamics (MD) simulations with a Buckingham-type potential show that Ed values for Y and O are likely to be in excess of 200 eV. Due to the difficulty in displacing O or Y atoms, the radiation-induced defects may alternatively be a result of Zr atom displacements for Ed = 80 1 eV with subsequent defect re-arrangement.« less

  11. The Effects of Suggestibility on Relaxation.

    ERIC Educational Resources Information Center

    Rickard, Henry C.; And Others

    1985-01-01

    Selected undergraduates (N=32) on the basis of Creative Imagination Scale scores and randomly assigned high and low suggestibility subjects to progressive relaxation (PR) and suggestions of relaxation (SR) training modes. Results revealed a significant pre-post relaxation effect, and main efffects for both suggestibility and training mode. (NRB)

  12. Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal.

    PubMed

    Laraoui, Abdelghani; Hodges, Jonathan S; Meriles, Carlos A

    2012-07-11

    Semiconductor nanoparticles host a number of paramagnetic point defects and impurities, many of them adjacent to the surface, whose response to external stimuli could help probe the complex dynamics of the particle and its local, nanoscale environment. Here, we use optically detected magnetic resonance in a nitrogen-vacancy (NV) center within an individual diamond nanocrystal to investigate the composition and spin dynamics of the particle-hosted spin bath. For the present sample, a ∼45 nm diamond crystal, NV-assisted dark-spin spectroscopy reveals the presence of nitrogen donors and a second, yet-unidentified class of paramagnetic centers. Both groups share a common spin lifetime considerably shorter than that observed for the NV spin, suggesting some form of spatial clustering, possibly on the nanoparticle surface. Using double spin resonance and dynamical decoupling, we also demonstrate control of the combined NV center-spin bath dynamics and attain NV coherence lifetimes comparable to those reported for bulk, Type Ib samples. Extensions based on the experiments presented herein hold promise for applications in nanoscale magnetic sensing, biomedical labeling, and imaging.

  13. CW EPR and 9 GHz EPR imaging investigation of stable paramagnetic species and their antioxidant activities in dry shiitake mushroom (Lentinus edodes).

    PubMed

    Nakagawa, Kouichi; Hara, Hideyuki

    2016-01-01

    We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.

  14. Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastrukov, S.; Xu, R.-X.; Molodtsova, I.

    2010-11-15

    Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulas for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasiperiodic oscillations of the x-ray outburst fluxmore » from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored by Lorentz force of magnetic field stresses.« less

  15. Relaxation processes in disaccharide sugar glasses

    NASA Astrophysics Data System (ADS)

    Hwang, Yoon-Hwae; Kwon, Hyun-Joung; Seo, Jeong-Ah; Shin, Dong-Myeong; Ha, Ji-Hye; Kim, Hyung-Kook

    2013-02-01

    We represented relaxation processes of disaccharide sugars (anhydrous trehalose and maltose) in supercooled and glassy states by using several spectroscopy techniques which include a broadband dielectric loss spectroscopy, photon correlation spectroscopy and X-ray diffraction (Retvield analysis) methods which are powerful tools to measure the dynamics in glass forming materials. In a dielectric loss spectroscopy study, we found that anhydrous trehalose and maltose glasses have an extra relaxation process besides α-, JG β- and γ-relaxations which could be related to a unique property of glycoside bond in disaccharides. In photon correlation spectroscopy study, we found an interesting compressed exponential relaxation at temperatures above 140°C. The q-1 dependence of its relaxation time corresponds to an ultraslow ballistic motion due to the local structure rearrangements. In the same temperature range, we found the glycosidic bond structure changes in trehalose molecule from the Raman and the Retvield X-ray diffraction measurements indicating that the observed compressed exponential relaxation in supercooled liquid trehalose could be resulted in the glycosidic bond structure change. Therefore, the overall results from this study might support the fact that the superior bioprotection ability of disaccharide sugar glasses might originate from this unique relaxation process of glycosidic bond.

  16. Relaxation mode analysis and Markov state relaxation mode analysis for chignolin in aqueous solution near a transition temperature

    NASA Astrophysics Data System (ADS)

    Mitsutake, Ayori; Takano, Hiroshi

    2015-09-01

    It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local minimum-energy states and the transitions between them. The most popular method to obtain such data is principal component analysis, which extracts modes of large conformational fluctuations around an average structure. We recently applied relaxation mode analysis for protein systems, which approximately estimates the slow relaxation modes and times from a simulation and enables investigations of the dynamic properties underlying the structural fluctuations of proteins. In this study, we apply this relaxation mode analysis to extract reaction coordinates for a system in which there are large conformational changes such as those commonly observed in protein folding/unfolding. We performed a 750-ns simulation of chignolin protein near its folding transition temperature and observed many transitions between the most stable, misfolded, intermediate, and unfolded states. We then applied principal component analysis and relaxation mode analysis to the system. In the relaxation mode analysis, we could automatically extract good reaction coordinates. The free-energy surfaces provide a clearer understanding of the transitions not only between local minimum-energy states but also between the folded and unfolded states, even though the simulation involved large conformational changes. Moreover, we propose a new analysis method called Markov state relaxation mode analysis. We applied the new method to states with slow relaxation, which are defined by the free-energy surface obtained in the relaxation mode analysis. Finally, the relaxation times of the states obtained with a simple Markov state model and the proposed Markov state relaxation mode analysis are compared and discussed.

  17. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI.

    PubMed

    Granato, Luigi; Vander Elst, Luce; Henoumont, Celine; Muller, Robert N; Laurent, Sophie

    2018-02-01

    Thanks to the understanding of the relationships between the residence lifetime τ M of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τ R of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L 1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL 1 )x with intent to slow down the rotational correlation time (τ R ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL 1 ) showed a slight decrease of the τ M value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL 1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL 1 complex (τ R  = 33,700 ps), which results in an enhanced proton relaxivity. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  18. The effect of dissolved oxygen on the relaxation rates of blood plasma: Implications for hyperoxia calibrated BOLD.

    PubMed

    Ma, Yuhan; Berman, Avery J L; Pike, G Bruce

    2016-12-01

    To determine the contribution of paramagnetic dissolved oxygen in blood plasma to blood-oxygenation-level-dependent (BOLD) signal changes in hyperoxic calibrated BOLD studies. Bovine blood plasma samples were prepared with partial pressures of oxygen (pO 2 ) ranging from 110 to 600 mmHg. R 1 , R 2 , and R 2 * of the plasma with dissolved oxygen were measured using quantitative MRI sequences at 3 Tesla. Simulations were performed to predict the relative effects of dissolved oxygen and deoxyhemoglobin changes in hyperoxia calibrated BOLD. The relaxivities of dissolved oxygen in plasma were found to be r 1, O2 =1.97 ± 0.09 ×10 -4 s -1 mmHg -1 , r 2, O2 =2.3 ± 0.7 ×10 -4 s -1 mmHg -1 , and r 2, O2 * = 2.3 ± 0.7 ×10 -4 s -1 mmHg -1 . Simulations predict that neither the transverse nor longitudinal relaxation rates of dissolved oxygen contribute significantly to the BOLD signal during hyperoxia. During hyperoxia, the increases in R 2 and R 2 * of blood from dissolved oxygen in plasma are considerably less than the decreases in R 2 and R 2 * from venous deoxyhemoglobin. R 1 effects due to dissolved oxygen are also predicted to be negligible. As a result, dissolved oxygen in arteries should not contribute significantly to the hyperoxic calibrated BOLD signal. Magn Reson Med 76:1905-1911, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  19. Lipid Emulsions Containing Medium Chain Triacylglycerols Blunt Bradykinin-Induced Endothelium-Dependent Relaxation in Porcine Coronary Artery Rings.

    PubMed

    Amissi, Said; Boisramé-Helms, Julie; Burban, Mélanie; Rashid, Sherzad K; León-González, Antonio J; Auger, Cyril; Toti, Florence; Meziani, Ferhat; Schini-Kerth, Valérie B

    2017-03-01

    Lipid emulsions for parenteral nutrition are used to provide calories and essential fatty acids for patients. They have been associated with hypertriglyceridemia, hypercholesterolemia, and metabolic stress, which may promote the development of endothelial dysfunction in patients. The aim of the present study was to determine whether five different industrial lipid emulsions may affect the endothelial function of coronary arteries. Porcine coronary artery rings were incubated with lipid emulsions 0.5, 1, or 2% (v/v) for 30 min before the determination of vascular reactivity in organ chambers and the level of oxidative stress using electron paramagnetic resonance. Incubation of coronary artery rings with either Lipidem ® , Medialipid ® containing long- and medium-chain triacylglycerols (LCT/MCT), or SMOFlipid ® containing LCT, MCT, omega-9, and -3, significantly reduced the bradykinin-induced endothelium-dependent relaxation, affecting both the nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) components, whereas, Intralipid ® containing LCT (soybean oil) and ClinOleic ® containing LCT (soybean and olive oil) did not have such an effect. The endothelial dysfunction induced by Lipidem ® was significantly improved by indomethacin, a cyclooxygenase (COX) inhibitor, inhibitors of oxidative stress (N-acetylcysteine, superoxide dismutase, catalase) and transition metal chelating agents (neocuproine, tetrathiomolybdate, deferoxamine and L-histidine). Lipidem ® significantly increased the arterial level of oxidative stress. The present findings indicate that lipid emulsions containing LCT/MCT induce endothelial dysfunction in coronary artery rings by blunting both NO- and EDH-mediated relaxations. The Lipidem ® -induced endothelial dysfunction is associated with increased vascular oxidative stress and the formation of COX-derived vasoconstrictor prostanoids.

  20. Relaxation Time of High-Density Amorphous Ice

    NASA Astrophysics Data System (ADS)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  1. Relaxation in x-space magnetic particle imaging.

    PubMed

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  2. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  3. Rotation relaxation splitting for optimizing parallel RF excitation pulses with T1 - and T2 -relaxations in MRI

    NASA Astrophysics Data System (ADS)

    Majewski, Kurt

    2018-03-01

    Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.

  4. Absolute cerebral blood flow quantification with pulsed arterial spin labeling during hyperoxia corrected with the simultaneous measurement of the longitudinal relaxation time of arterial blood.

    PubMed

    Pilkinton, David T; Hiraki, Teruyuki; Detre, John A; Greenberg, Joel H; Reddy, Ravinder

    2012-06-01

    Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Copyright © 2011 Wiley-Liss, Inc.

  5. F-centers mechanism of long-term relaxation in lead zirconate-titanate based piezoelectric ceramics. 2. After-field relaxation

    NASA Astrophysics Data System (ADS)

    Ishchuk, V. M.; Kuzenko, D. V.

    2016-08-01

    The paper presents results of experimental study of the dielectric constant relaxation during aging process in Pb(Zr,Ti)O3 based solid solutions (PZT) after action of external DC electric field. The said process is a long-term one and is described by the logarithmic function of time. Reversible and nonreversible relaxation process takes place depending on the field intensity. The relaxation rate depends on the field strength also, and the said dependence has nonlinear and nonmonotonic form, if external field leads to domain disordering. The oxygen vacancies-based model for description of the long-term relaxation processes is suggested. The model takes into account the oxygen vacancies on the sample's surface ends, their conversion into F+- and F0-centers under external effects and subsequent relaxation of these centers into the simple oxygen vacancies after the action termination. F-centers formation leads to the violation of the original sample's electroneutrality, and generate intrinsic DC electric field into the sample. Relaxation of F-centers is accompanied by the reduction of the electric field, induced by them, and relaxation of the dielectric constant, as consequent effect.

  6. General magnetic transition dipole moments for electron paramagnetic resonance.

    PubMed

    Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan

    2015-01-09

    We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities.

  7. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1.

    PubMed

    Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E

    2013-01-21

    Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.

  8. Application of Paramagnetically Tagged Molecules for Magnetic Resonance Imaging of Biofilm Mass Transport Processes▿

    PubMed Central

    Ramanan, B.; Holmes, W. M.; Sloan, W. T.; Phoenix, V. R.

    2010-01-01

    Molecules become readily visible by magnetic resonance imaging (MRI) when labeled with a paramagnetic tag. Consequently, MRI can be used to image their transport through porous media. In this study, we demonstrated that this method could be applied to image mass transport processes in biofilms. The transport of a complex of gadolinium and diethylenetriamine pentaacetic acid (Gd-DTPA), a commercially available paramagnetic molecule, was imaged both in agar (as a homogeneous test system) and in a phototrophic biofilm. The images collected were T1 weighted, where T1 is an MRI property of the biofilm and is dependent on Gd-DTPA concentration. A calibration protocol was applied to convert T1 parameter maps into concentration maps, thus revealing the spatially resolved concentrations of this tracer at different time intervals. Comparing the data obtained from the agar experiment with data from a one-dimensional diffusion model revealed that transport of Gd-DTPA in agar was purely via diffusion, with a diffusion coefficient of 7.2 × 10−10 m2 s−1. In contrast, comparison of data from the phototrophic biofilm experiment with data from a two-dimensional diffusion model revealed that transport of Gd-DTPA inside the biofilm was by both diffusion and advection, equivalent to a diffusion coefficient of 1.04 × 10−9 m2 s−1. This technology can be used to further explore mass transport processes in biofilms, either by using the wide range of commercially available paramagnetically tagged molecules and nanoparticles or by using bespoke tagged molecules. PMID:20435773

  9. Evolving fuzzy rules for relaxed-criteria negotiation.

    PubMed

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  10. The in vivo relaxivity of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Shuter, Borys

    1999-11-01

    Post-contrast clinical 1H Magnetic Resonance Images have to date been interpreted with little regard for possible variations in the in-vivo properties of injected magnetic pharmaceuticals (contrast agents), particularly in their relaxivity or ability to alter tissue relaxation rates, T2-1 and T 2-1, per unit concentration. The relaxivities of contrast agents have only rarely been measured in-vivo, measurements usually being performed on excised tissues and at magnetic field strengths lower than used in clinical practice. Some researchers have simply assumed that relaxivities determined in homogeneous tissue phantoms were applicable in-vivo. In this thesis, the relaxivities of two contrast agents, Gd-DTPA and Gd-EOB-DTPA, were measured in simple tissue phantoms and in the kidney and liver of intact, but sacrificed, Wistar rats using a clinical MR scanner with a magnetic field of 1.5 Tesla. T1 and T2 were determined from sets of images acquired using a standard clinical spin-echo pulse sequence. The contrast agent concentration in tissue was assessed by radioassay of 153Gd-DTPA or 153Gd-EOB-DTPA, mixed with the normal compound prior to injection. Relaxivity was taken as the slope of a linear regression fit of relaxation rate against Gd concentration. The relaxivities of Gd-EOB-DTPA were similarly determined in normal and biliary- obstructed guinea pigs. Relaxivities in tissue differed significantly from values obtained in simple phantoms. Kidney T1 relaxivity was reduced for both compounds in normal animals. Three days or more of biliary obstruction produced further reductions in kidney T1 relaxivity of Gd-EOB-DTPA, providing strong evidence that disease affects contrast agent relaxivity. Kidney T2 relaxivity was much greater than T1 relaxivity and was also depressed by biliary obstruction. Liver T1 and T 2 relaxivites were increased above phantom values, but were not affected by the biliary obstruction. Water compartmentalisation, macromolecular binding, proton

  11. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    PubMed

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  12. 'Relaxers' damage hair: evidence from amino acid analysis.

    PubMed

    Khumalo, Nonhlanhla P; Stone, Janet; Gumedze, Freedom; McGrath, Emily; Ngwanya, Mzudumile R; de Berker, David

    2010-03-01

    'Relaxers' are used by more than two thirds of African females to straighten hair, with easy grooming and increased length often cited as reasons. A recent study reported relaxed hair lengths much shorter than expected, suggesting increased fragility; the potential for scalp inflammation and scarring alopecia remains unclear. To investigate the biochemical effects of 'relaxers' on hair. With informed consent, included participants represented 3 groups: natural hair, asymptomatic relaxed hair, and symptomatic (brittle) relaxed hair. Biochemical analysis was performed by using a Biochrom 30 amino acid analyzer. Differences in amino acid levels were assessed using either Wilcoxon rank sum test or matched-pairs signed-rank test. There was a decrease in cystine, citrulline, and arginine; however, an increase in glutamine was found in all relaxed compared to natural hair. Cystine levels (milligram per gram amino acid nitrogen) were similar in natural proximal and distal hair: 14 mg/g (range, 4-15 mg/g) versus 14 mg/g (range, 12-15 mg/g); P = .139. In asymptomatic relaxed hair, cystine levels were higher in less frequently relaxed samples proximal to scalp: 7.5 mg/g (5.6-12) versus 3.3 mg/g (1.3-9.2); P = .005. Cystine levels in distal asymptomatic relaxed and symptomatic relaxed hair were similar to each other and to those in the genetic hair fragility disease trichothiodystrophy. It was not possible to analyze lye and no-lye 'relaxers' separately. 'Relaxers' are associated with reduced cystine consistent with fragile damaged hair. A decrease in citrulline and glutamine has been associated with inflammation; prospective studies are needed to investigate whether or how 'relaxers' induce inflammation. Copyright 2009 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  13. Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Grunewald, E.; Knight, R.

    2008-12-01

    The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over

  14. Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agosta, Charles C.; Fortune, Nathanael A.; Hannahs, Scott T.

    We report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor. kappa-(BEDT-TTF)(2) Cu(NCS)(2) as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit Hp is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays themore » bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave ordering in the high-field superconducting phase. The phase diagram determined from our measurements-including the observation of a phase transition into the FFLO phase at Hp-is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments but is in disagreement with the only previous calorimetric report.« less

  15. Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.; Fortune, Nathanael A.; Hannahs, Scott T.; Gu, Shuyao; Liang, Lucy; Park, Ju-Hyun; Schleuter, John A.

    2017-06-01

    We report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor κ -(BEDT -TTF )2Cu (NCS )2 as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit Hp is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays the bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave ordering in the high-field superconducting phase. The phase diagram determined from our measurements—including the observation of a phase transition into the FFLO phase at Hp—is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments but is in disagreement with the only previous calorimetric report.

  16. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  17. Upper critical fields in Ba2Ti2Fe2As4O single crystals: Evidence for dominant Pauli paramagnetic effect

    NASA Astrophysics Data System (ADS)

    Abdel-Hafiez, M.; Brisbois, J.; Zhu, Z.; Adamski, A.; Hassen, A.; Vasiliev, A. N.; Silhanek, A. V.; Krellner, C.

    2018-03-01

    We report on magneto-optical imaging and the temperature dependency of the upper critical fields Hc2 c(T ) parallel to the c axis and Hc2 a b(T ) parallel to the a b plane in Ba2Ti2Fe2As4O single crystals. These data were inferred from the measurements of the temperature-dependent resistance in static magnetic fields up to 14 T and magnetoresistance in pulsed fields up to 60 T. Hc 2 values are found to be 52 and 50 T for H ∥a b and H ∥c , respectively. These values are 1.2-1.35 times larger than the weak-coupling Pauli paramagnetic limit (Hp˜1.84 Tc ), indicating that enhanced paramagnetic limiting is essential and this superconductor is unconventional. Our observations of strong bending in the Hc2 a b(T ) curves and a nearly isotropic maximum upper critical field Hc2 a b(0 ) ≈Hc2 c(0 ) support the presence of a strong Pauli paramagnetic effect. We show that the Werthamer-Helfand-Hohenberg (WHH) formula that includes the spin-orbit scattering can effectively describe the Hc2 a b(T ) curve, whereas Hc 2 deviates from the conventional WHH theoretical model without considering the spin paramagnetic effect for the H ∥c and H ∥a b directions. For H ∥c , a two-band model is required to fully reproduce the behavior of Hc 2, while for H ∥a b the spin paramagnetic effect is responsible for the behavior of Hc 2. The anisotropy of Hc 2 is close to 3 near Tc and decreases rapidly at lower temperatures.

  18. Rapid wall relaxation in elongating tissues.

    PubMed

    Matyssek, R; Maruyama, S; Boyer, J S

    1988-04-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision.

  19. On the Paramagnetic Inelastic Scattering of Neutrons due to Ions in the Anisotropic Crystalline Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Yasusada

    1960-03-15

    The paramagnetic inelastic scattering of neutrons due to ions of3d transition elements in the anisotropic crystalline field was considered. When the orbital momentum of the paramagnetic tons is not quenched, the spin states are no longer degenerate but split into discrete levels. The transition between these levels can occur by mugnetic dipole interaction of ions with neutrons. In the special case of FeCl/sub 2/, an antiferromagnetic crystal whose Neel temperature is 24 deg K, the calculation of the forward scuttering cross-sections of neutrons at various temperatures and wave lengths was carried out which showed that it is possible, under ordinarymore » conditions, to observe the inelastically scattered neutrons and hence to obtain information about the energy level scheme of the atomic spin in the cry stal. (auth)« less

  20. Paramagnetic defects in electron-irradiated yttria-stabilized zirconia: Effect of yttria content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costantini, Jean-Marc; Beuneu, Francois; Morrison-Smith, Sarah E.

    2011-12-20

    We have studied the effect of the yttria content on the paramagnetic centres in electron-irradiated yttria-stabilized zirconia (ZrO2: Y3+) or YSZ. Single crystals with 9.5 mol% or 18 mol% Y2O3 were irradiated with electrons of 1.0, 1.5, 2.0 and 2.5 MeV. The paramagnetic centre production was studied by X-band EPR spectroscopy. The same paramagnetic centres were identified for both chemical compositions, namely two electron centres, i.e. i) F+-type centres (involving singly ionized oxygen vacancies), and ii) so-called T centres (Zr3+ in a trigonal symmetry site), and hole-centres. A strong effect is observed on the production of hole-centres which are stronglymore » enhanced when doubling the yttria content. However, no striking effect is found on the electron centres (except the enhancement of an extra line associated to the F+-type centres). It is concluded that hole-centres are produced by inelastic interactions, whereas F+-type centres are produced by elastic collisions with no effect of the yttria content on the defect production rate. In the latter case, the threshold displacement energy (Ed) of oxygen is estimated from the electron-energy dependence of the F+-type centre production rate, with no significant effect of the yttria content on Ed. An Ed value larger than 120 eV is found. Accordingly, classical molecular dynamics (MD) simulations with a Buckingham-type potential show that Ed values for Y and O are likely to be in excess of 200 eV. It is concluded that F+-type centres might be actually oxygen divacancies (F2+-type centres). Due to the difficulty in displacing O or Y atoms, the radiation-induced defects may alternatively be a result of Zr atom displacements for Ed = 80 ± 1 eV with subsequent defect re-arrangement.« less

  1. Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system

    NASA Astrophysics Data System (ADS)

    Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan

    2014-04-01

    Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance

  2. Effect of body temperature on the pharmacokinetics of a triarylmethyl-type paramagnetic contrast agent used in EPR oximetry.

    PubMed

    Matsumoto, Ken-Ichiro; Hyodo, Fuminori; Mitchell, James B; Krishna, Murali C

    2018-02-01

    Pharmacokinetics of the tri[8-carboxy-2,2,6,6-tetrakis(2-hydroxymethyl)benzo[1,2-d:4,5-d']bis(1,3)dithio-4-yl]methyl radical (Oxo63) after a single bolus and/or continuous intravenous infusion was investigated in tumor-bearing C3H mice with or without body temperature control while under anesthesia. The in vivo time course of Oxo63 in blood was measured using X-band electron paramagnetic resonance spectroscopy. Distribution of Oxo63 in normal muscle and tumor tissues was obtained using a surface coil resonator and a 700-MHz electron paramagnetic resonance spectrometer. The whole-body distribution of Oxo63 was obtained by 300-MHz continuous-wave electron paramagnetic resonance imaging. The high-resolution 300-MHz time-domain electron paramagnetic resonance imaging was also carried out to probe the distribution of Oxo63. Urination of mice was retarded at low body temperature, causing the concentration of Oxo63 in blood to attain high levels. However, the concentration of Oxo63 in tumor tissue was lower with no control of body temperature than active body temperature control. The nonsystemized blood flow in the tumor tissues may pool Oxo63 at lower body temperature. Pharmacokinetics of the contrast agent were found to be significantly affected by body temperature of the experimental animal, and can influence the probe distribution and the image patterns. Magn Reson Med 79:1212-1218, 2018. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Quasiparticle relaxation in superconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Savich, Yahor; Glazman, Leonid; Kamenev, Alex

    2017-09-01

    We examine energy relaxation of nonequilibrium quasiparticles in "dirty" superconductors with the electron mean free path much shorter than the superconducting coherence length. Relaxation of low-energy nonequilibrium quasiparticles is dominated by phonon emission. We derive the corresponding collision integral and find the quasiparticle relaxation rate. The latter is sensitive to the breaking of time reversal symmetry (TRS) by a magnetic field (or magnetic impurities). As a concrete application of the developed theory, we address quasiparticle trapping by a vortex and a current-biased constriction. We show that trapping of hot quasiparticles may predominantly occur at distances from the vortex core, or the constriction, significantly exceeding the superconducting coherence length.

  4. Multi-photon Rabi oscillations in high spin paramagnetic impurity

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.

    2011-10-01

    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.

  5. Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet.

    PubMed

    Ulloa, Camilo; Duine, R A

    2018-04-27

    Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.

  6. Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet

    NASA Astrophysics Data System (ADS)

    Ulloa, Camilo; Duine, R. A.

    2018-04-01

    Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.

  7. [Autocontrol of muscle relaxation with vecuronium].

    PubMed

    Sibilla, C; Zatelli, R; Marchi, M; Zago, M

    1990-01-01

    The optimal conditions for maintaining desired levels of muscle relaxation with vecuronium are obtained by means of the continuous infusion (I.V.) technique. A frequent correction of the infusion flow is required, since it is impossible to predict the exact amount for the muscle relaxant in single case. In order to overcome such limits the authors propose a very feasible infusion system for the self-control of muscle relaxation; furthermore they positively consider its possible daily clinical application.

  8. Relaxation training after stroke: potential to reduce anxiety.

    PubMed

    Kneebone, Ian; Walker-Samuel, Natalie; Swanston, Jennifer; Otto, Elisabeth

    2014-01-01

    To consider the feasibility of setting up a relaxation group to treat symptoms of post stroke anxiety in an in-patient post-acute setting; and to explore the effectiveness of relaxation training in reducing self-reported tension. A relaxation group protocol was developed in consultation with a multidisciplinary team and a user group. Over a period of 24 months, 55 stroke patients attended group autogenic relaxation training on a rehabilitation ward. Attendance ranged between one and eleven sessions. Self-reported tension was assessed pre and post relaxation training using the Tension Rating Circles (TRCs). The TRCs identified a significant reduction in self-reported tension from pre to post training, irrespective of the number of sessions attended; z = -3.656, p < 0.001, r = -0.67, for those who attended multiple sessions, z = -2.758, p < 0.01, r = -0.6 for those who attended a single session. The routine use of relaxation techniques in treating anxiety in patients undergoing post-stroke rehabilitation shows potential. Self-reported tension decreased after attendance at relaxation training. The TRCs proved acceptable to group members, but should be validated against standard anxiety measures. Further exploration of the application of relaxation techniques in clinical practice is desirable. Implications for Rehabilitation Anxiety is prevalent after stroke and likely affects rehabilitation outcomes. Relaxation training is a well proven treatment for anxiety in the non-stroke population. A significant within session reduction in tension, a hallmark symptom of anxiety, was evidenced via group relaxation training delivered in a post-acute, in-patient stroke unit setting. Relaxation training a shows promise as a treatment for anxiety after stroke.

  9. Magnetic Resonance Fingerprinting with short relaxation intervals.

    PubMed

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  10. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity**

    PubMed Central

    Chen, Kuan-Ju; Wolahan, Stephanie M.; Wang, Hao; Hsu, Chao-Hsiung; Chang, Hsing-Wei; Durazo, Armando; Hwang, Lian-Pin; Garcia, Mitch A.; Jiang, Ziyue Karen; Wu, Lily

    2010-01-01

    We introduce a new category of nanoparticle-based T1 MRI contrast agents (CAs) by encapsulating paramagnetic chelated gadolinium(III), i.e., Gd3+·DOTA, through supramolecular assembly of molecular building blocks that carry complementary molecular recognition motifs, including adamantane (Ad) and β-cyclodextrin (CD). A small library of Gd3+·DOTA-encapsulated supramolecular nanoparticles (Gd3+·DOTA⊂SNPs) was produced by systematically altering the molecular building block mixing ratios. A broad spectrum of relaxation rates was correlated to the resulting Gd3+·DOTA⊂SNP library. Consequently, an optimal synthetic formulation of Gd3+·DOTA⊂SNPs with an r1 of 17.3 s−1mM−1 (ca. 4-fold higher than clinical Gd3+ chelated complexes at high field strengths) was identified. T1-weighted imaging of Gd3+·DOTA⊂SNPs exhibits an enhanced sensitivity with a contrast-to-noise ratio (C/N ratio) ca. 3.6 times greater than that observed for free Gd3+·DTPA. A Gd3+·DOTA⊂SNPs solution was injected into foot pads of mice, and MRI was employed to monitor dynamic lymphatic drainage of the Gd3+·DOTA⊂SNPs-based CA. We observe an increase in signal intensity of the brachial lymph node in T1-weighted imaging after injecting Gd3+·DOTA⊂SNPs but not after injecting Gd3+·DTPA. The MRI results are supported by ICP-MS analysis ex vivo. These results show that Gd3+·DOTA⊂SNPs not only exhibits enhanced relaxivity and high sensitivity but also can serve as a potential tool for diagnosis of cancer metastasis. PMID:21167594

  11. Doping evolution of the second magnetization peak and magnetic relaxation in (B a1 -xKx ) F e2A s2 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Zhou, Lin; Sun, Kewei; Straszheim, Warren E.; Tanatar, Makariy A.; Prozorov, Ruslan; Lograsso, Thomas A.

    2018-02-01

    We present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (B a1 -xKx ) F e2A s2 (0.18 ≤x ≤1 ). The critical current density Jc reaches maximum in the underdoped sample x =0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U0 sharply decreases in the overdoped sample x =0.70 . These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimally doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x =0.38 , 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in Tc become small in the samples x =0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (B a1 -xKx ) F e2A s2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δ Tc pinning from the spatial variations in Tc in the underdoped regime, and (ii) weak δ Tc pinning in the optimally doped and overdoped regime.

  12. Relaxation and Distraction in Experimental Desensitization.

    ERIC Educational Resources Information Center

    Weir, R. O.; Marshall, W. L.

    1980-01-01

    Compared experimental desensitization with a procedure that replaced relaxation with a distraction task and with an approach that combined both relaxation and distraction. Desensitization generally was more effective than the other two procedures. (Author)

  13. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  14. Ultra-Slow Dielectric Relaxation Process in Polyols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2004-04-01

    Dielectric relaxation processes with relaxation times larger than that for the structural α process are reported for glycerol, xylitol, sorbitol and their mixtures for the first time. Appearance of this ultra-slow process depends on cooling rate. More rapid cooling gives larger dielectric relaxation strength. However, relaxation time is not affected by cooling rate and shows non-Arrhenius temperature dependence with correlation to the α process. It can be considered that non-equilibrium dynamic structure causes the ultra-slow process. Scale of such structure would be much larger than that of the region for the cooperative molecular orientations for the α process.

  15. Convex relaxations for gas expansion planning

    DOE PAGES

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; ...

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less

  16. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOEpatents

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  17. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOEpatents

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  18. Dependence of Van-Vleck paramagnetism on the size of nanocrystals in superstoichiometric TiO{sub y}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valeeva, A. A., E-mail: valeeva@ihim.uran.ru; Nazarova, S. Z.; Rempel, A. A.

    2016-04-15

    In situ measurements of the magnetic susceptibility of titanium monoxide nanocrystals with superstoichiometric composition TiO{sub y} (y > 1) in the 300–1200 K temperature range showed that this value depends not only on the structural state of a sample, but also on the size of crystals. Analysis of data obtained for both ordered and disordered TiO{sub y} showed that the Van-Vleck paramagnetism is inversely proportional to the nanocrystal size because of breakage of the symmetry of local environment of the near-surface atoms of titanium and oxygen. The Van-Vleck paramagnetism contribution due to atomic-vacancy disorder in superstoichiometric titanium monoxide nanocrystals, asmore » well as in the stoichiometric composition, is proportional to a deviation of the degree of long-range order from its maximum value.« less

  19. Lavender fragrance cleansing gel effects on relaxation.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing

    2005-02-01

    Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.

  20. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  1. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    PubMed

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  2. 300 MHz continuous wave electron paramagnetic resonance spectrometer for small animal in vivo imaging

    NASA Astrophysics Data System (ADS)

    Koscielniak, J.; Devasahayam, N.; Moni, M. S.; Kuppusamy, P.; Yamada, K.; Mitchell, J. B.; Krishna, M. C.; Subramanian, S.

    2000-11-01

    Design and construction of an electron paramagnetic resonance (EPR) spectrometer, operating in the continuous wave mode in the radio frequency (rf) region, and capable of performing spectroscopy and in vivo imaging of paramagnetic spin probes is described. A resonant frequency of 300 MHz was chosen to provide the required sensitivity at nontoxic levels of commonly used spin probes and penetration of the rf in small animals. Three major components, the magnet, the radio frequency signal detection bridge, and the data acquisition module are described in this article. Integration of a rapid scan capability to reduce imaging time is also described. Two- and three-dimensional EPR images of the spin probe distribution in phantom objects as well as from in vivo experiments are reported. From the EPR images, morphology of some internal organs could be recognized. EPR images of the spin probe distribution in mice suggest differences in perfusion of the spin probe between normal and tumor regions. Addition of a spectral dimension to spatial images should enable differentiation of oxygen status in normal and pathological conditions.

  3. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

    PubMed

    Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid

    2017-03-01

    Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2 *) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.

  4. Magnetic relaxation pathways in lanthanide single-molecule magnets.

    PubMed

    Blagg, Robin J; Ungur, Liviu; Tuna, Floriana; Speak, James; Comar, Priyanka; Collison, David; Wernsdorfer, Wolfgang; McInnes, Eric J L; Chibotaru, Liviu F; Winpenny, Richard E P

    2013-08-01

    Single-molecule magnets are compounds that exhibit magnetic bistability caused by an energy barrier for the reversal of magnetization (relaxation). Lanthanide compounds are proving promising as single-molecule magnets: recent studies show that terbium phthalocyanine complexes possess large energy barriers, and dysprosium and terbium complexes bridged by an N2(3-) radical ligand exhibit magnetic hysteresis up to 13 K. Magnetic relaxation is typically controlled by single-ion factors rather than magnetic exchange (whether one or more 4f ions are present) and proceeds through thermal relaxation of the lowest excited states. Here we report polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched. This leads to energy barriers for relaxation of magnetization that exceed 800 K. We investigated the factors at the lanthanide sites that govern this behaviour.

  5. Relaxation versus adiabatic quantum steady-state preparation

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  6. Rapid Wall Relaxation in Elongating Tissues 1

    PubMed Central

    Matyssek, Rainer; Maruyama, Sachio; Boyer, John S.

    1988-01-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision. PMID:16666048

  7. Paramagnetic behavior of Co doped TiO{sub 2} nanocrystals controlled by self-purification mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anitha, B.; Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com; Banerjee, Alok

    Doping in nanocrystals is a challenging process because of the self- purification mechanism which tends to segregate out the dopants resulting in a greater dopant concentration near the surface than at the interior of nanocrystals. In the present work nanocrystals of TiO{sub 2} doped with different atom % of Co were synthesized by peroxide gel method. XRD analysis confirmed the tetragonal anatase structure and HRTEM images showed the rod-like morphology of the samples. Raman modes of anatase phase of TiO{sub 2} along with weak intensity peaks of Co{sub 3}O{sub 4} for higher Co dopant concentrations were observed for the samples.more » EPR measurements revealed the presence of cobalt in +2 oxidation state in the TiO{sub 2} matrix. SQUID measurements indicated paramagnetic behavior of the Co doped TiO{sub 2} nanocrystals. The paramagnetic behavior is attributed to an increased concentration of Co{sup 2+} ions and an increased presence of Co{sub 3}O{sub 4} phase near the surface of the TiO{sub 2} nanocrystals due to self-purification mechanism. - Graphical abstract: Variation of the intensity ratios of XRD peaks as a function of atomic ratio of Co. Inset: variation of structure factor for (101) reflection as a function of atomic ratio of Co. Display Omitted - Highlights: • Co doped TiO{sub 2} nanocrystals were synthesized by peroxide gel method. • HRTEM images showed Co doped TiO{sub 2} nanocrystals to be rod-like. • EPR spectra showed +2 oxidation states for Co in the samples. • Co doped TiO{sub 2} nanocrystals showed paramagnetic behavior.« less

  8. Cryogen-free superconducting magnet system for multifrequency electron paramagnetic resonance up to 12.1 T

    NASA Astrophysics Data System (ADS)

    Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny

    2006-03-01

    Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.

  9. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  10. Multi-region relaxed Hall magnetohydrodynamics with flow

    DOE PAGES

    Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.

    2016-08-03

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposedmore » for deriving the partially relaxed states.« less

  11. Electron paramagnetic resonance of gamma-irradiated single crystals of 3-nitroacetanilide

    NASA Astrophysics Data System (ADS)

    Aşik, Biray

    2008-06-01

    The electron paramagnetic resonance of single crystals of 3-nitroacetanilide has been observed and analyzed for different orientations of the crystal in the magnetic field, after being damaged at 300 K by γ-irradiation. The crystals have been investigated between 123 and 300 K. The spectra were found to be temperature independent. The irradiation of 3-nitroacetanilide by γ-rays produces radicals at the nitrogen atoms in the molecule. The principal values of the hyperfine coupling tensor of the unpaired electron and the principal values of the g-tensor were determined.

  12. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents.

    PubMed

    Yamaguchi, Tsuyoshi; Koda, Shinobu

    2014-12-28

    The dielectric relaxation spectra of dilute electrolyte solutions in solvents of small dielectric constants are investigated both theoretically and experimentally. The theoretical calculation in our previous work [T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 135, 164511 (2011)] is reanalyzed, and it is shown that the dielectric relaxation spectra are composed of three components, namely, the relaxation of ionic atmosphere, the reorientational relaxation of ion pairs, and the collision between ions. The relaxation frequency of the slowest one increases with increasing the concentration, and the slower two relaxations, those of ionic atmosphere and ion pairs, merge into one at the concentration where the Debye length is comparable to the size of ions. Experimentally, the dielectric relaxation spectra of some electrolytes in two solvents, tetrahydrofuran and tetraglyme, are determined at frequencies from 300 kHz to 200 MHz, and the presence of the slower two relaxations was confirmed. The concentration dependence of the relaxation frequency is also in harmony with the theoretical calculation. The relationship between the dielectric relaxation spectra and the concentration dependence of the ionic conductivity is discussed.

  13. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tsuyoshi; Koda, Shinobu

    2014-12-01

    The dielectric relaxation spectra of dilute electrolyte solutions in solvents of small dielectric constants are investigated both theoretically and experimentally. The theoretical calculation in our previous work [T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 135, 164511 (2011)] is reanalyzed, and it is shown that the dielectric relaxation spectra are composed of three components, namely, the relaxation of ionic atmosphere, the reorientational relaxation of ion pairs, and the collision between ions. The relaxation frequency of the slowest one increases with increasing the concentration, and the slower two relaxations, those of ionic atmosphere and ion pairs, merge into one at the concentration where the Debye length is comparable to the size of ions. Experimentally, the dielectric relaxation spectra of some electrolytes in two solvents, tetrahydrofuran and tetraglyme, are determined at frequencies from 300 kHz to 200 MHz, and the presence of the slower two relaxations was confirmed. The concentration dependence of the relaxation frequency is also in harmony with the theoretical calculation. The relationship between the dielectric relaxation spectra and the concentration dependence of the ionic conductivity is discussed.

  14. Isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol

    NASA Astrophysics Data System (ADS)

    Fransson, Å.; Bäckström, G.

    The isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol has been measured at six temperatures. The relaxation time and the distribution parameters extracted from fits of the Williams-Watts relaxation function are compared with parameters obtained by other techniques and on other substances. A detailed comparison of the Williams-Watts and the Davidson-Cole relaxation functions is presented.

  15. The Efficacy of Relaxation Training in Treating Anxiety

    ERIC Educational Resources Information Center

    Francesco, Pagnini; Mauro, Manzoni Gian; Gianluca, Castelnuovo; Enrico, Molinari

    2009-01-01

    This paper provides a review of scientific literature about relaxation training and its effects on anxiety. Research investigating progressive relaxation, meditation, applied relaxation and autogenic training were considered. All these methods proved to be effective in reducing anxiety in all kind of samples, affected or not by physical or…

  16. Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system.

    PubMed

    Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan

    2014-05-21

    Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn(2+) in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.

  17. Relaxation dynamics of a multihierarchical polymer network

    NASA Astrophysics Data System (ADS)

    Jurjiu, Aurel; Biter, Teodor Lucian; Turcu, Flaviu

    2017-01-01

    In this work, we study the relaxation dynamics of a multihierarchical polymer network built by replicating the Vicsek fractal in dendrimer shape. The relaxation dynamics is investigated in the framework of the generalized Gaussian structure model by employing both Rouse and Zimm approaches. In the Rouse-type approach, we show the iterative procedure whereby the whole eigenvalue spectrum of the connectivity matrix of the multihierarchical structure can be obtained. Remarkably, the general picture that emerges from both approaches, even though we have a mixed growth algorithm, is that the obtained multihierarchical structure preserves the individual relaxation behaviors of its components. The theoretical findings with respect to the splitting of the intermediate domain of the relaxation quantities are well supported by experimental results.

  18. Effects of water on the primary and secondary relaxation of xylitol and sorbitol: Implication on the origin of the Johari-Goldstein relaxation

    NASA Astrophysics Data System (ADS)

    Psurek, T.; Maslanka, S.; Paluch, M.; Nozaki, R.; Ngai, K. L.

    2004-07-01

    Dielectric spectroscopy was employed to study the effects of water on the primary α -relaxation and the secondary β -relaxation of xylitol. The measurements were made on anhydrous xylitol and mixtures of xylitol with water with three different water concentrations over a temperature range from 173K to 293K . The α -relaxation speeds up with increasing concentration of water in xylitol, whereas the rate of the β -relaxation is essentially unchanged. Some systematic differences in the behavior of α -relaxation for anhydrous xylitol and the mixtures were observed. Our findings confirm all the observations of Nozaki [R. Nozaki, H. Zenitani, A. Minoguchi, and K. Kitai, J. Non-Cryst. Solids 307, 349 (2002)] in sorbitol/water mixtures. Effects of water on both the α - and β -relaxation dynamics in xylitol and sorbitol are explained by using the coupling model.

  19. 46 CFR 46.10-1 - Relaxation from regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Relaxation from regulations. 46.10-1 Section 46.10-1... PASSENGER VESSELS Administration § 46.10-1 Relaxation from regulations. (a) New passenger vessels making... engaged in foreign voyages by sea may be permitted relaxation from the requirements of this part if, in...

  20. 46 CFR 46.10-1 - Relaxation from regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Relaxation from regulations. 46.10-1 Section 46.10-1... PASSENGER VESSELS Administration § 46.10-1 Relaxation from regulations. (a) New passenger vessels making... engaged in foreign voyages by sea may be permitted relaxation from the requirements of this part if, in...

  1. Magnetic resonance imaging relaxation time in Alzheimer's disease.

    PubMed

    Tang, Xiang; Cai, Feng; Ding, Dong-Xue; Zhang, Lu-Lu; Cai, Xiu-Ying; Fang, Qi

    2018-05-05

    The magnetic resonance imaging (MRI) relaxation time constants, T1 and T2, are sensitive to changes in brain tissue microstructure integrity. Quantitative T1 and T2 relaxation times have been proposed to serve as non-invasive biomarkers of Alzheimer's disease (AD), in which alterations are believed to not only reflect AD-related neuropathology but also cognitive impairment. In this review, we summarize the applications and key findings of MRI techniques in the context of both AD subjects and AD transgenic mouse models. Furthermore, the possible mechanisms of relaxation time alterations in AD will be discussed. Future studies could focus on relaxation time alterations in the early stage of AD, and longitudinal studies are needed to further explore relaxation time alterations during disease progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Interface roughness mediated phonon relaxation rates in Si quantum dots.

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Hsueh, Yuling; Klimeck, Gerhard; Rahman, Rajib

    2015-03-01

    Si QDs are promising candidates for solid-state quantum computing due to long spin coherence times. However, the valley degeneracy in Si adds an additional degree of freedom to the electronic structure. Although the valley and orbital indices can be uniquely identified in an ideal Si QD, interface roughness mixes valley and orbital states in realistic dots. Such valley-orbit coupling can strongly influence T1 times in Si QDs. Recent experimental measurements of various relaxation rates differ from previous predictions of phonon relaxation in ideal Si QDs. To understand how roughness affects different relaxation rates, for example spin relaxation due to spin-valley coupling, which is a byproduct of spin-orbit and valley-orbit coupling, we need to understand the effect of valley-orbit coupling on valley relaxation first. Using a full-band atomistic tight-binding description for both the system's electron and electron-phonon hamiltonian, we analyze the effect of atomic-scale interface disorder on phonon induced valley relaxation and spin relaxation in a Si QD. We find that, the valley splitting dependence of valley relaxation rate governs the magnetic field dependence of spin relaxation rate. Our results help understand experimentally measured relaxation times.

  3. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy.

    PubMed

    Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C

    2017-07-01

    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Extended MHD Modeling of Tearing-Driven Magnetic Relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua

    2016-10-01

    Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from < J × B > / ne can counter the MHD effect from - < V × B > in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at

  5. Dielectric relaxation of gamma irradiated muscovite mica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Navjeet; Singh, Mohan, E-mail: mohansinghphysics@gmail.com; Singh, Lakhwant

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, usingmore » the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.« less

  6. Fluorinated Paramagnetic Complexes: Sensitive and Responsive Probes for Magnetic Resonance Spectroscopy and Imaging

    NASA Astrophysics Data System (ADS)

    Peterson, Katie L.; Srivastava, Kriti; Pierre, Valérie C.

    2018-05-01

    Fluorine magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) of chemical and physiological processes is becoming more widespread. The strength of this technique comes from the negligible background signal in in vivo 19F MRI and the large chemical shift window of 19F that enables it to image concomitantly more than one marker. These same advantages have also been successfully exploited in the design of responsive 19F probes. Part of the recent growth of this technique can be attributed to novel designs of 19F probes with improved imaging parameters due to the incorporation of paramagnetic metal ions. In this review, we provide a description of the theories and strategies that have been employed successfully to improve the sensitivity of 19F probes with paramagnetic metal ions. The Bloch-Wangsness-Redfield theory accurately predicts how molecular parameters such as distance, geometry, rotational correlation times, as well as the nature, oxidation state, and spin state of the metal ion affect the sensitivity of the fluorine-based probes. The principles governing the design of responsive 19F probes are subsequently described in a “how to” guide format. Examples of such probes and their advantages and disadvantages are highlighted through a synopsis of the literature.

  7. 129 Xe NMR Relaxation-Based Macromolecular Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Muller D.; Dao, Phuong; Jeong, Keunhong

    2016-07-29

    A 129Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of amore » biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T 2 is reduced by a factor of 4.« less

  8. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    PubMed

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  9. Calorimetric and relaxation properties of xylitol-water mixtures

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan

    2012-03-01

    We present the first broadband dielectric spectroscopy (BDS) and differential scanning calorimetry study of supercooled xylitol-water mixtures in the whole concentration range and in wide frequency (10-2-106 Hz) and temperature (120-365 K) ranges. The calorimetric glass transition, Tg, decreases from 247 K for pure xylitol to about 181 K at a water concentration of approximately 37 wt. %. At water concentrations in the range 29-35 wt. % a plentiful calorimetric behaviour is observed. In addition to the glass transition, almost simultaneous crystallization and melting events occurring around 230-240 K. At higher water concentrations ice is formed during cooling and the glass transition temperature increases to a steady value of about 200 K for all higher water concentrations. This Tg corresponds to an unfrozen xylitol-water solution containing 20 wt. % water. In addition to the true glass transition we also observed a glass transition-like feature at 220 K for all the ice containing samples. However, this feature is more likely due to ice dissolution [A. Inaba and O. Andersson, Thermochim. Acta, 461, 44 (2007)]. In the case of the BDS measurements the presence of water clearly has an effect on both the cooperative α-relaxation and the secondary β-relaxation. The α-relaxation shows a non-Arrhenius temperature dependence and becomes faster with increasing concentration of water. The fragility of the solutions, determined by the temperature dependence of the α-relaxation close to the dynamic glass transition, decreases with increasing water content up to about 26 wt. % water, where ice starts to form. This decrease in fragility with increasing water content is most likely caused by the increasing density of hydrogen bonds, forming a network-like structure in the deeply supercooled regime. The intensity of the secondary β-relaxation of xylitol decreases noticeably already at a water content of 2 wt. %, and at a water content above 5 wt. % it has been replaced by a

  10. The Unquiet State of Violent Relaxation

    NASA Astrophysics Data System (ADS)

    Henriksen, Richard

    2005-08-01

    In 1967 Lynden-Bell presented a statistical mechanical theory for the relaxation of collisionless systems. Since then this theory has been studied numerically and theoretically by many authors. Nakamura in 2000 gave an alternate theory that differed from that of Lynden- Bell by predicting a Gaussian equilibrium distribution function rather than Fermi-Dirac. More recently Henriksen in 2004 has used a coarsegraining technique on cosmological infall systems that also predicts a Gaussian equilibrium distribution function. These relaxed states are thought to occur from the centre of the system outwards. Simulations of cosmological cold dark-matter halos however persist in finding central density cusps (the NFWprofile), which are inconsistent with the predicted distribution functions and perhaps with the observations of some galaxies. Some numerical studies (e.g.Merrall & Henriksen 2003) that attempt to measure the distribution function of dark matter do find Gaussian functions, provided that the initial asymmetry is not too great. Moreover recent work at Queen's reported here by MacMillan, suggests that it is the growth of asymmetry during the infall that produces the cusped behaviour. So put briefly, the essential physics of dark-matter relaxation remains "obscure" as does the validity of the theoretical predictions. "Violent virialization" occurs rapidly, well before subscale relaxation, but the scale at which the relaxation stops (and why) remains unclear. I will present some results that argue for wave-particle relaxation (Landau damping as frequently suggested by Kandrup) and in addition I will suggest that the evolution of isolated systems is very different from that of systems constantly disturbed by infall. Isolated systems may become trapped in an unrelaxed state by the development or existence of multipolar internal structure. Nevertheless a suitable coarse graining of the system may restore the predicted distribution functions.

  11. A new ion-exchange adsorbent with paramagnetic properties for the separation of genomic DNA.

    PubMed

    Feng, Guodong; Jiang, Luan; Wen, Puhong; Cui, Yali; Li, Hong; Hu, Daodao

    2011-11-21

    A new ion-exchange adsorbent (IEA) derived from Fe(3)O(4)/SiO(2)-GPTMS-DEAE with paramagnetic properties was prepared. Fe(3)O(4) nanoparticles were firstly prepared in water-in-oil microemulsion. The magnetic Fe(3)O(4) particles were modified in situ by hydrolysis and condensation reactions with tetraethoxysilane (TEOS) to form the core-shell Fe(3)O(4)/SiO(2). The modified particles were further treated by 3-glycidoxypropyltrimethoxysilane (GPTMS) to form Fe(3)O(4)/SiO(2)-GPTMS nanoparticles. Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles (IEA) were finally obtained through the condensation reaction between the Cl of diethylaminoethyl chloride-HCl (DEAE) and the epoxy groups of GPTMS in the Fe(3)O(4)/SiO(2)-GPTMS. The obtained IEA has features of paramagnetic and ion exchange properties because of the Fe(3)O(4) nanoparticles and protonated organic amine in the sample. The intermediates and final product obtained in the synthesis process were characterized. The separation result of genomic DNA from blood indicated that Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles have outstanding advantages in operation, selectivity, and capacity.

  12. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  13. Relaxing music counters heightened consolidation of emotional memory.

    PubMed

    Rickard, Nikki S; Wong, Wendy Wing; Velik, Lauren

    2012-02-01

    Emotional events tend to be retained more strongly than other everyday occurrences, a phenomenon partially regulated by the neuromodulatory effects of arousal. Two experiments demonstrated the use of relaxing music as a means of reducing arousal levels, thereby challenging heightened long-term recall of an emotional story. In Experiment 1, participants (N=84) viewed a slideshow, during which they listened to either an emotional or neutral narration, and were exposed to relaxing or no music. Retention was tested 1 week later via a forced choice recognition test. Retention for both the emotional content (Phase 2 of the story) and material presented immediately after the emotional content (Phase 3) was enhanced, when compared with retention for the neutral story. Relaxing music prevented the enhancement for material presented after the emotional content (Phase 3). Experiment 2 (N=159) provided further support to the neuromodulatory effect of music by post-event presentation of both relaxing music and non-relaxing auditory stimuli (arousing music/background sound). Free recall of the story was assessed immediately afterwards and 1 week later. Relaxing music significantly reduced recall of the emotional story (Phase 2). The findings provide further insight into the capacity of relaxing music to attenuate the strength of emotional memory, offering support for the therapeutic use of music for such purposes. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Ultrafast energy relaxation in single light-harvesting complexes.

    PubMed

    Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk

    2016-03-15

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  15. Relaxation as a Factor in Semantic Desensitization

    ERIC Educational Resources Information Center

    Bechtel, James E.; McNamara, J. Regis

    1975-01-01

    Relaxation and semantic desensitization were used to alleviate the fear of phobic females. Results showed that semantic desensitization, alone or in combination with relaxation, failed to modify the evaluative meanings evoked by the feared object. (SE)

  16. Definition, evaluation, and management of brain relaxation during craniotomy.

    PubMed

    Li, J; Gelb, A W; Flexman, A M; Ji, F; Meng, L

    2016-06-01

    The term 'brain relaxation' is routinely used to describe the size and firmness of the brain tissue during craniotomy. The status of brain relaxation is an important aspect of neuroanaesthesia practice and is relevant to the operating conditions, retraction injury, and likely patient outcomes. Brain relaxation is determined by the relationship between the volume of the intracranial contents and the capacity of the intracranial space (i.e. a content-space relationship). It is a concept related to, but distinct from, intracranial pressure. The evaluation of brain relaxation should be standardized to facilitate clinical communication and research collaboration. Both advantageous and disadvantageous effects of the various interventions for brain relaxation should be taken into account in patient care. The outcomes that matter the most to patients should be emphasized in defining, evaluating, and managing brain relaxation. To date, brain relaxation has not been reviewed specifically, and the aim of this manuscript is to discuss the current approaches to the definition, evaluation, and management of brain relaxation, knowledge gaps, and targets for future research. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Repeatability and reliability of muscle relaxation properties induced by motor cortical stimulation.

    PubMed

    Molenaar, Joery P; Voermans, Nicol C; de Jong, Lysanne A; Stegeman, Dick F; Doorduin, Jonne; van Engelen, Baziel G

    2018-03-15

    Impaired muscle relaxation is a feature of many neuromuscular disorders. However, there are few tests available to quantify muscle relaxation. Transcranial magnetic stimulation (TMS) of the motor cortex can induce muscle relaxation by abruptly inhibiting corticospinal drive. The aim of our study is to investigate if repeatability and reliability of TMS-induced relaxation is greater than voluntary relaxation. Furthermore, effects of sex, cooling and fatigue on muscle relaxation properties were studied. Muscle relaxation of deep finger flexors was assessed in twenty-five healthy subjects (14 M and 11 F, aged 39.1{plus minus}12.7 and 45.3{plus minus}8.7 years old, respectively) using handgrip dynamometry. All outcome measures showed greater repeatability and reliability in TMS-induced relaxation compared to voluntary relaxation. The within-subject coefficient of variability of normalized peak relaxation rate was lower in TMS-induced relaxation than in voluntary relaxation (3.0 vs 19.7% in men, and 6.1 vs 14.3% in women). The repeatability coefficient was lower (1.3 vs 6.1 s -1 in men and 2.3 vs 3.1 s -1 in women), and the intraclass correlation coefficient was higher (0.95 vs 0.53 in men and 0.78 vs 0.69 in women), for TMS-induced relaxation compared to voluntary relaxation. TMS enabled to demonstrate slowing effects of sex, muscle cooling, and muscle fatigue on relaxation properties that voluntary relaxation could not. In conclusion, repeatability and reliability of TMS-induced muscle relaxation was greater compared to voluntary muscle relaxation. TMS-induced muscle relaxation has the potential to be used in clinical practice for diagnostic purposes and therapy effect monitoring in patients with impaired muscle relaxation.

  18. Relaxation-optimized transfer of spin order in Ising spin chains

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis; Glaser, Steffen J.; Khaneja, Navin

    2005-12-01

    In this paper, we present relaxation optimized methods for the transfer of bilinear spin correlations along Ising spin chains. These relaxation optimized methods can be used as a building block for the transfer of polarization between distant spins on a spin chain, a problem that is ubiquitous in multidimensional nuclear magnetic resonance spectroscopy of proteins. Compared to standard techniques, significant reduction in relaxation losses is achieved by these optimized methods when transverse relaxation rates are much larger than the longitudinal relaxation rates and comparable to couplings between spins. We derive an upper bound on the efficiency of the transfer of the spin order along a chain of spins in the presence of relaxation and show that this bound can be approached by the relaxation optimized pulse sequences presented in the paper.

  19. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-07

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).

  20. Relaxation therapies for asthma: a systematic review

    PubMed Central

    Huntley, A; White, A; Ernst, E

    2002-01-01

    Background: Emotional stress can either precipitate or exacerbate both acute and chronic asthma. There is a large body of literature available on the use of relaxation techniques for the treatment of asthma symptoms. The aim of this systematic review was to determine if there is any evidence for or against the clinical efficacy of such interventions. Methods: Four independent literature searches were performed on Medline, Cochrane Library, CISCOM, and Embase. Only randomised clinical trials (RCTs) were included. There were no restrictions on the language of publication. The data from trials that statistically compared the treatment group with that of the control were extracted in a standardised predefined manner and assessed critically by two independent reviewers. Results: Fifteen trials were identified, of which nine compared the treatment group with the control group appropriately. Five RCTs tested progressive muscle relaxation or mental and muscular relaxation, two of which showed significant effects of therapy. One RCT investigating hypnotherapy, one of autogenic training, and two of biofeedback techniques revealed no therapeutic effects. Overall, the methodological quality of the studies was poor. Conclusions: There is a lack of evidence for the efficacy of relaxation therapies in the management of asthma. This deficiency is due to the poor methodology of the studies as well as the inherent problems of conducting such trials. There is some evidence that muscular relaxation improves lung function of patients with asthma but no evidence for any other relaxation technique. PMID:11828041

  1. Relaxation therapies for asthma: a systematic review.

    PubMed

    Huntley, A; White, A R; Ernst, E

    2002-02-01

    Emotional stress can either precipitate or exacerbate both acute and chronic asthma. There is a large body of literature available on the use of relaxation techniques for the treatment of asthma symptoms. The aim of this systematic review was to determine if there is any evidence for or against the clinical efficacy of such interventions. Four independent literature searches were performed on Medline, Cochrane Library, CISCOM, and Embase. Only randomised clinical trials (RCTs) were included. There were no restrictions on the language of publication. The data from trials that statistically compared the treatment group with that of the control were extracted in a standardised predefined manner and assessed critically by two independent reviewers. Fifteen trials were identified, of which nine compared the treatment group with the control group appropriately. Five RCTs tested progressive muscle relaxation or mental and muscular relaxation, two of which showed significant effects of therapy. One RCT investigating hypnotherapy, one of autogenic training, and two of biofeedback techniques revealed no therapeutic effects. Overall, the methodological quality of the studies was poor. There is a lack of evidence for the efficacy of relaxation therapies in the management of asthma. This deficiency is due to the poor methodology of the studies as well as the inherent problems of conducting such trials. There is some evidence that muscular relaxation improves lung function of patients with asthma but no evidence for any other relaxation technique.

  2. Weak nanoscale chaos and anomalous relaxation in DNA

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2017-06-01

    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  3. Weak nanoscale chaos and anomalous relaxation in DNA.

    PubMed

    Mazur, Alexey K

    2017-06-01

    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  4. Load relaxation of olivine single crystals

    NASA Astrophysics Data System (ADS)

    Cooper, Reid F.; Stone, Donald S.; Plookphol, Thawatchai

    2016-10-01

    Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo88-90) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500°C and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log stress versus log strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different than that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, we argue, indicates flow that is rate limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).

  5. Load Relaxation of Olivine Single Crystals

    NASA Astrophysics Data System (ADS)

    Cooper, R. F.; Stone, D. S.; Plookphol, T.

    2016-12-01

    Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo90-92) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500ºC and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power-law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load-relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log-stress v. log-strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different that that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, thus, indicates flow that is rate-limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).

  6. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2006-04-01

    Complex permittivity was obtained on glycerol, xylitol, sorbitol and sorbitol-xylitol mixtures in the supercooled liquid state in the frequency range between 10μHz and 500MHz at temperatures near and above the glass transition temperature. For all the materials, a dielectric relaxation process was observed in addition to the well-known structural α and Johari-Goldstein β relaxation process [G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970)]. The relaxation time for the new process is always larger than that for the α process. The relaxation time shows non-Arrhenius temperature dependence with correlation to the behavior of the α process and it depends on the molecular size systematically. The dielectric relaxation strength for the new process shows the effect of thermal history and decreases exponentially with time at a constant temperature. It can be considered that a nonequilibrium dynamics causes the new process.

  7. Relaxation-phenomena in LiAl/FeS-cells

    NASA Astrophysics Data System (ADS)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  8. Developing a Learning Algorithm-Generated Empirical Relaxer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Wayne; Kallman, Josh; Toreja, Allen

    2016-03-30

    One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.

  9. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    NASA Astrophysics Data System (ADS)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  10. Gaussian signal relaxation around spin echoes: Implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla.

    PubMed

    Zapp, Jascha; Domsch, Sebastian; Weingärtner, Sebastian; Schad, Lothar R

    2017-05-01

    To characterize the reversible transverse relaxation in pulmonary tissue and to study the benefit of a quadratic exponential (Gaussian) model over the commonly used linear exponential model for increased quantification precision. A point-resolved spectroscopy sequence was used for comprehensive sampling of the relaxation around spin echoes. Measurements were performed in an ex vivo tissue sample and in healthy volunteers at 1.5 Tesla (T) and 3 T. The goodness of fit using χred2 and the precision of the fitted relaxation time by means of its confidence interval were compared between the two relaxation models. The Gaussian model provides enhanced descriptions of pulmonary relaxation with lower χred2 by average factors of 4 ex vivo and 3 in volunteers. The Gaussian model indicates higher sensitivity to tissue structure alteration with increased precision of reversible transverse relaxation time measurements also by average factors of 4 ex vivo and 3 in volunteers. The mean relaxation times of the Gaussian model in volunteers are T2,G' = (1.97 ± 0.27) msec at 1.5 T and T2,G' = (0.83 ± 0.21) msec at 3 T. Pulmonary signal relaxation was found to be accurately modeled as Gaussian, providing a potential biomarker T2,G' with high sensitivity. Magn Reson Med 77:1938-1945, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Milrinone Relaxes Pulmonary Veins in Guinea Pigs and Humans

    PubMed Central

    Rieg, Annette D.; Suleiman, Said; Perez-Bouza, Alberto; Braunschweig, Till; Spillner, Jan W.; Schröder, Thomas; Verjans, Eva; Schälte, Gereon; Rossaint, Rolf; Uhlig, Stefan; Martin, Christian

    2014-01-01

    Introduction The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH). However, its action on pulmonary veins (PVs) is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs) and humans. Material and Methods Precision-cut lung slices (PCLS) were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL). Results In the IPL (GP), milrinone (10 µM) lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP), milrinone relaxed naïve and pre-constricted PVs (120%) and this relaxation was attenuated by inhibition of protein kinase G (KT 5823), adenyl cyclase (SQ 22536) and protein kinase A (KT 5720), but not by inhibition of NO-synthesis (L-NAME). In addition, milrinone-induced relaxation was dependent on the activation of KATP-, BKCa 2+- and Kv-channels. Human PVs also relaxed to milrinone (121%), however only if pre-constricted. Discussion Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on KATP-, BKCa 2+- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease. PMID:24498166

  12. Milrinone relaxes pulmonary veins in guinea pigs and humans.

    PubMed

    Rieg, Annette D; Suleiman, Said; Perez-Bouza, Alberto; Braunschweig, Till; Spillner, Jan W; Schröder, Thomas; Verjans, Eva; Schälte, Gereon; Rossaint, Rolf; Uhlig, Stefan; Martin, Christian

    2014-01-01

    The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH). However, its action on pulmonary veins (PVs) is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs) and humans. Precision-cut lung slices (PCLS) were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL). In the IPL (GP), milrinone (10 µM) lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP), milrinone relaxed naïve and pre-constricted PVs (120%) and this relaxation was attenuated by inhibition of protein kinase G (KT 5823), adenyl cyclase (SQ 22536) and protein kinase A (KT 5720), but not by inhibition of NO-synthesis (L-NAME). In addition, milrinone-induced relaxation was dependent on the activation of K ATP-, BK Ca (2+)- and Kv-channels. Human PVs also relaxed to milrinone (121%), however only if pre-constricted. Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on K ATP-, BK Ca (2+)- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.

  13. Multiscale Relaxation Dynamics in Ultrathin Metallic Glass-Forming Films

    NASA Astrophysics Data System (ADS)

    Bi, Q. L.; Lü, Y. J.; Wang, W. H.

    2018-04-01

    The density layering phenomenon originating from a free surface gives rise to the layerlike dynamics and stress heterogeneity in ultrathin Cu-Zr glassy films, which facilitates the occurrence of multistep relaxations in the timescale of computer simulations. Taking advantage of this condition, we trace the relaxation decoupling and evolution with temperature simply via the intermediate scattering function. We show that the β relaxation hierarchically follows fast and slow modes in films, and there is a β -relaxation transition as the film is cooled close to the glass transition. We provide the direct observation of particle motions responsible for the β relaxation and reveal the dominant mechanism varying from the thermal activated to the cooperative jumps across the transition.

  14. Stress Relaxation in Tensile Deformation of 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Li, Jiaojiao; Ding, Wei; Zhao, Shuangjun; Chen, Jun

    2017-02-01

    Improved ductility by stress relaxation has been reported in different kinds of steels. The influence of stress relaxation and its parameters on the ductility of 304 stainless steel has not been established so far. Stress relaxation behavior during tensile tests at different strain rates is studied in 304 stainless steel. It is observed that stress relaxation can obviously increase the elongation of 304 stainless steel in all cases. The elongation improvement of interrupted tension reaches to 14.9% compared with monotonic tension at 0.05 s-1. Contradicting with the published results, stress drop during stress relaxation increases with strain at all strain rates. It is related with dislocation motion velocity variation and martensitic transformation.

  15. Relaxed Poisson cure rate models.

    PubMed

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrafast energy relaxation in single light-harvesting complexes

    DOE PAGES

    Maly, Pavel; Gruber, J. Michael; Cogdell, Richard J.; ...

    2016-02-22

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changesmore » in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Lastly, our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.« less

  17. Ultrafast energy relaxation in single light-harvesting complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maly, Pavel; Gruber, J. Michael; Cogdell, Richard J.

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changesmore » in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Lastly, our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.« less

  18. Comparison of different cardiac relaxation indices.

    PubMed

    Alipov, N N; Izrail'tyan, I M; Sokolov, A V; Trubetskaya, L V; Kuznetsova, T E

    2001-05-01

    Sensitivity (response to epinephrine infusion) and specificity (response to changes in pre- and afterload) of some cardiac relaxation indices were compared in acute experiments on cats treated with ganglionic blocker arfonad. Some new indices proposed by us provide better characteristics than widely used relaxation time constant (t) and maximum first derivative of the left ventricular pressure (-dP/dt)max.

  19. Paramagnetic decoration of DNA origami nanostructures by Eu³⁺ coordination.

    PubMed

    Opherden, Lars; Oertel, Jana; Barkleit, Astrid; Fahmy, Karim; Keller, Adrian

    2014-07-15

    The folding of DNA into arbitrary two- and three-dimensional shapes, called DNA origami, represents a powerful tool for the synthesis of functional nanostructures. Here, we present the first approach toward the paramagnetic functionalization of DNA origami nanostructures by utilizing postassembly coordination with Eu(3+) ions. In contrast to the usual formation of toroidal dsDNA condensates in the presence of trivalent cations, planar as well as rod-like DNA origami maintain their shape and monomeric state even under high loading with the trivalent lanthanide. Europium coordination was demonstrated by the change in Eu(3+) luminescence upon binding to the two DNA origami. Their natural circular dichroism in the Mg(2+)- and Eu(3+)-bound state was found to be very similar to that of genomic DNA, evidencing little influence of the DNA origami superstructure on the local chirality of the stacked base pairs. In contrast, the magnetic circular dichroism of the Mg(2+)-bound DNA origami deviates from that of genomic DNA. Furthermore, the lanthanide affects the magnetic properties of DNA in a superstructure-dependent fashion, indicative of the existence of superstructure-specific geometry of Eu(3+) binding sites in the DNA origami that are not formed in genomic DNA. This simple approach lays the foundation for the generation of magneto-responsive DNA origami nanostructures. Such systems do not require covalent modifications and can be used for the magnetic manipulation of DNA nanostructures or for the paramagnetic alignment of molecules in NMR spectroscopy.

  20. Dielectric relaxation of high-k oxides

    PubMed Central

    2013-01-01

    Frequency dispersion of high-k dielectrics was observed and classified into two parts: extrinsic cause and intrinsic cause. Frequency dependence of dielectric constant (dielectric relaxation), that is the intrinsic frequency dispersion, could not be characterized before considering the effects of extrinsic frequency dispersion. Several mathematical models were discussed to describe the dielectric relaxation of high-k dielectrics. For the physical mechanism, dielectric relaxation was found to be related to the degree of polarization, which depended on the structure of the high-k material. It was attributed to the enhancement of the correlations among polar nanodomain. The effect of grain size for the high-k materials' structure mainly originated from higher surface stress in smaller grain due to its higher concentration of grain boundary. PMID:24180696

  1. Doping evolution of the second magnetization peak and magnetic relaxation in ( B a 1 - x K x ) F e 2 A s 2 single crystals

    DOE PAGES

    Liu, Yong; Zhou, Lin; Sun, Kewei; ...

    2018-02-16

    Here, we present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (Ba 1-xK x) Fe 2As 2 (0.18 ≤ x ≤ 1). The critical current density J c reaches maximum in the underdoped sample x = 0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U 0 sharply decreases in the overdoped sample x = 0.70. These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimallymore » doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x = 0.38, 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in T c become small in the samples x = 0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (Ba 1-xK x) Fe 2As 2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δT c pinning from the spatial variations in T c in the underdoped regime, and (ii) weak δT c pinning in the optimally doped and overdoped regime.« less

  2. Doping evolution of the second magnetization peak and magnetic relaxation in ( B a 1 - x K x ) F e 2 A s 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; Zhou, Lin; Sun, Kewei

    Here, we present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (Ba 1-xK x) Fe 2As 2 (0.18 ≤ x ≤ 1). The critical current density J c reaches maximum in the underdoped sample x = 0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U 0 sharply decreases in the overdoped sample x = 0.70. These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimallymore » doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x = 0.38, 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in T c become small in the samples x = 0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (Ba 1-xK x) Fe 2As 2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δT c pinning from the spatial variations in T c in the underdoped regime, and (ii) weak δT c pinning in the optimally doped and overdoped regime.« less

  3. Observations of Confinement of a Paramagnetic Liquid in Model Propellant Tanks in Microgravity by the Kelvin Force

    NASA Technical Reports Server (NTRS)

    Kuhlman, John; Gray, Donald D.; Barnard, Austin; Hazelton, Jennifer; Lechliter, Matthew; Starn, Andrew; Battleson, Charles; Glaspell, Shannon; Kreitzer, Paul; Leichliter, Michelle

    2002-01-01

    The magnetic Kelvin force has been proposed as an artificial gravity to control the orientation of paramagnetic liquid propellants such as liquid oxygen in a microgravity environment. This paper reports experiments performed in the NASA "Weightless Wonder" KC-135 aircraft, through the Reduced Gravity Student Flight Opportunities Program. The aircraft flies through a series of parabolic arcs providing about 25 s of microgravity in each arc. The experiment was conceived, designed, constructed, and performed by the undergraduate student team and their two faculty advisors. Two types of tanks were tested: square-base prismatic tanks 5 cm x 5 cm x 8.6 cm and circular cylinders 5 cm in diameter and 8.6 cm tall. The paramagnetic liquid was a 3.3 molar solution of MnCl2 in water. Tests were performed with each type of tank filled to depths of 1 cm and 4 cm. Each test compared a pair of tanks that were identical except that the base of one was a pole face of a 0.6 Tesla permanent magnet. The Kelvin force attracts paramagnetic materials toward regions of higher magnetic field. It was hypothesized that the Kelvin force would hold the liquid in the bottom of the tanks during the periods of microgravity. The tanks were installed in a housing that could slide on rails transverse to the flight direction. By manually shoving the housing, an identical impulse could be provided to each tank at the beginning of each period of microgravity. The resulting fluid motions were videotaped for later analysis.

  4. The effects of music relaxation and muscle relaxation techniques on sleep quality and emotional measures among individuals with posttraumatic stress disorder

    PubMed Central

    Blanaru, Monica; Bloch, Boaz; Vadas, Limor; Arnon, Zahi; Ziv, Naomi; Kremer, Ilana; Haimov, Iris

    2012-01-01

    Posttraumatic stress disorder (PTSD), an anxiety disorder with lifetime prevalence of 7.8%, is characterized by symptoms that develop following exposure to traumatic life events and that cause an immediate experience of intense fear, helplessness or horror. PTSD is marked by recurrent nightmares typified by the recall of intrusive experiences and by extended disturbance throughout sleep. Individuals with PTSD respond poorly to drug treatments for insomnia. The disadvantages of drug treatment for insomnia underline the importance of non-pharmacological alternatives. Thus, the present study had three aims: first, to compare the efficiency of two relaxation techniques (muscular relaxation and progressive music relaxation) in alleviating insomnia among individuals with PTSD using both objective and subjective measures of sleep quality; second, to examine whether these two techniques have different effects on psychological indicators of PTSD, such as depression and anxiety; and finally, to examine how initial PTSD symptom severity and baseline emotional measures are related to the efficiency of these two relaxation methods. Thirteen PTSD patients with no other major psychiatric or neurological disorders participated in the study. The study comprised one seven-day running-in, no-treatment period, followed by two seven-day experimental periods. The treatments constituted either music relaxation or muscle relaxation techniques at desired bedtime. These treatments were randomly assigned. During each of these three experimental periods, subjects' sleep was continuously monitored with a wrist actigraph (Ambulatory Monitoring, Inc.), and subjects were asked to fill out several questionnaires concerned with a wide spectrum of issues, such as sleep, depression, and anxiety. Analyses revealed a significant increase in objective and subjective sleep efficiency and a significant reduction in depression level following music relaxation. Moreover, following music relaxation, a highly

  5. Electron-impact vibrational relaxation in high-temperature nitrogen

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1992-01-01

    Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.

  6. Bolt clampup relaxation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Crews, J. H., Jr.

    1982-01-01

    A simple bolted joint was analyzed to calculate bolt clampup relaxation for a graphite/epoxy (T300/5208) laminate. A viscoelastic finite element analysis of a double-lap joint with a steel bolt was conducted. Clampup forces were calculated for various steady-state temperature-moisture conditions using a 20-year exposure duration. The finite element analysis predicted that clampup forces relax even for the room-temperature-dry condition. The relaxations were 8, 13, 20, and 30 percent for exposure durations of 1 day, 1 month, 1 year, and 20 years, respectively. As expected, higher temperatures and moisture levels each increased the relaxation rate. The combined viscoelastic effects of steady-state temperature and moisture appeared to be additive. From the finite-element analysis, a simple equation was developed for clampup force relaxation. This generalized equation was used to calculate clampup forces for the same temperature-moisture conditions as used in the finite-element analysis. The two sets of calculated results agreed well.

  7. Aging of Johari-Goldstein Relaxation in Structural Glasses

    NASA Astrophysics Data System (ADS)

    Yardimci, Hasan; Leheny, Robert L.

    2006-03-01

    Using frequency-dependent dielectric susceptibility measurements we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures, Tg. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibilities of both liquids possess a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench below Tg, the susceptibility slowly approaches equilibrium behavior. For both liquids, features of the Johari-Goldstein relaxation display a dependence on the time since the quench, or aging time, that is very similar to the age dependence of the alpha peak. However, one can not assign a single fictive temperature to both the alpha and Johari-Goldstein relaxations. For example, the peak frequency of the Johari-Goldstein relaxation remains constant during aging for sorbitol while it increases with age for xylitol, inconsistent with a decreasing fictive temperature. This behavior contrasts with that of the high frequency tail of the alpha peak whose shape and position track the aging of the main part of the peak.

  8. Slow relaxation of cascade-induced defects in Fe

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-02-17

    On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less

  9. Relaxation Techniques for Handicapped Children: A Review of Literature.

    ERIC Educational Resources Information Center

    Zipkin, Dvora

    1985-01-01

    The paper discusses four major relaxation training approaches used with handicapped children: progressive muscle relaxation, biofeedback, yoga, and mental relaxation, which includes guided fantasy, imagery, and meditation. Descriptions of these techniques, the effects of their use with various populations, and reviews of recent studies of their…

  10. Relaxation Training: Its Usefulness in the Middle School Curriculum.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    A study examined multiple outcomes of relaxation training simultaneously in seventh grade classrooms. "Project Relaxation" measured cognitive (achievement) and affective (discipline, attendance, tardiness, and self-concept) changes with a program of relaxation training for 532 seventh grade students in 10 private and public middle schools in South…

  11. Relaxation effect of abacavir on rat basilar arteries.

    PubMed

    Li, Rachel Wai Sum; Yang, Cui; Chan, Shun Wan; Hoi, Maggie Pui Man; Lee, Simon Ming Yuen; Kwan, Yiu Wa; Leung, George Pak Heng

    2015-01-01

    The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to endothelial dysfunction

  12. Le Chatelier's principle with multiple relaxation channels

    NASA Astrophysics Data System (ADS)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  13. Slow relaxation in weakly open rational polygons.

    PubMed

    Kokshenev, Valery B; Vicentini, Eduardo

    2003-07-01

    The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.

  14. Simplifying Logistics and Avoiding the Unnecessary in Patients With Breast Cancer Undergoing Sentinel Node Biopsy. A Prospective Feasibility Trial of the Preoperative Injection of Super Paramagnetic Iron Oxide Nanoparticles.

    PubMed

    Karakatsanis, A; Olofsson, H; Stålberg, P; Bergkvist, L; Abdsaleh, S; Wärnberg, F

    2018-06-01

    Sentinel node is routinely localized with the intraoperative use of a radioactive tracer, involving challenging logistics. Super paramagnetic iron oxide nanoparticle is a non-radioactive tracer with comparable performance that could allow for preoperative localization, would simplify the procedure, and possibly be of value in axillary mapping before neoadjuvant treatment. The current trial aimed to determine the a priori hypothesis that the injection of super paramagnetic iron oxide nanoparticles in the preoperative period for the localization of the sentinel node is feasible. This is a prospective feasibility trial, conducted from 9 September 2014 to 22 October 2014 at Uppsala University Hospital. In all, 12 consecutive patients with primary breast cancer planned for resection of the primary and sentinel node biopsy were recruited. Super paramagnetic iron oxide nanoparticles were injected in the preoperative visit in the outpatient clinic. The radioactive tracer ( 99 mTc) and the blue dye were injected perioperatively in standard fashion. A volunteer was injected with super paramagnetic iron oxide nanoparticles to follow the decline in the magnetic signal in the sentinel node over time. The primary outcome was successful sentinel node detection. Super paramagnetic iron oxide nanoparticles' detection after preoperative injection (3-15 days) was successful in all cases (100%). In the volunteer, axillary signal was presented for 4 weeks. No adverse effects were noted. Conclusion and relevance: Preoperative super paramagnetic iron oxide nanoparticles' injection is feasible and leads to successful detection of the sentinel node. That may lead to simplified logistics as well as the identification, sampling, and marking of the sentinel node in patients planned for neoadjuvant treatment.

  15. Modified Mason number for charged paramagnetic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Du, Di; Hilou, Elaa; Biswal, Sibani Lisa

    2016-06-01

    The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible.

  16. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.

    PubMed

    Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam

    2014-03-01

    A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.

  17. Communication: Relaxation-limited electronic currents in extended reservoir simulations

    NASA Astrophysics Data System (ADS)

    Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael

    2017-10-01

    Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.

  18. Broadband spectral analysis of non-Debye dielectric relaxation in percolating heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuncer, Enis; Bellatar, J; Achour, M E

    2011-01-01

    In this study, the main features of dielectric relaxation in carbon black epoxy composites are discussed using several types of complementary modelling (i.e., the Cole-Cole phenomenological equation, Jonscher s universal dielectric response, and an approach that relies on a continuous distribution of relaxation times). These methods of characterizing the relaxation were conducted below Tg. Through the numerical model we can obtain the characteristic effective relaxation time and exponents straightforwardly. However, the true relaxation spectrum can be obtained from the distribution of relaxation times calculated from the complex dielectric permittivity. Over the compositional range explored, relaxation occurs by a Vogel-Tammam-Fulcher-like temperaturemore » dependence within the limits of experimental accuracy.« less

  19. Substrate stress relaxation regulates cell spreading

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J.

    2015-02-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.

  20. High resolution NMR study of T{sub 1} magnetic relaxation dispersion. IV. Proton relaxation in amino acids and Met-enkephalin pentapeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru

    2014-10-21

    Nuclear Magnetic Relaxation Dispersion (NMRD) of protons was studied in the pentapeptide Met-enkephalin and the amino acids, which constitute it. Experiments were run by using high-resolution Nuclear Magnetic Resonance (NMR) in combination with fast field-cycling, thus enabling measuring NMRD curves for all individual protons. As in earlier works, Papers I–III, pronounced effects of intramolecular scalar spin-spin interactions, J-couplings, on spin relaxation were found. Notably, at low fields J-couplings tend to equalize the apparent relaxation rates within networks of coupled protons. In Met-enkephalin, in contrast to the free amino acids, there is a sharp increase in the proton T{sub 1}-relaxation timesmore » at high fields due to the changes in the regime of molecular motion. The experimental data are in good agreement with theory. From modelling the relaxation experiments we were able to determine motional correlation times of different residues in Met-enkephalin with atomic resolution. This allows us to draw conclusions about preferential conformation of the pentapeptide in solution, which is also in agreement with data from two-dimensional NMR experiments (rotating frame Overhauser effect spectroscopy). Altogether, our study demonstrates that high-resolution NMR studies of magnetic field-dependent relaxation allow one to probe molecular mobility in biomolecules with atomic resolution.« less

  1. A quantum relaxation-time approximation for finite fermion systems

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Suraud, E.

    2015-03-01

    We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.

  2. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  3. Determinants of relaxation rate in rabbit skinned skeletal muscle fibres

    PubMed Central

    Luo, Ye; Davis, Jonathan P; Smillie, Lawrence B; Rall, Jack A

    2002-01-01

    The influence of Ca2+-activated force, the rate of dissociation of Ca2+ from troponin C (TnC) and decreased crossbridge detachment rate on the time course of relaxation induced by flash photolysis of diazo-2 in rabbit skinned psoas fibres was investigated at 15 °C. The rate of relaxation increased as the diazo-2 chelating capacity (i.e. free [diazo-2]/free [Ca2+]) increased. At a constant diazo-2 chelating capacity, the rate of relaxation was independent of the pre-photolysis Ca2+-activated force in the range 0.3-0.8 of maximum isometric force. A TnC mutant that exhibited increased Ca2+ sensitivity caused by a decreased Ca2+ dissociation rate in solution (M82Q TnC) also increased the Ca2+ sensitivity of steady-state force and decreased the rate of relaxation in fibres by approximately twofold. In contrast, a TnC mutant with decreased Ca2+ sensitivity caused by an increased Ca2+ dissociation rate in solution (NHdel TnC) decreased the Ca2+ sensitivity of steady-state force but did not accelerate relaxation. Decreasing the rate of crossbridge kinetics by reducing intracellular inorganic phosphate concentration ([Pi]) slowed relaxation by approximately twofold and led to two phases of relaxation, a slow linear phase followed by a fast exponential phase. In fibres, M82Q TnC further slowed relaxation in low [Pi] conditions by approximately twofold, whereas NHdel TnC had no significant effect on relaxation. These results are consistent with the interpretation that the Ca2+-dissociation rate and crossbridge detachment rate are similar in fast-twitch skeletal muscle, such that decreasing either rate slows relaxation, but accelerating Ca2+ dissociation has little effect on relaxation. PMID:12482894

  4. Dynamics of human serum albumin studied by acoustic relaxation spectroscopy.

    PubMed

    Hushcha, T; Kaatze, U; Peytcheva, A

    Sonic absorption spectra of solutions of human serum albumin (SA) in water and in aqueous phosphate buffer systems have been measured between 0.2 and 2000 MHz at different temperatures (15-35 degrees C), pH values (1.8-12.3), and protein concentrations (1-40 g/L). Several spectra, indicating relaxation processes in the whole frequency range, have been found. The spectra at neutral pH could be fitted well with an analytical function consisting of the asymptotic high frequency absorption and two relaxation contributions, a Debye-type relaxation term with discrete relaxation time and a term with asymmetric continuous distribution of relaxation times. Both relaxation contributions were observed in water and in buffer solutions and increased with protein concentration. The contribution represented by a Debye-type term is practically independent of temperature and was attributed to cooperative conformational changes of the polypeptide chain featuring a relaxation time of about 400 ns. The distribution of the relaxation times corresponding to the second relaxation contribution was characterized by a short time cutoff, between about 0.02 and 0.4 ns depending on temperature, and a long time tail extending to microseconds. Such relaxation behavior was interpreted in terms of solute-solvent interactions reflecting various hydration layers of HSA molecules. At acid and alkaline pH, an additional Debye-type contribution with relaxation time in the range of 30-100 ns exists. It seems to be due to proton transfer reactions of protein side-chain groups. The kinetic and thermodynamic parameters of these processes have been estimated from these first measurements to indicate the potential of acoustic spectra for the investigation of the elementary kinetics of albumin processes. Copyright 2004 Wiley Periodicals, Inc. Biopolymers, 2004

  5. Study of the oxidized and non- oxidized bitumen modified with additive «Adgezolin» by using electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Mukhamatdinov, I.; Gafurov, M.; Kemalov, A.; Rodionov, A.; Mamin, G.; Fakhretdinov, P.

    2018-05-01

    Cationic surfactant (adhesion additive) «Adgezolin» has been developed. It is shown that introduction of «Adgezolin» into the oxidized bitumen increases the relative amount of asphaltenes and monocyclearomatic hydrocarbons. By means of electron paramagnetic resonance (EPR) it is demonstrated that the introduction of additive «Adgezolin» increases the number of paramagnetic «free» carbon radicals (FR) in the oxidized bitumen and decreases that in the unoxidized species. In both types of bitumen shift from the Lorentzian to Gaussian EPR lineshape of FR is obtained that could be connected with as an increase of the samples homogeneity. It is supposed that while in the oxygenated bitumens introduction of additives leads to the disaggregation of asphaltene-resins compounds, in the unoxidized samples the balance is shifted towards formation of di-radicals.

  6. Magneto-vibratory separation of glass and bronze granular mixtures immersed in a paramagnetic liquid.

    PubMed

    López-Alcaraz, P; Catherall, A T; Hill, R J A; Leaper, M C; Swift, Michael R; King, P J

    2007-10-01

    A fluid-immersed granular mixture may spontaneously separate when subjected to vertical vibration, separation occurring when the ratio of particle inertia to fluid drag is sufficiently different between the component species of the mixture. Here, we describe how fluid-driven separation is influenced by magneto-Archimedes buoyancy, the additional buoyancy force experienced by a body immersed in a paramagnetic fluid when a strong inhomogeneous magnetic field is applied. In our experiments glass and bronze mixtures immersed in paramagnetic aqueous solutions of MnCl2 have been subjected to sinusoidal vertical vibration. In the absence of a magnetic field the separation is similar to that observed when the interstitial fluid is water. However, at modest applied magnetic fields, magneto-Archimedes buoyancy may balance the inertia/fluid-drag separation mechanism, or it may dominate the separation process. We identify the vibratory and magnetic conditions for four granular configurations, each having distinctive granular convection. Abrupt transitions between these states occur at well-defined values of the magnetic and vibrational parameters. In order to gain insight into the dynamics of the separation process we use computer simulations based on solutions of the Navier-Stokes' equations. The simulations reproduce the experimental results revealing the important role of convection and gap formation in the stability of the different states.

  7. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    PubMed

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Viscous relaxation of Ganymede's impact craters: Constraints on heat flux

    USGS Publications Warehouse

    Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2017-01-01

    Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event

  9. Viscous relaxation of Ganymede's impact craters: Constraints on heat flux

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2017-11-01

    Measurement of crater depths in Ganymede's dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite's history. For craters with diameter ≥ 10 km, heat fluxes of 40-50 mW m-2 can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived "heat pulses" with magnitudes of ∼100 mW m-2 and timescales of 10-100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2 are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede's middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event caused both Ganymede's tectonic deformation and

  10. Multilayer Relaxation and Surface Energies of Metallic Surfaces

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John

    1994-01-01

    The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.

  11. Horizontal deflection of single particle in a paramagnetic fluid.

    PubMed

    Liu, S; Yi, Xiang; Leaper, M; Miles, N J

    2014-06-01

    This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility.

  12. Electron paramagnetic resonance (EPR) spectroscopy characterization of wheat grains from plants of different water stress tolerance.

    PubMed

    Łabanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bednarska, Elżbieta; Dłubacz, Aleksandra; Hartikainen, Helina

    2012-09-01

    Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Vibrational Relaxation and Dynamical Transitions in Atactic Polystyrene

    NASA Astrophysics Data System (ADS)

    Zhao, Hanqing; Park, Yung; Painter, Paul

    2009-03-01

    Infrared bands and Raman lines recorded in the frequency domain have a counterpart in the time domain in the form of time-correlation functions, which are sensitive to molecular dynamics on the picosecond time scale. This is explored by calculating time correlation functions and their variation with temperature for the conformationally insensitive modes observed near 1601 cm-1 and 1583 cm-1 in the infrared spectrum of atactic polystyrene. The correlation functions were modeled by assuming that there is a fast relaxation process characterized by a single relaxation time that is inhomogeneously broadened by a slower process, also characterized by a single relaxation time. The fundamental mode, near 1583 cm-1, is inhomogeneously broadened, but the relaxation time calculated for this mode is sensitive to temperature as a result of anharmonic coupling to a combination mode. A change in the modulation of the 1583 cm-1 band becomes apparent about 10--20 degrees below the thermally measured Tg. Relaxation times at first increase then decrease and becomes negligible at temperatures near 180 degrees. These results are consistent with theories of the glass transition.

  14. [Isolation and culture of bovine choriocapillary endothelial cells using paramagnetic beads coated with Lycopersicon esculentum].

    PubMed

    Swiech-Zubilewicz, A; Soubrane, G; Mascarelli, F

    2000-01-01

    To establish a pure culture of choriocapillary endothelial cells as a model of angiogenesis in vitro. Bovine choriocapillary endothelial cells (BCEC) were obtained by the method described by Hoffmann et al. (6) using the polystyrene paramagnetic beads coated with Lycopersicon esculentum, which attach specifically to the rest of fucose on the surface of microvascular endothelial cells. The endothelial characteristic of the cultured cells was evaluated by immunocytochemistry using anti von Willebrand factor and anti-CD 31 antibodies. Proliferation and survival of BCEC were tested using haemacytometer of Mallasez. The purity of obtained BCEC culture was confirmed by positive immunocytochemical staining with anti von Willebrand and anti factor CD 31 antibodies in more than 95% of cells. The proliferation of cells in Endothelial Cell Medium resulted in twofold increase of number of cells during 4-day observation period. After reaching the confluence, the cells continued to proliferate with increase of the cell number by 60% during 4-day observation. The use of paramagnetic beads coated with specific lectine provide a pure isolation of BCEC, which can be maintained in culture with preservation of their characteristic.

  15. A general approach to the electronic spin relaxation of Gd(III) complexes in solutions. Monte Carlo simulations beyond the Redfield limit

    NASA Astrophysics Data System (ADS)

    Rast, S.; Fries, P. H.; Belorizky, E.; Borel, A.; Helm, L.; Merbach, A. E.

    2001-10-01

    The time correlation functions of the electronic spin components of a metal ion without orbital degeneracy in solution are computed. The approach is based on the numerical solution of the time-dependent Schrödinger equation for a stochastic perturbing Hamiltonian which is simulated by a Monte Carlo algorithm using discrete time steps. The perturbing Hamiltonian is quite general, including the superposition of both the static mean crystal field contribution in the molecular frame and the usual transient ligand field term. The Hamiltonian of the static crystal field can involve the terms of all orders, which are invariant under the local group of the average geometry of the complex. In the laboratory frame, the random rotation of the complex is the only source of modulation of this Hamiltonian, whereas an additional Ornstein-Uhlenbeck process is needed to describe the time fluctuations of the Hamiltonian of the transient crystal field. A numerical procedure for computing the electronic paramagnetic resonance (EPR) spectra is proposed and discussed. For the [Gd(H2O)8]3+ octa-aqua ion and the [Gd(DOTA)(H2O)]- complex [DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclo dodecane] in water, the predictions of the Redfield relaxation theory are compared with those of the Monte Carlo approach. The Redfield approximation is shown to be accurate for all temperatures and for electronic resonance frequencies at and above X-band, justifying the previous interpretations of EPR spectra. At lower frequencies the transverse and longitudinal relaxation functions derived from the Redfield approximation display significantly faster decays than the corresponding simulated functions. The practical interest of this simulation approach is underlined.

  16. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  17. Synoptic forcing of wind relaxations at Pt. Conception, California

    NASA Astrophysics Data System (ADS)

    Fewings, Melanie R.; Washburn, Libe; Dorman, Clive E.; Gotschalk, Christopher; Lombardo, Kelly

    2016-08-01

    Over the California Current upwelling system in summer, the prevailing upwelling-favorable winds episodically weaken (relax) or reverse direction for a few days. Near Pt. Conception, California, the wind usually does not reverse, but wind relaxation allows poleward oceanic coastal flow with ecological consequences. To determine the offshore extent and synoptic forcing of these wind relaxations, we formed composite averages of wind stress from the QuikSCAT satellite and atmospheric pressure from the North American Regional Reanalysis (NARR) using 67 wind relaxations during summer 2000-2009. Wind relaxations at Pt. Conception are the third stage of an event sequence that repeatedly affects the west coast of North America in summer. First, 5-7 days before the wind weakens near Pt. Conception, the wind weakens or reverses off Oregon and northern California. Second, the upwelling-favorable wind intensifies along central California. Third, the wind relaxes at Pt. Conception, and the area of weakened winds extends poleward to northern California over 3-5 days. The NARR underestimates the wind stress within ˜200 km of coastal capes by a factor of 2. Wind relaxations at Pt. Conception are caused by offshore extension of the desert heat low. This synoptic forcing is related to event cycles that cause wind reversal as in Halliwell and Allen (1987) and Mass and Bond (1996), but includes weaker events. The wind relaxations extend ˜600 km offshore, similarly to the California-scale hydraulic expansion fan shaping the prevailing winds, and ˜1000 km alongshore, limited by an opposing pressure gradient force at Cape Mendocino.

  18. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    PubMed

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Unravelling the mechanisms of vibrational relaxation in solution.

    PubMed

    Grubb, Michael P; Coulter, Philip M; Marroux, Hugo J B; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2017-04-01

    We present a systematic study of the mode-specific vibrational relaxation of NO 2 in six weakly-interacting solvents (perfluorohexane, perfluoromethylcyclohexane, perfluorodecalin, carbon tetrachloride, chloroform, and d-chloroform), chosen to elucidate the dominant energy transfer mechanisms in the solution phase. Broadband transient vibrational absorption spectroscopy has allowed us to extract quantum state-resolved relaxation dynamics of the two distinct NO 2 fragments produced from the 340 nm photolysis of N 2 O 4 → NO 2 (X) + NO 2 (A) and their separate paths to thermal equilibrium. Distinct relaxation pathways are observed for the NO 2 bending and stretching modes, even at energies as high as 7000 cm -1 above the potential minimum. Vibrational energy transfer is governed by different interaction mechanisms in the various solvent environments, and proceeds with timescales ranging from 20-1100 ps. NO 2 relaxation rates in the perfluorocarbon solvents are identical despite differences in acceptor mode state densities, infrared absorption cross sections, and local solvent structure. Vibrational energy is shown to be transferred to non-vibrational solvent degrees of freedom (V-T) through impulsive collisions with the perfluorocarbon molecules. Conversely, NO 2 relaxation in chlorinated solvents is reliant on vibrational resonances (V-V) while V-T energy transfer is inefficient and thermal excitation of the surrounding solvent molecules inhibits faster vibrational relaxation through direct complexation. Intramolecular vibrational redistribution allows the symmetric stretch of NO 2 to act as a gateway for antisymmetric stretch energy to exit the molecule. This study establishes an unprecedented level of detail for the cooling dynamics of a solvated small molecule, and provides a benchmark system for future theoretical studies of vibrational relaxation processes in solution.

  20. Excited-state relaxation in PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    An, Joonhee M.; Califano, Marco; Franceschetti, Alberto; Zunger, Alex

    2008-04-01

    In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (⩽1ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb2046Se2117 and Pb260Se249 quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P →S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P →S intraband decay time scale without the need to

  1. Relaxation Effect of Abacavir on Rat Basilar Arteries

    PubMed Central

    Li, Rachel Wai Sum; Yang, Cui; Chan, Shun Wan; Hoi, Maggie Pui Man; Lee, Simon Ming Yuen; Kwan, Yiu Wa; Leung, George Pak Heng

    2015-01-01

    Background The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. Methods The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5′ nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Results Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5’ nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Conclusion Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may

  2. Relaxation phenomena in AOT-water-decane critical and dense microemulsions

    NASA Astrophysics Data System (ADS)

    Letamendia, L.; Pru-Lestret, E.; Panizza, P.; Rouch, J.; Sciortino, F.; Tartaglia, P.; Hashimoto, C.; Ushiki, H.; Risso, D.

    2001-11-01

    We report on extensive measurements of the low and high frequencies sound velocity and sound absorption in AOT-water-decane microemulsions deduced from ultrasonic and, for the first time as far as the absorption is concerned, from Brillouin scattering experiments. New experimental results on dielectric relaxation are also reported. Our results, which include data taken for critical as well as dense microemulsions, show new interesting relaxation phenomena. The relaxation frequencies deduced from very high frequency acoustical measurements are in good agreement with new high frequency dielectric relaxation measurements. We show that along the critical isochore, sound dispersion, relaxation frequency, and static dielectric permittivity can be accurately fitted to power laws. The absolute values of the new exponents we derived from experimental data are nearly equal, and they are very close to β=0.33 characterising the shape of the coexistence curve. The exponent characterising the infinite frequency permittivity is very close to 0.04 relevant to the diverging shear viscosity. For dense microemulsions, two well defined relaxation domains have been identified and the temperature variations of the sound absorption and the zero frequency dielectric permittivity bear striking similarities. We also show that the relaxation frequency of the slow relaxation process is almost independent of temperature and volume fraction and so cannot be attributed to percolation phenomena, whereas it can more likely be attributed to an intrinsic relaxation process probably connected to membrane fluctuations.

  3. Dynamics in supercooled polyalcohols: Primary and secondary relaxation

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-10-01

    We have studied details of the molecular dynamics in a series of pure polyalcohols by means of dielectric spectroscopy and 2H nuclear magnetic resonance (NMR). From glycerol to threitol, xylitol and sorbitol a systematic change in the dynamics of the primary and secondary relaxation is found. With increasing molecular weight and fragility an increase in the width of the α-peak is observed. Details of the molecular reorientation process responsible for the α-relaxation were exploited by two-dimensional NMR experiments. It is found that in the same sequence of polyalcohols the appearance of the secondary relaxation changes gradually from a wing type scenario to a pronounced β-peak. From NMR experiments using selectively deuterated samples the molecular origin of the secondary relaxation could be elucidated in more detail.

  4. Dependence of Brownian and Néel relaxation times on magnetic field strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deissler, Robert J., E-mail: rjd42@case.edu; Wu, Yong; Martens, Michael A.

    2014-01-15

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a stepmore » function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization

  5. [Relaxation techniques for chronic pain].

    PubMed

    Diezemann, A

    2011-08-01

    Relaxation techniques are an integral part of the psychological therapy of chronic pain and follow very different objectives. These techniques lead to muscular and vegetative stabilization, serve as distraction from pain, to build up the internal focus of control and thus to improve self-efficacy. Additional targets are improvement of body awareness and stress management, shielding from sensory stimuli and recurrence prevention of migraine as well a sleeping aid. The most commonly used and best studied method is progressive muscle relaxation which has a good compliance because it is easy to learn and has a high plausibility for patients.

  6. Microstrip resonators for electron paramagnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  7. Microstrip resonators for electron paramagnetic resonance experiments.

    PubMed

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  8. Anomalous 125Te Nuclear Spin Relaxation Coincident with Charge Kondo Behavior in Superconducting Pb1-xTlxTe

    NASA Astrophysics Data System (ADS)

    Mukuda, Hidekazu; Matsumura, Takashi; Maki, Shota; Yashima, Mitsuharu; Kitaoka, Yoshio; Miyake, Kazumasa; Murakami, Hironaru; Giraldo-Gallo, Paula; Geball, Theodore H.; Fisher, Ian R.

    2018-02-01

    We report the results of a 125Te NMR study of single crystalline Pb1-xTlxTe (x = 0, 0.35, 1.0%) as a window on the novel electronic states associated with the thallium impurities in PbTe. The Knight shift is enhanced as x increases, corresponding to an increase in the average density of states (DOS) coupled to a strong spatial variation in the local DOS surrounding each Tl dopant. Remarkably, for the superconducting composition (x = 1.0%), the 125Te nuclear spin relaxation rate (1/T1T) for Te ions that are close to the Tl dopants is unexpectedly enhanced in the normal state below a characteristic temperature of ˜10 K, below which the resistivity experiences an upturn. Such a simultaneous upturn in both the resistivity and (1/T1T) was not suppressed in the high magnetic field. We suggest that these observations are consistently accounted for by dynamical charge fluctuations in the absence of paramagnetism, which is anticipated by the charge Kondo scenario associated with the Tl dopants. In contrast, such anomalies were not detected in the non-superconducting samples (x = 0 and 0.35%), suggesting a connection between dynamical valence fluctuations and the occurrence of superconductivity in Pb1-xTlxTe.

  9. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    NASA Astrophysics Data System (ADS)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  10. A 1-2 GHz pulsed and continuous wave electron paramagnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Quine, Richard W.; Rinard, George A.; Ghim, Barnard T.; Eaton, Sandra S.; Eaton, Gareth R.

    1996-07-01

    A microwave bridge has been constructed that performs three types of electron paramagnetic resonance experiments: continuous wave, pulsed saturation recovery, and pulsed electron spin echo. Switching between experiment types can be accomplished via front-panel switches without moving the sample. Design features and performance of the bridge and of a resonator used in testing the bridge are described. The bridge is constructed of coaxial components connected with semirigid cable. Particular attention has been paid to low-noise design of the preamplifier and stability of automatic frequency control circuits. The bridge incorporates a Smith chart display and phase adjustment meter for ease of tuning.

  11. Electron and hole relaxation pathways in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, V.I.; McBranch, D.W.; Leatherdale, C.A.

    1999-11-01

    Femtosecond (fs) broad-band transient absorption (TA) is used to study the intraband relaxation and depopulation dynamics of electron and hole quantized states in CdSe nanocrystals (NC{close_quote}s) with a range of surface properties. Instead of the drastic reduction in the energy relaxation rate expected due to a {open_quotes}phonon bottleneck,{close_quotes} we observe a fast subpicosecond 1P-to-1S electron relaxation, with the rate exceeding that due to phonon emission in bulk semiconductors. The energy relaxation is enhanced with reducing the NC{close_quote}s radius, and does not show any dependence on the NC surface properties (quality of the surface passivation). These data indicate that electron energymore » relaxation occurs by neither multiphonon emission nor by coupling to surface defects, but is likely meditated by Auger-type electron-hole energy transfer. We use fs infrared TA to probe electron and hole intraband transitions, which allows us to distinguish between electron and hole relaxation pathways leading to the depopulation of NC quantized states. In contrast to the electron relaxation, which is controlled by NC surface passivation, the depopulation of hole quantized states is extremely fast (sub-ps-to-ps time scales) in all types of samples, independent of NC surface treatment (including NC{close_quote}s overcoated with a ZnS layer). Our results indicate that ultrafast hole dynamics are not due to trapping at localized surface defects such as a vacancy, but rather arise from relaxation into intrinsic NC states or intrinsically unpassivated interface states. {copyright} {ital 1999} {ital The American Physical Society}« less

  12. Immersed boundary lattice Boltzmann model based on multiple relaxation times

    NASA Astrophysics Data System (ADS)

    Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli

    2012-01-01

    As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.

  13. Intuitive approach to the unified theory of spin relaxation

    NASA Astrophysics Data System (ADS)

    Szolnoki, Lénárd; Dóra, Balázs; Kiss, Annamária; Fabian, Jaroslav; Simon, Ferenc

    2017-12-01

    Spin relaxation is conventionally discussed using two different approaches for materials with and without inversion symmetry. The former is known as the Elliott-Yafet (EY) theory and for the latter the D'yakonov-Perel' (DP) theory applies. We discuss herein a simple and intuitive approach to demonstrate that the two seemingly disparate mechanisms are closely related. A compelling analogy between the respective Hamiltonians is presented, and that the usual derivation of spin-relaxation times, in the respective frameworks of the two theories, can be performed. The result also allows us to obtain less canonical spin-relaxation regimes, i.e. the generalization of the EY when the material has a large quasiparticle broadening, and the DP mechanism in ultrapure semiconductors. The method also allows a practical and intuitive numerical implementation of the spin-relaxation calculation, which is demonstrated for MgB2, which has anomalous spin-relaxation properties.

  14. [Relaxant effects of protopine on smooth muscles].

    PubMed

    Huang, Y H; Zhang, Z Z; Jiang, J X

    1991-01-01

    The relaxant effects of protopine (Pro) on smooth muscles were studied by recording isotonic contraction and radioimmunoassay. Pro relaxed the contraction of rabbit thoracic aorta, mesenteric artery, portal vein and guinea pig ileum and taenia colon induced by high K+ (70 mmol.L-1). Pro also inhibited the contraction of rabbit thoracic aorta, mesenteric artery, portal vein induced by NE (0.3 mumol.L-1) and guinea pig taenia colon induced by BaCl2 (1 mmol.L-1). Pro inhibited the intracellular Ca2+ release, but did not inhibit Ca2+ influx induced by NE. These results suggested that the smooth muscle relaxant mechanism of action of Pro may be the inhibition of intracellular Ca2+ release.

  15. Relaxation techniques for stress

    MedlinePlus

    ... of your body. These sensors measure your skin temperature, brain waves, breathing, and muscle activity. You can ... more about any of these techniques through local classes, books, videos, or online. Alternative Names Relaxation response ...

  16. Relaxation Techniques.

    DTIC Science & Technology

    1985-04-01

    Colonel Robert Fowler for sponsoring this project, Major Richard Hartson for diligently editing each draft and the men of ACSC Seminar A-li ( Mix 1...and AWC Seminar 15 ( Mix 1) for encouraging the author to introduce relaxation techniques to other military officers through this videotape. Special...anytime and without having to stop what you’re doing. The individuals were usually surprised at how easily deep breathing initiated a feeling of

  17. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    NASA Astrophysics Data System (ADS)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  18. MHD simulation of relaxation transition to a flipped relaxed state in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2008-11-01

    Recently, it has been demonstrated in the HIST device that in spite of the violation of the Kruskal-Shafranov stability condition, a normal spherical torus (ST) plasma has relaxed to a flipped ST state through a transient reversed-field pinch-like state when the vacuum toroidal field is decreased and its direction is reversed [1]. It has been also observed during this relaxation transition process that not only the toroidal field but also the poloidal field reverses polarity spontaneously and that the ion flow velocity is strongly fluctuated and abruptly increased up to > 50 km/s. The purpose of the present study is to investigate the plasma flows and the relevant MHD relaxation phenomena to elucidate this transition mechanism by using three-dimensional MHD simulations [2]. It is found from the numerical results that the magnetic reconnection between the open and closed field lines occurs due to the non-linear growth of the n=1 kink instability of the central open flux, generating the toroidal flow ˜ 60 km/s in the direction of the toroidal current. The n=1 kink instability and the plasma flows driven by the magnetic reconnection are consider to be responsible for the self-reversal of the magnetic fields. [1] M. Nagata el al., Phys. Rev. Lett. 90, 225001 (2003). [2] Y. Kagei el al., Plasma. Phys. Control. Fusion 45, L17 (2003).

  19. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase. PMID:26273653

  20. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta.

    PubMed

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. L-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.

  1. Nuclear spin relaxation of methane in solid xenon

    NASA Astrophysics Data System (ADS)

    Sugimoto, Takeru; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-03-01

    Nuclear spin relaxation of methane in solid xenon has been studied by infrared spectroscopy. From the analysis of the temporal changes of the rovibrational peaks, the rates of the nuclear spin relaxation of I = 2 ← 1 correlated to the rotational relaxation of J = 0 ← 1 were obtained at temperatures of 5.1-11.5 K. On the basis of the temperature dependence of the relaxation rate, the activation energy of the indirect two-phonon process was determined to be 50 ± 6 K, which is in good agreement with the rotational transition energies of J = 2 ← 1 and J = 3 ← 1. Taking into account this result and the spin degeneracy, we argue that the lowest J = 3 level in which the I = 1 and I = 2 states are degenerate acts as the intermediate point of the indirect process.

  2. Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility

    DOEpatents

    Holloway, Aleksey

    1992-01-07

    The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10.sup.4 Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures.

  3. Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility

    DOEpatents

    Holloway, A.

    1992-01-07

    The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10[sup 4]Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures. 6 figs.

  4. [Relaxation to defuse acting out for dangerous schizophrenics].

    PubMed

    Bogar, Mireille; Bouchard, Jean-Pierre

    2015-01-01

    Relaxation is often considered as a contraindication in the management of schizophrenics. An experiment carried out with dangerous schizophrenics at the unit for dangerous patients at Cadillac general hospital revealed that, on the contrary, such an opinion is not necessarily valid in all cases. Indeed, for many of these patients, relaxation can have positive effects on their clinical state. As with its other indications, relaxation must be practised by clinicians who have an in-depth knowledge of techniques to use and of mental disorders treated in that way.

  5. Stochastic tools hidden behind the empirical dielectric relaxation laws

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2017-03-01

    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87-9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

  6. Giant Paramagnetism of Copper Nanoparticles in Nanocomposites Cu@C

    NASA Astrophysics Data System (ADS)

    Sharoyan, Eduard; Mirzakhanyan, Armen; Gyulasaryan, Harutyun; Manukyan, Aram; Estiphanos, Medhanie; Goff, Michael; Bernal, Oscar; Kocharian, Armen

    The copper nanoparticles in nanocomposites Cu@C, encapsulated in graphitized carbon shell was obtained by the solid-phase pyrolysis method of polycrystalline phthalocyanine (CuPc, Pc =C32N8H16) . The average sizes of the nanoparticles are in the range of 2-6 nm. Magnetic measurements were carried out by vibrational magnetometer in the temperature range 10-300 K. At low temperatures (<70K) we observed a giant paramagnetism, apparently due to the (ballistic) conduction electron (large orbital magnetism). The values of the specific susceptibility at T = 10K with magnetic specific susceptibility of 510-5 emu/gOe order. This work was supported by the RA MES State Committee of Science, in the frames of the research project SCS-13-1C090. The work at California State University was supported by the National Science Foundation-Partnerships for Research and Education in Materials under Grant DMR-1523588.

  7. Is Relaxation Training Effective in the Treatment of Clinical Depression?

    ERIC Educational Resources Information Center

    Beaty, Lee A.

    The process of relaxation is a complex triarchic phenomenon that incorporates behavioral, cognitive, and physiological components. Existing literature is surveyed in order to determine the efficacy of treating various forms of depression with cognitive-behavioral relaxation strategies. Relaxation training has been shown to be effective in treating…

  8. Dynamical relaxation in 2HDM models

    NASA Astrophysics Data System (ADS)

    Lalak, Zygmunt; Markiewicz, Adam

    2018-03-01

    Dynamical relaxation provides an interesting solution to the hierarchy problem in face of the missing signatures of any new physics in recent experiments. Through a dynamical process taking place in the inflationary phase of the Universe it manages to achieve a small electroweak scale without introducing new states observable in current experiments. Appropriate approximation makes it possible to derive an explicit formula for the final vevs in the double-scanning scenario extended to a model with two Higgs doublets (2HDM). Analysis of the relaxation in the 2HDM confirms that in a general case it is impossible to keep vevs of both scalars small, unless fine-tuning is present or additional symmetries are cast upon the Lagrangian. Within the slightly constrained variant of the 2HDM, where odd powers of the fields’ expectation values are not present (which can be easily enforced by requiring that the doublets have different gauge transformations or by imposing a global symmetry) it is shown that the difference between the vevs of two scalars tends to be proportional to the cutoff. The analysis of the relaxation in 2HDM indicates that in a general case the relaxation would be stopped by the first doublet that gains a vev, with the other one remaining vevless with a mass of the order of the cutoff. This happens to conform with the inert doublet model.

  9. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  10. Resistivity scaling and electron relaxation times in metallic nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart

    2014-08-14

    We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less

  11. Thermally induced magnetic relaxation in square artificial spin ice.

    PubMed

    Andersson, M S; Pappas, S D; Stopfel, H; Östman, E; Stein, A; Nordblad, P; Mathieu, R; Hjörvarsson, B; Kapaklis, V

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  12. Thermally induced magnetic relaxation in square artificial spin ice

    NASA Astrophysics Data System (ADS)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  13. Mechanism of resveratrol-induced relaxation in the human gallbladder.

    PubMed

    Tsai, Ching-Chung; Lee, Ming-Che; Tey, Shu-Leei; Liu, Ching-Wen; Huang, Shih-Che

    2017-05-08

    Resveratrol is a polyphenolic compound extracted from plants and is also a constituent of red wine. Resveratrol produces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Although resveratrol has been reported to cause relaxation of the guinea pig gallbladder, limited data are available about the effect of resveratrol on the gallbladder smooth muscle in humans. The purpose of this study was to investigate the relaxation effects of resveratrol in human gallbladder muscle strips. We studied the relaxant effects of resveratrol in human gallbladder. In addition, we also investigated mechanism of resveratrol-induced relaxation in human gallbladder by tetraethylammonium (a non-selective potassium channels blocker), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channel), glibenclamide (an ATP-sensitive potassium channel blocker), charybdotoxin (an inhibitor of large conductance calcium-activated potassium channels and slowly inactivating voltage-gated potassium channels), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-Nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na + channel blocker), and ω-conotoxin GVIA (a selective neuronal Ca 2+ channel blocker). The present study showed that resveratrol has relaxant effects in human gallbladder muscle strips. In addition, we found that resveratrol-induced relaxation in human gallbladder is associated with nitric oxide, ATP-sensitive potassium channel, and large conductance calcium-activated potassium channel pathways. This study provides the first evidence concerning the relaxant effects of resveratrol in human gallbladder muscle strips. Furthermore, these results demonstrate that resveratrol is a potential new drug or health supplement in the treatment of

  14. Evolution of Triplet Paramagnetic Centers in Diamonds Obtained by Sintering of Detonation Nanodiamonds at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Osipov, V. Yu.; Shames, A. I.; Efimov, N. N.; Shakhov, F. M.; Kidalov, S. V.; Minin, V. V.; Vul', A. Ya.

    2018-04-01

    The electron paramagnetic resonance (EPR) spectra of triplet centers in detonation nanodiamonds (DNDs) and diamond single crystals of submicrometer size, synthesized from those DNDs at high pressures and temperatures, are studied. In the EPR spectra of DNDs, signals from negatively charged nitrogen- vacancy centers (NV)/sup(-) with a g factor of g 1 = 4.24 and multivacancies with g 2 = 4.00 are observed. The signals from (NV)/sup(-) centers disappear in the spectra of diamond single crystals, and a quintet signal with g = 4.00 is detected at the position of the signal from multivacancies. Analysis of the shape and position of the quintet' lines showed that this ESR signal is due to the pairs of nitrogen substitution centers in diamond, separated from each other by distances not exceeding 0.7 nm, between which a strong exchange interaction takes place. A comparison of the experimental data and the simulation results allows determining the spin-Hamiltonian parameters of the exchange-coupled pairs of paramagnetic impurity nitrogen atoms.

  15. Cole-Cole broadening in dielectric relaxation and strange kinetics.

    PubMed

    Puzenko, Alexander; Ishai, Paul Ben; Feldman, Yuri

    2010-07-16

    We present a fresh appraisal of the Cole-Cole (CC) description of dielectric relaxation. While the approach is phenomenological, it demonstrates a fundamental connection between the parameters of the CC dispersion. Based on the fractal nature of the time set representing the interaction of the relaxing dipole with its encompassing matrix, and the Kirkwood-Froehlich correlation factor, a new 3D phase space linking together the kinetic and structural properties is proposed. The evolution of the relaxation process is represented in this phase space by a trajectory, which is determined by the variation of external macroscopic parameters. As an example, the validity of the approach is demonstrated on two porous silica glasses exhibiting a CC relaxation process.

  16. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    NASA Astrophysics Data System (ADS)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  17. Paramagnetic particles coupled with an automated flow injection analysis as a tool for influenza viral protein detection.

    PubMed

    Krejcova, Ludmila; Dospivova, Dana; Ryvolova, Marketa; Kopel, Pavel; Hynek, David; Krizkova, Sona; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene

    2012-11-01

    Currently, the influenza virus infects millions of individuals every year. Since the influenza virus represents one of the greatest threats, it is necessary to develop a diagnostic technique that can quickly, inexpensively, and accurately detect the virus to effectively treat and control seasonal and pandemic strains. This study presents an alternative to current detection methods. The flow-injection analysis-based biosensor, which can rapidly and economically analyze a wide panel of influenza virus strains by using paramagnetic particles modified with glycan, can selectively bind to specific viral A/H5N1/Vietnam/1203/2004 protein-labeled quantum dots. Optimized detection of cadmium sulfide quantum dots (CdS QDs)-protein complexes connected to paramagnetic microbeads was performed using differential pulse voltammetry on the surface of a hanging mercury drop electrode (HMDE) and/or glassy carbon electrode (GCE). Detection limit (3 S/N) estimations based on cadmium(II) ions quantification were 0.1 μg/mL or 10 μg/mL viral protein at HMDE or GCE, respectively. Viral protein detection was directly determined using differential pulse voltammetry Brdicka reaction. The limit detection (3 S/N) of viral protein was estimated as 0.1 μg/mL. Streptavidin-modified paramagnetic particles were mixed with biotinylated selective glycan to modify their surfaces. Under optimized conditions (250 μg/mL of glycan, 30-min long interaction with viral protein, 25°C and 400 rpm), the viral protein labeled with quantum dots was selectively isolated and its cadmium(II) content was determined. Cadmium was present in detectable amounts of 10 ng per mg of protein. Using this method, submicrogram concentrations of viral proteins can be identified. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nonlinear magnetoelectric effect and magnetostriction in piezoelectric CsCuCl{sub 3} in paramagnetic and antiferromagnetic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharkovskiy, A. I., E-mail: akharkovskiy@inbox.ru; L.F. Vereshchagin Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow; Shaldin, Yu. V.

    2016-01-07

    The direct nonlinear magnetoelectric (ME) effect and the magnetostriction of piezoelectric CsCuCl{sub 3} single crystals were comprehensively studied over a wide temperature range in stationary magnetic fields of up to 14 T. The direct nonlinear ME effect measurements were also performed in pulsed magnetic fields up to 31 T, at liquid helium temperature in the antiferromagnetic (AF) state for the crystallographic direction in which effect has the maximum value. The nonlinear ME effect was quadratic in the paramagnetic state for the whole range of magnetic fields. In the AF state the phase transition between different configurations of spins manifested itself as plateau-likemore » peculiarity on the nonlinear ME effect. The nonlinear ME effect was saturated by the phase transition to the spin-saturated paramagnetic state. Two contributions to the nonlinear ME effects in CsCuCl{sub 3} were extracted from the experimental data: the intrinsic ME effect originated from the magnetoelectric interactions, and the extrinsic one, which resulted from a magnetostriction-induced piezoelectric effect.« less

  19. Slowing hot-carrier relaxation in graphene using a magnetic field

    NASA Astrophysics Data System (ADS)

    Plochocka, P.; Kossacki, P.; Golnik, A.; Kazimierczuk, T.; Berger, C.; de Heer, W. A.; Potemski, M.

    2009-12-01

    A degenerate pump-probe technique is used to investigate the nonequilibrium carrier dynamics in multilayer graphene. Two distinctly different dynamics of the carrier relaxation are observed. A fast relaxation (˜50fs) of the carriers after the initial effect of phase-space filling followed by a slower relaxation (˜4ps) due to thermalization. Both relaxation processes are less efficient when a magnetic field is applied at low temperatures which is attributed to the suppression of the electron-electron Auger scattering due to the nonequidistant Landau-level spacing of the Dirac fermions in graphene.

  20. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    PubMed Central

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural—including strongly scattering and nonfluorescent—materials. PMID:21079726

  1. Alternate Forms Reliability of the Behavioral Relaxation Scale: Preliminary Results

    ERIC Educational Resources Information Center

    Lundervold, Duane A.; Dunlap, Angel L.

    2006-01-01

    Alternate forms reliability of the Behavioral Relaxation Scale (BRS; Poppen,1998), a direct observation measure of relaxed behavior, was examined. A single BRS score, based on long duration observation (5-minute), has been found to be a valid measure of relaxation and is correlated with self-report and some physiological measures. Recently,…

  2. Wideband RELAX and wideband CLEAN for aeroacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu

    2004-02-01

    Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.

  3. Holographic grating relaxation technique for soft matter science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesnichii, Vasilii, E-mail: vasilii.lesnichii@physchem.uni-freiburg.de; ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101; Kiessling, Andy

    2016-06-17

    The holographic grating relaxation technique also known as forced Rayleigh scattering consists basically in writing a holographic grating in the specimen of interest and monitoring its diffraction efficiency as a function of time, from which valuable information on mass or heat transfer and photoinduced transformations can be extracted. In a more detailed view, the shape of the relaxation curve and the relaxation rate as a function of the grating period were found to be affected by the architecture of diffusing species (molecular probes) that constitute the grating, as well as that of the environment they diffuse in, thus making itmore » possible to access and study spatial heterogeneity of materials and different modes of e.g., polymer motion. Minimum displacements and spatial domains approachable by the technique are in nanometer range, well below spatial periods of holographic gratings. In the present paper, several cases of holographic relaxation in heterogeneous media and complex motions are exemplified. Nano- to micro-structures or inhomogeneities comparable in spatial scale with holographic gratings manifest themselves in relaxation experiments via non-exponential decay (stepwise or stretched), spatial-period-dependent apparent diffusion coefficient, or unusual dependence of diffusion coefficient on molecular volume of diffusing probes.« less

  4. Wideband RELAX and wideband CLEAN for aeroacoustic imaging.

    PubMed

    Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu

    2004-02-01

    Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.

  5. Extended MHD modeling of tearing-driven magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, J. P.; Sovinec, C. R.

    2017-05-01

    Discrete relaxation events in reversed-field pinch relevant configurations are investigated numerically with nonlinear extended magnetohydrodynamic (MHD) modeling, including the Hall term in Ohm's law and first-order ion finite Larmor radius effects. Results show variability among relaxation events, where the Hall dynamo effect may help or impede the MHD dynamo effect in relaxing the parallel current density profile. The competitive behavior arises from multi-helicity conditions where the dominant magnetic fluctuation is relatively small. The resulting changes in parallel current density and parallel flow are aligned in the core, consistent with experimental observations. The analysis of simulation results also confirms that the force density from fluctuation-induced Reynolds stress arises subsequent to the drive from the fluctuation-induced Lorentz force density. Transport of the momentum density is found to be dominated by the fluctuation-induced Maxwell stress over most of the cross section with viscous and gyroviscous contributions being large in the edge region. The findings resolve a discrepancy with respect to the relative orientation of current density and flow relaxation, which had not been realized or investigated in King et al. [Phys. Plasmas 19, 055905 (2012)], where only the magnitude of flow relaxation is actually consistent with experimental results.

  6. Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis.

    PubMed

    Wojnarowicz, Jacek; Kusnieruk, Sylwia; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold; Knoff, Wojciech; Lukasiewicz, Malgorzata I; Witkowski, Bartlomiej S; Wolska, Anna; Klepka, Marcin T; Story, Tomasz; Godlewski, Marek

    2015-01-01

    Zinc oxide nanopowders doped with 1-15 mol % cobalt were produced by the microwave solvothermal synthesis (MSS) technique. The obtained nanoparticles were annealed at 800 °C in nitrogen (99.999%) and in synthetic air. The material nanostructure was investigated by means of the following techniques: X-ray diffraction (XRD), helium pycnometry density, specific surface area (SSA), inductively coupled plasma optical emission spectrometry (ICP-OES), extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and with magnetometry using superconducting quantum interference device (SQUID). Irrespective of the Co content, nanoparticles in their initial state present a similar morphology. They are composed of loosely agglomerated spherical particles with wurtzite-type crystal structure with crystallites of a mean size of 30 nm. Annealing to temperatures of up to 800 °C induced the growth of crystallites up to a maximum of 2 μm in diameter. For samples annealed in high purity nitrogen, the precipitation of metallic α-Co was detected for a Co content of 5 mol % or more. For samples annealed in synthetic air, no change of phase structure was detected, except for precipitation of Co3O4 for a Co content of 15 mol %. The results of the magentometry investigation indicated that all as-synthesized samples displayed paramagnetic properties with a contribution of anti-ferromagnetic coupling of Co-Co pairs. After annealing in synthetic air, the samples remained paramagnetic and samples annealed under nitrogen flow showed a magnetic response under the influences of a magnetic field, likely related to the precipitation of metallic Co in nanoparticles.

  7. Single crystal EPR and optical studies of paramagnetic ions doped zinc potassium phosphate hexahydrate--part I: Cu(II)--a case of orthorhombic symmetry.

    PubMed

    Sambasiva Rao, P; Rajendiran, T M; Venkatesan, R; Madhu, N; Chandrasekhar, A V; Reddy, B J; Reddy, Y P; Ravikumar, R V

    2001-12-01

    Single crystal electron paramagnetic resonance (EPR) studies on Cu(II) doped zinc potassium phosphate hexahydrate (ZPPH) were carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice substitutionally in place of Zn(II) and the spin Hamiltonian parameters calculated from these spectra are g(xx) = 2.188, g(yy) = 2.032, g(zz) = 2.373, Axx = 50 G, Ayy = 65.0 G and Azz = 80 G. The g and A tensors were coincident and these values matched fairly well with the values obtained from powder spectrum. The bonding parameters have also been calculated.

  8. Generalized Elliott-Yafet spin-relaxation time for arbitrary spin mixing

    NASA Astrophysics Data System (ADS)

    Vollmar, Svenja; Hilton, David J.; Schneider, Hans Christian

    2017-08-01

    We extend our recent result for the spin-relaxation time due to acoustic electron-phonon scattering in degenerate bands with spin mixing [New J. Phys. 18, 023012 (2016), 10.1088/1367-2630/18/2/023012] to include interactions with optical phonons, and present a numerical evaluation of the spin-relaxation time for intraband hole-phonon scattering in the heavy-hole (HH) bands of bulk GaAs. Comparing our computed spin-relaxation times to the conventional Elliott-Yafet result quantitatively demonstrates that the latter underestimates the spin-relaxation time because it does not correctly describe how electron-phonon interactions change the (vector) spin expectation value of the single-particle states. We show that the conventional Elliott-Yafet spin relaxation time is a special case of our result for weak spin mixing.

  9. Exchange-Induced Relaxation in the Presence of a Fictitious Field

    PubMed Central

    Sorce, Dennis J.; Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Michaeli, Shalom

    2014-01-01

    In the present study we derive a solution for two site fast exchange-induced relaxation in the presence of a fictitious magnetic field as generated by amplitude and frequency modulated RF pulses. This solution provides a means to analyze data obtained from relaxation experiments with the method called RAFFn (Relaxation Along a Fictitious Field of rank n), in which a fictitious field is created in a coordinate frame undergoing multi-fold rotation about n axes (rank n). The RAFF2 technique is relevant to MRI relaxation methods that provide good contrast enhancement for tumor detection. The relaxation equations for n = 2 are derived for the fast exchange regime using density matrix formalism. The method of derivation can be further extended to obtain solutions for n > 2. PMID:24911888

  10. Gigantic magnetoelectric effect caused by magnetic-field-induced canted antiferromagnetic-paramagnetic transition in quasi-two-dimensional Ca2CoSi2O7 crystal

    NASA Astrophysics Data System (ADS)

    Akaki, M.; Tozawa, J.; Akahoshi, D.; Kuwahara, H.

    2009-05-01

    We have investigated the magnetic and dielectric properties of Ca2CoSi2O7 crystal. The dielectricity and magnetism of Ca2CoSi2O7 are strongly coupled below a canted antiferromagnetic transition temperature (TN). Magnetic fields induce electric polarization below TN. Interestingly, the magnetic-field-induced electric polarization is detected even without poling electric fields. Below TN, a canted antiferromagnetic-paramagnetic transition is induced by magnetic fields. The large magnetocapacitance is observed around TN. The origin of the large magnetocapacitance is due to the magnetic-field-induced the canted antiferromagnetic-paramagnetic transition.

  11. Single crystal EPR and optical studies of paramagnetic ions doped zinc potassium phosphate hexahydrate—Part I: Cu(II)—a case of orthorhombic symmetry

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, P.; Rajendiran, T. M.; Venkatesan, R.; Madhu, N.; Chandrasekhar, A. V.; Reddy, B. J.; Reddy, Y. P.; Ravikumar, R. V. S. S. N.

    2001-12-01

    Single crystal electron paramagnetic resonance (EPR) studies on Cu(II) doped zinc potassium phosphate hexahydrate (ZPPH) were carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice substitutionally in place of Zn(II) and the spin Hamiltonian parameters calculated from these spectra are gxx=2.188, gyy=2.032, gzz=2.373, Axx=50 G, Ayy=65.0 G and Azz=80 G. The g and A tensors were coincident and these values matched fairly well with the values obtained from powder spectrum. The bonding parameters have also been calculated.

  12. Mechanism of resveratrol-induced relaxation of the guinea pig fundus.

    PubMed

    Tsai, Ching-Chung; Tey, Shu-Leei; Lee, Ming-Che; Liu, Ching-Wen; Su, Yu-Tsun; Huang, Shih-Che

    2018-04-01

    Resveratrol is a polyphenolic compound that can be isolated from plants and also is a constituent of red wine. Resveratrol induces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Impaired gastric accommodation plays an important role in functional dyspepsia and fundic relaxation and is a therapeutic target of functional dyspepsia. Although drugs for fundic relaxation have been developed, these types of drugs are still rare. The purpose of this study was to investigate the relaxant effects of resveratrol in the guinea pig fundus. We studied the relaxant effects of resveratrol in the guinea pig fundus. In addition, we investigated the mechanism of resveratrol-induced relaxation on the guinea pig fundus by using tetraethylammonium (a non-selective potassium channel blocker), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channels), glibenclamide (an ATP-sensitive potassium channel blocker), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na + channel blocker), ω-conotoxin GVIA (a selective neuronal Ca 2+ channel blocker) and G-15 (a G-protein coupled estrogen receptor antagonist). The results of this study showed that resveratrol has potent and dose-dependent relaxant effects on the guinea pig fundic muscle. In addition, the results showed that resveratrol-induced relaxation of the guinea pig fundus occurs through nitric oxide and ATP-sensitive potassium channels. This study provides the first evidence concerning the relaxant effects of resveratrol in the guinea pig fundic muscle strips. Furthermore, resveratrol may be a potential drug to relieve gastrointestinal dyspepsia. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Chloride channel function is linked to epithelium-dependent airway relaxation.

    PubMed

    Fortner, C N; Lorenz, J N; Paul, R J

    2001-02-01

    We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.

  14. Secondary relaxation dynamics in rigid glass-forming molecular liquids with related structures.

    PubMed

    Li, Xiangqian; Wang, Meng; Liu, Riping; Ngai, Kia L; Tian, Yongjun; Wang, Li-Min; Capaccioli, Simone

    2015-09-14

    The dielectric relaxation in three glass-forming molecular liquids, 1-methylindole (1MID), 5H-5-Methyl-6,7-dihydrocyclopentapyrazine (MDCP), and Quinaldine (QN) is studied focusing on the secondary relaxation and its relation to the structural α-relaxation. All three glass-formers are rigid and more or less planar molecules with related chemical structures but have dipoles of different strengths at different locations. A strong and fast secondary relaxation is detected in the dielectric spectra of 1MID, while no resolved β-relaxation is observed in MDCP and QN. If the observed secondary relaxation in 1MID is identified with the Johari-Goldstein (JG) β-relaxation, then apparently the relation between the α- and β-relaxation frequencies of 1MID is not in accord with the Coupling Model (CM). The possibility of the violation of the prediction in 1MID as due to either the formation of hydrogen-bond induced clusters or the involvement of intramolecular degree of freedom is ruled out. The violation is explained by the secondary relaxation originating from the in-plane rotation of the dipole located on the plane of the rigid molecule, contributing to dielectric loss at higher frequencies and more intense than the JG β-relaxation generated by the out-of-plane rotation. MDCP has smaller dipole moment located in the plane of the molecule; however, presence of the change of curvature of dielectric loss, ε″(f), at some frequency on the high-frequency flank of the α-relaxation reveals the JG β-relaxation in MDCP and which is in accord with the CM prediction. QN has as large an in-plane dipole moment as 1MID, and the absence of the resolved secondary relaxation is explained by the smaller coupling parameter than the latter in the framework of the CM.

  15. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  16. Interrelation of creep and relaxation: a modeling approach for ligaments.

    PubMed

    Lakes, R S; Vanderby, R

    1999-12-01

    Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.

  17. Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement

    NASA Technical Reports Server (NTRS)

    Hull, P. V.; Tinker, M. L.

    2007-01-01

    Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.

  18. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  19. On the non-exponentiality of the dielectric Debye-like relaxation of monoalcohols

    NASA Astrophysics Data System (ADS)

    Arrese-Igor, S.; Alegría, A.; Colmenero, J.

    2017-03-01

    We have investigated the Debye-like relaxation in a series of monoalcohols (MAs) by broadband dielectric spectroscopy and thermally stimulated depolarization current techniques in order to get further insight on the time dispersion of this intriguing relaxation. Results indicate that the Debye-like relaxation of MAs is not always of exponential type and conforms well to a dispersion of Cole-Davidson type. Apart from the already reported non-exponentiality of the Debye-like relaxation in 2-hexyl-1-decanol and 2-butyl-1-octanol, a detailed analysis of the dielectric permittivity of 5-methyl-3-heptanol shows that this MA also presents some extent of dispersion on its Debye-like relaxation which strongly depends on the temperature. Results suggest that the non-exponential character of the Debye-like relaxation might be a general characteristic in the case of not so intense Debye-like relaxations relative to the α relaxation. Finally, we briefly discuss on the T-dependence and possible origin for the observed dispersion.

  20. The Interplay of Preference, Familiarity and Psychophysical Properties in Defining Relaxation Music.

    PubMed

    Tan, Xueli; Yowler, Charles J; Super, Dennis M; Fratianne, Richard B

    2012-01-01

    The stress response has been well documented in past music therapy literature. However, hypometabolism, or the relaxation response, has received much less attention. Music therapists have long utilized various music-assisted relaxation techniques with both live and recorded music to elicit such a response. The ongoing proliferations of relaxation music through commercial media and the dire lack of evidence to support such claims warrant attention from healthcare professionals and music therapists. The purpose of these 3 studies was to investigate the correlational relationships between 12 psychophysical properties of music, preference, familiarity, and degree of perceived relaxation in music. Fourteen music therapists recommended and analyzed 30 selections of relaxation music. A group of 80 healthy adults then rated their familiarity, preference, and degree of perceived relaxation in the music. The analysis provided a detailed description of the intrinsic properties in music that were perceived to be relaxing by listeners. These properties included tempo, mode, harmonic, rhythmic, instrumental, and melodic complexities, timbre, vocalization/lyrics, pitch range, dynamic variations, and contour. In addition, music preference was highly correlated with listeners' perception of relaxation in music for both music therapists and healthy adults. The correlation between familiarity and degree of relaxation reached significance in the healthy adult group. Results from this study provided an in-depth operational definition of the intrinsic parameters in relaxation music and also highlighted the importance of preference and familiarity in eliciting the relaxation response.

  1. Electron spin relaxation in a transition-metal dichalcogenide quantum dot

    NASA Astrophysics Data System (ADS)

    Pearce, Alexander J.; Burkard, Guido

    2017-06-01

    We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide an interesting and promising arena for quantum dot nano-structures due to the combination of a band gap, spin-valley physics and strong spin-orbit coupling. First we will discuss which bound state solutions in different B-field regimes can be used as the basis for qubits states. We find that at low B-fields combined spin-valley Kramers qubits to be suitable, while at large magnetic fields pure spin or valley qubits can be envisioned. Then we present a discussion of the relaxation of a single electron spin mediated by electron-phonon interaction via various different relaxation channels. In the low B-field regime we consider the spin-valley Kramers qubits and include impurity mediated valley mixing which will arise in disordered quantum dots. Rashba spin-orbit admixture mechanisms allow for relaxation by in-plane phonons either via the deformation potential or by piezoelectric coupling, additionally direct spin-phonon mechanisms involving out-of-plane phonons give rise to relaxation. We find that the relaxation rates scale as \\propto B 6 for both in-plane phonons coupling via deformation potential and the piezoelectric effect, while relaxation due to the direct spin-phonon coupling scales independant to B-field to lowest order but depends strongly on device mechanical tension. We will also discuss the relaxation mechanisms for pure spin or valley qubits formed in the large B-field regime.

  2. Glass transition and relaxation processes of nanocomposite polymer electrolytes.

    PubMed

    Money, Benson K; Hariharan, K; Swenson, Jan

    2012-07-05

    This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces.

  3. Thermally induced magnetic relaxation in square artificial spin ice

    DOE PAGES

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; ...

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  4. Thermally induced magnetic relaxation in square artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  5. Search for exotic short-range interactions using paramagnetic insulators

    DOE PAGES

    Chu, Pinghan; Weisman, E.; Liu, C. -Y.; ...

    2015-05-26

    We describe a proposed experimental search for exotic spin-coupled interactions using a solid-state paramagnetic insulator. The experiment is sensitive to the net magnetization induced by the exotic interaction between the unpaired insulator electrons with a dense, nonmagnetic mass in close proximity. An existing experiment has been used to set limits on the electric dipole moment of the electron by probing the magnetization induced in a cryogenic gadolinium gallium garnet sample on application of a strong electric field. With suitable additions, including a movable source mass, this experiment can be used to explore “monopole-dipole” forces on polarized electrons with unique ormore » unprecedented sensitivity. As a result, the solid-state, nonmagnetic construction, combined with the low-noise conditions and extremely sensitive magnetometry available at cryogenic temperatures could lead to a sensitivity over 10 orders of magnitude greater than exiting limits in the range below 1 mm.« less

  6. Kondo destruction in a quantum paramagnet with magnetic frustration

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahao; Zhao, Hengcan; Lv, Meng; Hu, Sile; Isikawa, Yosikazu; Yang, Yi-feng; Si, Qimiao; Steglich, Frank; Sun, Peijie

    2018-06-01

    We report results of isothermal magnetotransport and susceptibility measurements at elevated magnetic fields B down to very low temperatures T on single crystals of the frustrated Kondo-lattice system CePdAl. They reveal a B*(T ) line within the paramagnetic part of the phase diagram. This line denotes a thermally broadened "small"-to-"large" Fermi-surface crossover which substantially narrows upon cooling. At B0 *=B*(T =0 ) =(4.6 ±0.1 ) T , this B*(T ) line merges with two other crossover lines, viz. Tp(B ) below and TFL(B ) above B0 *. Tp characterizes a frustration-dominated spin-liquid state, while TFL is the Fermi-liquid temperature associated with the lattice Kondo effect. Non-Fermi-liquid phenomena which are commonly observed near a "Kondo-destruction" quantum-critical point cannot be resolved in CePdAl. Our observations reveal a rare case where Kondo coupling, frustration, and quantum criticality are closely intertwined.

  7. A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T1 relaxation enhancement

    NASA Astrophysics Data System (ADS)

    Yang, Zhongyu; Bridges, Michael D.; López, Carlos J.; Rogozhnikova, Olga Yu.; Trukhin, Dmitry V.; Brooks, Evan K.; Tormyshev, Victor; Halpern, Howard J.; Hubbell, Wayne L.

    2016-08-01

    Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy has become an important tool for measuring distances in proteins on the order of a few nm. For this purpose pairs of spin labels, most commonly nitroxides, are site-selectively introduced into the protein. Recent efforts to develop new spin labels are focused on tailoring the intrinsic properties of the label to either extend the upper limit of measurable distances at physiological temperature, or to provide a unique spectral lineshape so that selective pairwise distances can be measured in a protein or complex containing multiple spin label species. Triarylmethyl (TAM) radicals are the foundation for a new class of spin labels that promise to provide both capabilities. Here we report a new methanethiosulfonate derivative of a TAM radical that reacts rapidly and selectively with an engineered cysteine residue to generate a TAM containing side chain (TAM1) in high yield. With a TAM1 residue and Cu2+ bound to an engineered Cu2+ binding site, enhanced T1 relaxation of TAM should enable measurement of interspin distances up to 50 Å at physiological temperature. To achieve favorable TAM1-labeled protein concentrations without aggregation, proteins are tethered to a solid support either site-selectively using an unnatural amino acid or via native lysine residues. The methodology is general and readily extendable to complex systems, including membrane proteins.

  8. Relaxation of ferromagnetic nanoparticles in macrophages: In vitro and in vivo studies

    NASA Astrophysics Data System (ADS)

    Möller, Winfried; Takenaka, Shinji; Buske, Norbert; Felten, Kathrin; Heyder, Joachim

    2005-05-01

    The relaxation characteristics of magnetic nanoparticles (CoFe 2O 4) were investigated in J774A.1 macrophages and after voluntary inhalation. In dry form 25% of the particles showed Néel relaxation. Relaxation in macrophages occurred within minutes and could be inhibited by fixation, showing Brownian relaxation and intracellular transport processes. Relaxation in the lung happened similarly, but was dependent on the time after deposition. The particles were cleared from the lung within 2 weeks.

  9. Ex vivo T2 relaxation: Associations with age-related neuropathology and cognition

    PubMed Central

    Dawe, Robert J.; Bennett, David A.; Schneider, Julie A.; Leurgans, Sue E.; Kotrotsou, Aikaterini; Boyle, Patricia A.; Arfanakis, Konstantinos

    2014-01-01

    The transverse relaxation time constant, T2, is sensitive to brain tissue’s free water content and the presence of paramagnetic materials such as iron. In this study, ex vivo MRI was employed to investigate alterations in T2 related to Alzheimer’s disease (AD) pathology and other types of neuropathology common in old age, as well as the relationship between T2 alterations and cognition. Cerebral hemispheres were obtained from 371 deceased older adults. Using fast spin-echo imaging with multiple echo times, T2 maps were produced and warped to a study-specific template. Hemispheres underwent neuropathologic examination for identification of AD pathology and other common age-related neuropathologies. Voxelwise linear regression was carried out to detect regions of pathology-related T2 alterations and, in separate analyses, regions in which T2 alterations were linked to antemortem cognitive performance. AD pathology was associated with T2 prolongation in white matter of all lobes and T2 shortening in the basal ganglia and insula. Gross infarcts were associated with T2 prolongation in white matter of all lobes, and in the thalamus and basal ganglia. Hippocampal sclerosis was associated with T2 prolongation in the hippocampus and white matter of the temporal lobe. After controlling for neuropathology, T2 prolongation in the frontal lobe white matter was associated with lower performance in the episodic, semantic, and working memory domains. In addition, voxelwise analysis of in vivo and ex vivo T2 values indicated a positive relationship between the two, though further investigation is necessary to accurately translate findings of the current study to the in vivo case. PMID:24582637

  10. Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra

    PubMed Central

    Babaei, Behzad; Davarian, Ali; Pryse, Kenneth M.; Elson, Elliot L.; Genin, Guy M.

    2017-01-01

    Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical responses of materials and structures. For biological tissues, these spectra must usually be estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests is challenging because the inverse problem is expensive computationally. We present here an efficient algorithm that enables rapid identification of viscoelastic relaxation spectra. The algorithm was tested against trial data to characterize its robustness and identify its limitations and strengths. The algorithm was then applied to identify the viscoelastic response of reconstituted collagen, revealing an extensive distribution of viscoelastic time constants. PMID:26523785

  11. Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra.

    PubMed

    Babaei, Behzad; Davarian, Ali; Pryse, Kenneth M; Elson, Elliot L; Genin, Guy M

    2015-03-01

    Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical responses of materials and structures. For biological tissues, these spectra must usually be estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests is challenging because the inverse problem is expensive computationally. We present here an efficient algorithm that enables rapid identification of viscoelastic relaxation spectra. The algorithm was tested against trial data to characterize its robustness and identify its limitations and strengths. The algorithm was then applied to identify the viscoelastic response of reconstituted collagen, revealing an extensive distribution of viscoelastic time constants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Difference and similarity of dielectric relaxation processes among polyols

    NASA Astrophysics Data System (ADS)

    Minoguchi, Ayumi; Kitai, Kei; Nozaki, Ryusuke

    2003-09-01

    Complex permittivity measurements were performed on sorbitol, xylitol, and sorbitol-xylitol mixture in the supercooled liquid state in an extremely wide frequency range from 10 μHz to 500 MHz at temperatures near and above the glass transition temperature. We determined detailed behavior of the relaxation parameters such as relaxation frequency and broadening against temperature not only for the α process but also for the β process above the glass transition temperature, to the best of our knowledge, for the first time. Since supercooled liquids are in the quasi-equilibrium state, the behavior of all the relaxation parameters for the β process can be compared among the polyols as well as those for the α process. The relaxation frequencies of the α processes follow the Vogel-Fulcher-Tammann manner and the loci in the Arrhenius diagram are different corresponding to the difference of the glass transition temperatures. On the other hand, the relaxation frequencies of the β processes, which are often called as the Johari-Goldstein processes, follow the Arrhenius-type temperature dependence. The relaxation parameters for the β process are quite similar among the polyols at temperatures below the αβ merging temperature, TM. However, they show anomalous behavior near TM, which depends on the molecular size of materials. These results suggest that the origin of the β process is essentially the same among the polyols.

  13. Relaxational effects in radiating stellar collapse

    NASA Astrophysics Data System (ADS)

    Govender, Megan; Maartens, Roy; Maharaj, Sunil D.

    1999-12-01

    Relaxational effects in stellar heat transport can in many cases be significant. Relativistic Fourier-Eckart theory is inherently quasi-stationary, and cannot incorporate these effects. The effects are naturally accounted for in causal relativistic thermodynamics, which provides an improved approximation to kinetic theory. Recent results, based on perturbations of a static star, show that relaxation effects can produce a significant increase in the central temperature and temperature gradient for a given luminosity. We use a simple stellar model that allows for non-perturbative deviations from staticity, and confirms qualitatively the predictions of the perturbative models.

  14. Vibrational relaxation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.

    1993-01-01

    Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.

  15. Characterization of structural relaxation in inorganic glasses using length dilatometry

    NASA Astrophysics Data System (ADS)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  16. The influence of dielectric relaxation on intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.

    1987-07-01

    An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.

  17. Longitudinal relaxation of initially straight flexible and stiff polymers

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Panagiotis; Dissanayake, Inuka

    2004-11-01

    The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The

  18. A magnetic trap for living cells suspended in a paramagnetic buffer

    NASA Astrophysics Data System (ADS)

    Winkleman, Adam; Gudiksen, Katherine L.; Ryan, Declan; Whitesides, George M.; Greenfield, Derek; Prentiss, Mara

    2004-09-01

    This manuscript describes the fabrication and use of a three-dimensional magnetic trap for diamagnetic objects in an aqueous solution of paramagnetic ions; this trap uses permanent magnets. It demonstrates trapping of polystyrene spheres, and of various types of living cells: mouse fibroblast (NIH-3T3), yeast (Saccharomyces cerevisiae), and algae (Chlamydomonas reinhardtii). For a 40mM solution of gadolinium (III) diethylenetriaminepentaacetic acid (Gd .DTPA) in aqueous buffer, the smallest cell (particle) that could be trapped had a radius of ˜2.5μm. The trapped particle and location of the magnetic trap can be translated in three dimensions by independent manipulation of the permanent magnets. This letter a1so characterizes the biocompatibility of the trapping solution.

  19. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    PubMed

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  20. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  1. Dynamics of structures in active suspensions of paramagnetic particles and applications to artificial micro-swimmers

    NASA Astrophysics Data System (ADS)

    Keaveny, Eric Edward

    Micron-size paramagnetic particles suspended in viscous fluid will aggregate to form linear chains when subject to a uniform magnetic field. This process provides a way of changing the rheological properties of a suspension or building structures for microfluidic devices. We present a method to efficiently and accurately quantify the magnetic interactions between these particles. With this model and the force-coupling method, we perform simulations of both small ensembles and suspensions of thousands of paramagnetic particles subject to shear flows or rotating applied magnetic fields and demonstrate that in these situations an accurate representation of the fluid forces is necessary to estimate chain length. The artificial micro-swimmer is a device constructed from a flagellum-like tail of chemically linked paramagnetic beads tethered to a human red blood cell. To simulate this device, we develop an elastic coupling model that treats each chemical link as an inextensible, flexible rod. We demonstrate that when this device is subject to a rotating applied magnetic field, the filament tail will deform into a helical shape rotating with the field and propel the swimmer through the viscous fluid. Using a continuous elastica/resistive force model, we explore further the dependence of the swimming speed on the magnetic forces and swimmer geometry in the low frequency limit. We then examine the interactions between two comoving swimmers and ascertain at what separation distance a far-field approximation of the hydrodynamics is sufficient to reproduce the swimmers' dynamics. We also provide simulations of a single swimmer near a rigid surface and demonstrate that under certain conditions the presence of a wall can enhance the swimming speed. We determine further the height dependence of the repulsion from the surface, and, in the case of the spiral swimmer, the lateral drift speed. Finally, we consider a "squirmer" model for a swimming microorganism, appropriate for

  2. Two-Relaxation-Time Lattice Boltzmann Method for Advective-Diffusive-Reactive Transport

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Hilpert, M.

    2016-12-01

    The lattice Boltzmann method (LBM) has been applied to study a wide range of reactive transport in porous and fractured media. The single-relaxation-time (SRT) LBM, employing single relaxation time, is the most popular LBM due to its simplicity of understanding and implementation. Nevertheless, the SRT LBM may suffer from numerical instability for small value of the relaxation time. By contrast, the multiple-relaxation-time (MRT) LBM, employing multiple relaxation times, can improve the numerical stability through tuning the multiple relaxation times, but the complexity of implementing this method restricts its applications. The two-relaxation-time (TRT) LBM, which employs two relaxation times, combines the advantages of SRT and MRT LBMs. The TRT LBM can produce simulations with better accuracy and stability than the SRT one, and is easier to implement than the MRT one. This work evaluated the numerical accuracy and stability of the TRT method by comparing the simulation results with analytical solutions of Gaussian hill transport and Taylor dispersion under different advective velocities. The accuracy generally increased with the tunable relaxation time τ, and the stability first increased and then decreased as τ increased, showing an optimal TRT method emerging the best numerical stability. The free selection of τ enabled the TRT LBM to simulate the Gaussian hill transport and Taylor dispersion under relatively high advective velocity, under which the SRT LBM suffered from numerical instability. Finally, the TRT method was applied to study the contaminant degradation by chemotactic microorganisms in porous media, which acted as a reprehensive of reactive transport in this study, and well predicted the evolution of microorganisms and degradation of contaminants for different transport scenarios. To sum up, the TRT LBM produced simulation results with good accuracy and stability for various advective-diffusive-reactive transport through tuning the relaxation

  3. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  4. Slowed Relaxation in Fatigued Skeletal Muscle Fibers of Xenopus and Mouse

    PubMed Central

    Westerblad, Håkan; Lännergren, Jan; Allen, David G.

    1997-01-01

    Slowing of relaxation is an important characteristic of skeletal muscle fatigue. The aim of the present study was to quantify the relative contribution of altered Ca2+ handling (calcium component) and factors down-stream to Ca2+ (cross-bridge component) to the slowing of relaxation in fatigued fibers of Xenopus and mouse. Two types of Xenopus fibers were used: easily fatigued, type 1 fibers and fatigue resistant, type 2 fibers. In these Xenopus fibers the free myoplasmic [Ca2+] ([Ca2+]i) was measured with indo-1, and the relaxation of Ca2+-derived force, constructed from tetanic [Ca2+]i records and in vivo [Ca2+]i-force curves, was analyzed. An alternative method was used in both Xenopus and mouse fibers: fibers were rapidly shortened during the initial phase of relaxation, and the time to the peak of force redevelopment was measured. These two methods gave similar results and showed proportional slowing of the calcium and cross-bridge components of relaxation in both fatigued type 1 and type 2 Xenopus fibers, whereas only the cross-bridge component was slowed in fatigued mouse fibers. Ca2+ removal from the myoplasm during relaxation was markedly less effective in Xenopus fibers as compared to mouse fibers. Fatigued Xenopus fibers displayed a reduced rate of sarcoplasmic reticulum Ca2+ uptake and increased sarcoplasmic reticulum Ca2+ leak. Some fibers were stretched at various times during relaxation. The resistance to these stretches was increased during fatigue, especially in Xenopus fibers, which indicates that longitudinal movements during relaxation had become less pronounced and this might contribute to the increased cross-bridge component of relaxation in fatigue. In conclusion, slowing of relaxation in fatigued Xenopus fibers is caused by impaired Ca2+ handling and altered cross-bridge kinetics, whereas the slowing in mouse fibers is only due to altered cross-bridge kinetics. PMID:9089444

  5. Studying relaxation phenomena via effective master equations

    NASA Astrophysics Data System (ADS)

    Chan, David; Wan, Jones T. K.; Chu, L. L.; Yu, K. W.

    2000-04-01

    The real-time dynamics of various relaxation phenomena can be conveniently formulated by a master equation with the enumeration of transition rates between given classes of conformations. To study the relaxation time towards equilibrium, it suffices to solve for the second largest eigenvalue of the resulting eigenvalue equation. Generally speaking, there is no analytic solution for the dynamic equation. Mean-field approaches generally yield misleading results while the presumably exact Monte-Carlo methods require prohibitive time steps in most real systems. In this work, we propose an exact decimation procedure for reducing the number of conformations significantly, while there is no loss of information, i.e., the reduced (or effective) equation is an exact transformed version of the original one. However, we have to pay the price: the initial Markovianity of the evolution equation is lost and the reduced equation contains memory terms in the transition rates. Since the transformed equation has significantly reduced number of degrees of freedom, the systems can readily be diagonalized by iterative means, to obtain the exact second largest eigenvalue and hence the relaxation time. The decimation method has been applied to various relaxation equations with generally desirable results. The advantages and limitations of the method will be discussed.

  6. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  7. Tension and relaxation in the individual.

    PubMed

    Newbury, C R

    1979-06-01

    Increasing materialism in society is resulting in more wide spread nervous tension in all age groups. While some degree of nervous tension is necessary in everyday living, its adverse effects require that we must learn to bring it under control. Total tension is shown to have two components: a controllable element arising from factors in the environment and the inbuilt uncontrollable residue which is basic in the individual temperament. The effects of excessive or uncontrolled stress can be classified as 1) emotional reactions such as neurotic behaviour (anxiety hypochondria, hysteria, phobia, depression obsessions and compulsions) or psychotic behaviour and 2) psychosomatic reactions (nervous asthma, headache, insomnia, heart attack). Nervous energy can be wastefully expended by such factors as loss of temper, wrong attitudes to work, job frustration and marital strains. Relaxation is the only positive way to control undesirable nervous tension and its techniques require to be learned. A number of techniques (progressive relaxation, differential relaxation, hypnosis, the use of biofeedback, Yoga and Transcendental Meditation) are described and their application to dental practice is discussed.

  8. Relaxation dynamics of internal segments of DNA chains in nanochannels

    NASA Astrophysics Data System (ADS)

    Jain, Aashish; Muralidhar, Abhiram; Dorfman, Kevin; Dorfman Group Team

    We will present relaxation dynamics of internal segments of a DNA chain confined in nanochannel. The results have direct application in genome mapping technology, where long DNA molecules containing sequence-specific fluorescent probes are passed through an array of nanochannels to linearize them, and then the distances between these probes (the so-called ``DNA barcode'') are measured. The relaxation dynamics of internal segments set the experimental error due to dynamic fluctuations. We developed a multi-scale simulation algorithm, combining a Pruned-Enriched Rosenbluth Method (PERM) simulation of a discrete wormlike chain model with hard spheres with Brownian dynamics (BD) simulations of a bead-spring chain. Realistic parameters such as the bead friction coefficient and spring force law parameters are obtained from PERM simulations and then mapped onto the bead-spring model. The BD simulations are carried out to obtain the extension autocorrelation functions of various segments, which furnish their relaxation times. Interestingly, we find that (i) corner segments relax faster than the center segments and (ii) relaxation times of corner segments do not depend on the contour length of DNA chain, whereas the relaxation times of center segments increase linearly with DNA chain size.

  9. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng

    2015-04-15

    We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negativemore » resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.« less

  10. 57Fe Mössbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer®

    NASA Astrophysics Data System (ADS)

    Alenkina, I. V.; Oshtrakh, M. I.; Klencsár, Z.; Kuzmann, E.; Chukin, A. V.; Semionkin, V. A.

    2014-09-01

    A human liver ferritin, commercial Ferrum Lek and Maltofer® samples were studied using Mössbauer spectroscopy and electron paramagnetic resonance. Two Mössbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295 K, (ii) and a low velocity resolution (250 channels) at 20 and 40 K. It is shown that the three studied materials have different superparamagnetic features at various temperatures. This may be caused by different magnetic anisotropy energy barriers, sizes (volume), structures and compositions of the iron cores. The electron paramagnetic resonance spectra of the ferritin, Ferrum Lek and Maltofer® were decomposed into multiple spectral components demonstrating the presence of minor ferro- or ferrimagnetic phases along with revealing marked differences among the studied substances. Mössbauer spectroscopy provides evidences on several components in the measured spectra which could be related to different regions, layers, nanocrystallites, etc. in the iron cores that coincides with heterogeneous and multiphase models for the ferritin iron cores.

  11. Quench of paramagnetic orbital selective Mott phase and appearance of antiferromagnetic orbital selective slater phase in multiorbital correlated systems

    NASA Astrophysics Data System (ADS)

    Quan, Ya-Min; Liu, Da-Yong; Lin, Hai-Qing; Zou, Liang-Jian

    2018-06-01

    We present the modulation of magnetic order on the orbital selective Mott phases (OSMP) and the metal-insulator transitions (MIT) of multi-orbital Hubbard models by employing the rotationally invariant slave-boson methods. We show that at half filling, the well-known paramagnetic (PM) OSMP is completely covered by an antiferromagnetic (AFM) Slater insulator, and the PM Mott phase by an AFM Mott insulator when electron correlation strength varies from intermediate to strong both in two- and three-orbitals Hubbard systems. Away from half-filling, we find that a partial-polarized AFM orbital-selective Slater phase appears in the intermediate correlation regime, and an almost full-polarized AFM OSMP fully covers the paramagnetic OSMP. In addition, the ferromagnetic phase in the three-orbital case is more robust than that in the two-orbital case. These results demonstrate that the modulation of magnetic correlation to the quasiparticle spectra leads to much rich and more interesting MIT scenario in multiorbital correlated systems.

  12. Novel Synthesis of Slightly Fluorinated Graphene Quantum Dots with Luminescent and Paramagnetic Properties through Thermal Cutting of Fluorinated Graphene

    PubMed Central

    Feng, Qian; Xiao, Wenqing; Zheng, Yongping; Lin, Yuda; Li, Jiaxin; Ye, Qingying; Huang, Zhigao

    2018-01-01

    A novel approach has been developed to synthesize slightly fluorinated graphene quantum dots (GQDs-F) through thermal cutting of highly fluorinated graphene. The fluorinated graphene with substantial structure defects is fragile and is readily attacked. The direct evaporation of abundant CFn (n = 2, 3) groups near structure defects lead to the loss of adjacent skelton C atoms, and the fluorinated graphene can be thermally cut into GQDs-F with a relatively uniform nanosize in pyrolysis at 810 K. The GQDs-F with a low F/C atomic ratio of ca. 0.03 exhibit excitation wavelength-dependent properties with multicolor photoluminescence (PL) from blue to green. At the same time, F adatoms that are most likely located at the edges of GQDs-F have a high efficiency of introducing paramagnetic centres, and GQDs-F show a strong paramagnetism because of sp3-type defects and magnetic zigzag edges. The graphene quantum dots with such multimodal capabilities should have great applied value in material science. PMID:29316730

  13. Phospholemman does not participate in forskolin-induced swine carotid artery relaxation.

    PubMed

    Meeks, M K; Han, S; Tucker, A L; Rembold, C M

    2008-01-01

    Phosphorylation of phospholemman (PLM) on ser68 has been proposed to at least partially mediate cyclic AMP (cAMP) mediated relaxation of arterial smooth muscle. We evaluated the time course of the phosphorylation of phospholemman (PLM) on ser68, myosin regulatory light chains (MRLC) on ser19, and heat shock protein 20 (HSP20) on ser16 during a transient forskolin-induced relaxation of histamine-stimulated swine carotid artery. We also evaluated the dose response for forskolin- and nitroglycerin-induced relaxation in phenylephrine-stimulated PLM-/- and PLM+/+ mice. The time course for changes in ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation was appropriate to explain the forskolin-induced relaxation and the recontraction observed upon washout of forskolin. However, the time course for changes in ser68 PLM phosphorylation was too slow to explain forskolin-induced changes in force. There was no difference in the phenylephrine contractile dose response or in forskolin-induced relaxation dose response observed in PLM-/- and PLM+/+ aortae. In aortae precontracted with phenylephrine, nitroglycerin induced a slightly, but significantly greater relaxation in PLM-/- compared to PLM+/+ aortae. These data are consistent with the hypothesis that ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation are involved in forskolin-induced relaxation. Our data suggest that PLM phosphorylation is not significantly involved in forskolin-induced arterial relaxation.

  14. Alpha 2-adrenoceptors and endothelium-dependent relaxation in canine large arteries.

    PubMed Central

    Angus, J. A.; Cocks, T. M.; Satoh, K.

    1986-01-01

    Ring preparations from the carotid, coronary, renal, mesenteric and femoral arteries of the dog were precontracted with the thromboxane mimetic U46619, after ensuring that the resting conditions were comparable from the Laplace relationship. In the presence of prazosin (1 microM) and propranolol (3 microM), noradrenaline (NA) relaxed the arteries in the order coronary greater than carotid greater than femoral greater than renal = mesenteric. When maximum relaxation to nitroglycerin (10 microM) was taken to be 100% the maximum relaxation to noradrenaline in each artery was: coronary 70%; carotid 34%; femoral 19%; renal 7% and mesenteric 2%. In endothelium-intact arteries UK14304 mimicked the relaxation responses to NA and idazoxan shifted the curves to both agonists to the right, consistent with an alpha 2-adrenoceptor classification. Substance P relaxed the arteries in the same order as for NA but showed higher efficacy i.e.: coronary 100%; carotid 80%; femoral 71% renal 49%; and mesenteric 41%. Removal of the endothelium abolished the relaxation to NA. We conclude that endothelium-dependent relaxation to NA and substance P varies greatly across 5 large arteries of the dog. This may indicate that endothelium-derived relaxing factor (EDRF) release is site-dependent or that the efficacy of EDRF on smooth muscle varies; being greatest in the coronary and weakest in the renal and mesenteric arteries. PMID:2427147

  15. Application of Electron Paramagnetic Resonance Spectroscopy to Comparative Examination of Different Groups of Free Radicals in Thermal Injuries Treated with Propolis and Silver Sulphadiazine

    PubMed Central

    Olczyk, Pawel; Ramos, Pawel; Bernas, Marcin; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara

    2013-01-01

    Different groups of free radicals expressed in burn wounds treated with propolis and silver sulphadiazine were examined. The thermal effect forms major types of free radicals in a wound because of the breaking of chemical bonds. Free radicals, located in the heated skin, were tested after 21 days of treating by these two substances. The aim of this work was to find the method for determination of types and concentrations of different groups of free radicals in wound after high temperature impact during burning. The effects of the therapy by propolis and silver sulphadiazine on free radicals were studied. Since the chemical methods of free radicals studies are destructive, the usefulness of the electron paramagnetic resonance spectroscopy was tested in this work. The electron paramagnetic resonance spectra measured with the microwave power of 2.2 mW were numerically fitted by theoretical curves of Gaussian and Lorentzian shapes. The experimental electron paramagnetic resonance spectra of tissue samples are best fitted by the sum of one Gauss and two Lorentz lines. An innovatory numerical procedure of spectroscopic skin analysis was presented. It is very useful in the alternative medicine studies. PMID:23762162

  16. Local moment relaxation in heavy-fermion compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simanek, E.; Sasahara, K.

    1987-02-01

    The Korringa relaxation rate for a local moment of an impurity in a heavy fermion compound is calculated using the model of Yoshimori and Kasai. Consistent with the recent ESR data for local moments in UBe/sub 13/, the relaxation rate is found to be unaffected by the heavy fermion renormalizations. This result can be traced to the single-site approximation and the weak k dependence of the conduction electron self-energy.

  17. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  18. Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules

    NASA Astrophysics Data System (ADS)

    Fionov, Alexander V.

    2002-06-01

    Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.

  19. Paramagnetic Liquid Bridge in a Gravity-Compensating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mahajan, Milind P.; Tsige, Mesfin; Taylor, P. L.; Rosenblatt, Charles

    1999-01-01

    Magnetic levitation was used to stabilize cylindrical columns of a paramagnetic liquid in air between two solid supports. The maximum achievable length to diameter ratio R(sub max) was approx. (3.10 +/- 0.07), very close to the Rayleigh-Plateau limit of pi. For smaller R, the stability of the column was measured as a function of the Bond number, which could be continuously varied by adjusting the strength of the magnetic field. Liquid bridges supported by two solid surfaces have been attracting scientific attention since the time of Rayleigh and Plateau. For a cylindrical bridge of length L and diameter d, it was shown theoretically that in zero gravity the maximum slenderness ratio R (identically = L/d) is pi. The stability and ultimate collapse of such bridges is of interest because of their importance in a number of industrial processes and their potential for low gravity applications. In the presence of gravity, however, the cylindrical shape of an axisymmetric bridge tends to deform, limiting its stability and decreasing the maximum achievable value of R. Theoretical studies have discussed the stability and possible shapes of axisymmetric bridges. Experiments typically are performed in either a Plateau tank, in which the bridge is surrounded by a density-matched immiscible fluid, or in a space-borne microgravity environment. It has been shown, for example, that the stability limit R can be pushed beyond pi by using flow stabilization, by acoustic radiation pressure, or by forming columns in the presence of an axial electric field. In this work, magnetic levitation was used to simulate a low gravity environment and create quasi-cylindrical liquid columns in air. Use of a magnetic field permits us to continuously vary the Bond number B identically equal to (g)(rho)d(exp 2)/4(sigma), where g is the gravitational acceleration, rho is the density of the liquid, and sigma is the surface tension of the liquid in air. The dimensionless Bond number represents the

  20. [Specifics of bio-controlled training in directed relaxation].

    PubMed

    Baranov, V M; Sentiabrev, N N; Solopov, I N

    2005-01-01

    Studies of personal and general patterns of acquisition of skills in biocontrolled relaxation based on biological feedback (EMG) permitted classification of human subjects by the ability to relax voluntarily muscles. In the process of skill acquisition changes were minimal at the beginning, grew progressively further on and stabilized on completion of the course of training.

  1. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+

    PubMed Central

    Werbeck, Nicolas D.; Hansen, D. Flemming

    2014-01-01

    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4+, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N–1H and 1H–1H dipole–dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole–dipole cross-correlated relaxation mechanisms between each of the 15N–1H and 1H–1H interactions are explicitly taken into account in the derivations. An application to 15N-ammonium bound to a 41 kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1 ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest. PMID:25128779

  2. Biexciton relaxation associated with dissociation into a surface polariton pair in semiconductor films

    NASA Astrophysics Data System (ADS)

    Mitsumori, Yasuyoshi; Matsuura, Shimpei; Uchiyama, Shoichi; Saito, Kentarao; Edamatsu, Keiichi; Nakayama, Masaaki; Ajiki, Hiroshi

    2018-04-01

    We study the biexciton relaxation process in CuCl films ranging from 6 to 200 nm. The relaxation time is measured as the dephasing time and the lifetime. We observe a unique thickness dependence of the biexciton relaxation time and also obtain an ultrafast relaxation time with a timescale as short as 100 fs, while the exciton lifetime monotonically decreases with increasing thickness. By analyzing the exciton-photon coupling energy for a surface polariton, we theoretically calculate the biexciton relaxation time as a function of the thickness. The calculated dependence qualitatively reproduces the observed relaxation time, indicating that the biexciton dissociation into a surface polariton pair is one of the major biexciton relaxation processes.

  3. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    NASA Astrophysics Data System (ADS)

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-05-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows-in excess of 30-40 mW m-2 over 2 Gyr, with many small (<10 km in diameter) relaxed craters indicating even higher heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  4. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-Pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2016-03-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture.

  5. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom.

    PubMed

    Dawsey, Anna C; Hathaway, Kathryn L; Kim, Susie; Williams, Travis J

    2013-07-09

    Dotarem and Magnevist, two clinically available magnetic resonance imaging (MRI) contrast agents, were assessed in a high school science classroom with respect to which is the better contrast agent. Magnevist, the more efficacious contrast agent, has negative side effects because its gadolinium center can escape from its ligand. However, Dotarem, though a less efficacious contrast agent, is a safer drug choice. After the experiment, students are confronted with the FDA warning on Magnevist, which enabled a discussion of drug efficacy versus safety. We describe a laboratory experiment in which NMR spin lattice relaxation rate measurements are used to quantify the relaxivities of the active ingredients of Dotarem and Magnevist. The spin lattice relaxation rate gives the average amount of time it takes the excited nucleus to relax back to the original state. Students learn by constructing molar relaxivity curves based on inversion recovery data sets that Magnevist is more relaxive than Dotarem. This experiment is suitable for any analytical chemistry laboratory with access to NMR.

  6. Multi-Phonon Relaxation of H^- Local Modes in CaF_2

    NASA Astrophysics Data System (ADS)

    Davison, C. P.; Happek, U.; Campbell, J. A.; Engholm, J. R.; Schwettman, H. A.

    1998-03-01

    Local modes play an important role in the relaxation of vibrational modes of small molecules in solids (J.R. Engholm, C.W. Rella, H.A. Schwettman, and U. Happek; Phys. Rev. Lett. 77), 1302 (1996)., but only few attempts have been reported to study the relaxation of these local modes. Here we report on experiments to investigate the non-radiative relaxation of H^- local modes in CaF_2. Using a pump-probe technique, saturation experiments on the H^- local modes, both interstitial and substitutional, were performed at the Stanford Free Electron Laser Center. At low temperature we find a relaxation time T1 of 45 psec for the substitutional H^- local mode, and a more rapid relaxation for the interstitial H^- local modes next to La^3+ and Lu^3+ impurities. Information on the decay channels of the local modes are obtained from the characteristic temperature dependence of the relaxation rates. This work is supported in part by the ONR, Grant No. N00014-94-1024.

  7. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    USGS Publications Warehouse

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-01-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows—in excess of 30–40 mW m−2 over 2 Gyr, with many small (<10 km in diameter) relaxed craters indicating even higher heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  8. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    PubMed Central

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2015-01-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel’s initial elastic modulus, cell-adhesion-ligand density and degradation. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture. PMID:26618884

  9. Increasing mathematical problem-solving performance through relaxation training

    NASA Astrophysics Data System (ADS)

    Sharp, Conni; Coltharp, Hazel; Hurford, David; Cole, Amykay

    2000-04-01

    Two intact classes of 30 undergraduate students enrolled in the same general education mathematics course were each administered the IPSP Mathematics Problem Solving Test and the Mathematics Anxiety Rating Scale at the beginning and end of the semester. Both groups experienced the same syllabus, lectures, course requirements, and assessment techniques; however, one group received relaxation training during an initial class meeting and during the first 5 to 7 minutes of each subsequent class. The group which had received relaxation training had significantly lower mathematics anxiety and significantly higher mathematics performance at the end of the course. The results suggest that relaxation training may be a useful tool for treating anxiety in undergraduate general education mathematics students.

  10. Lanthanide co-doped paramagnetic spindle-like mesocrystals for imaging and autophagy induction

    NASA Astrophysics Data System (ADS)

    Xu, Yun-Jun; Lin, Jun; Lu, Yang; Zhong, Sheng-Liang; Wang, Lei; Dong, Liang; Wu, Ya-Dong; Peng, Jun; Zhang, Li; Pan, Xiao-Feng; Zhou, Wei; Zhao, Yang; Wen, Long-Ping; Yu, Shu-Hong

    2016-07-01

    We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy.We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy. Electronic supplementary information (ESI) available: Size distribution, HRTEM image and additional cellular data. See DOI: 10.1039/c6nr03171d

  11. X-band Electron Paramagnetic Resonance Investigation of Stable Organic Radicals Present under Cold Stratification in 'Fuji' Apple Seeds.

    PubMed

    Nakagawa, Kouichi; Matsumoto, Kazuhiro; Chaiserm, Nattakan; Priprem, Aroonsri

    2017-01-01

    We investigated stable organic radicals formed in response to cold stratification in 'Fuji' apple seeds using X-band (9 GHz) electron paramagnetic resonance (EPR) technique. This technique primarily detected two paramagnetic species in each seed. These two different radical species were assigned as a stable organic radical and Mn 2+ species based on the g values and hyperfine components. Signal from the stable radicals was noted at a g value of about 2.00 and was strong and relatively stable. Significant radical intensity changes were observed in apple seeds on refrigeration along with water supplementation. The strongest radical intensity and a very weak Mn 2+ signal were also observed for the seeds kept in moisture-containing sand in a refrigerator. Noninvasive EPR of the radicals present in each seed revealed that the stable radicals were located primarily in the seed coat. These results indicate that the significant radical intensity changes in apple seeds under refrigeration for at least 90 days followed by water supplementation for one week, can be related to cold stratification of the seeds.

  12. The Robustness of Cluster Expansion: Assessing the Role of Relaxation

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew H.; Rosenbrock, Conrad W.; Hart, Gus L. W.

    Cluster expansion (CE) has been used widely in combination with first-principles calculations to predict stable structures of metal alloys. CE treats alloys as a purely configuration problem, i.e., a problem in the distribution of the alloying elements on a fixed lattice. CE models are usually built from data taken from ``relaxed'' first-principles calculations where the individual atoms assume positions that minimize the total energy. A perennial question in the cluster expansion community is how the accuracy of the CE is affected by relaxations--technically, the formalism of CE breaks down when the underlying lattice is not preserved--but practitioners often argue that there is a one-to-one correspondence between relaxed and unrelaxed structures so that the formalism holds. We quantify the effect of relaxation on the robustness of cluster expansions by comparing CE fits for relaxed and unrelaxed data sets. Our results give a heuristic for when CE models can be trusted. Onr (MURI N00014-13-1-0635).

  13. Viscoelastic Relaxation of Topographic Highs on Venus to Produce Coronae

    NASA Technical Reports Server (NTRS)

    Janes, Daniel M.; Squyres, Steven W.

    1995-01-01

    Coronae on Venus are believed to result from the gravitationally driven relaxation of topography that was originally raised by mantle diapirs. We examine this relaxation using a viscoelastic finite element code, and show that an initially plateau shaped load will evolve to the characteristic corona topography of central raised bowl, annular rim, and surrounding moat. Stresses induced by the relaxation are consistent with the development of concentric extensional fracturing common on the outer margins of corona moats. However, relaxation is not expected to produce the concentric faulting often observed on the annular rim. The relaxation timescale is shorter than the diapir cooling timescale, so loss of thermal support controls the rate at which topography is reduced. The final corona shape is supported by buoyancy and flexural stresses and will persist through geologic time. Development of lower, flatter central bowls and narrower and more pronounced annular rims and moats enhanced by thicker crusts, higher thermal gradients, and crustal thinning over the diapir.

  14. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    PubMed

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  15. Surface hopping investigation of the relaxation dynamics in radical cations

    DOE PAGES

    Assmann, Mariana; Weinacht, Thomas; Matsika, Spiridoula

    2016-01-19

    Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in thesemore » systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Furthermore, examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.« less

  16. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

    PubMed

    Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin

    2018-01-09

    Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

  17. β-Adrenoceptor-Mediated Relaxation of Carbachol-Pre-Contracted Mouse Detrusor.

    PubMed

    Propping, Stefan; Newe, Manja; Lorenz, Kristina; Wirth, Manfred P; Ravens, Ursula

    2015-01-01

    To study the β-adrenoceptor subtypes involved in the relaxation responses to (-)-isoprenaline in carbachol-pre-contracted (CCh) mouse detrusor muscle with intact and denuded mucosa. Isolated muscle strips from the urinary bladder of male C57BL6 mice or β2-adrenoceptor knockout mice were pre-contracted with CCh, 1 µM and relaxed with increasing concentrations of the β-adrenoceptor (β-AR) agonist (-)-isoprenaline and forskolin. For estimating the β-AR subtypes involved, subtype-selective receptor blockers were used, that is, CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Unlike in KCl-pre-contracted muscle, the mucosa did not affect the sensitivity of the relaxation response to (-)-isoprenaline in CCh-pre-contracted murine detrusor strips. Increasing concentrations of (-)-isoprenaline produced a biphasic concentration-relaxation response without any difference both during the presence and absence of mucosa. The relaxation fraction produced by low (-)-isoprenaline concentrations was mediated by β2-AR as evidenced by a shift of the concentration-response curve to higher concentrations with ICI 118,551, but not with CGP 20712A and L748,337, and by the absence of this fraction in β2-AR-KO mice. The relaxation response with low sensitivity to (-)-isoprenaline was not affected by any of the β-AR subtype-selective blockers and was the only response detected in detrusor strips from β2-AR-KO mice. In CCh-pre-contracted mouse detrusor, β2-ARs are responsible for the relaxation component with high sensitivity to (-)-isoprenaline as indicated by the conversion of a biphasic into a monophasic CRC with ICI 118,551 or by its absence in β2-AR KO mice. The mucosa does not impair relaxation under these conditions. © 2015 S. Karger AG, Basel.

  18. Investigation of crystalline morphology in poly (ether ether ketone) using dielectric relaxation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalika, D.S.; Krishnaswamy, R.K.

    1993-12-31

    The relaxation behavior of poly (ether ether ketone) [PEEK] has been investigated using dielectric relaxation spectroscopy; the glass-rubber ({alpha}) relaxation and a sub-glass ({beta}) relaxation were examined for the amorphous material and both cold-crystallized and melt-crystallized specimens. Analysis of the data using the Cole-Cole modification of the Debye equation allowed determination of the dielectric relaxation strength and relaxation broadening parameter for both transitions as a function of material crystallization history. The crystallized specimens displayed a positive offset in isochronal loss temperature for both the {alpha} and {beta} relaxations, with the {alpha} relaxation broadened significantly. The measured dipolar response was interpretedmore » using a three-phase morphological model encompassing a crystalline phase, a mobile amorphous phase, and a rigid amorphous phase. Determination of phase fractions based on dipolar mobilization across the glass-rubber relaxation revealed a finite rigid amorphous phase fraction for both the cold-crystallized specimens which was relatively insensitive to thermal history and degree of crystallinity (W{sub RAP}40.20).« less

  19. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    PubMed

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Infinite family of three-dimensional Floquet topological paramagnets

    NASA Astrophysics Data System (ADS)

    Potter, Andrew C.; Vishwanath, Ashvin; Fidkowski, Lukasz

    2018-06-01

    We uncover an infinite family of time-reversal symmetric 3 d interacting topological insulators of bosons or spins, in time-periodically driven systems, which we term Floquet topological paramagnets (FTPMs). These FTPM phases exhibit intrinsically dynamical properties that could not occur in thermal equilibrium and are governed by an infinite set of Z2-valued topological invariants, one for each prime number. The topological invariants are physically characterized by surface magnetic domain walls that act as unidirectional quantum channels, transferring quantized packets of information during each driving period. We construct exactly solvable models realizing each of these phases, and discuss the anomalous dynamics of their topologically protected surface states. Unlike previous encountered examples of Floquet SPT phases, these 3 d FTPMs are not captured by group cohomology methods and cannot be obtained from equilibrium classifications simply by treating the discrete time translation as an ordinary symmetry. The simplest such FTPM phase can feature anomalous Z2 (toric code) surface topological order, in which the gauge electric and magnetic excitations are exchanged in each Floquet period, which cannot occur in a pure 2 d system without breaking time reversal symmetry.

  1. Dielectric relaxation in AC powder electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Su, Haibin; Tan, Chuan Seng; Wong, Terence Kin Shun; Teo, Ronnie Jin Wah

    2017-01-01

    The dielectric properties of AC powder electroluminescent devices were measured and analyzed using complex impedance spectroscopy to determine the relaxation processes occurring within the devices. The relaxation processes identified were ascribed to the electrode polarization caused by ion accumulation at the electrode/resin interfaces, the Maxwell-Wagner-Sillars effects at the (ZnS or BaTiO3) particle/resin interfaces, and the dipolar reorientation of polymer chains in the resin matrix. Each relaxation process was represented by its corresponding equivalent circuit component. Space charge polarization at the electrodes were represented by a Warburg element, a resistor, and a constant phase element. The resin matrix, ZnS/resin and BaTiO3/resin interfaces could each be modeled by a resistor and a capacitor in parallel. The simulated equivalent circuits for three different printed structures showed good fitting with their experimental impedance results.

  2. A general relaxation theory of simple liquids

    NASA Technical Reports Server (NTRS)

    Merilo, M.; Morgan, E. J.

    1973-01-01

    A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.

  3. Electron spin dynamics and spin–lattice relaxation of trityl radicals in frozen solutions†

    PubMed Central

    Chen, Hanjiao; Maryasov, Alexander G.; Rogozhnikova, Olga Yu.; Trukhin, Dmitry V.; Tormyshev, Victor M.

    2017-01-01

    Electron spin–lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach–Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP. PMID:27560644

  4. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D.

    2016-07-07

    Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systemsmore » with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.« less

  5. Relaxation dynamics of C60

    NASA Astrophysics Data System (ADS)

    Walsh, Tiffany R.; Wales, David J.

    1998-10-01

    The relaxation dynamics of C60 from high-energy isomers to Buckminsterfullerene is examined using a master equation approach. An exhaustive catalog of the C60 fullerene isomers containing only five- and six-membered rings is combined with knowledge of the Stone-Wales rearrangements that connect all such isomers. Full geometry optimizations have been performed for all the minima and the transition states which connect them up to six Stone-Wales steps away from the global minimum. A density-functional tight-binding potential was employed to provide a quantum mechanical description of the bonding. The resulting picture of the potential energy landscape reveals a "weeping willow" structure which offers a clear explanation for the relatively long relaxation times observed experimentally. We also predict the most important transient local minima on the annealing pathway.

  6. The shear and bulk relaxation times from the general correlation functions

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Jeon, Sangyong

    2017-11-01

    In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.

  7. The Effects of Relaxation Training with Cognitive or Nondirective Therapy and the Role of Relaxation-Induced Anxiety in the Treatment of Generalized Anxiety.

    ERIC Educational Resources Information Center

    Borkovec, T. D.; And Others

    1987-01-01

    Provided 30 volunteers with generalized anxiety disorder with training in progressive muscle relaxation. Clients were also given cognitive or nondirective therapy. All showed substantial reductions in anxiety measured by psychiatric assessor ratings, questionnaires, and daily self-monitoring. Relaxation plus cognitive therapy produced…

  8. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mârtensson, Lena; Swenson, Jan

    2014-07-01

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the α-relaxation

  9. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay.

    PubMed

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mårtensson, Lena; Swenson, Jan

    2014-07-21

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the α-relaxation

  10. Controlling spin relaxation with a cavity

    DOE PAGES

    Bienfait, A.; Pla, J. J.; Kubo, Y.; ...

    2016-02-15

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photonmore » sources. In this paper, we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. Finally, they also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.« less

  11. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    NASA Astrophysics Data System (ADS)

    Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.

    2016-02-01

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn's Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

  12. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeiffer, M., E-mail: mpfeiffer@irs.uni-stuttgart.de; Nizenkov, P., E-mail: nizenkov@irs.uni-stuttgart.de; Mirza, A., E-mail: mirza@irs.uni-stuttgart.de

    2016-02-15

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methodsmore » are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.« less

  13. The time dependence of rock healing as a universal relaxation process, a tutorial

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie

    2017-01-01

    The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behaviour for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.

  14. Relaxation training for anxiety: a ten-years systematic review with meta-analysis.

    PubMed

    Manzoni, Gian Mauro; Pagnini, Francesco; Castelnuovo, Gianluca; Molinari, Enrico

    2008-06-02

    Relaxation training is a common treatment for anxiety problems. Lacking is a recent quantitative meta-analysis that enhances understanding of the variability and clinical significance of anxiety reduction outcomes after relaxation treatment. All studies (1997-2007), both RCT, observational and without control group, evaluating the efficacy of relaxation training (Jacobson's progressive relaxation, autogenic training, applied relaxation and meditation) for anxiety problems and disorders were identified by comprehensive electronic searches with Pubmed, Psychinfo and Cochrane Registers, by checking references of relevant studies and of other reviews. Our primary outcome was anxiety measured with psychometric questionnaires. Meta-analysis was undertaken synthesizing the data from all trials, distinguishing within and between effect sizes. 27 studies qualified for the inclusion in the meta-analysis. As hypothesized, relaxation training showed a medium-large effect size in the treatment of anxiety. Cohen's d was .57 (95% CI: .52 to .68) in the within analysis and .51 (95% CI: .46 to .634) in the between group analysis. Efficacy was higher for meditation, among volunteers and for longer treatments. Implications and limitations are discussed. The results show consistent and significant efficacy of relaxation training in reducing anxiety. This meta-analysis extends the existing literature through facilitation of a better understanding of the variability and clinical significance of anxiety improvement subsequent to relaxation training.

  15. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.

    PubMed

    Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-07-10

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.

  16. The Spin Relaxation of 8Li+ in Gold at Low Magnetic Field

    NASA Astrophysics Data System (ADS)

    MacFarlane, W. A.; Chow, K. H.; Hossain, M. D.; Karner, V. L.; Kiefl, R. F.; McFadden, R. M. L.; Morris, G. D.; Saadaoui, H.; Salman, Z.

    Here we report the temperature and applied magnetic field dependence of the spin lattice relaxation of implanted into Au foil in the range 4 to 290 K and 3 to 150 G. Below about 50 G, relaxation due to the dynamic host lattice nuclear spins is important, becoming dominant below 20 G. At 150 G, this process is quenched, and the relaxation is Korringa-like. We report the first measurement of its temperature dependence which shows the characteristic features of the site change around 190 K. At lower field the relaxation is two component above 100 K and exhibits a strong peak at the site change, which we attribute to quadrupolar relaxation of the adjacent Au spins. We discuss the ingredients required for a quantitative theory of the low field relaxation.

  17. Temperature dependent relaxation of interface-states in graphene on SiO2

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Gupta, Anjan Kumar

    2018-04-01

    We have studied the evolution of resistance relaxation with temperature in graphene field effect transistor on SiO2. At room temperature, piranha-cleaned-SiO2 devices show slow resistance relaxation while IPA-cleaned-SiO2 devices do not. With cooling the former devices show a decrease in magnitude and time constant of the slow relaxation and it becomes negligible at 250K. Relaxation study at elevated temperature of the IPA-cleaned devices show a gate voltage polarity dependent time constant with respect to the charge neutrality point but it remains almost independent of temperature. The magnitude of relaxation increases with temperature. Further, after annealing at elevated temperature, we found that the relaxation times become independent of gate voltage polarity and its magnitude becomes very small. These observations are discussed using increase in diffusion of interface-species with temperature.

  18. Clique Relaxations in Biological and Social Network Analysis Foundations and Algorithms

    DTIC Science & Technology

    2015-10-26

    study of clique relaxation models arising in biological and social networks. This project examines the elementary clique-defining properties... elementary clique-defining properties inherently exploited in the available clique relaxation models and pro- poses a taxonomic framework that not...analyzes the elementary clique-defining properties implicitly exploited in the available clique relaxation models and proposes a taxonomic framework that

  19. Graph Matching: Relax at Your Own Risk.

    PubMed

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo

    2016-01-01

    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.

  20. Relaxation model of radiation-induced conductivity in polymers

    NASA Astrophysics Data System (ADS)

    Zhutayeva, Yu. R.; Khatipov, S. A.

    1999-05-01

    The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.