Sample records for zhangjiang river estuary

  1. Characterizing seston in the Penobscot River Estuary.

    PubMed

    Meseck, Shannon L; Li, Yaqin; Sunila, Inke; Dixon, Mark; Clark, Paul; Lipsky, Christine; Stevens, Justin R; Music, Paul; Wikfors, Gary H

    2017-10-01

    The Penobscot River Estuary is an important system for diadromous fish in the Northeast United States of American (USA), in part because it is home to the largest remnant population of Atlantic salmon, Salmo salar, in the country. Little is known about the chemical and biological characteristics of seston in the Penobscot River Estuary. This study used estuarine transects to characterize the seston during the spring when river discharge is high and diadromous fish migration peaks in the Penobscot River Estuary. To characterize the seston, samples were taken in spring 2015 for phytoplankton identification, total suspended matter (TSM), percent organic TSM, chlorophyll a, particle size (2 μm-180 μm), particulate carbon and nitrogen concentrations, and stable carbon and nitrogen isotopes. The estuarine profiles indicate that TSM behaved non-conservatively with a net gain in the estuary. As phytoplankton constituted only 1/1000 of the particles, the non-conservative behavior of TSM observed in the estuary was most likely not attributable to phytoplankton. Particulate carbon and nitrogen ratios and stable isotope signals indicate a strong terrestrial, allochthonous signal. The seston in the Penobscot River Estuary was dominated by non-detrital particles. During a short, two-week time period, Heterosigma akashiwo, a phytoplankton species toxic to finfish, also was detected in the estuary. A limited number of fish samples, taken after the 2015 Penobscot River Estuary bloom of H. akashiwo, indicated frequent pathological gill damage. The composition of seston, along with ichthyotoxic algae, suggest the need for further research into possible effects upon resident and migratory fish in the Penobscot River Estuary. Published by Elsevier Ltd.

  2. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  3. The role of extreme floods in estuary-coastal behaviour: contrasts between river- and tide-dominated microtidal estuaries

    NASA Astrophysics Data System (ADS)

    Cooper, J. A. G.

    2002-06-01

    Contrasting modes of sedimentation and facies arrangement in tide- and river-dominated microtidal estuaries arise from the degree to which river or tidal discharge and sediment supply influences an estuary. A distinct facies gradation exists in tide-dominated systems from sandy, barrier/tidal delta-associated environments at the coast through deep mud-dominated middle reaches to fluvial sediment in the upper reaches. In river-dominated systems, fluvial sediment extends to the barrier and flood-tidal deltas are poorly developed or absent from the estuary. A number of independent observations during extreme floods on the South African coast indicate that these types of estuary respond differently to extreme river floods and that the mode of response corresponds to estuary type. Tide-dominated systems exhibit preferential erosion of noncohesive barrier and tidal delta sediments during river floods while the middle reaches remain little modified. River-dominated systems experience consistent erosion throughout their channel length during extreme floods. The increased cohesion of riverine sediments and stabilisation of bars by vegetation in river-dominated channels means that higher magnitude floods are necessary to effect significant morphological change. Barrier erosion, including the tidal delta, results in deposition of an ephemeral delta composed almost entirely of sands from these deposits in tide-dominated estuaries. In river-dominated systems, eroded channel sediments and material from the river catchment may augment barrier sediments in the ephemeral delta deposit. Post-flood, wave-reworking of ephemeral delta sediments acts to restore barriers to pre-flood morphology within a few years; however, in river-dominated systems, the additional sediment volume may produce significant coastal progradation that requires several years or decades to redistribute. These different modes of flood response mediated by the nature of the estuary have implications for coastal

  4. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  5. Anthropogenic tritium in the Loire River estuary, France

    NASA Astrophysics Data System (ADS)

    Péron, O.; Gégout, C.; Reeves, B.; Rousseau, G.; Montavon, G.; Landesman, C.

    2016-12-01

    This work is carried out in the frame of a radioecological monitoring of anthropogenic tritium from upstream and downstream of several nuclear power plants along the Loire River to its estuary. This paper studies the variation of anthropogenic tritium species in the Loire River system from upstream to the mouth of the estuary. Tritiated water (HTO and HTO in sediment pore water) and organically bound tritium (OBT) forms were analysed after dedicated pre-treatments. The collected environmental samples consist in (i) surface-sediment and core samples from the river floor, (ii) surface and water column samples. A maximum 3H activity concentration of 26 ± 3 Bq·L- 1 in the Loire River estuary is obtained whereas an environmental background level around 1 Bq·L- 1 is determined for a non influenced continental area by anthropogenic activities. The European follow-up indicator used as a screening value is 100 Bq·L- 1. The conservative tritium behaviour was used in order to characterize the tidal regime and river flow influences in the mixing zone of the Loire River estuary. Furthermore, OBT levels and total organically carbon (TOC) content are explored. Finally, ratios of OBT relative to HTO in sediment pore water in surface-sediment and core samples are also discussed.

  6. LOWER COLUMBIA RIVER ESTUARY PROGRAM COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN

    EPA Science Inventory

    An estuary is the area where the fresh water of a river meets the salt water of an ocean. In the Columbia River system, this occurs in the lower 46 river miles. In an estuary, the river has a direct, natural connection with the open sea. This transition from fresh to salt water c...

  7. Age Tracers and Residence Time in the Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Nadell, S. A.; Geyer, W. R.; Wang, T.

    2016-02-01

    The Hudson River is one of the most nutrient loaded rivers in the country, however phytoplankton bloom do not occur, possibly as a result of how quickly water moves though the Hudson River estuary. Slower water residence times may then allow for significant phytoplankton growth. Water age and residence time, which are compliments of one another under stead-state conditions, are important factors in determining where phytoplankton move and how long they spend within a favorable portion of the estuary. This research involved introducing a freshwater and saltwater age tracer into the Regional Ocean Modeling System (ROMS) for the Hudson River estuary domain to observe the distribution of ages within the spring-neap tidal cycle and across different river discharge rates. These discharge rates represented average (500 m3/s), relatively high (1000 m3/s), and relatively low (200 m3/s) river flow conditions for the Hudson River. Saltwater age followed a distribution similar to salinity, while freshwater age distribution mostly represented river transit time. Under steady state conditions, combined freshwater and saltwater age may be used to calculate a rough estimate of estuary residence time. The results show that the residence time of the full estuary appears to be at greater than the doubling time of phytoplankton for all discharge rates and by over five days for even the relatively high discharge case. This leads to the conclusion that other estuary factors, including light availability and salinity, may be more important for limiting phytoplankton growth than residence time.

  8. Multi-timescale sediment responses across a human impacted river-estuary system

    NASA Astrophysics Data System (ADS)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  9. Improving estuary models by reducing uncertainties associated with river flows

    NASA Astrophysics Data System (ADS)

    Robins, Peter E.; Lewis, Matt J.; Freer, Jim; Cooper, David M.; Skinner, Christopher J.; Coulthard, Tom J.

    2018-07-01

    To mitigate against future changes to estuaries such as water quality, catchment and estuary models can be coupled to simulate the transport of harmful pathogenic viruses, pollutants and nutrients from their terrestrial sources, through the estuary and to the coast. To predict future changes to estuaries, daily mean river flow projections are typically used. We show that this approach cannot resolve higher frequency discharge events that have large impacts to estuarine dilution, contamination and recovery for two contrasting estuaries. We therefore characterise sub-daily scale flow variability and propagate this through an estuary model to provide robust estimates of impacts for the future. River flow data (35-year records at 15-min sampling) were used to characterise variabilities in storm hydrograph shapes and simulate the estuarine response. In particular, we modelled a fast-responding catchment-estuary system (Conwy, UK), where the natural variability in hydrograph shapes generated large variability in estuarine circulation that was not captured when using daily-averaged river forcing. In the extreme, the freshwater plume from a 'flash' flood (lasting <12 h) was underestimated by up to 100% - and the response to nutrient loading was underestimated further still. A model of a slower-responding system (Humber, UK), where hydrographs typically last 2-4 days, showed less variability in estuarine circulation and good approximation with daily-averaged flow forcing. Our result has implications for entire system impact modelling; when we determine future changes to estuaries, some systems will need higher resolution future river flow estimates.

  10. Columbia River Estuary ecosystem classification—Concept and application

    USGS Publications Warehouse

    Simenstad, Charles A.; Burke, Jennifer L.; O'Connor, Jim E.; Cannon, Charles; Heatwole, Danelle W.; Ramirez, Mary F.; Waite, Ian R.; Counihan, Timothy D.; Jones, Krista L.

    2011-01-01

    This document describes the concept, organization, and application of a hierarchical ecosystem classification that integrates saline and tidal freshwater reaches of estuaries in order to characterize the ecosystems of large flood plain rivers that are strongly influenced by riverine and estuarine hydrology. We illustrate the classification by applying it to the Columbia River estuary (Oregon-Washington, USA), a system that extends about 233 river kilometers (rkm) inland from the Pacific Ocean. More than three-quarters of this length is tidal freshwater. The Columbia River Estuary Ecosystem Classification ("Classification") is based on six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. We define and map Levels 1-3 for the entire Columbia River estuary with existing geospatial datasets, and provide examples of Levels 4-6 for one hydrogeomorphic reach. In particular, three levels of the Classification capture the scales and categories of ecosystem structure and processes that are most tractable to estuarine research, monitoring, and management. These three levels are the (1) eight hydrogeomorphic reaches that embody the formative geologic and tectonic processes that created the existing estuarine landscape and encompass the influence of the resulting physiography on interactions between fluvial and tidal hydrology and geomorphology across 230 kilometers (km) of estuary, (2) more than 15 ecosystem complexes composed of broad landforms created predominantly by geologic processes during the Holocene, and (3) more than 25 geomorphic catenae embedded within ecosystem complexes that represent distinct geomorphic landforms, structures, ecosystems, and habitats, and components of the estuarine landscape most likely to change over short time periods.

  11. Large wood in the Snowy River estuary, Australia

    NASA Astrophysics Data System (ADS)

    Hinwood, Jon B.; McLean, Errol J.

    2017-02-01

    In this paper we report on 8 years of data collection and interpretation of large wood in the Snowy River estuary in southeastern Australia, providing quantitative data on the amount, sources, transport, decay, and geomorphic actions. No prior census data for an estuary is known to the authors despite their environmental and economic importance and the significant differences between a fluvial channel and an estuarine channel. Southeastern Australian estuaries contain a significant quantity of large wood that is derived from many sources, including river flood flows, local bank erosion, and anthropogenic sources. Wind and tide are shown to be as important as river flow in transporting and stranding large wood. Tidal action facilitates trapping of large wood on intertidal bars and shoals; but channels are wider and generally deeper, so log jams are less likely than in rivers. Estuarine large wood contributes to localised scour and accretion and hence to the modification of estuarine habitat, but in the study area it did not have large-scale impacts on the hydraulic gradients nor the geomorphology.

  12. Subtidal sea level variability in a shallow Mississippi River deltaic estuary, Louisiana

    USGS Publications Warehouse

    Snedden, G.A.; Cable, J.E.; Wiseman, W.J.

    2007-01-01

    The relative roles of river, atmospheric, and tidal forcings on estuarine sea level variability are examined in Breton Sound, a shallow (0.7 m) deltaic estuary situated in an interdistributary basin on the Mississippi River deltaic plain. The deltaic landscape contains vegetated marshes, tidal flats, circuitous channels, and other features that frictionally dissipate waves propagating through the system. Direct forcing by local wind stress over the surface of the estuary is minimal, owing to the lack of significant fetch due to landscape features of the estuary. Atmospheric forcing occurs almost entirely through remote forcing, where alongshore winds facilitate estuary-shelf exchange through coastal Ekman convergence. The highly frictional nature of the deltaic landscape causes the estuary to act as a low-pass filter to remote atmospheric forcing, where high-frequency, coastally-induced fluctuations are significantly damped, and the damping increases with distance from the estuary mouth. During spring, when substantial quantities of controlled Mississippi River inputs (q?? = 62 m3 s-1) are discharged into the estuary, upper estuary subtidal sea levels are forced by a combination of river and remote atmospheric forcings, while river effects are less clear downestuary. During autumn (q?? = 7 m3 s-1) sea level variability throughout the estuary is governed entirely by coastal variations at the marine boundary. A frequency-dependent analytical model, previously used to describe sea level dynamics forced by local wind stress and coastal forcing in deeper, less frictional systems, is applied in the shallow Breton Sound estuary. In contrast to deeper systems where coastally-induced fluctuations exhibit little or no frictional attenuation inside the estuary, these fluctuations in the shallow Breton Sound estuary show strong frequency-dependent amplitude reductions that extend well into the subtidal frequency spectrum. ?? 2007 Estuarine Research Federation.

  13. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    NASA Astrophysics Data System (ADS)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  14. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China.

    PubMed

    Zhang, Manping; Luo, Yi; Lin, Li'an; Lin, Xiaolan; Hetharua, Buce; Zhao, Weijun; Zhou, Mengkai; Zhan, Qing; Xu, Hong; Zheng, Tianling; Tian, Yun

    2018-03-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 10 6 to 2.09 × 10 7 and 2.07 × 10 6 to 3.38 × 10 7 copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO 2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.

  15. Discontinuous Galerkin modeling of the Columbia River's coupled estuary-plume dynamics

    NASA Astrophysics Data System (ADS)

    Vallaeys, Valentin; Kärnä, Tuomas; Delandmeter, Philippe; Lambrechts, Jonathan; Baptista, António M.; Deleersnijder, Eric; Hanert, Emmanuel

    2018-04-01

    The Columbia River (CR) estuary is characterized by high river discharge and strong tides that generate high velocity flows and sharp density gradients. Its dynamics strongly affects the coastal ocean circulation. Tidal straining in turn modulates the stratification in the estuary. Simulating the hydrodynamics of the CR estuary and plume therefore requires a multi-scale model as both shelf and estuarine circulations are coupled. Such a model has to keep numerical dissipation as low as possible in order to correctly represent the plume propagation and the salinity intrusion in the estuary. Here, we show that the 3D baroclinic discontinuous Galerkin finite element model SLIM 3D is able to reproduce the main features of the CR estuary-to-ocean continuum. We introduce new vertical discretization and mode splitting that allow us to model a region characterized by complex bathymetry and sharp density and velocity gradients. Our model takes into account the major forcings, i.e. tides, surface wind stress and river discharge, on a single multi-scale grid. The simulation period covers the end of spring-early summer of 2006, a period of high river flow and strong changes in the wind regime. SLIM 3D is validated with in-situ data on the shelf and at multiple locations in the estuary and compared with an operational implementation of SELFE. The model skill in the estuary and on the shelf indicate that SLIM 3D is able to reproduce the key processes driving the river plume dynamics, such as the occurrence of bidirectional plumes or reversals of the inner shelf coastal currents.

  16. Concentrations, loads, and sources of polychlorinated biphenyls, Neponset River and Neponset River Estuary, eastern Massachusetts

    USGS Publications Warehouse

    Breault, Robert F.

    2011-01-01

    Polychlorinated biphenyls (PCBs) are known to contaminate the Neponset River, which flows through parts of Boston, Massachusetts, and empties into the Neponset River Estuary, an important fish-spawning area. The river is dammed and impassable to fish. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Fish and Game, Division of Ecological Restoration, Riverways Program, collected, analyzed, and interpreted PCB data from bottom-sediment, water, and (or) fish-tissue samples in 2002, 2004-2006. Samples from the Neponset River and Neponset River Estuary were analyzed for 209 PCB congeners, PCB homologs, and Aroclors. In order to better assess the overall health quality of river-bottom sediments, sediment samples were also tested for concentrations of 31 elements. PCB concentrations measured in the top layers of bottom sediment ranged from 28 nanograms per gram (ng/g) just upstream of the Mother Brook confluence to 24,900 ng/g measured in Mother Brook. Concentrations of elements in bottom sediment were generally higher than background concentrations and higher than levels considered toxic to benthic organisms according to freshwater sediment-quality guidelines defined by the U.S. Environmental Protection Agency. Concentrations of dissolved PCBs in water samples collected from the Neponset River (May 13, 2005 to April 28, 2006) averaged about 9.2 nanograms per liter (ng/L) (annual average of monthly values); however, during the months of August (about 16.5 ng/L) and September (about 15.6 ng/L), dissolved PCB concentrations were greater than 14 ng/L, the U.S. Environmental Protection Agency's freshwater continuous chronic criterion for aquatic organisms. Concentrations of PCBs in white sucker (fillets and whole fish) were all greater than 2,000 ng/g wet wt, the U.S. Environmental Protection Agency's guideline for safe consumption of fish: PCB concentrations measured in fish-tissue samples collected from the Tileston and Hollingsworth and

  17. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, Jianan; Du, Jinzhou; Wu, Ying; Liu, Sumei

    2018-04-01

    In this study, we used a 224Ra mass balance model to evaluate the importance of submarine groundwater discharge (SGD) for the budgets of biogenic elements in two major Chinese estuaries: the Pearl River Estuary (PRE) and the Changjiang River Estuary (CRE). The apparent water age in the PRE was estimated to be 4.8 ± 1.1 days in the dry season and 1.8 ± 0.6 days in the wet season using a physical model based on the tidal prism. In the dry season, the water age in the CRE was estimated to be 11.7 ± 3.0 days using the 224Ra/223Ra activities ratios apparent age model. By applying the 224Ra mass balance model, we obtained calculations of the SGD flow in the PRE of (4.5-10) × 108 m3 d-1 (0.23-0.50 m3 m-2 d-1) and (1.2-2.7) × 108 m3 d-1 (0.06-0.14 m3 m-2 d-1) in the dry season and wet season, respectively, and the estimated SGD flux was (4.6-11) × 109 m3 d-1 (0.18-0.45 m3 m-2 d-1) in the dry season of the CRE. In comparison with the nutrient fluxes from the rivers, the SGD-derived nutrient fluxes may play a vital role in controlling the nutrient budgets and stoichiometry in the study areas. The large amount of dissolved inorganic nitrogen and phosphorus fluxes together with high N: P ratios into the PRE and CRE would potentially contribute to eutrophication and the occurrence of red tides along the adjacent waters.

  18. AN ECOSYSTEM MODEL OF A RIVER-DOMINATED PACIFIC NORTHWEST ESTUARY: ROLES OF SALT MARSH-, RIVER- AND OCEAN-DERIVED MATERIALS

    EPA Science Inventory

    The Salmon River estuary on the central Oregon coast is river-dominated, with hydraulic residence times ranging from <1 day during winter high flows to a week during low flows. The estuary receives organic matter and nutrients from the river, the coastal ocean, and a bordering s...

  19. Winter nutrient behaviours in the Pearl River estuary

    NASA Astrophysics Data System (ADS)

    Wang, G.; Jin, S.; Du, M.

    2017-12-01

    Nutrient (nitrate, nitrite, ammonium, phosphate, and silicate) mapping and time-series investigation were carried out in winter in the Pearl River estuary, China. These nutrients behaved non-conservatively in the upper estuary. In the middle and lower estuary, however, nitrate and silicate seemed to be controled by physical mixing, while additions of nitrite, ammonium, and phosphate were found in the middle estuary. Nitrate was the dominant disslved inorganic nitrogen, with a fraction of more than 2/3. From the upper to the lower estuary the N:P ratio decreased from more than 200 to near the Redfield ratio of 16. Nutrients near the surface behaved almost the same as near the bottom in the water column at both the uppper and lower estuary. During a tidal cycle these nutrients seemed to be regulated more by physical mixing than by other processes.

  20. Rapid water quality change in the Elwha River estuary complex during dam removal

    USGS Publications Warehouse

    Foley, Melissa M.; Duda, Jeffrey J.; Beirne, Matthew M.; Paradis, Rebecca; Ritchie, Andrew; Warrick, Jonathan A.

    2015-01-01

    Dam removal in the United States is increasing as a result of structural concerns, sedimentation of reservoirs, and declining riverine ecosystem conditions. The removal of the 32 m Elwha and 64 m Glines Canyon dams from the Elwha River in Washington, U.S.A., was the largest dam removal project in North American history. During the 3 yr of dam removal—from September 2011 to August 2014—more than ten million cubic meters of sediment was eroded from the former reservoirs, transported downstream, and deposited throughout the lower river, river delta, and nearshore waters of the Strait of Juan de Fuca. Water quality data collected in the estuary complex at the mouth of the Elwha River document how conditions in the estuary changed as a result of sediment deposition over the 3 yr the dams were removed. Rapid and large-scale changes in estuary conditions—including salinity, depth, and turbidity—occurred 1 yr into the dam removal process. Tidal propagation into the estuary ceased following a large sediment deposition event that began in October 2013, resulting in decreased salinity, and increased depth and turbidity in the estuary complex. These changes have persisted in the system through dam removal, significantly altering the structure and functioning of the Elwha River estuary ecosystem.

  1. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    NASA Astrophysics Data System (ADS)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  2. Processing and Analysis of Multibeam Sonar Data and Images near the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Tang, Q.

    2017-12-01

    Yellow River Estuary is a typical high-suspended particulate matter estuary in the world. A lot of sediments from Yellow River and other substances produced by human activity cause high-concentration suspended matter and depositional system in the estuary and adjacent water area. Multibeam echo sounder (MBES) was developed in the 1970s, and it not only provided high-precision bathymetric data, but also provided seabed backscatter strength data and water column data with high temporal and spatial resolution. Here, based on high-precision sonar data of the seabed and water column collected by SeaBat7125 MBES system near the Yellow River Estuary, we use advanced data and image processing methods to generate seabed sonar images and water suspended particulate matter acoustic images. By analyzing these data and images, we get a lot of details of the seabed and whole water column features, and we also acquire their shape, size and basic physical characteristics of suspended particulate matters in the experiment area near the Yellow River Estuary. This study shows great potential for monitoring suspended particulate matter use MBES, and the research results will contribute to a comprehensive understanding of sediment transportation, evolution of river trough and shoal in Yellow River Estuary.

  3. Continuous resistivity profiling data from the Corsica River Estuary, Maryland

    USGS Publications Warehouse

    Cross, V.A.; Bratton, J.F.; Worley, C.R.; Crusius, John; Kroeger, K.D.

    2011-01-01

    Submarine groundwater discharge (SGD) into Maryland's Corsica River Estuary was investigated as part of a larger study to determine its importance in nutrient delivery to the Chesapeake Bay. The Corsica River Estuary represents a coastal lowland setting typical of much of the eastern bay. An interdisciplinary U.S. Geological Survey (USGS) science team conducted field operations in the lower estuary in April and May 2007. Resource managers are concerned about nutrients that are entering the estuary via SGD that may be contributing to eutrophication, harmful algal blooms, and fish kills. Techniques employed in the study included continuous resistivity profiling (CRP), piezometer sampling of submarine groundwater, and collection of a time series of radon tracer activity in surface water. A CRP system measures electrical resistivity of saturated subestuarine sediments to distinguish those bearing fresh water (high resistivity) from those with saline or brackish pore water (low resistivity). This report describes the collection and processing of CRP data and summarizes the results. Based on a grid of 67.6 kilometers of CRP data, low-salinity (high-resistivity) groundwater extended approximately 50-400 meters offshore from estuary shorelines at depths of 5 to >12 meters below the sediment surface, likely beneath a confining unit. A band of low-resistivity sediment detected along the axis of the estuary indicated the presence of a filled paleochannel containing brackish groundwater. The meandering paleochannel likely incised through the confining unit during periods of lower sea level, allowing the low-salinity groundwater plumes originating from land to mix with brackish subestuarine groundwater along the channel margins and to discharge. A better understanding of the spatial variability and geological controls of submarine groundwater flow beneath the Corsica River Estuary could lead to improved models and mitigation strategies for nutrient over-enrichment in the

  4. A comparison of CO2 dynamics and air-water fluxes in a river-dominated estuary and a mangrove-dominated marine estuary

    NASA Astrophysics Data System (ADS)

    Akhand, Anirban; Chanda, Abhra; Manna, Sudip; Das, Sourav; Hazra, Sugata; Roy, Rajdeep; Choudhury, S. B.; Rao, K. H.; Dadhwal, V. K.; Chakraborty, Kunal; Mostofa, K. M. G.; Tokoro, T.; Kuwae, Tomohiro; Wanninkhof, Rik

    2016-11-01

    The fugacity of CO2 (fCO2 (water)) and air-water CO2 flux were compared between a river-dominated anthropogenically disturbed open estuary, the Hugli, and a comparatively pristine mangrove-dominated semiclosed marine estuary, the Matla, on the east coast of India. Annual mean salinity of the Hugli Estuary (≈7.1) was much less compared to the Matla Estuary (≈20.0). All the stations of the Hugli Estuary were highly supersaturated with CO2 (annual mean 2200 µatm), whereas the Matla was marginally oversaturated (annual mean 530 µatm). During the postmonsoon season, the outer station of the Matla Estuary was under saturated with respect to CO2 and acted as a sink. The annual mean CO2 emission from the Hugli Estuary (32.4 mol C m-2 yr-1) was 14 times higher than the Matla Estuary (2.3 mol C m-2 yr-1). CO2 efflux rate from the Hugli Estuary has increased drastically in the last decade, which is attributed to increased runoff from the river-dominated estuary.

  5. Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain

    USGS Publications Warehouse

    Nelson, C.H.; Lamothe, P.J.

    1993-01-01

    The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (??g g-1): As 3,000 to <200, Cd 30 to <0.1, Cu 1,500 to 10, Pb 2,000 to <10, Sb 3000 to <150, and Zn 3,000 to <200. Organic-rich (1.3-2.6% total organic carbon, TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21-0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and

  6. Benthic phosphorus regeneration in the Potomac River Estuary

    USGS Publications Warehouse

    Callender, E.

    1982-01-01

    The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk

  7. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    PubMed

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.

  8. Geochemistry of tin in rivers and estuaries

    NASA Astrophysics Data System (ADS)

    Byrd, James T.; Andreae, Meinrat O.

    1986-05-01

    On the basis of measurements from a large number of rivers from pristine and polluted regions, we estimate the riverine fluxes of tin to the oceans to be 0.76 × 10 6molyr-1 for the dissolved fraction and 300-600 × 10 6 mol yr -1 for the paniculate fraction. The paniculate flux agrees with the flux calculated from denudation rates. Estuaries were found not to have a large effect upon the transport of tin to the oceans. Evidence for the remobilization of tin was found in an estuary that is highly polluted with tin from mining and smelting activities. Monobutyltin was found to be present in polluted estuaries and is presumed to be a degradation product of tributyltin additives to antifouling paint.

  9. From headwaters to coast: Influence of human activities on water quality of the Potomac River Estuary

    USGS Publications Warehouse

    Bricker, Suzanne B.; Rice, Karen C.; Bricker, Owen P.

    2014-01-01

    The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in

  10. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    PubMed Central

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  11. Seasonal Distribution and Movements of Atlantic and Shortnose Sturgeon in the Penobscot River Estuary, Maine

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Fernandes, Stephen J.; Zydlewski, Gayle B.; Wippelhauser, Gail S.; Kinnison, Michael T.

    2016-01-01

    Relatively little is known about the distribution and seasonal movement patterns of shortnose sturgeon Acipenser brevirostrum and Atlantic sturgeon Acipenser oxyrinchus oxyrinchus occupying rivers in the northern part of their range. During 2006 and 2007, 40 shortnose sturgeon (66–113.4 cm fork length [FL]) and 8 Atlantic sturgeon (76.2–166.2 cm FL) were captured in the Penobscot River, Maine, implanted with acoustic transmitters, and monitored using an array of acoustic receivers in the Penobscot River estuary and Penobscot Bay. Shortnose sturgeon were present year round in the estuary and overwintered from fall (mid-October) to spring (mid-April) in the upper estuary. In early spring, all individuals moved downstream to the middle estuary. Over the course of the summer, many individuals moved upstream to approximately 2 km of the downstream-most dam (46 river kilometers [rkm] from the Penobscot River mouth [rkm 0]) by August. Most aggregated into an overwintering site (rkm 36.5) in mid- to late fall. As many as 50% of the tagged shortnose sturgeon moved into and out of the Penobscot River system during 2007, and 83% were subsequently detected by an acoustic array in the Kennebec River, located 150 km from the Penobscot River estuary. Atlantic sturgeon moved into the estuary from the ocean in the summer and concentrated into a 1.5-km reach. All Atlantic sturgeon moved to the ocean by fall, and two of these were detected in the Kennebec River. Although these behaviors are common for Atlantic sturgeon, regular coastal migrations of shortnose sturgeon have not been documented previously in this region. These results have important implications for future dam removals as well as for rangewide and river-specific shortnose sturgeon management.

  12. Leachable particulate iron in the Columbia River, estuary, and near-field plume

    NASA Astrophysics Data System (ADS)

    Lippiatt, Sherry M.; Brown, Matthew T.; Lohan, Maeve C.; Berger, Carolyn J. M.; Bruland, Kenneth W.

    2010-03-01

    This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004-2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.

  13. Sedimentary Records of Hyperpycnal Flows and the Influence of River Damming on Sediment Dynamics of Estuaries: Examples from the Nelson, Churchill, Moisie and Sainte-Marguerite Rivers (Canada)

    NASA Astrophysics Data System (ADS)

    St-Onge, G.; Duboc, Q.; Boyer-Villemaire, U.; Lajeunesse, P.; Bernatchez, P.

    2015-12-01

    Sediment cores were sampled in the estuary of the Nelson and Churchill Rivers in western Hudson Bay, as well as in the estuary of the Moisie and Sainte-Marguerite Rivers in Gulf of St. Lawrence in order to evaluate the impact of hydroelectric dams on the sedimentary regime of these estuaries. The gravity cores at the mouth of the Nelson River recorded several cm-thick rapidly deposited layers with a reverse to normal grading sequence, indicating the occurrence of hyperpycnal flows generated by major floods during the last few centuries. These hyperpycnal flows were probably caused by ice-jam formation, which can increase both the flow and the sediment concentration following the breaching of such natural dams. Following the construction of hydroelectric dams since the 1960s, the regulation of river discharge prevented the formation of hyperpycnal flows, and hence the deposition of hyperpycnites in the upper part of the cores. In the core sampled in the estuary of the Churchill River, only one hyperpycnite was recorded. This lower frequency may be due to the enclosed estuary of the Churchill River, its weaker discharge and the more distal location of the coring site.In the Gulf of St. Lawrence, grain size measurements allowed the identification of a major flood around AD 1844±4 years in box cores from both the Sainte-Marguerite and Moisie Rivers, whereas a drastic decrease in variations in the median grain size occurred around AD ~1900 in the estuary of the Sainte-Marguerite River, highlighting the offshore impact of the SM1 dam construction in the early 1900s. Furthermore, sedimentological variations in the box cores from both estuaries have been investigated by wavelet analysis and the sharp disappearance of high frequencies around AD 1900 in the estuary of the dammed river (Sainte-Marguerite River), but not in the estuary of the natural river (Moisie River), also provides evidence of the influence of dams on the sedimentary regime of estuaries.

  14. Modeling the impact of river discharge and wind on the hypoxia off Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Gao, Shan; Liu, Guimei; Wang, Hui; Zhu, Xueming

    2016-12-01

    The phenomenon of low dissolved oxygen (known as hypoxia) in a coastal ocean system is closely related to a combination of anthropogenic and natural factors. Marine hypoxia occurs in the Yangtze Estuary, China, with high frequency and long persistence. It is related primarily to organic and nutrient enrichment influenced by river discharges and physical factors, such as water mixing. In this paper, a three-dimensional hydrodynamic model was coupled to a biological model to simulate and analyze the ecological system of the East China Sea. By comparing with the observation data, the model results can reasonably capture the physical and biochemical dynamics of the Yangtze Estuary. In addition, the sensitive experiments were also used to examine the role of physical forcing (river discharge, wind speed, wind direction) in controlling hypoxia in waters adjacent to the Yangtze Estuary. The results showed that the wind field and river discharge have significant impact on the hypoxia off the Yangtze Estuary. The seasonal cycle of hypoxia was relatively insensitive to synoptic variability in the river discharge, but integrated hypoxic areas were sensitive to the whole magnitude of river discharge. Increasing the river discharge was shown to increase hypoxic areas, while decreasing the river discharge tended to decrease hypoxic areas. The variations of wind speed and direction had a great impact on the integrated hypoxic areas.

  15. Biogeochemical transport in the Loxahatchee River estuary, FL: The role of submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Swarzenski, P.; Orem, B.; McPherson, B.; Baskaran, M.; Wan, Y.

    2005-05-01

    The distributions of dissolved organic carbon (DOC), silica, select trace elements (Mn, Fe, Ba, Sr, Co, V,) and a suite of naturally-occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra, 238U) were studied during high and low discharge conditions in the Loxahatchee River estuary, Florida. The zero-salinity endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface-water discharge. During low discharge conditions, with the notable exception of Co, trace metals indicate nearly conservative mixing from a salinity of ~12 through the estuary (This statement contracdicts with what is said in p. 7). In contrast, of the trace metals studied, only Sr, Fe, U and V exhibited conservative estuarine mixing during high discharge. Dissolved organic carbon and Si concentrations were highest at zero salinities, and generally decreased with an increase in salinity during both discharge regimes, indicating removal of land-derived dissolved organic matter and silica in the estuary. Suspended particulate matter (SPM) concentrations were generally lowest (< 5 mg L-1) close of zero salinity, and increased several-fold (~18 mg L-1; low discharge) towards the seaward endmember and this attributed dynamic resuspension the estuary. Surface water-column 222Rn activities were most elevated (> 28 dpm L-1) at the freshwater endmember of the estuary, and appear to identify regions of the river most influenced by active submarine groundwater discharge (where is the data that show this?). Activities of four naturally-occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells indicate mean estuarine water mass residence times of less than 1 day; values in close agreement to those calculated by tidal prism and tidal period. A radium-based model for estimating submarine groundwater discharge to the Loxahatchee River estuary yielded an

  16. Comparison of common persistent organic pollutants (POPs) in flounder (Platichthys flesus) from the Vistula (Poland) and Douro (Portugal) River estuaries.

    PubMed

    Waszak, Ilona; Dabrowska, Henryka; Komar-Szymczak, Katarzyna

    2014-04-15

    Groups of flounder (Platichthys flesus) females were collected in 2011 from the Vistula River and the Duoro River estuaries and corresponding reference sites in the southern Baltic Sea and Portuguese coast of the Atlantic Ocean to measure and compare the levels and profiles of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). The estuaries' sediments were also investigated. Several differences were found in the POPs between the estuaries and between the two marine regions, which were highlighted by PCA. The Vistula River estuary POPs, significantly higher than in the Douro River estuary, were dominated by DDTs followed by PCBs. PBDEs levels, indifferent between the estuaries, were relatively low. The POP levels in flounder and sediment evaluated against environmental assessment criteria (EACs) indicated that none of the measured contaminants for which EAC had been established exceeded the criterion, except for CB-118 in flounder from the Vistula River estuary. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Polycyclic aromatic hydrocarbons in surface sediment of typical estuaries and the spatial distribution in Haihe river basin.

    PubMed

    Liu, Jing L; Zhang, Jing; Liu, Feng; Zhang, Lu L

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic and mutagenic characteristics have been detected in many estuaries and bays around the world. To detect the contaminated level in typical estuaries in Haihe river basin, China, a comprehensive survey of 16 PAHs in surface sediment has been conducted and an ecological risk assessment has been taken. It showed that Haihe river estuary had the highest concentration, ranging from 92.91 to 15886.00 ng g(-1). And Luan river estuary has the lowest polluted level, ranging from 39.55 to 328.10 ng g(-1). PAHs in sediment were dominated by low and mid molecular weight PAHs in all the sampling sites. Most of the sampling sites in all sampling seasons indicated a rarely happened ecological risk of ΣPAHs, while the S6 in Haihe river estuary was in an occasionally anticipated risk. To illustrate the spatial distribution pattern of PAHs in surface sediment in Haihe river basin, the results were compared with previous research of the research team. Based on data of the comparison, it had been revealed that Haihe river had the most serious PAHs pollution, with an average concentration of 5884.86 ng g(-1), and showed the highest contamination level in all four ecological units. The ΣPAHs concentration showed in a rank of reservoir > estuary > rural area > city.

  18. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  19. Trace metals in estuaries in the Russian Far East and China: case studies from the Amur River and the Changjiang.

    PubMed

    Shulkin, Vladimir; Zhang, Jing

    2014-11-15

    This paper compares the distributions of dissolved and particulate forms of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the estuaries of the largest rivers in East Asia: the Amur River and the Changjiang (Yangtze River). High suspended solid concentrations, elevated pH, and relatively low dissolved trace metal concentrations are characteristics of the Changjiang. Elevated dissolved Fe and Mn concentrations, neutral pH, and relatively low suspended solid concentrations are characteristics of the Amur River. The transfer of dissolved Fe to suspended forms is typical in the Amur River estuary, though Cd and Mn tend to mobilize to solution, and Cu and Ni are diluted in the estuarine system. Metal concentrations in suspended matter in the Amur River estuary are controlled by the ratio of terrigenous riverine material, enriched in Al and Fe, and marine biogenic particles, enriched in Cu, Mn, Cd, and in some cases Ni. The increase in dissolved forms of Mn, Fe, Ni, Cu, Cd, and Pb compared with river end-member is unique to the Changjiang estuary. Particle-solution interactions are not reflected in bulk suspended-solid metal concentrations in the Changjiang estuary due to the dominance of particulate forms of these metals. Cd is an exception in the Changjiang estuary, where the increase in dissolved Cd is of comparable magnitude to the decrease in particulate Cd. Despite runoff in the Amur River being lower than that in the Changjiang, the fluxes of dissolved Mn, Zn and Fe in the Amur River exceed those in the Changjiang. Dissolved Ni, and Cd fluxes are near equal in both estuaries, but dissolved Cu is lower in the Amur River estuary. The hydrological and physico-chemical river characteristics are dominated at the assessment of river influence on the adjoining coastal sea areas despite differences in estuarine processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.

    PubMed

    Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju

    2011-03-01

    Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.

  1. Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary

    PubMed Central

    Roegner, G. Curtis; Needoba, Joseph A.; Baptista, António M.

    2011-01-01

    Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality. PMID:21533083

  2. Digital flow model of the Chowan River estuary, North Carolina

    USGS Publications Warehouse

    Daniel, C.C.

    1977-01-01

    A one-dimensional deterministic flow model based on the continuity equation had been developed to provide estimates of daily flow past a number of points on the Chowan River estuary of northeast North Carolina. The digital model, programmed in Fortran IV, computes daily average discharge for nine sites; four of these represent inflow at the mouths of major tributaries, the five other sites are at stage stations along the estuary. Because flows within the Chowan River and the lower reaches of its tributaries are tidally affected, flows occur in both upstream and downstream directions. The period of record generated by the model extends from April 1, 1974, to March 31, 1976. During the two years of model operation the average discharge at Edenhouse near the mouth of the estuary was 5,830 cfs (cubic feet per second). Daily average flows during this period ranged from 55,900 cfs in the downstream direction on July 17, 1975, to 14,200 cfs in the upstream direction on November 30, 1974

  3. Biogeochemical transport in the Loxahatchee River estuary, Florida: The role of submarine groundwater discharge

    USGS Publications Warehouse

    Swarzenski, P.W.; Orem, W.H.; McPherson, B.F.; Baskaran, M.; Wan, Y.

    2006-01-01

    The distributions of dissolved organic carbon (DOC), Ba, U, and a suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during high- and low-discharge conditions in the Loxahatchee River estuary, Florida to examine the role of submarine groundwater discharge in estuarine transport. The fresh water endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface water (hyporheic) exchange. During both discharge conditions, Ba concentrations indicated slight non-conservative mixing. Such Ba excesses could be attributed either to submarine groundwater discharge or particle desorption processes. Estuarine dissolved organic carbon concentrations were highest at salinities closest to zero. Uranium distributions were lowest in the fresh water sites and mixed mostly conservatively with an increase in salinity. Suspended particulate matter (SPM) concentrations were generally lowest ( 28??dpm L- 1) at the freshwater endmember of the estuary and appear to identify regions of the river most influenced by the discharge of fresh groundwater. Activities of four naturally occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells yield mean estuarine water-mass transit times of less than 1 day; these values are in close agreement to those calculated by tidal prism and tidal frequency. Submarine groundwater discharge rates to the Loxahatchee River estuary were calculated using a tidal prism approach, an excess 226Ra mass balance, and an electromagnetic seepage meter. Average SGD rates ranged from 1.0 to 3.8 ?? 105??m3 d- 1 (20-74??L m- 2 d- 1), depending on river-discharge stage. Such calculated SGD estimates, which must include both a recirculated as well as fresh water component, are in close agreement with results obtained from a first-order watershed mass balance. Average submarine

  4. Larval fish distribution in the St. Louis River estuary

    EPA Science Inventory

    Our objective was to determine what study design, environmental, and habitat variables contribute to the distribution and abundance of larval fish in the St. Louis River estuary. Larval fish habitat associations are poorly understood in Great Lakes coastal wetlands, yet critical ...

  5. The physical and geochemical interaction between a tidally-dominated estuary system (Wassaw Sound, GA) and a river-dominated estuary (Savannah River, GA) through salinity and inorganic carbon

    Treesearch

    Mike Scaboo; Christopher Hintz

    2016-01-01

    The Wilmington, Bull, and Savannah Rivers are interconnected waterways that flow through adjacent Savannah and Wassaw Sound Estuaries. These systems are linked by the upper reaches of the Wilmington River maintained as part of the Intracoastal Waterway. Significant changes to the Savannah River began in December 2014 with the initiation of the Savannah Harbor Expansion...

  6. 76 FR 70480 - Otay River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National Wildlife...), intend to prepare an environmental impact statement (EIS) for the proposed Otay River Estuary Restoration... any one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  7. Circulation and physical processes within the San Gabriel River Estuary during summer 2005

    USGS Publications Warehouse

    Rosenberger, Kurt J.; Xu, Jingping; Stein, Eric D.; Noble, Marlene A.; Gartner, Anne L.

    2007-01-01

    The Southern California Coastal Water Research Project (SCCWRP) is developing a hydrodynamic model of the SGR estuary, which is part of the comprehensive water-quality model of the SGR estuary and watershed investigated by SCCWRP and other local agencies. The hydrodynamic model will help understanding of 1) the exchange processes between the estuary and coastal ocean; 2) the circulation patterns in the estuary; 3) upstream natural runoff and the cooling discharge from PGS. Like all models, the SGR hydrodynamic model is only useful after it is fully calibrated and validated. In May 2005, SCCWRP requested the assistance of the U.S. geological Survey (USGS) Coastal and Marine Geology team (CMG) in collecting data on the hydrodynamic conditions in the estuary during the summer dry season. The summer was chosen for field data collection as this was assumed to be the season with the greatest potential for chronic degraded water quality due to low river flow and high thermal stratification within the estuary (due to both higher average air temperature and PGS output). Water quality can be degraded in winter as well, when higher river discharge events bring large volumes of water from the Los Angeles basin into the estuary. The objectives of this project were to 1) collect hydrodynamic data along the SGR estuary; 2) study exchange processes within the estuary through analysis of the hydrodynamic data; and 3) provide field data for model calibration and validation. As the data only exist for the summer season, the results herein only apply to summer conditions.

  8. 78 FR 1246 - Otay River Estuary Restoration Project; South San Diego Bay Unit and Sweetwater Marsh Unit of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ...-FF08RSDC00] Otay River Estuary Restoration Project; South San Diego Bay Unit and Sweetwater Marsh Unit of the... scoping with regard to the environmental impact statement (EIS) for the proposed Otay River Estuary... one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  9. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  10. Nutrient input from the Loxahatchee River Environmental Control District sewage-treatment plant to the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Sonntag, W.H.; McPherson, B.F.

    1984-01-01

    Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)

  11. Investigating Typhoon Induced River-Surge Interactions in the Tamsui Estuary, Taiwan.

    NASA Astrophysics Data System (ADS)

    Maskell; J. H.; Grieser, J.; Rodney, J.; Howe, N. J.

    2016-02-01

    It is increasingly important to understand the combined influence of the main drivers of coastal risk due to sea level rise and the potential increase in extreme weather events. An Asian Basin stochastic typhoon set was used to force a storm surge model of Taiwan to investigate the interaction between storm surge and high river discharges (50, 100 and 200 year return period discharges) in the Tamsui River. Taiwan is a mountainous country leading to the combined risk of surge and high river discharge occurring simultaneously in estuary regions. The typhoon tracks were selected using a Hurricane Surge Index (Kantha, 2006) and cross the northern tip of Taiwan with maximum sustained winds (Vmax) between 51 m/s and 75 m/s (Cat 3-5). Peak surge elevations in the Tamsui River range from 5.7 m to 10.3 m. The surge interacts with the river flow to induce changes in the water elevation between -8 m and 4 m depending on the surge elevation and river discharge and increases the inundated area in the range 37 km to 204 km. Significant positive interactions occur in the Tamsui Estuary (Fig. 1a) but do not have implications for increased inundation and occur at the start of the flood phase and the end of the ebb phase as previously shown in idealized test cases (Maskell et al., 2013). Current vectors in the estuary show that at the time leading up to high water the river outflow starts to become dominant in the mid-channel reducing maximum water levels by up to 10% in the combined surge and river solution. However, surge inhibits downstream propagation of the flood wave in the upper river channels increasing water levels by up to 2 m. The maximum inundated area (1330 km2) is caused by the combination of defence overflow due to the maximum surge (10.27 m) and increased river levels (RP100) in the upper channels leading to significant inundation either side of the Keelung River (Fig. 1b). The Erchung floodway is effective in diverting some of the flow (up to 10,443 m3/s) reducing

  12. Modelling Suspended Sediment Transport in Monsoon Season: A Case Study of Pahang River Estuary, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Zakariya, Razak; Ahmad, Zuhairi; Saad, Shahbudin; Yaakop, Rosnan

    2013-04-01

    Sediment transport based on 2-dimensional real time model was applied to Pahang River estuary, Pahang, Malaysia and has been evaluated and verified with time series of tidal elevation, flow and suspended sediment load. Period of modelling was during highest high tide and lowest low tide in Northeast Monsoon (NE) which happened in December 2010 and Southwest Monsoon (SW) in July 2011. Simulated model outputs has been verify using Pearson's coefficient and has showed high accuracy. The validated model was used to simulate hydrodynamic and sediment transport of extreme conditions during both monsoon seasons. Based on field measurement and model simulation, tidal elevation and flow velocity, freshwater discharge of Pahang River were found to be higher during NE Monsoon. Based on the fluxes, the estuary also showed 'ebb-dominant' characteristic during highest high tide and lowest low tide in NE monsoon and normal ebbing-flooding characteristics during SW monsoon. In the Pahang River estuary, inflow and outflow patterns were perpendicular to the open boundary with circular flow formed at the shallow area in the middle of estuary during both monsoons. Referring to sea water intrusion from the river mouth, both seasons show penetration of more than 9 km (upstream input boundary) during higher high water tide. During higher lower water tide, the water intrusion stated varies which 5.6km during NE monsoon and 7.8km during SW monsoon. Regarding to the times lap during high tide, the sea water takes 2.8 hours to reach 9km upstream during NE monsoon compared to 1.9 hour during SW monsoon. The averages of suspended sediment concentration and suspended sediment load were higher during Northeast monsoon which increased the sedimentation potentials.Total of suspended sediment load discharged to the South China Sea yearly from Pahang River is approximately 96727.5 tonnes/day or 3.33 tonnes/km2/day which 442.6 tonnes/day during Northeast Monsoon and 25.3 tonnes/day during Southwest

  13. [Spatial distribution and ecological risk assessment of heavy metals in the estuaries surface sediments from the Haihe River Basin].

    PubMed

    Lü, Shu-Cong; Zhang, Hong; Shan, Bao-Qing; Li, Li-Qing

    2013-11-01

    It is well known that the rivers in the Haihe River Basin have been seriously polluted. However, what is the present condition of the estuary pollution and how the polluted inland rivers affect the estuary areas are not clear. 10 main estuaries of the Haihe River Basin were selected to measure the contents of typical heavy metals (Pb, Cu, Zn, Cd, Cr and Ni) in the surface sediments and to analyze the spatial distribution of these heavy metals. The potential ecological risk index was used to assess the ecological risk of the six heavy metals in the estuaries. The results showed that the contents of Pb, Cu, Zn, Cd, Cr and Ni in the surface sediments of the 10 estuaries were all higher than their background values in the main local soil types and the contents of Cu, Ni and Pb were 2.3-2.6 times as high as their background values, which indicated that the estuaries were contaminated by the six heavy metals. The results also indicated that the contents of the six heavy metals in surface sediment varied from one estuary to another. The four heavy metals of Cr, Cu, Ni and Zn had bigger spatial differences than Pb and Cd in the contents in sediment from different estuaries. The contents of Cr, Cu, Ni and Zn in sediment were higher in the estuaries of the Yongdingxin River, Ziyaxin River and Beipai River than those in the other estuaries, and there were significant correlations between each other (R(Cu-Zn) = 0.891, R(Cu-Cr) = 0.927, R(Cu-Ni) = 0.964, R(Zn-Cr) = 0.842, R(Zn-Ni) = 0.939, and R(Cr-Ni) = 0.879, P < 0.01), which indicated that they possibly came from the same sources. Moreover, the contents of Cr, Cu, Ni and Zn in sediment also had significant correlations with the populations of sub-river basins with correlation coefficients of 0.855, 0.806, 0.867 and 0.855 (P < 0.01), respectively. The contents of Cd and Pb had smaller spatial differences in sediment from different estuaries than the other heavy metals, with the values ranged 23.3-95.8 mg x kg(-1) and 0

  14. Sedimentary framework of the Potomac River estuary, Maryland

    USGS Publications Warehouse

    Knebel, Harley J.; Martin, E. Ann; Glenn, J.L.; Needell, Sally W.

    1981-01-01

    Analyses of seismic-reflection profiles, sediment cores, grab samples, and side-scan sonar records, along with previously collected borehole data, reveal the characteristics, distribution, and geologic history of the shallow strata beneath the Potomac River estuary. The lowermost strata are sediments of the Chesapeake Group (lower Miocene to lower Pleistocene) that crop out on land near the shore but are buried as much as 40 m below the floor of the estuary. The top of these sediments is an erosional unconformity that outlines the Wisconsinan valley of the Potomac River. This valley has a sinuous trend, a flat bottom, a relief of 15 to 34 m, and axial depths of 34 to 54 m below present sea level. During the Holocene transgression of sea level, the ancestral valley was filled with as much as 40 m of sandy and silty, fluvial-to-shallow estuarine sediments. The fill became the substrate for oyster bars in the upper reach and now forms most marginal slopes of the estuary. Since sea level approached its present position (2,000 to 3,000 yr ago), the main channel has become the locus of deposition for watery, gray to black clay or silty clay, and waves and currents have eroded the heterogeneous Quaternary sediments along the margins, leaving winnowed brown sand on shallow shoreline flats. Pb-210 analyses indicate that modern mud is accumulating at rates ranging from 0.16 to 1.80 cm/yr, being lowest near the mouth and increasing toward the head of the estuary. This trend reflects an increased accumulation of fine-grained fluvial sediments near the turbidity maximum, similar to that found in nearby Chesapeake Bay. The present annual accumulation of mud is about 1.54 million metric tons; the cumulative mass is 406 million metric tons.

  15. Invasion by stages in the St Louis River estuary

    EPA Science Inventory

    The St. Louis River estuary is recognized as an invasive species “hotspot” - the harbor ranks among the top locations in the Great Lakes reporting the first occurrence of new, aquatic non-native species. To date, 18 non-native benthic invertebrate, 4 non-native crusta...

  16. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends inmore » habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.« less

  17. Estimation of groundwater and nutrient fluxes to the Neuse River estuary, North Carolina

    USGS Publications Warehouse

    Spruill, T.B.; Bratton, J.F.

    2008-01-01

    A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86??108 to 4.33??108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy's Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s-1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3-9 m3 s-1) and Darcy's Law (about 9 m3 s-1). A groundwater flux of 9 m 3 s-1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills. 

  18. Hydrochemistry of the Tumen River Estuary, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Tishchenko, P. Ya.; Semkin, P. Yu.; Pavlova, G. Yu.; Tishchenko, P. P.; Lobanov, V. B.; Marjash, A. A.; Mikhailik, T. A.; Sagalaev, S. G.; Sergeev, A. F.; Tibenko, E. Yu.; Khodorenko, N. D.; Chichkin, R. V.; Shvetsova, M. G.; Shkirnikova, E. M.

    2018-03-01

    The hydrological and hydrochemical parameters of the Tumen River estuary were collected at 13 stations in May and October 2015. Vertical temperature, conductivity, dissolved oxygen, chlorophyll fluorescence, and turbidity profiles were obtained. Water was sampled from the surface and bottom layer. The water samples were analyzed for major ions, pH, salinity, concentrations of dissolved oxygen, major nutrients, dissolved organic carbon, humic matter, and δ18O and δD isotopes. This estuary is attributed to microtidal type with a flushing time of about 10 h. A phytoplakton bloom occurred in the top layer of the estuary. For surface horizons, the hydrochemical parameters show a linear correlation with salinity. In the bottom horizons, all these parameters, except for major ions and δ18O and δD isotopes, reveal substantial nonconservative behavior. The nonconservative behavior of the hydrochemical parameters in the bottom waters was mainly caused by degradation of the phytoplankton biomass at the water/sediment interface. Hypoxic conditions were established in the bottom waters of the estuary in May.

  19. Trace metal pollution and carbon and nitrogen isotope tracing through the Yongdingxin River estuary in Bohai Bay, Northern China.

    PubMed

    Sun, Conghui; Wei, Qi; Ma, Lixia; Li, Li; Wu, Guanghong; Pan, Ling

    2017-02-15

    A tide gate was built in 2010 to prevent seawater from moving upstream into the Yongdingxin River estuary in Bohai Bay, Northern China. We analysed the concentrations of Hg, Cd, Pb, TOC, TN, δ 13 C and δ 15 N and studied their variations in the surface layer and vertical profiles of sediment cores collected from the Yongdingxin River estuary. Contamination factors and geo-accumulation indices were calculated for each metal, which revealed high levels of contamination for Hg and Cd in the sediments, likely from anthropogenic sources. δ 13 C and δ 15 N were used as natural tracers to determine the sources of TOC and TN. The results revealed that sewage was the main source of TOC, while TN may have more than one source in the Yongdingxin River estuary. Sewage dominated trace metal pollution in the Yongdingxin River estuary. Our results provide a baseline for trace metal contamination in an estuary facing a large water project. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Trace metals in the Ob and Yenisei Rivers' Estuaries (the Kara Sea).

    NASA Astrophysics Data System (ADS)

    Demina, L. L.

    2014-12-01

    Behavior of some trace metals (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb) in water column (soluble <0.45 µm and particulate fractions) and bottom sediments (surface and cores) along the two transects from the Ob River and Yenisei River Estuaries to the Kara Sea was studied. The length of both transects was about 700 km. Water depth was 12-63 m, O2 dissolved :5.36-9.55 ml l-1. Along the transects salinity increased from 0.07 to 34.2 psu, while the SPM' concentration decreased from 10.31 to 0.31 mg/l. Total suspended particulate matter load is more than one order of magnitude higher in the Ob River Estuary comparing to that of the Yenisei River. It has led to a significant difference between the suspended trace metals' concentrations (µg/l) in water of the two estuaries. With salinity increase along transects Fe susp., Mn susp. and Zn susp. decreased by a factor of 100-500, that has led to a growth of a relative portion of dissolved trace metals followed by their bioaccumulation (Demina et al., 2010). A strong direct correlation between suspended Cu, Fe and SPM mass concentration was found. For the first time along the Yenisei River' Estuary -the Kara Sea transect a direct positive correlation between Cu suspended and volume concentration of SPM (mg/ml3) was found, that was attributed to contribution of phytoplankton aggregates in the SPM composition. A trend of relationship between content of suspended As and pelitic fraction (2-10 µm) of SPM was firstly found in theses basins also. Study of trace metal speciation in the bottom sediments (adsorbed, associated with Fe-Mn (oxyhydr)oxides, organic matter and fixed in the mineral lattice or refractory) has revealed the refractory fraction to be prevailing (70-95% total content) for Fe, Zn, Cu, Co, Ni, Cr, Cd and Pb. That means that toxic heavy metals were not available for bottom fauna. Mn was predominantly found in the adsorbed and (oxyhydr)oxides geochemically labile forms, reflecting the redox condition change

  1. Physical, Hydrological, and Biological Characteristics of the Loxahatchee River Estuary, Florida

    USGS Publications Warehouse

    McPherson, Benjamin F.; Sabanskas, Maryann; Long, William A.

    1982-01-01

    The Loxahatchee River estuary empties into the Atlantic Ocean at Jupiter Inlet in southeastern Florida. Although relatively small, the estuary is important for its esthetic value and for its sport fishing, boating, recreation, tourism, and prime residential development. In recent years, the condition of the estuary has become of concern to many citizens and agencies of the State. In response to this concern, the U.S. Geological Survey planned and carried out an in-depth environmental investigation. The events that led to the investigation and the objectives of the investigation are outlined in a recent U.S. Geological Survey report by McPherson and Sabanskas (WRI 80-1109).

  2. Distribution and sources of the polycyclic aromatic hydrocarbons in the sediments of the Pearl River estuary, China.

    PubMed

    Zhang, Jian-Dong; Wang, You-Shao; Cheng, Hao; Jiang, Zhao-Yu; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River delta, one of the most prosperous economically region in China, has experienced significant contaminant inputs. However, the dynamics of pollutants in the Pearl River estuary and the adjacent coastal areas are still unclear at present. In the paper, distribution and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in the surface sediments of the Pearl River estuary. The total PAHs concentrations ranged from 126.08 to 3828.58 ng/g with a mean value of 563.52 ng/g, whereas the highest PAHs were observed in Guangzhou channel. Among the U.S. Environmental Protection Agency's 16 priority PAHs, PAHs with 3-4 rings exhibited relative higher levels. A positive relationship was found between PAHs and total organic carbon. The source analysis further showed that the major sources of PAHs in the Pearl River estuary were originated from the pyrolytic inputs, reflecting a mixed energy structure such as wood, coal and petroleum combustion. In summary, although PAHs in Lingding Bay and the adjacent coastal areas of the Pearl River estuary exhibited a relatively low pollution level, the relatively high pollution level of PAHs in Guangzhou channel will be attended.

  3. Continuous resistivity profiling and seismic-reflection data collected in 2006 from the Potomac River Estuary, Virginia and Maryland

    USGS Publications Warehouse

    Cross, V.A.; Foster, D.S.; Bratton, J.F.

    2010-01-01

    In 2006 the U.S. Geological Survey conducted a geophysical survey on the Chesapeake Bay and the Potomac River Estuary in order to test hypotheses about groundwater flow under and into Chesapeake Bay. Resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge and are contributing to eutrophication. The research carried out as part of this study was designed to help refine nutrient budgets for Chesapeake Bay by characterizing submarine groundwater flow and groundwater discharge beneath part of the bay?s mainstem and a major tributary, the Potomac River Estuary. The data collected indicate that plumes of reduced-salinity groundwater are commonly present along the shorelines of Chesapeake Bay and the Potomac River Estuary. Data also show that buried paleochannels generally do not serve as conduits for flow of groundwater from land to underneath the bay and estuary but rather may focus discharge of reduced-salinity water along their flanks, and provide routes for migration of saltwater into the sediments.

  4. Quantifying nitrogen inputs to the Choptank River estuary

    NASA Astrophysics Data System (ADS)

    Mccarty, G.; Hapeman, C. J.; Sadeghi, A. M.; Hively, W. D.; Denver, J. M.; Lang, M. W.; Downey, P. M.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay is the largest estuary in the US, and over 50% of its streams have been rated as poor or very poor, based on the biological integrity yearly index. The Choptank River, a Bay tributary on the Delmarva Peninsula, is dominated by intensive corn and soybean farming associated with poultry and some dairy production. The Choptank River is under Environmental Protection Agency (USEPA) total maximum daily load restrictions. However, reducing nonpoint source pollution contributions from agriculture requires that source predictions be improved and that mitigation and conservation measures be properly targeted. Therefore, new measurement strategies have been implemented. In-situ sensors have been deployed adjacent to US Geological Survey gauging stations in the Tuckahoe and Greensboro sub-basins of the Choptank River watershed. These sensors measure stream water concentrations of nitrate along and water quality parameters every 30 min. Initial results indicate that ~40% less nitrate is exported from the Greensboro sub-basin, even though the total amount of agricultural land use is similar to that in the Tuckahoe sub-basin. This is most likely due to more efficient nitrate processing in the Greensboro sub-basin where the amount of cropland on poorly-drained soils is much larger. Another potential nitrogen source to the Choptank River estuary is atmospheric deposition of ammonia. Over 550 million broilers are produced yearly on the Delmarva Peninsula potentially leading to the release of 20,000 Mtons of ammonia. USEPA recently estimated that as much as 22% of nitrogen in the Bay is due to ammonia deposition. We have initiated a collaborative effort within the LTAR network to increase coverage of ammonia sampling and to explore the spatial and temporal variability of ammonia, particularly in the Choptank River watershed. All these measurements will be useful in improving the handling of nitrogen sources and its fate and transport in the Chesapeake Bay model.

  5. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Salinity and turbidity distributions in the Brisbane River estuary, Australia

    NASA Astrophysics Data System (ADS)

    Yu, Yingying; Zhang, Hong; Lemckert, Charles

    2014-11-01

    The Brisbane River estuary (BRE) in Australia not only plays a vital role in ecosystem health, but is also of importance for people who live nearby. Comprehensive investigations, both in the short- and long-term, into the salinity and turbidity distributions in the BRE were conducted. Firstly, the analysis of numerical results revealed that the longitudinal salinity varied at approximately 0.45 and 0.61 psu/h during neap and spring tides, respectively. The turbidity stayed at a higher level and was less impacted by tide in the upper estuary, however, the water cleared up while the tide changed from flood to ebb in the mid and lower estuary. The second investigation into the seasonal variations of salinity and turbidity in the BRE was conducted, using ten-year field measurement data. A fourth-order polynomial equation was proposed, describing the longitudinal variation in salinity dilution changes as the upstream distance in the BRE during the wet and dry seasons. From the observation, the mid and upper estuaries were vertically well-mixed during both seasons, but the lower BRE was stratified, particularly during the wet season. The estuary turbidity maximum (ETM) zone was about 10 km longer during the wet season than the dry season. Particular emphasis was given to the third investigation into the use of satellite remote sensing techniques for estimation of the turbidity level in the BRE. A linear relationship between satellite observed water reflectance and surface turbidity level in the BRE was validated with an R2 of 0.75. The application of satellite-observed water reflectance therefore provided a practical solution for estimating surface turbidity levels of estuarine rivers not only under normal weather conditions, but also during flood events. The results acquired from this study are valuable for further hydrological research in the BRE and particularly prominent for immediate assessment of flood impacts.

  7. Historical Relationships Between Research and Resource Management in the Apalachicola River Estuary.

    PubMed

    Livingston, Robert J

    1991-11-01

    A continuous field research effort has been carried out in the Apalachicola River estuary since March 1972. The information generated from this interdisciplinary study has been directly applied to the management of the Apalachicola resource by means of close associations among local, state, and federal officials and university scientists. During the early years, scientific data were instrumental in the prevention of the impoundment of the Apalachicola River. A series of regional studies was carried out to evaluate various forms of effects due to forestry activities, pesticides, and stormwater runoff from urban areas. A review was made of fisheries problems associated with dredging, overfishing, and marine pollution. Results of such studies were directly applied to local management questions. Research that linked the river wetlands with the estuary, in terms of the input of fresh water, nutrients, and organic matter, served as the basis for the purchase of extensive bottomland tracts. Other initiatives were carried out that were designed to protect the naturally high productivity of the river estuary. Further purchases of estuarine wetlands and barrier island properties were made that formed an almost continuous buffer of publicly held lands between upland developments and critical habitats and important populations of the bay system. A regional management plan was adopted that was designed to limit local municipal development in the estuarine region. Analyses of the long-term scientific data indicated that dominant, commercially important estuarine populations are associated with river flow, local salinity characteristics, and biological (predation, competition) interactions with the salinity regime and food web structure. Such interactions are not straight forward, however; they reflect complex interactions of the freshwater influxes and biological response in the estuary that are not well understood. Species-specific responses to the principal driving factors

  8. Consumption processes and food web structure in the Columbia River Estuary

    NASA Astrophysics Data System (ADS)

    Simenstad, Charles A.; Small, Lawrence F.; David McIntire, C.

    Consumption processes at several trophic levels tend to coverage in the central (estuarine-mixing) region of the Columbia River estuary, where living and dentrital food resources are entrained within the energy null of the turbidity maximum zone. Primary consumers in this region are generalist and omnivorous feeders, capable of exploiting both autotrophic and heterotrophic food web pathways. In the presence of higher standing stocks of their prey resources, feeding by secondary and tertiary consumers is also concentrated, or more effective, in the estuarine mixing region of the estuary. During the 1980-1981 studies of the estuary, total consumer (metazoan) production averaged 5.5g C m -2 within the estuary. Of the estimated 15 x 10 3mt Cyy -1 attributed to primary consumption in the water column, 83% was the result of suspension-feeding pelagic zooplankton. In comparison to grazing on phytoplankton, it was estimated that approximately 84% of primary consumption in the water column was based on suspended detritus and, presumably, associated microbiota. Endemic primary,consumers, principally epibenthic crustaceans such as the calanoid copepod Eurytemora affinis, the harpacticoid copepod Scottolana canadensis, and the crangonid shrimp Crangon franciscorum, accounted for a high proportion of the consumption of suspended particles. Wertland herbivores inhabiting the estuary's extensive marshes, on the other hand, were estimated to account for only 2 to 17% of total estuarine primary consumption. Trophic linkages to secondary and tertiary consumers were more evenly apportioned among pelagic fishes, motile macroinvertebrates, and benthic infauna. High, comparatively unknown fluxes of migratory or wide-ranging tertiary consumers, such as piscivorous birds, seals and sea lions, made estimation of their annual consumption rates in the estuary highly tenuous. The physical processes of mixing and stratification, sediments accretion and erosion, and salinity intrusion appear to

  9. A dynamic water-quality modeling framework for the Neuse River estuary, North Carolina

    USGS Publications Warehouse

    Bales, Jerad D.; Robbins, Jeanne C.

    1999-01-01

    As a result of fish kills in the Neuse River estuary in 1995, nutrient reduction strategies were developed for point and nonpoint sources in the basin. However, because of the interannual variability in the natural system and the resulting complex hydrologic-nutrient inter- actions, it is difficult to detect through a short-term observational program the effects of management activities on Neuse River estuary water quality and aquatic health. A properly constructed water-quality model can be used to evaluate some of the potential effects of manage- ment actions on estuarine water quality. Such a model can be used to predict estuarine response to present and proposed nutrient strategies under the same set of meteorological and hydrologic conditions, thus removing the vagaries of weather and streamflow from the analysis. A two-dimensional, laterally averaged hydrodynamic and water-quality modeling framework was developed for the Neuse River estuary by using previously collected data. Development of the modeling framework consisted of (1) computational grid development, (2) assembly of data for model boundary conditions and model testing, (3) selection of initial values of model parameters, and (4) limited model testing. The model domain extends from Streets Ferry to Oriental, N.C., includes seven lateral embayments that have continual exchange with the main- stem of the estuary, three point-source discharges, and three tributary streams. Thirty-five computational segments represent the mainstem of the estuary, and the entire framework contains a total of 60 computa- tional segments. Each computational cell is 0.5 meter thick; segment lengths range from 500 meters to 7,125 meters. Data that were used to develop the modeling framework were collected during March through October 1991 and represent the most comprehensive data set available prior to 1997. Most of the data were collected by the North Carolina Division of Water Quality, the University of North Carolina

  10. PPCPs in Jiulong River estuary (China): Spatiotemporal distributions, fate, and their use as chemical markers of wastewater.

    PubMed

    Sun, Qian; Li, Yan; Li, Mingyue; Ashfaq, Muhammad; Lv, Min; Wang, Hongjie; Hu, Anyi; Yu, Chang-Ping

    2016-05-01

    The occurrence and fate of 50 pharmaceuticals and personal care products (PPCPs) were investigated in the surface water of Jiulong River estuary in the southeast of China in spring, wet season, summer, autumn and winter. Results demonstrated a wide distribution of PPCPs in Jiulong River estuary, where 34 PPCPs were detected at least once and 5 PPCPs were detected in all the samples, including caffeine, diclofenac, metoprolol, methyl paraben, and propyl paraben. Spatial and seasonal variations were observed. Special emphasis was placed on the PPCP fate in the estuary. Most PPCPs showed a non-conservative behavior in the estuary, while the non-steroidal anti-inflammatory drugs and bisphenol A showed a pseudo-conservative behavior. The non-conservative and pseudo-conservative behavior was attributed to the combination of the seawater dilution, the introduction of PPCPs via the sewage water, and the physical, chemical, or biological removal processes. Furthermore, PPCP concentrations showed drastic variations in the turbidity maximum zones. To our best knowledge, this is the first work to indicate the pseudo-conservative behavior of PPCPs in the estuary, and to show the drastic variations of PPCPs in the turbidity maximum zone. In addition, the ratio of labile to conservative PPCPs was calculated to track the source of untreated sewage contamination. Results showed a significantly higher ratio compared to the average value in WWTP effluents, indicating the ubiquitous discharge of untreated domestic wastewater in Jiulong River estuary. In addition, the high ratio of bisphenol A to conservative PPCPs implied the potential input of untreated industrial wastewater in Jiulong River estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Upriver transport of dissolved substances in an estuary and sub-estuary system of the lower James River, Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Hong, Bo; Shen, Jian; Xu, Hongzhou

    2018-01-01

    The water exchange between the James River and the Elizabeth River, an estuary and sub-estuary system in the lower Chesapeake Bay, was investigated using a 3D numerical model. The conservative passive tracers were used to represent the dissolved substances (DS) discharged from the Elizabeth River. The approach enabled us to diagnose the underlying physical processes that control the expansion of the DS, which is representative of potential transport of harmful algae blooms, pollutants from the Elizabeth River to the James River without explicitly simulating biological processes. Model simulations with realistic forcings in 2005, together with a series of processoriented numerical experiments, were conducted to explore the correlations of the transport process and external forcing. Model results show that the upriver transport depends highly on the freshwater discharge on a seasonal scale and maximum upriver transport occurs in summer with a mean transport time ranging from 15-30 days. The southerly/easterly wind, low river discharge, and neap tidal condition all act to strengthen the upriver transport. On the other hand, the northerly/westerly wind, river pulse, water level pulse, and spring tidal condition act to inhibit the upriver transport. Tidal flushing plays an important role in transporting the DS during spring tide, which shortens the travel time in the lower James River. The multivariable regression analysis of volume mean subtidal DS concentration in the mesohaline portion of the James River indicates that DS concentration in the upriver area can be explained and well predicted by the physical forcings (r = 0.858, p = 0.00001).

  12. Distribution, sources and ecological risk assessment of PAHs in surface sediments from the Luan River Estuary, China.

    PubMed

    Zhang, Daolai; Liu, Jinqing; Jiang, Xuejun; Cao, Ke; Yin, Ping; Zhang, Xunhua

    2016-01-15

    The distribution, sources and risk assessment of 16 polycyclic aromatic hydrocarbons (PAHs) of surface sediments in the Luan River Estuary, China, have been investigated in the research. The results indicated that the total concentrations of 16 PAHs in surface sediments of the Luan River Estuary ranged from 5.1 to 545.1 ng g(-1)dw with a mean value of 120.8 ng g(-1)dw, which is relatively low in comparison with other estuaries around the world. The PAHs in the study area were mainly originated from pyrogenic sources. Besides, PAHs may be contaminated by petrogenic PAHs as indicated by the selected ratios of PAHs, the 2-tailed Pearson correlation analysis and principal components analysis at different sites. The result of the ecological risk assessment shows little negative effect for most individual PAHs in surface sediments of the Luan River Estuary, China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Aquatic ecology of the Elwha River estuary prior to dam removal: Chapter 7 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Duda, Jeffrey J.; Beirne, Matthew M.; Larsen, Kimberly; Barry, Dwight; Stenberg, Karl; McHenry, Michael L.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two long-standing dams on the Elwha River in Washington State will initiate a suite of biological and physical changes to the estuary at the river mouth. Estuaries represent a transition between freshwater and saltwater, have unique assemblages of plants and animals, and are a critical habitat for some salmon species as they migrate to the ocean. This chapter summarizes a number of studies in the Elwha River estuary, and focuses on physical and biological aspects of the ecosystem that are expected to change following dam removal. Included are data sets that summarize (1) water chemistry samples collected over a 16 month period; (2) beach seining activities targeted toward describing the fish assemblage of the estuary and migratory patterns of juvenile salmon; (3) descriptions of the aquatic and terrestrial invertebrate communities in the estuary, which represent an important food source for juvenile fish and are important water quality indicators; and (4) the diet and growth patterns of juvenile Chinook salmon in the lower Elwha River and estuary. These data represent baseline conditions of the ecosystem after nearly a century of changes due to the dams and will be useful in monitoring the changes to the river and estuary following dam removal.

  14. Sediment Transport at River Lima Estuary: Developing a Sound Methodology to Assess Sediment River Basin Input to an Erosion Prone Coast (NW Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Pinho, J.; Costa, N.; Venâncio, S.; Martins, M.; Vieira, J.; Granja, H.

    2016-12-01

    The NW coast of Iberian Peninsula is mainly formed by rocky cliffs northern of the river Minho mouth and by narrow sandy beaches south of this river. These beaches are mainly in a sedimentary deficit status resulting from the north-south longitudinal drift driven by the dominant wave climate that acts from the NW direction. In this scenario understand and quantify river sediment inputs to the coast is crucial in order to follow a sustainable management policy to mitigate erosion impacts both in the natural and social environments. This work will present results from research conducted at rive Lima Estuary, one of the rivers flowing to the NW Iberian coast, based on both numerical modeling and field data acquisition. A hydrological model of the river basin and a detailed morphodynamic model of the estuary were implemented. Instrumentation of the estuary that is being conducted comprises traditional sensor pressures and new ones that are being designed and assembled to be installed at different measurement stations within the estuary. Modelling results for flood events showed that the river is capable of remove all the sediments that are deposited in the narrow estuarine canal located near the river mouth. Some of these sediments are immediately deposited downstream, within the interior of the harbor. Here, there is a strong possibility of silting of the river mouth and the central area of the harbor. Since the river flows during extreme events are controlled by an upstream reservoir, the capacity of the river to transport sediments to the coast was lowered during the last decades, which, moreover, requires dredging works over the years to maintain navigation depth requirements. Dredging sediments should be correctly deposited at the coast in order to properly feed the longitudinal drift, otherwise they will be out of the system, which aggravate the installed erosion tendency.

  15. Turning the tide: effects of river inflow and tidal amplitude on sandy estuaries in laboratory landscape experiments

    NASA Astrophysics Data System (ADS)

    Kleinhans, Maarten; Braat, Lisanne; Leuven, Jasper; Baar, Anne; van der Vegt, Maarten; van Maarseveen, Marcel; Markies, Henk; Roosendaal, Chris; van Eijk, Arjan

    2016-04-01

    Many estuaries formed over the Holocene through a combination of fluvial and coastal influxes, but how estuary planform shape and size depend on tides, wave climate and river influxes remains unclear. Here we use a novel tidal flume setup of 20 m length by 3 m width, the Metronome (http://www.uu.nl/metronome), to create estuaries and explore a parameter space for the simple initial condition of a straight river in sandy substrate. Tidal currents capable of transporting sediment in both the ebb and flood phase because they are caused by periodic tilting of the flume rather than the classic method of water level fluctuation. Particle imaging velocimetry and a 1D shallow flow model demonstrate that this principle leads to similar sediment mobility as in nature. Ten landscape experiments recorded by timelapse overhead imaging and AGIsoft DEMs of the final bed elevation show that absence of river inflow leads to short tidal basins whereas even a minor discharge leads to long convergent estuaries. Estuary width and length as well as morphological time scale over thousands of tidal cycles strongly depend on tidal current amplitude. Paddle-generated waves subdue the ebb delta causing stronger tidal currents in the basin. Bar length-width ratios in estuaries are slightly larger to those in braided rivers in experiments and nature. Mutually evasive ebb- and flood-dominated channels are ubiquitous and appear to be formed by an instability mechanism with growing bar and bifurcation asymmetry. Future experiments will include mud flats and live vegetation.

  16. Evaluation of distribution and sources of sewage molecular marker (LABs) in selected rivers and estuaries of Peninsular Malaysia.

    PubMed

    Magam, Sami M; Zakaria, Mohamad Pauzi; Halimoon, Normala; Aris, Ahmad Zaharin; Kannan, Narayanan; Masood, Najat; Mustafa, Shuhaimi; Alkhadher, Sadeq; Keshavarzifard, Mehrzad; Vaezzadeh, Vahab; Sani, Muhamad S A; Latif, Mohd Talib

    2016-03-01

    This is the first extensive report on linear alkylbenzenes (LABs) as sewage molecular markers in surface sediments collected from the Perlis, Kedah, Merbok, Prai, and Perak Rivers and Estuaries in the west of Peninsular Malaysia. Sediment samples were extracted, fractionated, and analyzed using gas chromatography mass spectrometry (GC-MS). The concentrations of total LABs ranged from 68 to 154 (Perlis River), 103 to 314 (Kedah River), 242 to 1062 (Merbok River), 1985 to 2910 (Prai River), and 217 to 329 ng g(-1) (Perak River) dry weight (dw). The highest levels of LABs were found at PI3 (Prai Estuary) due to the rapid industrialization and population growth in this region, while the lowest concentrations of LABs were found at PS1 (upstream of Perlis River). The LABs ratio of internal to external isomers (I/E) in this study ranged from 0.56 at KH1 (upstream of Kedah River) to 1.35 at MK3 (Merbok Estuary) indicating that the rivers receive raw sewage and primary treatment effluents in the study area. In general, the results of this paper highlighted the necessity of continuation of water treatment system improvement in Malaysia.

  17. Pollutant fate and spatio-temporal variability in the choptank river estuary: Factors influencing water quality

    USGS Publications Warehouse

    Whitall, D.; Hively, W.D.; Leight, A.K.; Hapeman, C.J.; McConnell, L.L.; Fisher, T.; Rice, C.P.; Codling, E.; McCarty, G.W.; Sadeghi, A.M.; Gustafson, A.; Bialek, K.

    2010-01-01

    Restoration of the Chesapeake Bay, the largest estuary in the United States, is a national priority. Documentation of progress of this restoration effort is needed. A study was conducted to examine water quality in the Choptank River estuary, a tributary of the Chesapeake Bay that since 1998 has been classified as impaired waters under the Federal Clean Water Act. Multiple water quality parameters (salinity, temperature, dissolved oxygen, chlorophyll a) and analyte concentrations (nutrients, herbicide and herbicide degradation products, arsenic, and copper) were measured at seven sampling stations in the Choptank River estuary. Samples were collected under base flow conditions in the basin on thirteen dates between March 2005 and April 2008. As commonly observed, results indicate that agriculture is a primary source of nitrate in the estuary and that both agriculture and wastewater treatment plants are important sources of phosphorus. Concentrations of copper in the lower estuary consistently exceeded both chronic and acute water quality criteria, possibly due to use of copper in antifouling boat paint. Concentrations of copper in the upstream watersheds were low, indicating that agriculture is not a significant source of copper loading to the estuary. Concentrations of herbicides (atrazine, simazine, and metolachlor) peaked during early-summer, indicating a rapid surface-transport delivery pathway from agricultural areas, while their degradation products (CIAT, CEAT, MESA, and MOA) appeared to be delivered via groundwater transport. Some in-river processing of CEAT occurred, whereas MESA was conservative. Observed concentrations of herbicide residues did not approach established levels of concern for aquatic organisms. Results of this study highlight the importance of continued implementation of best management practices to improve water quality in the estuary. This work provides a baseline against which to compare future changes in water quality and may be used

  18. Beluga whale summer habitat associations in the Nelson River estuary, western Hudson Bay, Canada.

    PubMed

    Smith, Alexander J; Higdon, Jeff W; Richard, Pierre; Orr, Jack; Bernhardt, Warren; Ferguson, Steven H

    2017-01-01

    To understand beluga whale (Delphinapterus leucas) estuarine use in the Nelson River estuary, southwest Hudson Bay, we recorded and examined beluga movements and habitat associations for the July through August period in 2002-2005. We compared locations of belugas fitted with satellite transmitters ("tags") (2002-2005) and aerial-surveyed (2003 and 2005) belugas for years of differing freshwater flow from the Nelson River which is influenced by hydroelectric activity. Using the beluga telemetry location data, we estimated an early August behavioral shift in beluga distribution patterns from local estuarine use to a progressively more migratory behavior away from the estuary. The timing of this shift in behavior was also apparent in results of beluga aerial surveys from the 1940s-1960s, despite environmental changes including later freeze-up and warming ocean temperatures. Overall, during the higher than average discharge ("wet") year of 2005, the three tagged belugas ranged farther from the Nelson River but not farther from the nearest shore along southwestern Hudson Bay, compared to the 10 tagged belugas tracked during the "dry" years of 2002-2004 with below average discharges. Aerial survey data for 2003 and 2005 display a similar dry vs. wet year shift in spatial patterns, with no significant change in overall density of belugas within the study area. In the Nelson estuary, proximity to the fresh-salt water mixing area may be more important than the shallow waters of the upper estuary. Killer whales (Orcinus orca) were observed in the Churchill area (200 km northwest) during each year of study, 2002-05, and belugas may benefit from the proximity to shallow estuary waters that provide protection from the larger-bodied predator. Study results contribute to an understanding of the influence of environmental variation on how and why belugas use estuaries although considerable uncertainties exist and additional research is required.

  19. Simulation of tidal flow and circulation patterns in the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Russell, G.M.; Goodwin, C.R.

    1987-01-01

    Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)

  20. A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean

    NASA Astrophysics Data System (ADS)

    Xia, M.; Xia, L.; Pietrafesa, L. J.

    2006-12-01

    Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.

  1. Phenology of larval fish in the St. Louis River estuary

    EPA Science Inventory

    Little work has been done on the phenology of fish larvae in Great Lakes coastal wetlands. As part of an aquatic invasive species early detection study, we conducted larval fish surveys in the St. Louis River estuary (SLRE) in 2012 and 2013. Using multiple gears in a spatially ba...

  2. Nutrient Budgets and Management Actions in the Patuxent River Estuary, Maryland

    EPA Science Inventory

    Multi-year nitrogen (N) and phosphorus (P) budgets were developed for the Patuxent River estuary, a seasonally stratified and moderately eutrophic tributary of Chesapeake Bay. Major inputs (point, diffuse, septic and direct atmospheric) were measured for 13 years during which la...

  3. A water-quality study of the tidal Potomac River and Estuary: An overview

    USGS Publications Warehouse

    Callendar, Edward; Carter, Virginia; Hahl, D.C.; Hitt, Kerie; Schultz, Barbara I.

    1984-01-01

    The U.S. Geological Survey began a 5-year interdisciplinary study of the tidal Potomac River and Estuary in October of 1977. The objectives of the study are: (1) to provide a basic understanding of physical, chemical, and biological processes; (2) to develop flow and transport models to predict the movement and fate of nutrients and algaes and (3) to develop efficient techniques for the study of tidal rivers and estuaries. The ultimate goal is to aid water-quality decision-making for the tidal Potomac River and Estuary. The study is being conducted by scientists from many disciplines involved in 14 interrelated studies. These scientists are addressing five major problem areas: nutrient enrichment, algal blooms, dissolved oxygen, sedimentation, and effects of water quality on living resources. Preliminary results show that treatment of sewage has reduced the concentration load of organic carbon and phosphorus below that of the 1960's and 1970's, and changed the form of dissolved nitrogen in the tidal river. Concentrations of chlorophyll a during the study period were lower than those experienced during the massive algal blooms of the 1960's. Dissolved oxygen concentrations fluctuate in response to changes in algal populations, but remain above the Environmental Protection Agency limits during the summer low-flow period. Sedimentation rates have accelerated during the past 50-70 years due to urbanization and farming. Asian clams have recently invaded the tidal river; submersed aquatic vegetation has declined since the early 1900's, but conditions may now favor its return.

  4. Recent sediments of the St. Marks River coast, northwest Florida, a low-energy, sediment-starved estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Highly, A.B.; Donoghue, J.F.; Garrett, C.

    1994-03-01

    The St. Marks river of northwest Florida drains parts of the central panhandle of northwestern Florida, and a small area in southwestern Georgia. It traverses nearly 56.3 kilometers through a watershed of 1,711 square kilometers. The slow-moving river carries little sediment and terminates in Apalachee Bay, a low-energy embayment in the northeasternmost Gulf of Mexico. The coastal region is characterized by mudflats, seagrass beds, and an absence of sandy beaches and barrier islands. Clastic sediments of the coast and shelf rest on a shallow-dipping carbonate platform. The upper surface of the platform is locally karstic. As a result, like othermore » rivers in this region of northwest Florida, the St. Marks watershed is marked by sinkholes and disappearing streams. The fact that the river travels underground through part of its lower watershed serves to trap or sieve some of its clastic load. In the estuary, the undulating karst topography causes the estuarine sediments to vary in thickness from 0 to 4+ meters. The concave shape of the coastline and its orientation with respect to prevailing winds result in low average wave energy. Sedimentation is therefore controlled by riverine and tidal forces. The relatively low energy conditions result in good preservation of the sedimentary record in the St. Marks estuary. A suite of sediment cores has been collected in the lower river, estuary and adjacent Gulf of Mexico. Lead-210 dating results indicate a slow average sedimentation rate ([approximately] 1mm/yr). Investigation of sedimentation rates and sediment characteristics over time in the St. Marks estuary indicate that sedimentologic conditions in this low-energy environment have been relatively stable during the recent geologic history of the estuary.« less

  5. Suwannee river basin and estuary integrated science workshop: September 22-24, 2004 Cedar Key, Florida

    USGS Publications Warehouse

    Katz, Brian; Raabe, Ellen

    2004-01-01

    In response to the growing number of environmental concerns in the mostly pristine Suwannee River Basin and the Suwannee River Estuary system, the States of Florida and Georgia, the Federal government, and other local organizations have identified the Suwannee River as an ecosystem in need of protection because of its unique biota and important water resources. Organizations with vested interests in the region formed a coalition, the Suwannee Basin Interagency Alliance (SBIA), whose goals are to promote coordination in the identification, management, and scientific knowledge of the natural resources in the basin and estuary. To date, an integrated assessment of the physical, biological, and water resources has not been completed. A holistic, multi-disciplinary approach is being pursued to address the research needs in the basin and estuary and to provide supportive data for meeting management objectives of the entire ecosystem. The USGS is well situated to focus on the larger concerns of the basin and estuary by addressing specific research questions linking water supply and quality to ecosystem function and health across county and state boundaries. A strategic plan is being prepared in cooperation with Federal, State, and local agencies to identify and implement studies to address the most compelling research issues and management questions, and to conduct fundamental environmental monitoring studies. The USGS, Suwannee River Water Management District and the Florida Marine Research Institute are co-sponsoring this scientific workshop on the Suwannee River Basin and Estuary to: Discuss current and past research findings, Identify information gaps and research priorities, and Develop an action plan for coordinated and relevant research activities in the future. This workshop builds on the highly successful basin-wide conference sponsored by the Suwannee Basin Interagency Alliance that was held three years ago in Live Oak, Florida. This years workshop will focus on

  6. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment.

    PubMed

    Sun, Xueshi; Fan, Dejiang; Liu, Ming; Tian, Yuan; Pang, Yue; Liao, Huijie

    2018-06-18

    Sediment samples, including 40 surface samples and 12 sediment cores, were collected from 52 stations of the Yangtze River Estuary (YRE) in 2015 and 2016. The 95% linear prediction intervals (LPI) and principal components analysis (PCA), were conducted to evaluate the metal sources and grain-size effect (GSE). The in situ physico-chemical properties of pH, Eh, DO, salinity, temperature and turbidity were combined to elucidate the relationships between environmental factors and the fate of heavy metals in the river-estuary-shelf system. This study indicates a decreasing trend of metals in sediments from the estuary towards the adjacent shelf and the river channel and that Zn, Cu and Cr are mainly derived from natural processes throughout the catchment, whereas Pb appears to have anthropogenic inputs via atmospheric deposition. Furthermore, considering the best fit regression lines between the concentrations of Al and heavy metals as well as the deficiencies of the conventional C elements /C Al method, we introduce an approach (Al-SN: Al-scope normalization) that can eliminate the GSE on heavy metals and be applied to other estuaries. After Al-scope normalization, the relatively constant levels of Zn, Cu and Cr that remain in sediments from the river channel to the estuary and shelf confirmed that the variation of grain size in sediments almost entirely explained the distribution patterns of sediment toxicity in the YRE, while the enrichment of Pb in estuarine sediments could be attributed to its chemical species and physico-chemical properties. The results further suggest that the relationship between grain size and spatial behavior of sediment pollutants should be given priority over the contamination assessment and provenance discrimination in estuarine or similar environments with complex sediment compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Foraging ecology of Caspian Terns in the Columbia River Estuary, USA

    USGS Publications Warehouse

    Lyons, Donald E.; Roby, D.D.; Collis, K.

    2005-01-01

    Comparisons were made of the foraging ecology of Caspian Terns (Sterna caspia) nesting on two islands in the Columbia River estuary using radio telemetry and observations of prey fed to chicks and mates at each colony. Early in the chick-rearing period, radio-tagged terns nesting at Rice Island (river km 34) foraged mostly in the freshwater zone of the estuary close to the colony, while terns nesting on East Sand Island (river km 8) foraged in the marine or estuarine mixing zones close to that colony. Late in the chick-rearing period, Rice Island terns moved more of their foraging to the two zones lower in the estuary, while East Sand Island terns continued to forage in these areas. Tern diets at each colony corresponded to the primary foraging zone (freshwater vs. marine/ mixing) of radio-tagged individuals: Early in chick-rearing, Rice Island terns relied heavily on juvenile salmonids (Oncorhynchus spp., 71% of identified prey), but this declined late in chick-rearing (46%). East Sand Island terns relied less on salmonids (42% and 16%, early and late in chick-rearing), and instead utilized marine fishes such as Anchovy (Engraulis mordax) and Herring (Clupea pallasi). Throughout chick-rearing, Rice Island terns foraged farther from their colony (median distance: 12.3 km during early chick-rearing and 16.9 km during late chick-rearing) than did East Sand Island terns (9.6 and 7.7 km, respectively). The study leads to the conclusion that Caspian Terns are generalist foragers and make use of the most proximate available forage fish resources when raising young.

  8. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    PubMed Central

    Hauptmann, Aviaja L.; Markussen, Thor N.; Stibal, Marek; Olsen, Nikoline S.; Elberling, Bo; Bælum, Jacob; Sicheritz-Pontén, Thomas; Jacobsen, Carsten S.

    2016-01-01

    Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns. PMID:27708629

  9. The formation mechanisms of turbidity maximum in the Pearl River estuary, China.

    PubMed

    Wai, O W H; Wang, C H; Li, Y S; Li, X D

    2004-03-01

    The formation and dynamics of turbidity maxima (TM) in the Pearl River estuary (PRE) are not well understood but the existence of TM in the estuary have great potential engineering and environmental impacts. Based on the measurements of two large-scale field surveys conducted in the wet season of 1978 (July of 1978) and the dry season of 1979 (March of 1979), the existence and seasonal variations of TM in the PRE focusing on the two major natural navigation channels have been studied. The sediment transport fluxes over two consecutive tidal cycles have been analyzed in detail. The analysis results reveal that the formation mechanisms of TM in the estuary are rather complex. In general, gravitational circulation, tidal trapping, and sediment resuspension and deposition processes are the primary TM formation mechanisms in the PRE. The clockwise back flow pattern around Lingding Island also leads to the formation of TM in the West channel of the PRE. The occurrence of TM far upstream of the salt water wedge is the result of the complex hydrodynamic and sediment transport processes generated by the runoff of the major rivers.

  10. Hydrologic data summary for the St. Lucie River Estuary, Martin and St. Lucie Counties, Florida, 1998-2001

    USGS Publications Warehouse

    Byrne, Michael J.; Patino, Eduardo

    2004-01-01

    A hydrologic analysis was made at three canal sites and four tidal sites along the St. Lucie River Estuary in southeastern Florida from 1998 to 2001. The data included for analysis are stage, 15-minute flow, salinity, water temperature, turbidity, and suspended-solids concentration. During the period of record, the estuary experienced a drought, major storm events, and high-water discharge from Lake Okeechobee. Flow mainly occurred through the South Fork of the St. Lucie River; however, when flow increased through control structures along the C-23 and C-24 Canals, the North Fork was a larger than usual contributor of total freshwater inflow to the estuary. At one tidal site (Steele Point), the majority of flow was southward toward the St. Lucie Inlet; at a second tidal site (Indian River Bridge), the majority of flow was northward into the Indian River Lagoon. Large-volume stormwater discharge events greatly affected the St. Lucie River Estuary. Increased discharge typically was accompanied by salinity decreases that resulted in water becoming and remaining fresh throughout the estuary until the discharge events ended. Salinity in the estuary usually returned to prestorm levels within a few days after the events. Turbidity decreased and salinity began to increase almost immediately when the gates at the control structures closed. Salinity ranged from less than 1 to greater than 35 parts per thousand during the period of record (1998-2001), and typically varied by several parts per thousand during a tidal cycle. Suspended-solids concentrations were observed at one canal site (S-80) and two tidal sites (Speedy Point and Steele Point) during a discharge event in April and May 2000. Results suggest that most deposition of suspended-solids concentration occurs between S-80 and Speedy Point. The turbidity data collected also support this interpretation. The ratio of inorganic to organic suspended-solids concentration observed at S-80, Speedy Point, and Steele Point

  11. Sediment accumulation and mixing in the Penobscot River and estuary, Maine.

    PubMed

    Yeager, K M; Schwehr, K A; Schindler, K J; Santschi, P H

    2018-04-16

    Mercury (Hg) was discharged in the late 1960s into the Penobscot River by the Holtra-Chem chlor-alkali production facility, which was in operation from 1967 to 2000. To assess the transport and distribution of total Hg, and recovery of the river and estuary system from Hg pollution, physical and radiochemical data were assembled from sediment cores collected from 58 of 72 coring stations sampled in 2009. These stations were located throughout the lower Penobscot River, and included four principal study regions, the Penobscot River (PBR), Mendall Marsh (MM), the Orland River (OR), and the Penobscot estuary (ES). To provide the geochronology required to evaluate sedimentary total Hg profiles, 58 of 72 sediment cores were dated using the atmospheric radionuclide tracers 137 Cs, 210 Pb, and 239,240 Pu. Sediment cores were assessed for depths of mixing, and for the determination of sediment accumulation rates using both geochemical (total Hg) and radiochemical data. At most stations, evidence for significant vertical mixing, derived from profiles of 7 Be (where possible) and porosity, was restricted to the upper ~1-3cm. Thus, historic profiles of both total Hg and radionuclides were only minimally distorted, allowing a reconstruction of their depositional history. The pulse input tracers 137 Cs and 239,240 Pu used to assess sediment accumulation rates agreed well, while the steady state tracer 210 Pb exhibited weaker agreement, likely due to irregular lateral sediment inputs. Copyright © 2018. Published by Elsevier B.V.

  12. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary.

    PubMed

    Cantwell, Mark G; Katz, David R; Sullivan, Julia C; Shapley, Daniel; Lipscomb, John; Epstein, Jennifer; Juhl, Andrew R; Knudson, Carol; O'Mullan, Gregory D

    2018-06-15

    The widespread use of pharmaceuticals by human populations results in their sustained discharge to surface waters via wastewater treatment plants (WWTPs). In this study, 16 highly prescribed pharmaceuticals were quantified along a 250 km transect of the Hudson River Estuary and New York Harbor to describe their sources and spatial patterns. Sampling was conducted over two dry weather periods in May and July 2016, at 72 sites which included mid-channel and nearshore sites, as well as locations influenced by tributaries and WWTP outfalls. The detection frequency of the study pharmaceuticals was almost identical between the May and July sampling periods at 55% and 52%, respectively. Six pharmaceuticals were measurable at 92% or more of the sites during both sampling periods, illustrating their ubiquitous presence throughout the study area. Individual pharmaceutical concentrations were highly variable spatially, ranging from non-detect to 3810 ng/L during the study. Major factors controlling concentrations were proximity and magnitude of WWTP discharges, inputs from tributaries and tidal mixing. Two compounds, sucralose and caffeine, were evaluated as tracers to identify wastewater sources and assess pharmaceutical behavior. Sucralose was useful in identifying wastewater inputs to the river and concentrations showed excellent correlations with numerous pharmaceuticals in the study. Caffeine-sucralose ratios showed potential in identifying discharges of untreated wastewater occurring during a combined sewage overflow event. Many of the study pharmaceuticals were present throughout the Hudson River Estuary as a consequence of sustained wastewater discharge. Whereas some concentrations were above published effects levels, a more complete risk assessment is needed to understand the potential for ecological impacts due to pharmaceuticals in the Hudson River Estuary. Published by Elsevier Ltd.

  13. Regional variations of organophosphorus flame retardants - Fingerprint of large river basin estuaries/deltas in Europe compared with China.

    PubMed

    Wolschke, Hendrik; Sühring, Roxana; Massei, Riccardo; Tang, Jianhui; Ebinghaus, Ralf

    2018-05-01

    This study reports the occurrence and distribution of organophosphorus flame retardants and plasticizer (OPEs) in sediments of eight large river basin estuaries and deltas across Europe. A robust and sensitive OPE analysis method was developed through the application of an in-cell clean-up in an accelerated solvent extraction and the use of an GC-MSMS System for instrumental analyses. OPEs were detected in all sediment samples with sum concentrations of up to 181 ng g -1 dw. A fingerprinting method was used to identify river specific pattern to compare river systems. The estuaries and deltas were chosen to have a conglomerate print of the whole river. The results are showing very similar OPE patterns across Europe with minor differences driven by local industrial input. The European estuary concentrations and patterns were compared with OPEs detected in the Xiaoquing River in China, as an example for a region with other production, usage and legislative regulations. The Chinese fingerprint differed significant from the overall European pattern. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Beluga whale summer habitat associations in the Nelson River estuary, western Hudson Bay, Canada

    PubMed Central

    Smith, Alexander J.; Higdon, Jeff W.; Richard, Pierre; Orr, Jack; Bernhardt, Warren

    2017-01-01

    To understand beluga whale (Delphinapterus leucas) estuarine use in the Nelson River estuary, southwest Hudson Bay, we recorded and examined beluga movements and habitat associations for the July through August period in 2002–2005. We compared locations of belugas fitted with satellite transmitters (“tags”) (2002–2005) and aerial-surveyed (2003 and 2005) belugas for years of differing freshwater flow from the Nelson River which is influenced by hydroelectric activity. Using the beluga telemetry location data, we estimated an early August behavioral shift in beluga distribution patterns from local estuarine use to a progressively more migratory behavior away from the estuary. The timing of this shift in behavior was also apparent in results of beluga aerial surveys from the 1940s–1960s, despite environmental changes including later freeze-up and warming ocean temperatures. Overall, during the higher than average discharge (“wet”) year of 2005, the three tagged belugas ranged farther from the Nelson River but not farther from the nearest shore along southwestern Hudson Bay, compared to the 10 tagged belugas tracked during the “dry” years of 2002–2004 with below average discharges. Aerial survey data for 2003 and 2005 display a similar dry vs. wet year shift in spatial patterns, with no significant change in overall density of belugas within the study area. In the Nelson estuary, proximity to the fresh-salt water mixing area may be more important than the shallow waters of the upper estuary. Killer whales (Orcinus orca) were observed in the Churchill area (200 km northwest) during each year of study, 2002–05, and belugas may benefit from the proximity to shallow estuary waters that provide protection from the larger-bodied predator. Study results contribute to an understanding of the influence of environmental variation on how and why belugas use estuaries although considerable uncertainties exist and additional research is required. PMID

  15. The faucet snail (Bithynia tentaculata) invades the St. Louis River Estuary

    EPA Science Inventory

    The European-origin faucet snail (Bithynia tentaculata) now numbers among the aquatic invasive species present in the St. Louis River Estuary. This snail has been in the lower Great Lakes since the early 20th century but is new to the Lake Superior basin. We found faucet snails...

  16. Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion

    USGS Publications Warehouse

    Snedden, G.A.; Cable, J.E.; Swarzenski, C.; Swenson, E.

    2007-01-01

    Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m3 s-1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m3 s-1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise. ?? 2006 Elsevier Ltd. All rights reserved.

  17. Impact of the Clean Water Act on the levels of toxic metals in urban estuaries: The Hudson River estuary revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanudo-Wilhelmy, S.A.; Gill, G.A.

    1999-10-15

    To establish the impact of the Clean Water Act on the water quality of urban estuaries, dissolved trace metals and phosphate concentrations were determined in surface waters collected along the Hudson River estuary between 1995 and 1997 and compared with samples collected in the mid-1970s by Klinkhammer and Bender. The median concentrations along the estuary have apparently declined 36--56% for Cu, 55--89% for Cd, 53--85% for Ni, and 53--90% for Zn over a period of 23 years. These reductions appear to reflect improvements in controlling discharges from municipal and industrial wastewater treatment plants since the Clean Water Act was enactedmore » in 1972. In contrast, levels of dissolved nutrients (PO{sub 4}) have remained relatively constant during the same period of time, suggesting that wastewater treatment plant improvements in the New York/New Jersey Metropolitan area have not been as effective at reducing nutrient levels within the estuary. While more advanced wastewater treatment could potentially reduce the levels of Ag and PO{sub 4} along the estuary, these improvements would have a more limited effect on the levels of other trace metals.« less

  18. Estuarine research; an annotated bibliography of selected literature, with emphasis on the Hudson River estuary, New York and New Jersey

    USGS Publications Warehouse

    Embree, William N.; Wiltshire, Denise A.

    1978-01-01

    Abstracts of 177 selected publications on water movement in estuaries, particularly the Hudson River estuary, are compiled for reference in Hudson River studies. Subjects represented are the hydraulic, chemical, and physical characteristics of estuarine waters, estuarine modeling techniques, and methods of water-data collection and analysis. Summaries are presented in five categories: Hudson River estuary studies; hydrodynamic-model studies; water-quality-model studies; reports on data-collection equipment and methods; and bibliographies, literature reviews, conference proceedings, and textbooks. An author index is included. Omitted are most works published before 1965, environmental-impact statements, theses and dissertations, policy or planning reports, regional or economic reports, ocean studies, studies based on physical models, and foreign studies. (Woodard-USGS)

  19. Distribution and abundance of American eels in the White Oak River estuary, North Carolina

    USGS Publications Warehouse

    Hightower, J.E.; Nesnow, C.

    2006-01-01

    Apparent widespread declines in abundance of Anguilla rostrata (American eel) have reinforced the need for information regarding its life history and status. We used commercial eel pots and crab (peeler) pots to examine the distribution, condition, and abundance of American eels within the White Oak River estuary, NC, during summers of 2002-2003. Catch of American eels per overnight set was 0.35 (SE = 0.045) in 2002 and 0.49 (SE = 0.044) in 2003. There was not a significant linear relationship between catch per set and depth in 2002 (P = 0.31, depth range 0.9-3.4 m) or 2003 (P = 0.18, depth range 0.6-3.4 m). American eels from the White Oak River were in good condition, based on the slope of a length-weight relationship (3.41) compared to the median slope (3.15) from other systems. Estimates of population density from grid sampling in 2003 (300 mm and larger: 4.0-13.8 per ha) were similar to estimates for the Hudson River estuary, but substantially less than estimates from other (smaller) systems including tidal creeks within estuaries. Density estimates from coastal waters can be used with harvest records to examine whether overfishing has contributed to the recent apparent declines in American eel abundance.

  20. Foraging patterns of Caspian terns and double-crested cormorants in the Columbia River estuary

    USGS Publications Warehouse

    Lyons, Donald E.; Roby, D.D.; Collis, K.

    2007-01-01

    We examined spatial and temporal foraging patterns of Caspian terns and double-crested cormorants nesting in the Columbia River estuary, to potentially identify circumstances where juvenile salmonids listed under the U.S. Endangered Species Act might be more vulnerable to predation by these avian piscivores. Data were collected during the 1998 and 1999 breeding seasons, using point count surveys of foraging birds at 40 sites along the river's banks, and using aerial strip transect counts throughout the estuary for terns. In 1998, terns selected tidal flats and sites with roosting beaches nearby for foraging, making greater use of the marine/mixing zone of the estuary later in the season, particularly areas near the ocean jetties. In 1999, cormorants selected foraging sites in freshwater along the main channel with pile dikes present, particularly early in the season. Foraging trends in the other year for each species were generally similar to the above but usually not significant. During aerial surveys we observed 50% of foraging and commuting terns within 8 km of the Rice Island colony, and ??? 5% of activity occurred ??? 27 km from this colony in both years. Disproportionately greater cormorant foraging activity at pile dikes may indicate greater vulnerability of salmonids to predation at those features. Colony relocations to sites at sufficient distance from areas of relatively high salmonid abundance may be a straightforward means of reducing impacts of avian predation on salmonids than habitat alterations within the Columbia River estuary, at least for terns. ?? 2007 by the Northwest Scientific Association. All rights reserved.

  1. Occurrence of Cymbasoma longispinosum Bourne, 1890 in the Curuçá River estuary.

    PubMed

    Leite, Natália R; Pereira, Luci C C; Abrunhosa, Fernando; Pires, Marcus A B; Costa, Rauquírio M da

    2010-09-01

    The present work was carried out to verify the occurrence and distribution of Cymbasoma longispinosum Bourne, 1890 in a tropical Amazon estuary from North Brazil. Samplings were performed bimonthly from July/2003 to July/2004 at two different transects (Muriá and Curuçá rivers) situated along the Curuçá estuary (Pará, North Brazil). Samples were collected during neap tides via gentle (1 to 1.5 knots) 200 μm-mesh net tows from a small boat. Additional subsurface water samples were collected for the determination of environmental parameters. Males and females of Cymbasoma longispinosum were only observed during September and November/2003. The highest number of organisms was found in September/2003 at the Muriá River transect. The presence of C. longispinosum in samples obtained during September and November/2003 could probably be related to the reproductive period of this species in the studied estuary, which is directly related to the dry period in the region. The highest salinity values and the highest number of individuals observed in September/2003 corroborate with the previous assumption, since no C. longispinosum was found during the months comprising the rainy period (January to June).

  2. Modelling of river plume dynamics in Öre estuary (Baltic Sea) with Telemac-3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexander

    2016-04-01

    The main property of river plumes is their buoyancy, fresh water discharged by rivers is less dense than the receiving, saline waters. To study the processes of plume formation in case of river discharge into a brackish estuary where salinity is low (3.5 - 5 psu) a three dimensional hydrodynamic model was applied to the Öre estuary in the Baltic Sea. This estuary is a small fjord-like bay in the north part of the Baltic Sea. Size of the bay is about 8 by 8 km with maximum depth of 35 metres. River Öre has a small average freshwater discharge of 35 m3/s. But in spring during snowmelt the discharge can be many times higher. For example, in April 2015 the discharge increased from 8 m3/s to 160 m3/s in 18 days. To study river plume dynamics a finite element based three dimensional baroclinic model TELEMAC - 3D is used. The TELEMAC modelling suite is developed by the National Laboratory of Hydraulics and Environment (LNHE) of Electricité de France (EDF). Modelling domain was approximated by an unstructured mesh with element size varies from 50 to 500 m. In vertical direction a sigma-coordinate with 20 layers was used. Open sea boundary conditions were obtained from the Baltic Sea model HIROMB-BOOS using COPERNICUS marine environment monitoring service. Comparison of modelling results with observations obtained by BONUS COCOA project's field campaign in Öre estuary in 2015 shows that the model plausible simulate river plume dynamics. Modelling of age of freshwater is also discussed. This work resulted from the BONUS COCOA project was supported by BONUS (Art 185), funded jointly by the EU and the Swedish Research Council Formas.

  3. Factors affecting chick provisioning by Caspian Terns nesting in the Columbia River estuary

    USGS Publications Warehouse

    Anderson, Scott K.; Roby, D.D.; Lyons, Donald E.; Collis, K.

    2005-01-01

    We investigated factors affecting chick provisioning by radio-tagged Caspian Terns (Sterna caspia) nesting in a large colony on East Sand Island in the Columbia River estuary during 2001. Caspian Tern predation on juvenile salmonids (Oncorhynchus spp.) in the estuary prompted resource managers to relocate ca. 9,000 pairs of terns nesting on Rice Island (river km 34) to East Sand Island (river km 8), where terns were expected to consume fewer salmonids in favor of marine forage fishes. This study investigated factors influencing foraging success, diet composition, and overall reproductive success at the managed Caspian Tern colony. Our results indicated that daytime colony attendance by nesting terns averaged 64% and decreased throughout the chick-rearing period, while duration of foraging trips averaged 47 min and increased during the same period; these seasonal changes were more strongly related to date than chick age. Average meal delivery rates to 2-chick broods (0.88 meals h-1) were 2.6 times greater than to 1-chick broods (0.33 meals h-1). Parents delivered more juvenile salmonids to chicks during ebb tides than flood tides, but meal delivery rates to the nest remained constant, suggesting diet composition tracks relative availability of prey species. Foraging trips resulting in delivery of juvenile salmonids averaged 68% longer than foraging trips for schooling marine forage fishes, indicating higher availability of marine prey near the colony. High availability of marine forage fish in the Columbia River estuary during 2001 was apparently responsible for high colony attendance, short foraging trips, high chick meal delivery rates, and high nesting success of Caspian Terns on East Sand Island.

  4. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery.

    PubMed

    Du, Chenggong; Li, Yunmei; Wang, Qiao; Liu, Ge; Zheng, Zhubin; Mu, Meng; Li, Yuan

    2017-12-01

    Knowledge of tempo-spatial dynamics of water quality and its response to river flow is important for the management of lake water quality because river discharge associated with rainstorms can be an important source of pollutants to the estuary. Total phosphorus (TP), chlorophyll a (Chl-a), and total suspended matter (TSM) are important indexes of water quality and important factors influencing eutrophication and algal blooms. In this study, remote sensing was used to monitor these indexes to investigate the effects of river discharge on the estuary of Taihu Lake by the largest inflow river which is Chendong River using a total of 136 Geostationary Ocean Color Images (GOCI). In situ datasets collected during the four cruise experiments on Taihu Lake between 2011 and 2015 were used to develop the TP, Chl-a, and TSM inversion models based on simple empirical algorithms: 154 points for TP (mg/L), 114 for Chl-a (μg/L), and 181 for TSM (mg/L). The spatial and temporal changes of the concentration of the three parameters in the Chendong River estuary were analyzed by combining the GOCI data, the flow of the Chendong River, and meteorological data throughout the year in 2014. The several key findings are as follows: (1) In summer and autumn, TP, Chl-a, and TSM contents were significantly higher than in winter and spring. TP and Chl-a have a few similar distribution characteristics. And organic suspended matter in summer was the main reason for the increase of the TSM concentration. (2) The severe surface erosion in the rivers cannot be ignored; the high erodibility is an important factor in the increase of TP and TSM concentrations in the estuary. The concentration of the water quality parameter showed exponential decay with distance from the shore. The concentration decreased slowly after 12 km and then remained essentially constant. (3) TP content in the Chendong River estuary decreased under steady flow inputs and dramatically increased when the flow became large

  5. Baseline sediment trace metals investigation: Steinhatchee River estuary, Florida, Northeast Gulf of Mexico

    USGS Publications Warehouse

    Trimble, C.A.; Hoenstine, R.W.; Highley, A.B.; Donoghue, J.F.; Ragland, P.C.

    1999-01-01

    This Florida Geological Survey/U.S. Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm/yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Following these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (<0.062 mm). Concentrations were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for all metals except mercury. Mercury concentrations were determined by cold-flameless atomic absorption spectrometry (AAS). Granulometric measurements were made by sieve and pipette analyses. Organic matter was determined by two methods: weight loss upon ignition and elemental analysis (by Carlo-Erba Furnace) of carbon and nitrogen. X

  6. Dynamics of organic and inorganic carbon in surface sediments of the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Wang, X.; Liu, X.; Zhang, E.; Hang, F.

    2017-12-01

    Estuarine sediment is an important carbon reservoir thus may play an important role in the global carbon cycle. However, little is known on the dynamics of organic carbon (OC) and inorganic carbon (IC) in the surface sediment of the Yellow River Estuary, a large estuary in northern China. In this study, we applied element analyses and isotopic approach to study spatial distribution and sources of OC and IC in the Yellow River Estuary. We found that TIC concentration (6.3-20.1 g kg-1) was much higher than TOC (0.2-4.4 g kg-1) in the surface sediment. There showed a large spatial variability in TOC and TIC and their stable isotopes. Both TOC and TIC were higher to the north (2.6 and 14.5 g kg-1) than to the south (1.6 and 12.2 g kg-1), except in the southern bay where TOC and TIC reached 2.7 and 15.4 g kg-1, respectively. Generally, TOC and TIC in our study area was mainly autochthonous. The lower TOC values in the south section were due to relatively higher kinetic energy level whereas the higher values in the bay was attributable to terrigenous matters accumulation and lower kinetic energy level. However, the southern bay revealed the most negative δ13Corg and δ13Ccarb, suggesting that there might exist some transfer of OC to IC in the section. Our study points out that the dynamics of sedimentary carbon in the Yellow River Estuary is influenced by multiple and complex processes, and highlights the importance of carbonate in carbon sequstration.

  7. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River, Estuary, and Plume in 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Skalski, John R.

    Uncertainty regarding the migratory behavior and survival of juvenile salmonids passing through the lower Columbia River and estuary after negotiating dams on the Federal Columbia River Power System (FCRPS) prompted the development and application of the Juvenile Salmon Acoustic Telemetry System (JSATS). The JSATS has been used to investigate the survival of juvenile salmonid smolts between Bonneville Dam (river kilometer (rkm) 236) and the mouth of the Columbia River annually since 2004. In 2010, a total of 12,214 juvenile salmonids were implanted with both a passive integrated transponder (PIT) and a JSATS acoustic transmitter. Using detection information from JSATS receivermore » arrays deployed on dams and in the river, estuary, and plume, the survival probability of yearling Chinook salmon and steelhead smolts tagged at John Day Dam was estimated form multiple reaches between rkm 153 and 8.3 during the spring. During summer, the survival probability of subyearling Chinook salmon was estimated for the same reaches. In addition, the influence of routes of passage (e.g., surface spill, deep spill, turbine, juvenile bypass system) through the lower three dams on the Columbia River (John Day, The Dalles, and Bonneville) on juvenile salmonid smolt survival probability from the dams to rkm 153 and then between rkm 153 and 8.3 was examined to increase understanding of the immediate and latent effects of dam passage on juvenile salmon survival. Similar to previous findings, survival probability was relatively high (>0.95) for most groups of juvenile salmonids from the Bonneville Dam tailrace to about rkm 50. Downstream of rkm 50 the survival probability of all species and run types we examined decreased markedly. Steelhead smolts suffered the highest mortality in this lower portion of the Columbia River estuary, with only an estimated 60% of the tagged fish surviving to the mouth of the river. In contrast, yearling and subyearling Chinook salmon smolts survived to

  8. [Effects of Long-term Implementation of the Flow-Sediment Regulation Scheme on Grain and Clay Compositions of Inshore Sediments in the Yellow River Estuary].

    PubMed

    Wang, Miao-miao; Sun, Zhi-gao; Lu, Xiao-ning; Wang, Wei; Wang, Chuan-yuan

    2015-04-01

    Based on the laser particle size and X-ray diffraction (XRD) analysis, 28 sediment samples collected from the inshore region of the Yellow River estuary in October 2013 were determined to discuss the influence of long-term implementation of the flow-sediment regulation scheme (FSRS, initiated in 2002) on the distributions of grain size and clay components (smectite, illite, kaolinite and chlorite) in sediments. Results showed that, after the FSRS was implemented for more than 10 years, although the proportion of sand in inshore sediments of the Yellow River estuary was higher (average value, 23.5%) than those in sediments of the Bohai Sea and the Yellow River, silt was predominated (average value, 59.1%) and clay components were relatively low (average value, 17.4%). The clay components in sediments of the inshore region in the Yellow River estuary were close with those in the Yellow River. The situation was greatly changed due to the implementation of FSRS since 2002, and the clay components were in the order of illite > smectite > chlorite > kaolinite. This study also indicated that, compared to large-scale investigation in Bohai Sea, the local study on the inshore region of the Yellow River estuary was more favorable for revealing the effects of long-term implementation of the FSRS on sedimentation environment of the Yellow River estuary.

  9. Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: Global importance of solute-particle interaction and enhanced metal fluxes to the oceans

    NASA Astrophysics Data System (ADS)

    Samanta, Saumik; Dalai, Tarun K.

    2018-05-01

    The Ganga River System is a major contributor to the global sediment and water discharge to the oceans. The estuary of Ganga (Hooghly) River in India is under increasing influence of anthropogenic contributions via discharge of the industrial and urban effluents. Here we document, based on the investigation of water and suspended sediment samples collected during six periods over two years, that there is extensive production of heavy metals (Co, Ni and Cu) in the estuary such that the annual dissolved fluxes of metals from the Hooghly River are enhanced by up to 230-1770%. Furthermore, the estuarine dissolved metal fluxes, when normalized with water fluxes, are the highest among estuaries of the major rivers in the world. Our simultaneous data on the dissolved, suspended particulate and exchangeable phases allow us to identify the ion-exchange process (coupled adsorption and desorption) as the dominant contributor to the generation of heavy metals in the middle and lower estuary where the estimated anthropogenic contribution is negligible. The estimated contributions from the groundwater are also insufficient to explain the measured metal concentrations in the estuary. A strong positive correlation that is observed between the dissolved heavy metal fluxes and the suspended particulate matter (SPM) fluxes, after normalizing them with the water fluxes, for estuaries of the major global rivers imply that the solute-particle interaction is a globally significant process in the estuarine production of metals. Based on this correlation that is observed for major estuaries around the world, we demonstrate that the South Asian Rivers which supply only ∼9% of the global river water discharge but carry elevated SPM load, contribute a far more significant proportion (∼40 ± 2% Ni and 15 ± 1% Cu) to the global supply of the dissolved metals from the rivers.

  10. Response of the turbidity maximum zone in the Yangtze River Estuary due to human activities during the dry season.

    PubMed

    Chen, Xiaofeng; Shen, Zhenyao; Yang, Ye

    2016-09-01

    The interaction between a river and the sea results in a turbidity maximum zone (TMZ) within the estuary, which has a great impact on the local ecosystem. In the Yangtze River Estuary, the magnitude and extent of the TMZ vary with water discharge. In this study, the cumulative human activity altered the water discharge regime from the river to the estuary. In the post-Three Gorges Dam (TGD) period, water discharge increased by 35.10 % at Datong in February compared with that in the pre-TGD period. The effects of water discharge variation on the characteristics of the TMZ were analyzed during spring and neap tidal periods using the three-dimensional environmental fluid dynamic code (EFDC) model. The area of the TMZ decreased by 3.11 and 17.39 % during neap and spring tides, respectively. In addition, the upper limit of the TMZ moved 11.68 km seaward during neap tide, whereas the upper limit of the TMZ in the upstream and downstream areas moved seaward 9.65 and 2.34 km, respectively, during spring tide. These findings suggest that the area and location of the TMZ are more sensitive to upstream runoff during spring tide than during neap tide. These changes in the TMZ will impact the biochemical processes in the Yangtze River Estuary. In the foreseeable future, the distribution characteristic of TMZ will inevitably change due to variations in the Yangtze River discharge resulting from new human activities (i.e., new dams), which are being constructed upstream in the Yangtze River system.

  11. Current status of non-native fish species in the St. Louis River estuary

    EPA Science Inventory

    The fish community of the St. Louis River estuary is well characterized, thanks to fishery assessment and invasive species early detection monitoring by federal, state, and tribal agencies. This sampling includes long-standing adult/juvenile fish surveys, larval fish surveys beg...

  12. River flow and ammonium discharge determine spring phytoplankton blooms in an urbanized estuary

    NASA Astrophysics Data System (ADS)

    Dugdale, Richard; Wilkerson, Frances; Parker, Alexander E.; Marchi, Al; Taberski, Karen

    2012-12-01

    Nutrient loadings to urbanized estuaries have increased over the past decades in response to population growth and upgrading to secondary sewage treatment. Evidence from the San Francisco Estuary (SFE) indicates that increased ammonium (NH4) loads have resulted in reduced primary production, a counter-intuitive finding; the NH4 paradox. Phytoplankton uptake of nitrate (NO3), the largest pool of dissolved inorganic nitrogen, is necessary for blooms to occur in SFE. The relatively small pool of ambient NH4, by itself insufficient to support a bloom, prevents access to NO3 and bloom development. This has contributed to the current rarity of spring phytoplankton blooms in the northern SFE (Suisun Bay), in spite of high inorganic nutrient concentrations, improved water transparency and seasonally low biomass of bivalve grazers. The lack of blooms has likely contributed to deleterious bottom-up impacts on estuarine fish. This bloom suppression may also occur in other estuaries that receive large amounts of anthropogenic NH4. In 2010 two rare diatom blooms were observed in spring in Suisun Bay (followed by increased abundances of copepods and pelagic fish), and like the prior bloom observed in 2000, chlorophyll accumulated after NH4 concentrations were decreased. In 2010, low NH4 concentrations were apparently due to a combination of reduced NH4 discharge from a wastewater treatment plant and increased river flow. To understand the interactions of river flow, NH4 discharge and bloom initiation, a conceptual model was constructed with three criteria; 1) NH4 loading must not exceed the capacity of the phytoplankton to assimilate the inflow of NH4, 2) the NH4 concentration must be ≤4 μmol L-1 to enable phytoplankton NO3 uptake, 3) the dilution rate of phytoplankton biomass set by river flow must not exceed the phytoplankton growth rate to avoid "washout". These criteria were determined for Suisun Bay; with sufficient irradiance and present day discharge of 15 tons NH4-N d

  13. Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget

    NASA Astrophysics Data System (ADS)

    Borole, D. V.; Krishnaswami, S.; Somayajulu, B. L. K.

    1982-02-01

    The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 238U /238U activity ratios. The 238U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, σ Na + K + Mg + Ca, and with the HCO 3- ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. These findings lead us to conclude that 238U is brought into the aqueous phase along with major cations and bicarbonate. The strong positive correlation between 238U and total dissolved salts for selected rivers of the world yield an annual dissolved 238U flux of 0.88 × 10 10g/ yr to the oceans, a value very similar to its removal rate from the oceans, 1.05 × 10 10g/ yr, estimated based on its correlation with HCO 3- contents of rivers. In the estuaries, both 238U and its great-grand daughter 234U behave conservatively beyond chlorosities 0.14 g/l. These data confirm our earlier findings in other Indian estuaries. The behavior of uranium isotopes in the chlorosity zone 0.02-0.14 g/l, was studied in the Narbada estuary in some detail. The results, though not conclusive, seem to indicate a minor removal of these isotopes in this region. Reexamination of the results for the Gironde and Zaire estuaries (Martin et al., 1978a and b) also appear to confirm the conservative behavior of U isotopes in unpolluted estuaries. It is borne out from all the available data that estuaries beyond 0.14 g/l chlorosities act neither as a sink nor as a source for uranium isotopes, the behavior in the low chlorosity zones warrants further detailed investigation. A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238U concentration of 0.22 μg/l with a 234U /238U activity ratio of 1.20 ± 0

  14. Development of a preliminary relative risk model for evaluating regional ecological conditions in the Delaware River Estuary, USA.

    PubMed

    Iannuzzi, Timothy J; Durda, Judi L; Preziosi, Damian V; Ludwig, David F; Stahl, Ralph G; DeSantis, Amanda A; Hoke, Robert A

    2010-01-01

    Effective environmental management and restoration of urbanized systems such as the Delaware River Estuary requires a holistic understanding of the relative importance of various stressor-related impacts throughout the watershed, both historical and ongoing. To that end, it is important to involve as many stakeholders as possible in the management process and to develop a system for sharing of scientific data and information, as well as effective technical tools for evaluating and disseminating the data needed to make management decisions. In this study, we describe a preliminary assessment that was undertaken to evaluate the relative risks for the variety of stressors currently operating within the Delaware Estuary using a relative risk model (RRM) framework. This model was constructed using existing data and information on the ecological conditions and stressors in the main-stem Delaware River below the head of tide at Trenton, New Jersey, USA. A large database was developed with pertinent data from a variety of library, scientific, and regulatory sources. Data were compiled, reviewed, and characterized before development of the Estuary-specific RRM. Our primary goals and objectives in developing this preliminary RRM for the Estuary were to 1) determine if the RRM framework can be adapted to a large complex estuarine system such as the Delaware River, 2) identify the issues associated with adapting the model framework to the various management issues and regional areas/habitats of the River, 3) help identify data needs and potential refinements that might be needed to more specifically quantify relative stressor risks in various areas and habitats of the Estuary to better inform future management goals/actions by Stakeholders. The key conclusions of our preliminary assessment are 1) a diverse suite of stressors is likely affecting the ecological conditions of the Delaware Estuary, 2) chemical (toxicants/contaminants) and physical (sedimentation, habitat loss

  15. Geochemistry of the Amazon Estuary

    USGS Publications Warehouse

    Smoak, Joseph M.; Krest, James M.; Swarzenski, Peter W

    2006-01-01

    The Amazon River supplies more freshwater to the ocean than any other river in the world. This enormous volume of freshwater forces the estuarine mixing out of the river channel and onto the continental shelf. On the continental shelf, the estuarine mixing occurs in a very dynamic environment unlike that of a typical estuary. The tides, the wind, and the boundary current that sweeps the continental shelf have a pronounced influence on the chemical and biological processes occurring within the estuary. The dynamic environment, along with the enormous supply of water, solutes and particles makes the Amazon estuary unique. This chapter describes the unique features of the Amazon estuary and how these features influence the processes occurring within the estuary. Examined are the supply and cycling of major and minor elements, and the use of naturally occurring radionuclides to trace processes including water movement, scavenging, sediment-water interaction, and sediment accumulation rates. The biogeochemical cycling of carbon, nitrogen, and phosphorus, and the significances of the Amazon estuary in the global mass balance of these elements are examined.

  16. Effects of Human Activities on Submarine Topography in Lingding Bay of the Pearl River Estuary During the Last Decade

    NASA Astrophysics Data System (ADS)

    WU, Z. Y.; Saito, Y.; Milliman, J. D.; Zhao, D.; Zhou, J.

    2015-12-01

    Estuaries have been the site of intensive human activities. During the past century, decreased fluvial water and sediment discharge, increasing land reclamation, changing climate, and rising sea level have had an ever-increasing impact on river deltas, particularly those deltas bordering Southeast Asia. Using six stages of navigational and bathymetric chart data from 1906 to 2013 and 2 years (2012,2013) single-beam bathymetric data, together with more than 50 years of fluvial discharge data, we document the impact of human activities on the Pearl River Delta and its estuary at Lingding Bay. Between 1906 and 2010, land reclamation decreased the bay's water area by ~300 km2 (>17%), mostly at the expense of the shrinking intertidal and shallow subtidal mudflats. Before 1980, the estuary was mainly governed by natural processes with slight net deposition, whereas after 1980 dredging in the estuary and large port engineering projects changed the estuarine topography by shallowing the shoals and deepening the troughs. From 1955 to 2010, the water volume of Lingding Bay decreased by 536 × 106 m3 for a net decrease of 9.7 × 106 m3 a year, which indicates that approximately 9.7 Mt/yr of sediment was deposited in Lingding Bay during that period. In 2012 and 2013, large-scale human activities within Lingding Bay included continued dredging plus a surge of sand excavation that changed local water depths by ±5 m/yr, far exceeding the range of natural topographic evolution in the estuary. The impacts of various human activities have significantly changed submarine topography in Lingding Bay of the complex Pearl River Estuary. With continuing economic expansion in the Pearl River Delta, Lingding Bay should continue to shrink in both area and water volume.

  17. Sedimentary fabrics of the macrotidal, mud-dominated, inner estuary to fluvio-tidal transition zone, Petitcodiac River estuary, New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Shchepetkina, Alina; Gingras, Murray K.; Zonneveld, John-Paul; Pemberton, S. George

    2016-03-01

    The study provides a detailed description of mud-dominated sedimentary fabrics and their application for the rock record within the inner estuary to the fluvial zone of the Petitcodiac River estuary, New Brunswick, Canada. Sedimentological characteristics and facies distributions of the clay- and silt-rich deposits are reported. The inner estuary is characterized by thick accumulations of interbedded silt and silty clay on intertidal banks that flank the tidally influenced channel. The most common sedimentary structures observed are parallel and wavy lamination, small-scale soft-sediment deformation with microfaults, and clay and silt current ripples. The tidal channel contains sandy silt and clayey silt with planar lamination, massive and convolute bedding. The fluvio-tidal transition zone is represented by interbedded trough cross-stratified sand and gravel beds with planar laminated to massive silty mud. The riverine, non-tidal reach of the estuary is characterized by massive, planar tabular and trough cross-stratified gravel-bed deposits. The absence of bioturbation within the inner estuary to the fluvio-tidal transition zone can be explained by the following factors: low water salinities (0-5 ppt), amplified tide and current speeds, and high concentrations of flocculated material in the water body. Notably, downstream in the middle and outer estuary, bioturbation is seasonally pervasive: in those locales the sedimentary conditions are similar, but salinity is higher. In this study, the sedimentological (i.e., grain size, bedding characters, sedimentary structures) differences between the tidal estuary and the fluvial setting are substantial, and those changes occur over only a few hundred meters. This suggests that the widely used concept of an extensive fluvio-tidal transition zone and its depositional character may not be a geographically significant component of fluvial or estuary deposits, which can go unnoticed in the study of the ancient rocks.

  18. Evaluation of Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.

    This is the seventh and final annual report of a project (2004–2010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritizemore » monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.« less

  19. A Numerical Modeling Study of Mesodinium Bloom Formation and Retention in a River-Dominated Mesotidal Estuary

    NASA Astrophysics Data System (ADS)

    Spitz, Y. H.; Cervantes, B.

    2016-02-01

    The Columbia River estuary experiences extensive seasonal red-colored blooms caused by a mixotrophic ciliate of the genus Mesodinium. Although the blooms are non-toxic, they have a significant influence on the levels of nutrients, light and oxygen in the estuary. Mesodinium spp. displays very particular physiology that makes it one of few planktonic species able to thrive in a highly flushed system: a high growth rate due to its ability to photosynthesize using the photosynthetic organelles of its preys, and complex vertical migration patterns. Knowledge of the migration pattern is based on limited observations of Mesodinium behavior in culture and recent in-situ measurements collected in the Columbia River estuary. A more comprehensive understanding is needed of the mechanisms allowing Mesodinium spp. to be retained and experience rapid growth. To this end, we extended the finite element circulation model SELFE to include a 5-component behavioral model that simulates the relationships between nutrients, detritus, Mesodinium spp. and its cryptophyte prey. We then used the model to investigate various migration patterns and growth scenarios to determine their role in the formation and retention of the Mesodinium spp. bloom in the brackish water of the estuary.

  20. Investigating phenology of larval fishes in St. Louis River estuary shallow water habitats

    EPA Science Inventory

    As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages acro...

  1. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network.

    PubMed

    Huang, Wei; Chen, Xing; Wang, Kun; Chen, Junyi; Zheng, Binghui; Jiang, Xia

    2018-06-10

    Sediment microbial communities from plain river networks exert different effects on pollutant transformation and migration in lake basins. In this study, we examined millions of Illumina reads (16S rRNA gene amplicons) to compare lake, lake wetland, and estuary bacterial communities through a technically consistent approach. Results showed that bacterial communities in the sampled lake sediments had the highest alpha-diversity (Group B), than in sampled lake wetland sediments and estuary sediments. Proteobacteria was the most abundant (more than 30%) phyla in all the sediments. The lake sediments had more Nitrospirae (1.63%-11.75%) and Acidobacteria (3.46%-10.21%) than the lake wetland and estuary sediments, and estuary sediments had a greater abundance of the phylum Firmicutes (mean of 22.30%). Statistical analysis (LEfSe) revealed that lake wetland sediments contained greater abundances of the class Anaerolineaceae, orders Xanthomonadales, Pseudomonadales, and genera Flavobacterium, Acinetobacter. The lake sediments had a distinct community of diverse primary producers, such as phylum Acidobacteria, order Ignavibacteriales, and families Nitrospiraceae, Hydrogenophilaceae. Total phosphorus and organic matter were the main factors influencing the bacterial communities in sediments from several parts of the lake wetland and river estuary (p < .05). The novel insights into basin pollution control in plain river networks may be obtained from microbial distribution in sediments from different basin regions. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Tidal currents and bedload transport at the mouth of a rock-bound estuary during low river discharge conditions (Guadiana Estuary, Portugal)

    NASA Astrophysics Data System (ADS)

    Garel, E.; Pacheco, A.; Ferreira, Ó.

    2009-04-01

    The present study documents the poorly-described hydro-sediment dynamics of narrow bedrock-controlled estuaries during periods of low-river discharge. The results also contribute to assess the geomorphological evolution of these systems, when affected by drastic flow regulation. The Guadiana Estuary is a narrow rock-bound mesotidal estuary, 80 km in length, located at the southern border between Spain and Portugal. Until recently, the river inputs to the estuary displayed high (annual and seasonal) variability, characterized by periods of droughts, and episodic flood events with (monthly-averaged) fluvial discharge as high as 5,000 m3s-1 (160 m3s-1 in average, for the period 1947/2001). This pattern has ceased in February 2002, with the impoundment of the main river by the large Alqueva dam, 60 km upstream from the estuary head. At present, the daily-averaged river discharge is generally kept low throughout the year (< 50 m3s-1). In the absence of significant flood events to expel massively sediment out of the estuary, concerns have been raised about sand infilling at the mouth and increased erosion at the adjacent coastline. For the assessment of the sediment balance of the estuary under present hydrodynamic conditions, this study examines the tidal currents and bedload transport at the entrance of the estuarine channel. Current measurement transects were performed across the 600 m-wide channel entrance using a ship borne Acoustic Doppler Profiler (ADP, operating at 1.5 MHz frequency) during 2 entire tidal cycles, at spring (17 September 2008, 3.0 m tidal range) and at neap tide (21 October 2008, 1.6 m tidal range). Surficial sediment samples were also collected across the channel during the spring tidal cycle. The bed sediment consists of well-sorted medium sand with mean grain size ranging from 0.5 to 0.3 mm (with coarser material at the deepest part of the channel cross-section). Tidal currents were analysed along 6 sub-sections to take into account these grain

  3. Hydro-sedimentary processes of a shallow tropical estuary under Amazon influence. The Mahury Estuary, French Guiana

    NASA Astrophysics Data System (ADS)

    Orseau, Sylvain; Lesourd, Sandric; Huybrechts, Nicolas; Gardel, Antoine

    2017-04-01

    Along the Guianas coast, coastal dynamic is characterized by the migration of mud banks originating from the Amazon. This singular feature affects the dynamic and the morphology of local estuaries and can induce rapid bathymetric evolution in lower estuaries. Since 2012, the navigation channel of the Mahury Estuary (French Guiana) is enduring a severe siltation whose origin comes from a mud bank crossing the estuary mouth. This study aims to determine how the migration of a mud bank through an estuary mouth could influence the transport and fluxes in the estuary. Field measurements were performed over a year with the monitoring of the salt intrusion length, mooring surveys during spring-neap cycles and shipboard profiling surveys during semi-diurnal cycles. Salt intrusion lengths underline a significant seasonal variation characterized by the transition from a steady-state length during high river discharge and a wide range of lengths with the tidal range during low to moderate river discharge. During the rainy season, measurements indicate a fluvial-dominated condition with low suspended-sediment concentrations most of the semi-diurnal cycle. Residual sediment fluxes are usually seaward excepted when river discharge is below seasonal average. During the dry season, maximum suspended-sediment concentrations are higher in the middle part of the estuary. Residual sediment fluxes are landward along the estuary and stronger during neap tides in the estuary mouth and few kilometers upstream. In this area, a persistent density stratification traps sediments in the bottom layer and generates a gravitational circulation during neap tides, which enhances landward transports up to 2.56 t m-1 over a semi-diurnal cycle. In the middle estuary, landward fluxes are most significant during the dry season and also during the rainy season when the river discharge is below the seasonal average. Although this study includes temporal and spatial limitations, it underlines significant

  4. Distributions of organochlorine compounds in sediments from Jiulong River Estuary and adjacent Western Taiwan Strait: Implications of transport, sources and inventories.

    PubMed

    Wu, Yuling; Wang, Xinhong; Ya, Miaolei; Li, Yongyu; Hong, Huasheng

    2016-12-01

    Estuaries and coastal areas strongly influenced by terrestrial inputs resulted from anthropogenic activities. To study the distributions, origins, potential transport and burden of organochlorine compounds (OCs) from river to marginal sea, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in surface sediments collected from a subtropical estuary (Jiulong River Estuary, JRE) and the inner shelf of adjacent Western Taiwan Strait (WTS). The concentrations of OCPs and PCBs were from 5.2 to 551.7 and 1.0-8.1 ng g -1 (dry weight), respectively. OCP concentrations in the JRE were higher than in adjacent WTS, and a decreasing trend with the ascending distance from the estuary to the open sea was observed. Concentrations of DDTs were quite high in the upper reach of the estuary, inferred from antifouling paint on fishing boats of a local shipping company. According to established sediment quality guidelines, DDTs in the JRE posed potential ecological risk. HCHs in the estuary were mainly derived from the weathered HCHs preserved in the agriculture soils via local major river runoffs. OCPs patterns showed that OCPs in the south coast of WTS were resulted from local sources via river input, while OCPs in the north coast attributed to the long-range transport derived by the Fujian-Zhejiang Coastal Current. Minor variations of PCB concentrations and homologs indicated that PCBs were not the main pollutant in the agricultural region, consistent lighter PCBs reflected industrial PCBs were transported via atmospheric deposition derived by East Asia Monsoon. Moreover, the primary distribution pattern founded for DDTs and the considerable mass inventories and burdens calculated (258.1 ng cm -2 and 10.4 tones for OCPs) that higher than Pearl River Delta and Yangtze River Delta, together suggested that the contaminated sediments in the study area may be a potential source of OCPs to the global ocean. Copyright © 2016 Elsevier Ltd. All rights

  5. Microplastics in oysters Saccostrea cucullata along the Pearl River Estuary, China.

    PubMed

    Li, Heng-Xiang; Ma, Li-Sha; Lin, Lang; Ni, Zhi-Xin; Xu, Xiang-Rong; Shi, Hua-Hong; Yan, Yan; Zheng, Guang-Ming; Rittschof, Daniel

    2018-05-01

    As a transitional zone between riverine and marine environments, an estuary plays an important role for the sources, accumulation and transport of microplastics. Although estuarine environments are hotspots of microplastic pollution, the correlation between microplastic pollution and aquatic organisms is less known. Here we investigated microplastic pollution in wild oysters Saccostrea cucullata from 11 sampling sites along the Pearl River Estuary in South China. The microplastic abundances in oysters ranged from 1.4 to 7.0 items per individual or from 1.5 to 7.2 items per gram tissue wet weight, which were positively related to those in surrounding waters. The oysters near urban areas contained significantly more microplastics than those near rural areas. Fibers accounted for 69.4% of the total microplastics in oysters. Microplastic sizes varied from 20 to 5000 μm and 83.9% of which were less than 100 μm. Light color microplastics were significantly more common than dark color ones. Based on the results, oysters are recommended as a biomonitor for the microplastic pollution in estuaries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Contribution of wave-induced liquefaction in triggering hyperpycnal flows in Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jia, Y.

    2017-12-01

    Hyperpycnal flows, driven mainly by the gravity of near-bed negatively buoyant layers, are one of the most important processes for moving marine sediment across the earth. The issue of hyperpycnal flows existing in marine environment has drawn increasing scholars' attention since that was observed in situ off the Yellow River estuary in the 1980s. Most researches maintain that hyperpycnal flows in the Yellow River estuary are caused by the high-concentration sediments discharged from the Yellow River into sea, however, other mechanisms have been discounted since the sediment input from the river has been significantly changed due to climate and anthropogenic change. Here we demonstrate that wave-seabed interactions can generate hyperpycnal flows, without river input, by sediment flux convergence above an originally consolidated seabed. Using physical model experiments and multi-sensor field measurements, we characterize the composition-dependent liquefaction properties of the sediment due to wave-induced pore water pressure accumulation. This allows quantification of attenuation of sediment threshold velocity and critical shear stress (predominant variables in transport mechanics) during the liquefaction under waves. Parameterising the wave-seabed interactions in a new concept model shows that high waves propagating over the seabed sediment can act as a scarifier plough remoulding the seabed sediment. This contributes to marine hyperpycnal flows as the sediment is quickly resuspended under accumulating attenuation in strength. Therefore, the development of more integrative numerical models could supply realistic predictions of marine record in response to rising magnitude and frequency of storms.

  7. CO2 emissions from a temperate drowned river valley estuary adjacent to an emerging megacity (Sydney Harbour)

    NASA Astrophysics Data System (ADS)

    Tanner, E. L.; Mulhearn, P. J.; Eyre, B. D.

    2017-06-01

    The Sydney Harbour Estuary is a large drowned river valley adjacent to Sydney, a large urban metropolis on track to become a megacity; estimated to reach a population of 10 million by 2100. Monthly underway surveys of surface water pCO2 were undertaken along the main channel and tributaries, from January to December 2013. pCO2 showed substantial spatio-temporal variability in the narrow high residence time upper and mid sections of the estuary, with values reaching a maximum of 5650 μatm in the upper reaches and as low as 173 μatm in the mid estuary section, dominated by respiration and photosynthesis respectively. The large lower estuary displayed less variability in pCO2 with values ranging from 343 to 544 μatm controlled mainly by tidal pumping and temperature. Air-water CO2 emissions reached a maximum of 181 mmol C m-2 d-1 during spring in the eutrophic upper estuary. After a summer high rainfall event nutrient-stimulated biological pumping promoted a large uptake of CO2 transitioning the Sydney Harbour Estuary into a CO2 sink with a maximum uptake of rate of -10.6 mmol C m-2 d-1 in the mid-section of the estuary. Annually the Sydney Harbour Estuary was heterotrophic and a weak source of CO2 with an air-water emission rate of 1.2-5 mmol C m-2 d-1 (0.4-1.8 mol C m-2 y-1) resulting in a total carbon emission of around 930 tonnes per annum. CO2 emissions (weighted m3 s-1 of discharge per km2 of estuary surface area) from Sydney Harbour were an order of magnitude lower than other temperate large tectonic deltas, lagoons and engineered systems of China, India, Taiwan and Europe but were similar to other natural drowned river valley systems in the USA. Discharge per unit area appears to be a good predictor of CO2 emissions from estuaries of a similar climate and geomorphic class.

  8. Effect of winds and waves on salt intrusion in the Pearl River estuary

    NASA Astrophysics Data System (ADS)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  9. Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China.

    PubMed

    Bi, Shipu; Yang, Yuan; Xu, Chengfen; Zhang, Yong; Zhang, Xiaobo; Zhang, Xianrong

    2017-08-15

    Estuary sediment is a major pollutant enrichment medium and is an important biological habitat. This sediment has attracted the attention of the marine environmental scientists because it is a more stable and effective medium than water for monitoring regional environmental quality conditions and trends. Based on a large amount of measurement data, we analyzed the concentrations, distribution, and sources of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the surface sediment of typical estuaries that empty into the sea in eastern China: the Liaohe River Estuary, Yellow River Estuary, Yangtze River Estuary, Minjiang River Estuary, and Pearl River Estuary. The heavy metal concentrations in the sediments vary considerably from one estuary to the next. The Liaohe River Estuary sediment contains elevated levels of Cd, Hg, and Zn. The Yellow River Estuary sediment contains elevated levels of As. The sediments in the Yangtze River and Minjiang River estuaries contain elevated levels of Cd and Cu and of Pb and Zn, respectively. The sediment in the Pearl River Estuary contains elevated levels of all seven heavy metals. We used the Nemerow index method to assess the environment quality. The heavy metal pollution in the Liaohe River and Pearl River estuaries is more severe than that in the other estuaries. Additional work indicates that the heavy metal pollution in the Liaohe River and Pearl River estuaries is caused mainly by human activity. Copyright © 2017. Published by Elsevier Ltd.

  10. River flow, zooplankton and dominant zooplanktivorous fish dynamics in a warm-temperate South African estuary.

    PubMed

    Mbandzi, N; Wasserman, R J; Deyzel, S H P; Vine, N G; Whitfield, A K

    2018-06-01

    The possible links between river flow, zooplankton abundance and the responses of zooplanktivorous fishes to physico-chemical and food resource changes are assessed. To this end, the seasonal abundance, distribution and diet of the estuarine round-herring Gilchristella aestuaria and Cape silverside Atherina breviceps were studied in the Kariega Estuary. Spatio-temporal differences were determined for selected physico-chemical variables, zooplankton abundance and zooplanktivorous fish abundance and distribution. Results indicated that, following a river flood event in winter (>30 m 3  s -1 ), altered physico-chemical conditions occurred throughout the estuary and depressed zooplankton stocks. Abundance of G. aestuaria was highest in spring, with this species dominant in the upper and middle zones of the estuary, while A. breviceps was dominant in summer and preferred the middle and lower zones. The catch per unit of effort of both zooplanktivores also declined significantly following the flooding, thus suggesting that these fishes are reliant on zooplankton as a primary food source for healthy populations. Copepods dominated the stomach contents of both fish species, indicating a potential for strong interspecific competition for food, particularly in the middle reaches. Temporal differences were evident in dietary overlap between the two zooplanktivorous fish species and were correlated with river flow, zooplankton availability and fish distribution. The findings of this study emphasize the close trophic linkages between zooplankton and zooplanktivorous fishes under changing estuarine environmental conditions, particularly river flow and provide important baseline information for similar studies elsewhere in South Africa and the rest of the world. © 2018 The Fisheries Society of the British Isles.

  11. Carbonate system and nutrients in the Pearl River estuary, China: Seasonal and inter-annual variations

    NASA Astrophysics Data System (ADS)

    Guo, X.

    2017-12-01

    Located in southern China and surrounded by several metropolis, the Pearl River estuary is a large subtropical estuary under significant human perturbation. We examined the impact of sewage treatment rate on the water environmental factors. Carbonate system parameters (Dissolved inorganic carbon or DIC, Total alkalinity or TA, and pH), and nutrients were surveyed in the Pearl River estuary from 2000 to 2015. Spatially, concentrations of nutrients were high at low salinity and decreased with salinity in both wet and dry seasons although seasonal variation occurred. However, distribution patterns of DIC and TA differed in wet and dry seasons. In wet season, both DIC and TA were low at low salinity (600-1500 umol kg-1) and increased with salinity, but in dry season they were high at low salinity (3000-3500 umol kg-1) and decreased with salinity. Compared with the years before 2010, both values and distribution patterns of DIC, TA and pH were similar among the years in wet season, but they were conspicuously different in the upper estuary in dry season. Both DIC and TA were more than 1000 umol kg-1 lower than those in the years before 2010. For nutrients at low salinity, the ammonia concentration was much lower in the years after 2010 (200 vs. 400 umol kg-1 in wet season and 400 vs. 800 umol kg-1 in dry season), but nitrate concentration was slightly higher (180 vs 120 mmol kg-1 in wet season and 200 vs 180 mmol kg-1 in dry season). As a reference, carbonate system parameters and nutrients were stable among the 16 years in the adjacent northern South China Sea. The variations in biogeochemical processes induced by nutrients concentration and structure as a result of sewage discharge will be discussed in detail. The decrease in DIC, TA and nutrients in the upper Pearl River estuary after 2010 was due mainly to the improvement of sewage treatment rate and capacity.

  12. Occurrence and distribution of dissolved tellurium in Changjiang River estuary

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodan; Song, Jinming; Li, Xuegang

    2014-03-01

    With the implementation of the GEOTRACES program, the biogeochemical cycle and distribution of tellurium (Te) in marine environments are becoming increasing environmental concerns. In this study, the concentration of dissolved Te in the Changjiang (Yangtze) River estuary and nearby waters was determined in May 2009 by hydride-generation atomic fluorescence spectrometry to elucidate the abundance, dominant species, distribution, and relationship with environmental factors. Results show that: (1) dissolved Te was low owing to its low abundance in the Earth's crust, high insolubility in water, and strong affinity to particulate matter; (2) Te(IV) and Te(VI) predominated in surface water. Te(VI) was the dominant species in bottom water, and Te(IV) was the minor species; (3) Horizontally, resulting from low phytoplankton metabolism and the weak reduction from Te(VI) to Te(IV) in the shore, Te(IV) was concentrated in the central zone instead of the coastal region. However, Te(VI) was abundant near the mouth of the Changjiang River where the Changjiang water is diluted and in the area to the south where the Taiwan Warm Current invaded. In the adsorption-desorption process, Te(IV) was negatively related to suspended particulate matter (SPM), indicating that it was adsorbed by particulate matter. While for Te(VI), the positive correlation with SPM suggested that it was desorbed from the solid phase. In the estuary, dissolved Te had a negative correlation to salinity. However, it deviated from the dilution line in high-salinity regions due to the invasion of the Taiwan Warm Current and the mineralization of organic matter. The relationship between Te(IV) and SPM nutrients indicated that it was more bioavailable and more related to phosphorus than to nitrogen. Progress in the field is slow and more research is needed to quantify the input of Te to the estuary and evaluate the biochemical role of organisms.

  13. Analysis of change of red tide species in Yodo River estuary by the numerical ecosystem model.

    PubMed

    Hayashi, Mitsuru; Yanagi, Tetsuo

    2008-01-01

    Occurrence number of red tides in Osaka Bay in Japan is more than 20 cases every year. Diatom red tide was dominant in Osaka Bay, but the non-diatom red tide was dominant in early 1990s. Therefore, the material cycling in Yodo River estuary in Osaka Bay during August from 1991 to 2000 was analyzed by using the numerical ecosystem model and field observation data to clarify the reasons of change in red tide species. Year-to-year variation in calculated concentration ratio of diatom to non-diatom corresponds to the variation in observed ratio of red tide days of diatom to non-diatom. Limiting nutrient of primary production is phosphate over the period. Diatom dominated from 1991 to 1993, but it was difficult for non-diatom to grow due to the limitation by physical condition. Non-diatom was able to grow because of good physical and nutrient conditions from 1994 to 1996. And diatom dominated again under the good physical condition, and phosphorus supply was not enough for non-diatom to grow from 1998 to 2000. Phosphate concentration in the lower layer of Yodo River estuary was important to the variation in red tide species in the upper layer of Yodo River estuary.

  14. Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary.

    PubMed

    Reinhart, Bethany L; Kidd, Karen A; Curry, R Allen; O'Driscoll, Nelson J; Pavey, Scott A

    2018-06-01

    Although estuaries are critical habitats for many aquatic species, the spatial trends of toxic methylmercury (MeHg) in biota from fresh to marine waters are poorly understood. Our objective was to determine if MeHg concentrations in biota changed along a salinity gradient in an estuary. Fourspine Stickleback (Apeltes quadracus), invertebrates (snails, amphipods, and chironomids), sediments, and water were collected from ten sites along the Saint John River estuary, New Brunswick, Canada in 2015 and 2016, with salinities ranging from 0.06 to 6.96. Total mercury (proxy for MeHg) was measured in whole fish and MeHg was measured in a subset of fish, pooled invertebrates, sediments, and water. Stable sulfur (δ 34 S), carbon (δ 13 C), and nitrogen (δ 15 N) isotope values were measured to assess energy sources (S, C) and relative trophic level (N). There were increases in biotic δ 13 C and δ 34 S from fresh to more saline sites and these measures were correlated with salinity. Though aqueous MeHg was higher at the freshwater than more saline sites, only chironomid MeHg increased significantly with salinity. In the Saint John River estuary, there was little evidence that MeHg and its associated risks increased along a salinity gradient. Copyright © 2018. Published by Elsevier B.V.

  15. The Partitioning of Triclosan between Aqueous and Particulate Phases in the Hudson River Estuary

    EPA Science Inventory

    The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Tricl...

  16. Discharge-measurement system using an acoustic Doppler current profiler with applications to large rivers and estuaries

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.

    1993-01-01

    Discharge measurement of large rivers and estuaries is difficult, time consuming, and sometimes dangerous. Frequently, discharge measurements cannot be made in tide-affected rivers and estuaries using conventional discharge-measurement techniques because of dynamic discharge conditions. The acoustic Doppler discharge-measurement system (ADDMS) was developed by the U.S. Geological Survey using a vessel-mounted acoustic Doppler current profiler coupled with specialized computer software to measure horizontal water velocity at 1-meter vertical intervals in the water column. The system computes discharge from water-and vessel-velocity data supplied by the ADDMS using vector-algebra algorithms included in the discharge-measurement software. With this system, a discharge measurement can be obtained by engaging the computer software and traversing a river or estuary from bank to bank; discharge in parts of the river or estuarine cross sections that cannot be measured because of ADDMS depth limitations are estimated by the system. Comparisons of ADDMS-measured discharges with ultrasonic-velocity-meter-measured discharges, along with error-analysis data, have confirmed that discharges provided by the ADDMS are at least as accurate as those produced using conventional methods. In addition, the advantage of a much shorter measurement time (2 minutes using the ADDMS compared with 1 hour or longer using conventional methods) has enabled use of the ADDMS for several applications where conventional discharge methods could not have been used with the required accuracy because of dynamic discharge conditions.

  17. Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary.

    PubMed

    Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao

    2016-12-01

    Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.

  18. Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea.

    PubMed

    Yang, Rujun; Su, Han; Qu, Shenglu; Wang, Xuchen

    2017-05-03

    The iron binding capacities (IBC) of fulvic acid (FA) and humic acid (HA) were determined in the salinity range from 5 to 40. The results indicated that IBC decreased while salinity increased. In addition, dissolved iron (dFe), FA and HA were also determined along the Yangtze River estuary's increasing salinity gradient from 0.14 to 33. The loss rates of dFe, FA and HA in the Yangtze River estuary were up to 96%, 74%, and 67%, respectively. The decreases in dFe, FA and HA, as well as the change in IBC of humic substances (HS) along the salinity gradient in the Yangtze River estuary were all well described by a first-order exponential attenuation model: y(dFe/FA/HA, S) = a 0 × exp(kS) + y 0 . These results indicate that flocculation of FA and HA along the salinity gradient resulted in removal of dFe. Furthermore, the exponential attenuation model described in this paper can be applied in the major estuaries of the world where most of the removal of dFe and HS occurs where freshwater and seawater mix.

  19. Quantitative assessment of benthic food resources for juvenile Gulf sturgeon, Acipenser oxyrinchus desotoi in the Suwannee River estuary, Florida, USA

    USGS Publications Warehouse

    Brooks, R.A.; Sulak, K.J.

    2005-01-01

    Gulf sturgeon, Acipenser oxyrinchus desotoi, forage extensively in the Suwannee River estuary following emigration out of the Suwannee River, Florida. While in the estuary, juvenile Gulf sturgeon primarily feed on benthic infauna. In June-July 2002 and February-April 2003, random sites within the estuary were sampled for benthic macrofauna (2002 n = 156; 2003 n = 103). A mean abundance of 2,562 ind m-2 (SE ?? 204) was found in the summer, with significantly reduced macrofaunal abundance in the winter (mean density of 1,044 ind m-2, SE ?? 117). Benthic biomass was significantly higher in the summer with an average summer sample dry weight of 5.92 g m-2 (SE ?? 0.82) compared to 3.91 g m-2 (SE ?? 0.67) in the winter. Amphipods and polychaetes were the dominant taxa collected during both sampling periods. Three different estimates of food availability were examined taking into account principal food item information and biomass estimates. All three estimates provided a slightly different view of potential resources but were consistent in indicating that food resource values for juvenile Gulf sturgeon are spatially heterogeneous within the Suwannee River estuary. ?? 2005 Estuarine Research Federation.

  20. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean

    PubMed Central

    Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.

    2013-01-01

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River’s largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  1. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  2. A predictive model for floating leaf vegetation in the St. Louis River Estuary

    EPA Science Inventory

    In July 2014, USEPA staff was asked by MPCA to develop a predictive model for floating leaf vegetation (FLV) in the St. Louis River Estuary (SLRE). The existing model (Host et al. 2012) greatly overpredicts FLV in St. Louis Bay probably because it was based on a limited number of...

  3. Variation of phytoplankton community structure from the Pearl River estuary to South China Sea.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River is located in the northern part of South China Sea. The environment of the Pearl River estuary (PRE) is significantly impacted by nutrients from anthropogenic activities. Along the anthropogenic pollution gradient from the PRE to South China Sea, the phylogenetic diversity and biomass of phytoplankton was examined in relation to physic-chemical variables. The richness of rbcL gene was higher in the open sea than the estuary, while the concentration of chlorophyll a (Chl a) was higher in the estuary than in the open sea. The cluster analysis of the sequences data resulted in seven phytoplankton community types and the dominant species of phytoplankton changed from Cryptophytes and Diatoms to Prymnesiophytes and Diatoms along the gradient. The community structure of phytoplankton was shaped by nutrients and salinity. The phytoplankton biomass was significantly positively affected by phosphorus, nitrite and ammonium (P < 0.01) but negatively by salinity (P < 0.05); the phytoplankton diversity was highly positively affected by salinity (P < 0.05) but negatively by silicate and nitrate (P < 0.01; P < 0.05, respectively). Anthropogenic activities played a critical role in the phytoplankton distribution and biomass of the study area. Further research is necessary to reveal the influence mechanism of environmental factors on the phytoplankton.

  4. Latest Holocene evolution and human disturbance of a channel segment in the Hudson River Estuary

    USGS Publications Warehouse

    Klingbeil, A.D.; Sommerfield, C.K.

    2005-01-01

    The latest Holocene sedimentary record of a cohesive channel and subtidal shoal in the lower Hudson River Estuary was examined to elucidate natural (sea-level rise, sediment transport) and anthropogenic (bulkheading, dredging) influences on the recent morphodynamic evolution of the system. To characterize the seafloor and shallow subbottom, ??? 100 km of high-resolution seismic reflection profiles (chirp) were collected within a 20-km reach of the estuary and correlated with sediment lithologies provided by eight vibracores recovered along seismic lines. Sediment geochronology with 137Cs and 14C was used to estimate intermediate and long-term sedimentation rates, respectively, and historical bathymetric data were analyzed to identify regional patterns of accretion and erosion, and to quantify changes in channel geometry and sediment volume. The shoal lithosome originated around 4 ka presumably with decelerating eustatic sea level rise during the latest Holocene. Long-term sedimentation rates on the shoal (2.3-2.6 mm/yr) are higher than in the channel (2 mm/yr) owing to hydrodynamic conditions that preferentially sequester suspended sediment on the western side of the estuary. As a result, the shoal accretes oblique to the principal axis of tidal transport, and more rapidly than the channel to produce an asymmetric cross-section. Shoal deposits consist of tidally bedded muds and are stratified by minor erosion surfaces that seismic profiles reveal to extend for 10s of meters to kilometers. The frequency and continuity of these surfaces suggest that the surficial shoal is catastrophically stripped on decadal-centennial time scales by elevated tidal flows; tidal erosion maintains the shoal at a uniform depth below sea level and prevents it from transitioning to an intertidal environment. Consequently, the long-term sedimentation rate approximates the rate of sea-level rise in the lower estuary (1-3 mm/yr). After the mid 1800s, the natural geometry of the lower Hudson

  5. Modeled long-term changes of DIN:DIP ratio in the Changjiang River in relation to Chl-α and DO concentrations in adjacent estuary

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Yan, Weijin; Chen, Nengwang; Li, Xinyan; Liu, Lusan

    2015-12-01

    In the past four decades (1970-2013), nitrogen and phosphorous inputs to the Changjiang River basin, mainly from human activities, have increased 3-fold and 306-fold, respectively. The riverine nutrient fluxes to the estuary have also grown exponentially. Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) fluxes of the Changjiang River increased by 338% and 574% during 1970-2013 period, and red tides and benthic hypoxia have been observed in the outflow region of the Changjiang River in the East China Sea (ECS). We assumed that time series changes in the DIN:DIP ratio from the Changjiang River could have a significant impact on Chlorophyll-α (Chl-α) concentration in the surface sea water and dissolved oxygen (DO) concentration in the bottom sea water of the Changjiang estuary. Our study showed that the DIN:DIP ratio from the Changjiang River increased from 76 to 384 between 1970 and 1985, and decreased from 255 to 149 between 1986 and 2013. The observed Chl-α concentration increased by 146% from 1992 to 2010 in the Changjiang estuary, and was negatively related to the DIN:DIP ratio in 1992-2010. Bottom sea water DO concentration decreased by 24.6% during 1992-2010 and a "low oxygen zone" (122°∼123°E, 32°∼33°N) was observed during summer since 1999. The anthropogenically enhanced nutrient inputs dominated river DIN and DIP fluxes and influenced Chl-α concentrations as well as bottom DO concentrations in the estuary. Scenarios emphasizing global collaboration and proactive environmental problem-solving may result in reductions in the river nutrient exports and in Chl-α and DO concentration in the Changjiang estuary by 2050.

  6. [Residues and potential ecological risk assessment of metal in sediments from lower reaches and estuary of Pearl River].

    PubMed

    Xie, Wen-Ping; Wang, Shao-Bing; Zhu, Xin-Ping; Chen, Kun-Ci; Pan, De-Bo; Hong, Xiao-You; Yin, Yi

    2012-06-01

    In order to investigate the heavy metal concentrations and their potential ecological risks in surface sediments of lower reaches and estuary of Pearl River, 21 bottom sediment samples were collected from lower reaches and estuary of Pearl River. Total contents of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg in these samples were measured by the inductively coupled plasma mass spectrometry (ICP-MS) and the atomic fluorescence spectrometry (AFS) and using the index of geoaccumulation and the potential ecological risk index to evaluate the pollution degree of heavy metals in the sediments. Results indicated that the concentration of total Fe and total Mn were 41658.73 and 1104.73 mg x kg(-1) respectively and toxic trace metals, such as Cr, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg were 86.62, 18.18, 54.10, 80.20, 543.60, 119.55, 4.28, 10.60, 20.26, 104.58 and 0.520 mg x kg(-1). The descending order of pollution degree of various metals is: Cd > As approximately Zn > Hg > Pb approximately Cu approximately Cr, while the single potential ecological risk followed the order: Cd > Hg > As > Cu > Pb > Zn > Cr. The pollution extent and potential ecological risk of Cd were the most serious among all heavy metals. The distribution pattern of Cd individual potential ecological risk indices is exactly the same as that of general potential ecological risk indices for all heavy metals. Clustering analysis indicates that the sampling stations may be classified into five groups which basically reflected the characteristics of the heavy metal contamination and sedimentation environments along the different river reaches in lower reaches and estuary of Pearl Rive. In general, the serious heavy metal pollution and the high potential ecological risk existed in three river reaches: Chengcun-Shawan, Chengcun-Shundegang and Waihai-Hutiaomen. The pollution degree and potential ecological risk are higher in related river reaches of Beijiang than that in other lower reaches and

  7. Last century seabed morphodynamics of the Magra River estuary (Western Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pratellesi, Marta; Ivaldi, Roberta; Ciavola, Paolo; Sinapi, Luigi

    2016-04-01

    The estimation of morphological and volumetric changes of the delta system at the mouth of the Magra River is presented in this paper using bathymetric and sedimentological data. The data series were collected during several hydro-oceanographic surveys carried out from 1882 to 2014, processed following the hydrographic international standards and stored in the Italian Navy Hydrographic Institute database. In particular, bathymetric data characterized by the same standard and accuracy were collected using different devices such as sounding lines, single-beam and multi-beam acoustic system. This research compares Digital Terrain Models (DTMs), derived from highly accurate bathymetric data and covering different time scales (secular, half-century and decade) in order to assess and quantify the seabed morphodynamics in relation with the river sedimentary budget. The methodology and data exploitation consist mainly in the production of DTMs to study the elevation change, two-dimensional and three dimensional maps, cross-sections of the seabed, difference surfaces and computation of net volumes as well as an historical sedimentological map. These products are also an useful contribution to the aim of EU RISC-KIT Project. The results of the analysis highlight changes in the geometry of the Magra River mouth, of the coastal profile and bottom features primarily due to variations of the sedimentary budget and secondarily to wave dynamics. This behaviour is characterized by evident river mouth and coastal retreat, beach erosion and sediment bars decay and net accretion under periods of high river sediment discharge and elongate bar formation during relatively fair conditions. In the last century the main change is constituted by the disappearance of the typical constructive seabed delta morphology and the transformation into the current small estuary, with microtidal condition. This small estuary has an upper sector where river processes, sediments and bedforms dominate, a

  8. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China.

    PubMed

    Li, Si; Shi, Wanzi; Li, Huimin; Xu, Nan; Zhang, Ruijie; Chen, Xuejiao; Sun, Weiling; Wen, Donghui; He, Shanliang; Pan, Jianguo; He, Zhidong; Fan, Yingying

    2018-09-15

    The occurrence, spatiotemporal distribution and ecological risks of 27 antibiotics in water and sediments from rivers and coastal area of Zhuhai, Pearl River estuary, south China were investigated. Higher concentrations of antibiotics were found in river water in dry season than those in wet season (p < 0.01), especially for quinolones (QNs) (6.36-463 ng/L) and aminoglycosides (AGs) (94.9-458 ng/L). In coastal water samples, the concentrations of antibiotics were up to 419 ng/L and 357 ng/L in dry season and wet season, respectively. Higher concentrations of antibiotics in coastal sediment samples were observed in wet season compared with those in dry season (p < 0.01). This may be ascribed to the greater discharge of antibiotics from mariculture and surface sediment flushing in wet season, leading to the accumulation of polluted sediments in the estuary. Redundancy analysis showed that the concentrations of antibiotics in water were correlated with biological/chemical oxygen demand, ammonia nitrogen, and/or total nitrogen (TN). In addition, sediment organic matter (SOC) and TN strongly affected the distribution of antibiotics in sediments. Ecological risk assessment based on risk quotients (RQs) indicated that most antibiotics in water samples posed insignificant risk to fish and green algae, and insignificant to medium risk to daphnid. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Dissolved silica in the tidal Potomac River and Estuary, 1979-81 water years

    USGS Publications Warehouse

    Blanchard, Stephen F.

    1988-01-01

    The Potomac River at Chain Bridge is the major riverine source of dissolved silica (DSi) to the tidal Potomac River and Estuary. DSi concentrations at Chain Bridge are positively correlated with river discharge; river discharge is an important factor controlling rates of supply, dilution, and residence time. When river flow is high, the longitudinal DSi distribution is conservative. When river flow is low, other processes, such as phytoplankton uptake, benthic flux, resuspension, ground-water discharge, and water-column dissolution of diatoms, tend to be more influential than the river. Elevated concentrations of DSi in sewage-treatment-plant effluent in the Washington, D.C., area raise the DSi concentration of receiving Potomac River water. The tidal river zone serves as a net sink for DSi as a result of phytoplankton uptake. Ultimately, the biogenic silica from the tidal river is transported to the transition zone, where it is mineralized. As a result, the DSi concentration in the transition zone increases during summer. The DSi concentrations in the estuarine zone are largely controlled by dilution by Chesapeake Bay water and by phytoplankton uptake.

  10. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    PubMed

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sediment concentrations and loads in the Loxahatchee River estuary, Florida, 1980-82

    USGS Publications Warehouse

    Sonntag, Wayne H.; McPherson, Benjamin F.

    1984-01-01

    This study was conducted to estimate the magnitude of sediment loads and the general spatial and temporal patterns of sediment transport in the Loxahatchee River estuary, Florida. Mean concentrations of suspended sediment generally were higher in the Jupiter Inlet area than in the remainder of the embayment area. Concentrations of suspended sediment varied with season and weather conditions. Concentrations in selected tributaries following Tropical Storm Dennis in August 1981 immediately increased as much as 16 times over concentrations before the storm. Suspended-sediment loads from the tributaries were also highly seasonal and storm related. During a 61-day period of above-average rainfall that included Tropical Storm Dennis, 5 major tributaries discharged 926 tons (short) of suspended sediment to the estuary, accounting for 74 percent of the input for the 1981 water year and 49 percent of the input for the 20-month study period. Suspended-sediment loads at Jupiter Inlet and at the mouth of the estuary embayment on both incoming and outgoing tides far exceeded tributary loads, but the direction of long-term, net tidal transport was not determined. (USGS)

  12. [Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].

    PubMed

    Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang

    2011-09-01

    The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately.

  13. REE in the Great Whale River estuary, northwest Quebec

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    A report on REE concentrations within the estuary of the Great Whale River in northwest Quebec and in Hudson Bay is given, showing concentrations which are less than those predicted by conservative mixing of seawater and river water, indicating removal of REE from solution. REE removal is rapid, occurring primarily at salinities less than 2 percent and ranges from about 70 percent for light REE to no more than 40 percent for heavy REE. At low salinity, Fe removal is essentially complete. The shape of Fe and REE vs. salinity profiles is not consistent with a simple model of destabilization and coagulation of Fe and REE-bearing colloidal material. A linear relationship between the activity of free ion REE(3+) and pH is consistent with a simple ion-exchange model for REE removal. Surface and subsurface samples of Hudson Bay seawater show high REE and La/Yb concentrations relative to average seawater, with the subsurface sample having a Nd concentration of 100 pmol/kg and an epsilon(Nd) of -29.3; characteristics consistent with river inputs of Hudson Bay. This indicates that rivers draining the Canadian Shield are a major source of nonradiogenic Nd and REE to the Atlantic Ocean.

  14. Habitat use and trophic position effects on contaminant bioaccumulation in St. Louis River Estuary fishes

    EPA Science Inventory

    The objective of our study was to determine the relationship between fish tissue stable isotope composition and total mercury or polychlorinated biphenyl (PCB) concentrations in the St. Louis River estuary food web. We sampled two resident fishes, Yellow Perch (Perca flavescens) ...

  15. Mathematical modelling for distribution of heavy metals in estuary area of Red River (Vietnam)

    NASA Astrophysics Data System (ADS)

    Nguyen, N. T. T.; Volkova, I. V.

    2018-05-01

    In this paper, the authors studied the features of spatial distribution of some heavy metals (Pb, Hg, As) in the system “suspended substance - bottom sediments” in the mouth area of the Red River (Vietnam). A mathematical modelling for diffusion processes of heavy metals in a suspended form, in bottom sediments and the spatial analysis for the results of these models were proposed and implemented. The studies were carried out during main hydrological seasons of 2014 - 2016 (during the flood and inter-natal periods). The propagation of heavy metals was modeled by solving the equation of turbulent diffusion. A spatial analysis of the content of heavy metals in the suspended form and in the bottom sediments was implemented by using the interpolation model in ArcGIS 10.2.2. The distribution of Pb, Hg, As concentration of the suspended form and bottom sediment phases in the estuary area of the Red River was characterized by maximum in the mouths of the branches and general decreasing gradient towards the sea. Maximum concentrations of Pb, Hg in suspended forms were observed in the surface layer of water at the river-sea barrier. The content of Hg and As in the estuary region of the Red River was observed in the following order: SSsurf< SSbott< BS; and content of Pb – SS >BS.

  16. Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China

    NASA Astrophysics Data System (ADS)

    Wu, Meilin; Wang, Youshao; Dong, Junde; Sun, Fulin; Wang, Yutu; Hong, Yiguo

    2017-03-01

    A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organizing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.

  17. Influence of Environmental Variables on the Distribution of Macrobenthos in the Han River Estuary, Korea

    NASA Astrophysics Data System (ADS)

    Yu, Ok Hwan; Lee, Hyung-Gon; Lee, Jae-Hac

    2012-12-01

    We compared environmental effects on the macrobenthic community of the Han River Estuary in summer, when freshwater input from the Han River increased, and in spring, when freshwater input decreased. Field samples were taken from the upper region of the Shingok reservoir to the southern area of Ganghwado at 18 sampling sites after rainy (August 2006) and dry (March 2007) seasons. Macrobenthic fauna were collected using a Van Veen Grab (0.025 m2 and 0.1 m2) and environmental factors were measured simultaneously. Dominant species of macrobenthic fauna and the macrobenthic community were divided into two areas, the area of the Han River with no salinity (< 0.1 psu) and the southern part of Ganghwado with salinity (> 20 psu). The dominant species Byblis japonicus appeared at Junruri in the dry season. The distributions of two polychaetes, Hediste japonica and Nephtys caeca, were divided into the lower and upper areas of the Singok submerged weir. BIO-ENV (the matching of biotic to environmental patterns) analysis revealed that salinity was the most important factor affecting macrobenthic communities in the Han River Estuary, with other factors such as sediment grain size, bottom dissolved oxygen, and total organic carbon of sediment being secondary.

  18. Distribution of submerged aquatic vegetation in the St. Louis River estuary: Maps and models

    EPA Science Inventory

    In late summer of 2011 and 2012 we used echo-sounding gear to map the distribution of submerged aquatic vegetation (SAV) in the St. Louis River Estuary (SLRE). From these data we produced maps of SAV distribution and we created logistic models to predict the probability of occurr...

  19. Dissolved Copper, Nickel and Lead in Tampamachoco Lagoon and Tuxpan River Estuary in the SW Gulf of Mexico.

    PubMed

    Garduño Ruiz, E P; Rosales Hoz, L; Carranza Edwards, A

    2016-10-01

    In order to estimate the effects of a thermal power plant, physicochemical parameters and the concentrations of copper, nickel and lead were evaluated in water from both Tampamachoco Lagoon and the estuary of the Tuxpan River. Average salinities were 33.66 ups in the lagoon area, 32.77 ups in the channel that joins the lagoon and the river, and 24.74 ups in the river estuary. Total average metal concentrations were 21.95 for Cu, 29.67 for Ni and 4.31 µ/L for Pb. Sampling point 1 and samples from the bottom water of the lagoon present the highest salinities and concentrations of suspended matter, TOC, Cu, Ni and Pb.These high values may be associated with the infiltration of sea water either from plant operation or from the channel that connects the lagoon with the sea.

  20. Learning Lessons from Estuaries

    ERIC Educational Resources Information Center

    Schnittka, Christine

    2006-01-01

    There is something that draws all people to the sea and especially to the fertile estuaries that nuzzle up to its shores. An estuary serves as both a nursery and a grave for sea creatures. If life evolved from some primordial sea, it may well have been an estuary--a place where ocean and rivers meet and fresh and salty waters mingle in the…

  1. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River estuary, China.

    PubMed

    Bu, Naishun; Qu, Junfeng; Li, Zhaolei; Li, Gang; Zhao, Hua; Zhao, Bin; Li, Bo; Chen, Jiakuan; Fang, Changming

    2015-01-01

    Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m(-2) h(-1) in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m(-2) h(-1) in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change.

  2. Effects of Spartina alterniflora Invasion on Soil Respiration in the Yangtze River Estuary, China

    PubMed Central

    Bu, Naishun; Qu, Junfeng; Li, Zhaolei; Li, Gang; Zhao, Hua; Zhao, Bin; Li, Bo; Chen, Jiakuan; Fang, Changming

    2015-01-01

    Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m−2 h−1 in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m−2 h−1 in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change. PMID:25799512

  3. Effects of dams on downstream molluscan predator-prey interactions in the Colorado River estuary.

    PubMed

    Smith, Jansen A; Handley, John C; Dietl, Gregory P

    2018-05-30

    River systems worldwide have been modified for human use and the downstream ecological consequences are often poorly understood. In the Colorado River estuary, where upstream water diversions have limited freshwater input during the last century, mollusc remains from the last several hundred years suggest widespread ecological change. The once abundant clam Mulinia modesta has undergone population declines of approximately 94% and populations of predators relying on this species as a food source have probably declined, switched to alternative prey species or both. We distinguish between the first two hypotheses using a null model of predation preference to test whether M. modesta was preyed upon selectively by the naticid snail, Neverita reclusiana , along the estuary's past salinity gradient. To evaluate the third hypothesis, we estimate available prey biomass today and in the past, assuming prey were a limiting resource. Data on the frequency of drill holes-identifiable traces of naticid predation on prey shells-showed several species, including M. modesta , were preferred prey. Neverita reclusiana was probably able to switch prey. Available prey biomass also declined, suggesting the N. reclusiana population probably also declined. These results indicate a substantial change to the structure of the benthic food web. Given the global scale of water management, such changes have probably also occurred in many of the world's estuaries. © 2018 The Author(s).

  4. Chesapeake Bay Habitat Criteria Scores and the Distribution of Submersed Aquatic Vegetation in the Tidal Potomac River and Potomac Estuary, 1983-1997

    DTIC Science & Technology

    1999-01-01

    AND THE DISTRIBUTION OF SUBMERSED AQUATIC VEGETATION IN THE TIDAL POTOMAC RIVER AND POTOMAC ESTUARY, 1983-1997 By Jurate M. Landwehr, Justin T. Reel...AQUATIC VEGETATION IN THE TIDAL POTOMAC RIVER AND POTOMAC ESTUARY, 1983-1997 by Jurate M. Landwehr, Justin T. Reel, Nancy B. Rybicki, Henry A. Ruhl, and...K.A., Dennison, W.C., Stevenson, J.C., Staver, L. W., Carter, V., Rybicki, N. B., Hickman, R. E., Kollar, S., Bieber , S., and Heasly, P., 1992

  5. Evaluation of the ecotoxicity of sediments from Yangtze river estuary and contribution of priority PAHs to ah receptor--mediated activities.

    PubMed

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants.

  6. Evaluation of the Ecotoxicity of Sediments from Yangtze River Estuary and Contribution of Priority PAHs to Ah Receptor-Mediated Activities

    PubMed Central

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants. PMID:25111307

  7. Time Series Analysis of Water Level and Temperature in the St Louis River Estuary

    EPA Science Inventory

    Pressure and temperature loggers were deployed at 9 sites in the St Louis River estuary between 6/23 10/31 2011. A reference sensor was place on the shore to correct pressure data. Sensors were paced at <1 m depth in Allouez Bay, Superior Bay, near Hearding Island, WLSSD Bay, th...

  8. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China

    NASA Astrophysics Data System (ADS)

    Wang, Guizhi; Wang, Zhangyong; Zhai, Weidong; Moore, Willard S.; Li, Qing; Yan, Xiuli; Qi, Di; Jiang, Yuwu

    2015-01-01

    To evaluate geochemical impacts of the subterranean estuary (STE) on the Jiulong River estuary, China, we estimated seasonal fluxes of subterranean water discharge into the estuary based on the mass balance of radium isotopes and net subterranean export fluxes of dissolved inorganic C (DIC), N (DIN), Si (DSi), soluble reactive phosphorus (SRP), and total alkalinity (TA). Based on 226Ra data, the subterranean discharge (in 107 m3 d-1) was estimated to be 0.29-0.60 in the spring, 0.69-1.44 in the summer, 0.45-0.93 in the fall, and 0.26-0.54 in the winter. This was equivalent to 8-19% of the concomitant river discharge. The net spatially integrated material fluxes from the STE into the estuary were equivalent up to 45-110% of the concomitant riverine fluxes for DIC and TA, around 14-32% for DSi and 7-19% for DIN, and negligible for SRP. Paradoxically, the mixing lines along the salinity gradient revealed no apparent additions of these species. These additions are not revealed because the STE is a relatively small spatially-averaged source (at most 11% of the total input at steady state) that spreads throughout the estuary as a non-point source in contrast to the major point sources of the river and the ocean for the estuary and a true open ocean endmember is likely lacking. Greater water flushing in the summer might dilute the STE effect on the mixing lines even more. The great spatial variation in salinity in the estuary introduced the major uncertainty in our estimates of the flushing time, which further affected the estimate of the subterranean discharge and associated material fluxes. Additionally, the great spatial variation in the STE endmember caused the relatively large ranges in these flux estimates. Despite apparent conservative mixing of DIC, DIN, and DSi in estuaries, net subterranean exports must be taken into account in evaluating geochemical impacts of estuarine exports on shelf waters.

  9. Impact of the river Liffey discharge on nutrient and chlorophyll concentrations in the Liffey estuary and Dublin Bay (Irish Sea)

    NASA Astrophysics Data System (ADS)

    O'Higgins, T. G.; Wilson, J. G.

    2005-08-01

    Temperature, salinity, nutrients (total oxidised nitrogen (TON), ammonium (NH 4) and orthophosphate (PO 4)) and chlorophyll a were monitored in the Liffey estuary and Dublin Bay from June 2000 to June 2003. Four groups of sites were defined comprising the upper estuary (Gp. I), the outer estuary (Gp. III) with a small set (Gp. II) of sites between Groups I and III heavily influenced by the sewage treatment works outflow, and the Bay proper (Gp. IV). Riverine inputs of TON and PO 4 were calculated at an average of 826 t N y -1 and 31 t P y -1, respectively, and were largely controlled by flow rate. The sewage treatment works were identified as a major source of PO 4 and NH 4 to the system. Mixing in the upper estuary of nutrient limited saline waters with hypernutrified river water regularly (i.e. annually) produced relatively high concentrations of chlorophyll a (>10 mg chl a m -3), and also sporadic blooms with extremely high chlorophyll a values (max. 121.6 mg chl a m -3). These latter phytoplankton blooms occurred in high salinity waters and were due to mixing of nutrient limited saline waters and nutrient rich river waters. The mean annual flux of phytoplankton carbon from the river Liffey was calculated at 23.5 t C y -1, of which half was accumulated or remineralised in the estuary and did not enter the Bay. In the Bay proper (Gp. IV) summer nutrient concentrations dropped below detection limits, and chlorophyll a concentrations followed the classic pattern with a spring bloom maximum of 5.5 mg chl a m -3. This pattern in nutrients and chlorophyll a came from the advection of waters into the Bay from an offshore source. Overall while there was considerable evidence for eutrophication in the estuary, the bay itself showed little biological response to nutrient loading.

  10. A Community Runs Through It: 30 Years of Collaboration in the St. Louis River Estuary

    EPA Science Inventory

    When participants in the 2016 St Louis River Summit identified their roles and described their interactions with the estuary on the 50-year timeline, they were illustrating the community that built and is now implementing the Remedial Action Plan. From its inception, the Great La...

  11. Application of cluster analysis to the geochemistry zonation of the estuary waters in the Tinto and Odiel rivers (Huelva, Spain).

    PubMed

    Grande, José Antonio; Borrego, José; de la Torre, Maria Luisa; Sáinz, A

    2003-06-01

    The combination of acid water from mines, industrial effluents and sea water plays a determining role in the evolutionary process of the chemical makeup of the water in the estuary of the Tinto and Odiel rivers. This estuary is in the southwest of the Iberian Peninsula and is one of the estuarine systems on the northwest coast of the Gulf of Cádiz. From the statistical treatment of data obtained by analyzing samples of water from this system, which is affected by industrial and mining pollution processes, we can see how the sampling points studied form two large groups depending on whether they receive tidal or fluvial influences. Fluvial input contributes acid water with high concentrations of heavy metal, whereas industrial effluents are responsible for the presence of phosphates, silica and other nutrients. The estuarine system of the Tinto and Odiel Rivers can be divided into three areas--the Tinto estuary, the Odiel estuary and the area of confluence--based on the physical--chemical characteristics of the water.

  12. Geochemistry of the suspended sediment in the estuaries of the Mandovi and Zuari rivers, central west coast of India.

    PubMed

    Kessarkar, Pratima M; Shynu, R; Rao, V Purnachandra; Chong, Feng; Narvekar, Tanuja; Zhang, Jing

    2013-05-01

    The geochemistry of the suspended particulate matter (SPM) collected during the monsoon was determined to identify the sources of SPM and to understand the physicochemical processes in the Mandovi and Zuari river estuaries. The concentrations of SPM decrease seaward in both estuaries, but are relatively high at bay stations. Kaolinite is the most dominant clay mineral in the upstream of both rivers. Smectite increases seaward in both estuaries and is abundant in the bay. Upstream stations of Mandovi, where ore deposits are stored on the shore, exhibit high Fe, Mn, total rare earth elements (∑REE), and middle REE- and heavy REE-enriched patterns. Channel stations of both estuaries exhibit middle REE- and light REE-enriched patterns, which gradually changed seaward to middle REE- and heavy REE-enriched patterns. Canal stations exhibit the highest concentrations of major and trace metals. High metal/Al ratios occur at stations in the upstream of Zuari and at the confluence of canals in the Mandovi estuary. Enrichment factors of metals indicate that Mn is significantly polluted while other metals are moderately polluted. The δ(13)C and δ(15)N of organic matter indicate that the terrigenous organic matter at the upstream is diluted seaward by marine organic matter. Organic matter at bay stations is largely marine and altered-type. The compositions of SPM are controlled by the particulates from ore dust, the geology of the drainage basins, and the physicochemical processes in the estuaries. Particulates resuspended from the bay are dominated by ore dust, which are advected into the channels of both estuaries during the lull periods of the monsoon.

  13. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China.

    PubMed

    Liang, Ximei; Chen, Baowei; Nie, Xiangping; Shi, Zhen; Huang, Xiaoping; Li, Xiangdong

    2013-09-01

    Antibiotics released into the aquatic environment play an important role in the spread of antibiotic resistance. In the Pearl River Estuary (PRE) and the coastal zone, the concentrations of antibiotics decreased from the Pearl River to the estuary, suggesting that antibiotics primarily originated from river tributaries and terrigenous sources. Within the PRE area, the concentrations of antibiotics in water were higher in the west coast than the east side, reflecting the high density of anthropogenic activities and hydraulic conditions along the west riverbank. Seasonal variations were also observed for most of detected antibiotics in water. The pseudo-partitioning coefficient of norfloxacin had a good correlation with the TOC content of sediments, as did erythromycin-H2O with the pH of water. The results suggest that environmental conditions can significantly affect the distribution of antibiotics between water and sediment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Tideless estuaries in brackish seas as possible freshwater-marine transition zones for bacteria: the case study of the Vistula river estuary.

    PubMed

    Gołębiewski, Marcin; Całkiewicz, Joanna; Creer, Simon; Piwosz, Kasia

    2017-04-01

    Most bacteria are found either in marine or fresh waters and transitions between the two habitats are rare, even though freshwater and marine bacteria co-occur in brackish habitats. Estuaries in brackish, tideless seas could be habitats where the transition of freshwater phylotypes to marine conditions occurs. We tested this hypothesis in the Gulf of Gdańsk (Baltic Sea) by comparing bacterial communities from different zones of the estuary, via pyrosequencing of 16S rRNA amplicons. We predicted the existence of a core microbiome (CM, a set of abundant OTUs present in all samples) comprising OTUs consisting of populations specific for particular zones of the estuary. The CMs for the entire studied period consisted of only eight OTUs, and this number was even lower for specific seasons: five in spring, two in summer, and one in autumn and winter. Six of the CM OTUs, and another 21 of the 50 most abundant OTUs consisted of zone-specific populations, plausibly representing micro-evolutionary forces. The presence of up to 15% of freshwater phylotypes from the Vistula River in the brackish Gulf of Gdańsk supported our hypothesis, but high dissimilarity between the bacterial communities suggested that freshwater-marine transitions are rare even in tideless estuaries in brackish seas. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Distribution, abundance and productivity of benthic invertebrates at the Berg River estuary, South Africa

    NASA Astrophysics Data System (ADS)

    Kalejta, B.; Hockey, P. A. R.

    1991-08-01

    Twenty-five benthic invertebrate species were identified from samples taken monthly over 17 months at four sites on the Berg River estuary, South Africa. Gastropods and polychaetes dominated the macrofauna in terms of both numbers and biomass. Abundance of the dominant species fluctuated in response to seasonal growth of eelgrass Zostera capensis and filamentous alga Cladophora sp. Differences in distributions of invertebrates on the estuary were attributed to differences in physical properties of the substratum and in vegetation cover. Hydrobia sp., Ceratonereis erythraeensis and C. keiskama were the most important species in terms of biomass and accounted for an average of 75% of total biomass at all study sites. Biomass peaked during the austral winter, early spring and again in autumn. An increase in biomass in winter was due to somatic production, whereas spring and autumn increases were attributed to recruitment of juveniles following reproduction. Mean annual biomass for the whole estuary was 19·36 g m -2, and mean annual production 87·58 g m -2 year -1, yielding a net P/B ratio of 4·52. Production and P/B ratios of invertebrates in estuaries and coastal lagoons at temperate and subtropical latitudes were positively correlated with mean annual ambient temperature and negatively with distance from the equator. Production data are lacking from tropical estuaries.

  16. PARASITIC AND SYMBIONIC FAUNA IN OYSTERS (CRASSOSTREA VIRGINICA) COLLECTED FROM THE CALOOSAHATCHEE RIVER AND ESTUARY, FLORIDA

    EPA Science Inventory



    Studies of oysters, Crassostrea virginica, collected from ten sites in the Caloosahatchee River and Estuary, Florida, revealed a varied parasite and symbiotic fauna that have never been reported from this area. Organisms observed included ovacystis virus infecting gametes...

  17. Complex movement patterns of greenback flounder (Rhombosolea tapirina) in the Murray River estuary and Coorong, Australia

    NASA Astrophysics Data System (ADS)

    Earl, Jason; Fowler, Anthony J.; Ye, Qifeng; Dittmann, Sabine

    2017-04-01

    The greenback flounder Rhombosolea tapirina is a commercially-important flatfish species in southern Australia and New Zealand, whose population dynamics are poorly understood. Acoustic telemetry was used to assess movement patterns and area use for R. tapirina in the Murray River estuary and Coorong, South Australia. Twenty fish (221-313 mm total length) equipped with acoustic transmitters were monitored for up to seven months during a period of high freshwater inflow. Fish were detected over a large part of the system, but showed a strong preference for brackish and near-marine conditions in the inner estuary. Tagged fish exhibited complex movement patterns that differed among individuals, including: (1) within estuary movements; (2) dispersal from the estuary to the sea; and (3) return migrations between the estuary and the sea. A diurnal shift in fine-scale area use was observed in the part of the estuary where residency was highest, with individuals occupying deeper habitats during the day and shallower areas during the night. The results demonstrate the individualistic and often highly transient behaviour of this species and its ability to undertake regular movements over the spatial scale of 10s of km. Understanding such movement patterns can improve effective management of estuarine flatfish populations and ecosystems.

  18. Winds and the orientation of a coastal plane estuary plume

    NASA Astrophysics Data System (ADS)

    Xia, Meng; Xie, Lian; Pietrafesa, Leonard J.

    2010-10-01

    Based on a calibrated coastal plane estuary plume model, ideal model hindcasts of estuary plumes are used to describe the evolution of the plume pattern in response to river discharge and local wind forcing by selecting a typical partially mixed estuary (the Cape Fear River Estuary or CFRE). With the help of an existing calibrated plume model, as described by Xia et al. (2007), simulations were conducted using different parameters to evaluate the plume behavior type and its change associated with the variation of wind forcing and river discharge. The simulations indicate that relatively moderate winds can mechanically reverse the flow direction of the plume. Downwelling favorably wind will pin the plume to the coasts while the upwelling plume could induce plume from the left side to right side in the application to CFRE. It was found that six major types of plumes may occur in the estuary and in the corresponding coastal ocean. To better understand these plumes in the CFRE and other similar river estuary systems, we also investigated how the plumes transition from one type to another. Results showed that wind direction, wind speed, and sometimes river discharge contribute to plume transitions.

  19. [Distribution and source of particulate organic carbon and particulate nitrogen in the Yangtze River Estuary in summer 2012].

    PubMed

    Xing, Jian-Wei; Xian, Wei-Wei; Sheng, Xiu-Zhen

    2014-07-01

    Based on the data from the cruise carried out in August 2012 in the Yangtze River Estuary and its adjacent waters, spatial distributions of particulate organic carbon (POC), particulate nitrogen (PN) and their relationships with environmental factors were studied, and the source of POC and the contribution of phytoplankton to POC were analyzed combined with n (C)/n (N) ratio and chlorophyll a (Chl a) in the Yangtze River Estuary in summer 2012. The results showed that the concentrations of POC in the Yangtze River Estuary ranged from 0.68 mg x L(-1) to 34.80 mg x L(-1) in summer and the average content was 3.74 mg x L(-1), and PN contents varied between 0.03 mg x L(-1) and 9.13 mg x L(-1) with an average value of 0.57 mg x L(-1). Both of them presented that the concentrations in bottom layers were higher than those in the surface. POC and PN as well as total suspended matter (TSM) showed a extremel similar horizontal distribution trend that the highest values appeared in the near of the mouth and southwest of the survey waters, and decreased rapidly as toward the open seas, both of them showed higher contents in coastal zones and lower in outer sea. There was a fairly good positive linear relationship between POC and PN, which indicated that they had the same source. POC and PN expressed significantly positive correlations with TSM and chemical oxygen demand (COD), but showed relatively weak correlations with salinit and chlorophyll a, which demonstrated that terrestrial inputs had a strong influence on the distribution of POC and PN, and phytoplankton production was not the major source of organic matters in the Yangtze River Estuary. Both the n (C)/n (N) ratio and POC/Chl a analysis showed that the main source of POC was terrestrial inputs, and organic debris was the main existence form of POC. Quantitative analysis showed the biomass of phytoplankton only made an average of 2.54% contribution to POC in the Yangtze Rive Estuary in summer and non-living POC

  20. Ecosystem Health Assessment in the Pearl River Estuary of China by Considering Ecosystem Coordination

    PubMed Central

    Chen, Xiaoyan; Gao, Huiwang; Yao, Xiaohong; Chen, Zhenhua; Fang, Hongda; Ye, Shufeng

    2013-01-01

    Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3–16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health. PMID:23894670

  1. Spatial-temporal variations of phosphorus fractions in surface water and suspended particles in the Daliao River Estuary, Northeast China.

    PubMed

    Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen

    2016-08-01

    The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.

  2. MEASURED CONCENTRATIONS OF HERBICIDES AND MODEL PREDICTIONS OF ATRAZINE FATE IN THE PATUXENT RIVER ESTUARY

    EPA Science Inventory

    McConnell, Laura L., Jennifer A. Harman-Fetcho and James D. Hagy, III. 2004. Measured Concentrations of Herbicides and Model Predictions of Atrazine Fate in the Patuxent River Estuary. J. Environ. Qual. 33(2):594-604. (ERL,GB X1051).

    The environmental fate of herbicides i...

  3. Long-term Changes in Water Quality and Productivity in the Patuxent River Estuary: 1985 to 2003

    EPA Science Inventory

    We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and non-point nutrient inputs to the Patuxent River estuary. We analyzed a 19-year data set o...

  4. An integrated model for the fate and bioaccumulation of PCBs in the Hudson River estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, K.J.; Thomann, R.V.

    1995-12-31

    An integrated mass transport model with a five component food chain calculation was developed for predicting PCB accumulation in sediments, lower trophic species, and striped bass. The model was originally applied to PCB homologues and calibrated using field data through 1987. Results of this work indicated that, under a no-action alternative, 50% of the striped bass would be below the FDA limit of 2 {micro}g of PCB/g of fish (wet weight) by 1992 and 95% of the striped bass would be below the FDA limit by 2004. An initial post-audit evaluation of the model showed that predicted PCB concentrations inmore » striped bass compared well to field measurements. Some deviation in predicted and observed concentrations however were noted in the upper portion of the estuary and are believed to be related to a transient PCB load from the upper Hudson. Further evaluations are presently being performed to addressed: (1) how have Hudson River sediments and striped bass responded to decreasing PCB loads; (2) what are the relative contributions of PCB loads from the upper Hudson, from contaminated estuarine sediments, and from wastewater discharges into the lower estuary on present PCB levels in fish; and (3) what role does congener structure play in determining the fate and bioaccumulation of PCBs in the Hudson River estuary.« less

  5. Influence of wind and river discharge on the vertical exchange process in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Hong, B.; Peng, S.

    2016-02-01

    Vertical exchange process is controlled by the buoyancy input from river discharge and the momentum input by wind forcing. This study investigates the vertical exchange process in the Pearl River Estuary by using a 3-D numerical model. The vertical exchange time (VET) is used to quantify the magnitude of vertical exchange process in response to changing local wind and river discharge. During the dry season, it only takes about 2 days for the surface layer water mass being transported to the bottom layer. During the wet season, such transport will take more than 20 days in a large portion of the main channel. The water in the slope area can be well ventilated. Linear regression of VET indicates that water column stratification can be used to estimate the VET and up to 71% of the variance can be accounted. The estimation by using river runoff can only account for about 49% of the variance. The effects of wind speed and direction are investigated separately. Neither river runoff nor the stratification can properly predict the VET during the typical wet season. Further investigations are needed to reveal the dynamics of vertical exchange process and find out other factors that influence the VET during the wet season.

  6. [Changes of wetland landscape pattern in Dayang River Estuary based on high-resolution remote sensing image].

    PubMed

    Wu, Tao; Zhao, Dong-zhi; Zhang, Feng-shou; Wei, Bao-quan

    2011-07-01

    Based on the comprehensive consideration of the high resolution characteristics of remote sensing data and the current situation of land cover and land use in Dayang River Estuary wetland, a classification system with different resolutions of wetland landscape in the Estuary was established. The landscape pattern indices and landscape transition matrix were calculated by using the high resolution remote sensing data, and the dynamic changes of the landscape pattern from 1984 to 2008 were analyzed. In the study period, the wetland landscape components changed drastically. Wetland landscape transferred from natural wetland into artificial wetland, and wetland core regional area decreased. Natural wetland's largest patch area index descended, and the fragmentation degree ascended; while artificial wetland area expanded, its patch number decreased, polymerization degree increased, and the maximum patch area index had an obvious increasing trend. Increasing human activities, embankment construction, and reclamation for aquaculture were the main causes for the decrease of wetland area and the degradation of the ecological functions of Dayang River Estuary. To constitute long-term scientific and reasonable development plan, establish wetland nature reserves, protect riverway, draft strict inspective regimes for aquaculture reclamation, and energetically develop resource-based tourism industry would be the main strategies for the protection of the estuarine wetland.

  7. Spatial and Temporal Comparison of DNRA Communities in New River Estuary, USA

    NASA Astrophysics Data System (ADS)

    Song, B.; Lisa, J.; Tobias, C. R.

    2016-02-01

    Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate respiring pathway, competing with denitrification, in various ecosystems. Studies examining the diversity and composition of DNRA communities are limited and their link to DNRA activity is unknown. We conducted a multidisciplinary investigation of sediment communities in the upper reaches of a eutrophic estuary to examine spatial and temporal variation of DNRA community structures and determine their linkage to activities. Sediment samples were collected seasonally from two study sites (AA2 and JAX) in the New River Estuary, North Carolina, USA. 15N-nitrate tracer experiments were conducted to measure potential DNRA rates while abundance of DNRA communities was measured using quantitative PCR of cytochrome C nitrite reductase genes (nrfA). Composition and diversity of DNRA communities were also examined based on next generation sequencing (NGS) of nrfA genes using an Ion Torrent PGM. Bioinformatic analysis was conducted using the FunGene pipeline and Mothur program. Higher DNRA activities were measured at JAX and associated with higher abundance of nrfA genes. Seasonal variation in DNRA rates and nrfA gene abundance was more evident at JAX than AA2. Nitrate concentration and dissolved oxygen in bottom water were significantly and positively correlated with activities and abundance of DNRA communities. The nrfA NGS analysis revealed that spatial variation of DNRA communities was much greater than temporal variation with salinity, dissolved organic carbon, and nitrate as the most important environmental variables affecting these communities. Diversity of DNRA communities was negative correlated with the DNRA rates and nrfA gene abundance, which suggests that dominant members of the DNRA community are responsible for higher rates. Thus, our multidisciplinary study clearly demonstrates the linkage between structure and activities of DNRA communities in the upper reaches of New River Estuary.

  8. Silicon dynamics in the Oder estuary, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pastuszak, Marianna; Conley, Daniel J.; Humborg, Christoph; Witek, Zbigniew; Sitek, Stanisław

    2008-10-01

    Studies on dissolved silicate (DSi) and biogenic silica (BSi) dynamics were carried out in the Oder estuary, Baltic Sea in 2000-2005. The Oder estuary proved to be an important component of the Oder River-Baltic Sea continuum where very intensive seasonal DSi uptake during spring and autumn, but also BSi regeneration during summer take place. Owing to the regeneration process annual DSi patterns in the river and the estuary distinctly differed; the annual patterns of DSi in the estuary showed two maxima and two minima in contrast to one maximum- and one minimum-pattern in the Oder River. DSi concentrations in the river and in the estuary were highest in winter (200-250 μmol dm - 3 ) and lowest (often less than 1 μmol dm - 3 ) in spring, concomitant with diatom growth; such low values are known to be limiting for new diatom growth. Secondary DSi summer peaks at the estuary exit exceeded 100 μmol dm - 3 , and these maxima were followed by autumn minima coinciding with the autumn diatom bloom. Seasonal peaks in BSi concentrations (ca. 100 μmol dm - 3 ) occurred during the spring diatom bloom in the Oder River. Mass balance calculations of DSi and BSi showed that DSi + BSi import to the estuary over a two year period was 103.2 kt and that can be compared with the DSi export of 98.5 kt. The difference between these numbers gives room for ca. 2.5 kt BSi to be annually exported to the Baltic Sea. Sediment cores studies point to BSi annual accumulation on the level of 2.5 kt BSi. BSi import to the estuary is on the level of ca. 10.5 kt, thus ca. 5 kt of BSi is annually converted into the DSi, increasing the pool of DSi that leaves the system. BSi concentrations being ca. 2 times higher at the estuary entrance than at its exit remain in a good agreement with the DSi and BSi budgeting presented in the paper.

  9. Geographical variation in oligochaete density and biomass in subtropical mangrove wetlands of China

    NASA Astrophysics Data System (ADS)

    Chen, Xinwei; Cai, Lizhe; Zhou, Xiping; Rao, Yiyong

    2017-10-01

    Oligochaetes play an important role in nutrient cycling and energy flow in benthic food webs as well as in mangrove wetlands. However, they have not been as extensively studied as other macrofaunal groups such as polychaetes, gastropods, bivalves, and crustaceans. Under the assumption that oligochaete density and biomass obey specific geographical distribution patterns in subtropical mangrove wetlands of China, we investigated these two parameters in the Luoyang Estuary of Quanzhou Bay, Zhangjiang Estuary and Gaoqiao mangrove wetlands. A geographical gradient in oligochaete density was present in Aegiceras corniculatum and Kandelia obovata habitats, whereby it decreased from lower latitudes to higher latitudes. Further, ANOVA tests on oligochaete distribution revealed that both oligochaete density and biomass were significantly influenced by region, season and region × season at the A. corniculatum and K. obovata habitats. The annual average oligochaete density and biomass at the A. corniculatum habitat were higher than that at the K. obovata habitat, in both the Luoyang and Zhangjiang estuaries. There were significant correlations between oligochaete density and biomass and sediment particle size parameters, confirming that sand, silt, and clay contents were the key environmental factors affecting oligochaete distribution.

  10. Decadal to Millennial Sedimentation Patterns of the Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Jones, M.; McHugh, C. M.; Burckle, L.; Pekar, S.; Pereira, G.; Ryan, W. B.; Bell, R.; Carbotte, S.

    2002-12-01

    The Hudson River Estuary (HRE) is adjacent to large metropolitan areas including New York City. Understanding the variable energy conditions for transporting sediments is key to deal with environmental pollution such as the controversial burial and dredging of PCB's in the HRE. We studied sediment transport in the HRE by examining more than 150 cores and grab samples interpreted within the framework of acoustic images. The HRE sedimentary environments were defined based on quantitative estimates of grain size, sedimentary structures, bioturbation, and sedimentation rates and were divided into: channel, channel banks, subtidal flats, tributaries, and islands. Diatom assemblages were used to determine the extent of salt-water intrusion and sediment reworking in the estuary. Along a longitudinal profile, the estuary can be subdivided into: (1) sandy inner fluvial (furthest upstream), (2) muddy central portions, and (3) sandy outer marine. We classified sedimentary facies for the central and fluvial parts of the system (1 and 2). The HRE basin is nearly filled with sediment and tidal energy is focused within the channel and its banks. In the central basin where the estuary is wide (up to 4 km), flood currents are more energetic along the eastern channel bank and the ebb currents lead to minor sediment deposition on the western bank, but only where the system is out of equilibrium with its sediment load. The energy of the tides is accentuated along narrow segments of the estuary that are locally constrained by gorges of the Hudson Valley Highlands leading to erosion and the trapping of sediments. Beyond the banks of the channel, the subtidal flats that were filled with sediment by 0.5 to 3ka, are tranquil environments where the sediment is homogenized by bioturbation and reworked by waves as the estuary shallowed. Occasional high-energy events, (possibly flood-related) eroded the subtidal flats sediment as shown by rare rip-up clasts found in the cores. The inner

  11. Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U.S. Estuaries.

    PubMed

    Buck, Clifton S; Hammerschmidt, Chad R; Bowman, Katlin L; Gill, Gary A; Landing, William M

    2015-12-15

    To better understand the source of elevated methylmercury (MeHg) concentrations in Gulf of Mexico (GOM) fish, we quantified fluxes of total Hg and MeHg from 11 rivers in the southeastern United States, including the 10 largest rivers discharging to the GOM. Filtered water and suspended particles were collected across estuarine salinity gradients in Spring and Fall 2012 to estimate fluxes from rivers to estuaries and from estuaries to coastal waters. Fluxes of total Hg and MeHg from rivers to estuaries varied as much as 100-fold among rivers. The Mississippi River accounted for 59% of the total Hg flux and 49% of the fluvial MeHg flux into GOM estuaries. While some estuaries were sources of Hg, the combined estimated fluxes of total Hg (~5200 mol y(-1)) and MeHg (~120 mol y(-1)) from the estuaries to the GOM were less than those from rivers to estuaries, suggesting an overall estuarine sink. Fluxes of total Hg from the estuaries to coastal waters of the northern GOM are approximately an order of magnitude less than from atmospheric deposition. However, fluxes from rivers are significant sources of MeHg to estuaries and coastal regions of the northern GOM.

  12. Dynamic genetic features of eukaryotic plankton diversity in the Nakdong River estuary of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jee Eun; Chung, Ik Kyo; Lee, Sang-Rae

    2017-07-01

    Estuaries are environments where freshwater and seawater mix and they display various salinity profiles. The construction of river barrages and dams has rapidly changed these environments and has had a wide range of impacts on plankton communities. To understand the dynamics of such communities, researchers need accurate and rapid techniques for detecting plankton species. We evaluated the diversity of eukaryotic plankton over a salinity gradient by applying a metagenomics tool at the Nakdong River estuary in Korea. Environmental samples were collected on three dates during summer and autumn of 2011 at the Eulsukdo Bridge at the mouth of that river. Amplifying the 18S rDNA allowed us to analyze 456 clones and 122 phylotypes. Metagenomic sequences revealed various taxonomic groups and cryptic genetic variations at the intra- and inter-specific levels. By analyzing the same station at each sampling date, we observed that the phylotypes presented a salinity-related pattern of diversity in assemblages. The variety of species within freshwater samples reflected the rapid environmental changes caused by freshwater inputs. Dinophyceae phylotypes accounted for the highest proportion of overall diversity in the seawater samples. Euryhaline diatoms and dinoflagellates were observed in the freshwater, brackish and seawater samples. The biological data for species composition demonstrate the transitional state between freshwater and seawater. Therefore, this metagenomics information can serve as a biological indicator for tracking changes in aquatic environments.

  13. Dissolved and particulate Barium in the Ganga (Hooghly) River estuary, India: Solute-particle interactions and the enhanced dissolved flux to the oceans

    NASA Astrophysics Data System (ADS)

    Samanta, Saumik; Dalai, Tarun K.

    2016-12-01

    In this study, the sources and the cycling of Ba have been evaluated in the Ganga (Hooghly) River estuary using the composition of the suspended sediments and the water samples collected during six seasons of contrasting water discharge over two years (2012 and 2013). In addition, the data on the samples of groundwater from areas adjacent to the estuary, and the industrial effluent water and urban wastewater draining into the estuary are presented. Selective extraction experiments were also performed on the suspended particulate matter of two seasons to assess the distribution of exchangeable concentrations of major ions and Ba. In the mixing zone, the variation patterns of the dissolved Ba concentrations show mid-salinity maxima and are similar to the patterns of variation of the particulate Mg/Al and Mg/Fe, suggesting that the production of dissolved Ba is linked to the adsorption of major ions on to the clay minerals and Fe-Mn oxyhydroxides in the particulate matter. The inference of coupled adsorption-desorption processes is supported by the observations that the particulate Ba/Mg and Ba/K ratios exhibit significant to strong negative correlations with the concentrations of Al, Fe and Mn. The observations of mid-salinity maxima for the concentrations of exchangeable Mg and K, and of the exchangeable Ba concentrations that decrease with salinity provide strong evidence that the solute-particle interactions is the major driver in regulating the dissolved Ba distributions in the estuary. The estimates of the quantity of desorbed Ba based on three different approaches suggest that desorption is sufficient to account for the calculated excess Ba (Baxs) concentrations. The contribution of Ba to the dissolved load via dissolution of the particulate carbonate phases is minor, up to 3% of the maximum Baxs concentrations. The estimates of anthropogenic contributions are insignificant, and account for ⩽2% of maximum Baxs in the estuary. Groundwater contributions are

  14. Occurrence of PPCPs in Pearl River Estuary and South China Sea

    NASA Astrophysics Data System (ADS)

    Fisch, Kathrin; Waniek, Joanna J.; Schulz-Bull, Detlef E.

    2017-04-01

    The development of a coastal megacity has put the South China Sea under human induced stress. Pharmaceuticals and personal care products (PPCPs) are ubiquitous contaminants and can be used as anthropogenic indicators for pollution of the marine environment. They enter the marine environment indirectly via waste water or directly due to recreational activities. PPCPs make up a group of different pharmaceuticals such as antibiotic, anti-inflammatories etc. and personal care products such as UV-filters. A mayor concern is the unknown fate and the effect these pollutants on the marine environment and especially its organisms. In some studies it was proven that some of these PPCPs have an endocrine disrupting and/or a subtle chronic effect on aquatic organisms. They are of concern for the health of the marine environment and may have an effect on human health. With our study we could determine the occurrence of PPCPs in the Pearl River estuary and the South China Sea. Salicylic acid (metabolite of acetylsalicylic acid) and octocrylene (UV-filter) were found in the open Sea in low ng/L concentration. Octocrylene is used in sunscreen and as a light stabilizer in paints and polymer-based products. It is of environmental concern because of its potential to be bioaccumulative. In addition to our findings in the open South China Sea, could we detect PPCPs, especially antibiotics, in higher ng/L-concentrations in the Pearl River Estuary.

  15. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    NASA Astrophysics Data System (ADS)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the

  16. Great earthquakes and tsunamis of the past 2000 years at the Salmon River estuary, central Oregon coast, USA

    USGS Publications Warehouse

    Nelson, A.R.; Asquith, A.C.; Grant, W.C.

    2004-01-01

    Four buried tidal marsh soils at a protected inlet near the mouth of the Salmon River yield definitive to equivocal evidence for coseismic subsidence and burial by tsunami-deposited sand during great earthquakes at the Cascadia subduction zone. An extensive, landward-tapering sheet of sand overlies a peaty tidal-marsh soil over much of the lower estuary. Limited pollen and macrofossil data suggest that the soil suddenly subsided 0.3-1.0 m shortly before burial. Regional correlation of similar soils at tens of estuaries to the north and south and precise 14C ages from one Salmon River site imply that the youngest soil subsided during the great earthquake of 26 January A.D. 1700. Evidence for sudden subsidence of three older soils during great earthquakes is more equivocal because older-soil stratigraphy can be explained by local hydrographic changes in the estuary. Regional 14C correlation of two of the three older soils with soils at sites that better meet criteria for a great-earthquake origin is consistent with the older soils recording subsidence and tsunamis during at least two great earthquakes. Pollen evidence of sudden coseismic subsidence from the older soils is inconclusive, probably because the amount of subsidence was small (<0.5 m). The shallow depths of the older soils yield rates of relative sea-level rise substantially less than rates previously calculated for Oregon estuaries.

  17. 76 FR 14924 - Takes of Marine Mammals Incidental to Specified Activities; Russian River Estuary Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ..., breeding, feeding, or sheltering [Level B harassment]. Summary of Request NMFS received an application on... Counties. The mouth of the Russian River is located at Goat Rock State Beach; the estuary extends from the... beach from the paved parking lot at Goat Rock State Beach, (see Figure 2 of SCWA's application), and...

  18. Aquatic Vegetation of the St. Louis River Estuary: Initial Analysis of Point-intercept Data Collected in 2010 for Restoration Modeling.

    EPA Science Inventory

    A new effort to model aquatic vegetation patterns in the St. Louis River Estuary was initiated in summer of 2010 for the purpose of informing wetland restoration planning in the St. Louis River Area of Concern (AOC) at 40th Avenue West in Duluth. Aquatic vascular plants were doc...

  19. A simple optical model to estimate suspended particulate matter in Yellow River Estuary.

    PubMed

    Qiu, Zhongfeng

    2013-11-18

    Distribution of the suspended particulate matter (SPM) concentration is a key issue for analyzing the deposition and erosion variety of the estuary and evaluating the material fluxes from river to sea. Satellite remote sensing is a useful tool to investigate the spatial variation of SPM concentration in estuarial zones. However, algorithm developments and validations of the SPM concentrations in Yellow River Estuary (YRE) have been seldom performed before and therefore our knowledge on the quality of retrieval of SPM concentration is poor. In this study, we developed a new simple optical model to estimate SPM concentration in YRE by specifying the optimal wavelength ratios (600-710 nm)/ (530-590 nm) based on observations of 5 cruises during 2004 and 2011. The simple optical model was attentively calibrated and the optimal band ratios were selected for application to multiple sensors, 678/551 for the Moderate Resolution Imaging Spectroradiometer (MODIS), 705/560 for the Medium Resolution Imaging Spectrometer (MERIS) and 680/555 for the Geostationary Ocean Color Imager (GOCI). With the simple optical model, the relative percentage difference and the mean absolute error were 35.4% and 15.6 gm(-3) respectively for MODIS, 42.2% and 16.3 gm(-3) for MERIS, and 34.2% and 14.7 gm(-3) for GOCI, based on an independent validation data set. Our results showed a good precision of estimation for SPM concentration using the new simple optical model, contrasting with the poor estimations derived from existing empirical models. Providing an available atmospheric correction scheme for satellite imagery, our simple model could be used for quantitative monitoring of SPM concentrations in YRE.

  20. Contribution of Priority PAHs and POPs to Ah Receptor-Mediated Activities in Sediment Samples from the River Elbe Estuary, Germany

    PubMed Central

    Otte, Jens C.; Keiter, Steffen; Faßbender, Christopher; Higley, Eric B.; Rocha, Paula Suares; Brinkmann, Markus; Wahrendorf, Dierk-Steffen; Manz, Werner; Wetzel, Markus A.; Braunbeck, Thomas; Giesy, John P.; Hecker, Markus; Hollert, Henner

    2013-01-01

    The estuary of the River Elbe between Hamburg and the North Sea (Germany) is a sink for contaminated sediment and suspended particulate matter (SPM). One major concern is the effect of human activities on the hydrodynamics, particularly the intensive dredging activities in this area that may result in remobilization of sediment-bound pollutants. The aim of this study was to identify pollutants contributing to the toxicological risk associated with re-suspension of sediments in the Elbe Estuary by use of an effect-directed analysis that combines chemical and biological analyses in with specific fractionation techniques. Sediments were collected from sites along the Elbe Estuary and a site from a small harbor basin of the Elbe Estuary that is known to be polluted. The sixteen priority EPA-PAHs were quantified in organic extracts of sediments. In addition, dioxin equivalents of sediments were investigated by use of the 7-ethoxyresorufin O-deethylase assay with RTL-W1 cells and the Ah receptor-mediated luciferase transactivation assay with H4IIE-luc cells. Quantification of the 16 priority PAHs revealed that sediments were moderately contaminated at all of the sites in the Elbe River Estuary (<0.02–0.906 µg/g dw). Sediments contained relatively small concentrations of dioxin equivalents (Bio-TEQ) with concentrations ranging from 15.5 to 322 pg/g dw, which were significantly correlated with dioxin equivalents calculated based on toxicity reference values and concentrations of PAH. The concentration of Bio-TEQ at the reference site exceeded 200,000 pg/g dw. In a potency balance the 16 PAHs explained between 47 and 118% of the Bio-TEQ in the luciferase assay, which can be explained by the constant input of PAHs bound to SPM from the upper course of the Elbe River into its estuary. Successful identification of a significant portion of dioxin-like activity to priority PAHs in complex environmental samples such as sediments has rarely been reported. PMID:24146763

  1. Spatio-temporal comparison of neustonic microplastic density in Hong Kong waters under the influence of the Pearl River Estuary.

    PubMed

    Cheung, Pui Kwan; Fok, Lincoln; Hung, Pui Lam; Cheung, Lewis T O

    2018-07-01

    Rivers are recognised as an important source of plastic debris in the open sea. The Pearl River in China is estimated to transport 0.1milliontonnes of plastic waste to the open sea annually. However, no empirical study has been conducted to assess the plastic contamination levels in the Pearl River Estuary. Hong Kong is situated in the east of the Pearl River Estuary; its western waters are strongly influenced by river discharge, whereas the eastern waters are unaffected by the freshwater plume. In this study, we quantified the neustonic plastic debris density in the western and eastern waters of Hong Kong. The mean microplastic (0.355-4.749mm) and large plastic debris (≥4.75mm) densities in the western side were 3.627 and 0.758n/m 3 , respectively. Seasonal comparisons indicated that both size classes of plastic debris were significantly more abundant by number in the rainy season than the dry season (p<0.001). However, the influence of rivers on plastic density at the sea surface may be highly restricted to the estuarine delta, as no significant spatial difference was found between the western and eastern waters. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effect of residence times on River Mondego estuary eutrophication vulnerability.

    PubMed

    Duarte, A S; Pinho, J L; Pardal, M A; Neto, J M; Vieira, J P; Santos, F S

    2001-01-01

    The south arm of the Mondego estuary, located in the central western Atlantic coast of Portugal, is almost silted up in the upstream area. So, the water circulation is mostly driven by tides and the tributary river Pranto discharges. Eutrophication has been taking place in this ecosystem during last twelve years, where macroalgae reach a luxuriant development covering a significant area of the intertidal muddy flat. A sampling program was carried out from June 1993 to June 1994. Available data on salinity profiles and on nutrients loading into the south arm were used in order to get a better understanding of the ongoing changes. River Pranto flow discharges, controlled by a sluice, were also monitored. Integral formulations are typically based on assumptions of steady state and well-mixed systems and thus cannot take into account the space and time variability of estuarine residence times, due to river discharge flow, tidal coefficients, discharge(s) location and time of release during the tidal cycle. This work presents the hydrodynamics modelling (2D-H) of this system in order to estimate the residence times variability and to assess their effect on the estuarine eutrophication vulnerability, contributing to better environmental management strategies selection.

  3. Influence of dissolved organic matter on dissolved vanadium speciation in the Churchill River estuary (Manitoba, Canada).

    PubMed

    Shi, Yong Xiang; Mangal, Vaughn; Guéguen, Céline

    2016-07-01

    Diffusive gradients in thin films (DGT) devices were used to investigate the temporal and spatial changes in vanadium (V) speciation in the Churchill estuary system (Manitoba). Thirty-six DGT sets and 95 discrete water samples were collected at 8 river and 3 estuary sites during spring freshet and summer base flow. Dissolved V concentration in the Churchill River at summer base flow was approximately 5 times higher than those during the spring high flow (27.3 ± 18.9 nM vs 4.8 ± 3.5 nM). DGT-labile V showed an opposite trend with greater values found during the spring high flow (2.6 ± 1.8 nM vs 1.4 ± 0.3 nM). Parallel factor analysis (PARAFAC) conducted on 95 excitation-emission matrix spectra validated four humic-like (C1C4) and one protein-like (C5) fluorescent components. Significant positive relationship was found between protein-like DOM and DGT-labile V (r = 0.53, p < 0.05), indicating that protein-like DOM possibly affected the DGT-labile V concentration in Churchill River. Sediment leachates were enriched in DGT-labile V and protein-like DOM, which can be readily released when river sediment began to thaw during spring freshet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Acoustic tag detections of green sturgeon in the Columbia River and Coos Bay estuaries, Washington and Oregon, 2010–11

    USGS Publications Warehouse

    Hansel, Hal C.; Romine, Jason G.; Perry, Russell W.

    2017-11-08

    The Columbia River, in Washington and Oregon, and Coos Bay, in Oregon, are economically important shipping channels that are inhabited by several fishes protected under the Endangered Species Act (ESA). Maintenance of shipping channels involves dredge operations to maintain sufficient in-channel depths to allow large ships to navigate the waterways safely. Fishes entrained by dredge equipment often die or experience delayed mortality. Other potential negative effects of dredging include increased turbidity, reductions in prey resources, and the release of harmful contaminants from the dredged sediments. One species of concern is the ESA-listed green sturgeon (Acipenser medirostris; Southern Distinct Population Segment). In this study, we used acoustic telemetry to identify habitat use, arrival and departure timing, and the extent of upstream migration of green sturgeon in the Columbia River and Coos Bay to help inform dredge operations to minimize potential take of green sturgeon. Autonomous acoustic receivers were deployed in Coos Bay from the mouth to river kilometer (rkm) 21.6 from October 2009 through October 2010. In the Columbia River Estuary, receivers were deployed between the mouth and rkm 37.8 from April to November in 2010 and 2011. A total of 29 subadult and adult green sturgeon were tagged with temperature and pressure sensor tags and released during the study, primarily in Willapa Bay and Grays Harbor, Washington, and the Klamath River, Oregon. Green sturgeon detected during the study but released by other researchers also were included in the study.The number of tagged green sturgeon detected in the two estuaries differed markedly. In Coos Bay, only one green sturgeon was detected for about 2 hours near the estuary mouth. In the Columbia River Estuary, 9 green sturgeon were detected in 2010 and 10 fish were detected in 2011. Green sturgeon entered the Columbia River from May through October during both years, with the greatest numbers of fish being

  5. Mixing behavior of chromophoric dissolved organic matter in the Pearl River Estuary in spring

    NASA Astrophysics Data System (ADS)

    Lei, Xia; Pan, Jiayi; Devlin, Adam T.

    2018-02-01

    Mixing behavior of chromophoric dissolved organic matter (CDOM) in the Pearl River Estuary (PRE) and relevant hydrodynamic parameters such as horizontal transport and vertical mixing are identified and discussed based on a set of sampling data obtained during a cruise in May 2014. Using a theoretical conservative mixing model, the surface CDOM in the PRE in spring is classified into two groups by the CDOM absorption-spectral slope relationship (a(300) vs S(275-295)): First, terrigenous CDOM under a non-conservative mixing condition, and removal processes such as photobleaching are suggested to happen; second, marine CDOM behaves conservatively during mixing. The mixing of CDOM at the bottom is shown to be conservative. Controlled by the two-layer gravitational circulation in the PRE, the northern and western estuary shows higher CDOM absorption and lower spectral slope than the southern and eastern estuary, and the surface CDOM presents higher absorption and lower spectral slope than the bottom. Horizontal transport is hypothesized to be the dominant hydrodynamic mechanism affecting CDOM variation and mixing behavior in the PRE, while the vertical mixing has less influence.

  6. Impacts of pesticides in a Central California estuary.

    PubMed

    Anderson, Brian; Phillips, Bryn; Hunt, John; Siegler, Katie; Voorhees, Jennifer; Smalling, Kelly; Kuivila, Kathy; Hamilton, Mary; Ranasinghe, J Ananda; Tjeerdema, Ron

    2014-03-01

    Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured

  7. A decade of aquatic invasive species (AIS) early detection method development in the St. Louis River estuary

    EPA Science Inventory

    As an invasion prone location, the St. Louis River Estuary (SLRE) has been a case study for ongoing research to develop the framework for a practical Great Lakes monitoring network for early detection of aquatic invasive species (AIS). Early detection, however, necessitates findi...

  8. MOBILE BAY NATIONAL ESTUARY PROGRAM COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN

    EPA Science Inventory

    In simplest terms, an estuary is defined as an area where rivers meet the sea. They are transitional zones where freshwater rivers meet tidally influenced marine waters. Estuaries are considered environmentally and economically important because of their exceptional biological di...

  9. Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary.

    PubMed

    Nieto, José Miguel; Sarmiento, Aguasanta M; Olías, Manuel; Canovas, Carlos R; Riba, Inmaculada; Kalman, Judit; Delvalls, T Angel

    2007-05-01

    The Tinto and Odiel rivers are seriously affected by acid mine drainage (AMD) from the long-term mining activities in Iberian Pyrite Belt (IPB). As a consequence, the Huelva estuary is heavily contaminated by metals and metalloids. This study presents an estimation of the seasonal variation, and the dissolved contaminant load transported by both rivers from February 2002 to September 2004. Besides, toxicity and bioaccumulation tests with the sediments of the estuary have been conducted in order to measure the mobility of the toxic metals. Results show that the Tinto and Odiel rivers transport enormous quantities of dissolved metals to the estuary: 7900 t yr(-1) of Iron (Fe), 5800 t yr(-1) Aluminium (Al), 3500 t yr(-1) Zinc (Zn), 1700 t yr(-1) Copper (Cu), 1600 t yr(-1) Manganese (Mn) and minor quantities of other metals and metalloids. These values represent 37% of the global gross flux of dissolved Zn transported by rivers in to the ocean, and 15% of the global gross flux of dissolved Cu. These metals and metalloids usually sink in the estuarine sediments due to pH and salinity changes. The increase of salinity in the estuary favours the adsorption and trapping of metals. For this reason, the mobility and bioavailability of metals such as Zn, Cd and Cu is higher in sediments located in the area of fresh water influence that in sediments located in the marine influenced area of the estuary, showing a higher percentage of fractionation and bioaccumulation of these metals in the station influenced by the fresh water environment.

  10. A modeling study of the impacts of Mississippi River diversion and sea-level rise on water quality of a deltaic estuary

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; LaPeyre, Megan K.

    2017-01-01

    Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnitudes and spatial and temporal patterns in estuarine water quality variables will change in response to freshwater and sediment management in the context of future SLR. In this study, we applied the Delft3D model that couples hydrodynamics and water quality processes to examine the spatial and temporal variations of salinity, total suspended solids, and chlorophyll-α concentration in response to small (142 m3 s−1) and large (7080 m3 s−1) Mississippi River (MR) diversions under low (0.38 m) and high (1.44 m) relative SLR (RSLR = eustatic SLR + subsidence) scenarios in the Breton Sound Estuary, Louisiana, USA. The hydrodynamics and water quality model were calibrated and validated via field observations at multiple stations across the estuary. Model results indicate that the large MR diversion would significantly affect the magnitude and spatial and temporal patterns of the studied water quality variables across the entire estuary, whereas the small diversion tends to influence water quality only in small areas near the diversion. RSLR would also play a significant role on the spatial heterogeneity in estuary water quality by acting as an opposite force to river diversions; however, RSLR plays a greater role than the small-scale diversion on the magnitude and spatial pattern of the water quality parameters in this deltaic estuary.

  11. A sensitivity analysis of low salinity habitats simulated by a hydrodynamic model in the Manatee River estuary in Florida, USA

    NASA Astrophysics Data System (ADS)

    Chen, XinJian

    2012-06-01

    This paper presents a sensitivity study of simulated availability of low salinity habitats by a hydrodynamic model for the Manatee River estuary located in the southwest portion of the Florida peninsula. The purpose of the modeling study was to establish a regulatory minimum freshwater flow rate required to prevent the estuarine ecosystem from significant harm. The model used in the study was a multi-block model that dynamically couples a three-dimensional (3D) hydrodynamic model with a laterally averaged (2DV) hydrodynamic model. The model was calibrated and verified against measured real-time data of surface elevation and salinity at five stations during March 2005-July 2006. The calibrated model was then used to conduct a series of scenario runs to investigate effects of the flow reduction on salinity distributions in the Manatee River estuary. Based on simulated salinity distribution in the estuary, water volumes, bottom areas and shoreline lengths for salinity less than certain predefined values were calculated and analyzed to help establish the minimum freshwater flow rate for the estuarine system. The sensitivity analysis conducted during the modeling study for the Manatee River estuary examined effects of the bottom roughness, ambient vertical eddy viscosity/diffusivity, horizontal eddy viscosity/diffusivity, and ungauged flow on the model results and identified the relative importance of these model parameters (input data) to the outcome of the availability of low salinity habitats. It is found that the ambient vertical eddy viscosity/diffusivity is the most influential factor controlling the model outcome, while the horizontal eddy viscosity/diffusivity is the least influential one.

  12. [Spatial-temporal distributions of dissolved inorganic carbon and its affecting factors in the Yellow River estuary].

    PubMed

    Guo, Xing-Sen; Lü, Ying-Chun; Sun, Zhi-Gao; Wang, Chuan-Yuan; Zhao, Quan-Sheng

    2015-02-01

    Estuary is an important area contributing to the global carbon cycle. In order to analyze the spatial-temporal distribution characteristics of the dissolved inorganic carbon (DIC) in the surface water of Yellow River estuary. Samples were collected in spring, summer, fall, winter of 2013, and discussed the correlation between the content of DIC and environmental factors. The results show that, the DIC concentration of the surface water in Yellow River estuary is in a range of 26.34-39.43 mg x L(-1), and the DIC concentration in freshwater side is higher than that in the sea side. In some areas where the salinity is less than 15 per thousand, the DIC concentration appears significant losses-the maximum loss is 20.46%. Seasonal distribution of performance in descending order is spring, fall, winter, summer. Through principal component analysis, it shows that water temperature, suspended solids, salinity and chlorophyll a are the main factors affecting the variation of the DIC concentration in surface water, their contribution rate is as high as 83% , and alkalinity, pH, dissolved organic carbon, dissolved oxygen and other factors can not be ignored. The loss of DIC in the low area is due to the calcium carbonate sedimentation. DIC presents a gradually increasing trend, which is mainly due to the effects of water retention time, temperature, outside input and environmental conditions.

  13. Milwaukee Estuary AOC

    EPA Pesticide Factsheets

    The rivers in the Milwaukee estuary in Wisconsin drain into Lake Michigan. Wastewater treatment plants and combined sewer overflows contribute pollution which affects fish and wildlife and recreation.

  14. Establishment Patterns of Non-native Fishes: Lessons from the Duluth-Superior Harbor and Lower St. Louis River, an Invasion-prone Great Lakes Freshwater Estuary

    EPA Science Inventory

    The St. Louis River freshwater estuary which drains into western Lake Superior and includes the Duluth-Superior (MN-WI) harbor, has a long history of non-native fish introductions. From 1985 to 2002, seven new fishes were identified in the estuary, an unprecedented rate of non-n...

  15. Nutrient elements in large Chinese estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Jing

    1996-07-01

    Based on comprehensive observations since 1983, this study summarizes major features of nutrient elements (nitrogen, phosphorus and silicon) in large Chinese river/estuary systems. Elevated nutrient element levels were observed in Chinese rivers, when compared to large and less disturbed aquatic systems (e.g. the Amazon, Zaire and Orinoco). Data from this study are similar to those obtained from the polluted and/or eutrophic rivers in Europe and North America (e.g. the Rhóne and Loire). Nutrient elements may have either conservative or active distributions, or both, in the mixing zone, depending on the element and the estuary. For example, non-conservative behaviors were observed in the upper estuary, where nutrient elements may be remobilized due to the strong desorption and variations of the fresh water end-member, but conservative distributions were found afterwards in the lower estuary. Outside the riverine effluent plumes, nutrient elements may be depleted in surface waters relative to elevated bioproduction, whereas the regeneration with respect to decomposition of organic material and/or nitrification/denitrification offshore, may sustain high levels of nutrient elements in near-bottom waters. Laboratory experiment data generally compares well with field observations. The high fluxes and area] yields of nutrient elements from large Chinese rivers, indicate the extensive use of chemical fertilizers and domestic waste drainage over watersheds in China.

  16. A River Runs through It: A School on the Edge of the Columbia River Estuary Combines Science and Stewardship Right in Its Own Backyard.

    ERIC Educational Resources Information Center

    Sherman, Lee

    2002-01-01

    The estuary at the mouth of the Columbia River in Wahkiakum County Washington) provides a natural laboratory for experiential learning. Wahkiakum High School students participate in interdisciplinary projects that have included habitat restoration, a salmon hatchery, stream restoration, tree planting, and recreating the final leg of the Lewis and…

  17. DELAWARE ESTUARY PCB MODEL

    EPA Science Inventory

    The Delaware River Basin Commission recently completed the first phase of a program to develop and implement Total Maximum Daily Loads (TMDLs) for toxic pollutants for the Delaware Estuary. This complex body of water extends from the head of tide at Trenton, NJ (River Mile 133.2...

  18. Spatio-temporal distribution and sources of Pb identified by stable isotopic ratios in sediments from the Yangtze River Estuary and adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Hu, Limin; Liu, Ming; Wang, Liang; Zhang, Xilin; Fan, Dejiang

    2017-02-15

    To understand the spatio-temporal distribution and sources of Pb in the sediments of the Yangtze River Estuary and its adjacent areas, 25 surface sediments and 1 sediment core were collected from the study areas. The concentrations of Al and Pb of these sediments exhibit a decreasing trend from the nearshore towards the offshore, with higher concentrations in the coastal areas of the East China Sea (ECS) and southwest of Jeju Island. According to the stable isotopic ratios of Pb, in combination with the elemental ratios and clay mineral data, it is inferred that sedimentary Pb in the surface sediments of the coastal areas of the ECS may come primarily from the Yangtze River, while the Pb southwest of Jeju Island is probably derived from both the Yangtze and Yellow Rivers. The particulate Pb derived from the Yangtze River was possibly dispersed along two paths: the path southward along the coastline of the ECS and the path eastward associated with the Changjiang Diluted Water (CDW), which crosses the shelf of the ECS towards the area southeast of Jeju Island. Although the Yangtze River Basin witnessed rapid economic development during the period from the late 1970s to the middle 1990s, the influence of human activity on Pb concentration remained weak in the Yangtze River Estuary. Since the early 2000s, however, sedimentary Pb has been significantly increasing in the coastal mud areas of the ECS due to the increasing influence of human activity, such as the increase in atmospheric emission of anthropogenic Pb in China, construction of the Three Gorges Dam (TGD), and the construction of smaller dams in the upper reaches of the Yangtze River. Coal combustion and the smelting of non-ferrous metals are possible anthropogenic sources for the sedimentary Pb in the Yangtze River Estuary. Copyright © 2016. Published by Elsevier B.V.

  19. Emergy and Economic Evaluations of Four Fruit Production Systems on Reclaimed Wetlands Surrounding the Pearl River Estuary, China

    EPA Science Inventory

    Emergy and economic methods were used to evaluate and compare a traditional tropical fruit cultivation system, for bananas, and three newly introduced fruit cultivation systems, for papaya, guava and wampee, on reclaimed wetlands of the Pearl River Estuary, China. The evaluations...

  20. MAPPING BATHYMETRY AND BOTTOM TYPE IN A SHALLOW ESTUARY

    EPA Science Inventory

    Bathymetry and bottom type are important in characterizing estuaries and their ecology but hard to map, especially in shallow estuaries. Acoustic backscattering was used to remotely sense these properties in the shallow Slocums River Estuary of Massachusetts. Acoustic pulses were...

  1. A survey of the St. Louis River estuary with emphasis on non-indigenous species and habitat structure

    EPA Science Inventory

    As part of a larger study to develop a monitoring network for aquatic non-indigenous species (NIS), a comprehensive multi-gear survey of larval fish and macroinvertebrates in the St. Louis River estuary was conducted during summer 2012. A total of 139 larval fish samples and 118...

  2. Salinity of the Delaware Estuary

    USGS Publications Warehouse

    Cohen, Bernard; McCarthy, Leo T.

    1962-01-01

    The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.

  3. Evaluation of HCMM satellite data for estuarine tidal circulation patterns and thermal inertia soil moisture measurements. [Delaware Bay, Cooper River, and the Potomac River estuaries; Luverne, Minnesota, soil moisture, and water temperature of Lake Anna, Virginia

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R.; Mcginnis, D. F., Jr. (Principal Investigator); Matson, M.; Pritchard, J. A.

    1981-01-01

    Digital thermal maps of the Cooper River (SC) and the Potomac River estuaries were prepared from heat capacity mapping radiometer (HCMR) tapes. Tidal phases were correctly interpreted and verified. Synoptic surface circulation patterns were charted by location thermal fronts and water mass boundaries within the estuaries. Thermal anomalies were detected adjacent of a conventional power plant on the Potomac. Under optimum conditions, estuaries as small as the Cooper River can be monitored for generalized thermal/tidal circulation patterns by the HCMM-type IR sensors. The HCMM thermal inertia approach to estimating soil moisture at the Luverne (MN) test site was found to be unsatisfactory as a NESS operational satellite technique because of cloud cover interference. Thermal-IR data show similar structure of the Baltimore and Washington heat islands when compared to NOAA AVHRR thermal-IR data. Thermal anomalies from the warm water discharge water of a nuclear power plant were mapped in Lake Anna, Virginia.

  4. Simulation of hydrodynamics and solute transport in the Pamlico River estuary, North Carolina

    USGS Publications Warehouse

    Bales, Jerad; Robbins, Jeanne C.

    1995-01-01

    An investigation was conducted to characterize flow, circulation, and solute transport in the Pamlico River estuary, North Carolina. The study included a detailed field-measurement program and the calibration, validation, and application of a physically realistic numerical model of hydro- dynamics and transport. Water level, salinity, water temperature, wind speed and direction, and current data were collected during March 1988 through September 1992, and were used to characterize physical conditions in the estuary. Data from pre- existing streamflow gaging stations and meteoro- logical stations were also used. A two-dimensional vertically averaged hydrodynamic and solute transport model was applied to the 48-kilometer study reach. The model domain was discretized into 5,620 separate 200- by 200-meter computational cells. Model calibration was achieved through adjustment of parameters for June 14-30, 1991. Data from selected periods in 1989 and 1991 were used for model validation. Water levels used for model calibration and validation ranged from -0.052 to 0.698 meter; salinities ranged from 0.1 to 13.1 parts per thousand; and wind speeds ranged from calm to 22 meters per second. The model was tested for stratified and unstratified conditions. Simulated and observed data were used to evaluate model performance. The calibrated model was applied for selected periods in 1989 and 1991. Instantaneous flows were simulated at each boundary and at mid- estuary. Circulation patterns were characterized using vector plots, particle tracking, and solute transport. Particle tracks showed that materials released at mid-estuary may remain in the system for 25 days or longer.

  5. Vertical and Tidal Variability of the Floc Size Distribution in a Partially Mixed, Low Turbidity, Anthropogenically Altered Geum River Estuary, Korea

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Figueroa, S. M.; Shin, H. J.

    2016-12-01

    After the construction of the Geum River Estuary dam in 1994, current velocities and water turbidity decreased while the rate of mud deposition doubled, causing the water to become increasingly shallower. To better understand the sediment transport processes in the estuary, profiles of current speed, salinity, and the in-situ floc size distribution were measured during the wet season over three spring tidal cycles in the inner estuary. Although the primary particle size distribution (PPSD) was bimodal clay and coarse silt, the in-situ floc size distribution was observed to be unimodal during conditions promoting flocculation, with a mode (400 um) almost an order of magnitude larger than the coarse silt mode of the PPSD. Sediment resuspension and deflocculation were observed throughout the water column during flood while rapid flocculation and settling were observed in the surface water during calmer slack tides. During ebb, a halocline developed due to tidal straining which trapped macroflocs and created a mid-depth maximum in median floc size. These observations imply periodic stratification is important for floc dynamics even during spring tides and suggests that asymmetry in flocculation during the short term (tidal cycle) could be an important factor in the long term sediment deposition in Geum River Estuary.

  6. Temporal and spatial variations in the biogeochemical cycling of cobalt in two urban estuaries: Hudson River Estuary and San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Tovar-Sánchez, Antonio; Sañudo-Wilhelmy, Sergio A.; Flegal, A. Russell

    2004-08-01

    Despite the fact that Co is an essential trace element for the growth of marine phytoplankton, there is very limited information on the cycling of this trace metal in the marine environment. We report here the distribution of dissolved (<0.4 μm) and particulate (>0.4 μm) Co in surface waters of the Hudson River Estuary (HRE) and San Francisco Bay (SFB). Samples were collected during several cruises (from 1990 to 1995 in SFB and from 1995 to 1997 in the HRE) along the whole salinity gradient. Dissolved Co concentrations (mean±1 standard deviation) were nearly identical in magnitude in both estuaries despite differences in climate, hydrography, riverine-flow conditions and land-usage (HRE=0.91±0.61 nM; SFB=1.12±0.69 nM). Dissolved Co levels in each system showed non-conservative distributions when plotted as a function of salinity, with increasing concentrations downstream from the riverine end-members. Desorption from suspended particulates and sewage inputs, therefore, seems to be the major processes responsible for the non-conservative behavior of Co observed. Mass balance estimates also indicated that most of the estuarine Co is exported out of both estuaries, indicating that they and other estuarine systems are principal sources of this essential trace element to the open ocean.

  7. Vegetation of the Elwha River estuary: Chapter 8 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Shafroth, Patrick B.; Fuentes, Tracy L.; Pritekel, Cynthia; Beirne, Matthew M.; Beauchamp, Vanessa B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The Elwha River estuary supports one of the most diverse coastal wetland complexes yet described in the Salish Sea region, in terms of vegetation types and plant species richness. Using a combination of aerial imagery and vegetation plot sampling, we identified 6 primary vegetation types and 121 plant species in a 39.7 ha area. Most of the estuary is dominated by woody vegetation types, with mixed riparian forest being the most abundant (20 ha), followed by riparian shrub (6.3 ha) and willow-alder forest (3.9 ha). The shrub-emergent marsh transition vegetation type was fourth most abundant (2.2 ha), followed by minor amounts of dunegrass (1.75 ha) and emergent marsh (0.2 ha). This chapter documents the abundance, distribution, and floristics of these six vegetation types, including plant species richness, life form, species origin (native or introduced), and species wetland indicator status. These data will serve as a baseline to which future changes can be compared, following the impending removal of Glines Canyon and Elwha Dams upstream on the Elwha River. Dam removals may alter many of the processes, materials, and biotic interactions that influence the estuary plant communities, including hydrology, salinity, sediment and wood transport, nutrients, and plant-microbe interactions.

  8. Using fecal sterols to assess dynamics of sewage input in sediments along a human-impacted river-estuary system in eastern China.

    PubMed

    He, Ding; Zhang, Kai; Tang, Jianhui; Cui, Xingqian; Sun, Yongge

    2018-05-01

    Sedimentary fecal sterols and other sterol biomarkers, combined with bulk total organic carbon (TOC) and its stable carbon isotope were applied to characterize the sewage contamination across a ca. 280 km transect from the Xiaoqing River to the Laizhou Bay, a typical river-estuary system subjected to extensive anthropogenic stress due to rapid regional urbanization and industrialization in eastern China. Two sampling events were performed in both spring and summer seasons in the Laizhou Bay adjacent to the Xiaoqing River in order to assess the potential seasonal variation. Fecal sterols such as coprostanol and epicoprostanol, which are typical indicators of anthropogenic sewage input, displayed high concentrations of up to 63.2 μg g -1 dry weight (dw) and 13.1 μg g -1 dw, respectively. Results suggested that most of the stations along the Xiaoqing River were severely contaminated by fecal inputs with a decreasing trend from the river to the estuary that was mainly explained by the increasing distance from the diffuse sewage sources and the gradual dilution by sea water. Although there was no significant difference in fecal sterol concentrations between spring and summer in the Laizhou Bay, suggestive of no significant difference in sewage abundance, significantly higher average epicoprostanol/coprostanol and lower coprostanol/epicoprostanol ratios were observed in spring than summer, indicative of different sewage sources (e.g., human vs. non-human). Seasonal discharge and land-runoff, air temperature related to microbial activity differences and different extend of animal manure irrigation during agricultural planting could be additional reasons and need further investigation. Nevertheless, fecal sterol concentrations, distributions and diagnostic ratios should all be taken into consideration to better understand sewage inputs and source dynamics in river-estuary ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Qualitative and numerical analyses of the effects of river inflow variations on mixing diagrams in estuaries

    USGS Publications Warehouse

    Cifuentes, L.A.; Schemel, L.E.; Sharp, J.H.

    1990-01-01

    The effects of river inflow variations on alkalinity/salinity distributions in San Francisco Bay and nitrate/salinity distributions in Delaware Bay are described. One-dimensional, advective-dispersion equations for salinity and the dissolved constituents are solved numerically and are used to simulate mixing in the estuaries. These simulations account for time-varying river inflow, variations in estuarine cross-sectional area, and longitudinally varying dispersion coefficients. The model simulates field observations better than models that use constant hydrodynamic coefficients and uniform estuarine geometry. Furthermore, field observations and model simulations are consistent with theoretical 'predictions' that the curvature of propery-salinity distributions depends on the relation between the estuarine residence time and the period of river concentration variation. ?? 1990.

  10. Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.

    2016-02-01

    The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.

  11. Frequency of hepatocellular fibrillar inclusions in European flounder (Platichthys flesus) from the Douro River estuary, Portugal.

    PubMed

    Carrola, João; Fontaínhas-Fernandes, António; Pires, Maria João; Rocha, Eduardo

    2014-02-01

    Liver lesions in wild fish have been associated with xenobiotic exposure. Facing reports of pollution in the Douro River estuary (north of Portugal), we have been making field surveys using fishes and targeting histopathological biomarkers of exposure and effect. Herein, we intended to better characterize and report the rate of one poorly understood lesion-hepatocellular fibrillar inclusions (HFI)-found in European flounder (Platichthys flesus). With this report, we aimed to establish sound baseline data that could be viewed as a starting point for future biomonitoring, while offering the world's second only pool of field data on such a liver toxicopathic lesion, which could be compared with data available from the UK estuaries. Sampling was done in the Douro River estuary over 1 year. A total of 72 animals were fished with nets, in spring-summer (SS) and autumn-winter (AW) campaigns. Livers were processed for histopathology and both routine and special staining procedures (alcian blue, periodic acid Schiff (PAS), tetrazonium coupling reaction). Immunohistochemistry targeted AE1/AE3 (pan cytokeratins). The severity of the HFI extent was graded using a system with four levels, varying from 0 (absence of HFI) to 3 (high relative density of cells with HFI). Cells (isolated/groups) with HFI appeared in 35 % or more of the fish, in the total samples of each season, and over 40 % in more homogeneous sub-samples. There were no significant differences when comparing samples versus sub-samples or SS versus AW. When merging the data sets from the two seasons, the frequency of fish with HFI was ≈36 % for the total sample and ≈49 % for the sub-sample. The extreme group (biggest and smallest fish) revealed a HFI frequency of only 16 %, which differed significantly from the total and sub-sampled groups. Immunostaining and PAS were negative for the HFI, and alcian blue could, at times, faintly stain the inclusions. These were positive with the tetrazonium reaction. We showed

  12. Correlations among seasonal water quality, discharge, weather, and coverage by submersed aquatic vegetation in the tidal Potomac River and Potomac Estuary, 1983-96

    USGS Publications Warehouse

    Carter, Virginia; Rybicki, N.B.; Landwehr, J.M.; Reel, J.T.; Ruhl, H.

    1998-01-01

    The U.S. Geological Survey has been cooperating with other scientists under the auspices of the Interstate Commission on the Potomac River Basin to utilize existing data from the tidal Potomac River and Estuary for investigating linkages among living resources (primary producers, consumers) and abiotic components of the environment. Because the distribution and abundance of submersed aquatic vegetation in the tidal Potomac River and Estuary are controlled largely by light availability, the first step in investigating linkages with submersed aquatic vegetation is to examine the correlations that exist among vegetative cover, discharge, water quality and weather, all of which can affect light availability directly or indirectly. Growing season (April-October), spring (April-June), and summer (July-August) correlations are presented along with figures demonstrating the significant relationships among variables.

  13. Characteristics of depositional environments in the Nakdong River Estuary, South Korea

    NASA Astrophysics Data System (ADS)

    Woo, Han Jun; Lee, Jun-Ho; Kang, Jeongwon; Choi, Jae Ung

    2017-04-01

    Most of the major Korean estuaries, under high pressure from development, have dams with environmental problems, including restricted water circulation, low water quality, decreased biodiversity and wetland destruction. The Nakdong estuary on the southeastern coast of Korean Peninsula is an enclosed type with two large estuarine dams that were constructed in 1934 and between 1983 and 1987. The construction of dams has led to geomorphologic evolution of the barrier islands within Nakdong estuary. The estuary has been characterized as barrier-lagoon system with various subenvironments and microtidal with a 1.5 m tidal range. The sedimentary analyses and monitoring short-term sedimentation rates were investigated to understand characteristics of depositional environments in barrier-lagoon system of the Nakdong River Estuary. The surface sediments in the system were classified into three sedimentary facies in summer 2015. Generally, sand sediment was dominated in the seaward side of barrier islands and muddy sand sediment was dominated on the lagoon. Sandy mud and mud sediments were distributed in the tidal flat near Noksan industrial district and channels near dams. Fourteen a priori subenvironments were distinguished based on differences in landscape characterization (sediment texture, salinity, total organic carbon, pH and C/N ratios). The dendrogram resulting from cluster analysis of environmental variables from 14 a priori subenvironments could be clustered into 4 groups that were characterized by different sediment texture and hydrodynamic energy. The short-term sedimentation rates were obtained seasonally from three lines by burying a plate at sub-bottom depth from May 2015 to May 2016. The deposition was dominated on the tidal flat between mainland and Jinudo (JW- Line) and Sinjado (SJ-Line) with the net deposition rate of 10.09 mm/year and 12.38 mm/year, respectively. The erosion was dominated on the tidal flats at Eulsukdo (ES-Line) on the east side of the

  14. SAN FRANCISCO ESTUARY PROJECT COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN

    EPA Science Inventory

    The Estuary, a significant natural resource, San Francisco Bay and the Delta combine to form the West Coast's largest estuary. The Estuary conveys the waters of the Sacramento and San Joaquin Rivers to the Pacific Ocean. It encompasses roughly 1,600 square miles, drains over 40 p...

  15. Conservation paleobiology in near time: Isotopic estimates for restoration flows to the estuary of the Colorado River, Mexico

    NASA Astrophysics Data System (ADS)

    Flessa, Karl; Dettman, David; Cintra-Buenrostro, Carlos; Rowell, Kirsten

    2016-04-01

    In most years since 1960, the Colorado River has not reached the sea. Upstream dams and diversions in the U.S.A. and Mexico have diverted the river's water for agricultural and municipal use. The river's estuary in the upper Gulf of California, in Mexico, once supported very large populations of Mulinia coloradoensis, a trophically important bivalve mollusk, and Totoaba macdonaldi, a now-endangered scianid fish,. Because Colorado River water is isotopically distinct from Gulf of California seawater, we used the δ18O composition of the pre-dam bivalve shells and fish otoliths to estimate past salinities and river flows. We estimate that five to ten percent of the river's annual flow would be needed to restore M. coloradoensis habitat in the river's mouth and to restore the nursery grounds of T. macdonaldi. The dead can speak to the living.

  16. Seasonal variations and environmental risk assessment of trace elements in the sediments of Uppanar River estuary, southern India.

    PubMed

    Gopal, V; Nithya, B; Magesh, N S; Jayaprakash, M

    2018-04-01

    Twenty four surface sediments were gathered from the Uppanar river estuary, southern India to evaluate the trace element contamination risk in the sediments. The circulation of organic matter and calcium carbonate were controlled by algal blooms and shell fragments. Moreover, the concentrations of iron and manganese in the estuarine sediments were possibly contributed by riverine sources and geogenic processes. The geoaccumulation index, enrichment factor and contamination factor reveals that the sediments were contaminated by copper and chromium. The pollution load index recommends that the estuarine sediments have the risk of pollution. The sediment pollution index highlights that the majority of the sediments are low polluted sediments. The potential ecological risk index discloses that the Uppanar river estuary is under moderate risk. The statistical analysis reveals that the organic matter content is managed by fine fractions and the majority of the trace elements are associated with each other having similar origin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Impact of Water-Sediment Regulation Scheme on seasonal and spatial variations of biogeochemical factors in the Yellow River estuary

    NASA Astrophysics Data System (ADS)

    Wang, Yujue; Liu, Dongyan; Lee, Kenneth; Dong, Zhijun; Di, Baoping; Wang, Yueqi; Zhang, Jingjing

    2017-11-01

    Seasonal and spatial distributions of nutrients and chlorophyll-a (Chl-a), together with temperature, salinity and total suspended matter (TSM), were investigated in the Yellow River estuary (China) to examine the biogeochemical influence of the ;Water and Sediment Regulation Scheme (WSRS); that is used to manage outflows from the river. Four cruises in April, June (early phase of WSRS), July (late phase of WSRS) and September were conducted in 2013 (WSRS from 19th June to 12th July). The results showed that nutrient species could be divided into two major groups according to their seasonal and spatial distributions. One group included NO3-, dissolved organic nitrogen (DON) and Si(OH)4, primarily from freshwater discharge. NO3- and DON related to anthropogenic sources were also separated from Si(OH)4, which was related to weather. The other group included dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), NO2-, and NH4+. Along with freshwater inputs, sediment absorption/desorption showed impacts on DIP and DOP concentration and distribution. Nitrification was a dominant factor controlling NO2- concentrations. NH4+ was influenced by both sediment absorption/desorption and nitrification. The WSRS not only shifted the seasonal patterns of nutrients in the estuary, with high concentrations moved from autumn to June and July, but also promoted the nutrient spread to the south central part of the Bohai Sea. Spatial distribution of Chlorophyll-a (Chl-a) was influenced by the WSRS, with high concentrations being found in the river mouth in June and September, flanking the river mouth in July, and in the south central part of the Bohai Sea in September. Although Chl-a concentrations increased in June and July, the seasonal patterns did not change. The highest concentrations were found in September. Nutrient loadings during the WSRS relieved DIP and Si(OH)4 limitation in the estuary and south central Bohai Sea, causing an excess of DIN and disrupting

  18. Use of Reflectance Ratios as a Proxy for Coastal Water Constituent Monitoring in the Pearl River Estuary

    PubMed Central

    Fang, Li-Gang; Chen, Shui-Sen; Li, Dong; Li, Hong-Li

    2009-01-01

    Spectra, salinity, total suspended solids (TSS, in mg/L) and colored dissolved organic matter (CDOM, ag(400) at 400 nm) sampled in stations in 44 different locations on December 18, 19 and 21, in 2006 were measured and analyzed. The studied field covered a large variety of optically different waters, the absorption coefficient of CDOM ([ag(400)] in m-1) varied between 0.488 and 1.41 m-1, and the TSS concentrations (mg/L) varied between 7.0 and 241.1 mg/L. In order to detect salinity of the Pearl River Estuary, we analyzed the spectral properties of TSS and CDOM, and the relationships between field water reflectance spectra and water constituents' concentrations based on the synchronous in-situ and satellite hyper-spectral image analysis. A good correlation was discovered (the positive correlation by linear fit), between in-situ reflectance ratio R680/R527 and TSS concentrations (R2 = 0.65) for the salinity range of 1.74-22.12. However, the result also showed that the absorption coefficient of CDOM was not tightly correlated with reflectance. In addition, we also observed two significant relationships (R2 > 0.77), one between TSS concentrations and surface salinity and the other between the absorption coefficient of CDOM and surface salinity. Finally, we develop a novel method to understand surface salinity distribution of estuarine waters from the calibrated EO-1 Hyperion reflectance data in the Pearl River Estuary, i.e. channels with high salinity and shoals with low salinity. The EO-1 Hyperion derived surface salinity and TSS concentrations were validated using in-situ data that were collected on December 21, 2006, synchronous with EO-1 Hyperion satellite imagery acquisition. The results showed that the semi-empirical relationships are capable of predicting salinity from EO-1 Hyperion imagery in the Pearl River Estuary (RMSE < 2‰). PMID:22389623

  19. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China.

    PubMed

    Liu, Lusan; Zhou, Juan; Zheng, Binghui; Cai, Wenqian; Lin, Kuixuan; Tang, Jingliang

    2013-07-15

    Between 1972 and 2009, evidence of red tide outbreaks in the Yangtze River Estuary and adjacent waters was collected. A geographic information system (GIS) was used to analyze the temporal and spatial distribution of these red tides, and it was subsequently used to map the distribution of these events. The results show that the following findings. (1) There were three red tide-prone areas: outside the Yangtze River Estuary and the eastern coast of Sheshan, the Huaniaoshan-Shengshan-Gouqi waters, and the Zhoushan areas and eastern coast of Zhujiajian. In these areas, red tides occurred 174 total times, 25 of which were larger than 1000 km(2) in areal extent. After 2000, the frequency of red tide outbreaks increased significantly. (2) During the months of May and June, the red tide occurrence in these areas was 51% and 20%, respectively. (3) Outbreaks of the dominant red tide plankton species Prorocentrum dong-haiense, Skeletonema costatum, Prorocentrum dantatum, and Noctiluca scientillan occurred 38, 35, 15, and 10 times, respectively, during the study interval. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Morphodynamic modeling of a large inside sandbar and its dextral morphology in a convergent estuary: Qiantang Estuary, China

    NASA Astrophysics Data System (ADS)

    Xie, Dongfeng; Gao, Shu; Wang, Zheng Bing; Pan, Cunhong; Wu, Xiuguang; Wang, Qiushun

    2017-08-01

    We investigate the evolution of a large-scale sand body, a unique type of sandbars in a convergent estuary. Specifically, we analyze and simulate the sand deposition system (defined as an inside bar) in the Qiantang Estuary (QE) in China. The deposit is 130 km long and up to 10 m thick and is characterized by a dextral morphology in the lower QE. Numerical simulation is carried out using an idealized horizontal 2-D morphodynamic model mimicking the present QE settings. Our results indicate that the morphological evolution is controlled by the combination of river discharge and tides. The seasonal and interannual cycles of river discharges play a major role on the inside bar evolution. The bar is eroding during high river discharge periods, but accretion prevails during low river discharge periods. Meanwhile, the highest part of the sand body can move downstream or upstream by several kilometers, modifying the seasonal sediment exchange patterns. We also show that the Coriolis force plays an important role on the dextral morphology patterns in wide, convergent estuaries. It induces a significant lateral water level difference and a large-scale gyre of residual sediment transport. Subsequently, the seaward tail of the inside bar shifts southward to help create a condition for the development of tidal flats in the lower reach of the estuary. The lateral bed level differences induced by Coriolis force are up to several meters. Coriolis effects also modify the behavior of flood and ebb tidal channels.

  1. Relationship of Caspian tern foraging ecology to nesting success in the Columbia River estuary, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Anderson, Scott K.; Roby, Daniel D.; Lyons, Donald E.; Collis, Ken

    2007-07-01

    The prevalence of juvenile salmonids ( Oncorhynchus spp.) and marine forage fishes in the diet of Caspian terns ( Hydroprogne caspia) nesting in the Columbia River estuary has been established, but the relationship between diet composition, foraging distribution, and productivity of these birds has received little attention. We used radio-telemetry and on-colony observations to relate changes in off-colony distribution to patterns of colony attendance, diet composition, and productivity of adult terns nesting on East Sand Island during two years of different river and prey conditions. Average distance from the East Sand Island colony (located in the marine zone of the estuary) was 38% (6.6 km) greater in 2000 compared to 2001, associated with lower availability of marine forage fish near East Sand Island and lower prevalence of marine prey in tern diets. Colony attendance was much lower (37.0% vs. 62.5% of daylight hours), average trip duration was 40% longer (38.9 min), and nesting success was much lower (0.57 young fledged pair -1 vs. 1.40 young fledged pair -1) in 2000 compared to 2001. Higher proportions of juvenile salmonids in the diet were associated with relatively high use of the freshwater zone of the estuary by radio-tagged terns, which occurred prior to chick-rearing and when out-migrating salmonid smolts were relatively abundant. Lower availability of marine prey in 2000 apparently limited Caspian tern nesting success by markedly reducing colony attendance and lengthening foraging trips by nesting terns, thereby increasing chick mortality rates from predation, exposure, and starvation.

  2. Relationship of Caspian tern foraging ecology to nesting success in the Columbia River estuary, Oregon, USA

    USGS Publications Warehouse

    Anderson, Scott K.; Roby, D.D.; Lyons, Donald E.; Collis, K.

    2007-01-01

    The prevalence of juvenile salmonids (Oncorhynchus spp.) and marine forage fishes in the diet of Caspian terns (Hydroprogne caspia) nesting in the Columbia River estuary has been established, but the relationship between diet composition, foraging distribution, and productivity of these birds has received little attention. We used radio-telemetry and on-colony observations to relate changes in off-colony distribution to patterns of colony attendance, diet composition, and productivity of adult terns nesting on East Sand Island during two years of different river and prey conditions. Average distance from the East Sand Island colony (located in the marine zone of the estuary) was 38% (6.6 km) greater in 2000 compared to 2001, associated with lower availability of marine forage fish near East Sand Island and lower prevalence of marine prey in tern diets. Colony attendance was much lower (37.0% vs. 62.5% of daylight hours), average trip duration was 40% longer (38.9 min), and nesting success was much lower (0.57 young fledged pair-1 vs. 1.40 young fledged pair-1) in 2000 compared to 2001. Higher proportions of juvenile salmonids in the diet were associated with relatively high use of the freshwater zone of the estuary by radio-tagged terns, which occurred prior to chick-rearing and when out-migrating salmonid smolts were relatively abundant. Lower availability of marine prey in 2000 apparently limited Caspian tern nesting success by markedly reducing colony attendance and lengthening foraging trips by nesting terns, thereby increasing chick mortality rates from predation, exposure, and starvation. ?? 2007 Elsevier Ltd. All rights reserved.

  3. Water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the lower White River and the Puyallup River estuary, Washington, August-October 2002

    USGS Publications Warehouse

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The

  4. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA).

    PubMed

    Cira, Emily K; Paerl, Hans W; Wetz, Michael S

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  5. Current status of emerging hypoxia in a eutrophic estuary: The lower reach of the Pearl River Estuary, China

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Gan, Jianping; Liu, Jinwen; He, Biyan; Lu, Zhongming; Guo, Xianghui; Wang, Deli; Guo, Liguo; Huang, Tao; Dai, Minhan

    2018-05-01

    We examine the current status of dissolved oxygen (DO) and its trend over the past 25 years in the lower Pearl River Estuary, a large eutrophic estuary located in Southern China and surrounded by large cities including Hong Kong, Shenzhen and Guangzhou. Monthly cruises conducted from April 2010 to March 2011 clearly show that DO depletion began to emerge in the bottom layer of the lower estuary off Hong Kong in June, and became fully developed in July and August when oxygen-deficient water occupied ∼1000 km2 before gradually becoming re-oxygenated in September and October. The development of the low oxygen zone was closely coupled with phytoplankton blooms in the surface water, which was supersaturated with respect to DO suggesting the importance of autochthonous organic matter in fueling bottom DO consumption after settling through the pycnocline. Long-term monitoring data collected in the study area adjacent to Hong Kong by the Hong Kong Environmental Protection Department showed a decreasing trend of ∼2 ± 0.9 μmol kg-1 yr-1 in the annual minimum DO concentration in bottom water over the past 25 years. Associated with the decrease in DO was an increase in the annual maximum surface concentration of dissolved inorganic nitrogen (DIN) at a rate of ∼1.4 ± 0.3 μmol kg-1 yr-1, suggesting again that eutrophication is the most plausible driver of oxygen deficiency in this region. Therefore, our monthly cruises, along with the decadal monitoring data, reveal a large low oxygen zone, likely developing into a large hypoxic zone driven primarily by anthropogenic eutrophication. This new development suggests environmental stressors such as eutrophication may have a cascading effect, with important and expensive consequences for the regional environment.

  6. Hydrobiological characteristics of Shark River estuary, Everglades National Park, Florida

    USGS Publications Warehouse

    McPherson, B.F.

    1970-01-01

    Water quality in the Shark River estuary was strongly influenced by seasonal patterns of rainfall, water level and temperature. During the rainy season (summer and early fall) the salinity in the 20-mile long estuary ranged from that of fresh water to half that of sea water while concentrations of dissolved oxygen were low, 2-5 milligrams per liter (mg/l) presumably because, among other factors, microbial activity and respiration were accelerated by high temperatures (30-33 degrees C). During the dry season (late fall through spring) the salinity ranged from 18 grams per liter (g/l) in the headwaters to 36 g/l at the Gulf during a dry year such as 1967 and from 1 to 25 g/l during a wet year such as 1969. Concentrations of dissolved oxygen increased from 2-3 mg/l in the summer of 1967 to 4-7 mg/l in the winter of 1968, and temperature decreased from an average of about 30 degrees C in summer to 20 degrees C in winter. Water level declined 5 to 10 decimeters in the headwaters during the dry season, and salinity and tidal action increased. Large amounts of submerged vegetation died in some headwater creeks at the end of the dry season, presumably killed by salinities above 3 g/l. The decaying organic matter and the decrease in photosynthesis resulted in low dissolved oxygen (1-2 mg/l). Fish died at this time probably as a result of the low dissolved oxygen. Trace elements, heavy metals and insecticides occurred in the waters of the estuary in concentrations below those indicated as harmful for aquatic life by current standards established by the Federal Water Pollution Control Administration (1968). The insecticides detected were concentrated in sediment and in various organisms. The patterns of distribution of planktonic and small nektonic animals in the estuary were related to salinity. Copepods (Arcatia tonsa, Labidocera aestiva, Pseudodiaptomus coronatus), cumaceans (Cyclaspis sp.), chaetognaths (Sagitta hispida), bay anchovies (Anchoa mitchilli), and scaled

  7. [Ciliate diversity and spatiotemporal variation in surface sediments of Yangtze River estuary hypoxic zone].

    PubMed

    Feng, Zhao; Kui-Dong, Xu; Zhao-Cui, Meng

    2012-12-01

    By using denaturing gradient gel electrophoresis (DGGE) and sequencing as well as Ludox-QPS method, an investigation was made on the ciliate diversity and its spatiotemporal variation in the surface sediments at three sites of Yangtze River estuary hypoxic zone in April and August 2011. The ANOSIM analysis indicated that the ciliate diversity had significant difference among the sites (R = 0.896, P = 0.0001), but less difference among seasons (R = 0.043, P = 0.207). The sequencing of 18S rDNA DGGE bands revealed that the most predominant groups were planktonic Choreotrichia and Oligotrichia. The detection by Ludox-QPS method showed that the species number and abundance of active ciliates were maintained at a higher level, and increased by 2-5 times in summer, as compared with those in spring. Both the Ludox-QPS method and the DGGE technique detected that the ciliate diversity at the three sites had the similar variation trend, and the Ludox-QPS method detected that there was a significant variation in the ciliate species number and abundance between different seasons. The species number detected by Ludox-QPS method was higher than that detected by DGGE bands. Our study indicated that the ciliates in Yangtze River estuary hypoxic zone had higher diversity and abundance, with the potential to supply food for the polyps of jellyfish.

  8. Shoreline Classification of the St. Louis River Estuary using Geographic Information Systems and Standard Landuse/Landcover Data Sets

    EPA Science Inventory

    The St. Louis River Estuary (SLRE) shoreline is ~300 km in length and borders MN and WI from the MN highway 23 downstream to Lake Superior. The shoreline is a complex and diverse mixture of many features from industrial docks and slips in the lower SLRE to complex wetlands and na...

  9. Sources and fate of bioavailable dissolved organic nitrogen in the Neuse River Estuary, North Carolina

    NASA Astrophysics Data System (ADS)

    Paerl, H. W.; Peierls, B. L.; Hounshell, A.; Osburn, C. L.

    2015-12-01

    Eutrophication is a widespread problem affecting the structure and function of estuaries and is often linked to anthropogenic nitrogen (N) enrichment, since N is the primary nutrient limiting algal production. Watershed management actions typically have ignored dissolved organic nitrogen (DON) loading because of its perceived refractory nature and instead focused on inorganic N as targets for loading reductions. A fluorescence-based model indicated that anthropogenic sources of DON near the head of the microtidal Neuse River Estuary (NRE), NC were dominated by septic systems and poultry waste. A series of bioassays were used to determine the bioavailability of river DON and DON-rich sources to primary producers and whether those additions promoted the growth of certain phytoplankton taxa, particularly harmful species. Overall, at time scales up to two to three weeks, estuarine phytoplankton and bacteria only showed limited responses to additions of high molecular weight (HMW, >1 kDa) river DON. When increases in productivity and biomass did occur, they were quite small compared with the response to inorganic N. Low molecular weight (LMW) river DON, waste water treatment plant effluent, and poultry litter extract did have a positive effect on phytoplankton and bacterial production, indicating a bioavailable fraction. High variability of bulk DON concentration suggested that bioavailable compounds added in the experimental treatments were low in concentration and turned over quite rapidly. Some phytoplankton taxa, as measured by diagnostic photopigments, appeared to be selectively enhanced by the HMW and specific source DON additions, although the taxa could not be positively identified as harmful species. Preliminary tests show that labile autochthonous organic matter may act as a primer for the mineralization of the HMW DON. These and other, longer-term bioavailability studies will be needed to adequately address the fate of watershed DON in estuarine ecosystems.

  10. Environmental flow assessments for transformed estuaries

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Zhang, Heyue; Yang, Zhifeng; Yang, Wei

    2015-01-01

    Here, we propose an approach to environmental flow assessment that considers spatial pattern variations in potential habitats affected by river discharges and tidal currents in estuaries. The approach comprises four steps: identifying and simulating the distributions of critical environmental factors for habitats of typical species in an estuary; mapping of suitable habitats based on spatial distributions of the Habitat Suitability Index (HSI) and adopting the habitat aggregation index to understand fragmentation of potential suitable habitats; defining variations in water requirements for a certain species using trade-off analysis for different protection objectives; and recommending environmental flows in the estuary considering the compatibility and conflict of freshwater requirements for different species. This approach was tested using a case study in the Yellow River Estuary. Recommended environmental flows were determined by incorporating the requirements of four types of species into the assessments. Greater variability in freshwater inflows could be incorporated into the recommended environmental flows considering the adaptation of potential suitable habitats with variations in the flow regime. Environmental flow allocations should be conducted in conjunction with land use conflict management in estuaries. Based on the results presented here, the proposed approach offers flexible assessment of environmental flow for aquatic ecosystems that may be subject to future change.

  11. Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping

    USGS Publications Warehouse

    Ralston, David K.; Geyer, W. Rockwell; Warner, John C.

    2012-01-01

    Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.

  12. Polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries of China: Distribution, seasonal variations and ecological risk assessment.

    PubMed

    Yan, Jinxia; Liu, Jingling; Shi, Xuan; You, Xiaoguang; Cao, Zhiguo

    2016-08-15

    The distribution, seasonal variations and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries in Hai River Basin of China, which has been suffering from different anthropogenic pressures, were investigated. In three estuaries, the average concentration of ΣPAHs was the lowest in Luan River estuary, followed by Hai River estuary, and the highest in Zhangweixin River estuary. There were significant seasonal variations in ΣPAHs, the concentrations of ΣPAHs were higher in November than in May and August. The composition profiles of PAHs in different sites were significantly different, and illustrated seasonal variations. Generally, 2-ring (Nap) and 3-ring PAHs (Acp, Fl and Phe) were the most abundant components at most sampling sites in three estuaries. The PAHs in three estuaries were mainly originated from pyrogenic sources. A method based on toxic equivalency factors (TEFs) and risk quotient (RQ) was proposed to assess the ecological risk of ΣPAHs, with the ecological risk of individual PAHs being considered separately. The results showed that the ecological risks caused by ΣPAHs were high in Hai River estuary and Zhangweixin River estuary, and moderate in Luan River estuary. The mean values of ecological risk in August were lower than those in November. The contributions of individual PAHs to ecological risk were different in May, August and November. 3-ring and 4-ring PAHs accounted for much more ecological risk than 2-ring, 5-ring and 6-ring, although the contributions of 5-ring and 6-ring to ecological risk were higher than these to PAHs concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Water quality assessment of the ecologically stressed Hooghly River Estuary, India: A multivariate approach.

    PubMed

    Mitra, Soumita; Ghosh, Swayambhu; Satpathy, Kamala Kanta; Bhattacharya, Bhaskar Deb; Sarkar, Santosh Kumar; Mishra, Pravakar; Raja, P

    2018-01-01

    Spatio-temporal and seasonal variation of the water quality characteristics of the Hooghly River Estuary, India were studied considering eight stations of diverse eco-hydrological characteristics. Wide variations in turbidity, total dissolved solids and fecal coliform exceeded the permissible BIS drinking water level limit. The estuary is observed to be relatively low-oxygenated, mesotropic and phosphate limiting. Spatial heterogeneity and impact of the southwest monsoon were remarkably pronounced in the distribution of the inorganic nutrients revealing the following values (expressed in μgatml -1 ): nitrate+nitrite (2.42-37.19), phosphate (0.41-1.52) and silicate (38.5-187.75). Water Quality Index (WQI) values confirmed the prevailing 'bad' condition, detrimental for sustenance of aquatic biota. Results of Principal Component Analysis identified the major factors liable for water quality deterioration while cluster analysis categorized the stations on the basis of similar water quality status. The authors recommend adopting preventive measures for water quality improvement linked to biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  15. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    NASA Astrophysics Data System (ADS)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial

  16. Determination of mass balance and entrainment in the stratified Duwamish River Estuary, King County, Washington

    USGS Publications Warehouse

    Stoner, J.D.

    1972-01-01

    During a study of the effects of waste-water input on the stratified Duwamish River estuary, intensive water-velocity and salinity measurements were made in both the lower salt wedge and the upper fresher water layer for tidal-cycle periods. The net movement of water and salt mass past a cross section during a tidal cycle was determined from integration of the measured rates of movement of water and salt past the section. The net volume of water that moved downstream past the section during the cycle agreed with the volume of fresh-water inflow at the head of the estuary within (1) 3.8 and 7.2 percent, respectively, for two studies made during periods of maximum and minimum tidal-prism thickness and identical inflow rates .of 312 cfs (cubic feet per second), and (2) 15 percent for one study made during a period of average tidal-prism thickness and an inflow rate of 1,280 cfs. For the three studies, the difference between salt mass transported upstream and downstream during the cycles ranged from 0.8 to 19 percent of the respective mean salt-mass transport. Water was entrained from the .salt-water wedge into the overlying layer of mixed fresh and salt water at tidal-cycle-average rates of 30 and 69 cfs per million square feet of interface for the inflow rates of 312 cfs, and 99 cfs per million square feet of interface for an inflow rate of 1,280 cfs. At a constant inflow rate, the rate of entrainment of salt-wedge water in the Duwamish River estuary more than doubled for a doubling of tidal-prism thickness. It also doubled for a quadrupling of inflow rate at about constant tidal-prism thickness.

  17. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China.

    PubMed

    Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×10(3) to 2.10±0.13×10(5) copies g(-1) (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×10(3) to 1.83±0.18×10(5) copies g(-1) (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4(+)) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.

  18. [Distribution and sources of polycyclic aromatic hydrocarbons in sediments from rivers of Pearl River Delta and its nearby South China Sea].

    PubMed

    Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.

  19. Spatial and temporal distribution in density and biomass of two Pseudodiaptomus species (Copepoda: Calanoida) in the Caeté river estuary (Amazon region--North of Brazil).

    PubMed

    Magalhães, A; Costa, R M; Liang, T H; Pereira, L C C; Ribeiro, M J S

    2006-05-01

    Spatial and temporal density and biomass distribution of the planktonic copepods Pseudodiaptomus richardi and P. acutus along a salinity gradient were investigated in the Caeté River Estuary (North-Brazil) in June and December, 1998 (dry season) and in February and May, 1999 (rainy season). Copepod biomass was estimated using regression parameters based on the relation of dry weight and body length (prosome) of adult organisms. The Caeté River Estuary was characterized by high spatial and temporal variations in salinity (0.8-37.2). Exponential length-weight relationships were observed for both Pseudodiaptomus species. Density and biomass values oscillated between 0.28-46.18 ind. m-3 and 0.0022-0.3507 mg DW. m-3 for P. richardi; and between 0.01-17.02 ind. m-3 and 0.0005-0.7181 mg DW. m-3 for P. acutus. The results showed that the contribution of P. richardi for the secondary production in the Caeté River Estuary is more important in the limnetic zone than in other zones where euhaline-polyhaline regimes were predominant. However, it was not possible to observe a clear pattern of spatial and temporal distribution for P. acutus.

  20. Estimating salinity intrusion effects due to climate change on the Lower Savannah River Estuary

    USGS Publications Warehouse

    Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Cook, John B.; Sexton, Charles T.; Tufford, Daniel L.; Carbone, Gregory J.; Dow, Kristin

    2010-01-01

    The ability of water-resource managers to adapt to future climatic change is especially challenging in coastal regions of the world. The East Coast of the United States falls into this category given the high number of people living along the Atlantic seaboard and the added strain on resources as populations continue to increase, particularly in the Southeast. Increased temperatures, changes in regional precipitation regimes, and potential increased sea level may have a great impact on existing hydrological systems in the region. The Savannah River originates at the confluence of the Seneca and Tugaloo Rivers, near Hartwell, Ga., and forms the state boundary between South Carolina and Georgia. The J. Strom Thurmond Dam and Lake, located 238 miles upstream from the Atlantic Ocean, is responsible for most of the flow regulation that affects the Savannah River from Augusta, Ga., to the coast. The Savannah Harbor experiences semi-diurnal tides of two low and two high tides in a 24.8-hour period with pronounced differences in tidal range between neap and spring tides occurring on a 14-day and 28-day lunar cycle. Salinity intrusion results from the interaction of three principal forces - streamflow, mean tidal water levels, and tidal range. To analyze, model, and simulate hydrodynamic behaviors at critical coastal streamgages in the Lower Savannah River Estuary, data-mining techniques were applied to over 15 years of hourly streamflow, coastal water-quality, and water-level data. Artificial neural network (ANN) models were trained to learn the variable interactions that cause salinity intrusions. Streamflow data from the 9,850 square-mile Savannah River Basin were input into the model as time-delayed variables. Tidal inputs to the models were obtained by decomposing tidal water-level data into a “periodic” signal of tidal range and a “chaotic” signal of mean water levels. The ANN models were able to convincingly reproduce historical behaviors and generate

  1. Long-term monitoring of metal pollution in sediments from the estuary of the Nerbioi-Ibaizabal River (2005-2010)

    NASA Astrophysics Data System (ADS)

    Gredilla, Ainara; Fdez-Ortiz de Vallejuelo, Silvia; Arana, Gorka; de Diego, Alberto; Madariaga, Juan Manuel

    2013-10-01

    This work aims to investigate the spatial and temporal distribution of trace metals in sediment samples taken from the Nerbioi-Ibaizabal River estuary (Bilbao, Basque Country) over the course of a long-term surveillance monitoring programme from 2005 to 2010. Sediment Quality Guidelines (SQGs) and the geoaccumulation indexes (Igeo) were used to assess the environmental risk posed by metal content in the estuary sediment. Sediment was collected at eight different sites in the estuary every three months over the period of investigation. A total of 14 elements (Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V and Zn) were selected and the concentration of each was measured in all samples. Additionally, conductivity, pH and the concentration of carbonate, total organic carbon and fulvic and humic acids were also measured in those samples collected in sampling campaigns from March 2006 to October 2008. The concentration of most of the metals systematically decreased over the period of investigation. There are still some points of the estuary (those located in the surroundings of the Gobela and Galindo tributaries), however, where concentrations of As, Cd, Cu, Pb and Zn are significantly higher than the background values estimated for the area. According to the mean Effects Range Median quotients (mERMqs) calculated for these sites, sediments may still pose a toxicological threat to living organisms. Metal content in inner estuary sediment is low. Specific point sources of metals to the estuary, together with background contamination of diffuse origin, are probably responsible for this situation.

  2. Effects of nitrogen and phosphorus on the growth of Levanderina fissa: How it blooms in Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Guo, Xin; Qu, Linjian; Lin, Langcong

    2017-02-01

    Effects of nitrogen (N) and phosphorus (P) from different sources and at different concentrations on the growth of Levanderina fissa (= Gyrodinium instriatum) were studied in laboratory conditions. The findings might explain the recurrent blooms of this species in Pearl River Estuary, China. Results showed that nutrient limitation significantly inhibited the growth of L. fissa. The values of specific growth rate ( μ max) and half-saturation nutrient concentration ( K S) were 0.37 divisions/d and 8.49 μmol L-1 for N, and 0.39 divisions/d and 1.99 μmol L-1 for P, respectively. Based on K S values, dissolved inorganic N level in PRE was sufficient to support the high proliferation of L. fissa, while dissolved inorganic P concentration was far lower than the minimum requirement for its effective growth. L. fissa was not able to utilize dissolved organic N (DON) compounds such as urea, amino acids, and uric acid. However, it grew well by using a wide variety of dissolved organic P (DOP) sources like nucleotides, glycerophosphate, and 4-nitrophenylphosphate. The results from this study suggested that the ability in DOP utilization of L. fissa offers this species a competitive advantage in phytoplankton communities. The high level and continuous supply of DIN, enrichment of DOP, together with warm climate and low salinity in the Pearl River Estuary provided a suitable nutrient niche for the growth of L. fissa, and resulted in the recurrent blooms in the estuary.

  3. Electronic tagging of green sturgeon reveals population structure and movement among estuaries

    USGS Publications Warehouse

    Lindley, S.T.; Erickson, D.L.; Moser, M.L.; Williams, G.; Langness, O.P.; McCovey, B.W.; Belchik, M.; Vogel, D.; Pinnix, W.; Kelly, J.T.; Heublein, J.C.; Klimley, A.P.

    2011-01-01

    Green sturgeon Acipenser medirostris spend much of their lives outside of their natal rivers, but the details of their migrations and habitat use are poorly known, which limits our understanding of how this species might be affected by human activities and habitat degradation.We tagged 355 green sturgeon with acoustic transmitters on their spawning grounds and in known nonspawning aggregation sites and examined their movement among these sites and other potentially important locations using automated data-logging hydrophones. We found that green sturgeon inhabit a number of estuarine and coastal sites over the summer, including the Columbia River estuary, Willapa Bay, Grays Harbor, and the estuaries of certain smaller rivers in Oregon, especially the Umpqua River estuary. Green sturgeon from different natal rivers exhibited different patterns of habitat use; most notably, San Francisco Bay was used only by Sacramento River fish, while the Umpqua River estuary was used mostly by fish from the Klamath and Rogue rivers. Earlier work, based on analysis of microsatellite markers, suggested that the Columbia River mixed stock was mainly composed of fish from the Sacramento River, but our results indicate that fish from the Rogue and Klamath River populations frequently use the Columbia River as well. We also found evidence for the existence of migratory contingentswithin spawning populations.Our findings have significant implications for the management of the threatened Sacramento River population of green sturgeon, which migrates to inland waters outside of California where anthropogenic impacts, including fisheries bycatch and water pollution, may be a concern. Our results also illustrate the utility of acoustic tracking to elucidate the migratory behavior of animals that are otherwise difficult to observe. ?? American Fisheries Society 2011.

  4. Physical, chemical, and biological aspects of the Duwamish River Estuary, King County, Washington, 1963-67

    USGS Publications Warehouse

    Santos, John F.; Stoner, J.D.

    1972-01-01

    This report describes the significant results to 1967 of a comprehensive study that began in 1963 to evaluate what changes take place in an estuary as the loads .of raw and partially treated industrial and municipal wastes are replaced by effluent from a secondary treatment plant. The study area is the Duwamish River estuary, about 18.3 river kilometers long. At mean sea level the estuary has a water-surface area of about 1 square mile and a mean width of 440 feet. At the lowest and highest recorded tides, the volume of the estuary is about 205 and 592 million cubic feet, respectively. The estuary is well stratified (salt-wedge type) at fresh-water inflows greater than 1,000 cfs (cubic feet per second), but when inflow rates are less than 1,000 cfs the lower 5.6 kilometers of the estuary grades into the partly mixed type. The crosschannel salinity distribution is uniform for a given location and depth. Salinity migration is controlled by tides and fresh-water inflow. At fresh-water inflow rates greater than 1,000 cfs, water in the upper 8.4 kilometers of the estuary is always fresh regardless of tide. At inflow rates less than 600 cfs and tide heights greater than 10 feet; some salinity has been detected 16.1 kilometers above the mouth of the estuary. Studies using a fluorescent dye show that virtually no downward mixing into the salt wedge occurs; soluble pollutants introduced at the upper end of the estuary stay in the surface layer (5-15 ft thick). On the basis of dye studies when fresh-water inflow is less than 400 cfs, it is estimated that less than 10 percent of a pollutant will remain in the estuary a minimum of 7 days. Longitudinal dispersion coefficients for the surface layer have been determined to be on the order of 100-400 square feet per second. Four water-quality stations automatically monitor DO (dissolved oxygen), water temperature, pH, and specific conductance; at one station solar radiation also is measured. DO concentration in the surface layer

  5. Sediment balance of intertidal mudflats in a macrotidal estuary

    NASA Astrophysics Data System (ADS)

    lafite, R.; Deloffre, J.; Lemoine, M.

    2012-12-01

    Intertidal area contributes widely to fine-grained sediment balance in estuarine environments. Their sedimentary dynamics is controlled by several forcing parameters including tidal range, river flow and swell, affected by human activities such as dredging, construction or vessels traffic leading to modify sediment transport pattern. Although the estuarine hydrodynamics is well documented, the link between forcing parameters and these sedimentary processes is weakly understood. One of the main reasons is the difficulty to integrate spatial (from the fluvial to the estuary mouth) and temporal (from swell in seconds to pluriannual river flow variability) patterns. This study achieved on intertidal mudflats distributed along the macrotidal Seine estuary (France) aims (i) to quantify the impact of forcing parameters on each intertidal area respect to its longitudinal position in the estuarine system and (ii) to assess the fine-grained sediment budget at estuarine scale. The Seine estuary is a macrotidal estuary developed over 160 km up the upstream limit of tidal wave penetration. With an average river flow of 450m3.s-1, 80% of the Suspended Particles Matter (SPM) annual flux is discharged during the flood period. In the downstream part, the Seine estuary Turbidity Maximum (TM) is the SPM stock located near the mouth. During their transfer toward the sea, the fine particles can be trapped in (i) the intertidal mudflats; preferential areas characterized by low hydrodynamics and generally sheltered of the tidal dominant flow, the main tidal current the Seine River and (ii) the TM. The Seine estuary is an anthropic estuary in order to secure navigation: one consequence of these developments is the tidal bore disappearance. Along the macrotidal Seine estuary hydrodynamics features and sedimentary fluxes were followed during at least 1 year using respectively Acoustic Doppler Velocimeter, Optical BackScatter and altimeter. Results in the fluvial estuary enhance the role of

  6. Hydrology of major estuaries and sounds of North Carolina

    USGS Publications Warehouse

    Giese, G.L.; Wilder, Hugh B.; Parker, Garald G.

    1985-01-01

    Hydrology-related problems associated with North Carolina 's major estuaries and sounds include contamination of some estuaries with municipal and industrial wastes and drainage from adjacent, intensively farmed areas, and nuisance-level algal blooms. In addition, there is excessive shoaling in some navigation channels, salt-water intrusion into usually fresh estuarine reaches, too high or too-low salinities in nursery areas for various estuarine species, and flood damage due to hurricanes. The Cape Fear River is the only major North Carolina estuary having a direct connection to the sea. Short-term flow throughout most of its length is dominated by ocean tides. Freshwater entering the major estuaries is, where not contaminated, of acceptable quality for drinking with minimum treatment. However, iron concentrations in excess of 0.3 milligrams per liter sometimes occur and water draining from swampy areas along the Coastal Plain is often highly colored, but these problems may be remedied with proper treatment. Nuisance-level algal blooms have been a recurring problem on the lower estuarine reaches of the Neuse, Tar-Pamlico, and Chowan Rivers where nutrients (compounds of phosphorous and nitrogen) are abundant. The most destructive blooms tend to occur in the summer months during periods of low freshwater discharge and relatively high water temperatures. Saltwater intrusion occurs from time to time in all major estuaries except the Roanoke River, where releases from Roanoke Rapids Lake and other reservoirs during otherwise low-flow periods effectively block saline water from the estuary. New shoaling materials found in the lower channelized reaches of the Cape Fear and Northeast Cape Fear Rivers are primarily derived, not from upstream sources, but from nearby shore erosion, from slumping of material adjacent to the dredged channels, from old spoil areas, or from ocean-derived sediments carried upstream by near-bottom density currents.

  7. Avulsion at a drift-dominated mesotidal estuary: The Chubut River outlet, Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Isla, Federico; Espinosa, Marcela; Rubio, Belén; Escandell, Alejandra; Gerpe, Marcela; Miglioranza, Karina; Rey, Daniel; Vilas, Federico

    2015-10-01

    The Chubut River flows from the Andes to the Atlantic Ocean, and is interrupted by a single dam built at the middle valley. The lower valley is dominated by the aggradation of an alluvial plain induced by a complex of spits that enclosed the inlet in the last 5000 years. The river has reduced its flow because the blocking of the upper basin by terminal moraines during the Upper Pleistocene. At least the last two marine transgressions have flooded this estuary, and contributed to the aggradation during regressions. The area is of particular interest in regard to irrigation channels practiced since the XIX century. Today, the mean monthly flow is less than 10 m3/s although peaks of 95 m3/s have been recorded in Gaiman in July 2001. The dynamics of the estuary is dominated by waves (wave-dominated estuary) as tidal effects attenuate in less than 5 km. Three vibracores were collected within this floodplain: (a) at Gaiman, an area without any effect of the sea (35 km from the coast); (b) at Trelew, at the former avulsion plain of the river (18 km from the coast); and (c) at Playa Magagna, a saltmarsh located 0.4 km from the beach. At the Gaiman core (1.54 m long) fresh-water epiphytic diatoms dominate (Epithemia sorex, Cocconeis placentula, Ulnaria ulna) suggesting the aggradation of an alluvial plain. The Trelew core (2.19 m long) was collected from a deltaic plain. It was composed by fine sand with organic matter at the base that evolved into silty layers to the top. Several unconformities and laminae with heavy minerals were detected by their geochemical composition analysed by micro X-ray fluorescence (Itrax XRF core scanner). Fine-sand laminated layers were perfectly detected by their high content in S and Cl. On the other hand, mud layers presented lower content in Mg and Al with increments in Ca and V. The core from the marsh area (1.67 m long) was analysed in terms of the diatom evolution in order to detect Holocene sea-level and salinity effects. The sand flats

  8. Temporal trends and transport of perfluoroalkyl substances (PFASs) in a subtropical estuary: Jiulong River Estuary, Fujian, China.

    PubMed

    Cai, Yizhi; Wang, Xinhong; Wu, Yuling; Zhao, Songhe; Li, Yongyu; Ma, Liya; Chen, Can; Huang, Jun; Yu, Gang

    2018-05-19

    The seasonal variations and spatial distributions of fifteen perfluoroalkyl substances (PFASs) were investigated in the water of the subtropical Jiulong River Estuary (JRE) in Fujian, China. The concentrations and composition profiles of PFASs showed significant seasonal variations. ∑PFASs concentrations ranged from 4.8 to 37.6 ng L -1 , 12.2 to 110 ng L -1 and 3.3 to 43.0 ng L -1 in the dry, medium and wet seasons, respectively. Perfluorooctane sulfonate (PFOS) was found to be the most abundant PFAS in the dry season, with a composition of 33% ± 5%, Perfluorohexanoic acid PFHxA (47% ± 13%) and perfluoropentanoic acid (PFPeA) (52% ± 15%) were the dominant compounds in the medium and wet seasons, respectively. Seasonal and spatial distributions of ∑PFASs were different in the upstream and downstream sections. High concentration of PFHxA occurred in the medium season, and showed a linear decreasing trend from upstream to downstream. The majority of other PFASs did not show clear seasonal variation. Composition profiles indicated that the JRE was mainly contaminated by short-chain perfluoroalkyl carboxylic acids (PFCAs), shipbuilding industry, multiple wastewater and river runoff were identified as major potential sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Heavy metals in soils and plants of the don river estuary and the Taganrog Bay coast

    NASA Astrophysics Data System (ADS)

    Minkina, T. M.; Fedorov, Yu. A.; Nevidomskaya, D. G.; Pol'shina, T. N.; Mandzhieva, S. S.; Chaplygin, V. A.

    2017-09-01

    Natural and anthropogenic factors determining the distribution and accumulation features of Pb, Cu, Zn, Cr, Ni, Cd, Mn, and As in the soil-plant system of the Don River estuary and the northern and southern Russian coasts of Taganrog Bay estuary have been studied. High mobility of Cu, Zn, Pb, and Cd has been revealed in alluvial soils. This is confirmed by the significant bioavailability of Cu, Zn, and, to a lesser degree, Cd and the technophily of Pb, which are accumulated in tissues of macrophytic plants. Statistically significant positive correlations have been found between the mobile forms of Cu, Zn, Cd, and Mn in the soil and the accumulation of metals in plants. Impact zones with increased metal contents in aquatic ecosystems can be revealed by bioindication from the morphofunctional parameters of macrophytic plants (with Typha L. as an example).

  10. Interannual variability in dissolved inorganic nutrients in northern San Francisco Bay estuary

    USGS Publications Warehouse

    Peterson, D.H.; Smith, R.E.; Hager, S.W.; Harmon, D.D.; Herndon, R.E.; Schemel, L.E.

    1985-01-01

    Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960-1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976-1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores. The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean

  11. Sediment dynamics in the lower Mekong River: Transition from tidal river to estuary

    NASA Astrophysics Data System (ADS)

    Nowacki, Daniel J.; Ogston, Andrea S.; Nittrouer, Charles A.; Fricke, Aaron T.; Van, Pham Dang Tri

    2015-09-01

    A better understanding of flow and sediment dynamics in the lowermost portions of large-tropical rivers is essential to constraining estimates of worldwide sediment delivery to the ocean. Flow velocity, salinity, and suspended-sediment concentration were measured for 25 h at three cross sections in the tidal Song Hau distributary of the Mekong River, Vietnam. Two campaigns took place during comparatively high-seasonal and low-seasonal discharge, and estuarine conditions varied dramatically between them. The system transitioned from a tidal river with ephemeral presence of a salt wedge during high flow to a partially mixed estuary during low flow. The changing freshwater input, sediment sources, and estuarine characteristics resulted in seaward sediment export during high flow and landward import during low flow. The Dinh An channel of the Song Hau distributary exported sediment to the coast at a rate of about 1 t s-1 during high flow and imported sediment in a spatially varying manner at approximately 0.3 t s-1 during low flow. Scaling these values results in a yearly Mekong sediment discharge estimate about 65% smaller than a generally accepted estimate of 110 Mt yr-1, although the limited temporal and spatial nature of this study implies a relatively high degree of uncertainty for the new estimate. Fluvial advection of sediment was primarily responsible for the high-flow sediment export. Exchange-flow and tidal processes, including local resuspension, were principally responsible for the low-flow import. The resulting bed-sediment grain size was coarser and more variable during high flow and finer during low, and the residual flow patterns support the maintenance of mid-channel islands. This article was corrected on 7 OCT 2015. See the end of the full text for details.

  12. Modeling coliform-bacteria concentrations and pH in the salt-wedge reach of the Duwamish River Estuary, King County, Washington

    USGS Publications Warehouse

    Haushild, W.L.; Prych, Edmund A.

    1976-01-01

    Total- and fecal-coliform bacteria, plus pH, alkalinity, and dissolved inorganic carbon are water-quality parameters that have been added to an existing numerical model of water quality in the salt-wedge reach of the Duwamish River estuary in Washington. The coliform bacteria are modeled using a first-order decay (death) rate, which is a function of the local salinity, temperature, and daily solar radiation. The pH is computed by solving a set of chemical-equilibrium equations for carbonate-bicarbonate buffered aqueous solutions. Concentrations of total- and fecal-coliform bacteria computed by the model for the Duwamish River estuary during June-September 1971 generally agreed with observed concentrations within about 40 and 60 percent, respectively. The computed pH generally agreed with observed pH within about a 0.2 pH unit; however, for one 3-week period the computed pH was about a 0.4 unit lower than the observed pH. (Woodard-USGS)

  13. Turning the Tide: Estuaries Shaped by Channel-Shoal Interactions, Eco-engineers and Inherited Landscapes

    NASA Astrophysics Data System (ADS)

    Kleinhans, M. G.; Braat, L.; Leuven, J.; Baar, A. W.; van der Vegt, M.; Van Maarseveen, M. C. G.; Markies, H.; Roosendaal, C.; van Eijk, A.

    2015-12-01

    Estuaries exhibit correlations between inlet dimensions, tidal prism and intertidal area, but to what extent estuary planform shape and shoal patterns resulted from biomorphological processes or from inherited conditions such as coastal plain and drowned valley dimensions remains unclear. We explore the hypothesis that mud flats and vegetation as a self-formed lateral confinement have effects analogous to that of river floodplain on braided versus meandering river patterns. Here we use the Delft3D numerical model and a novel tidal flume setup, the Metronome, to create estuaries from idealized initial conditions, with and without mud supply at the fluvial boundary. Experimental mud was simulated by crushed nutshell. Both the numerical and experimental estuaries were narrower with increasing mud, and had a lower degree of channel braiding. The experimental estuaries developed meanders at the river boundary with floodplain developing on the pointbar whereas cohesionless cases were more dynamic.

  14. Methylmercury bioaccumulation in an urban estuary: Delaware River USA.

    PubMed

    Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia

    2017-09-01

    Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.

  15. SPM response to tide and river flow in the hyper-turbid Ems River

    NASA Astrophysics Data System (ADS)

    Winterwerp, Johan C.; Vroom, Julia; Wang, Zheng-B.; Krebs, Martin; Hendriks, Erik C. M.; van Maren, Dirk S.; Schrottke, Kerstin; Borgsmüller, Christine; Schöl, Andreas

    2017-05-01

    In this paper, we analyse the behaviour of fine sediments in the hyper-turbid Lower Ems River, with focus on the river's upper reaches, a stretch of about 25 km up-estuary of Terborg. Our analysis is based on long records of suspended particulate matter (SPM) from optical backscatter (OBS) measurements close to the bed at seven stations along the river, records of salinity and water level measurements at these stations, acoustic measurements on the vertical mud structure just up-estuary of Terborg and oxygen profiles in the lower 3 m of the water column close to Leerort and Terborg. Further, we use cross-sectionally averaged velocities computed with a calibrated numerical model. Distinction is made between four timescales, i.e. the semi-diurnal tidal timescale, the spring-neap tidal timescale, a timescale around an isolated peak in river flow (i.e. about 3 weeks) and a seasonal timescale. The data suggest that a pool of fluid/soft mud is present in these upper reaches, from up-estuary of Papenburg to a bit down-estuary of Terborg. Between Terborg and Gandersum, SPM values drop rapidly but remain high at a few gram per litre. The pool of fluid/soft mud is entrained/mobilized at the onset of flood, yielding SPM values of many tens gram per litre. This suspension is transported up-estuary with the flood. Around high water slack, part of the suspension settles, being remixed during ebb, while migrating down-estuary, but likely not much further than Terborg. Around low water slack, a large fraction of the sediment settles, reforming the pool of fluid mud. The rapid entrainment from the fluid mud layer after low water slack is only possible when the peak flood velocity exceeds a critical value of around 1 m/s, i.e. when the stratified water column seems to become internally supercritical. If the peak flood velocity does not reach this critical value, f.i. during neap tide, fluid mud is not entrained up to the OBS sensors. Thus, it is not classical tidal asymmetry, but

  16. Seasonal variation of nonylphenol concentrations and fluxes with influence of flooding in the Daliao River Estuary, China.

    PubMed

    Li, Zhengyan; Gibson, Mark; Liu, Chang; Hu, Hong

    2013-06-01

    Nonylphenol is an endocrine disruptor with harmful effects including feminization and carcinogenesis on various organisms. This study aims to investigate the distribution and ecological risks of nonylphenol in the Daliao River Estuary, China. Nonylphenol, together with other phenolic endocrine disruptors (bisphenol A, 4-t-butylphenol, 4-t-octylphenol, and 2,4-dichlorophenol), was detected in surface water and sediment on three cruises in May 2009, June 2010, and August 2010, respectively. A large flooding occurred during our sampling campaign in August and its effect on nonylphenol concentrations and fluxes in the estuary was therefore evaluated. The results showed that nonylphenol with a concentration range between 83.6-777 ng l(-1) and 1.5-456 ng g(-1) dw in surface water and sediment was the most abundant among the phenolic compounds, accounting for 59.1-81.0 and 79.9-92.1 % of the total phenolic concentration in surface water and sediment, respectively. The concentrations recorded in May and June were comparable, whereas those in August were considerably higher, mainly due to the flush of flooding. The flooding also caused a 50 times increase in nonylphenol flux from the estuary into the adjacent Bohai Sea. Nonylphenol concentrations in the estuary have exceeded the threshold level of undesirable effects with a potential risk of harm to local species, especially benthic organisms.

  17. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA)

    PubMed Central

    Paerl, Hans W.; Wetz, Michael S.

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  18. Instrumental research of lithodynamic processes in estuaries of the White Sea

    NASA Astrophysics Data System (ADS)

    Rimsky-Korsakov, Nikolai; Korotaev, Vladislav; Ivanov, Vadim

    2017-04-01

    The report provides a comparative analysis of morphological lithodynamic processes in estuaries and river deltas on the basis of 2013-2015 field geophysical and hydrographic surveys held by IO RAS and MSU. Studies performed using side scan sonar (Imagenex YellowFin SSS), bathymetric (FortXXI Scat Echo sounder) and navigation (DGPS/GLONASS Sigma Ashtek receiver) equipment. North Dvina modern delta can be classified as multi-arm delta estuary lagoon performance. Areas of modern river waters occupy a large accumulation of deltaic arms. It formed a young island with elevations of about 1 m. The islands are composed of river alluvium and annually flooded during the flood period. Onega river mouth area is unique due to the specific geological conditions. Short, wellhead site is the cause of the anomalous attenuation of the tidal wave and the limited range of penetration of salt water seashore only to Kokorinskogo threshold. Morphological lithodynamic processes in high tide Mezen estuaries (syzygy - 8.5 m) are caused by tidal currents, river runoff, wind waves and sediment longshore drift. Due to the movement of huge masses of sediment in the Mezen estuary occur intense deformation silty-sand banks, reshaping of the bottom channel trenches and displacement of navigable waterways. Thus, the specificity of the morphological lithodynamic processes in high tidal estuaries is a lack of modern delta, the development of mobile local sediment structures inside the estuary and the formation of a broad mouth bar on the open wellhead coast. In multi-arm deltas an intense process of increasing marine edge of the delta is observed due to wellhead delta arms elongation and the formation of small estuarine bars at the mouths of the underwater channel trenches coming out into the open coast. Simultaneously, the process of filling the river sediments of residual waters within the subaerial delta and the formation of marine coastal bars on the outer perimeter edge of the sea ground delta.

  19. Effects of mud supply on large-scale estuary morphology and development over centuries to millennia

    NASA Astrophysics Data System (ADS)

    Braat, Lisanne; van Kessel, Thijs; Leuven, Jasper R. F. W.; Kleinhans, Maarten G.

    2017-10-01

    Alluvial river estuaries consist largely of sand but are typically flanked by mudflats and salt marshes. The analogy with meandering rivers that are kept narrower than braided rivers by cohesive floodplain formation raises the question of how large-scale estuarine morphology and the late Holocene development of estuaries are affected by cohesive sediment. In this study we combine sand and mud transport processes and study their interaction effects on morphologically modelled estuaries on centennial to millennial timescales. The numerical modelling package Delft3D was applied in 2-DH starting from an idealised convergent estuary. The mixed sediment was modelled with an active layer and storage module with fluxes predicted by the Partheniades-Krone relations for mud and Engelund-Hansen for sand. The model was subjected to a range of idealised boundary conditions of tidal range, river discharge, waves and mud input. The model results show that mud is predominantly stored in mudflats on the side of the estuary. Marine mud supply only influences the mouth of the estuary, whereas fluvial mud is distributed along the whole estuary. Coastal waves stir up mud and remove the tendency to form muddy coastlines and the formation of mudflats in the downstream part of the estuary. Widening continues in estuaries with only sand, while mud supply leads to a narrower constant width and reduced channel and bar dynamics. This self-confinement eventually leads to a dynamic equilibrium in which lateral channel migration and mudflat expansion are balanced on average. However, for higher mud concentrations, higher discharge and low tidal amplitude, the estuary narrows and fills to become a tidal delta.

  20. Estuarine Landcover Along the Lower Columbia River Estuary Determined from Compact Ariborne Spectrographic Imager (CASI) Imagery, Technical Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garono, Ralph; Robinson, Rob

    2003-10-01

    Developing an understanding of the distribution and changes in estuarine and riparian habitats is critical to the management of biological resources in the lower Columbia River. In a recently completed comprehensive ecosystem protection and enhancement plan for the lower Columbia River Estuary (CRE), Jerrick (1999) identified habitat loss and modification as one of the key threats to the integrity of the CRE ecosystem. This management plan called for an inventory of habitats as key first step in the CRE long-term restoration effort. While previous studies have produced useful data sets depicting habitat cover types along portions of the lower CREmore » (Thomas, 1980; Thomas, 1983; Graves et al., 1995; NOAA, 1997; Allen, 1999), no single study has produced a description of the habitats for the entire CRE. Moreover, the previous studies differed in data sources and methodologies making it difficult to merge data or to make temporal comparisons. Therefore, the Lower Columbia River Estuary Partnership (Estuary Partnership) initiated a habitat cover mapping project in 2000. The goal of this project was to produce a data set depicting the current habitat cover types along the lower Columbia River, from its mouth to the Bonneville Dam, a distance of {approx}230-km (Fig. 1) using both established and emerging remote sensing techniques. For this project, we acquired two types of imagery, Landsat 7 ETM+ and Compact Airborne Spectrographic Imager (CASI). Landsat and CASI imagery differ in spatial and spectral resolution: the Landsat 7 ETM+ sensor collects reflectance data in seven spectral bands with a spatial resolution of 30-m and the CASI sensor collects reflectance data in 19 bands (in our study) with a spatial resolution of 1.5-m. We classified both sets of imagery and produced a spatially linked, hierarchical habitat data set for the entire CRE and its floodplain. Landsat 7 ETM+ classification results are presented in a separate report (Garono et al., 2003). This

  1. Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York

    USGS Publications Warehouse

    Wall, G.R.; Nystrom, E.A.; Litten, S.

    2008-01-01

    Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery

  2. Mid to late-Holocene diatom microfossils and geochemical proxies as evidence for paleoclimate in the Hudson River estuary, New York

    NASA Astrophysics Data System (ADS)

    Gurung, D.; McHugh, C. M.; Kenna, T. C.; Burckle, L.

    2009-05-01

    New methodologies that combine the use of microfossil diatom assemblages, and elemental geochemistry (bromine (Br)) are being developed to assess late Holocene climatic variability in estuaries. The main idea is that in an estuary the saltwater wedge fluctuates in response to the volume of fluvial discharge that depends on surface runoff from precipitation and melting of snow (spring freshet). During times of high precipitation the saltwater wedge is pushed seaward. In contrast, during times of drought the saltwater wedge moves landward into the estuary. The Hudson River estuary in New York was flooded by marine waters in the early Holocene and at present its sedimentation patterns are in a state of dynamic equilibrium. Guided by high-resolution multibeam bathymetry, sediment cores (˜6 m in length) were recovered from the oligohaline parts of the estuary where discharge and precipitation changes have more impact on the saltwater wedge fluctuations. In those cores that showed continuous sedimentation, diatom assemblages and Br (ppm) were studied and used as proxies for salinity. Diatom assemblages (marine, freshwater and brackish) were identified and counted and Br (ppm) was measured by X-ray fluorescence spectrometry with an Innov-X portable system. The results were calibrated to an Pb-210 age model and compared with instrumental data of precipitation, river discharge, and Palmer Drought Severity Index (PDSI), The results obtained from two different locations show that marine diatom abundance and Br content correlate with periods of high precipitation during 1992-1988; 1985-1980; 1976-1968; 1962-1958; and increase with periods of low precipitation or droughts in 1987-1985; 1980-1975; 1967-1962; 1943-1938. The mid to late Holocene record shows a variability on the scale of ˜300 to 400 years similar to that obtained by Cronin et al. (2003) for Chesapeake Bay and related to the North Atlantic Oscillation. From 1992 to the present, both marine diatoms and Br ppm

  3. Bar dimensions and bar shapes in estuaries

    NASA Astrophysics Data System (ADS)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  4. Detecting the transport barriers in the Pearl River estuary, Southern China with the aid of Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Zhan, Haigang; Cai, Shuqun; Zhan, Weikang; Ni, Peitong

    2018-05-01

    Knowledge of horizontal transport pathways is important for the protection of the marine ecosystem in coastal areas. In this paper, we develop a 3D model to simulate hydrodynamics and particle transport in the Pearl River Estuary (PRE), Southern China, to study the barriers to transport in the PRE. Specifically, we use the flow velocity produced by the model to locate Lagrangian coherent structures (LCSs) hidden in ocean surface currents. Our findings show that a remarkable LCS begins upstream near the Humen inlet, extends to the Wanshan Islands via Neilingding Island, and can act as a transport barrier in the estuary. This LCS appeared 1-2 h after high tide and was persistent for 6-7 h during every ebb tide. Particles released on the west side of the LCS moved downstream, exited the estuary by Daxi Channel, and seldom spread to the east side, especially the Hong Kong Sea area. An analysis of several scenarios suggested that the formation of this LCS was due to topography restrictions and tidal forces.

  5. Continuous tidal streamflow, water level, and specific conductance data for Union Creek and the Little Back, Middle, and Front Rivers, Savannah River Estuary, November 2008 to March 2009

    USGS Publications Warehouse

    Lanier, Timothy H.; Conrads, Paul

    2010-01-01

    In the Water Resource Development Act of 1999, the U.S. Congress authorized the deepening of the Savannah Harbor. Additional studies were then identified by the Georgia Ports Authority and other local and regional stakeholders to determine and fully describe the potential environmental effects of deepening the channel. One need that was identified was the validation of a three-dimensional hydrodynamic model developed to evaluate mitigation scenarios for a potential harbor deepening and the effects on the Savannah River estuary. The streamflow in the estuary is very complex due to reversing tidal flows, interconnections of streams and tidal creeks, and the daily flooding and draining of the marshes. The model was calibrated using very limited streamflow data and no continuous streamflow measurements. To better characterize the streamflow dynamics and mass transport of the estuary, two index-velocity sites were instrumented with continuous acoustic velocity, water level, and specific conductance sensors on the Little Back and Middle Rivers for the 5-month period of November 2008 through March 2009. During the same period, a third acoustic velocity meter was installed on the Front River just downstream from U.S. Geological Survey streamgaging station 02198920 (Savannah River at GA 25, at Port Wentworth, Georgia) where water level and specific conductance data were being collected. A fourth index-velocity site was instrumented with continuous acoustic velocity, water level, and specific conductance sensors on Union Creek for a 2-month period starting in November 2008. In addition to monitoring the tidal cycles, streamflow measurements were made at the four index-velocity sites to develop ratings to compute continuous discharge for each site. The maximum flood (incoming) and ebb (outgoing) tides measured on Little Back River were –4,570 and 7,990 cubic feet per second, respectively. On Middle River, the maximum flood and ebb tides measured were –9,630 and 13

  6. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: concentrations, mass loading and ecological risks.

    PubMed

    Xu, Weihai; Yan, Wen; Li, Xiangdong; Zou, Yongde; Chen, Xiaoxiang; Huang, Weixia; Miao, Li; Zhang, Ruijie; Zhang, Gan; Zou, Shichun

    2013-11-01

    Ten antibiotics belonging to three groups (macrolides, fluoroquinolones and sulfonamides) were investigated in riverine runoff of the Pearl River Delta (PRD) and Pearl River Estuary (PRE), South China for assessing the importance of riverine runoff in the transportation of contaminants from terrestrial sources to the open ocean. All antibiotics were detected in the eight outlets with concentrations ranging from 0.7 to 127 ng L(-1). The annual mass loadings of antibiotics from the PRD to the PRE and coast were 193 tons with 102 tons from the fluoroquinolone group. It showed that antibiotics decreased from the riverine outlets to the PRE and open ocean. Risk assessment showed that most of these antibiotics showed various ecological risks to the relevant aquatic organisms, in which ofloxacin (OFL), erythromycin (ETM) and ciprofloxacin (CIP) posed high ecological risks to the studied aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.

    PubMed

    Kramer, Benjamin J; Davis, Timothy W; Meyer, Kevin A; Rosen, Barry H; Goleski, Jennifer A; Dick, Gregory J; Oh, Genesok; Gobler, Christopher J

    2018-01-01

    Lake Okeechobee, FL, USA, has been subjected to intensifying cyanobacterial blooms that can spread to the adjacent St. Lucie River and Estuary via natural and anthropogenically-induced flooding events. In July 2016, a large, toxic cyanobacterial bloom occurred in Lake Okeechobee and throughout the St. Lucie River and Estuary, leading Florida to declare a state of emergency. This study reports on measurements and nutrient amendment experiments performed in this freshwater-estuarine ecosystem (salinity 0-25 PSU) during and after the bloom. In July, all sites along the bloom exhibited dissolved inorganic nitrogen-to-phosphorus ratios < 6, while Microcystis dominated (> 95%) phytoplankton inventories from the lake to the central part of the estuary. Chlorophyll a and microcystin concentrations peaked (100 and 34 μg L-1, respectively) within Lake Okeechobee and decreased eastwards. Metagenomic analyses indicated that genes associated with the production of microcystin (mcyE) and the algal neurotoxin saxitoxin (sxtA) originated from Microcystis and multiple diazotrophic genera, respectively. There were highly significant correlations between levels of total nitrogen, microcystin, and microcystin synthesis gene abundance across all surveyed sites (p < 0.001), suggesting high levels of nitrogen supported the production of microcystin during this event. Consistent with this, experiments performed with low salinity water from the St. Lucie River during the event indicated that algal biomass was nitrogen-limited. In the fall, densities of Microcystis and concentrations of microcystin were significantly lower, green algae co-dominated with cyanobacteria, and multiple algal groups displayed nitrogen-limitation. These results indicate that monitoring and regulatory strategies in Lake Okeechobee and the St. Lucie River and Estuary should consider managing loads of nitrogen to control future algal and microcystin-producing cyanobacterial blooms.

  8. Phthalate esters in water and surface sediments of the Pearl River Estuary: distribution, ecological, and human health risks.

    PubMed

    Li, Xiaohui; Yin, Pinghe; Zhao, Ling

    2016-10-01

    The Pearl River Estuary (PRE) is vulnerable due to the increasingly serious environmental pollution, such as phthalate esters (PAEs) contaminants, from the Pearl River Delta (PRD). The concentrations of six US Environmental Protection Agency (USEPA) priority PAEs in water and surface sediments collected from the PRD's six main estuaries in spring, summer, and winter 2013 were measured by GC-MS. Total PAEs (∑6PAEs) concentrations were from 0.5 to 28.1 μg/L and from 0.88 to 13.6 μg/g (dry weight (DW)) in water and surface sediments, respectively. The highest concentration was detected in summer. Higher concentrations of PAEs were found in Yamen (YM) and Humen (HM) areas than the other areas. Bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) were the dominant PAEs in the investigated areas, contributing between 61 and 95 % of the PAEs in water and from 85 to 98 % in surface sediments. Based on risk quotients (RQs), DEHP posed greater ecological risks to the studied aquatic environments than other measured compounds. Little human health risk from the target PAEs was identified.

  9. [Spatial distribution and potential ecological risk assessment of heavy metals in sediments of Yalu River estuary wetland mudflat.

    PubMed

    Zhang, Chun Peng; Li, Fu Xiang

    2016-09-01

    Kriging interpolation analysis was conducted with ArcGIS to find out the distribution characteristics of heavy metals concentrations in the surface sediments of the coastal wetland mudflat on the Yalu River estuary, environmental risk index and Hakanson potential ecological risk index were used to assess their extents of pollution in this area.The concentrations of heavy metals in the surface sediments of the study area were at a relatively high level compared with the typical estuarine wetland. The concentration of heavy metals in the east was higher than that in the west, and in the human activity area, the concentration was higher. Cu was found to contribute the most to the pollution status based on environmental risk index method, while Hg and Cd produced the greatest potential ecological harm according to Hankanson Potential ecological risk index method. The average potential ecological risk index (RI) of the Yalu River estuary wetland was 189.30 (ranged from 93.65-507.20), suggesting a moderate ecological risk. However, the potential ecological risk was highest in the east and should be treated as the major heavy metal pollution prevention area in the future.

  10. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    PubMed

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  11. Aquatic metabolism response to the hydrologic alteration in the Yellow River estuary, China

    NASA Astrophysics Data System (ADS)

    Shen, Xiaomei; Sun, Tao; Liu, Fangfang; Xu, Jing; Pang, Aiping

    2015-06-01

    Successful artificial hydrologic regulation and environmental flow assessments for the ecosystem protection require an accurate understanding of the linkages between flow events and biotic responses. To explore an ecosystem's functional responses to hydrologic alterations, we analysed spatial and temporal variations in aquatic metabolism and the main factors influenced by artificial hydrologic alterations based on the data collected from 2009 to 2012 in the Yellow River estuary, China. Gross primary production (GPP) ranged from 0.002 to 8.488 mg O2 L-1 d-1. Ecosystem respiration (ER) ranged from 0.382 to 8.968 mg O2 L-1 d-1. Net ecosystem production (NEP) ranged from -5.792 to 7.293 mg O2 L-1 d-1 and the mean of NEP was -0.506 mg O2 L-1 d-1, which means that the trophic status of entire estuary was near to balance. The results showed that seasonal variations in the aquatic metabolism are influenced by the hydrologic alteration in the estuary. High water temperature and solar radiation in summer are associated with low turbidity and consequently high rates of GPP and ER, making the estuary net autotrophic in summer, and that also occurred after water-sediment regulation in August. Turbidity and water temperature were identified as two particularly important factors that influenced the variation in the metabolic balance. As a result, metabolism rate did not decrease but increased after the regulation. ER increased significantly in summer and autumn and reached a maximum after the water-sediment regulation in September. GPP and NEP reached a maximum value after the water-sediment regulation in August, and then decreased in autumn. Estuarine ecosystem shifted from net heterotrophy in spring to net autotrophy in summer, and then to net heterotrophy in autumn. Our study indicated that estuarine metabolism may recover to a high level faster in summer than that in other seasons after the short-term water-sediment regulation due to higher water temperature and nutrients.

  12. Distribution and pollution assessment of heavy metals in surface sediments in Xiaoqing river estuary and its adjacent sea of Laizhou bay

    NASA Astrophysics Data System (ADS)

    Wang, Li; Luo, Xianxiang; Fan, Yuqing

    2018-03-01

    In this paper, the monitoring results of four heavy metals Cu, Pb, Zn and Hg at 10 sampling stations in Xiaoqing river estuary and its adjacent sea of Laizhou Bay in November 2008 were analyzed and evaluated. The results showed that the concentrations of heavy metals in the steam channel and estuary are higher than those in the adjacent sea, and the metal concentrations were below the standard for I class of marine sediment quality, excepting the station 2 in the steam channel and station 5 in the estuary. The assessment of the single-factor pollution index showed that the overall pollution level of the study area was relatively low, but there was serious pollution phenomenon in individual station. The potential ecological risk of heavy metals in the surface sediments was generally at a low level, and Hg had the highest potential risk.

  13. Hydrochemical and isotopic characteristics of estuarial seawater and river water of Bailanghe in Laizhou Bay, China

    NASA Astrophysics Data System (ADS)

    Yang, Qiaofeng; Xu, Suning; Wang, Ruijiu; Li, Wenpeng; Wang, Zhiyi; Mei, Junjun; Ding, Zhilei; Yang, Peijie; Yu, Liangju; Lv, Tieying; Bai, Gang; Kang, Wei

    2016-04-01

    In the study of seawater intrusion, seawater is usually taken as an end-member that mixes with other source(s). However, compared to standard seawater, the coastal seawater particularly that near the estuary, can be strongly influenced by the rivers into the sea and by coastal human activities. Their composition can be thus continuously changed and redistributed with space and time. Therefore, before investigating seawater intrusion in a certain area, it is essentially important to determine the features of the estuarine seawater (e.g. the mixture percentage between standard seawater and river water). In this study, we aimed to gain a clear situation of the seawater intrusion in Laizhou Bay, Southern Bohai, China. The issue aforementioned was investigated by comparing the stable isotopic and hydrochemical composition of the marine and river water collected in this area. Samples investigated include 5 surface water samples collected at the downstream of the Bailanghe and 7 seawater samples near the estuary of Laizhou Bay. Inert tracers (δD, δ18O, Cl, Br) and reaction tracers (Na, Mg, SO4, HCO3, Ca, NO3) are particularly analyzed. The major results are as follows: 1) All the river water samples fall below the Global Meteoric Water Line in the δD - δ18O diagram, reflecting evaporation of the upstream reservoir water. The seawater samples fall on the mixing line of standard seawater and the river water in the stable isotopic diagram. 2) The Cl-δ18O diagram indicates widespread dissolution of evaporate into the river, while high concentration of Ca and HCO3-, as well as the SO42- - Cl relation of the river water samples reflect the dissolution of CO2 , carbonate and sulfate in the atmosphere and on the ground. 3) The Br/Cl ratios of seawater samples are closed to the marine ratios. This together with the plots of major ions vs. Cl suggest that the seawater samples are originated from the mixture of standard seawater and river water. Therefore, when referring to the

  14. How Hydrodynamics Control Algal Blooms in the Ythan Estuary, Scotland

    NASA Astrophysics Data System (ADS)

    Champangern, K.; Hoey, T.; Thomas, R.; Mitchard, E. T.

    2016-12-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilisers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as nutrient transport in the estuary is crucial for comprehending the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. To understand the controls, the Delft3d flow model is used to simulate hydrodynamic patterns and nutrient pathways in the estuary during high flow and low flow events. The results from the simulations reveal that during high river flow in the central part of the estuary, where algal growth is most extensive, flow velocity are higher during flood tide than in the ebb. However, the velocity in this area remain very low throughout the tidal cycle. During low river flow, the velocity during one tidal cycle has the same pattern as in high flow event, although the velocity is generally slightly higher than during high river flow except during slack tide where velocity and shear stress are lower. The modelled nutrient pathways and their concentration also show the movement of nutrients with regard to interaction of both fresh and sea water. The concentration is greatest during low tide in the upper estuary followed by middle and lower estuary, while appearing lowest during high tide. The nutrients mobilise along the main channel where velocity is greater. However, they are also dispersed to shallower areas where algal growth is extensive and remain high concentrated in the areas until a new flood tide. These model results are validated against measured data, of which the

  15. Relationship between nutrients and plankton biomass in the turbidity maximum zone of the Pearl River Estuary.

    PubMed

    Shi, Zhen; Xu, Jie; Huang, Xiaoping; Zhang, Xia; Jiang, Zhijian; Ye, Feng; Liang, Ximei

    2017-07-01

    Nutrients, dissolved and particulate organic carbon and plankton (bacterio-, phyto- and zoo-) were compared in the turbidity maximum zone (TMZ) and adjacent areas (non-TMZ) in the Pearl River estuary. Our results showed that high levels of suspended substances had marked effect on dynamics of nutrients and plankton in the TMZ. Based on the cluster analysis of total suspended solids (TSS) concentrations, all stations were divided into two groups, TMZ with average TSS of 171mg/L and non-TMZ of 45mg/L. Suspended substances adsorbed PO 4 3- and dissolved organic carbon, resulting in higher particulate phosphorus and organic carbon (POC) and lower PO 4 3- and DOC in the TMZ, compared to the non-TMZ. However, suspended substances had limited effect on nitrogenous nutrients. Phytoplankton growth was light-limited due to high concentrations of suspended substances in the TMZ and a peak of phytoplankton abundance appeared in the non-TMZ. In contrast, the highest bacterial abundance occurred in the TMZ, which was likely partly responsible for low DOC levels. Two peaks of zooplankton abundance observed in the TMZ and non-TMZ in the Pearl River estuary were primarily supported by bacteria and phytoplankton, respectively. Our finding implied that high levels of suspended solids in the TMZ affect the trophic balance. Copyright © 2016. Published by Elsevier B.V.

  16. Antioxidant and detoxification responses of oysters Crassostrea hongkongensis in a multimetal-contaminated estuary.

    PubMed

    Liu, Xuan; Wang, Wen-Xiong

    2016-11-01

    The contaminated oysters discovered in the Pearl River Estuary (Guangdong province, China) contained high levels of metals in their tissues, especially Cu and Zn, indicating that this large and densely urbanized estuary in Southern China suffers from serious metal pollution. The present study aimed to investigate the impacts of multimetal pollution in the Pearl River Estuary on oyster antioxidant and detoxification systems. The responses of various biochemical biomarkers in the ecologically important oyster Crassostrea hongkongensis collected from 7 sites in the Pearl River Estuary were quantified. Significant correlations were demonstrated between the accumulation of Cu and Zn and oxidative stress (lipid peroxidation) and oxidative stress defenses (catalase, glutathione peroxidase) in the oyster gills. Significant correlations between the accumulation of Cd and Cu and detoxification (glutathione and glutathione transferase) in the gills were also documented. Interestingly, metallothionein concentrations were positively correlated with Cd, but negatively correlated with Cu, Ni, and Zn concentrations in the gills. These measurements indicated that Cu in the Pearl River Estuary induced various biochemical responses in the oysters and influenced the susceptibility of oysters to environmental stress. The present study has provided the first evidence of antioxidant and detoxification responses in native contaminated oysters from a field environment seriously contaminated by metals. Coupling biomarkers with tissue metal concentration measurements was a promising approach to identify the metals causing biological impacts in a multimetal-contaminated estuary. Environ Toxicol Chem 2016;35:2798-2805. © 2016 SETAC. © 2016 SETAC.

  17. AN ECOSYSTEM MODEL OF A RIVER-DOMINATED PACIFIC NORTHWEST ESTURARY: ROLES OF SALT MARSH-, RIVER-, AND OCEAN-DERIVED MATERIALS

    EPA Science Inventory

    The Salmon River estuary on the central Oregon coast is river-dominated, with hydraulic residence times ranging from <1 day during winter high flows to a week during low flows. The estuary receives organic matter and nutrients from the river, the coastal ocean, and a bordering s...

  18. Metagenomic Analysis of Virioplankton of the Subtropical Jiulong River Estuary, China

    PubMed Central

    Cai, Lanlan; Zhang, Rui; He, Ying; Feng, Xiaoyuan; Jiao, Nianzhi

    2016-01-01

    Viruses are the most abundant biological entities in the oceans, and encompass a significant reservoir of genetic diversity. However, little is known about their biodiversity in estuary environments, which represent a highly dynamic and potentially more diverse habitat. Here, we report a metagenomic analysis of the dsDNA viral community from the Jiulong River Estuary (JRE), China, and provide a comparative analysis with other closely related environments. The results showed that the majority of JRE virome did not show any significant similarity to the database. For the major viral group (Caudovirales) detected in the sample, Podoviridae (44.88%) were the most abundant family, followed by Siphoviridae (32.98%) and Myoviridae (17.32%). The two most abundant viruses identified in the virome were phages HTVC010P and HMO-2011, which infect bacteria belonging to marine SAR11 and SAR116 clades, respectively. Two contigs larger than 20 kb, which show similar overall genome architectures to Celeribacter phage P12053L and Thalosomonas phage BA3, respectively, were generated during assembly. Comparative analysis showed that the JRE virome was more similar to marine viromes than to freshwater viromes, and shared a relative coarse-grain genetic overlap (averaging 14.14% ± 1.68%) with other coastal viromes. Our study indicated that the diversity and community structure of the virioplankton found in JRE were mainly affected by marine waters, with less influence from freshwater discharge. PMID:26848678

  19. Climatic variability and its role in regulating C, N and P retention in the James River Estuary

    NASA Astrophysics Data System (ADS)

    Bukaveckas, Paul A.; Beck, Michael; Devore, Dana; Lee, William M.

    2018-05-01

    Transformations and retention of C, N and P inputs to estuaries are subject to external factors such as discharge-driven variation in loading rates, and internal processes regulating biogeochemical cycles. We used an 8-year time series of finely resolved (monthly) mass balances for the tidal freshwater segment of the James River Estuary to assess the influence of discharge and temperature on C, N and P retention. Peak export and retention of organic, likely particulate, fractions occurred in months of highest discharge. With increasing discharge we observed higher mass retention, greater proportional retention (in relation to inputs) and more selective retention (with P retained preferentially over N and C). DIN retention was strongly influenced by water temperature with 10-fold high retention occurring at high (>20 °C) vs. low (<15 °C) water temperature at corresponding discharge. Our findings suggest that rising temperatures will have a greater effect on the retention of N than P because a greater proportion of the total N delivered to estuaries is in dissolved inorganic form, and therefore subject to temperature dependent rates of biological assimilation and denitrification. By contrast, the bulk of the P load was in particulate form, which is retained via sediment trapping, and not appreciably affected by water temperature. The tidal freshwater estuary was an important site for nutrient removal where the accumulation of N- and P- rich materials may delay recovery in response to nutrient load reductions.

  20. Tide-Dominated Tract (TDT) as a key sedimentary zone characterizing tide-dominated large-river delta and estuary systems

    NASA Astrophysics Data System (ADS)

    Saito, Y.

    2017-12-01

    Large rivers in continents have a characteristic of slow rise and fall in water levels during floods or the wet season due to a wide drainage basin. A gentle river gradient and large water discharge have relatively large tidal ranges at the river mouth, resulting in large backwater effects further upstream. The result of the Mekong River survey (386 riverbed sediments, river topography, CTD, and biofacies) shows that the distributary channels of the Mekong River delta in Vietnam are divided into two parts: the landward river-dominated tract (RDT) and seaward tide-dominated tract (TDT). The RDT is characterized by a highly variable and deepening trend in water depth and coarse-grained sediments with a fining trend downstream. The TDT is characterized by a shallowing trend in water depth with river-widening, smooth riverbeds, a straight shape, and heterolithic f- to vf-sand and mud alternation (tidal thythmite). The boundary of both tracts is sharply identified by sediment facies and river morphology. Sediment facies indicates that the dominant sedimentary process of bottom sediments is "bedload" in the RDT and "suspension" in the TDT. Daily tidal changes are observed through the year, while water-level changes during the flood/wet season are limited in the TDT. Saltwater intrusion is limited within the seaward part of the TDT alone ( 50 km), close to final bifurcation points. However, brackish-water biofacies is observed in the TDT mainly due to diluted brackish water and/or tolerance to the freshwater environment. These characteristics are also found in the Yangtze; the distance of the TDT/RDT boundary from the river mouth is ca. 100 km in the Mekong, and 200 km in the Yangtze. The preservation potential of sediments in a TDT is low in a progradational system, and high in abandoned channels. The early Holocene transgressive estuary system in the incised valley of the Yangtze formed during the Last Glacial Maximum was composed of 20 m-thick fine-grained heterolithic

  1. Estuaries of the northeastern United States: Habitat and land use signatures

    USGS Publications Warehouse

    Roman, C.T.; Jaworski, N.; Short, F.T.; Findlay, S.; Warren, R.S.

    2000-01-01

    Geographic signatures are physical, chemical, biotic, and human-induced characteristics or processes that help define similar or unique features of estuaries along latitudinal or geographic gradients. Geomorphologically, estuaries of the northeastern U.S., from the Hudson River estuary and northward along the Gulf of Maine shoreline, are highly diverse because of a complex bedrock geology and glacial history. Back-barrier estuaries and lagoons occur within the northeast region, but the dominant type is the drowned-river valley, often with rocky shores. Tidal range and mean depth of northeast estuaries are generally greater when compared to estuaries of the more southern U.S. Atlantic coast and Gulf of Mexico. Because of small estuarine drainage basins, low riverine flows, a bedrock substrate, and dense forest cover, sediment loads in northeast estuaries are generally quite low and water clarity is high. Tidal marshes, seagrass meadows, intertidal mudflats, and rocky shores represent major habitat types that fringe northeast estuaries, supporting commercially-important fauna, forage nekton and benthos, and coastal bird communities, while also serving as links between deeper estuarine waters and habitats through detritus-based pathways. Regarding land use and water quality trends, portions of the northeast have a history of over a century of intense urbanization as reflected in increased total nitrogen and total phosphorus loadings to estuaries, with wastewater treatment facilities and atmospheric deposition being major sources. Agricultural inputs are relatively minor throughout the northeast, with relative importance increasing for coastal plain estuaries. Identifying geographic signatures provides an objective means for comparing the structure function, and processes of estuaries along latitudinal gradients.

  2. Geographic specificity of Aroclor 1268 in bottlenose dolphins (Tursiops truncatus) frequenting the Turtle/Brunswick River Estuary, Georgia (USA).

    PubMed

    Pulster, Erin L; Maruya, Keith A

    2008-04-15

    Coastal marine resources are at risk from anthropogenic contaminants, including legacy persistent organic pollutants (POPs) with half-lives of decades or more. To determine if polychlorinated biphenyl (PCB) signatures can be used to distinguish among local populations of inshore bottlenose dolphins (Tursiops truncatus) along the southeastern U.S. coast, blubber from free-ranging and stranded animals were collected along the Georgia coast in 2004 and analyzed for PCB congeners using gas chromatography with electron capture and negative chemical ionization mass spectrometric detection (GC-ECD and GC-NCI-MS). Mean total PCB concentrations (77+/-34 microg/g lipid) were more than 10 fold higher and congener distributions were highly enriched in Cl(7)-Cl(10) homologs in free-ranging animals from the Turtle/Brunswick River estuary (TBRE) compared with strandings samples from Savannah area estuaries 90 km to the north. Using principal components analysis (PCA), the Aroclor 1268 signature associated with TBRE animals was distinct from that observed in Savannah area animals, and also from those in animals biopsied in other southeastern U.S estuaries. Moreover, PCB signatures in dolphin blubber closely resembled those in local preferred prey fish species, strengthening the hypothesis that inshore T. truncatus populations exhibit long-term fidelity to specific estuaries and making them excellent sentinels for assessing the impact of stressors on coastal ecosystem health.

  3. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    USGS Publications Warehouse

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  4. Salinity adaptation of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in the Columbia River estuary (Pacific Northwest, USA): Physiological and molecular studies

    USGS Publications Warehouse

    Hoy, Marshal; Boese, Bruce L.; Taylor, Louise; Reusser, Deborah; Rodriguez, Rusty

    2012-01-01

    In this study, we examine salinity stress tolerances of two populations of the invasive species New Zealand mud snail Potamopyrgus antipodarum, one population from a high salinity environment in the Columbia River estuary and the other from a fresh water lake. In 1996, New Zealand mud snails were discovered in the tidal reaches of the Columbia River estuary that is routinely exposed to salinity at near full seawater concentrations. In contrast, in their native habitat and throughout its spread in the western US, New Zealand mud snails are found only in fresh water ecosystems. Our aim was to determine whether the Columbia River snails have become salt water adapted. Using a modification of the standard amphipod sediment toxicity test, salinity tolerance was tested using a range of concentrations up to undiluted seawater, and the snails were sampled for mortality at daily time points. Our results show that the Columbia River snails were more tolerant of acute salinity stress with the LC50 values averaging 38 and 22 Practical Salinity Units for the Columbia River and freshwater snails, respectively. DNA sequence analysis and morphological comparisons of individuals representing each population indicate that they were all P. antipodarum. These results suggest that this species is salt water adaptable and in addition, this investigation helps elucidate the potential of this aquatic invasive organism to adapt to adverse environmental conditions.

  5. Spatial distribution of polycyclic aromatic hydrocarbon and polychlorinated biphenyl sources in the Nakdong River Estuary, South Korea.

    PubMed

    Lee, Jun H; Woo, Han J; Jeong, Kap S; Kang, Jeong W; Choi, Jae U; Jeong, Eun J; Park, Kap S; Lee, Dong H

    2017-10-15

    Our research team investigated the elemental composition and the presence of various toxic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), in estuary surface sediments to trace the spatial distribution of the sources of pollution deposited in Nakdong River, Busan, South Korea. The spatial patterns of elemental composition and toxic organic compounds were determined from the measurements of total organic carbon (TOC), total nitrogen, total sulfur, PAHs, and PCBs. The sediments had TOC contents of between 0.02 and 1.80 wt% (avg. 0.34 wt%), depending on the amount of clay-sized particles. The concentrations of PAHs and PCBs (10.8-167.7 ng g -1 dry wt and 197.0-754.0 pg g -1 dry wt, respectively) in surface sediments revealed different spatial patterns for these compounds, suggesting that they partially originated from the combustion of fossil fuels and from the use of commercial PCB products at adjacent industrial complexes. Although these concentrations were far below the Sediment Quality Guideline (SQG) of the National Oceanic and Atmospheric Administration (NOAA), the sediments at one site contained PCBs at concentrations close to the response level (754.0 pg g -1 dry wt), and were dominated by low-molecular-weight PAHs. The PAHs and PCBs in Nakdong River Estuary sediments were likely to have originated from the combustion of fossil fuels and biomass at the adjacent industrial complexes. The primarily analyzed results determined that PAHs originated from the combustion of fossil fuels and biomass, and overall concentrations were related to the contributions of individual PAHs in most sediment samples. Based on the SQG of the NOAA, our results indicate that the anthropogenic activity should be considered on the future-sustainable management of this estuary system.

  6. The relationship between CDOM and salinity in estuaries: An analytical and graphical solution

    NASA Astrophysics Data System (ADS)

    Bowers, D. G.; Brett, H. L.

    2008-09-01

    The relationship between coloured dissolved organic matter (CDOM) and salinity in an estuary is explored using a simple box model in which the river discharge and concentration of CDOM in the river are allowed to vary with time. The results are presented as analytical and graphical solutions. The behaviour of the estuary depends upon the ratio, β, of the flushing time of the estuary to the timescale of the source variation. For small values of β, the variation in CDOM concentration in the estuary tracks that in the source, producing a linear relationship on a CDOM-salinity plot. As β increases, the estuary struggles to keep up with the changes in the source; and a curved CDOM-salinity plot results. For very large values of β, however, corresponding to estuaries with a long flushing time, the CDOM concentration in the estuary settles down to a mean value which again lies on a straight line on a CDOM-salinity plot (and extrapolates to the time-mean concentration in the source). The results are discussed in terms of the mapping of surface salinity in estuaries through the visible band remote sensing of CDOM.

  7. Stratified Fronts in Well-Mixed Estuaries

    DTIC Science & Technology

    2013-09-01

    Thornton Thomas Murphree Professor of Oceanography (Emer.) Professor of Meteorology Approved by...J. C. Warner (2012), Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping, J. Geophys

  8. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary.

    PubMed

    Wei, Guangshan; Li, Mingcong; Li, Fenge; Li, Han; Gao, Zheng

    2016-11-01

    There are close exchanges between sediment and water in estuaries; however, the patterns of prokaryotic community assembly in these two habitat types are still unclear. This study investigated the bacterial and archaeal abundance, diversity, and community composition in the sediment and the overlying water of the Yellow River estuary. Notably higher prokaryotic abundance and diversity were detected in the sediment than in the water, and bacterial abundance and diversity were remarkably higher than those of archaea. Furthermore, the ratio of bacterial to archaeal 16S rRNA gene abundance was significantly lower in the sediment than in the water. Bacterial communities at different taxonomic levels were apparently distinct between the sediment and water, but archaeal communities were not. The most dominant bacteria were affiliated with Deltaproteobacteria and Gammaproteobacteria in sediment and with Alphaproteobacteria and Betaproteobacteria in water. Euryarchaeota and Thaumarchaeota were the most abundant archaea in both habitats. Although distinct prokaryotic distribution patterns were observed, most of the dominant bacteria and archaea present were related to carbon, nitrogen, and sulfur cycling processes, such as methanogenesis, ammonia oxidation, and sulfate reduction. Unexpectedly, prokaryotes from the water showed a higher sensitivity to environmental factors, while only a few factors affected sediment communities. Additionally, some potential co-occurrence relationships between prokaryotes were also found in this study. These results suggested distinct distribution patterns of bacterial and archaeal communities between sediment and overlying water in this important temperate estuary, which may serve as a useful community model for the further ecological and evolutionary study of prokaryotes in estuarine ecosystems.

  9. Salinity-oriented environmental flows for keystone species in the Modaomen Estuary, China

    NASA Astrophysics Data System (ADS)

    Zhang, Menglu; Cui, Baoshan; Zhang, Zhiming; Jiang, Xuelian

    2017-12-01

    Rapid development and urbanization in recent years have contributed to a reduction in freshwater discharge and intensified saltwater intrusion in the Pearl River Delta. This comprises a significant threat to potable water supplies and overall estuary ecosystem health. In this study, the environmental flows of the Modaomen Estuary, one of the estuaries of the Pearl River Delta in China, were determined based on the salinity demand of keystone species and the linear relationship between river discharge and estuarine salinity. The estimated minimum and optimal annual environmental flows in the Modaomen Estuary were 116.8 × 109 m3 and 273.8 × 109 m3, respectively, representing 59.3% and 139.0% of the natural runoff. Water quality assessments in recent years indicate that the environmental flows have not been satisfied most of the time, particularly the optimal environmental flow, despite implementation of various water regulations since 2005. Therefore, water regulations and wetland network recoveries based on rational environmental flows should be implemented to alleviate saltwater intrusion and for the creation of an ideal estuarine habitat.

  10. Impact of estuary barrage construction on fish assemblages in the lower part of a river and the role of fishways as a passage

    NASA Astrophysics Data System (ADS)

    Yoon, Ju-Duk; Kim, Jeong-Hui; Park, Sang-Hyeon; Kim, Eve; Jang, Min-Ho

    2017-03-01

    The construction of an estuary barrage, an instream structure in the lower reaches of a river, causes significant physical changes in water flow patterns and river morphology, and results in altered environmental conditions. Here, we examined the impact of the Geum River estuary barrage, completed in 1990, on fish assemblages by using a literature search and fresh surveys of fishways in the barrage. We found that fish assemblages upstream and downstream of the barrage were altered following its completion. After construction, more species were found in the freshwater area, with a particularly great increase in freshwater species. Conversely, estuarine and marine species were only consistently caught in the downstream salt-water area, although the number of species increased. In total, 15,829 fish from 47 species and 20 families were identified at the three types (pool and weir, rubble type, and boat passage) of fishways in the barrage. The dominant species were Chelon haematocheilus, an estuarine species, Coilia nasus, a diadromous species, and Erythroculter erythropterus, a freshwater species. The mean total length of fish (101.9 ± 76.0 mm) in the boat passage fishway was approximately 100 mm lesser than those in the pool and weir (207.2 ± 112.8 mm) and rubble type (205.8 ± 112.7 mm) fishways. The boat passage fishway was the most efficient for fish movements. The current fishway system is not sufficient for fish migration, and thus additional ways are required to improve the system such as the boat passage. Few estuarine or diadromous species were found in both freshwater and salt-water areas, but freshwater fishes that accidently moved to salt-water area actively used fishways. Therefore, fishway management in the Geum River estuary barrage has to focus on freshwater fish; however, this may need to change to a focus on migratory fishes depending on ecological life cycles of migratory fish.

  11. Field observations of hypersaline runoff through a shallow estuary

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Taleb; Siadatmousavi, Seyed Mostafa

    2018-03-01

    This study investigates a rare situation at the Mond River Estuary in the Persian Gulf, in which the classical estuarine density gradient coincides with hypersaline runoff entering from saline soils upstream of the estuary after severe precipitation. This builds a unique estuarine setting, where two salt water masses, one originating from the coastal ocean and the other being discharged from upstream confine a range of almost freshwater in the middle of estuary. This "freshwater lens estuary" (FLE) situation includes two saltwater sources with opposing senses of estuarine circulation. Therefore, the tidal damping by the strong river flood can occur, especially during neap tide when high Unsteadiness number (∼0.04) signified ebb oriented condition which was induced by straining residual lateral circulation near the FLE mouth. Transition from well-mixed to weak strain induced periodic stratification regimes indicated the importance of the spring-neap tidal variations. Close to the mouth, a 13.66-day periodic tidal asymmetry from the triad K1-O1-M2 (ebb-dominance during spring tide and flood-dominance in neap tide) was overcome by higher harmonics.

  12. River discharge as a major driving force on spatial and temporal variations in zooplankton biomass and community structure in the Godavari estuary India.

    PubMed

    Venkataramana, V; Sarma, V V S S; Matta Reddy, Alavala

    2017-08-28

    Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time (< 1 day) and high suspended load (> 500 mg L -1 ) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.

  13. Sediment-stabilizing and Destabilizing Ecoengineering Species from River to Estuary: the Case of the Scheldt System

    NASA Astrophysics Data System (ADS)

    Selakovic, S.; Cozzoli, F.; Leuven, J.; Van Braeckel, A.; Speybroeck, J.; Kleinhans, M. G.; Bouma, T.

    2017-12-01

    Interactions between organisms and landscape forming processes play an important role in evolution of coastal landscapes. In particular, biota has a strong potential to interact with important geomorphological processes such as sediment dynamics. Although many studies worked towards quantifying the impact of different species groups on sediment dynamics, information has been gathered on an ad hoc base. Depending on species' traits and distribution, functional groups of ecoengineering species may have differential effects on sediment deposition and erosion. We hypothesize that the spatial distributions of sediment-stabilizing and destabilizing species across the channel and along the whole salinity gradient of an estuary partly determine the planform shape and channel-shoal morphology of estuaries. To test this hypothesis, we analyze vegetation and macrobenthic data taking the Scheldt river-estuarine continuum as model ecosystem. We identify species traits with important effects on sediment dynamics and use them to form functional groups. By using linearized mixed modelling, we are able to accurately describe the distributions of the different functional groups. We observe a clear distinction of dominant ecosystem engineering functional groups and their potential effects on the sediment in the river-estuarine continuum. The first results of longitudinal cross section show the highest effects of stabilizing plant species in riverine and sediment bioturbators in weak polyhaline part of continuum. The distribution of functional groups in transverse cross sections shows dominant stabilizing effect in supratidal zone compared to dominant destabilizing effect in the lower intertidal zone. This analysis offers a new and more general conceptualization of distributions of sediment stabilizing and destabilizing functional groups and their potential impacts on sediment dynamics, shoal patterns, and planform shapes in river-estuarine continuum. We intend to test this in future

  14. Changes in a temperate estuary during the filling of the biggest European dam.

    PubMed

    Morais, Pedro; Chícharo, Maria Alexandra; Chícharo, Luís

    2009-03-15

    This study aimed to determine whether and how the disruption of river flow, during the filling of the Alqueva dam, influenced the variability of abiotic and biotic factors in the Guadiana estuary, particularly the abundance and distribution of anchovy eggs. River inflow was found to be the most important factor in determining abiotic and biotic variability in the Guadiana estuary. Seasonal patterns were obscured by long periods of low inflow (mid April to early December 2002), which caused marked changes in the estuary. The estuarine turbidity maximum zone was displaced towards the upper estuary, to at least 38 km from the river mouth, 8 to 16 km upstream from previous records. The dynamics of nutrient stoichiometry was also affected. In the upper and middle estuary, P was more potential limiting than N and potential Si limitation was only frequent on the coast, with direct and/or indirect influence in changing phytoplankton dynamics and composition. Previously, the upper estuary alternated between potential P limitation during winter, Si limitation during spring and mid summer and N limitation during mid summer and autumn. The flooding of vast areas in the catchment of the dam probably caused the increase of DSi concentrations, as well as maximal N and P loadings. The abundance of larval stages of anchovy decreased, putatively because estuarine productivity has also decreased. In April 2002 there was an uncontrolled discharge from the Alqueva dam, which reduced the abundance of anchovy eggs by 99.99%. It is suggested that dam managers should mimic, as much as possible, the natural river flow, in order to minimize the impact on downstream ecosystems. Management efforts should not be restricted to the areas upstream of the dam, but should also encompass the estuary and adjacent coastal area.

  15. Thermodynamics of saline and fresh water mixing in estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  16. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River Estuary, China

    NASA Astrophysics Data System (ADS)

    Pang, Aiping; Sun, Tao; Yang, Zhifeng

    2013-03-01

    SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.

  17. Weight-of-evidence approach in assessment of ecotoxicological risks of acid sulphate soils in the Baltic Sea river estuaries.

    PubMed

    Wallin, Jaana; Karjalainen, Anna K; Schultz, Eija; Järvistö, Johanna; Leppänen, Matti; Vuori, Kari-Matti

    2015-03-01

    Acidity and leaching of metals from acid sulphate soils (ASSs) impair the water quality of receiving surface waters. The largest ASS areas in Europe are found in the coasts of the northern Baltic Sea. We used weight-of-evidence (WoE) approach to assess potential risks in 14 estuary sites affected by ASS in the Gulf of Finland, northern Baltic Sea. The assessment was based on exposure and effect profiles utilizing sediment and water metal concentrations and concurrent pH variation, sediment toxicity tests using the luminescent bacterium Vibrio fischeri and the midge Chironomus riparius, and the ecological status of benthic macroinvertebrate communities. Sediment metal concentrations were compared to national sediment quality criteria/guidelines, and water metal concentrations to environmental quality standards (EQSs). Hazard quotients (HQs) were established for maximum aluminium, cadmium and zinc concentrations at low pH based on applicable US EPA toxicity database. Sediment metal concentrations were clearly elevated in most of the studied estuaries. The EQS of cadmium (0.1 μg/l) was exceeded in 3 estuaries out of 14. The pH-minima were below the national threshold value (5.5) between good and satisfactory water quality in 10 estuaries. V. fischeri bioluminescence indicated toxicity of the sediments but toxic response was not observed in the C. riparius emergence test. Benthic invertebrate communities were deteriorated in 6 out of 14 sites based on the benthic invertebrate quality index. The overall ecotoxicological risk was assessed as low in five, moderate in three and high in five of the estuary sites. The risk assessment utilizing the WoE approach indicated that harmful effects of ASSs are likely to occur in the Baltic Sea river estuaries located at the ASS hotspot area. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record.

    PubMed

    Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian

    2018-04-15

    A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Research Note:Effects of human activities on the Yangtze River suspended sediment flux into the estuary in the last century

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Shi, Z.; Zhao, H. Y.; Li, P.; Dai, S. B.; Gao, A.

    The surface erosion area in the Yangtze River basin increased from 364×103 km2 in the 1950s to 707×103 km2 in 2001 due to a great increase in population. Based on the regression relationship between surface erosion area and population, the surface erosion area was predicted to be about 280×103 km2 at the beginning of the 20th century. The sediment yield, which increased by about 30% during the first six decades of the 20th century, was closely related to the surface erosion area in this river basin. The Yangtze annual suspended sediment flux into the estuary was about 395×106 t a-1 at the beginning of the century, and this gradually increased to an average of 509×106 t a-1 in the 1960s. The increase in the suspended sediment flux into the estuary was accelerated in the 1950s and the 1960s due to the rapid increase in population and land use immediately after the Second World War and the Liberation War. After the riverine suspended sediment flux reached its maximum in the 1960s, it decreased to <206×106 t a-1 in 2003. Construction of dams was found to be the principal cause for this decreasing trend because, during the same period, (a) the riverine water discharge did not show a decreasing trend, (b) water diversion was not influential and (c) sedimentation in lakes and canals of the middle and lower reaches did not increase. The total storage capacity of reservoirs has increased dramatically over the past half century. The amount of sediment trapped in reservoirs has increased to more than half a billion t a-1. As a result, the suspended sediment flux into the estuary dramatically decreased, even though the sediment yield from many areas of the basin increased in recent decades. Human activities gradually increased the suspended sediment flux into the estuary before the 1960s and then rapidly decreased it. The last century was a period when the Yangtze suspended sediment flux into the estuary was dramatically affected by human activities.

  20. Four arguments why so many alien species settle into estuaries, with special reference to the German river Elbe

    NASA Astrophysics Data System (ADS)

    Nehring, Stefan

    2006-05-01

    In one of the largest European rivers, the Elbe, from its source in the Czech Republic to the German North Sea, 31 alien macrozoobenthic species have been recorded in total. Most of these species have been introduced by shipping activities. With a total number of 21 species, many of the established aliens occur—partly exclusively—in the brackish area of the Elbe estuary. In order to explain this observed settlement characteristic, four main arguments come into consideration: (1) estuaries with intensive international shipping have a higher potential infection rate than other aquatic zones; (2) brackish water species have, due to specific physiological characteristics, a better chance of being transported alive than euhaline or freshwater species and they also probably have a higher perennation and establishment potential after release; (3) brackish waters have the greatest natural ‘indigenous species minimum’, so that more alien species can potentially establish; and (4) salt-tolerant limnetic alien species introduced into inland water reached the coast at first in the estuaries. It seems that the combination of brackish water with its unsaturated ecological niches and intensive international ship traffic has the highest potential infection rate for aquatic systems with alien macrozoobenthic species. And, estuaries are subjected to a two-sided invasion pressure by alien species, via the ocean (mainly shipping) and via inland waters (mainly shipping canal construction). The identification of such patterns is an important prerequisite for the development of a forward-looking alien monitoring and management strategy.

  1. Spatial-temporal distribution and risk assessment of mercury in different fractions in surface sediments from the Yangtze River estuary.

    PubMed

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Xu, Fei; Guo, Lijia; Shen, Zhenyao

    2017-11-15

    The temporal and spatial distributions of mercury in different fractions and its potential ecological risk were investigated in sediments from the Yangtze River estuary (YRE) by analyzing data collected from the study area. The results showed that mercury in the organic and residual fractions had dominant proportions, from 15.2% to 48.52% and from 45.96% to 81.59%, respectively. The fractions were more susceptible to seasonal changes than other fractions. Higher proportions of mercury in organic fraction were found in wet seasons; the opposite was true for mercury in residual fraction. With respect to the spatial distribution, the concentration mercury in exchangeable, carbonate and Fe-Mn oxide fractions showed a decreasing trend from the inner estuary to the outer estuary, but no obvious trends were found in the distributions of mercury in the organic and residual fractions. The risk assessment code (RAC) was used to evaluate the potential ecological risk in the study area based on the proportions of exchangeable and carbonate fractions. The average RAC values during the four periods were 6.00%, 2.20%, 2.83%, and 0.61%. Although these values show that the risk in the study area is generally low, the distribution of RAC values indicates that the inner estuary has a medium risk, with a value up to 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Seasonal and spatial variations in rare earth elements and yttrium of dissolved load in the middle, lower reaches and estuary of the Minjiang River, southeastern China

    NASA Astrophysics Data System (ADS)

    Zhu, Xuxu; Gao, Aiguo; Lin, Jianjie; Jian, Xing; Yang, Yufeng; Zhang, Yanpo; Hou, Yuting; Gong, Songbai

    2017-09-01

    With the aim of elucidating the spatial and seasonal behaviors of rare earth elements (REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower reaches and estuary of the Minjiang River, southeastern China. The results display that the REE abundances in Minjiang River, ranging from 3.3-785.9 ng/L, were higher than those of many of the major global rivers. The total REE concentrations (ΣREE) were seasonally variable, averaging in 5 937.30, 863.79, 825.65 and 1 065.75 ng/L during second highest flow (SHF), normal flow (NF), low flow (LF) and high flow (HF) season, respectively. The R (L/M) and R (H/M) ratios reveal the spatial and temporal variations of REE patterns, and particularly vary apparently in the maximum turbidity zone and estuary. REE patterns of dissolved loads are characterized by progressing weaker LREEs-enrichment and stronger HREEs-enrichment downstream from middle reaches to estuary during all four seasons. Comparing with NF and LF seasons, in which REE patterns are relatively flat, samples of SHF season have more LREE-enriched and HREE-depleted patterns that close to parent rocks, while samples of HF season are more LREEs-depleted and HREE-enriched. REE fractionations from the middle to lower reaches are stronger in the SHF and HF seasons than those in NF and LF seasons. Generally, spatial and seasonal variations in REE abundance and pattern are presumably due to several factors, such as chemical weathering, mixture with rainfall and groundwater, estuarine mixing, runoff, biological production and mountain river characters, such as strong hydrodynamic forces and steep slopes. The highest Gd/Gd* always occurs at north ports during all four seasons, where most of the large hospitals are located. This suggests Gd anomalies are depended on the density of modern medical facilities. Y/Ho ratios fluctuate and positively correlate to salinity in estuary, probably because of the geochemical

  3. Physical characterization of the Guadiana Estuary using the hydrodynamic model MOHID

    NASA Astrophysics Data System (ADS)

    Concepción Calero, María; García-Lafuente, Jesús; Garel, Erwan; Delgado-Cabello, Javier; Moreno-Navas, Juan; Martins, Flávio

    2017-04-01

    Guadiana Estuary is an intertidal estuary situated in SW of Iberian Peninsula, the latest 50 Km of which constitutes the natural border between Spain and Portugal. Tidal influence extends to about 80 Km upstream. The Guadiana River presents a high seasonal irregularity with wet winters and dry summers. Recently the river flow has been modified drastically by several dams constructed along the river. One of them is the Alqueva dam, opened in 2002, which is the biggest reservoir in Western Europe. It is placed to 120 Km upstream from the mouth of the estuary and is the last water control in the system being the main dam affecting the flow. A hydrodynamic model based on the MOHID system has been developed to study the hydrodynamics of the Guadiana Estuary. Tidal forcing and fresh water discharges were used in the boundary conditions. The model has been validated by comparing the model outcomes with in situ data measurements in several points along the estuary. Different scenarios have been simulated in order to know tidal progression and asymmetries in the circulation between wet and dry periods. Those phenomena are important because they influence the ecosystem and the distribution of sediments into the estuary and nearest coast. With a discharge of 300 m3/s the friction dominates over the amplification of the tide signal throughout the estuary while with smaller discharges the opposite effect occurs between 30 and 60 km. The difference in duration between floods and ebbs is greater the greater the discharge and the currents do not invert downstream at 50 Km with a discharge of 500 m3/s. Determining a regime of freshwater inputs from the Alqueva dam can be determinant to maintain the natural range of variation between dry and wet periods prior to the inauguration of the dam.

  4. Late Wisconsinan-Holocene paleogeography of Delaware Bay; a large coastal plain estuary

    USGS Publications Warehouse

    Knebel, H.J.; Fletcher, C. H.; Kraft, J.C.

    1988-01-01

    Analyses of an extensive grid of seismic reflection profiles along with previously published core data and modern sedimentary environment information from surrounding coastal areas permit an outline of the paleogeography of the large Delaware Bay estuary during the last transgression of sea level. During late Wisconsinan times, the Delaware River system eroded a dendritic drainage pattern into the gravelly and muddy sands of Tertiary and younger age beneath the southern half of the lower bay area. This system included the trunk valley of the ancestral river and a large tributary valley formed by the convergence of secondary streams along the Delaware coast. The evolution of the estuary from this drainage system proceeded as follows: (1) When local relative sea level was at -50 m, the head of the tide reached the present bay-mouth area. (2) At -40 m (possibly 15,000-12,000 yrs ago), the trunk valley of the drainage system was a tidal river that extended more than 30 km up the bay, and a small contiguous inlet existed at the bay mouth. (3) At -30 m (approximately 11,000-10,000 yrs ago), the estuary comprised two narrow passages formed by the drowning of the main and tributary river valleys, and the bay-mouth inlet was 5-6 km wide. (4) At -20 m (between 8000 and 7000 yrs ago), the two passages of the estuary were joined, except for a series of small islands on top of a low intervening ridge, and the inlet channel was 11 km wide. (5) At -10 m (between 6000 and 5000 yrs ago), the estuary was nearly continuous and encompassed about 60% of the present lower bay area. Thin, coarse-grained fluvial deposits accumulated initially within the main channels of the former drainage system as base level was elevated by rising sea level. During the subsequent development of the estuary, clayey silts were deposited rapidly beneath the nontidal estuarine depocenter (turbidity maximum) as it migrated through the bay area, and organic muds accumulated in tidal wetlands that occupied the

  5. Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Cutter, Lynda S.

    2004-11-01

    The cycling of dissolved selenium was examined in the North San Francisco Bay estuary using 5 surface water transects from the Pacific Ocean (Golden Gate) to the Sacramento and San Joaquin Rivers, monthly river sampling, and three collections of oil refinery effluents during 1997-2000. By combining these data with earlier results from the mid-1980s, a nearly 16-year record of riverine fluxes, estuarine processes, and anthropogenic inputs was obtained. The Sacramento River concentrations and speciation have remained unchanged over the period, and while the speciation of selenium in the San Joaquin is similar, its dissolved selenium concentrations have decreased by almost one half. More significantly, the concentration of selenium from oil refinery discharges to the mid-estuary has decreased 66% and its speciation changed from one dominated by selenite (66%) to one that is only 14% selenite. This change in refinery effluents occurred while our study was underway, with the result being a pronounced decrease in selenite concentrations (82%), and hence total dissolved selenium, in the mid-estuary. A companion study found that sediment/water exchange is a minor flux to the estuary, and hence selenium inputs from the Sacramento River, as well as refineries during low flow (summer, fall) periods exert major controls on the dissolved selenium behavior in this estuary. Nevertheless, in situ processes associated with organic matter cycling (photosynthesis and respiration) still modify the distributions and internal transformations of dissolved selenium, notably organic selenide.

  6. A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network.

    PubMed

    Nojavan A, Farnaz; Qian, Song S; Paerl, Hans W; Reckhow, Kenneth H; Albright, Elizabeth A

    2014-06-15

    The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Primary production, plant and detrital biomass, and particle transport in the Columbia River Estuary

    NASA Astrophysics Data System (ADS)

    Small, Lawrence F.; McIntire, C. David; MacDonald, Keith B.; Lara-Lara, J. Ruben; Frey, Bruce E.; Amspoker, Michael C.; Winfield, Ted

    The dynamics of primary production and particulate detritus cycling in the Columbia River Estuary are described, with particular reference to mechanisms that account for patterns within the water column, on the tidal flats, and in the adjacent wetlands. Analysis of patterns in phytoplankton flora and biomass and in distribution of detrital particulate organic matter (DPOC) in the water column indicated that salinities of 1-5 delineated an essentially freshwater flora from a marine or euryhaline flora, and that living phytoplankton was converted to DPOC at the freshwater-brackishwater interface. Similarly, the benthic diatom assemblages on tidal flats reflected either the fresh or the brackish nature of the water inundating the flats. Emergent vascular plants were grouped into six associations by cluster analysis, the associations being separated mainly on the bases of different relative abundances of freshwater, euryhaline or brackishwater species, and on whether samples occurred in high or low marsh areas. Annual rates of net areal 24-hr production averaged 55, 16, and 403gC m -2y -1 for phytoplankton, benthic algae, and emergent vascular vegetation, respectively. Total production over the whole estuary was 17,667 metric tons C y -1 for phytoplankton, 1,545mt C y -1 for benthic algae, and 11,325mt C y -1 for emergent vascular plants, for a grand total to 30,537mt C y -1. Phytoplankton biomass turned over approximately 39 times per year on average, while benthic algae turned over about twice and emergent plants once per year. Budgets for phytoplankton carbon (PPOC) and DPOC were developed based on PPOC and DPOC import and export, grazing loss, and in situ production and conversion of PPOC to DPOC. It is suggested that 36,205mt y -1 of PPOC is converted to DPOC in the estuary, principally at the freshwater-brackishwater interface. About 40,560mt y -1 of PPOC is exported to the ocean, and 159,185mt y -1 of DPOC is transported into the marine zone of the estuary (no

  8. Change in Sediment Provenance Near the Current Estuary of Yellow River Since the Holocene Transgression

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li

    2018-06-01

    Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1-23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.

  9. Long-Term Changes in Nitrogen Budgets and Retention in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Eisele, Annika; van Beusekom, Justus E. E.; Wirtz, Kai

    2016-04-01

    Eutrophication remains one of the major factors influencing the ecological state of coastal ecosystems. Coastal eutrophication is in turn intimately linked to riverine nutrient loads. At the freshwater side of the estuary, nutrient loads can easily be quantified but estuarine processes including organic matter import from the sea and loss factors like denitrification can modify the actual nutrient loads reaching the coastal seas. We quantified and localized nutrient retention processes by analyzing changes of nutrient concentrations along the estuary and constructing nutrient budgets. Two methods -the Officer method based on conservative mixing and a new method based on changes in nitrogen concentrations along the freshwater part of the estuary- were compared using long term records for the Elbe River, a major European waterway. Nutrient budgets and dynamics reveal that nutrient retention processes in the water column play a substantial role in the Elbe River. Overall, ~25 mio mol/day N are imported into the Elbe estuary and ~20 mio mol/day DIN is exported, with obvious variations depending on river discharge and season. A nitrogen loss of about 20% falls within the range found in other studies. Whereas in the 1980s a significant part of the nitrogen input was retained by the estuary, in the 1990s and 2000s most of the imported total nitrogen was exported as DIN. At present, the retention of nitrogen -presumably due to increased denitrification- increases again. As these long-term changes in the retention capacity of the Elbe were supported by both methods, the calibrated station-based approach can now be used to calculate nutrient budgets in estuaries where no or only few transect data are available, such as the Weser and Ems estuary. Our presentation will finally discuss the possible impact of increased phytoplankton import from the Elbe River and increased import of suspended matter from the North Sea ecosystem on estuarine nitrogen dynamics.

  10. ECOLOGICAL CONDITION OF THE ESTUARIES OF OREGON AND WASHINGTON

    EPA Science Inventory

    Estuaries are bodies of water that receive freshwater and sediment from rivers and saltwater from the oceans. They are transition zones between the fresh water of a river and the salty environment of the sea. This interaction produces a unique environment that supports wildlife...

  11. Arsenic, barium, germanium, tin, dimethylsulfide and nutrient biogeochemistry in Charlotte Harbor, Florida, a phosphorus-enriched estuary

    NASA Astrophysics Data System (ADS)

    Froelich, P. N.; Kaul, L. W.; Byrd, J. T.; Andreae, M. O.; Roe, K. K.

    1985-03-01

    Concentrations of dissolved nutrients (NO 3, PO 4, Si), germanium species, arsenic species, tin, barium, dimethylsulfide and related parameters were measured along the salinity gradient in Charlotte Harbor. Phosphate enrichment from the phosphate industry on the Peace River promotes a productive diatom bloom near the river mouth where NO 3 and Si are completely consumed. Inorganic germanium is completely depleted in this bloom by uptake into biogenic opal. The Ge/Si ratio taken up by diatoms is about 0·7 × 10 -6, the same as that provided by the river flux, confirming that siliceous organisms incorporate germanium as an accidental trace replacement for silica. Monomethylgermanium and dimethylgermanium concentrations are undetectable in the Peace River, and increase linearly with increasing salinity to the seawater end of the bay, suggesting that these organogermanium species behave conservatively in estuaries, and are neither produced nor consumed during estuarine biogenic opal formation or dissolution. Inorganic arsenic displays slight removal in the bloom. Monomethylarsenic is produced both in the bloom and in mid-estuary, while dimethylarsenic is conservative in the bloom but produced in mid-estuary. The total production of methylarsenicals within the bay approximately balances the removal of inorganic arsenic, suggesting that most biological arsenic uptake in the estuary is biomethylated and released to the water column. Dimethylsulfide increases with increasing salinity in the estuary and shows evidence of removal, probably both by degassing and by microbial consumption. An input of DMS is observed in the central estuary. The behavior of total dissolvable tin shows no biological activity in the bloom or in mid-estuary, but does display a low-salinity input signal that parallels dissolved organic material, perhaps suggesting an association between tin and DOM. Barium displays dramatic input behavior at mid-salinities, probably due to slow release from clays

  12. Fingerprinting of bed sediment in the Tay Estuary, Scotland: an environmental magnetism approach

    NASA Astrophysics Data System (ADS)

    Jenkins, Pierre A.; Duck, Rob W.; Rowan, John S.; Walden, John

    Sediment fingerprinting is commonly used for sediment provenance studies in lakes, rivers and reservoirs and on hillslopes and floodplains. This investigation explores the mixing of terrestrial and marine-derived sediment in the Tay Estuary, Scotland, using mineral magnetic attributes for fingerprinting. Samples representative of the estuary sediments and of four sources (end-members) were subjected to a suite of magnetic susceptibility and remanence measurements. Sediment samples from the beds of the Rivers Tay and Earn represented fluvial inputs while samples from the Angus and Fife coasts represented marine input. Multivariate discriminant and factor analysis showed that the sources could be separated on the basis of six magnetic parameters in a simple multivariate unmixing model to identify source contributions to estuarine bed sediments. Multi-domain magnetite signatures, characteristic of unweathered bedrock, dominate the magnetic measurements. Overall contributions of 3% from the River Earn, 17% from the River Tay, 29% from the Angus coast and 51% from the Fife coast source end-members, demonstrated the present-day regime of marine sediment derivation in the Tay Estuary. However, this conceals considerable spatial variability both along-estuary and in terms of sub-environments, with small-scale variations in sediment provenance reflecting local morphology, particularly areas of channel convergence.

  13. [Distributions and air-sea fluxes of dissolved nitrous oxide in the Yangtze River estuary and its adjacent marine area in spring and summer].

    PubMed

    Wang, Lan; Zhang, Gui-ling; Sun, Ming-shuang; Ren, Jing-ling

    2014-12-01

    Distributions and air-sea fluxes of nitrous oxide (N2O) in the seawaters of the Yangtze River estuary and its adjacent marine area were investigated during two cruises in March and July 2012. Dissolved N2O concentrations in surface waters ranged from 9.34 to 49.08 nmol x L(-1) with an average of (13.27 ± 6.40) nmol x L(-1) in spring and ranged from 7.27 to 27.81 nmol x L(-1) with an average of (10.62 ± 5.03) nmol x L(-1) in summer. There was no obvious difference between surface and bottom N2O concentrations. N2O concentrations in both surface and bottom waters decreased along the freshwater plume from the river mouth to the open sea. High values of dissolved N2O were found in turbidity maximum zone, which suggests that maximal turbidity enhances nitrification. Temperature had dual effects on dissolved N2O concentrations. N2O saturations in surface waters ranged from 86.9% to 351.3% with an average of (111.5 ± 41.4)% in spring and ranged from 111.7% to 396.0% with an average of (155.9 ± 68.4)% in summer. N2O were over-saturated at most stations. The sea-to-air fluxes of N2O were estimated to be (3.2 ± 10.9), (5.5 ± 19.3) and (12.2 ±52.3) μmol x (m2 x d)(-1) in spring and (7.3 ± 12.4), (12.7 ± 20.4) and (20.4 ± 35.9) μmol x (m2 x d)(-1) in summer using the LM86, W92 and RC01 relationships, respectively. The annual emissions of N2O from the Yangtze River estuary and its adjacent marine area were estimated to be 0.6 x 10(-2) Tg x a(-1) (LM86), 1.1 x 10(-2) Tg x a(-1) (W92) and 2.0 x 10(-2) Tg x a(-1) (RC01). Although the area of the Yangtze River estuary and its adjacent marine area only accounts for 0.02% of the total area of the world's oceans, their emission of N2O accounts for 0.06% of global oceanic N2O emission, indicating that the Yangtze River estuary and its adjacent marine area is an active area to produce and emit N2O.

  14. [Spatial variations of biogenic elements in coastal wetland sediments of the Jiulong River Estuary].

    PubMed

    Yu, Xiao-Qing; Yang, Jun; Liu, Le-Mian; Tian, Yuan; Yu, Zheng; Wang, Chang-Fu

    2012-11-01

    To reveal the spatial distribution of biogenic elements and their influencing factors in the typical subtropical coastal wetland, both surface and core sediment samples were collected from the Jiulong River Estuary, southeast China in summer 2009. The biogenic elements including carbon, nitrogen, phosphorus, sulfur (C, N, P, S) were determined by Element Analyzer and Flow Injection Analyzer. The concentrations of TC, TN, TP, and TS were (12.64 +/- 2.66) g x kg(-1), (1.57 +/- 0.29) g x kg(-1), (0.48 +/- 0.06) g x kg(-1), and (2.61 +/- 1.37) g x kg(-1), respectively. Further, these biogenic elements showed a distinct spatial pattern which closely related with the vegetation type and tide level. Values of TC, TN, TP in the surface sediment of mangrove vegetation zones were higher than those in the cord-grass and mudflat zones, while TC, TN, TP concentrations in the high tide level regions were higher than those in the middle and low tide level regions. The TS concentration was the highest in cord-grass vegetation and middle tidal level zones. The TC and TN values in sedimentary core decreased gradually with depth, and they were the highest in the mangrove sites, followed by cord-grass and mudflat sites at the same depth. In mudflat sedimentary core, the average content of TP was the lowest, whereas TS was the highest. Redundancy analysis revealed that vegetation type, pH and tide level were the main factors influencing the distribution of biogenic elements in surface sediments of the Jiulong River Estuary, by explaining 24.0%, 19.0% and 11.6% of total variation in the four biogenic elements (C, N, P and S), respectively.

  15. The Caloosahatchee River Estuary: a monitoring partnership between Federal, State, and local governments, 2007-13

    USGS Publications Warehouse

    Patino, Eduardo

    2014-01-01

    From 2007 to 2013, the U.S. Geological Survey (USGS), in cooperation with the Florida Department of Environmental Protection (FDEP) and the South Florida Water Management District (SFWMD), operated a flow and salinity monitoring network at tributaries flowing into and at key locations within the tidal Caloosahatchee River. This network was designed to supplement existing long-term monitoring stations, such as W.P. Franklin Lock, also known as S–79, which are operated by the USGS in cooperation with the U.S. Army Corps of Engineers, Lee County, and the City of Cape Coral. Additionally, a monitoring station was operated on Sanibel Island from 2010 to 2013 as part of the USGS Greater Everglades Priority Ecosystem Science initiative and in partnership with U.S. Fish and Wildlife Service (J.N. Ding Darling National Wildlife Refuge). Moving boat water-quality surveys throughout the tidal Caloosahatchee River and downstream estuaries began in 2011 and are ongoing. Information generated by these monitoring networks has proved valuable to the FDEP for developing total maximum daily load criteria, and to the SFWMD for calibrating and verifying a hydrodynamic model. The information also supports the Caloosahatchee River Watershed Protection Plan.

  16. MODELING FINE SEDIMENT TRANSPORT IN ESTUARIES

    EPA Science Inventory

    A sediment transport model (SEDIMENT IIIA) was developed to assist in predicting the fate of chemical pollutants sorbed to cohesive sediments in rivers and estuaries. Laboratory experiments were conducted to upgrade an existing two-dimensional, depth-averaged, finite element, coh...

  17. Hydro- and sediment dynamics in the estuary zone of the Mekong Delta: case study Dinh An estuary.

    NASA Astrophysics Data System (ADS)

    Tran, Anh Tuan; Thoss, Heiko; Gratiot, Nicolas; Dussouillez, Philippe; Brunier, Guillaume; Apel, Heiko

    2017-04-01

    The Mekong River is the tenth largest river in the world, covers an area of 795,000 km2, 4400km in length, the main river flows over the six countries including: China, Myanmar, Thailand, Laos, Cambodia and Vietnam. Its water discharge is 470 km3year-1 and the sediment discharge is estimated about 160 million ton year-1. The sediment transported by the Mekong River is the key factor in the formation and development of the delta. It is a vital factor for the stability of the coastline and river banks. Furthermore it compensates land subsidence by floodplain deposition, and is the major natural nutrient source for agriculture and aquaculture. However, only a few studies were conducted to characterize and quantify sediment properties and process in the Delta. Also the morphodynamic processes were hardly studied systematically. Hence, this study targets to fill some important and open knowledge gaps with extensive field works that provide important information about the sediment properties and hydrodynamic processes in different seasons Firstly three field survey campaigns are carried out along a 30 km section of the Bassac River from the beginning of Cu Lao Dung Island to Dinh An estuary in 2015 and 2016. During the field campaign, the movement of the salt wedge and the turbidity were monitored by vertical profiles along the river, as well as discharge measurements by ADCP were carried out at three cross sections continuously for 72 hours. The extension of the salt wedge in the river was determined, along with mixing processes. The movement and dynamics observed under different flow conditions indicate that sediment was pumped during low flow upwards the river, while during high flow net transport towards the sea dominated. Also a distinct difference in the sediment properties in the different seasons was observed, with a general tendency towards a higher proportion of coarser particles in the high flow season. These quantitative results give insights into the

  18. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary.

    PubMed

    Zhao, Zhen; Tang, Jianhui; Mi, Lijie; Tian, Chongguo; Zhong, Guangcai; Zhang, Gan; Wang, Shaorui; Li, Qilu; Ebinghaus, Ralf; Xie, Zhiyong; Sun, Hongwen

    2017-12-01

    Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral ∑PFASs were within the range of 76-551pg/m 3 . Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral ∑PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral ∑PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral ∑PFASs fluxes varied from 0.37 to 2.3pg/m 2 /s. In the dissolved phase of the surface water, concentrations of ionic ∑PFASs ranged from 1.6 to 118ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic ∑PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic ∑PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Water quality of the tidal Potomac River and estuary hydrologic data report, 1980 water year

    USGS Publications Warehouse

    Blanchard, Stephen; Coupe, R.H.; Woodward, J.C.

    1982-01-01

    This report contains data on the physical and chemical properties measured in the Tidal Potomac River and Estuary during the 1980 Water Year. Data were collected routinely at five stations, and periodically at 17 stations including three stations near the mouth of the Potomac River in Chesapeake Bay. Each of the five stations represent a cross section through which the transport of selected dissolved and suspended materials can be computed. The remaining stations represent locations at which data were collected for special synoptic studies such as salt water migration, and dissolved oxygen dynamics. Routinely, samples were analyzed for silica, nitrogen, phosphorus, chlorophyll-a, pheophytin, and suspended sediment. Additional samples were analyzed for organic carbon, calcium, manganese, magnesium, sodium, alkalinity, sulfate, iron, potassium, chloride, fluoride, seston, algal growth potential, adenosine triphosphate, nitrifying bacteria and dissolved-solids residue. In addition, solar radiation measurements and in-situ measurements of dissolved oxygen, specific conductance, pH, temperature, and Secchi disk transparency are reported. (USGS)

  20. Antibiotic-resistant bacteria in the Hudson River Estuary linked to wet weather sewage contamination.

    PubMed

    Young, Suzanne; Juhl, Andrew; O'Mullan, Gregory D

    2013-06-01

    Heterotrophic bacteria resistant to tetracycline and ampicillin were assessed in waterways of the New York City metropolitan area using culture-dependent approaches and 16S rRNA gene sequence analysis of resultant isolates. Resistant microbes were detected at all 10 sampling sites in monthly research cruises on the lower Hudson River Estuary (HRE), with highest concentrations detected at nearshore sites. Higher frequency sampling was conducted in Flushing Bay, to enumerate resistant microbes under both dry and wet weather conditions. Concentrations of ampicillin- and tetracycline-resistant bacteria, in paired samples, were positively correlated with one another and increased following precipitation. Counts of the fecal indicator, Enterococcus, were positively correlated with levels of resistant bacteria, suggesting a shared sewage-associated source. Analysis of 16S rRNA from isolates identified a phylogenetically diverse group of resistant bacteria, including genera containing opportunistic pathogens. The occurrence of Enterobacteriaceae, a family of enteric bacteria, was found to be significantly higher in resistant isolates compared to total heterotrophic bacteria and increased following precipitation. This study is the first to document the widespread distribution of antibiotic-resistant bacteria in the HRE and to demonstrate clearly a link between the abundance of antibiotic-resistant bacteria and levels of sewage-associated bacteria in an estuary.

  1. Numerical study of hydrodynamic and salinity transport processes in the Pink Beach wetlands of the Liao River estuary, China

    NASA Astrophysics Data System (ADS)

    Qiao, Huiting; Zhang, Mingliang; Jiang, Hengzhi; Xu, Tianping; Zhang, Hongxing

    2018-06-01

    Interaction studies of vegetation within flow environments are essential for the determination of bank protection, morphological characteristics and ecological conditions for wetlands. This paper uses the MIKE 21 hydrodynamic and salinity model to simulate the hydrodynamic characteristics and salinity transport processes in the Pink Beach wetlands of the Liao River estuary. The effect of wetland plants on tidal flow in wetland areas is represented by a varying Manning coefficient in the bottom friction term. Acquisition of the vegetation distribution is based on Landsat TM satellites by remote sensing techniques. Detailed comparisons between field observation and simulated results of water depth, salinity and tidal currents are presented in the vegetated domain of the Pink Beach wetlands. Satisfactory results were obtained from simulations of both flow characteristics and salinity concentration, with or without vegetation. A numerical experiment was conducted based on variations in vegetation density, and compared with the tidal currents in non-vegetated areas; the computed current speed decreased remarkably with an increase in vegetation density. The impact of vegetation on water depth and salinity was simulated, and the findings revealed that wetland vegetation has an insignificant effect on the water depth and salinity in this wetland domain. Several stations (from upstream to downstream) in the Pink Beach wetlands were selected to estimate the longitudinal variation of salinity under different river runoff conditions; the results showed that salinity concentration decreases with an increase in river runoff. This study can consequently help increase the understanding of favourable salinity conditions for particular vegetation growth in the Pink Beach wetlands of the Liao River estuary. The results also provide crucial guidance for related interaction studies of vegetation, flow and salinity in other wetland systems.

  2. Impacts of sea cucumber farming on biogeochemical characteristics in the Yellow River estuary, Northern China

    NASA Astrophysics Data System (ADS)

    Fu, Jing; Yokoyama, Hisashi; Cui, Baoshan; Zhou, Jin; Yan, Jiaguo; Ma, Xu; Shibata, Shozo

    2017-02-01

    To investigate the potential environmental effects of pond farming for Apostichopus japonicas in Yellow River estuary, we examined discrepancies of distance-based typical pollution indicators (TOC, TN, NO3-, NH4+, NO2- and PO43-) and biochemical tracers (δ13C and δ15N) in water column and sediment, as well as dietary characteristics of dominant macrobenthos between farming and non-farming areas. The results revealed that studied variables in water column showed no uniform spatial differences. Meanwhile, those in sediment displayed similar decrease tendencies from farming pond to the adjacent tidal flat, which was considered to represent the environmental effects of farming. Biochemical tracers (δ13C and δ15N) in both water column and sediment confirmed the origin of organic matters from the aquaculture waste. The detectable dispersion distance of aquaculture waste was restricted to an area within 50 m distance as determined by most variables in sediment (TOC, TN, NO3- and NH4+), particularly by C:N ratio and δ13C with which origins of the wastes were traced. Bayesian mixing models indicated that in the farming area BMA had a larger contribution, while POM(marine) showed a smaller contribution to the diets of Helice tridens and Macrophthalmus abbreviates compared to those in the non-farming area. The overall results showed that pond farming for Apostichopus japonicus in the Yellow River estuary altered the local environment to a certain extent. For methodological consideration, sediment biogeochemical characteristics as a historical recorder much more effectively reflected aquaculture waste accumulation, and stable isotope approaches are efficient in tracing the origin and extent of various allogenous sources.

  3. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    PubMed

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The effects of hydrological dynamics on benthic diatom community structure in a highly stratified estuary: The case of the Ebro Estuary (Catalonia, Spain)

    NASA Astrophysics Data System (ADS)

    Rovira, L.; Trobajo, R.; Leira, M.; Ibáñez, C.

    2012-04-01

    This study of the distribution of benthic diatom assemblages and their relationship with environmental factors in a highly stratified Mediterranean estuary, i.e. the Ebro Estuary, shows the importance of hydrological dynamics to explain the features of the diatom community in such an estuary, where river flow magnitude and fluctuations imply strong physicochemical variability especially in sites close to the sea. Eight sites along the estuary were sampled during 2007-2008 both at superficial and deep water layers, in order to gather both horizontal and vertical estuarine physicochemical and hydrological gradients. Canonical Variates Analysis and Hierarchical Cluster Analysis segregated diatom community in two assemblages depending on the dynamics of the salt-wedge. The diatom assemblages of riverine conditions (i.e. without salt-wedge influence) where characterised by high abundances of Cocconeis placentula var. euglypta and Amphora pediculus, meanwhile high abundances of Nizschia frustulum and Nitzschia inconspicua were characteristic of estuarine conditions (i.e. under salt-wedge influence). Redundancy Analysis showed that both diatom assemblages responded seasonally to Ebro River flows, especially in estuarine conditions, where fluctuating conditions affected diatom assemblages both at spatial and temporal scale.

  5. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China.

    PubMed

    Zhang, Guangliang; Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Jia, Jia; Cui, Baoshan; Liu, Xinhui

    2017-10-01

    Rapid urbanization and reclamation processes in coastal areas have resulted in serious pollution to the aquatic environment. Less is known on the geochemical fractions and ecological risks in river sediment under various human activities pressures, which is essential for addressing the connections between heavy metal pollution and anthropogenic influences. River sediments were collected from different landscapes (i.e., urban, rural and reclamation areas) to investigate the impacts of urbanization and reclamation on the metallic pollution levels and ecological risks in the Pear River Estuary of China. Results showed that Cd, Zn and Cu with high total contents and geoaccumulation index (I geo ) were the primary metals in the Peal River sediments. Generally, urban river sediments, especially the surface sediment layer (0-10 cm), exhibited higher metallic pollution levels. As for geochemical fractions, reducible and residual fractions were the dominant forms for six determined metals. And the percentage of heavy metals bound to Fe-Mn oxides decreased with increasing soil depth but the reverse tendency was observed for residual fractions. Compared with rural river sediments, heavy metals were highly associated with the exchangeable and carbonate fractions in both urban and reclamation-affected river sediments, suggesting that anthropogenic activities mainly increased the active forms of metals. Approximately 80% of Cd existed in the non-residual fraction and posed medium to high ecological risk according to the risk assessment code (RAC) values. The redundancy analysis (RDA) revealed that both urbanization and reclamation processes would cause similar metallic characteristics, and sediment organic matter (SOC) might be the prominent influencing factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of estuary use by Nisqually Hatchery Chinook based on Otolith analysis

    USGS Publications Warehouse

    Lind-Null, Angie M.; Larsen, Kim A.; Reisenbichler, Reg

    2008-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem are planned to assist in recovery of the stock. A pre-restoration baseline including life history types, estuary residence time, growth rates, and habitat use are needed to evaluate the potential response of hatchery and wild Chinook salmon to restoration. Otolith analysis has been selected as a means to examine Chinook salmon life history, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: 1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, 2) compare pre- and post- restoration residence times and growth rates, 3) suggest whether estuary restoration yields substantial benefits for Chinook salmon through (1) and (2), and 4) compare differences in habitat use between hatchery and wild Chinook to further protect ESA listed stock. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile hatchery Chinook salmon are generally released as smolts that move quickly through the delta with much shorter residence times than for many wild fish and are not dependent on the delta as nursery habitat (Myers and Horton 1982; Mace 1983; Levings et al. 1986). The purpose of this study is to use and

  7. A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China.

    PubMed

    Chen, Jun; Quan, Wenting; Cui, Tingwei

    2015-01-01

    In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).

  8. On the seasonal response of the Lower St Lawrence Estuary to buoyancy forcing by regulated river runoff

    NASA Astrophysics Data System (ADS)

    Koutitonsky, V. G.; Wilson, R. E.; El-Sabh, M. I.

    1990-10-01

    The seasonal current fluctuations recorded from May to September 1979 in the Lower St Lawrence Estuary (LSLE) were re-examined using complex empirical orthogonal functions analysis. The first mode explained 88% of the seasonal variability, and revealed the presence of an estuary-wide anticyclonic eddy near the mouth, which lasted for 40 days in June and July. Careful inspection of the (regulated) 1979 freshwater runoff and salinity time series indicated that light surface water pulses from the St Lawrence River and the Saguenay fjord arrived in the LSLE during that time. Their duration was about 40 days. The contention is that the anticyclonic eddy results from buoyancy forcing by these light water pulses, isolated in the LSLE by denser waters upwelled upstream and by the buoyancy front at the mouth. A reduced gravity model is used to show that when the width of the LSLE becomes greater than two internal Rossby radii, an initial dynamic height elevation will adjust through geostrophy to an anticyclonic eddy. This seems to occur downstream of Rimouski. The eddy will form within a time scale 0 (f -1), and in the absence of instabilities in the current field, it will conserve potential energy for extended periods of time. During August, the advected river runoff decreased, unstable wave activity developed, and denser Gulf waters entered the LSLE from the north shore producing a cyclonic eddy near the mouth. Concurrent satellite thermal imagery tends to support these findings.

  9. Surface water characteristics and trace metals level of the Bonny/New Calabar River Estuary, Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Onojake, M. C.; Sikoki, F. D.; Omokheyeke, O.; Akpiri, R. U.

    2017-05-01

    Surface water samples from three stations in the Bonny/New Calabar River Estuary were analyzed for the physicochemical characteristics and trace metal level in 2011 and 2012, respectively. Results show pH ranged from 7.56 to 7.88 mg/L; conductivity, 33,489.00 to 33,592.00 µScm-1; salinity, 15.33 to 15.50 ‰; turbidity, 4.35 to 6.65 NTU; total dissolved solids, 22111.00 to 23263.00 gm-3; dissolved oxygen, 4.53 to 6.65 mg/L; and biochemical oxygen demand, 1.72 mg/L. The level of some trace metals (Ca, Mg, K, Zn, Pb, Cd, Co, Cr, Cu, Fe, Ni, and Na) were also analyzed by Atomic absorption spectrometry with K, Zn, and Co being statistically significant ( P < 0.05). The results were compared with USEPA and WHO Permissible Limits for water quality standards. It was observed that the water quality parameters in the Bonny Estuary show seasonal variation with higher values for pH, DO, BOD, temperature, and salinity during the dry season than wet season. Concentrations of trace metals such as Pb, Cd, Zn, Ni, and Cr were higher than stipulated limits by WHO (2006). The result of the Metal Pollution Index suggests that the river was slightly affected and therefore continuous monitoring is necessary to avert possible public health implications of these metals on consumers of water and seafood from the study area.

  10. Methods for the collection of geochemical data from the sediments of the tidal Potomac River and estuary and data for 1978-1980

    USGS Publications Warehouse

    Goodwin, S.D.; Schultz, B.I.; Parkhurst, D.L.; Simon, N.S.; Callendar, Edward

    1984-01-01

    The chemical composition of bottom sediments and their associated pore waters from the tidal Potomac River and Estuary was studied from May 1978 through June 1980. Pore waters were routinely analyzed for pH, Eh, alkalinity, and concentrations of sulfide, sulfate, phosphate, carbon, ammonium, silica, iron, manganese, chloride, sodium, potassium, calcium, and magnesium. Porosity, weight loss on ignition, and carbon, nitrogen, and phosphorus contents were determined for the solid sediments. The range of salinity and chemical composition encountered in the estuary frequently necessitated modifications of standard methods of analysis. Therefore, the methods used, their modifications, and their limitations are presented in some detail. The appendix lists the data obtained from six sampling periods. (USGS)

  11. Water quality of the tidal Potomac River and Estuary; hydrologic data report supplement, 1979 through 1981 water years

    USGS Publications Warehouse

    Coupe, R.H.; Webb, W.E.

    1984-01-01

    This report is a companion report to the U.S. Geological Survey 1979, 1980, and 1981 Hydrologic Data Reports of the tidal Potomac River and Estuary. It contains values of biochemical oxygen demand and specific rate constants, incident light and light attenuation measurements; numbers of phytoplankton, fecal coliform and fecal streptococci, cross-sectional averages from field measurements of dissolved oxygen, pH, specific conductance , and temperature data; and cross-sectional averages of chlorophyll data. Sewage treatment plant loads are also included. (USGS)

  12. Large-river delta-front estuaries as natural “recorders” of global environmental change

    PubMed Central

    Bianchi, Thomas S.; Allison, Mead A.

    2009-01-01

    Large-river delta-front estuaries (LDE) are important interfaces between continents and the oceans for material fluxes that have a global impact on marine biogeochemistry. In this article, we propose that more emphasis should be placed on LDE in future global climate change research. We will use some of the most anthropogenically altered LDE systems in the world, the Mississippi/Atchafalaya River and the Chinese rivers that enter the Yellow Sea (e.g., Huanghe and Changjiang) as case-studies, to posit that these systems are both “drivers” and “recorders” of natural and anthropogenic environmental change. Specifically, the processes in the LDE can influence (“drive”) the flux of particulate and dissolved materials from the continents to the global ocean that can have profound impact on issues such as coastal eutrophication and the development of hypoxic zones. LDE also record in their rapidly accumulating subaerial and subaqueous deltaic sediment deposits environmental changes such as continental-scale trends in climate and land-use in watersheds, frequency and magnitude of cyclonic storms, and sea-level change. The processes that control the transport and transformation of carbon in the active LDE and in the deltaic sediment deposit are also essential to our understanding of carbon sequestration and exchange with the world ocean—an important objective in global change research. U.S. efforts in global change science including the vital role of deltaic systems are emphasized in the North American Carbon Plan (www.carboncyclescience.gov). PMID:19435849

  13. Diatoms as Proxies for Abrupt Events in the Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Skorski, W.; Abbott, D. H.; Recasens, C.; Breger, D. L.

    2014-12-01

    The Hudson River estuary has been subject to many abrupt events throughout its history including hurricanes, droughts and pluvials. Hurricanes in particular are rare, discrete events that if fingerprinted can be used to develop better age models for Hudson River sediments. Proxies use observed physical characteristics or biological assemblages (e.g. diatom and foraminiferal assemblages) as tools to reconstruct past conditions prior to the modern instrumental record. Using a sediment core taken from the Hudson River (CDO2-29A), in New York City, drought and pluvial layers were selected based on Cs-137 dating while hurricane layers were determined from occurrences of tropical to subtropical foraminifera. Contrary to previous studies (Weaver, 1970, Weiss et al, 1978), more than sixty different diatom species have been identified using a scanning electron microscope (SEM). Cosmopolitan, hurricane and drought assemblages have begun to be identified after observing multiple layers (Table 1). Tropical foraminifera dominated by Globigerinoides ruber pink were also found in a hurricane layer that we infer was deposited during Hurricane Belle in 1976. More diatom abundance analyses and cataloged SEM pictures will provide further insight into these proxies. Table 1 Diatom Genera and Species Environment Clarification Cyclotella caspia Planktonic, marine-brackish Cosmopolitan Karayevia clevei Freshwater Cosmopolitan Melosira sp Planktonic, marine Cosmopolitan Thalassiosira sp Marine, brackish Cosmopolitan Staurosirella leptostauron Benthic, freshwater Cosmopolitan Actinoptychus senarius Planktonic or benthic, freshwater to brackish Hurricane and pluvial layers Amphora aff. sp Benthic, marine or freshwater Hurricane layers only Nitzschia sp Benthic, marine or freshwater Hurricane layers only Gomphonema sp Freshwater Hurricane layers only Surirella sp Marine-brackish Drought layer only Triceratium sp Marine Drought layer only Other Genera and species Environment Clarification

  14. Spatial and temporal variations in core- and polar- isoprenoid tetraether lipids along a salinity gradient from the lower Pearl River to its estuary

    NASA Astrophysics Data System (ADS)

    Jia, C.; Gao, S.; Wang, J. X.; Zhang, C. L.

    2014-12-01

    Isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) are major archaeal lipids that widely occur in nature and have been used to study paleo-climate and paleo-environments. Estuaries are a dynamic ecosystem that links or divides terrestrial and marine processes. However, factors controlling changes in iGDGTs in estuaries are poorly known. In this study we performed monthly sampling of sediments between July 2012 and May 2013 at four sites from the lower Pearl River to the estuary. Total lipids were extracted to obtain core- and polar-GDGTs, which were identified and quantified using liquid chromatography-mass spectrometry (LC-MS). The average concentrations of archaeal lipids were highest at the seawater station (C-iGDGTs: 1804.0 ng/g; P-iGDGTs: 986.9 ng/g) and lowest at the brackish water station (C-iGDGTs: 364.1 ng/g; P-iGDGTs: 324.4 ng/g) with C-iGDGTs being more abundant than P-iGDGTs in most samples. The composition of iGDGTs varied widely from station to station, but was generally dominated by GDGT-0 or crenarchaeol in both C- and P-iGDGTs. At the freshwater station in the lower Pearl River, the relative abundance of C- and P-iGDGTs varied from month to month, whereas such temporal changes were much less at stations in the brackish and marine environments. These results suggest that Archaea living in freshwater might be more sensitive to environmental variation. A significant positive correlation (R2>0.80, p<0.01) was found between the ratio of Cren./(Cren.+GDGT-0) or ring index and salinity in both C- and P-iGDGT fractions, indicating that salinity is the most important factor affecting the composition of iGDGTs in the estuary environment.

  15. Potential Climate-Induced Runoff Changes and Associated Uncertainty in Four Pacific Northwest Estuaries

    EPA Science Inventory

    As part of a larger investigation into potential impacts of climate change on estuarine habitats in the Pacific Northwest (PNW), we estimated changes in freshwater inputs into four estuaries. These were the Coquille River estuary, the South Slough of Coos Bay, and the Yaquina Bay...

  16. Watershed-scale drivers of air-water CO2 exchanges in two lagoonal, North Carolina (USA) estuaries

    NASA Astrophysics Data System (ADS)

    Van Dam, B.; Crosswell, J.; Anderson, I. C.; Paerl, H. W.

    2017-12-01

    Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology, but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m2 d-1 in the NeuseRE and NewRE, respectively. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Large-scale pCO2 variations were driven by changes in freshwater age (akin to residence time), which modulate nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 under-saturation was observed at intermediate freshwater ages, between 2-3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence overall ecosystem health and response to future perturbation.

  17. Watershed-Scale Drivers of Air-Water CO2 Exchanges in Two Lagoonal North Carolina (USA) Estuaries

    NASA Astrophysics Data System (ADS)

    Van Dam, Bryce R.; Crosswell, Joseph R.; Anderson, Iris C.; Paerl, Hans W.

    2018-01-01

    Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m-2 d-1 in the NeuseRE and NewRE, respectively. Large-scale pCO2 variations were driven by changes in freshwater age, which modulates nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 undersaturation was observed at intermediate freshwater ages, between 2 and 3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence ecosystem biogeochemical cycling, trophic state, and response to future perturbations.

  18. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary wetland.

    PubMed

    Wang, Qidong; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Cao, Lei

    2016-10-01

    Vertical profiles of environmental radionuclides ( 210 Pb, 137 Cs, 238 U, 232 Th, 226 Ra and 4 0 K) in a sediment core (Y1) of the Yellow River Estuary wetland were investigated to assess whether environmental evolutions in the coastal wetland could be recorded by the distributions of radionuclides. Based on 210 Pb and 137 Cs dating, the average sedimentation rate of core Y1 was estimated to be 1.0 cm y -1 . Vertical distributions of natural radionuclides ( 238 U, 232 Th, 226 Ra and 40 K) changed dramatically, reflecting great changes in sediment input. Concentrations of 238 U, 232 Th, 226 Ra and 40 K all had significant positive relationships with organic matter and clay content, but their distributions were determined by different factors. Factor analysis showed that 238 U was determined by the river sediment input while 226 Ra was mainly affected by the seawater erosion. Environmental changes such as river channel migrations and sediment discharge variations could always cause changes in the concentrations of radionuclides. High concentrations of 238 U and 226 Ra were consistent with high accretion rate. Frequent seawater intrusion decreased the concentration of 226 Ra significantly. The value of 238 U/ 226 Ra tended to be higher when the sedimentation rate was low and tide intrusion was frequent. In summary, environmental evolutions in the estuary coastal wetland could be recorded by the vertical profiles of natural radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Modelling Escherichia coli concentrations in the tidal Scheldt river and estuary.

    PubMed

    de Brauwere, Anouk; de Brye, Benjamin; Servais, Pierre; Passerat, Julien; Deleersnijder, Eric

    2011-04-01

    Recent observations in the tidal Scheldt River and Estuary revealed a poor microbiological water quality and substantial variability of this quality which can hardly be assigned to a single factor. To assess the importance of tides, river discharge, point sources, upstream concentrations, mortality and settling a new model (SLIM-EC) was built. This model was first validated by comparison with the available field measurements of Escherichia coli (E. coli, a common fecal bacterial indicator) concentrations. The model simulations agreed well with the observations, and in particular were able to reproduce the observed long-term median concentrations and variability. Next, the model was used to perform sensitivity runs in which one process/forcing was removed at a time. These simulations revealed that the tide, upstream concentrations and the mortality process are the primary factors controlling the long-term median E. coli concentrations and the observed variability. The tide is crucial to explain the increased concentrations upstream of important inputs, as well as a generally increased variability. Remarkably, the wastewater treatment plants discharging in the study domain do not seem to have a significant impact. This is due to a dilution effect, and to the fact that the concentrations coming from upstream (where large cities are located) are high. Overall, the settling process as it is presently described in the model does not significantly affect the simulated E. coli concentrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Shin-Ah; Kim, Guebuem

    2018-02-01

    We monitored seasonal variations in dissolved organic carbon (DOC), the stable carbon isotope of DOC (δ13C-DOC), and fluorescent dissolved organic matter (FDOM) in water samples from a fixed station in the Nakdong River Estuary, Korea. Sampling was performed every hour during spring tide once a month from October 2014 to August 2015. The concentrations of DOC and humic-like FDOM showed significant negative correlations against salinity (r2 = 0.42-0.98, p < 0.0001), indicating that the river-originated DOM components were the major source and behave conservatively in the estuarine mixing zone. The extrapolated δ13C-DOC values (-27.5 to -24.5 ‰) in fresh water confirm that both components are mainly of terrestrial origin. The slopes of humic-like FDOM against salinity were 60-80 % higher in the summer and fall due to higher terrestrial production of humic-like FDOM. The slopes of protein-like FDOM against salinity, however, were 70-80 % higher in spring due to higher biological production in river water. Our results suggest that there are large seasonal changes in riverine fluxes of humic- and protein-like FDOM to the ocean.

  1. Polycyclic aromatic hydrocarbons in sediments from the Old Yellow River Estuary, China: occurrence, sources, characterization and correlation with the relocation history of the Yellow River.

    PubMed

    Yuan, Zijiao; Liu, Guijian; Wang, Ruwei; Da, Chunnian

    2014-11-01

    The levels of 16 USEPA priority PAHs were determined in surface sediments and one dated sediment core from the abandoned Old Yellow River Estuary, China. Total PAH concentrations in the surface sediments ranged from 100.4 to 197.3 ng g(-1) dry weight and the total toxic equivalent quantity (TEQ(carc)) values of the carcinogenic PAHs were very low. An evaluation of PAH sources based on diagnostic ratios and principal component analysis suggested that PAHs in the surface sediments mainly derived from combustion sources. The total PAH concentrations altered significantly with year of deposition and showed quite different patterns of change compared with other studies: it is hypothesized that the principal cause of these changes is the relocation of the course of the Yellow River to the sea in 1976 and 1996. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Impact of human activities on subaqueous topographic change in Lingding Bay of the Pearl River estuary, China, during 1955–2013

    PubMed Central

    Wu, Z. Y.; Saito, Yoshiki; Zhao, D. N.; Zhou, J. Q.; Cao, Z. Y.; Li, S. J.; Shang, J. H.; Liang, Y. Y.

    2016-01-01

    Estuaries have been sites of intensive human activities during the past century. Tracing the evolution of subaqueous topography in estuaries on a decadal timescale enables us to understand the effects of human activities on estuaries. Bathymetric data from 1955 to 2010 show that land reclamation decreased the subaqueous area of Lingding Bay, in the Pearl River estuary, by ~170 km2 and decreased its water volume by 615 × 106 m3, representing a net decrease of 11.2 × 106 m3 per year and indicating the deposition of approximately 14.5 Mt/yr of sediment in Lingding Bay during that period. Whereas Lingding Bay was mainly governed by natural processes with slight net deposition before 1980, subsequent dredging and large port engineering projects changed the subaqueous topography of the bay by shallowing its shoals and deepening its troughs. Between 2012 and 2013, continuous dredging and a surge of sand excavation resulted in local changes in water depth of ± 5 m/yr, far exceeding the magnitude of natural topographic evolution in Lingding Bay. Reclamation, dredging, and navigation-channel projects removed 8.4 Mt/yr of sediment from Lingding Bay, representing 29% of the sediment input to the bay, and these activities have increased recently. PMID:27886227

  3. Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa.

    PubMed

    Rimayi, Cornelius; Odusanya, David; Weiss, Jana M; de Boer, Jacob; Chimuka, Luke

    2018-06-15

    A quantitative assessment of pollutants of emerging concern in the Hartbeespoort Dam catchment area was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to establish the occurrence, source and distribution of 15 environmental pollutants, including 10 pharmaceuticals, 1 pesticide and 4 steroid hormones. Seasonal sampling was conducted in the Hartbeespoort Lake using sub-surface grab sampling to determine the lake's ecological status and obtain data for establishment of progressive operational monitoring. The Jukskei River, which lies upstream of the Hartbeespoort Dam, was sampled in the winter season. Five year old carp (Cyprinus carpio) and catfish (Clarias gariepinus) were also sampled from the Hartbeespoort Dam to study bioaccumulation in biota as well as to estimate risk associated with fish consumption. In the Jukskei River, the main source of 11 emerging pollutants (EPs) was identified as raw sewage overflow, with the highest ∑11 EP concentration of 593ngL -1 being recorded at the Midrand point and the lowest ∑11 EP concentration of 164ngL -1 at the N14 site located 1km downstream of a large wastewater treatment plant. The Jukskei River was found to be the largest contributor of the emerging contaminants detected in the Hartbeespoort Dam. In the Hartbeespoort Dam EP concentrations were generally in the order efavirenz>nevirapine>carbamazepine>methocarbamol>bromacil>venlafaxine. Water and sediment were sampled from the uMngeni River estuary within 24h after large volumes of an assortment of pharmaceutical waste had been discovered to be washed into the river estuary after flash rainfall on 18 May 2016. Analytical results revealed high levels of some emerging pollutants in sediment samples, up to 81ngg -1 for nevirapine and 4ngg -1 for etilefrine HCL. This study shows that efavirenz, nevirapine, carbamazepine, methocarbamol, bromacil and venlafaxine are contaminants that require operational monitoring in South African urban waters

  4. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    NASA Astrophysics Data System (ADS)

    Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun

    2017-11-01

    Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16

  5. Geographic signatures of North American West Coast estuaries

    USGS Publications Warehouse

    Emmett, Robert; Llansó, Roberto; Newton, Jan; Thom, Ron; Hornberger, Michelle; Morgan, Cheryl; Levings, Colin; Copping, Andrea; Fishman, Paul

    2000-01-01

    West Coast estuaries are geologically young and composed of a variety of geomorphological types. These estuaries range from large fjords to shallow lagoons; from large to low freshwater flows. Natural hazards include E1 Niños, strong Pacific storms, and active tectonic activity. West Coast estuaries support a wide range of living resources: five salmon species, harvestable shellfish, waterfowl and marine birds, marine mammals, and a variety of algae and plants. Although populations of many of these living resources have declined (salmonids), others have increased (marine mammals). West Coast estuaries are also centers of commerce and increasingly large shipping traffic. The West Coast human population is rising faster than most other areas of the U.S. and Canada, and is distributed heavily in southern California, the San Francisco Bay area, around Puget Sound, and the Fraser River estuary. While water pollution is a problem in many of the urbanized estuaries, most estuaries do not suffer from poor water quality. Primary estuarine problems include habitat alterations, degradation, and loss; diverted freshwater flows; marine sediment contamination; and exotic species introductions. The growing West Coast economy and population are in part related to the quality of life, which is dependent on the use and enjoyment of abundant coastal natural resources.

  6. Tracing Mississippi River influences in estuarine food webs of coastal Louisiana.

    PubMed

    Wissel, Björn; Fry, Brian

    2005-08-01

    The Breton Sound estuary in southern Louisiana receives large amounts of Mississippi River water via a controlled diversion structure at the upstream end of the estuary. We used stable isotopes to trace spatial and seasonal responses of the downstream food web to winter and spring introductions of river water. Analysis of delta13C, delta15N, and delta34S in the common local consumers such as grass shrimp (Palaemonetes sp.), barnacles (Balanus sp.), and small plankton-feeding fish (bay anchovies, Anchoa mitchilli) showed that the diversion was associated with two of the five major source regimes that were supporting food webs: a river regime near the diversion and a river-influenced productive marsh regime farther away from the diversion. Mixing models identified a third river-influenced source regime at the marine end of the estuary where major natural discharge from the Bird's Foot Delta wraps around into estuarine waters. The remaining two source regimes represented typical estuarine conditions: local freshwater sources especially from precipitation and a brackish source regime representing higher salinity marine influences. Overall, the Mississippi River diversion accounted for 75% of food web support in the upper estuary and 25% in the middle estuary, with influence strongest along known flow pathways and closest to the diversion. Isotopes also traced seasonal changes in river contributions, and indicated increased plant community productivity along the major flow path of diversion water. In the Breton Sound estuary, bottom-up forcing of food webs is strongly linked to river introductions and discharge, occurring in spatial and temporal patterns predictable from known river input regimes and known hydrologic circulation patterns.

  7. Tracing the origin of the oxygen-consuming organic matter in the hypoxic zone in a large eutrophic estuary: the lower reach of the Pearl River Estuary, China

    NASA Astrophysics Data System (ADS)

    Su, Jianzhong; Dai, Minhan; He, Biyan; Wang, Lifang; Gan, Jianping; Guo, Xianghui; Zhao, Huade; Yu, Fengling

    2017-09-01

    We assess the relative contributions of different sources of organic matter, marine vs. terrestrial, to oxygen consumption in an emerging hypoxic zone in the lower Pearl River Estuary (PRE), a large eutrophic estuary located in Southern China. Our cruise, conducted in July 2014, consisted of two legs before and after the passing of Typhoon Rammasun, which completely de-stratified the water column. The stratification recovered rapidly, within 1 day after the typhoon. We observed algal blooms in the upper layer of the water column and hypoxia underneath in bottom water during both legs. Repeat sampling at the initial hypoxic station showed severe oxygen depletion down to 30 µmol kg-1 before the typhoon and a clear drawdown of dissolved oxygen after the typhoon. Based on a three endmember mixing model and the mass balance of dissolved inorganic carbon and its isotopic composition, the δ13C of organic carbon remineralized in the hypoxic zone was -23.2 ± 1.1 ‰. We estimated that 65 ± 16 % of the oxygen-consuming organic matter was derived from marine sources, and the rest (35 ± 16 %) was derived from the continent. In contrast to a recently studied hypoxic zone in the East China Sea off the Changjiang Estuary where marine organic matter dominated oxygen consumption, here terrestrial organic matter significantly contributed to the formation and maintenance of hypoxia. How varying amounts of these organic matter sources drive oxygen consumption has important implications for better understanding hypoxia and its mitigation in bottom waters.

  8. Seasonal use of a New England estuary by foraging contingents of migratory striped bass

    USGS Publications Warehouse

    Mather, Martha E.; Pautzke, Sarah M.; Finn, John T.; Deegan, Linda A.; Muth, Robert M.

    2011-01-01

    Using acoustic telemetry on migratory striped bass Morone saxatilis in Plum Island Estuary (PIE), Massachusetts, we found that striped bass (335–634 mm total length) tagged in the spring and summer of 2005 (n = 14) and 2006 (n = 46) stayed in the estuary for an average of 66.0 d in 2005 and 72.2 d in 2006. Striped bass spent the most time in two specific reaches: middle Plum Island Sound and lower Rowley River. In both years, three different use-groups of striped bass were observed in PIE. Short-term visitors (n = 24) stayed in the estuary only briefly (range = 5–20 d). Two groups of seasonal residents stayed for more than 30 d, either in the Rowley River (n = 14) or in Plum Island Sound (n = 22). Within PIE, the two seasonal-resident use-groups may be foraging contingents that learn how to feed efficiently in specific parts of the estuary. These distinct within-estuary use patterns could have different implications for striped bass condition and prey impact.

  9. Field monitoring of toxic organic pollution in the sediments of Pearl River estuary and its tributaries.

    PubMed

    Fu, J; Wang, Z; Mai, B; Kang, Y

    2001-01-01

    Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.

  10. Water budget and water quality of Ward Lake, flow and water-quality characteristics of the Braden River estuary, and the effects of Ward Lake on the hydrologic system, west-central Florida

    USGS Publications Warehouse

    Trommer, J.T.; DelCharco, M.J.; Lewelling, B.R.

    1999-01-01

    The Braden River is the largest tributary to the Manatee River. The river was dammed in 1936 to provide the city of Bradenton a source of freshwater supply. The resulting impoundment was called Ward Lake and had a storage capacity of about 585 million gallons. Reconstruction in 1985 increased the size of the reservoir to about 1,400 million gallons. The lake has been renamed the Bill Evers Reservoir and drains about 59 square miles. The Braden River watershed can be subdivided into three hydrologic reaches. The upper reach consists of a naturally incised free-flowing channel. The middle reach consists of a meandering channel affected by backwater as a result of the dam. The lower reach is a tidal estuary. Water budgets were calculated for the 1993 through 1997 water years. Mean surface-water inflow to Ward Lake for the 5-year period was 1,645 inches per year (equivalent depth over the surface of the lake), or about 81.8 percent of total inflow. Mean ground-water inflow was 311 inches per year, or about 15.5 percent. A mean of 55 inches of rain fell directly on the lake and accounted for only 2.7 percent. Mean surface-water outflow was 1,736 inches, or about 86.4 percent of total water leaving the lake. There was no net ground-water outflow from the lake. Mean surface-water withdrawal for public supply was 229 inches per year, or about 11.4 percent. Mean evaporation was 45 inches and accounted for only 2.2 percent of the mean outflow. Change in lake storage on the budget was negligible. Most chemical constituents contained in water flowing to Ward Lake meet the standards specified by the Florida Department of Environmental Protection and the U.S. Environmental Protection Agency. Phosphorus is the exception, exceeding the U.S. Environmental Protection Agency limits of 0.10 milligram per liter in most samples. However, the source of the phosphorus is naturally occurring phosphate deposits underlying the watershed. Organic nitrogen and orthophosphate are the dominant

  11. Water quality of the tidal Potomac River and Estuary: Hydrologic Data Reports supplement, 1979 through 1981 water years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coupe, R.H. Jr.; Webb, W.E.

    1984-01-01

    This report is a companion report to the US Geological Survey 1979, 1980, and 1981 Hydrologic Data Reports of the tidal Potomac River and Estuary. The information included in this report contains values of biochemical oxygen demand and specific-rate constants, incident-light and light-attenuation measurements; numbers of phytoplankton, fecal coliform and fecal streptococci; cross-sectional averages from field measurements of dissolved oxygen, pH, specific conductance, and temperature data; and cross-sectional averages of chlorophyll data. Sewage-treatment plant loads are also included. 29 refs., 4 figs., 3 tabs.

  12. Subsphaerolaimus minor sp. n. and Micromicron cephalatum Cobb, 1920 (Nematoda) from the Yen River Estuary of Vietnam.

    PubMed

    Gagarin, Vladimir G; Nguyen, Vu Thanh

    2015-08-03

    Two nematode species found in Yen River Estuary of Vietnam are described and illustrated. Subsphaerolaimus minor sp. n. is similar to S. lamasus Gerlach, 1956, but differs from it in the shorter body, comparatively shorter pharynx and shorter cephalic setae. A pictorial key for determination of valid species in the genus Subsphaerolaimus Lorenzen, 1978 is given. Micromicron cephalatum Cobb, 1920 is redescribed and reillustrated based on numerous males and females. The genus Micromicron Cobb, 1920 is confirmed as a valid genus with type and only species, M. cephalatum Cobb, 1920.

  13. Decadal-scale Evolution of Sediment Flux in the Aulne Estuary

    NASA Astrophysics Data System (ADS)

    Moskalski, S. M.; Deschamps, A.; Floc'h, F.; Verney, R.; Piete, H.; Fromant, G.; Delacourt, C.

    2013-12-01

    Estuarine sediment transport processes have the potential to evolve over time in response to alterations in various factors both internal and external to the estuary, such as sediment supply, river discharge, tidal forcing, or changes to bathymetry. Changes in sediment transport can affect many estuarine processes (e.g. budgets of sediment-adsorbed contaminants or nutrients) and ecosystem services, such as aquaculture, primary production and the need to dredge shipping channels. Most studies of decadal-scale changes in estuaries focus on geomorphology or bathymetry, or are performed using models calibrated by a limited set of observational studies. Because of the potential for sediment flux to both affect and be affected by geomorphology and bathymetry, observational studies oriented to sediment flux evolution are needed. This study focuses on two intensive observational studies separated by 30 years to quantify change in suspended sediment concentration (SSC) in the Aulne river, a shallow macrotidal estuary in western Brittany. Moored and vessel-mounted acoustic Doppler current profilers and YSIs were deployed over a three-week period in the winter of 2013 to examine hydrodynamic and sediment transport processes. The results of the modern study were compared to a 1977 investigation of currents, suspended sediment concentration, and erosion/deposition. The 1977 study found that SSC during spring tide and average river discharge was less than 30 mg/L near the mouth and above 300 mg/L landward, with near-bottom concentrations in the turbidity maximum zone occasionally greater than 1000 mg/L. SSC was highest during low tide and remained elevated throughout, in the upstream part of the estuary. Sediment deposition was stronger after flood tide due to a longer slack period, which implies landward sediment transport in the estuary. In the 2013 study, near-bottom SSC during spring tide and average river discharge was also highest during low tide, but SSC was above 1000 mg

  14. Seasonal variations in the characteristics of superficial sediments in a macrotidal estuary (the Seine inlet, France)

    NASA Astrophysics Data System (ADS)

    Lesourd, S.; Lesueur, P.; Brun-Cottan, J. C.; Garnaud, S.; Poupinet, N.

    2003-09-01

    Seasonal variations in the sedimentary regime in the mouth of the Seine river, a macrotidal estuary, are described for a 3-year period. The aim of this study is to characterize and to understand the main governing mechanisms, using data from more than a thousand of superficial sediment grab samples or box cores gathered throughout the study period. Analyses of lithofacies and rheological properties were carried out. The distribution of sediments is governed by seasonal meteorological variations. The surface covered by mud reaches a maximum (40% of the total mouth area) during winter. After the winter, the soft mud deposits are progressively redistributed throughout the whole estuary area and onto the shelf. During the lowest freshwater flow at the end of summer, the fine-grained sediments cover less than 20% of the river mouth area. These seasonal variations mainly depend on the river discharge intensity, but are also linked to wave activity. In the study area, the amount of fine-grained deposits after high river flow periods depends on (1) volume of mud erodable within the estuary, (2) the duration of the flood tidal influx, and (3) the duration preceding the particular annual high river flow. During the last decades, filling of the estuary upstream from Honfleur has led to a downstream shift of the fine-grained sediment deposition area; following this, the present-day mud deposition area is in the open part of the estuary, in the subtidal shallow area. Subsequently, fresh mud deposits undergo intense hydrodynamical and meteorological effects, and are partly reworked by waves and tidal currents effects. In this study, it is shown that the behaviour of suspended matter and of superficial sediments is strongly influenced by short but intense events including high river flows and gales.

  15. Factors initiating phytoplankton blooms and resulting effects on dissolved oxygen in Duwamish River estuary, Seattle, Washington

    USGS Publications Warehouse

    Welch, Eugene Brummer

    1969-01-01

    Phytoplankton productivity, standing stock, and related environmental factors were studied during 1964-66 in the Duwamish River estuary, at Seattle, Wash., to ascertain the factors that affect phytoplankton growth in the estuary; a knowledge of these factors in turn permits the detection and evaluation of the influence that effluent nutrients have on phytoplankton production. The factors that control the concentration of dissolved oxygen were also evaluated because of the importance of dissolved oxygen to the salmonid populations that migrate through the estuary. Phytoplankton blooms, primarily of diatoms, occurred in the lower estuary during August 1965 and 1966. No bloom occurred during 1964, but the presence of oxygen-supersaturated surface water in August 1963 indicates that a bloom did occur then. Nutrients probably were not the primary factor controlling the timing of phytoplankton blooms. Ammonia ,and phosphate concentrations increased significantly downstream from the Municipality of Metropolitan Seattle's Renton Treatment Plant outfall after the plant began operation in June 1965, and concentrations of nitrogen and phosphorus were relatively high before operation of the Renton Treatment Plant and during nonbloom periods. The consistent coincidence of blooms with minimum fresh-water discharge and tidal exchange during August throughout the study period indicates that bloom timing probably was controlled mostly by hydrographic factors that determine retention time and stability of the surface-water layer. This control was demonstrated in part by a highly significant correlation of gross productivity with retention time (as indicated by fresh-water discharge) and vertical stability (as indicated by the difference between mean surface and mean bottom temperatures). The failure of a bloom to develop in 1964 is related to a minimum fresh-water discharge that was much greater than normal during that summer. Hydrographic factors are apparently important because

  16. Riverine input of organic carbon and nitrogen in water-sediment system from the Yellow River estuary reach to the coastal zone of Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Wang, Chuanyuan; Lv, Yingchun; Li, Yuanwei

    2018-04-01

    The temporal-spatial distribution of the carbon and nitrogen contents and their isotopic compositions of suspended matter and sediments from the Yellow River estuary reach (YRER), the estuary to the offshore area were measured to identify the source of organic matter. The higher relative abundances of suspended and sedimentary carbon and nitrogen (POC, TOC, PN and TN) in the offshore marine area compared to those of the riverine and estuarine areas may be due to the cumulative and biological activity impact. The organic matter in surface sediments of YRER, the estuary and offshore area of Bohai Sea is basically the mixture of continental derived material and marine material. The values of δ13Csed fluctuate from values indicative of a land source (- 22.50‰ ± 0.31) to those indicative of a sea source (- 22.80‰ ± 0.38), which can be attributed to the fine particle size and decrease in terrigenous inputs to the offshore marine area. Contrary to the slight increase of POC and PN during the dry season, TOC and TN contents of the surface sediments during the flood season (October) were higher than those during the dry season (April). The seasonal differences in water discharge and suspended sediment discharge of the Yellow River Estuary may result in seasonal variability in TOC, POC, TN and PN concentrations in some degree. Overall, the surface sediments in the offshore area of Bohai Sea are dominated by marine derived organic carbon, which on average, accounts for 58-82% of TOC when a two end-member mixing model is applied to the isotopic data.

  17. Spatiotemporal variation of Van der Burgh's coefficient in a salt plug estuary

    NASA Astrophysics Data System (ADS)

    Shaha, Dinesh Chandra; Cho, Yang-Ki; Kim, Bong Guk; Rafi Afruz Sony, M.; Rani Kundu, Sampa; Faruqul Islam, M.

    2017-09-01

    Salt water intrusion in estuaries is expected to become a serious global issue due to climate change. Van der Burgh's coefficient, K, is a good proxy for describing the relative contribution of tide-driven and gravitational (discharge-driven and density-driven) components of salt transport in estuaries. However, debate continues over the use of the K value for an estuary where K should be a constant, spatially varying, or time-independent factor for different river discharge conditions. In this study, we determined K during spring and neap tides in the dry (< 30 m-3 s-1) and wet (> 750 m-3 s-1) seasons in a salt plug estuary with an exponentially varying width and depth, to examine the relative contributions of tidal versus density-driven salt transport mechanisms. High-resolution salinity data were used to determine K. Discharge-driven gravitational circulation (K ˜ 0.8) was entirely dominant over tidal dispersion during spring and neap tides in the wet season, to the extent that salt transport upstream was effectively reduced, resulting in the estuary remaining in a relatively fresh state. In contrast, K increased gradually seaward (K ˜ 0.74) and landward (K ˜ 0.74) from the salt plug area (K ˜ 0.65) during the dry season, similar to an inverse and positive estuary, respectively. As a result, density-driven inverse gravitational circulation between the salt plug and the sea facilitates inverse estuarine circulation. On the other hand, positive estuarine circulation between the salt plug and the river arose due to density-driven positive gravitational circulation during the dry season, causing the upstream intrusion of high-salinity bottom water. Our results explicitly show that K varies spatially and depends on the river discharge. This result provides a better understanding of the distribution of hydrographic properties.

  18. [Distributions and seasonal variations of total dissolved inorganic arsenic in the estuaries and coastal area of eastern Hainan].

    PubMed

    Cao, Xiu-Hong; Ren, Jing-Ling; Zhang, Gui-Ling; Zhang, Jin-E; Du, Jin-Zhou; Zhu, De-Di

    2012-03-01

    The concentrations of total dissolved inorganic arsenic (TDIAs) were measured by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS). Two cruises were carried out in the river, estuary, coastal area and groundwater of eastern Hainan in December 2006 and August 2007. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in December 2006 were 4.0-9.4, 1.3-13.3, 13.3-17.3 nmol x L(-1), respectively. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in August 2007 were 1.6-15.5, 2.4-15.9, 10.8-17.6 nmol x L(-1), respectively. There was no significantly seasonal variation of TDIAs in the rivers and estuaries during the dry and wet seasons. Compared with other areas in the world, the concentration of TDIAs in the Eastern Hainan remained at pristine levels. TDIAs showed conservatively mixing in the both estuaries. The concentration of TDIAs of groundwater was below detection limit (BDL)-41.7 nmol x L(-1). The submarine groundwater discharge (SGD) to the coastal area was estimated in the drainage basin of Wenchang/Wenjiao river based on the average concentration of TDIAs in the groundwater and SGD water discharge, with the value of 1 153 mol x a(-1). Budget estimation indicated that the SGD discharge is one of the important sources of arsenic in the coastal area.

  19. Characterisation of organic matter source and sediment distribution in Ashtamudi Estuary, southern India

    NASA Astrophysics Data System (ADS)

    Kumar, Prem; Ankit, Yadav; Mishra, Praveen K.; Jha, Deepak Kumar; Anoop, Ambili

    2017-04-01

    In the present study we have focussed on the surface sediments of Ashtamudi Estuary (southern India) to understand (i) the fate and sources of organic matter by investigating lipid biomarker (n-alkanes) distribution in modern sediments and vegetation samples and (ii) the processes controlling the sediment distribution into the lake basin using end-member modelling approach. The sediment n-alkanes from the Ashtamudi Estuary exhibit a pronounced odd over even predominance with maxima at C29 and C31 chain length indicative of a dominant terrestrial contribution. A number of n-alkane indices have been calculated to illustrate the variability in space by considering separately the river dominated northern reaches and tidal influenced southern part of Ashtamudi Estuary. The highest terrigenous organic contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The Paq and TAR (terrigenous/aquatic ratio) indices demonstrate maximum aquatic productivity (plankton growth and submerged macrophytes) in the tidal dominated region of the Ashtamudi Estuary. The carbon preference index (CPI) and average chain length (ACL) provide evidence for high petrogenic organic inputs in the tidal zone, whereas dominant biogenic contribution have been observed in the riverine zone. In addition, the end member modeling of the grain size distribution of the surface sediment samples enabled us to decipher significant sedimentological processes affecting the sediment distribution in the estuarine settings. The end-member distribution showing highest loading with the coarser fraction is maximum where estuary debouches into the sea. However, the samples near the mouth of the river shows finer fraction of the end-member.

  20. Stratification and salt-wedge in the Seomjin river estuary under the idealized tidal influence

    NASA Astrophysics Data System (ADS)

    Hwang, Jin Hwan; Jang, Dongmin; Kim, Yong Hoon

    2017-12-01

    Advection, straining, and vertical mixing play primary roles in the process of estuarine stratification. Estuaries can be classified as salt-wedge, partially-mixed or well-mixed depending on the vertical density structure determined by the balancing of advection, mixing and straining. In particular, straining plays a major role in the stratification of the estuarine water body along the estuarine channel. Also, the behavior of a salt wedge with a halocline shape in a stratified channel can be controlled by the competition between straining and mixing induced by buoyancy from the riverine source and tidal forcing. The present study uses Finite Volume Coastal Ocean Model (FVCOM) to show that straining and vertical mixing play major roles in controlling along-channel flow and stratification structures in the Seomjin river estuary (SRE) under idealized conditions. The Potential Energy Anomaly (PEA) dynamic equation quantifies the governing processes thereby enabling the determination of the stratification type. By comparing terms in the equation, we examined how the relative strengths of straining and mixing alter the stratification types in the SRE due to changes in river discharge and the depth resulting from dredging activities. SRE under idealized tidal forcing tends to be partially-mixed based on an analysis of the balance between terms and the vertical structure of salinity, and the morphological and hydrological change in SRE results in the shift of stratification type. While the depth affects the mixing, the freshwater discharge mainly controls the straining, and the balance between mixing and straining determines the final state of the stratification in an estuarine channel. As a result, the development and location of a salt wedge along the channel in a partially mixed and highly stratified condition is also determined by the ratio of straining to mixing. Finally, our findings confirm that the contributions of mixing and straining can be assessed by using the

  1. Urban microbial ecology of a freshwater estuary of Lake Michigan

    PubMed Central

    Fisher, Jenny C.; Newton, Ryan J.; Dila, Deborah K.

    2015-01-01

    Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an “urban microbial signature,” and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas, and Pseudomonas, which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is likely to occur with

  2. Urban microbial ecology of a freshwater estuary of Lake Michigan.

    PubMed

    Fisher, Jenny C; Newton, Ryan J; Dila, Deborah K; McLellan, Sandra L

    Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an "urban microbial signature," and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas , and Pseudomonas , which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is likely to occur with potential

  3. Soil phosphorus forms and profile distributions in the tidal river network region in the Yellow River Delta estuary.

    PubMed

    Yu, Junbao; Qu, Fanzhu; Wu, Huifeng; Meng, Ling; Du, Siyao; Xie, Baohua

    2014-01-01

    Modified Hedley fraction method was used to study the forms and profile distribution in the tidal river network region subjected to rapid deposition and hydrologic disturbance in the Yellow River Delta (YRD) estuary, eastern China. The results showed that the total P (Pt) ranged from 612.1 to 657.8 mg kg(-1). Dilute HCl extractable inorganic P (Pi) was the predominant form in all profiles, both as absolute values and as a percentage of total extracted Pi. The NaOH extractable organic P (Po) was the predominant form of total extracted Po, while Bicarb-Pi and C.HCl-Po were the lowest fractions of total extracted Pi and Po in all the P forms. The Resin-P concentrations were high in the top soil layer and decreased with depth. The Pearson correlation matrix indicated that Resin-P, Bicarb-Pi, NaOH-Pi, and C.HCl-Pi were strongly positively correlated with salinity, TOC, Ca, Al, and Fe but negatively correlated with pH. The significant correlation of any studied form of organic P (Bicarb-Po, NaOH-Po, and C.HCl-Po) with geochemical properties were not observed in the study. Duncan multiple-range test indicated that the P forms and distribution heterogeneity in the profiles could be attributed to the influences of vegetation cover and hydrologic disturbance.

  4. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  5. Sensitivity of Circulation in the Skagit River Estuary to Sea Level Rise and Future Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Long, Wen; Sackmann, Brandon

    Future climate simulations based on the Intergovernmental Panel on Climate Change emissions scenario (A1B) have shown that the Skagit River flow will be affected, which may lead to modification of the estuarine hydrodynamics. There is considerable uncertainty, however, about the extent and magnitude of resulting change, given accompanying sea level rise and site-specific complexities with multiple interconnected basins. To help quantify the future hydrodynamic response, we developed a three dimensional model of the Skagit River estuary using the Finite Volume Coastal Ocean Model (FVCOM). The model was set up with localized high-resolution grids in Skagit and Padilla Bay sub-basins withinmore » the intermediate-scale FVCOM based model of the Salish Sea (greater Puget Sound and Georgia Basin). Future changes to salinity and annual transport through the basin were examined. The results confirmed the existence of a residual estuarine flow that enters Skagit Bay from Saratoga Passage to the south and exits through Deception Pass. Freshwater from the Skagit River is transported out in the surface layers primarily through Deception Pass and Saratoga Passage, and only a small fraction (≈4%) is transported to Padilla Bay. The moderate future perturbations of A1B emissions, corresponding river flow, and sea level rise of 0.48 m examined here result only in small incremental changes to salinity structure and inter-basin freshwater distribution and transport. An increase in salinity of ~1 ppt in the near-shore environment and a salinity intrusion of approximately 3 km further upstream is predicted in Skagit River, well downstream of the drinking water intakes.« less

  6. INVESTIGATIONS INTO THE EFFECTS OF SEASON AND WATER QUALITY ON OYSTERS (CRASSOSTREA VIRGINICA) AND ASSOCIATED FISH ASSEMBLAGES IN THE CALOOSAHATCHEE RIVER ESTUARY, FLORIDA: IMPLICATIONS OF ALTERED FRESHWATER INFLOW

    EPA Science Inventory

    A suite of biological and ecological responses of a Valued Ecosystem Component species, Crassostrea virginica, was used to investigate ecosystem-wide health effects of watershed alterations in the Caloosahatchee River estuary, Florida. The influence of water quality and season on...

  7. The changes in trace metal contamination over the last decade in surface sediments of the Pearl River Estuary, South China.

    PubMed

    Chen, Baowei; Liang, Ximei; Xu, Weihai; Huang, Xiaoping; Li, Xiangdong

    2012-11-15

    Surface sediments can provide useful information on the recent pollution status of an estuary. One recent field survey was carried out in the Pearl River Estuary (PRE), South China in 2011. The comparisons with previous surveys demonstrated that the concentrations of Ni and Pb in the PRE declined over the last decade, but the concentration of Cu increased in the same time frame. The significant decreases in the concentrations of Ni and Pb were probably due to a reduction of anthropogenic inputs, such as industrial wastewater, into the PRE environment, and the ban imposed on leaded gasoline. Statistical analyses have consistently demonstrated that the process of the sedimentation of fine particles was the dominant factor in controlling the transport and distribution of trace metals in the PRE. The riverine trace metals generally displayed a pattern of diffusion from the northwest to the southeast in the estuary. However, the riparian industrial activities at the east bank of the inner PRE caused significant metal contamination in sediments. In general, effective pollution control measures in the PRD region have decreased the levels of some trace metals in the entire PRE over the last decade with the exception of Cu. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Heavy metal accumulation during the last 30 years in the Karnaphuli River estuary, Chittagong, Bangladesh.

    PubMed

    Wang, Ai-Jun; Kawser, Ahmed; Xu, Yong-Hang; Ye, Xiang; Rani, Seema; Chen, Ke-Liang

    2016-01-01

    Heavy metal contamination of aquatic environment has attracted global attention owing to its abundance, persistence, and environmental toxicity, especially in developing countries like Bangladesh. Five heavy metals, namely chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) were investigated in surface and core sediments of the Karnaphuli River (KR) estuary in Chittagong, Bangladesh, in order to reveal the heavy metal contamination history in estuarine sediments and its response to catastrophic events and human activities. The surface sediment was predominantly composed of silt and sand, and the surface sediment was contaminated with Cr and Pb. Based on the 210 Pb chronology, the sedimentation rate in the inter-tidal zone of KR estuary was 1.02 cm/a before 2007, and 1.14 cm/a after 2008. The core sediment collected from 8 to 20 cm below the surface mainly originated from terrestrial materials induced by catastrophic events such as cyclone, heavy rainfall and landslides in 2007 and 2008. The values of contamination factor ( CF ) showed that the sediment became moderately contaminated with Cr and Pb in the last 30 years. The variation and accumulation of heavy metals in core sediment before 2000 was mainly related to natural variations in sediment sources; however, in subsequent years, the anthropogenic inputs of heavy metals have increased due to rapid physical growth of urban and industrial areas in the Chittagong city. In general, the accumulation pattern of heavy metals after normalization to Aluminum in sediments of KR estuary indicated an accelerated rate of urbanization and industrialization in the last 30 years, and also suggested the influence of natural catastrophic event on estuarine environment.

  9. Primary Productivity Regime and Nutrient Removal in the Danube Estuary

    NASA Astrophysics Data System (ADS)

    Humborg, C.

    1997-11-01

    The primary productivity regime, as well as the distribution of dissolved inorganic nutrients and particulate organic matter in the Danube estuary, were investigated during several cruises at different discharge regimes of the Danube River. The shallowness of the upper surface layer due to insignificant tidal mixing and strong stratification of the Danube estuary, as well as the high nutrient concentrations, are favourable for elevated primary production. The incident light levels at the bottom of the upper surface layer of the water column (0·5-3·0 m) were generally higher than 20% of the surface irradiance. Elevated chlorophyll (Chl) aconcentrations with maxima at mid salinities were found during each survey. Within the upper mixed layer estimated primary production of 0·2-4·4 g m-2day-1is very high compared with estuaries of other major world rivers. Mixing diagrams of dissolved inorganic nutrients reveal removal of significant quantities of nutrients during estuarine mixing. These observations were consistent with the distribution of particular organic matter, which was negatively correlated to the nutrient distribution during each survey. C:Chl aratios, as well as the elevated estimated production, indicate that biological transformation processes govern the nutrient distribution in this estuary.

  10. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  11. Tidal wetlands of the Yaquina and Alsea River estuaries, Oregon: Geographic Information Systems layer development and recommendations for National Wetlands Inventory revisions

    USGS Publications Warehouse

    Brophy, Laura S.; Reusser, Deborah A.; Janousek, Christopher N.

    2013-01-01

    Geographic Information Systems (GIS) layers of current, and likely former, tidal wetlands in two Oregon estuaries were generated by enhancing the 2010 National Wetlands Inventory (NWI) data with expert local field knowledge, Light Detection and Ranging-derived elevations, and 2009 aerial orthophotographs. Data were generated for two purposes: First, to enhance the NWI by recommending revised Cowardin classifications for certain NWI wetlands within the study area; and second, to generate GIS data for the 1999 Yaquina and Alsea River Basins Estuarine Wetland Site Prioritization study. Two sets of GIS products were generated: (1) enhanced NWI shapefiles; and (2) shapefiles of prioritization sites. The enhanced NWI shapefiles contain recommended changes to the Cowardin classification (system, subsystem, class, and/or modifiers) for 286 NWI polygons in the Yaquina estuary (1,133 acres) and 83 NWI polygons in the Alsea estuary (322 acres). These enhanced NWI shapefiles also identify likely former tidal wetlands that are classified as upland in the current NWI (64 NWI polygons totaling 441 acres in the Yaquina estuary; 16 NWI polygons totaling 51 acres in the Alsea estuary). The former tidal wetlands were identified to assist strategic planning for tidal wetland restoration. Cowardin classifications for the former tidal wetlands were not provided, because their current hydrology is complex owing to dikes, tide gates, and drainage ditches. The scope of this project did not include the field evaluation that would be needed to determine whether the former tidal wetlands are currently wetlands, and if so, determine their correct Cowardin classification. The prioritization site shapefiles contain 49 prioritization sites totaling 2,177 acres in the Yaquina estuary, and 39 prioritization sites totaling 1,045 acres in the Alsea estuary. The prioritization sites include current and former (for example, diked) tidal wetlands, and provide landscape units appropriate for basin

  12. [Methane fluxes and controlling factors in the intertidal zone of the Yellow River estuary in autumn].

    PubMed

    Jiang, Huan-Huan; Sun, Zhi-Gao; Wang, Ling-Ling; Mou, Xiao-Jie; Sun, Wan-Long; Song, Hong-Li; Sun, Wen-Guang

    2012-02-01

    The characteristics of methane (CH4) fluxes from tidal wetlands of the Yellow River estuary were observed in situ with static-chamber and GC methods in September and October 2009, and the key factors affecting CH4 fluxes were discussed. From the aspect of space, the CH4 flux ranges in high tidal wetland, middle tidal wetland, low tidal wetland, bare flat are - 0.206-1.264, -0.197-0.431, -0.125-0.659 and -0.742-1.767 mg x (m2 x h)(-1), the day average fluxes are 0.089, 0.038, 0.197 and 0.169 mg x (m2 x h)(-1), respectively, indicating that the tidal wetlands are the sources of CH4 and the source function of CH4 differed among the four study sites, in the order of low tidal wetland > bare flat > high tidal wetland > middle tidal wetland. From the aspect of time, the ranges of CH4 fluxes from the tidal wetland ecosystems are -0.444-1.767 and - 0.742- 1.264 mg x (m2 x h)(-1), and the day average fluxes are 0.218 and 0.028 mg x (m2 x h)(-1) in September and October, respectively. The CH4 fluxes in each tidal wetland in September are higher than those in October except that the high tidal wetland acts as weak sink in September. Further studies indicate that the changes of environmental factors in the Yellow River estuary are complicated, and the CH4 fluxes are affected by multiple factors. The differences of CH4 fluxes characteristics among different tidal wetlands in autumn are probably related to temperature (especially atmospheric temperature) and vegetation growth status, while the effects of water or salinity condition and tide status on the CH4 flux characteristics might not be ignored.

  13. Assessment of oxidative stress and bioaccumulation of the metals Cu, Fe, Zn, Pb, Cd in the polychaete Perinereis gualpensis from estuaries of central Chile.

    PubMed

    Gaete, Hernán; Álvarez, Manuel; Lobos, Gabriela; Soto, Eulogio; Jara-Gutiérrez, Carlos

    2017-11-01

    The estuaries of the Aconcagua and Maipo Rivers of central Chile are receptors of residues that contain metals from anthropic activities including agriculture, mining and smelters, which have different levels in the two basins. This study postulates that the exposition to metals is different in the two estuaries and that their sediments contain bioavailable chemical agents that produce oxidative stress. The aim of the study was to evaluate the effect of estuarine sediments on the polychaete Perinereis gualpensis using oxidative stress biomarkers and to determine the metal concentrations in sediments and their accumulation in P. gualpensis. Sediments and organisms were collected in December 2015 and January 2016 in the estuaries. The Catapilco estuary was used as control, since its basin has little anthropic activity. The metal concentrations of Fe Cu, Pb, Zn and Cd were determined in tissues of the organisms and in sediments. The granulometry, conductivity, redox potential, pH and organic matter in sediments were determined, as well as catalase activity and lipid peroxidation. The results show that the concentrations of metals in sediments were higher in the estuary of the Aconcagua River: Cu: 48 ± 2μgg -1 ; Fe: 154 ± 19mgg -1 , Pb: 20 ± 3μgg -1 and Zn: 143 ± 20μgg -1 . In tissues, Pb and Fe were higher in the estuary of the Maipo River, while Cd was detected only in the Catapilco River mouth. Catalase activity was greater in the estuary of the Aconcagua River and lipid peroxidation in the estuary of the Catapilco River. Significant regressions were found between biomarkers of oxidative stress and metal concentrations in tissues of P. gualpensis. In conclusion, the sediments of the studied estuaries contain bioavailable chemical agents that provoke oxidative stress in P. gualpensis, which may be a risk for the benthic communities of these ecosystems. This species is proposed to monitor metals bioavailability and oxidative stress in estuarine sediments

  14. SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S.

    2009-12-01

    downstream. Ecological stoichiometric ratios along the river indicate increases in C/N ratios downstream, but no corresponding trend with C/P ratios. The N/P ratios increased directly below the treatment plant and then decreased gradually downstream. The C/N/P ratios remained level until the last two sampling stations within 20 miles of the Chesapeake Bay, where there is a large increase. Despite large inputs, there may be large variations in sources and ecological stoichiometry along rivers and estuaries, and knowledge of these transformations will be important in predicting changes in the amounts, forms, and stoichiometry of nutrient loads to coastal waters.

  15. Environmental monitoring and assessment of heavy metals in surface sediments at Coleroon River Estuary in Tamil Nadu, India.

    PubMed

    Venkatramanan, S; Chung, S Y; Ramkumar, T; Selvam, S

    2015-08-01

    The combined studies on grain size distribution, organic matter contents of sediments, sequential extraction and bulk concentration of heavy metals, statistical analysis, and ecological risk assessments were carried out to investigate the contamination sources and ecological risks of surface sediments at Coleroon River Estuary in Tamil Nadu, India. The sequential extraction of metals showed that a larger portion of the metals was associated with the residual phase and also in other fractions. The low concentrations of heavy metals were found in exchangeable and carbonate bounds (bioavailable phases). It revealed that sediments of Coleroon River Estuary were relatively unpolluted and were influenced mainly by natural sources. The observed order of bulk concentrations of heavy metals in the sediments was as follows: Fe > Mn > Zn > Cu > Pb > Cr > Ni > Co. Factor analyses represented that the enrichment of heavy metals was mostly resulted from lithogenic origins associated with anthropogenic sources. These sources were reconfirmed by cluster analysis. Risk assessment code (RAC) suggested that all metals were not harmful in monsoon season. However, Fe was in medium risk, and Mn and Cu were in low risk in summer. According to pollution load index (PLI) of sediments, all heavy metals were toxic. Cu might be related with adverse biological effects on the basis of sediment quality guidelines (SQG) in both seasons. These integrated approaches were very useful to identify the contamination sources and ecological risks of sediments in estuarine environment. It is expected that this research can give a useful information for the remediation of heavy metals in sediments.

  16. Assessment of the Mutagenicity of Sediments from Yangtze River Estuary Using Salmonella Typhimurium/Microsome Assay

    PubMed Central

    Liu, Li; Chen, Ling; Floehr, Tilman; Xiao, Hongxia; Bluhm, Kerstin; Hollert, Henner; Wu, Lingling

    2015-01-01

    Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components. PMID:26606056

  17. Feeding ecology and trophic relationships of fish species in the lower Guadiana River Estuary and Castro Marim e Vila Real de Santo António Salt Marsh

    NASA Astrophysics Data System (ADS)

    Sá, Rita; Bexiga, Constança; Veiga, Pedro; Vieira, Lina; Erzini, Karim

    2006-10-01

    In this study we analyze the feeding ecology and trophic relationships of some of the main fish species (Soleidae, Moronidae, Mullidae, Sparidae, Mugilidae, and Batrachoididae) of the lower Estuary of the Guadiana River and the Castro Marim e Vila Real de Santo António Salt Marsh. We examined the stomachs of 1415 fish caught monthly between September 2000 and August 2001. Feeding indices and coefficients were determined and used along with the results of multivariate analysis to develop diagrams of trophic interactions (food webs). Results show that these species are largely opportunistic predators. The most important prey items are amphipods, gobies (Gobiidae), shrimps ( Palaemon serratus and Crangon crangon), and polychaete worms. The lower Estuary and associated salt marshes are important nurseries and feeding grounds for the species studied. In this area, it is therefore important to monitor the effects of changes in river runoff, nutrient input, and temperature that result from construction of the Alqueva Dam upstream.

  18. Modeling ecosystem processes with variable freshwater inflow to the Caloosahatchee River Estuary, southwest Florida. I. Model development

    NASA Astrophysics Data System (ADS)

    Buzzelli, Christopher; Doering, Peter H.; Wan, Yongshan; Sun, Detong; Fugate, David

    2014-12-01

    Variations in freshwater inflow have ecological consequences for estuaries ranging among eutrophication, flushing and transport, and high and low salinity impacts on biota. Predicting the potential effects of the magnitude and composition of inflow on estuaries over a range of spatial and temporal scales requires reliable mathematical models. The goal of this study was to develop and test a model of ecosystem processes with variable freshwater inflow to the sub-tropical Caloosahatchee River Estuary (CRE) in southwest Florida from 2002 to 2009. The modeling framework combined empirically derived inputs of freshwater and materials from the watershed, daily predictions of salinity, a box model for physical transport, and simulation models of biogeochemical and seagrass dynamics. The CRE was split into 3 segments to estimate advective and dispersive transport of water column constituents. Each segment contained a sub-model to simulate changes in the concentrations of organic nitrogen and phosphorus (ON and OP), ammonium (NH4+), nitrate-nitrite (NOx-), ortho-phosphate (PO4-3), phytoplankton chlorophyll a (CHL), and sediment microalgae (SM). The seaward segment also had sub-models for seagrasses (Halodule wrightii and Thalassia testudinum). The model provided realistic predictions of ON in the upper estuary during wet conditions since organic nitrogen is associated with freshwater inflow and low salinity. Although simulated CHL concentrations were variable, the model proved to be a reliable predictor in time and space. While predicted NOx- concentrations were proportional to freshwater inflow, NH4+ was less predictable due to the complexity of internal cycling during times of reduced freshwater inflow. Overall, the model provided a representation of seagrass biomass changes despite the absence of epiphytes, nutrient effects, or sophisticated translocation in the formulation. The model is being used to investigate the relative importance of colored dissolved organic

  19. STABLE ISOTOPE VARIATIONS IN SUSPENDED PARTICLES IN A TEMPERATE NORTH PACIFIC ESTUARY, OREGON, USA

    EPA Science Inventory

    Spatial distributions of 13C and 15N in suspended particles were examined monthly over an annual cycle in the euphotic zone (0.5m) of the Yaquina River and Estuary, Oregon. Suspended organic matter in estuaries is a mixture of land-derived and oceanic carbon and nitrogen. In a...

  20. Process-based, forecast modeling of decadal morphological evolution of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Luan, Hualong; Ding, Pingxing; Wang, Zhengbing; Ge, Jianzhong

    2017-04-01

    Understanding the decadal morphodynamic evolution of estuaries and deltas and their controls is of vital importance regarding management for estuarine function and sustainable development. This work addresses this issue by applying a process-based model system (Delft3D) to hindcast and then forecast the morphodynamic evolution of the Yangtze Estuary at a decadal time scale. Forced by the river and tides, the model considers sand-mud mixture and the seasonal variations of river water discharge and sediment discharge. The morphodynamic model is validated against three periods, i.e., an accretion period (1958-1978), an erosion period (1986-1997) and a recent accretion period with human activities (2002-2010). Model results show good performance with respect to spatial erosion and deposition patterns, sediment volume changes, and hypsometry curves. The model reveals quite different behaviors for mud transport between the dry and wet seasons, which is subject to prescription of river boundary conditions and bed composition. We then define four scenarios to project evolution to 2030 under decreased river inputs and increased relative sea-level. The simulations reveal that overwhelming amount of erosion will likely occur in the inner and mouth bar area of the estuary. Particularly, the mouth zone will shift from net deposition before 2010 to net erosion by 2030, mainly because of decreasing sediment supply. Changes in water discharge have minor effects on the projected trend. Net erosion will be considerable when the sediment supply is extremely low (100 Mt yr-1) due to the abundance of erodible modern sediment in the Yangtze Estuary. Erosion within the mouth bar area may be unexpected, including the deepening of the tidal inlet at East Chongming Mudflat and the formation of a flood channel on the seaward side of Jiuduan Shoal. Overall, the model results provide valuable information for sustainable delta management under changing conditions for both the Yangtze system and

  1. Tidal and spatial variability of nitrous oxide (N2O) in Sado estuary (Portugal)

    NASA Astrophysics Data System (ADS)

    Gonçalves, Célia; Brogueira, Maria José; Nogueira, Marta

    2015-12-01

    The estimate of the nitrous oxide (N2O) fluxes is fundamental to assess its impact on global warming. The tidal and spatial variability of N2O and the air-sea fluxes in the Sado estuary in July/August 2007 are examined. Measurements of N2O and other relevant environmental parameters (temperature, salinity, dissolved oxygen and dissolved inorganic nitrogen - nitrate plus nitrite and ammonium) were recorded during two diurnal tidal cycles performed in the Bay and Marateca region and along the estuary during ebb, at spring tide. N2O presented tidal and spatial variability and varied spatially from 5.0 nmol L-1 in Marateca region to 12.5 nmol L-1 in Sado river input. Although the Sado river may constitute a considerable N2O source to the estuary, the respective chemical signal discharge was rapidly lost in the main body of the estuary due to the low river flow during the sampling period. N2O varied with tide similarly between 5.2 nmol L-1 (Marateca) and 10.0 nmol L-1 (Sado Bay), with the maximum value reached two hours after flooding period. The influence of N2O enriched upwelled seawater (˜10.0 nmol L-1) was well visible in the estuary mouth and apparently represented an important contribution of N2O in the main body of Sado estuary. Despite the high water column oxygen saturation in most of Sado estuary, nitrification did not seem a relevant process for N2O production, probably as the concentration of the substrate, NH4+, was not adequate for this process to occur. Most of the estuary functioned as a N2O source, and only Marateca zone has acted as N2O sink. The N2O emission from Sado estuary was estimated to be 3.7 Mg N-N2O yr-1 (FC96) (4.4 Mg N-N2O yr-1, FRC01). These results have implications for future sampling and scaling strategies for estimating greenhouse gases (GHGs) fluxes in tidal ecosystems.

  2. A note on the comparative turbidity of some estuaries of the Americas

    USGS Publications Warehouse

    Uncles, R.J.; Smith, R.E.

    2005-01-01

    Field data from 27 estuaries of the Americas are used to show that, in broad terms, there is a large difference in turbidity between the analyzed east and west-coast estuaries and that tidal range and tidal length have an important influence on that turbidity. Generic, numerical sediment-transport modeling is used to illustrate this influence, which exists over a range of space scales from, e.g., the Rogue River Estuary (few km, few mg l-1) to the Bay of Fundy (hundreds of km, few g l-1). The difference in Pacific and Atlantic seaboard estuarine turbidity for the analyzed estuaries is ultimately related to the broad-scale geomorphology of the two continents.

  3. GROWTH, PRIMARY PRODUCTIVITY, AND NITROGEN FIXATION POTENTIAL OF NODULARIA SPP. (CYANOPHYCEAE) IN WATER FROM A SUBTROPICAL ESTUARY IN THE UNITED STATES .

    PubMed

    Moisander, Pia H; Paerl, Hans W

    2000-08-26

    Nodularia is a halotolerant, filamentous, dinitrogen-fixing cyanobacterium that forms massive blooms in some coastal oceans, estuaries, and saline lakes worldwide. Although the genus is globally distributed, its blooms are sporadic and appear to be confined to certain water bodies. Blooms are frequently associated with phosphorus enrichment; therefore Nodularia may benefit from increased anthropogenic nutrient loading to coastal waters. We studied the potential for Nodularia to grow in the nitrogen-limited Neuse River Estuary (North Carolina, U.S.A.) with laboratory growth experiments in Neuse River Estuary water and by examining physico-chemical data from the estuary. Analysis of nutrients (nitrogen and phosphorus), salinity, and temperature data from the Neuse River Estuary between 1994 and 1998 revealed that suitable conditions for Nodularia prevailed during the summer of each of these years for time spans ranging from 1.5 to 5 months. Growth of two laboratory strains in Neuse River Estuary water was as fast or slightly slower than in artificial growth medium, as long as the culture inoculum had phosphorus reserves. Phosphorus addition did not stimulate growth of already phosphorus-sufficient inocula. Phosphorus starvation of the inoculum before the experiment decreased growth rates in the estuarine water unless additional phosphorus was supplied. Although phosphorus addition had a stimulatory effect on dinitrogen fixation and productivity, the effect differed for the two Nodularia strains. Results suggest that growth of Nodularia in North Carolinian estuaries is possible, and that such growth would be phosphorus-limited at times. Phosphorus availability may determine the times and locations for potential establishment of Nodularia in this and similar estuarine ecosystems.

  4. Levels of C{sub 10}-C{sub 13} polychloro-n-alkanes in marine mammals from the Arctic and the St. Lawrence River estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomy, G.T.; Muir, D.C.G.; Stern, G.A.

    2000-05-01

    Marine mammals from various regions of the Arctic and the St. Lawrence River estuary were examined for the first time for levels of C{sub 10}--C{sub 13} polychloro-n-alkanes (sPCAs). Respective mean total sPCA concentrations in the blubber of beluga whales (Delphinapterus leucas) from Saqqaq and Nuussuaq, western Greenland, were 0.23 {+-} 0.02 (n = 2) and 0.164 {+-} 0.06 {micro}g/g (n = 2), similar to that in beluga from the Mackenzie Delta in the western Canadian Arctic 0.21 {+-} 0.08 {micro}g/g (m = 3). sPCAs levels were higher in beluga blubber from the St. Lawrence River (0.37 to 1.4 {micro}g/g). Meanmore » sPCA concentrations in the blubber samples from walruses (Odobenus rosmarus) (Thule, northwest Greenland) and ringed seal (Phoca hispida) (Eureka, southwest Ellesmere Island) were 0.43 {+-} 0.06 (n = 2) and 0.53 {+-} 0.2 {micro}g/g (n = 6), respectively. Relative to commercial sPCA formulations, samples from the Arctic marine mammals showed a predominance of the shorter chain length lower percent chlorinated PCA congeners, the more volatile components of industrial formulations. This observation is consistent with long-range atmospheric transport of sPCAs to this region. The profiles of the belugas from the St. Lawrence River estuary, however, had higher proportions of the less volatile sPCA congeners, implying that contamination to this region is probably from local sources.« less

  5. Potential mitigation approach to minimize salinity intrusion in the Lower Savannah River Estuary due to reduced controlled releases from Lake Thurmond

    USGS Publications Warehouse

    Conrads, Paul; Greenfield, James M.

    2010-01-01

    The Savannah River originates at the confluence of the Seneca and Tugaloo Rivers, near Hartwell, Ga. and forms the State boundary between South Carolina and Georgia. The J. Strom Thurmond Dam and Lake, located 187 miles upstream from the coast, is responsible for most of the flow regulation that affects the Savannah River from Augusta to the coast. The Savannah Harbor experiences semi-diurnal tides of two high and two low tides in a 24.8-hour period with pronounced differences in tidal range between neap and spring tides occurring on a 14-day and 28-day lunar cycle. The Savannah National Wildlife Refuge is located in the Savannah River Estuary. The tidal freshwater marsh is an essential part of the 28,000-acre refuge and is home to a diverse variety of wildlife and plant communities. The Southeastern U.S. experienced severe drought conditions in 2008 and if the conditions had persisted in Georgia and South Carolina, Thurmond Lake could have reached an emergency operation level where outflow from the lake is equal to the inflow to the lake. To decrease the effect of the reduced releases on downstream resources, a stepped approach was proposed to reduce the flow in increments of 500 cubic feet per second (ft3/s) intervals. Reduced flows from 3,600 ft3/s to 3,100 ft3/s and 2,600 ft3/s were simulated with two previously developed models of the Lower Savannah River Estuary to evaluate the potential effects on salinity intrusion. The end of the previous drought (2002) was selected as the baseline condition for the simulations with the model. Salinity intrusion coincided with the 28-day cycle semidiurnal tidal cycles. The results show a difference between the model simulations of how the salinity will respond to the decreased flows. The Model-to-Marsh Decision Support System (M2MDSS) salinity response shows a large increase in the magnitude (> 6.0 practical salinity units, psu) and duration (3-4 days) of the salinity intrusion with extended periods (21 days) of tidal

  6. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  7. A Synthesis of Environmental and Plant Community Data for Tidal Wetland Restoration Planning in the Lower Columbia River and Estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Borde, Amy B.; Cullinan, Valerie I.

    This report reanalyzes and synthesizes previously existing environmental and plant community data collected by PNNL at 55 tidal wetlands and 3 newly restored sites in the lower Columbia River and estuary (LCRE) between 2005 and 2011. Whereas data were originally collected for various research or monitoring objectives of five studies, the intent of this report is to provide only information that will have direct utility in planning tidal wetland restoration projects. Therefore, for this report, all tidal wetland data on plants and the physical environment, which were originally developed and reported by separate studies, were tabulated and reanalyzed as amore » whole. The geographic scope of the data collected in this report is from Bonneville Lock and Dam to the mouth of the Columbia River« less

  8. The use of remote sensing for monitoring environmental indicators: The case of the Incomati estuary, Mozambique

    NASA Astrophysics Data System (ADS)

    LeMarie, Margarita; van der Zaag, Pieter; Menting, Geert; Baquete, Evaristo; Schotanus, Daniel

    The Incomati river basin is a transboundary basin shared by three countries: South Africa, Mozambique and Swaziland. To assess the water requirements of the environment, as stated in the Tripartite Interim Agreement (TIA) signed by the three riparian countries in Johannesburg in 2002, Mozambique needs to monitor the ecological state of the river, including the estuary. A monitoring system has to be established that can evaluate the environmental fresh water requirements based on appropriate indicators that reflect the health of the Incomati estuary. The estuary of the Incomati has important ecological functions but it also is an important socio-economic resource. Local communities depend on the estuary’s natural resources. Modifications of the river flow regime by upstream developments impact on the productivity of the estuary, diminishing fish and shrimp production, reducing biomass of natural vegetation such as grasses, reeds and mangroves and increasing salt intrusion. A decrease in estuary productivity consequently affects the incomes and living conditions of these communities. Based on an understanding of the effects of different pressures on the estuary ecosystem some indicators for monitoring the environmental state of the estuary are suggested, including the extent and vitality of mangrove forests. This latter indicator is further elaborated in the paper. Remote sensing techniques were used to identify and quantify mangrove forests in two selected areas of the estuary (Xefina Pequeña Island and Benguelene Island). Five satellite images covering a period of 20 years (1984-2003) showed that the area covered by non-degraded mangroves significantly decreased on both islands, by 25% in Xefina Pequeña Island and 40% in Benguelene Island. Moreover, the study of biomass reflection using NDVI also showed a significant decline in biomass densities over the last 20 years. Possible causes of these changes are reviewed: natural rainfall trends, modifications of the

  9. [Health assessment of Qi'ao Island mangrove wetland ecosystem in Pearl River Estuary].

    PubMed

    Wang, Shu-Gong; Zheng, Yao-Hui; Peng, Yi-Sheng; Chen, Gui-Zhu

    2010-02-01

    Based on the theories of wetland ecosystem health and by using "Pressure-State-Response" model, a health assessment indicator system for Qi' ao Island mangrove wetland ecosystem in Pearl River Estuary was built, and the assessment indices, assessment criteria, indices weighted values, assessment grades, and assessment methods were established to assess the health state of this ecosystem. In 2008, the overall health index of this ecosystem was 0.6580, health level was of grade II (healthy), and the pressure, state, and response indices were 0.3469, 0.8718, and 0.7754, respectively, suggesting that this ecosystem was good in state and response, but still had definite pressure. As a provincial nature reserve, this ecosystem was to be further improved in its health level. However, the research on the health assessment of mangrove wetland ecosystem was still young. Further studies should be made on the selection of assessment indices, long-term oriented monitoring of these indices, and quantification of the relations between ecosystem health level and ecosystem services.

  10. Loads of suspended sediment and nutrients from local nonpoint sources to the tidal Potomac River and Estuary, Maryland and Virginia, 1979-81 water years

    USGS Publications Warehouse

    Hickman, R. Edward

    1987-01-01

    Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary

  11. Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study

    NASA Astrophysics Data System (ADS)

    Vijith, V.; Shetye, S. R.; Baetens, K.; Luyten, P.; Michael, G. S.

    2016-05-01

    Observations in the Mandovi estuary, located on the central west coast of India, have shown that the salinity field in this estuary is remarkably time-dependent and passes through all possible states of stratification (riverine, highly-stratified, partially-mixed and well-mixed) during a year as the runoff into the estuary varies from high values (∼1000 m3 s-1) in the wet season to negligible values (∼1 m3 s-1) at end of the dry season. The time-dependence is forced by the Indian Summer Monsoon (ISM) and hence the estuary is referred to as a monsoonal estuary. In this paper, we use a three-dimensional, open source, hydrodynamic, numerical model to reproduce the observed annual salinity field in the Mandovi. We then analyse the model results to define characteristics of residual estuarine circulation in the Mandovi. Our motivation to study this aspect of the Mandovi's dynamics is derived from the following three considerations. First, residual circulation is important to long-term evolution of an estuary; second, we need to understand how this circulation responds to strongly time-dependent runoff forcing experienced by a monsoonal estuary; and third, Mandovi is among the best studied estuaries that come under the influence of ISM, and has observations that can be used to validate the model. Our analysis shows that the residual estuarine circulation in the Mandovi shows four distinct phases during a year: a river like flow that is oriented downstream throughout the estuary; a salt-wedge type circulation, with flow into the estuary near the bottom and out of the estuary near the surface restricted close to the mouth of the estuary; circulation associated with a partially-mixed estuary; and, the circulation associated with a well-mixed estuary. Dimensional analysis of the field of residual circulation helped us to establish the link between strength of residual circulation at a location and magnitude of river runoff and rate of mixing at the location. We then

  12. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.

    The goal of this multi-year study (2004-2010) is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the lower Columbia River and estuary. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. Field research in 2005, 2006, and 2007 involved intensive, comparative studies paired by habitat type (tidal swamp vs. marsh), trajectory (restoration vs. reference site), and restoration action (tide gate vs. culvert vs. dike breach). The field work established two kinds of monitoringmore » indicators for eventual cumulative effects analysis: core and higher-order indicators. Management implications of limitations and applications of site-specific effectiveness monitoring and cumulative effects analysis were identified.« less

  13. Worldwide patterns of fish biodiversity in estuaries: Effect of global vs. local factors

    NASA Astrophysics Data System (ADS)

    Pasquaud, Stéphanie; Vasconcelos, Rita P.; França, Susana; Henriques, Sofia; Costa, Maria José; Cabral, Henrique

    2015-03-01

    The main ecological patterns and the functioning of estuarine ecosystems are difficult to evaluate due to natural and human induced complexity and variability. Broad geographical approaches appear particularly useful. This study tested, at a worldwide scale, the influence of global and local variables in fish species richness in estuaries, aiming to determine the latitudinal pattern of species richness, and patterns which could be driven by local features such as estuary area, estuary mouth width, river flow and intertidal area. Seventy one estuarine systems were considered with data obtained from the literature and geographical information system. Correlation tests and generalized linear models (GLM) were used in data analyses. Species richness varied from 23 to 153 fish species. GLM results showed that estuary area was the most important factor explaining species richness, followed by latitude and mouth width. Species richness increased towards the equator, and higher values were found in larger estuaries and with a wide mouth. All these trends showed a high variability. A larger estuary area probably reflects a higher diversity of habitats and/or productivity, which are key features for estuarine ecosystem functioning and biota. The mouth width effect is particularly notorious for marine and diadromous fish species, enhancing connectivity between marine and freshwater realms. The effects of river flow and intertidal area on the fish species richness appear to be less evident. These two factors may have a marked influence in the trophic structure of fish assemblages.

  14. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    NASA Astrophysics Data System (ADS)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most

  15. Morphology and modern sedimentary deposits of the macrotidal Marapanim Estuary (Amazon, Brazil)

    NASA Astrophysics Data System (ADS)

    Araújo da Silva, Cléa; Souza-Filho, Pedro Walfir M.; Rodrigues, Suzan W. P.

    2009-03-01

    The northern Brazilian coast, east of the Amazon River is characterized by several macrotidal estuarine systems that harbor large mangrove areas with approximately 7600 km 2. The Marapanim Estuary is influenced by macrotidal regime with moderate waves influence. Morphologic units were investigated by using remote sensing images (i.e., Landsat-7 ETM+, RADARSAT- 1 Wide and SRTM) integrated with bathymetric data. The modern sedimentary deposits were analyzed from 67 cores collected by Vibracore and Rammkersonde systems. Analysis of morphology and surface sedimentary deposits of the Marapanim River reveal they are strongly influenced by the interaction of tidal, wave and fluvial currents. Based on these processes it was possible to recognize three distinct longitudinal facies zonation that revels the geological filling of a macrotidal estuary. The estuary mouth contain fine to medium marine sands strongly influenced by waves and tides, responsible for macrotidal sandy beaches and estuarine channel development, which are characterized by wave-ripple bedding and longitudinal cross-bedding sands. The estuary funnel is mainly influenced by tides that form wide tidal mudflats, colonized by mangroves, along the estuarine margin, with parallel laminations, lenticular bedding, root fragments and organic matter lenses. The upstream estuary contains coarse sand to gravel of fluvial origin. Massive mud with organic matter lenses, marks and roots fragments occur in the floodplain accumulates during seasonal flooding providing a slowly aggrading in the alluvial plain. This morphologic and depositional pattern show easily a tripartite zonation of a macrotidal estuary, that are in the final stage of filling.

  16. Model behavior and sensitivity in an application of the cohesive bed component of the community sediment transport modeling system for the York River estuary, VA, USA

    USGS Publications Warehouse

    Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R.

    2014-01-01

    The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  17. Nutrient loading and macrophyte growth in Wilson Inlet, a bar-built southwestern Australian estuary

    NASA Astrophysics Data System (ADS)

    Lukatelich, R. J.; Schofield, N. J.; McComb, A. J.

    1987-02-01

    Wilson Inlet is a 'bar-built' estuary, open to the ocean only when a sandbar has been breached after river flow. estimates are presented of phosphorus and nitrogen loadings from rivers, losses to the ocean, and amounts present in estuarine components during a particular year. Following bar opening, a volume of water equivalent to 35% of estuarine volume at the time was lost, providing a major loss of dissolved nutrients from the estuary. While the bar was open (51 days) water was displaced through river flow, but there was little tidal exchange. There was net retention of phosphorus (about 60% of river input) and some loss of nitrogen (less than 15%). Much of the nutrient held in the estuary was in surface sediments, but concentrations have shown little change with time and are similar to other southwestern estuaries. In contrast there have been massive increases in the biomass of Ruppia megacarpa Mason in recent years; this constitutes more than 90% of plant biomass. The nutrient bank in this plant is large compared to the water column, and amounts recycled through plant material greatly exceeded riverine loading in the year of the study. Tissue N concentrations were relatively high and constant, tissue P relatively low and seasonally variable, suggesting P limitation of plant biomass. Estimates of nutrient loading from streams showed relatively higher nutrient inputs from catchments cleared for agriculture. These are in higher rainfall areas, have high drainage densities, large proportions of sandy soils and are subjected to phosphatic fertilizer application.

  18. Composition profiles, levels, distributions and ecological risk assessments of trihalomethanes in surface water from a typical estuary of Bohai Bay, China.

    PubMed

    Niu, Zhiguang; Li, Xiaonan; Zhang, Ying

    2017-04-15

    To characterize the spatiotemporal distribution and potential ecological risk for trihalomethanes (THMs) in the surface water of a river estuary, surface water samples were collected over five consecutive months (from March to July 2016) from four sites in the Haihe River estuary of Bohai Bay. The potential ecological risks of THMs were evaluated quantitatively based on a species sensitivity distribution (SSD) model. The results demonstrate that trichloromethane (TCM) was the predominant THM in surface water of the Haihe River estuary (2.93±1.98μg/L) followed by tribromomethane (TBM) (0.42±0.33μg/L), bromodichloromethane (BDCM) (0.14±0.06μg/L) and dibromochloromethane (DBCM) (0.09±0.10μg/L). The concentration of TCM was higher in summer than that in spring, while TBM displayed the opposite trend. The TCM concentration decreased from the estuary to the adjacent sea. However, the levels of TBM and DBCM in the adjacent sea were higher than those in the estuary. The ecological risks of THMs in surface water of Haihe River were notably low, and the ecological risks of THMs in freshwater were generally higher than those in seawater. Compared with other contaminants in water and surface sediment from rivers and coastal areas, the ecological risk levels of THMs in surface water can be considered low. This study is a contribution to the progress of ecological risk assessment of THMs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Influences of tide on silicon and nitrogen contents in soil and porewater in the Minjiang Ri-ver estuary, Southeast China].

    PubMed

    Hou, Guan Yun; Zhai, Shui Jing; Le, Xiao Qing; Tong, Chuan

    2017-01-01

    Taking Shanyuntan wetland in the Minjiang River estuary as test object, the dissolved silicates (DSi) and inorganic nitrogen contents in porewater and the biogenic silica (BSi) and total nitrogen contents in surface soil of the Phragmites australis wetland, Cyperus malaccensis wetland and Spartina alterniflora wetland were measured in October 2014 (spring tide month) and April 2015 (neap tide month), respectively, to illuminate the influence of tide on silicon and nitrogen contents in soil and porewater of estuarine wetland. Results showed that the DSi content in porewater and the BSi content in surface soil in spring tide month were slightly higher than those in neap tide month, with the highest being observed on neap tide day and the lowest occurring on spring tide day. In contrast, the BSi content in surface soil on spring tide day showed an opposite trend with that on neap tide day. The contents of NH 4 + -N and NO 3 - -N in porewater of different wetland soils in spring tide month were higher than those in neap tide month, while the content of NH 4 + -N on spring tide day was significantly higher than that on neap tide day (P<0.05). The study found that hydrological conditions such as flooding duration and drying-wetting alternation caused by tide had great influences on silicon and nitrogen contents in porewater and surface soil, and vegetation types also showed great influences on their distributions in intertidal wetland of the Minjiang River estuary.

  20. 15 CFR Supplement No. 7 to Part 748 - Authorization Validated End-User (VEU): List of Validated End-Users, Respective Items Eligible...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., 48 & 49, River Front Harbor, Zhangjiang Hi-Tech Park, 1387 Zhangdong Rd., Pudong, Shanghai, 201203 AMD Technology Development (Beijing) Co., Ltd., 18F, North Building, Raycom Infotech, Park Tower C, No.... Applied Materials South East Asia Pte. Ltd.—Wuxi Depot, c/o Sinotrans Jiangsu Fuchang, Logistics Co., Ltd...

  1. 15 CFR Supplement No. 7 to Part 748 - Authorization Validated End-User (VEU): List of Validated End-Users, Respective Items Eligible...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., 48 & 49, River Front Harbor, Zhangjiang Hi-Tech Park, 1387 Zhangdong Rd., Pudong, Shanghai, 201203 AMD Technology Development (Beijing) Co., Ltd., 18F, North Building, Raycom Infotech, Park Tower C, No... Depot c/o Sinotrans Jiangsu Fuchang Logistics Co., Ltd. 1 Xi Qin Road, Wuxi Export Processing Zone Wuxi...

  2. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China.

    PubMed

    Li, Feipeng; Mao, Lingchen; Jia, Yubao; Gu, Zhujun; Shi, Weiling; Chen, Ling; Ye, Hua

    2018-01-01

    The Yangtze River estuary (YRE) and Hangzhou Bay (HZB) is of environmental significance because of the negative impact from industrial activities and rapid development of aquaculture on the south bank of HZB (SHZB) in recent years. This study investigated the distribution and risk assessments of trace metals (Cr, Cu, Zn, Hg, Pb, and Cd) accumulated in surface sediments by sampling in YRE, outer and south HZB. Copper and Zn concentration (avg. 35.4 and 98.7 mg kg -1 , respectively) in surface sediments were generally higher than the background suggesting a widespread of Cu and Zn in the coastal area of Yangtze River Delta. High concentrations of Cu (~ 42 mg kg -1 ), Zn (~ 111 mg kg -1 ), Cd (~ 0.27 mg kg -1 ), and Hg (~ 0.047 mg kg -1 ) were found in inner estuary of YRE and decreased offshore as a result of terrestrial input and dilution effect of total metal contents by "cleaner" sediments from the adjacent sea. In outer HZB, accumulation of terrestrial derived metal has taken place near the Zhoushan Islands. Increase in sediment metal concentration from the west (inner) to the east (outer) of SHZB gave rise to the input of fine-grained sediments contaminated with metals from outer bay. According the results from geoaccumulation index, nearly 75% of samples from YRE were moderately polluted (1.0 < I geo  < 2.0) by Cd. Cadmium and Hg contributed for 80~90% to the potential ecological risk index in the YRE and HZB, with ~ 72% sites in HZB under moderate risk (150 ≤ RI < 300) especially near Zhoushan Islands.

  3. Analytical and numerical study of the salinity intrusion in the Sebou river estuary (Morocco) - effect of the "Super Blood Moon" (total lunar eclipse) of 2015

    NASA Astrophysics Data System (ADS)

    Haddout, Soufiane; Igouzal, Mohammed; Maslouhi, Abdellatif

    2016-09-01

    The longitudinal variation of salinity and the maximum salinity intrusion length in an alluvial estuary are important environmental concerns for policy makers and managers since they influence water quality, water utilization and agricultural development in estuarine environments and the potential use of water resources in general. The supermoon total lunar eclipse is a rare event. According to NASA, they have only occurred 5 times in the 1900s - in 1910, 1928, 1946, 1964 and 1982. After the 28 September 2015 total lunar eclipse, a Super Blood Moon eclipse will not recur before 8 October 2033. In this paper, for the first time, the impact of the combination of a supermoon and a total lunar eclipse on the salinity intrusion along an estuary is studied. The 28 September 2015 supermoon total lunar eclipse is the focus of this study and the Sebou river estuary (Morocco) is used as an application area. The Sebou estuary is an area with high agricultural potential, is becoming one of the most important industrial zones in Morocco and it is experiencing a salt intrusion problem. Hydrodynamic equations for tidal wave propagation coupled with the Savenije theory and a numerical salinity transport model (HEC-RAS software "Hydrologic Engineering Center River Analysis System") are applied to study the impact of the supermoon total lunar eclipse on the salinity intrusion. Intensive salinity measurements during this extreme event were recorded along the Sebou estuary. Measurements showed a modification of the shape of axial salinity profiles and a notable water elevation rise, compared with normal situations. The two optimization parameters (Van der Burgh's and dispersion coefficients) of the analytical model are estimated based on the Levenberg-Marquardt's algorithm (i.e., solving nonlinear least-squares problems). The salinity transport model was calibrated and validated using field data. The results show that the two models described very well the salt intrusion during the

  4. Impact of flood events on macrobenthic community structure on an intertidal flat developing in the Ohta River Estuary.

    PubMed

    Nishijima, Wataru; Nakano, Yoichi; Nakai, Satoshi; Okuda, Tetsuji; Imai, Tsuyoshi; Okada, Mitsumasa

    2013-09-15

    We investigated the effects of river floods on the macrobenthic community of the intertidal flat in the Ohta River Estuary, Japan, from 2005 to 2010. Sediment erosion by flood events ranged from about 2-3 cm to 12 cm, and the salinity dropped to 0‰ even during low-intensity flood events. Cluster analysis of the macrobenthic population showed that the community structure was controlled by the physical disturbance, decreased salinity, or both. The opportunistic polychaete Capitella sp. was the most dominant species in all clusters, and populations of the long-lived polychaete Ceratonereis erythraeensis increased in years with stable flow and almost disappeared in years with intense flooding. The bivalve Musculista senhousia was also an important opportunistic species that formed mats in summer of the stable years and influenced the structure of the macrobenthic community. Our results demonstrate the substantial effects of flood events on the macrobenthic community structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. An expert panel process to evaluate habitat restoration actions in the Columbia River estuary.

    PubMed

    Krueger, Kirk L; Bottom, Daniel L; Hood, W Gregory; Johnson, Gary E; Jones, Kim K; Thom, Ronald M

    2017-03-01

    We describe a process for evaluating proposed ecosystem restoration projects intended to improve survival of juvenile salmon in the Columbia River estuary (CRE). Changes in the Columbia River basin (northwestern USA), including hydropower development, have contributed to the listing of 13 salmon stocks as endangered or threatened under the U.S. Endangered Species Act. Habitat restoration in the CRE, from Bonneville Dam to the ocean, is part of a basin-wide, legally mandated effort to mitigate federal hydropower impacts on salmon survival. An Expert Regional Technical Group (ERTG) was established in 2009 to improve and implement a process for assessing and assigning "survival benefit units" (SBUs) to restoration actions. The SBU concept assumes site-specific restoration projects will increase juvenile salmon survival during migration through the 234 km CRE. Assigned SBUs are used to inform selection of restoration projects and gauge mitigation progress. The ERTG standardized the SBU assessment process to improve its scientific integrity, repeatability, and transparency. In lieu of experimental data to quantify the survival benefits of individual restoration actions, the ERTG adopted a conceptual model composed of three assessment criteria-certainty of success, fish opportunity improvements, and habitat capacity improvements-to evaluate restoration projects. Based on these criteria, an algorithm assigned SBUs by integrating potential fish density as an indicator of salmon performance. Between 2009 and 2014, the ERTG assessed SBUs for 55 proposed projects involving a total of 181 restoration actions located across 8 of 9 reaches of the CRE, largely relying on information provided in a project template based on the conceptual model, presentations, discussions with project sponsors, and site visits. Most projects restored tidal inundation to emergent wetlands, improved riparian function, and removed invasive vegetation. The scientific relationship of geomorphic and

  6. Environmental control on early life stages of flatfishes in the Lima Estuary (NW Portugal)

    NASA Astrophysics Data System (ADS)

    Ramos, Sandra; Ré, Pedro; Bordalo, Adriano A.

    2009-06-01

    Several flatfishes spawn in oceanic waters and pelagic larvae are transported inshore to settle in the nursery areas, usually estuaries, where they remain during their juvenile life. Nursery areas appear as extremely important habitats, not only for juveniles but also for the earlier planktonic larval fish. Yet, the majority of nursery studies tend to focus only on one development stage, missing an integrative approach of the entire early life that fishes spent within a nursery ground. Thus, the present study assessed the influence of environmental parameters on the dynamics of the larval and juvenile flatfishes, throughout their nursery life in the Lima Estuary. Between April 2002 and April 2004, fortnightly subsurface ichthyoplankton samples were collected and juveniles were collected from October 2003 until September 2005. Larval assemblages comprised nine flatfish species, while only six were observed among the juvenile assemblages. Solea senegalensis and Platichthys flesus were the most abundant species of both fractions of the Lima Estuary flatfishes. Larval flatfish assemblages varied seasonally, without relevant differences between lower and middle estuary. Platichthys flesus dominated the spring samples and summer and autumn periods were characterized by an increase of overall abundance and diversity of larval flatfishes, mainly S. senegalensis, associated with temperature increase and reduced river flow. On the contrary, during the winter abundance sharply decreased, as a consequence of higher river run-off that might compromised the immigration of incompetent marine larvae. Juvenile flatfishes were more abundant in the middle and upper areas of the estuary, but the species richness was higher near the river mouth. Sediment type, distance from the river mouth, salinity, temperature and dissolved oxygen were identified as the main environmental factors structuring the juvenile flatfish assemblages. Juveniles were spatially discrete, with the most abundant

  7. Indirect Effects and Potential Cumulative Impacts of Dredging in an Urbanized Estuary

    NASA Astrophysics Data System (ADS)

    Sommerfield, C. K.; Chen, J.; Ralston, D. K.; Geyer, W. R.

    2016-02-01

    For over two centuries, the Delaware River and Bay estuary has supported one of the most economically important ports in the United States. To accommodate ships of ever-increasing size, the 165-km axial shipping channel has been deepened to over twice the natural depth of the estuary. While it is known that the channel has modified tides and sedimentation patterns in the estuary, unknown are the impacts on the ecosystem as a whole. A concern is the influence of channelization on sediment movement to the tidal wetland coast, which is eroding at rates on the order of meters per year. Tidal wetlands frame the entire estuary and provide vital ecosystem services ranging from recreation to carbon sequestration. To identify shifts in baseline conditions, we are performing a retrospective analysis of estuarine dynamics using historical bathymetry, numerical modeling, and observational studies. The period of interest extends from 1848 (50 years prior to channel construction) to present. During this period the channel was progressively deepened from its natural depth of 5.5 m to the current depth of 14 m. Preliminary modeling results support independent evidence that the salt intrusion and zone of rapid sediment deposition migrated several 10s of kilometers up-estuary as an indirect effect of deepening. Ironically, the locus of intense deposition now falls squarely within the Wilmington-Philadelphia port complex; river sediment that initially settles in this area is removed by maintenance dredging before it can disperse seaward. Sediment budgetary analysis indicates that the mass of sediment dredged from the upper estuary on average exceeds the mass of the new sediment supplied from the drainage basin. Hence, a probable cumulative impact of dredging is a reduction in sediment delivery to the lower estuary and fringing wetlands. Connections among the shipping channel, wave-tide interactions, and marsh edge erosion are a topic of ongoing modeling and observational research.

  8. Tidal current energy potential of Nalón river estuary assessment using a high precision flow model

    NASA Astrophysics Data System (ADS)

    Badano, Nicolás; Valdés, Rodolfo Espina; Álvarez, Eduardo Álvarez

    2018-05-01

    Obtaining energy from tide currents in onshore locations is of great interest due to the proximity to the points of consumption. This opens the door to the feasibility of new installations based on hydrokinetic microturbines even in zones of moderate speed. In this context, the accuracy of energy predictions based on hydrodynamic models is of paramount importance. This research presents a high precision methodology based on a multidimensional hydrodynamic model that is used to study the energetic potential in estuaries. Moreover, it is able to estimate the flow variations caused by microturbine installations. The paper also shows the results obtained from the application of the methodology in a study of the Nalón river mouth (Asturias, Spain).

  9. A dinoflagellate Cochlodinium geminatum bloom in the Zhujiang (Pearl) River estuary in autumn 2009

    NASA Astrophysics Data System (ADS)

    Ke, Zhixin; Huang, Liangmin; Tan, Yehui; Song, Xingyu

    2012-05-01

    A severe Cochlodinium geminatum red tide (>300 km2) was observed in the Zhujiang (Pearl) River estuary, South China Sea in autumn 2009. We evaluated the environmental conditions and phytoplankton community structure during the outbreak. The red tide water mass had significantly higher dissolved inorganic phosphate (DIP), ammonia, and temperature, but significantly lower nitrite, nitrate, dissolved inorganic nitrogen (DIN), and DIN/DIP relative to the non-red-tide zones. The phytoplankton assemblage was dominated by dinoflagellates and diatoms during the red tide. C. geminatum was the most abundant species, with a peak density of 4.13×107 cell/L, accounting for >65% of the total phytoplankton density. The DIN/DIP ratio was the most important predictor of species, accounting for 12.45% of the total variation in the phytoplankton community. Heavy phosphorus loading, low precipitation, and severe saline intrusion were likely responsible for the bloom of C. geminatum.

  10. Distribution and speciation of mercury affected by humic acid in mariculture sites at the Pearl River estuary.

    PubMed

    Ding, Lingyun; Zhao, Kaiyun; Zhang, Lijuan; Liang, Peng; Wu, Shengchun; Wong, Ming Hung; Tao, Huchun

    2018-05-14

    At the Pearl River Estuary of southern China, mercury and its environmental problems have long been a great concern. This study investigated the distribution and speciation of mercury compounds that are significantly influenced by the increasing content of humic acid (HA, a model natural organic matter) in this region. The inorganic mercury and methyl mercury, being adsorbed and converted at different HA levels, were studied in sediments and surface water at both mariculture and their reference sites. In mariculture sediments with higher HA content (up to 4.5%), more mercury were adsorbed at different compound levels, promoting the methylation and accumulation of mercury (P < 0.05) at the sediment-water interface. Seasonal shift in environmental temperature might control the HA content, subsequently favouring mercury methylation (maximum 1.75 ± 0.08 mg L -1 d -1 ) under warm weather conditions. In reference sites received less HA wastes, lower adsorption capacity and methylation rate were observed for mercury in sediments and surface water. Our work points to the significant roles of HA on mercury distribution and speciation both spatially and seasonally, thus addressing the impacts of mariculture activities on estuary eco-system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary

    USGS Publications Warehouse

    Carter, V.; Rybicki, N.B.

    1990-01-01

    Changing light availability may be responsible for the discontinuous distribution of submersed aquatic macrophytes in the freshwater tidal Potomac River. During the 1985-1986 growing seasons, light attenuation and chlorophyll a and suspended particulate material concentrations were measured in an unvegetated reach (B) and in two adjacent vegetated reaches (A and C). Light attenuation in reach B (the lower, fresh to oligohaline tidal river) was greater than that in reach A (the recently revegetated, upper, freshwater tidal river) in both years. Reach B light attenuation was greater than that in reach C (the vegetated, oligohaline to mesohaline transition zone of the Potomac Estuary) in 1985 and similar to that in reach C in 1986. In reach B, 5% of total below-surface light penetrated only an average of 1.3 m in 1985 and 1.0m in 1986, compared with 1.9 m and 1.4 m in reach A in 1985 and 1986, respectively. Water column chlorophyll a concentration controlled light availability in reaches A and B in 1985, whereas both chlorophyll a and suspended particulate material concentrations were highly correlated with attenuation in both reaches in 1986. Reach C light attenuation was correlated with suspended particulate material in 1986. The relationship between attenuation coefficient and Secchi depth was KPAR=1.38/Secchi depth. The spectral distribution of light at 1 m was shifted toward the red portion of the visible spectrum compared to surface light. Blue light was virtually absent at 1.0 m in reach B during July and August 1986. Tidal range is probably an important factor in determining light availability for submersed macrophyte propagule survival at the sediment-water interface in this shallow turbid system. ?? 1990 Estuarine Research Federation.

  12. Anthropogenic Carbon Pump in an Urbanized Estuary

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Yoon, T. K.; Jin, H.; Begum, M. S.

    2015-12-01

    The importance of estuaries as a carbon source has been increasingly recognized over the recent decades. However, constraining sources of CO2 evasion from urbanized estuaries remains incomplete, particularly in densely populated river systems receiving high loads of organic carbon from anthropogenic sources. To account for major factors regulating carbon fluxes the tidal reach of the Han River estuary along the metropolitan Seoul, characterization of organic carbon in the main stem and major urban tributaries were combined with continuous, submersible sensor measurements of pCO2 at a mid-channel location over a year and continuous underway measurements using a submersible sensor and two equilibrator sytems across the estuarine section receiving urban streams. Single-site continuous measurements exhibited large seasonal and diurnal variations in pCO2, ranging from sub-ambient air levels to exceptionally high values approaching 10,000 ppm. Diurnal variations of pCO2 were pronounced in summer and had an inverse relationship with dissolved oxygen, pointing to a potential role of day-time algal consumption of CO2. Cruise measurements displayed sharp pCO2 pulses along the confluences of urban streams as compared with relatively low values along the upper estuary receiving low-CO2 outflows from upstream dams. Large downstream increases in pCO2, concurrent with increases in DOC concentrations and fluorescence intensities indicative of microbially processed organic components, imply a translocation and subsequent dilution of CO2 carried by urban streams and/or fast transformations of labile C during transit along downstream reaches. The unique combination of spatial and temporal continuous measurements of pCO2 provide insights on estuarine CO2 pulses that might have resulted from the interplay between high loads of CO2 and organic C of anthropogenic origin and their priming effects on estuarine microbial processing of terrigenous and algal organic matter.

  13. Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama

    USGS Publications Warehouse

    Noble, M.A.; Schroeder, W.W.; Wiseman, W.J.; Ryan, H.F.; Gelfenbaum, G.

    1996-01-01

    Mobile Bay is a wide (25-50 km), shallow (3 m), highly stratified estuary on the Gulf coast of the United States. In May 1991 a series of instruments that measure near-surface and near-bed current, temperature, salinity, and middepth pressure were deployed for a year-long study of the bay. A full set of measurements were obtained at one site in the lower bay; all but current measurements were obtained at a midbay site. These observations show that the subtidal currents in the lower bay are highly sheared, despite the shallow depth of the estuary. The sheared flow patterns are partly caused by differential forcing from wind stress and river discharge. Two wind-driven flow patterns actually exist in lower Mobile Bay. A barotropic response develops when the difference between near-surface and near-bottom salinity is less than 5 parts per thousand. For stronger salinity gradients the wind-driven currents are larger and the response resembles a baroclinic flow pattern. Currents driven by river flows are sheared and also have a nonlinear response pattern. Only near-surface currents are driven seaward by discharges below 3000 m3/s. At higher discharge rates, surface current variability uncouples from the river flow and the increased discharge rates drive near-bed current seaward. This change in the river-forced flow pattern may be associated with a hydraulic jump in the mouth of the estuary. Copyright 1996 by the American Geophysical Union.

  14. Temporal-spatial variation of bacterial diversity in estuary sediments in the south of Zhejiang Province, China.

    PubMed

    Lu, Xiao-Ming; Chen, Chang; Zheng, Tian-Ling; Chen, Jian-Jun

    2016-03-01

    The winter and summer microbial community structure in sediment samples obtained from the estuaries of the wastewater-polluted River Ou (DO and XO), River Feiyun (DF and XF), and River Ao (DA and XA) in the south of Zhejiang Province in China was determined using 454 pyrosequencing. Sediment samples (DD and XD) were also correspondingly collected near the shore far from the estuaries for comparison. For the above sediments, 294,870 effective sequences were obtained to do the bacterial diversity and abundance determination. In total, 1924, 1517, 2071, 1956, 1995, 1800, 2261, and 2097 operational taxonomic units were obtained at 3 % distance cutoff in the DO, XO, DF, XF, DA, XA, DD, and XD sediments, respectively. Bacterial phylotype richness in DD was higher than the other sediments, and XO had the least richness. The most dominant class in the DA, DD, DF, DO, and XA sediments is Gammaproteobacteria. Deltaproteobacteria is the most dominant one in XD, XO, and XF. Circa 14.4 % sequences in XD were found to be affiliated with the Flavobacteriales order. Characterization of the estuarine sediment bacterial communities indicated that chemical pollution has the potential to decrease the natural variability that exists among estuary ecosystems. However, chemical pollutants did not cause clear bio-homogenization in these estuaries.

  15. Development of an estuarine assessment scheme for the management of a highly urbanised catchment/estuary system, Sydney estuary, Australia.

    PubMed

    Birch, G F; Gunns, T J; Chapman, D; Harrison, D

    2016-05-01

    As coastal populations increase, considerable pressures are exerted on estuarine environments. Recently, there has been a trend towards the development and use of estuarine assessment schemes as a decision support tool in the management of these environments. These schemes offer a method by which complex environmental data is converted into a readily understandable and communicable format for informed decision making and effective distribution of limited management resources. Reliability and effectiveness of these schemes are often limited due to a complex assessment framework, poor data management and use of ineffective environmental indicators. The current scheme aims to improve reliability in the reporting of estuarine condition by including a concise assessment framework, employing high-value indicators and, in a unique approach, employing fuzzy logic in indicator evaluation. Using Sydney estuary as a case study, each of the 15 sub-catchment/sub-estuary systems were assessed using the current scheme. Results identified that poor sediment quality was a significant issue in Blackwattle/Rozelle Bay, Iron Cove and Hen and Chicken Bay while poor water quality was of particular concern in Duck River, Homebush Bay and the Parramatta River. Overall results of the assessment scheme were used to prioritise the management of each sub-catchment/sub-estuary assessed with Blackwattle/Rozelle Bay, Homebush Bay, Iron Cove and Duck River considered to be in need of a high priority management response. A report card format, using letter grades, was employed to convey the results of the assessment in a readily understood manner to estuarine managers and members of the public. Letter grades also provide benchmarking and performance monitoring ability, allowing estuarine managers to set improvement targets and assesses the effectiveness of management strategies. The current assessment scheme provides an effective, integrated and consistent assessment of estuarine health and

  16. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  17. Water quality in the tidal Potomac River and Estuary, hydrologic data report, 1979 water year

    USGS Publications Warehouse

    Blanchard, Stephen F.; Hahl, D.C.

    1981-01-01

    This report contains data on the physical and chemical properties measured during the 1979 water year for the tidal Potomac River and estuary. Data were collected routinely at five major stations and periodically at 14 intervening stations. Each major station represents a cross section through which the transport of selected dissolved and suspended materials will be computed. The intervening stations represent locations at which data were collected for special studies such as: salt water migration, dissolved oxygen dynamics, and other synoptic studies. About 960 samples were analyzed for silicate, Kjeldhal nitrogen, nitrite, phosphorus, chlorophyll and suspended sediment, with additional samples analyzed for organic carbon, calcium, magnesium, sodium, bicarbonate, sulfate, potassium, chloride, fluoride, seston and dissolved solids residue. In addition, about 1400 in-situ measurements of dissolved oxygen, specific conductance, temperature, and Secchi disk transparency are reported. (USGS)

  18. [Effects of macro-jellyfish abundance dynamics on fishery resource structure in the Yangtze River estuary and its adjacent waters].

    PubMed

    Shan, Xiu-Juan; Zhuang, Zhi-Meng; Jin, Xian-Shi; Dai, Fang-Qun

    2011-12-01

    Based on the bottom trawl survey data in May 2007 and May and June 2008, this paper analyzed the effects of the abundance dynamics of macro-jellyfish on the species composition, distribution, and abundance of fishery resource in the Yangtze River estuary and its adjacent waters. From May 2007 to June 2008, the average catch per haul and the top catch per haul of macro-jellyfish increased, up to 222.2 kg x h(-1) and 1800 kg x h(-1) in June 2008, respectively. The macro-jellyfish were mainly distributed in the areas around 50 m isobath, and not beyond 100 m isobath where was the joint front of the coastal waters of East China Sea, Yangtze River runoff, and Taiwan Warm Current. The main distribution area of macro-jellyfish in June migrated northward, as compared with that in May, and the highest catches of macro-jellyfish in May 2007 and May 2008 were found in the same sampling station (122.5 degrees E, 28.5 degrees N). In the sampling stations with higher abundance of macro-jellyfish, the fishery abundance was low, and the fishery species also changed greatly, mainly composed by small-sized species (Trachurus japonicus, Harpadon nehereus, and Acropoma japonicum) and pelagic species (Psenopsis anomala, Octopus variabilis) and Trichiurus japonicus, and P. anomala accounted for 23.7% of the total catch in June 2008. Larimichthys polyactis also occupied higher proportion of the total catch in sampling stations with higher macro-jellyfish abundance, but the demersal species Lophius litulon was not found, and a few crustaceans were collected. This study showed that macro-jellyfish had definite negative effects on the fishery community structure and abundance in the Yangtze River estuary fishery ecosystem, and further, changed the energy flow patterns of the ecosystem through cascading trophic interactions. Therefore, macro-jellyfish was strongly suggested to be an independent ecological group when the corresponding fishery management measures were considered.

  19. Widespread Micropollutant Monitoring in the Hudson River Estuary Reveals Spatiotemporal Micropollutant Clusters and Their Sources.

    PubMed

    Carpenter, Corey M G; Helbling, Damian E

    2018-06-05

    The objective of this study was to identify sources of micropollutants in the Hudson River Estuary (HRE). We collected 127 grab samples at 17 sites along the HRE over 2 years and screened for up to 200 micropollutants. We quantified 168 of the micropollutants in at least one of the samples. Atrazine, gabapentin, metolachlor, and sucralose were measured in every sample. We used data-driven unsupervised methods to cluster the micropollutants on the basis of their spatiotemporal occurrence and normalized-concentration patterns. Three major clusters of micropollutants were identified: ubiquitous and mixed-use (core micropollutants), sourced from sewage treatment plant outfalls (STP micropollutants), and derived from diffuse upstream sources (diffuse micropollutants). Each of these clusters was further refined into subclusters that were linked to specific sources on the basis of relationships identified through geospatial analysis of watershed features. Evaluation of cumulative loadings of each subcluster revealed that the Mohawk River and Rondout Creek are major contributors of most core micropollutants and STP micropollutants and the upper HRE is a major contributor of diffuse micropollutants. These data provide the first comprehensive evaluation of micropollutants in the HRE and define distinct spatiotemporal micropollutant clusters that are linked to sources and conserved across surface water systems around the world.

  20. Sedimentary 4-desmethyl sterols and n-alkanols in an eutrophic urban estuary, Capibaribe River, Brazil.

    PubMed

    Fernandes, M B; Sicre, M A; Cardoso, J N; Macêdo, S J

    1999-06-15

    Sterols, n-alkanols, organic carbon (OC), C/N ratios and carbon isotope data (delta 13C) were investigated in sediments of the urban Capibaribe River estuary, NE Brazil, in order to assess allochthonous and autochthonous sources of organic matter (OM). Sedimentary OC values are high, but C/N ratios and delta 13C data generally fall within the range of values reported in other riverine systems, and suggest mixed inputs from aquatic and terrestrial matter. Mean values for total 4-desmethyl sterols and high molecular weight (HMW) n-alkanols are 11.0 micrograms/g and 2.8 micrograms/g, respectively. Sterols are found at highest levels in areas of enhanced urban outfalls. They can be related to major planktonic species growing in riverine waters. Stanol/stenol ratios suggest a high degree of alteration of the autochthonous OM as a result of elevated temperatures and microbiological proliferation. Even though sterols suggest the importance of autochthonous inputs to the river, HMW n-alkanols indicate major terrigenous accumulation at the mouth and 10 km upriver. Coprostanol and epicoprostanol levels are comparable to other sewage contaminated hydrosystems, but not as high as expected given the importance of sewage outfalls and low riverine water discharge. However, high (coprostanol)/(coprostanol + cholestanol) ratio values indicate that fecal contamination is significant.

  1. Denitrification and phosphorus sequestration in restored Oyster beds in the Indian River Lagoon, Florida, USA

    USDA-ARS?s Scientific Manuscript database

    In 2016, an algae bloom in the St. Lucie River in Florida led the governor to declare a state of emergency. The river is part of a connected system of estuaries along the Atlantic coast of Florida called the Indian River Lagoon (IRL). As with many estuaries around the world, nutrient loading in the ...

  2. Conditions for tidal bore formation in convergent alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    discharge. However, freshwater discharge damps the tidal wave during its propagation and thus reduces ε and consequently limits the tidal bore development in the estuary. To take into account this process in the tidal-bore scaling analysis, it is necessary to introduce a fourth external parameter, the dimensionless river discharge Q0 .

  3. Morphodynamic Evolution of Yangtze (Changjiang) Estuary in Decadal-timescale: Alteration from Natural Processes to Human Interferences

    NASA Astrophysics Data System (ADS)

    Luan, H.; Ding, P.; Ge, J.; Zong, H.; Zheng Bing, W.

    2016-02-01

    Morphodynamic development of river deltas has attracted intensive attention in the past several decades due to ecological and economic significance. Present study quantified the morphological evolution processes of the Yangtze Estuary in decadal-timescale (1958-2010) aiming at understanding the effects of natural processes (river inputs) on the estuary and its morphological responses to human interferences. Inner Estuary (IE) and Mouth Bar Area (MBA) underwent substantially different changes in the study period. The net accretion rate of IE was 36.2 mm/yr in 1958-1978 and -70.9 mm/yr in 1986-1997, indicating that the IE altered from deposition to erosion along with the decline of river sediment input. By contrast, the MBA showed sustained accretion throughout the study period. The results suggested that the IE is more sensitive to the river sediment reduction than the MBA. The river flood may induce erosion in IE which can explain the erosion peak in 1986-1997 since there are continuous flood years in 1990s. The majority of erosion within IE in 1986-1997 occurred in South Branch. The depocenter within MBA transferred between the North Channel and the South Passage. Specifically, the depocenter was in the South Passage during 1958-1978, in the North Channel during 1978-1986, and back to the South Passage during 1986-1997. This is thought to be caused by the change in sediment diversion between the South and North Channel, except 1986-1997. Highest accretion rate (48.9mm/yr) in 1997-2010 is found within the North Passage if excluding the effects of navigation channel dredging. Previous research has quantified the morphological changes along the North Passage and attributed high deposition to the construction of dikes and perpendicular groins. The fluvial-marine transition in terms of prevailing forcing and sediment property is the natural characteristics of river deltas and play an essential role on morphological development of Yangtze Estuary. Present evidence shows

  4. [Distribution characteristics of dissolved oxygen and its affecting factors in the Pearl River Estuary during the summer of the extremely drought hydrological year 2011].

    PubMed

    Ye, Feng; Huang, Xiao-ping; Shi, Zhen; Liu, Qing-xi

    2013-05-01

    More and more attention has focused on assessing impacts of extreme hydrologic events on estuarine ecosystem under the background of climate change. Based on a summer cruise conducted in the Pearl River Estuary in 2011 (extreme drought event), we have investigated the spatial distribution of dissolved oxygen (DO) and its relationships to water column stability, nutrient concentrations, and organic matter; besides, the major reason which caused the oxygen depletion was discussed. Under the influence of the extreme drought event, low bottom water dissolved oxygen was apparent in regions characterized by great depths, with an oxygen minimum value of 1.38 mg x L(-1). Statistical analysis shows significant correlations among deltaDO, deltaT, deltaS and deltaPOC. A comparison was conducted to show the mechanisms of oxygen depletion during the summers of 1999, 2009 and 2011, respectively. The result indicates that prolonged residence time of water due to the extremely low discharge and the subsequently decomposition of organic substance are major factors causing the formation of hypoxia during the summer drought in 2011. Despite the changing nutrient and organic matter regime in the Pearl River Estuary, there was no apparent trend in the minimum values of DO over the past 2 decades.

  5. [Methane fluxes of Cyperus malaccensis tidal wetland in Minjiang River estuary].

    PubMed

    Zeng, Cong-Sheng; Wang, Wei-Qi; Zhang, Lin-Hai; Lin, Lu-Ying; Ai, Jin-Quan; Zhang, Wen-Long

    2010-02-01

    By using enclosed static chamber-gas chromatograph techniques, this paper measured the methane fluxes of Cyperus malaccensis tidal wetland in Minjiang River estuary. The diurnal variation of the methane fluxes in summer and winter were in the range of 1.29-2.93 mg x m(-2) x h(-1) and 0.06-0.22 mg x m(-2) x h(-1), respectively. The methane fluxes before flooding, in the process of flooding and ebbing, and after ebbing were 0.11-1.52 mg x m(-2) x h(-1), 0.10-1.05 mg x m(-2) x h(-1), and 0.05-1.70 mg x m(-2) x h(-1), and the monthly averaged fluxes were 0.73, 0.47, and 0.72 mg x m(-2) x h(-1), respectively. The methane fluxes peaked in September and reached the lowest in March, and were significantly lower in the process of flooding and ebbing than before flooding and after ebbing (P < 0.05). The seasonal variation of the methane fluxes was in the order of summer > autumn > spring > winter. Tide was the key factor affecting the diurnal variation of the methane fluxes, while plant growth stage and temperature were the key factors determining the monthly or seasonal variation of the methane fluxes.

  6. Spatio-temporal distribution and environmental risk of sedimentary heavy metals in the Yangtze River Estuary and its adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Qiu, Jiandong; Zhang, Xilin; Wang, Shuang; Liu, Jinqing

    2017-03-15

    Twenty-five surface sediments and one sediment core sample were collected from the study area. Grain size, major elements, and heavy metals were determined. The content of fine-grained sediments (silt and clay), as well as the concentrations of major elements and heavy metals, showed seaward decreasing trends, with high content in the coastal areas of the East China Sea (ECS) and south west of Jeju Island. Low enrichment factor (EF) and geoaccumulation index (Igeo) values were found, indicating that the ecological risk of heavy metals was low. The EF values obtained from the high-resolution sedimentary records of heavy metals in the Yangtze River Estuary could be divided into Stage 1 (1950s to the late 1970s) and Stage 2 (late 1970s to the current sampling day), which coincided with economic development of the Yangtze River Basin, implementation of environmental protection, and impoundment of the Three Gorges Dam. Copyright © 2016. Published by Elsevier Ltd.

  7. Seasonal and Spatial Distribution of Freshwater Flow and Salinity in the Ten Thousand Islands Estuary, Florida, 2007-2009

    USGS Publications Warehouse

    Soderqvist, Lars E.; Patino, Eduardo

    2010-01-01

    The watershed of the Ten Thousand Islands (TTI) estuary has been substantially altered through the construction of canals and roads for the Southern Golden Gate Estates (SGGE), Barron River Canal, and U.S. 41 (Tamiami Trail). Two restoration projects designed to improve freshwater delivery to the estuary are the Picayune Strand Restoration Project, which includes the Southern Golden Gate Estates, and the Tamiami Trail Culverts Project; both are part of the Comprehensive Everglades Restoration Plan. To address hydrologic information needs critical for monitoring the effects of these restoration projects, the U.S. Geological Survey initiated a study in October 2006 to characterize freshwater outflows from the rivers, internal circulation and mixing within the estuary, and surface-water exchange between the estuary and Gulf of Mexico. The effort is conducted in cooperation with the South Florida Water Management District and complemented by monitoring performed by the Rookery Bay National Estuarine Research Reserve. Surface salinity was measured during moving boat surveys using a flow-through system that operated at planing speeds averaging 20 miles per hour. The data were logged every 10 seconds by a data recorder that simultaneously logged location information from a Global Positioning System. The major rivers, bays, and nearshore Gulf of Mexico region of the TTI area were surveyed in approximately 5 hours by two boats traversing about 200 total miles. Salinity and coordinate data were processed using inverse distance weighted interpolation to create salinity contour maps of the entire TTI region. Ten maps were created from salinity surveys performed between May 2007 and May 2009 and illustrate the dry season, transitional, and wet season salinity patterns of the estuarine rivers, inner bays, mangrove islands, and Gulf of Mexico boundary. The effects of anthropogenic activities are indicated by exceptionally low salinities associated with point discharge into the

  8. Long-Term Effects of Changing Land Use Practices on Surface Water Quality in a Coastal River and Lagoonal Estuary

    NASA Astrophysics Data System (ADS)

    Rothenberger, Meghan B.; Burkholder, Joann M.; Brownie, Cavell

    2009-09-01

    The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992-2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.

  9. Pollution status of polycyclic aromatic hydrocarbons in surface sediments from the Yangtze River Estuary and its adjacent coastal zone.

    PubMed

    Wang, Chenglong; Zou, Xinqing; Gao, Jianhua; Zhao, Yifei; Yu, Wenwen; Li, Yali; Song, Qiaochu

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are mainly produced by incomplete combustion and are used as indicators of anthropogenic activities on the environment. This study analyses the PAHs level in the Yangtze River Estuary (YRE), an important component of Yangtze River and a developed and populated region in China. Surface sediments were collected from 77 sites at the YRE and its adjacent coastal zone (IACZ) for a comprehensive study of PAHs. Kriging interpolation technology and Positive matrix factorization (PMF) model were applied to explore the spatial distribution and sources of PAHs. Concentrations of 16 PAHs (ΣPAHs) varied from 27.2 ng g(-1) to 621.6 ng g(-1) dry weight, with an average value of 158.2 ng g(-1). Spatially, ΣPAHs exhibited wide fluctuation and exhibited an increasing tendency from north to south. In addition, ΣPAHs exhibited a decreasing trend with increasing distance between the estuary and IACZ. The deposition flux of PAHs indicated that more than 107.8 t a(-1) PAHs was deposited in the study area annually. The results of the PMF model revealed that anthropogenic activities were the main sources of PAHs in the study area. Vehicle emissions and marine engines were the most important sources and accounted for 40.9% of the pollution. Coal combustion, petrogenic sources, and wood combustion were other sources that contributed 23.9%, 23.6%, and 11.5%, respectively. The distribution patterns of PAHs in the YRE and IACZ were influenced by many complicated factors such as sediment grain size, hydrodynamics and so on. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Infilling of the Hudson River Estuary During the Late Holocene (3000ka to Present): Implications for Estuarine Stratigraphic Models

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Pekar, S. F.; Ryan, W. B.; Carbotte, S.; Bell, R.; Burckle, L.

    2002-12-01

    Estuaries are widely preserved in the geologic record and the estuarine fill, contained between non-marine sediment, provides an excellent temporal marker for continental margin studies. Estuarine stratigraphic models have provided a framework within which to interpret the estuarine fill. However, estuarine systems differ greatly in the shape of their valleys, the tectonic boundaries they cross, and in sediment supply so that their position in the geologic record may be out of sequence with that predicted by the models. New insights into estuarine systems and models are provided by the Hudson River Estuary (HRE; New York State) based on >150 cores and grab sediment samples and acoustic images documenting in great detail how the HRE filled its earlier excavated valley during the latest Holocene (3ka to present). Radiocarbon and 137-Cs radioisotope ages, borehole, and core data document the sedimentation patterns of the estuary. Diatom assemblages provide estimates of the shallowing-upwards of the estuary as its basin filled with sediments. The three areas of the stratigraphic model present in the HRE, include zones formed within inner fluvial and outer marine areas, (containing coarse-grained, sands and gravels), and a central area (containing fine-grained, silts and clays), that are nearly filled with little room for sediments to accumulate at or near sea-level. This has resulted in sedimentary bypass for almost the entire length the estuary. South of Kingston, fine-grained sediments have ceased accumulating when the bottom approaches wave base. Upstream from Kingston, final filling occurs as sediments fill in the remaining accommodation, forming islands. This should result in the export of sediment to the coastal zone. Instead, localized areas of sediment trapping still exist, which are related to the Hudson Valley Highlands and to the location of the estuarine turbidity maximum that hold large volumes of sediment. As a result minor volumes of Recent sediment are

  11. Fate of terrestrial organic carbon and associated CO2 and CO emissions from two Southeast Asian estuaries

    NASA Astrophysics Data System (ADS)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Mujahid, A.; Bange, H. W.; Notholt, J.

    2016-02-01

    Southeast Asian rivers convey large amounts of organic carbon, but little is known about the fate of this terrestrial material in estuaries. Although Southeast Asia is, by area, considered a hotspot of estuarine carbon dioxide (CO2) emissions, studies in this region are very scarce. We measured dissolved and particulate organic carbon, as well as CO2 partial pressures and carbon monoxide (CO) concentrations in two tropical estuaries in Sarawak, Malaysia, whose coastal area is covered by carbon-rich peatlands. We surveyed the estuaries of the rivers Lupar and Saribas during the wet and dry season, respectively. Carbon-to-nitrogen ratios suggest that dissolved organic matter (DOM) is largely of terrestrial origin. We found evidence that a large fraction of this carbon is respired. The median pCO2 in the estuaries ranged between 640 and 5065 µatm with little seasonal variation. CO2 fluxes were determined with a floating chamber and estimated to amount to 14-268 mol m-2 yr-1, which is high compared to other studies from tropical and subtropical sites. Estimates derived from a merely wind-driven turbulent diffusivity model were considerably lower, indicating that these models might be inappropriate in estuaries, where tidal currents and river discharge make an important contribution to the turbulence driving water-air gas exchange. Although an observed diurnal variability of CO concentrations suggested that CO was photochemically produced, the overall concentrations and fluxes were relatively moderate (0.4-1.3 nmol L-1 and 0.7-1.8 mmol m-2 yr-1) if compared to published data for oceanic or upwelling systems. We attributed this to the large amounts of suspended matter (4-5004 mg L-1), limiting the light penetration depth and thereby inhibiting CO photoproduction. We concluded that estuaries in this region function as an efficient filter for terrestrial organic carbon and release large amounts of CO2 to the atmosphere. The Lupar and Saribas rivers deliver 0.3 ± 0.2 Tg C

  12. Uranium behaviour in an estuary polluted by mining and industrial effluents: the Ría of Huelva (SW of Spain).

    PubMed

    Hierro, A; Martín, J E; Olías, M; Vaca, F; Bolivar, J P

    2013-10-15

    This paper describes a comprehensive study of the behaviour of U in the Ría of Huelva estuary, formed by the Tinto and Odiel rivers. This ecosystem is conditioned by two hydrochemical facts: one connected with the acid mining drainage (AMD) generated in the first section of the river basins, and another one related to the fertilizer industry located at the estuary. AMD gives a singular character to these rivers; low pH and high redox potential that keep high amounts of toxic elements and radionuclides in dissolution. Most of the data for dissolved U in estuaries indicate conservative mixing, but there are examples of non-conservative behaviour attributed to oxidation/reduction processes or solubility variations. In the Ría of Huelva estuary the U shows a non-conservative behaviour due to solubility changes produced by variations in the pH. A complete removal of riverine dissolved U is observed in a pH range of 4-6. At higher pH values, U release from suspended matter, and probably also from sediments into the dissolved phase is found. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evaluation of long-term trends in hydrographic and nutrient parameters in a southeast US coastal river.

    PubMed

    Williams, Asher A; Kimball, Matthew E

    2013-12-01

    The Nassau River estuary is located in northeast Florida adjacent to the eutrophic St. Johns River. Historically, development has been sparse in the Nassau River's catchment; thus, the system may provide a relatively undisturbed aquatic environment. To monitor the condition of the Nassau River estuary and to discern spatial and temporal trends in water quality, nutrients and hydrographic variables were assessed throughout the estuary from 1997 to 2011. Hydrographic (temperature, salinity, total suspended solids, and turbidity) and nutrient parameters (total phosphorus, ortho-PO₄(3-), total nitrogen, NH₄(+), total Kjeldahl nitrogen, and NO₃(-)) were monitored bimonthly at 12 sites in the mesohaline and polyhaline zones of the river. Nonparametric Kendall's Tau was implemented to analyze long-term water quality patterns. Salinity was found to increase with time, particularly in the mesohaline sampling sites. Dissolved oxygen decreased over time in the estuary and hypoxic conditions became increasingly frequent in the final years of the study. Nutrients increased in the estuary, ranging from 149 to 401%. Rainfall data collected in adjacent conservation areas did not correlate well with nutrients as compared with stream discharge data collected in the basin headwaters, outside of the conservation lands, attributed here to expanding urbanization. During the study period, the Nassau basin underwent rapid human population growth and land development resulting in commensurate impacts to water quality. Nutrient and physical data collected during this study indicate that the Nassau River estuary is becoming more eutrophic with time.

  14. Sedimentation and erosion trends over 50 years in the macrotidal Gironde estuary

    NASA Astrophysics Data System (ADS)

    Sottolichio, Aldo; Hanquiez, Vincent; Arriagada, Joselyn; Jalon-Rojas, Isabel

    2017-04-01

    Recent studies have emphasized on the drastic morphodynamic evolution of many european urbanized estuaries, which have become more turbid during the XXth century because of human-induced deepening and narrowing. For some systems, the availability of data has allowed detailed analysis of evolution, while for some other estuaries, knowledge remains limited. For the latter, it is difficult to elucidate any effect due to climate change, extreme events or human activities. Among them, the Gironde estuary is a macrotidal funnel-shape system, the largest estuary of Western Europe, and characterized by high levels of turbidity. Despite numerous investigations on sedimentary processes carried out in this estuary in the past, there is poor knowledge on the evolution of its morphology and tides over the XXth century. Recently, an investigation on tidal patterns has started in the Garonne tidal river, where it is known that gravel extraction during the sixties has deeply modified the mean depth of the channel. In the meantime, there is evidence of a long-term shift of the turbidity maximum in this area, mainly due to a reduction of river flow in the last 40 years. However, for the main estuarine portion, which represents 80% of the total surface, morphology evolution and associated physical processes remain under-investigated. In this study the morphological evolution of the Gironde estuary has been documented and investigated for the first time, based on some bathymetric and tidal data collected from the archives of the port of Bordeaux. Six bathymetric maps covering a period of 50 years, from the 1953 to year 2000 were compared, highlighting areas of accretion and erosion. Results show that the zone of maximum volume of deposited sediment has migrated continuously towards the upstream portion of the estuary, which is coherent with the intensification of the low river flow periods and the upstream shift of the turbidity maximum zone to the riverine sections. In the meantime

  15. Characterization of dissolved organic matter in an urbanized estuary located in Northeastern Brazil.

    PubMed

    Arguelho, Maria de Lara Palmeira de Macedo; Alves, José do Patrocínio Hora; Monteiro, Adnívia Santos Costa; Garcia, Carlos Alexandre Borges

    2017-06-01

    The Sal River estuary, which is located in the state of Sergipe, Northeastern Brazil, stands out as an urban estuary, anthropogenically impacted by untreated and treated wastewater discharge. Synchronous fluorescence spectroscopy and measurement of dissolved organic carbon (DOC) were used for characterization of dissolved organic matter (DOM) in the estuarine water. Dissolved organic carbon concentrations ranged from 7.5 to 19.0 mg L -1 and, in general, the highest values were recorded during dry season. For both seasons (dry and rainy), DOC presented an inverse linear relationship with salinity, which indicates a conservative dilution of organic matter coming into the estuary. During rainy season, anthropogenic organic constituents and humic substances from land-based sources predominated in DOM composition, carried by river flow. Whereas during the dry season, it has been observed a significant increase of products generated by microbial degradation of anthropogenic organic matter. The relationships between fluorescence intensity and salinity suggest a conservative behavior during rainy season and a non-conservative behavior during dry season, with addition of fluorescent organic matter into the intermediate zone of the estuary. Photodegradation by action of sunlight caused a decrease in fluorescence intensity of humic and tryptophan-like constituents and the release of photoproducts, resulting in an increase in fluorescence intensity of protein-like constituents.

  16. Parasitological survey of mangrove oyster, Crassostrea rhizophorae, in the Pacoti River Estuary, Ceará State, Brazil.

    PubMed

    Sabry, Rachel Costa; Gesteira, Tereza Cristina Vasconcelos; Magalhães, Aimê Rachel Magenta; Barracco, Margherita Anna; Guertler, Cristhiane; Ferreira, Liana Pinho; Vianna, Rogério Tubino; da Silva, Patrícia Mirella

    2013-01-01

    The mangrove oyster, Crassostrea rhizophorae (Bivalvia, Ostreidae) is commonly collected by fisherwomen in the estuaries of the Ceará State (CE), Northeastern Brazil. Despite the socioeconomic importance of this natural resource, there are few studies on the health of the oysters in this region. This study aimed to survey pathological changes in the mangrove oyster C. rhizophorae in the estuary of the Pacoti River, CE. Adult oysters were collected in August 2008 (N=450) and December 2009 (N=450) at three sites of the Pacoti estuary and in 2010 (N=600) samplings were done quarterly at one site which has showed the higher prevalence de Perkinsus. Macroscopical and histological analyses were used to evaluate pathological changes, Ray's Fluid Thioglycollate Medium (RFTM) to detect Perkinsus spp. and polymerase chain reactions (PCR) and DNA sequencing to identify Perkinsus species. In 2009, RFTM assay detected Perkinsus sp. infecting the tissues of C. rhizophorae with low prevalences of 1.3%, 6.7% e 7.3% in sites 1, 2 and 3, respectively, and in 2010, in site 3, prevalence was 2% (12 of 600 oysters). PCR did not confirm any positive case in 2009 and only 5 in 2010. The phylogenetic analyses strongly indicate that the Perkinsus species infecting oysters C. rhizophorae of this study belongs to Perkinsus beihaiensis. The histology confirmed 11 cases of Perkinsus sp. infecting the C. rhizophorae in 2009, and only two cases in 2010. Nematopsis sp. was the protozoan observed with greater prevalence (up 96.7%). Other found protozoa were: Trichodina, Sphenophrya, Ancistrocoma - like and an unknown ovarian parasite. The metazoa found were the polychaete Polydora with high prevalences, a turbellarian, possibly of the genus Urastoma, an unidentified digenean metacercariae and larvae of cestode Tylocephalum. A continuous monitoring of diseases in bivalves from this natural population is recommended, since the phylogenetic analyses indicate the occurrence of P. beihaiensis

  17. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient

    PubMed Central

    Fortunato, Caroline S.; Crump, Byron C.

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  18. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    PubMed

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  19. Time series measurements of carbon fluxes from a mangrove-dominated estuary

    NASA Astrophysics Data System (ADS)

    Volta, C.; Ho, D. T.; Friederich, G.; Del Castillo, C. E.; Engel, V. C.; Bhat, M.

    2017-12-01

    Mangrove ecosystems are among the most important and productive coastal ecosystems globally, and due to their high productivity and rapid carbon cycling, these ecosystems are important modulators of carbon fluxes from the land to the ocean and between the water and the atmosphere. Therefore, they may play a crucial role in the global carbon cycle and climate. Nonetheless, to date, estimates of carbon fluxes in mangrove-dominated estuaries are associated with large uncertainties, because studies have typically focused on limited spatial and temporal scales. For the first time, continuous time series measurements of temperature, salinity, CDOM, pH and pCO2 covering both the dry and the wet seasons were made in Shark River, a tidal estuary in the largest contiguous mangrove forest in North America. The measurements were made at two permanent stations along the estuarine domain, and allowed estimates of net dissolved carbon export from the Shark River to the Gulf of Mexico, as well as the CO2 emissions to the atmosphere to be made at seasonal and annual timescales. Results reveal that, compared to the dry season, the wet season was characterized by higher dissolved carbon export and CO2 emissions, due to meteorological, hydrological, and biogeochemical processes. Additionally, an analysis of relationships between hydrodynamic control factors (i.e. water discharge and water level) in the upstream freshwater marsh and carbon fluxes in the Shark River highlighted the importance of developing good water management strategies in the future. Finally, the study estimated the social cost of carbon fluxes in the Shark River estuary as a contribution to carbon accounting in mangrove ecosystems.

  20. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities.

    PubMed

    Lu, Zihao; Na, Guangshui; Gao, Hui; Wang, Lijun; Bao, Chenguang; Yao, Ziwei

    2015-09-15

    With the exacerbating problem of antibiotic resistance, antibiotic resistance genes (ARGs) as emerging contaminants are found at elevated levels in inland aquatic environments, especially in regions of intensive agricultural and urban activity. However, little quantitative data exist on the migration and attenuation of ARGs in estuary ecosystem, which is central to predicting their fate after release into marine environment. Moreover, the relevance of multiple chemical contaminants and water quality constituents should be understood to amplify and attenuate antibiotic resistance levels. To determine the prevalence and examine the fate of sulfonamide ARGs (sul-ARGs) in two estuaries under different effects of anthropogenic activities, we analyzed the sul-ARGs (sul1, sul2, and sul3), class 1 integrons (int1), and bacterial biomass in surface water samples from Daliaohe and Liaohe river estuaries. We also evaluated five types of antibiotics, heavy metals, and various bulk water quality constituents. Results showed that sul-ARGs were widespread in Daliaohe and Liaohe river estuaries, but the distribution did not correlate with the concentration of sulfonamides. Significant reduction in the abundance of sul-ARGs was also observed with increased salinity. Nevertheless, the trend in the change of concentrations of sul-ARGs was different in the two estuaries. Statistical analysis of the results indicated that several metals were significantly and positively correlated with sul-ARGs. Pearson's correlation coefficients were higher than those determined between antibiotic residues and sul-ARGs. Furthermore, the relative abundance of sul-ARGs was significantly and positively correlated with the relative abundance of int1 which suggested that the propagation of sul-ARGs was facilitated by class 1 integrons in estuaries. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Bar dynamics and channel junctions in scale-experiments of estuaries

    NASA Astrophysics Data System (ADS)

    Leuven, J.; Braat, L.; van Dijk, W. M.; Haas, T. D.; Kleinhans, M. G.

    2017-12-01

    The evolution of channels and bars in estuaries has high socio-economic relevance, with strong implications for navigation, dredging and ecology. However, the spatial and temporal evolution of channels and bars in estuaries is poorly understood. Here, we study feedbacks of bar morphodynamics on widening and narrowing of estuaries. Therefore, we conducted an experiment in a 20 m long and 3 m wide tilting flume (the 'Metronome'), in which we monitored the evolution of a self-formed estuary that developed from an intial straight channel into an irregular planform with multiple channels, braided bars and a meandering ebb channel. At locations where the estuary width is confined, major channel junctions occur, while the zones between the junctions are characterised by high braiding indices, periodically migrating channels and a relatively large estuary width. The junction locations were forced by the in- and outflow locations on the sides of the ebb-tidal delta and at the location where the channel pattern transitions from multiple channels into a single channel. In the middle of the estuary, self-confinement occurred by sedimentation on the sides of the estuary, which caused another major junction. The channel orientation at the junctions steers the morphodynamics of channels and bars immediately landward and seaward, because the orientation of inflow from the ebb-tidal delta and landward river perpetually varies. In natural systems major junction locations are mostly forced by inherited geology or human engineering. However, this study concludes that even without external forcing, the estuary planform will not converge to an ideal shape but will self-confine at major junctions and widens in the adjacent zones, resulting in an irregular planform shape.

  2. Influencing factors on particle-bound contaminant transport in the Elbe estuary

    NASA Astrophysics Data System (ADS)

    Kleisinger, Carmen; Haase, Holger; Schubert, Birgit

    2016-04-01

    Particulate matter, i.e. suspended particulate matter and sediments in rivers and estuaries, often are contaminated with trace metals and selected organic contaminants and are mainly associated with fine-grained fractions. Transport processes and fate of particles in estuaries are influenced by several factors, e.g. freshwater discharge, tide, flow velocity and dredging activities (Kappenberg et al., 2007). Understanding the transport processes in estuaries may help to achieve the objectives of the Water Framework Directive and the Marine Strategy Framework Directive. The German Federal Institute of Hydrology (BfG) operates for more than 20 years five monitoring sites in the Elbe estuary in order to monitor the development of particle-bound contaminant concentrations over time and to understand their transport mechanisms. Results of the monitoring revealed freshwater discharge as an important influencing factor on the transport of contaminated particulate matter (Ackermann et al., 2007). The bidirectional transport of marine and fluvial water and particulate matter in estuaries results in a turbidity zone where large amounts of particulate matter are temporarily retained and thus in a delayed transport of particulate matter towards the sea. The extent and the location of the turbidity zone as well as the ratio of highly contaminated fluvial and less contaminated marine sediments at a given location are mainly influenced by the freshwater discharge (Kowalewska et al., 2011). Furthermore, at high freshwater discharge conditions the highly contaminated particulate matter from fluvial origin are transported downstream the estuary, whereas at low freshwater discharges, upstream transport of less contaminated marine sediments prevails. Hence, residence times of particulate matter in the estuary are difficult to estimate. Furthermore, sedimentation areas with flow reduced conditions, e.g. wadden areas or branches of the Elbe estuary, may act as sinks for particle bound

  3. Processes controlling the seasonal and spatial variations in sulfate profiles in the pore water of the sediments surrounding Qi'ao Island, Pearl River Estuary, Southern China

    NASA Astrophysics Data System (ADS)

    Wu, Zijun; Zhou, Huaiyang; Ren, Dezhang; Gao, Hang; Li, Jiangtao

    2015-04-01

    Marine sediments are the main sink for seawater sulfate and bacterial sulfate reduction is a major component of the global sulfur cycle. Nevertheless, the factors controlling sulfate reduction in the coastal estuary sediments that undergo spatial and temporal variations are still not fully understood. In this study, we measured the concentrations of SO42-, Cl-, CH4, and DIC, and the δ13C of DIC in the pore water of five sampling stations surrounding the Qi'ao Island, Pearl River Estuary, Southern China during the dry season in November 2011 and during the wet season in May 2012. The results showed that the dilution-mixing of the Pearl River with low-concentration sulfate significantly affects the downcore profiles of the sulfate concentrations in the pore water of these estuary sediments. During the wet season, the dilution-mixing of the layers from the top of the sediments to a depth of 14-18 cm occurred at the different sampling stations. In this layer, the sulfate reduction is not appreciable based on the plot of the pore water Cl- and SO42-. Below the dilution-mixing layers, however, sulfate reduction that is driven by the anaerobic oxidation of methane (AOM) occurs. In our comparison, it appeared that the AOM played more important role in the consumption of the pore water sulfate in May 2012 than in November 2011. Meanwhile, we observed a relatively good correlation (r2=0.64) between the depth of the sulfate-methane interface (SMI) and the sulfate concentration in the pore water of the top sediments in dry season, indicating that the pore water sulfate concentration appears to be a primary controlling factor for the depth of the SMI in this estuary. These results highlight the need for an integrated analysis of the hydrologically driven the variations in the sulfate profiles to improve our understanding of the biogeochemical cycling of C, Fe and S and their budgets in estuarine environments.

  4. Selected Pharmaceuticals Entering an Estuary: Concentrations, Temporal Trends, Partitioning and Fluxes

    EPA Science Inventory

    In many coastal watersheds and ecosystems, rivers discharging to estuaries receive waters from domestic wastewater-treatment plants resulting in the release and distribution of pharmaceuticals to the marine environment. In the present study, 15 active pharmaceutical ingredients w...

  5. Allochthonous Organic Matter Subsidize the High Secondary Production of the Invasive Bivalve Corbicula fluminea in Minho Estuary (N-Portugal)

    EPA Science Inventory

    The Asian clam Corbicula fluminea is one of the most invasive species in freshwater ecosystems. In Minho estuary, this species colonize all the middle and upper part of the estuary, dominating the abundance, biomass and secondary production in River Minho tidal freshwater area (T...

  6. Defining winter trophic habitat of juvenile Gulf Sturgeon in the Suwannee and Apalachicola rivermouth estuaries, acoustic telemetry investigations

    USGS Publications Warehouse

    Sulak, K.J.; Randall, M.T.; Edwards, R.E.; Summers, T.M.; Luke, K.E.; Smith, W.T.; Norem, A.D.; Harden, William M.; Lukens, R.H.; Parauka, F.; Bolden, S.; Lehnert, R.

    2009-01-01

    Three automated listening post-telemetry studies were undertaken in the Suwannee and Apalachicola estuaries to gain knowledge of habitats use by juvenile Gulf Sturgeons (Acipenser oxyrinchus desotoi) on winter feeding grounds. A simple and reliable method for external attachment of small acoustic tags to the dorsal fin base was developed using shrink-tubing. Suspending receivers on masts below anchored buoys improved reception and facilitated downloading; a detection range of 500–2500 m was realized. In the Apalachicola estuary, juvenile GS stayed in shallow water (< 2 m) within the estuarine transition zone all winter in the vicinity of the Apalachicola River mouth. Juvenile GS high-use areas did not coincide with high density benthic macrofauna areas from the most recent (1999) benthos survey. In the Suwannee estuary, juveniles ranged widely and individually throughout oligohaline to mesohaline subareas of the estuary, preferentially using mesohaline subareas seaward of Suwannee Reef (52% of acoustic detections). The river mouth subarea was important only in early and late winter, during the times of adult Gulf Sturgeon migrations (41% of detections). Preferred winter feeding subareas coincided spatially with known areas of dense macrofaunal benthos concentrations. Following a dramatic drop in air and water temperatures, juvenile GS left the river mouth and estuary, subsequently being detected 8 km offshore in polyhaline open Gulf of Mexico waters, before returning to the estuary. Cold-event offshore excursions demonstrate that they can tolerate full-salinity polyhaline waters in the open Gulf of Mexico, for at least several days at a time. For juvenile sturgeons, the stress and metabolic cost of enduring high salinity (Jarvis et al., 2001; McKenzie et al., 2001; Singer and Ballantyne, 2002) for short periods in deep offshore waters seems adaptively advantageous relative to the risk of cold-event mortality in shallow inshore waters of lower salinity. Thus

  7. Environmental drivers of dissolved organic matter molecular composition in the Delaware Estuary

    NASA Astrophysics Data System (ADS)

    Osterholz, Helena; Kirchman, David L.; Niggemann, Jutta; Dittmar, Thorsten

    2016-11-01

    Estuaries as connectors of freshwater and marine aquatic systems are hotspots of biogeochemical element cycling. In one of the best studied temperate estuaries, the Delaware Estuary (USA), we investigated the variability of dissolved organic matter (DOM) over five sampling cruises along the salinity gradient in August and November of 3 consecutive years. Dissolved organic carbon (DOC) concentrations were more variable in the upper reaches of the estuary (245±49 µmol L-1) than at the mouth of the estuary (129±14 µmol L-1). Bulk DOC decreased conservatively along the transect in November but was non-conservative with increased DOC concentrations mid-estuary in August. Detailed analysis of the solid-phase extractable DOM pool via ultrahigh resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) revealed compositional differences at the molecular level that were not reflected in changes in concentration. Besides the mixing of terrestrial and marine endmember signatures, river discharge levels and biological activity were found to impact DOM molecular composition. DOM composition changed less between August and November than along the salinity gradient. Relative contributions of presumed photolabile DOM compounds did not reveal non-conservative behavior indicative of photochemical processing; suggesting that on the timescales of estuarine mixing photochemical removal of molecules plays a minor role in the turbid Delaware Bay. Overall, a large portion of molecular formulae overlapped between sampling campaigns and persisted during estuarine passage. Extending the analysis to the structural level via the fragmentation of molecular masses in the FT-ICR-MS cell, we found that the relative abundance of isomers along the salinity gradient did not change, indicating a high structural similarity of aquatic DOM independent of the origin. These results point towards a recalcitrant character of the DOM supplied by the Delaware

  8. The divergent environmental characteristics of permanently-open, seasonally-open and normally-closed estuaries of south-western Australia

    NASA Astrophysics Data System (ADS)

    Chuwen, Benjamin M.; Hoeksema, Steeg D.; Potter, Ian C.

    2009-10-01

    This study has compared the environmental characteristics of the basins and saline lower reaches of the tributaries of eight estuaries on the south coast of Western Australia, which differ in their degree of connectivity with the ocean. Although four estuaries between 115.1° and 121.8° E along that coast remain permanently open to the ocean, the others only become open when the volume of river discharge is sufficient to breach the prominent sand bars at their mouths, which occurs annually following heavy winter and early spring rainfall in some estuaries (seasonally open) and infrequently in others (normally closed). Estuaries to the west of 118.5° E are predominantly permanently open, e.g. Oyster Harbour, or seasonally open, e.g. Broke, Irwin and Wilson inlets, whereas those further east, e.g. Wellstead Estuary and Hamersley, Culham and Stokes inlets, where annual rainfall and thus discharge are much lower, only become open after exceptionally heavy discharge. In permanently and seasonally-open estuaries, pronounced haloclines and oxyclines are present in the narrow rivers but not the wide basins where the waters are subjected to wind-driven mixing. The extent of cyclical seasonal fluctuations in environmental conditions differed markedly among the three seasonally-open estuaries and between years in one of those systems. These differences reflected variations in the relationship between the volume of fluvial discharge, which is determined by a combination of the amount of local rainfall, catchment size and extent of clearing of native vegetation, and the amount of intrusion by marine waters, which is largely controlled by the size and duration of the opening of the estuary mouth. The mean seasonal salinities in the basins of the three normally-closed estuaries increased over three years of very low rainfall to 64 in the deepest of these estuaries (Stokes Inlet) to 145 in Hamersley Inlet and to 296 in the shallowest estuary (Culham Inlet). These results

  9. Evaluating the NOAA Coastal and Marine Ecological Classification Standard in estuarine systems: A Columbia River Estuary case study

    NASA Astrophysics Data System (ADS)

    Keefer, Matthew L.; Peery, Christopher A.; Wright, Nancy; Daigle, William R.; Caudill, Christopher C.; Clabough, Tami S.; Griffith, David W.; Zacharias, Mark A.

    2008-06-01

    A common first step in conservation planning and resource management is to identify and classify habitat types, and this has led to a proliferation of habitat classification systems. Ideally, classifications should be scientifically and conceptually rigorous, with broad applicability across spatial and temporal scales. Successful systems will also be flexible and adaptable, with a framework and supporting lexicon accessible to users from a variety of disciplines and locations. A new, continental-scale classification system for coastal and marine habitats—the Coastal and Marine Ecological Classification Standard (CMECS)—is currently being developed for North America by NatureServe and the National Oceanic and Atmospheric Administration (NOAA). CMECS is a nested, hierarchical framework that applies a uniform set of rules and terminology across multiple habitat scales using a combination of oceanographic (e.g. salinity, temperature), physiographic (e.g. depth, substratum), and biological (e.g. community type) criteria. Estuaries are arguably the most difficult marine environments to classify due to large spatio-temporal variability resulting in rapidly shifting benthic and water column conditions. We simultaneously collected data at eleven subtidal sites in the Columbia River Estuary (CRE) in fall 2004 to evaluate whether the estuarine component of CMECS could adequately classify habitats across several scales for representative sites within the estuary spanning a range of conditions. Using outputs from an acoustic Doppler current profiler (ADCP), CTD (conductivity, temperature, depth) sensor, and PONAR (benthic dredge) we concluded that the CMECS hierarchy provided a spatially explicit framework in which to integrate multiple parameters to define macro-habitats at the 100 m 2 to >1000 m 2 scales, or across several tiers of the CMECS system. The classification's strengths lie in its nested, hierarchical structure and in the development of a standardized, yet

  10. Nutrient stoichiometry and freshwater flow in shaping of phytoplankton population in a tropical monsoonal estuary (Kundalika Estuary)

    NASA Astrophysics Data System (ADS)

    Chowdhury, Mintu; Hardikar, Revati; Chanjaplackal Kesavan, Haridevi; Thomas, Jubin; Mitra, Aditi; Rokade, M. A.; Naidu, V. S.; Sukumaran, Soniya

    2017-11-01

    The present study aimed to understand the role of freshwater flow and physico-chemical parameters in influencing the phytoplankton community shift and thereby helping in balancing the ecosystem. The Kundalika estuary (KE) is a semi-diurnal tropical monsoonal estuary. Strong upstream currents during monsoon as assessed through a 2D numerical model influenced the succession of marine, estuarine and freshwater phytoplankton species depending on the extent of freshwater influx and its distribution in the estuary. Nitrogen and phosphorus played a pivotal role in regulating the phytoplankton growth and their proliferation. Distribution of different phytoplankton species in accordance to salinity and nutrient content was clearly observed. Among the four major classes (Diatoms, Dinoflagellates, Chlorophytes and Phytoflagellates) occurring in the KE, diatoms occupied a wide salinity range. Large-scale shifts in phytoplankton biomass and composition were associated with river run-off during monsoon. Phytoflagellates and Chlorophytes restricted their abundance to relatively high nitrogen level zones. Canonical Correspondence Analysis (CCA) between environmental variables and dominant taxa of phytoplankton indicated the influence of salinity on phytoplankton distribution in the estuarine precinct. Thus the freshwater influx in the KE played a major role on phytoplankton species diversity and its bloom potential.

  11. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea)

    NASA Astrophysics Data System (ADS)

    Choy, Eun Jung; An, Soonmo; Kang, Chang-Keun

    2008-06-01

    The benthic macroinvertebrates of the Nakdong River estuary were sampled at three different habitats: two salt marsh ( Scirpus triqueter and Phragmites australis) beds and a bare intertidal flat. Fishes were sampled in the main channel. The trophic importance of marsh vascular plants, microphytobenthos, and riverine and channel particulate organic matter to macroinvertebrate and fish production was studied using stable carbon and nitrogen isotope tracers. There was a dramatic change in coverage of macrophytes (salt marshes and seagrass) after the construction of an estuarine barrage in 1987 in the Nakdong River estuary, with the S. triqueter bed increasing, the P. australis bed decreasing, and Zostera marina habitats being nearly lost. Although the invertebrate δ 13C were within a narrower range than those of the primary producers, the values varied considerably among consumers in these habitats. However, the isotope signatures of consumers showed similarities among different habitats. Cluster analysis based on their isotopic similarity suggested that the isotope variability among species was related more to functional feeding groups than to habitats or taxonomic groups. While δ 13C values of suspension feeders were close to that of the channel POM (mainly phytoplankton), other benthic feeders and predators had δ 13C similar to that of microphytobenthos. Isotopic mixing model estimates suggest that algal sources, including microphytobenthos and phytoplankton, play an important role in supporting the benthic food web. Despite the huge productivity of emergent salt marshes, the contribution of the marsh-derived organic matter to the estuarine food webs appears to be limited to some nutrition for some invertebrates just within marsh habitats, with little on the bare intertidal flats or in the channel fish communities. Isotope signatures of the channel fishes also confirm that algal sources are important in supporting fish nutrition. Our findings suggest that

  12. Photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary: kinetics and effects of temperature, pH, and salinity.

    PubMed

    Song, Guisheng; Li, Yijie; Hu, Suzheng; Li, Guiju; Zhao, Ruihua; Sun, Xin; Xie, Huixiang

    2017-06-21

    The kinetics and temperature-, pH- and salinity-dependences of photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary (YRE) were evaluated using laboratory solar-simulated irradiation and compared to those of Suwannee River humic substances (SRHSs). Nearly all CDOM in water at the head of the estuary (headwater herein) was photobleachable in both summer and winter, while significant fractions of CDOM (13-29%) were resistant to photobleaching in saltier waters. The photobleaching rate constant in the headwater was 25% higher in summer than that in winter. The absorbed photon-based photobleaching efficiency (PE) increased with temperature following the linear Arrhenius equation. For a 20 °C increase in temperature, PE increased by ∼45% in the headwater and by 70-81% in the saltier waters. PE for YRE samples exhibited minima at pH from 6 to 7 and increased with both lower and higher pH values, contrasting the consistent increase in PE with pH shown by SRHSs. No consistent effect of salinity on PE was observed for both SRHSs and YRE samples. Photobleaching increased the spectral slope coefficient between 275 nm and 295 nm in summer, consistent with the behavior of SRHSs, but decreased it in winter, implying a difference in the molecular composition of chromophores between the two seasons. Temperature, salinity, and pH modified the photoalteration of the spectral shape but their effects varied spatially and seasonally. This study demonstrates that CDOM quality, temperature, and pH should be incorporated into models involving quantification of photobleaching.

  13. Environmental flow assessments in estuaries related to preference of phytoplankton

    NASA Astrophysics Data System (ADS)

    Yang, Z. F.; Sun, T.; Zhao, R.

    2014-01-01

    We developed an approach to assess environmental flows in estuaries related to preference of phytoplankton considering the complex relationship between hydrological modification and biomass in ecosystems. As a first step, a relationship was established between biomass requirements for organisms of primary and higher nutritional levels based on the principle of nutritional energy flow of ecosystem. Then, diagnostic pigments were employed to represent phytoplankton community biomass, which indicated competition between two groups of phytoplankton in the biochemistry process. Considering empirical relationships between diagnostic pigments and critical environmental factors, responses of biomass to river discharges were established based on a convection-diffusion model by simulating distributions of critical environmental factors under action of river discharges and tide currents. Consequently, environmental flows could be recommended for different requirements of fish biomass. In the case study in the Yellow River estuary, May and October were identified as critical months for fish reproduction and growth during dry years. Artificial hydrological regulation strategies should carefully consider the temporal variations of natural flow regime, especially for a high-amplitude flood pulse, which may cause negative effects on phytoplankton groups and higher organism biomass.

  14. Sources and transformations of anthropogenic nitrogen along an urban river-estuarine continuum

    NASA Astrophysics Data System (ADS)

    Pennino, Michael J.; Kaushal, Sujay S.; Murthy, Sudhir N.; Blomquist, Joel D.; Cornwell, Jeff C.; Harris, Lora A.

    2016-11-01

    Urbanization has altered the fate and transport of anthropogenic nitrogen (N) in rivers and estuaries globally. This study evaluates the capacity of an urbanizing river-estuarine continuum to transform N inputs from the world's largest advanced (e.g., phosphorus and biological N removal) wastewater treatment facility. Effluent samples and surface water were collected monthly along the Potomac River estuary from Washington D.C. to the Chesapeake Bay over a distance of 150 km. In conjunction with box model mass balances, nitrate stable isotopes and mixing models were used to trace the fate of urban wastewater nitrate. Nitrate concentrations and δ15N-NO3- values were higher down-estuary from the Blue Plains wastewater outfall in Washington D.C. (2.25 ± 0.62 mg L-1 and 25.7 ± 2.9 ‰, respectively) compared to upper-estuary concentrations (1.0 ± 0.2 mg L-1 and 9.3 ± 1.4 ‰, respectively). Nitrate concentration then decreased rapidly within 30 km down-estuary (to 0.8 ± 0.2 mg L-1), corresponding to an increase in organic nitrogen and dissolved organic carbon, suggesting biotic uptake and organic transformation. TN loads declined down-estuary (from an annual average of 48 000 ± 5000 kg day-1 at the sewage treatment plant outfall to 23 000 ± 13 000 kg day-1 at the estuary mouth), with the greatest percentage decrease during summer and fall. Annually, there was a 70 ± 31 % loss in wastewater NO3- along the estuary, and 28 ± 6 % of urban wastewater TN inputs were exported to the Chesapeake Bay, with the greatest contribution of wastewater TN loads during the spring. Our results suggest that biological transformations along the urban river-estuary continuum can significantly transform wastewater N inputs from major cities globally, and more work is necessary to evaluate the potential of organic nitrogen and carbon to contribute to eutrophication and hypoxia.

  15. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Doxaran, David; Froidefond, Jean-Marie; Castaing, Patrice; Babin, Marcel

    2009-02-01

    Over a 1-year period, field and satellite measurements of surface water turbidity were combined in order to study the dynamics of the turbidity maximum zone (TM) in a macrotidal estuary (the Gironde, France). Four fixed platforms equipped with turbidity sensors calibrated to give the suspended particulate matter (SPM) concentration provided continuous information in the upper estuary. Full resolution data recorded by the moderate resolution imaging spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellite platforms provided information in the central and lower estuary twice a day (depending on cloud cover). Field data were used to validate a recently developed SPM quantification algorithm applied to the MODIS 'surface reflectance' product. The algorithm is based on a relationship between the SPM concentration and a reflectance ratio of MODIS bands 2 (near-infrared) and 1 (red). Based on 62 and 75 match-ups identified in 2005 with MODIS Terra and Aqua data, the relative uncertainty of the algorithm applied to these sensors was found to be 22 and 18%, respectively. Field measurements showed the tidal variations of turbidity in the upper estuary, while monthly-averaged MODIS satellite data complemented by field data allowed observing the monthly movements of the TM in the whole estuary. The trapping of fine sediments occurred in the upper estuary during the period of low river flow. This resulted in the formation of a highly concentrated TM during a 4-month period. With increasing river flow, the TM moved rapidly to the central estuary. A part of the TM detached, moved progressively in the lower estuary and was finally either massively exported to the ocean during peak floods or temporary trapped (settled) on intertidal mudflats. The massive export to the ocean was apparently the result of combined favorable environmental conditions: presence of fluid mud near the mouth, high river flow, high tides and limited wind speeds. The mean SPM concentration

  16. PAHs in water and surface sediments from Douro River estuary and Porto Atlantic coast (Portugal)-impacts on human health.

    PubMed

    Rocha, Maria João; Dores-Sousa, José Luís; Cruzeiro, Catarina; Rocha, Eduardo

    2017-08-01

    This study investigated the presence of 16 priority polycyclic aromatic compounds (PAHs) in waters from the Douro River estuary and nearby Atlantic seacoast, which both bath the Porto metropolis. In the area, there is an oil refinery, an important harbour, an intense maritime traffic, small marinas and highly inhabited cities. For the analysis of PAHs, water samples were taken from four sampling sites, at six different times of the year (2011), and extracted by solid-phase extraction (dissolved fraction) and by ultrasound technique (suspended fraction), before their quantification by gas chromatography-mass spectrometry. Results not only proved the ubiquitous distribution of all analysed PAHs in the present habitat, but also that their global amounts (∑ 16 PAHs) were extremely high at all sampling sites. Their average concentrations attained ≈ 55 ng/L and ≈ 52 μg/g dry weight (dw), respectively, in water and surface sediments. Accordingly, the surveyed area was classified as highly polluted by these organics and so, in view of the concentrations, mutagenic/carcinogenic responses in both humans and aquatic animals are possible to occur. The percentages of carcinogenic PAHs for humans (group 1) dissolved in water and in surface sediments were ca. 5 and 6%, respectively. These results are the first reported in the area and can be used as a baseline for future control of the PAHs levels locally while serving the building of global scenarios of PAHs pollution in Europe. Graphical abstract Percentage of PAHs, from different categories acordingly to WHO (2016), in both surface sediments and surface waters from Douro River estuary and Porto Atlantic seacoast; group 1 - carcinogenic, group 2A - probably carcinogenic, group 2B - possibly carcinogenic, and group 3 - not classifiable as carcinogenic to humans.

  17. Heavy metals and acid-volatile sulfides in sediments of the Tijuana Estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, S.F.; Gersberg, R.M.

    1997-12-31

    The Tijuana Estuary in San Diego County, CA is a wetland-dominated estuary, which has been designated a National Estuarine Sanctuary for protection of a number of endangered species and their habitat. For decades, raw sewage from the city of Tijuana, Mexico has flowed into the Tijuana River and across the international border into the Tijuana Estuary. This problem has worsened in recent years with the substantial growth of Tijuana`s population along with intensive industrial development. Unfortunately, due to many factors, an industrial pretreatment program similar to one implemented in the United States, has not been initiated in Mexico, and themore » threat of chemical contamination of the Tijuana Estuary exists. To date, however, the degree and spatial nature of such contamination has not been well assessed. We report here on the levels of selected toxic metals in the sediments of the estuary. Additionally, we measured both acid-volatile sulfides (AVS) and simultaneously extracted metals (SEM) in order to estimate the potential toxicity of these estuarine sediments.« less

  18. DOWNSTREAM MIGRATION OF SALMONID SMOLTS IN OREGON RIVERS AND ESTUARIES

    EPA Science Inventory

    Migratory fish passage is an important designated use for many Oregon estuaries. Acoustic transmitters were implanted in coho smolts in 2004 and 2006 to evaluate how estuarine habitat, and habitat loss, might affect population health. Acoustic receivers that identified individu...

  19. Reverse Estuarine Circulation Due to Local and Remote Wind Forcing, Enhanced by the Presence of Along-Coast Estuaries

    NASA Astrophysics Data System (ADS)

    Giddings, S. N.; MacCready, P.

    2017-12-01

    Estuarine exchange flow governs the interaction between oceans and estuaries and thus plays a large role in their biogeochemical processes. This study investigates the variability in estuarine exchange flow due to offshore oceanic conditions including upwelling/downwelling, and the presence of a river plume offshore (from a neighboring estuary). We address these processes via numerical simulations at the mouth of the Salish Sea, a large estuarine system in the Northeast Pacific. An analysis of the Total Exchange Flow indicates that during the upwelling season, the exchange flow is fairly consistent in magnitude and oriented in a positive (into the estuary at depth and out at the surface) direction. However, during periods of downwelling favorable winds, the exchange flow shows significantly more variability including multiple reversals, consistent with observations, and surface intrusions of the Columbia River plume which originates 250 km to the south. Numerical along-strait momentum budgets show that the exchange flow is forced dominantly by the pressure gradients, particularly the baroclinic. The pressure gradient is modified by Coriolis and sometimes advection, highlighting the importance of geostrophy and local adjustments. In experiments conducted without the offshore river plume, reversals still occur but are weaker, and the baroclinic pressure gradient plays a reduced role. These results suggest that estuaries along strong upwelling coastlines should experience significant modulation in the exchange flow during upwelling versus downwelling conditions. Additionally, they highlight the importance of nearby estuaries impacting one-another, not only in terms of connectivity, but also altering the exchange flow.Plain Language SummaryEstuarine systems provide extensive biological and ecological functions as well as contribute to human uses and economies. However, <span class="hlt">estuaries</span> are susceptible to change and most <span class="hlt">estuaries</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62919&keyword=predicted+AND+effect+AND+concentration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62919&keyword=predicted+AND+effect+AND+concentration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>THREE-DIMENSIONAL MODELING OF COHESIVE SEDIMENT TRANSPORT IN A PARTIALLY STRATIFIED MICRO-TIDAL <span class="hlt">ESTUARY</span> TO ASSESS EFFECTIVENESS OF SEDIMENT TRAPS</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The three-dimensional (3D) finite difference model Environmental Fluid Dynamics Code (EFDC) was used to simulate the hydrodynamics and sediment transport in a partially stratified micro-tidal <span class="hlt">estuary</span>. The <span class="hlt">estuary</span> modeled consisted of a 16-km reach of the St. Johns <span class="hlt">River</span>, Florida,...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.308..107N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.308..107N"><span>Short-term tidal asymmetry inversion in a macrotidal <span class="hlt">estuary</span> (Beira, Mozambique)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nzualo, Teodósio N. M.; Gallo, Marcos N.; Vinzon, Susana B.</p> <p>2018-05-01</p> <p>The distortion of the tide in <span class="hlt">estuaries</span>, bays and coastal areas is the result of the generation of overtides due to the non-linear effects associated with friction, advection, and the finite effects of the tidal amplitude in shallow waters. The Beira <span class="hlt">estuary</span> is classified as macrotidal, with a large ratio of S2/M2. Typical tides ranges from 6 m and 0.8 m, during springs and neaps tides, respectively. As a consequence of this large fortnightly tidal amplitude difference and the estuarine morphology, asymmetry inversions occur. Two types of tidal asymmetries were investigated in this paper, one considering tidal duration asymmetry (time difference between rising and falling tide) and the other, related to tidal velocity asymmetry (unequal magnitudes of flood and ebb peaks currents). In the Beira <span class="hlt">estuary</span> when we examine the tidal duration asymmetry, flood dominance is observed during spring tide periods (negative time difference between rising and falling tide), while ebb dominance appears during neap tides (positive time difference between rising and falling tide). A 2DH hydrodynamic model was implemented to analyze this asymmetry inversion. The model was calibrated with water-level data measured at the Port of Beira and current data measured along the <span class="hlt">estuary</span>. The model was run for different scenarios considering tidal constituents at the ocean boundary, <span class="hlt">river</span> discharge and the morphology of the <span class="hlt">estuary</span>. <span class="hlt">River</span> discharge did not show significant effects on the tidal duration asymmetry. Through comparison of the scenarios, it was shown that the incoming ocean tide at the boundary has an ebb-dominant asymmetry, changing to flood-dominant only during spring tides due to the effect of shoaling and friction within the <span class="hlt">estuary</span>. During neap tides, the propagation occurs mainly in the channels, and ebb dominance remains. The interplay between the <span class="hlt">estuary</span> morphodynamics was thus identified and the relation between tidal duration asymmetry and tidal velocity asymmetry was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29242556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29242556"><span>Functional redundancy and sensitivity of fish assemblages in European <span class="hlt">rivers</span>, lakes and estuarine ecosystems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Teichert, Nils; Lepage, Mario; Sagouis, Alban; Borja, Angel; Chust, Guillem; Ferreira, Maria Teresa; Pasquaud, Stéphanie; Schinegger, Rafaela; Segurado, Pedro; Argillier, Christine</p> <p>2017-12-14</p> <p>The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, <span class="hlt">rivers</span> and <span class="hlt">estuaries</span>. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and <span class="hlt">rivers</span>, but not in <span class="hlt">estuaries</span>. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in <span class="hlt">rivers</span> and <span class="hlt">estuaries</span> support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in <span class="hlt">rivers</span> than in lakes and <span class="hlt">estuaries</span>. Overall, the functional structure of fish assemblages in <span class="hlt">rivers</span> is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation priorities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61760&Lab=NHEERL&keyword=effects+AND+recycling&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61760&Lab=NHEERL&keyword=effects+AND+recycling&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>STABLE ISOTOPIC INDICATORS FOR THE BIOGEOCHEMICAL CYCLING OF ORGANIC MATTER IN A TEMPERATE NORTH PACIFIC <span class="hlt">ESTUARY</span>, OREGON, USA</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The distributions of 13C and 15N in suspended particles were examined monthly over a two year period at ten stations along a 60 km transect in the euphotic zone (0.5m) of the Yaquina <span class="hlt">River</span> and <span class="hlt">Estuary</span>, Oregon. Organic material in <span class="hlt">estuaries</span> is a mixture of land-derived and ocean...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171346','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171346"><span>Linking behavior, physiology, and survival of Atlantic Salmon smolts during <span class="hlt">estuary</span> migration</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stich, Daniel S.; Zydlewski, Gayle B.; Kocik, John F.; Zydlewski, Joseph D.</p> <p>2015-01-01</p> <p>Decreased marine survival is identified as a component driver of continued declines of Atlantic Salmon Salmo salar. However, estimates of marine mortality often incorporate loss incurred during <span class="hlt">estuary</span> migration that may be mechanistically distinct from factors affecting marine mortality. We examined movements and survival of 941 smolts (141 wild and 800 hatchery-reared fish) released in freshwater during passage through the Penobscot <span class="hlt">River</span> <span class="hlt">estuary</span>, Maine, from 2005 to 2013. We related trends in <span class="hlt">estuary</span> arrival date, movement rate, and survival to fish characteristics, migratory history, and environmental conditions in the <span class="hlt">estuary</span>. Fish that experienced the warmest thermal history arrived in the <span class="hlt">estuary</span> 8 d earlier than those experiencing the coolest thermal history during development. <span class="hlt">Estuary</span> arrival date was 10 d later for fish experiencing high flow than for fish experiencing low flow. Fish released furthest upstream arrived in the <span class="hlt">estuary</span> 3 d later than those stocked further downstream but moved 0.5 km/h faster through the <span class="hlt">estuary</span>. Temporally, movement rate and survival in the <span class="hlt">estuary</span> both peaked in mid-May. Spatially, movement rate and survival both decreased from freshwater to the ocean. Wild smolts arrived in the <span class="hlt">estuary</span> later than hatchery fish, but we observed no change in movement rate or survival attributable to rearing history. Fish with the highest gill Na+, K+-ATPase activity incurred 25% lower mortality through the <span class="hlt">estuary</span> than fish with the lowest gill Na+, K+-ATPase activity. Smolt survival decreased (by up to 40%) with the increasing number of dams passed (ranging from two to nine) during freshwater migration. These results underscore the importance of physiological preparedness on performance and the delayed, indirect effects of dams on survival of Atlantic Salmon smolts during <span class="hlt">estuary</span> migration, ultimately affecting marine survival estimates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....12.8299M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....12.8299M"><span>Fate of peat-derived carbon and associated CO2 and CO emissions from two Southeast Asian <span class="hlt">estuaries</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Mujahid, A.; Bange, H. W.; Notholt, J.</p> <p>2015-06-01</p> <p>Coastal peatlands in Southeast Asia release large amounts of organic carbon to <span class="hlt">rivers</span>, which transport it further to the adjacent <span class="hlt">estuaries</span>. However, little is known about the fate of this terrestrial material in the coastal ocean. Although Southeast Asia is, by area, considered a hotspot of estuarine CO2 emissions, studies in this region are very scarce. We measured dissolved and particulate organic carbon, carbon dioxide (CO2) partial pressure and carbon monoxide (CO) concentrations in two tropical <span class="hlt">estuaries</span> in Sarawak, Malaysia, whose coastal area is covered by peatlands. We surveyed the <span class="hlt">estuaries</span> of the <span class="hlt">rivers</span> Lupar and Saribas during the wet and dry season, respectively. The spatial distribution and the carbon-to-nitrogen ratios of dissolved organic matter (DOM) suggest that peat-draining <span class="hlt">rivers</span> convey terrestrial organic carbon to the <span class="hlt">estuaries</span>. We found evidence that a large fraction of this carbon is respired. The median pCO2 in the <span class="hlt">estuaries</span> ranged between 618 and 5064 μatm with little seasonal variation. CO2 fluxes were determined with a floating chamber and estimated to amount to 14-272 mol m-2 yr-1, which is high compared to other studies from tropical and subtropical sites. In contrast, CO concentrations and fluxes were relatively moderate (0.3-1.4 nmol L-1 and 0.8-1.9 mmol m-2 yr-1) if compared to published data for oceanic or upwelling systems. We attributed this to the large amounts of suspended matter (4-5004 mg L-1), limiting the light penetration depth. However, the diurnal variation of CO suggests that it is photochemically produced, implying that photodegradation might play a role for the removal of DOM from the <span class="hlt">estuary</span> as well. We concluded that unlike smaller peat-draining tributaries, which tend to transport most carbon downstream, <span class="hlt">estuaries</span> in this region function as an efficient filter for organic carbon and release large amounts of CO2 to the atmosphere. The Lupar and Saribas mid-<span class="hlt">estuaries</span> release 0.4 ± 0.2 Tg C yr-1, which corresponds</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030087','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030087"><span>Patterns and trends in sediment toxicity in the San Francisco <span class="hlt">Estuary</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, B.; Hunt, J.; Phillips, B.; Thompson, B.; Lowe, S.; Taberski, K.; Scott, Carr R.</p> <p>2007-01-01</p> <p>Widespread sediment toxicity has been documented throughout the San Francisco <span class="hlt">Estuary</span> since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the <span class="hlt">Estuary</span>. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the <span class="hlt">Estuary</span>. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the <span class="hlt">Estuary</span>, and from Central Valley <span class="hlt">rivers</span> entering the northern <span class="hlt">Estuary</span> via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive. ?? 2006 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ECSS..151...45J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ECSS..151...45J"><span>Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson <span class="hlt">River</span> <span class="hlt">Estuary</span> (New York, USA)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Juhl, Andrew R.; Anderson, O. Roger</p> <p>2014-12-01</p> <p>In comparison to other groups of planktonic microorganisms, relatively little is known about the role of amoeboid protists (amebas) in planktonic ecosystems. This study describes the first geographic survey of the abundance and biomass of amebas in an estuarine water column. Samples collected in the lower Hudson <span class="hlt">River</span> <span class="hlt">Estuary</span> were used to investigate relationships between ameba abundance and biomass and hydrographic variables (temperature, salinity, and turbidity), water depth (surface and near bottom), distance from mid-channel to shore, phytoplankton biomass (chlorophyll fluorescence) and the occurrence of other heterotrophic microbial groups (heterotrophic bacteria, nanoflagellates, and ciliates) in the plankton. Although salinity increased significantly towards the mouth of the <span class="hlt">estuary</span>, there were no significant differences in the abundance or biomass of any microbial group in surface samples collected at three stations separated by 44 km along the <span class="hlt">estuary</span>'s mid-channel. Peak biomass values for all microbial groups were found at the station closest to shore, however, cross-channel trends in microbial abundance and biomass were not statistically significant. Although ameba abundance and biomass in most samples were low compared to other microbial groups, clear patterns in ameba distribution were nevertheless found. Unlike other microbial groups examined, ameba numbers and biomass greatly increased in near bottom water compared to surface samples. Ameba abundance and biomass (in surface samples) were also strongly related to increasing turbidity. The different relationships of ameba abundance and biomass with turbidity suggest a rising contribution of large amebas in microbial communities of the Hudson <span class="hlt">estuary</span> when turbidity increases. These results, emphasizing the importance of particle concentration as attachment and feeding surfaces for amebas, will help identify the environmental conditions when amebas are most likely to contribute significantly to estuarine</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036927','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036927"><span>Strontium isotope record of seasonal scale variations in sediment sources and accumulation in low-energy, subtidal areas of the lower Hudson <span class="hlt">River</span> <span class="hlt">estuary</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, J.P.; Bullen, T.D.; Brabander, D.J.; Olsen, C.R.</p> <p>2009-01-01</p> <p>Strontium isotope (87Sr/86Sr) profiles in sediment cores collected from two subtidal harbor slips in the lower Hudson <span class="hlt">River</span> <span class="hlt">estuary</span> in October 2001 exhibit regular patterns of variability with depth. Using additional evidence from sediment Ca/Sr ratios, 137Cs activity and Al, carbonate (CaCO3), and organic carbon (OCsed) concentration profiles, it can be shown that the observed variability reflects differences in the relative input and trapping of fine-grained sediment from seaward sources vs. landward sources linked to seasonal-scale changes in freshwater flow. During high flow conditions, the geochemical data indicate that most of the fine-grained sediments trapped in the <span class="hlt">estuary</span> are newly eroded basin materials. During lower (base) flow conditions, a higher fraction of mature materials from seaward sources with higher carbonate content is trapped in the lower <span class="hlt">estuary</span>. Results show that high-resolution, multi-geochemical tracer approaches utilizing strontium isotope ratios (87Sr/86Sr) can distinguish sediment sources and constrain seasonal scale variations in sediment trapping and accumulation in dynamic estuarine environments. Low-energy, subtidal areas such as those in this study are important sinks for metastable, short-to-medium time scale sediment accumulation. These results also show that these same areas can serve as natural recorders of physical, chemical, and biological processes that affect particle and particle-associated material dynamics over seasonal-to-yearly time scales. ?? 2009.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...182...31L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...182...31L"><span>Trophic flow structure of a neotropical <span class="hlt">estuary</span> in northeastern Brazil and the comparison of ecosystem model indicators of <span class="hlt">estuaries</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lira, Alex; Angelini, Ronaldo; Le Loc'h, François; Ménard, Frédéric; Lacerda, Carlos; Frédou, Thierry; Lucena Frédou, Flávia</p> <p>2018-06-01</p> <p>We developed an Ecopath model for the <span class="hlt">Estuary</span> of Sirinhaém <span class="hlt">River</span> (SIR), a small-sized system surrounded by mangroves, subject to high impact, mainly by the sugar cane and other farming industries in order to describe the food web structure and trophic interactions. In addition, we compared our findings with those of 20 available Ecopath estuarine models for tropical, subtropical and temperate regions, aiming to synthesize the knowledge on trophic dynamics and provide a comprehensive analysis of the structures and functioning of <span class="hlt">estuaries</span>. Our model consisted of 25 compartments and its indicators were within the expected range for estuarine areas around the world. The average trophic transfer efficiency for the entire system was 11.8%, similar to the theoretical value of 10%. The Keystone Index and MTI (Mixed Trophic Impact) analysis indicated that the snook (Centropomus undecimalis and Centropomus parallelus) and jack (Caranx latus and Caranx hippos) are considered as key resources in the system, revealing their high impact in the food web. Both groups have a high ecological and commercial relevance, despite the unregulated fisheries. As result of the comparison of ecosystem model indicators in <span class="hlt">estuaries</span>, differences in the ecosystem structure from the low latitude zones (tropical <span class="hlt">estuaries</span>) to the high latitude zones (temperate system) were noticed. The structure of temperate and sub-tropical <span class="hlt">estuaries</span> is based on high flows of detritus and export, while tropical systems have high biomass, respiration and consumption rates. Higher values of System Omnivory Index (SOI) and Overhead (SO) were observed in the tropical and subtropical <span class="hlt">estuaries</span>, denoting a more complex food chain. Globally, none of the estuarine models were classified as fully mature ecosystems, although the tropical ecosystems were considered more mature than the subtropical and temperate ecosystems. This study is an important contribution to the trophic modeling of <span class="hlt">estuaries</span>, which may also help</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=171947&keyword=round&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=171947&keyword=round&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>SUSPENDED AND BENTHIC SEDIMENT RELATIONSHIPS IN THE YAQUINA <span class="hlt">ESTUARY</span>, OREGON: NUTRIENT PROCESSING</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Measurements of nutrient loading and subsequent nutrient processing are fundamental for determining biogeochemical processes in <span class="hlt">rivers</span> and <span class="hlt">estuaries</span>. In Oregon coastal watersheds, nutrient transport is strongly seasonal with up to 94% of the riverine dissolved nitrate and silic...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27344086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27344086"><span>Occurrence and distribution of perfluoroalkyl substances (PFASs) in surface water and bottom water of the Shuangtaizi <span class="hlt">Estuary</span>, China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shao, Mihua; Ding, Guanghui; Zhang, Jing; Wei, Lie; Xue, Huanhuan; Zhang, Nannan; Li, Yang; Chen, Guanqun; Sun, Yeqing</p> <p>2016-09-01</p> <p>Perfluoroalkyl substances (PFASs) have been recognized as emerging environmental pollutants. However, there is limited information on the contamination level and spatial distribution of PFASs in the Shuangtaizi <span class="hlt">Estuary</span>, where the Shuangtaizi Hekou Nature Reserve is located. In the present study, the contamination level and spatial distribution of PFASs in surface water (approximately 0.5 m below the surface) and bottom water (about 0.5 m above the bottom) of the Shuangtaizi <span class="hlt">Estuary</span> were investigated. The data indicated that the Shuangtaizi <span class="hlt">Estuary</span> was commonly contaminated by PFASs. The total concentration of PFASs in surface and bottom water of the Shuangtaizi <span class="hlt">Estuary</span> ranged from 66.2 to 185 ng L(-1) and from 44.8 to 209 ng L(-1), respectively. The predominant PFASs were perfluorobutanoic acid (PFBA), perfluoropentanoic acid, perfluorooctanoic acid, perfluorohexanoic acid and perfluorobutane sulfonate (PFBS). In general, PFAS concentrations in surface water samples were lower than those in bottom water samples. The spatial distribution of PFASs in the Shuangtaizi <span class="hlt">Estuary</span> was mainly affected by particular landform, tide and residual currents in Liaodong Bay. The total mass flux of 15 PFASs from the Shuangtaizi <span class="hlt">River</span> to Liaodong Bay was estimated to be 352 kg year(-1), which was lower than the total flux from the Daling <span class="hlt">River</span> and the Daliao <span class="hlt">River</span>. As short-chain PFASs, such as PFBS and PFBA, have been the prevalent compounds in some places and are continuously produced and used, long-term monitoring and effective pollution controls are suggested. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015FrES....9..659B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015FrES....9..659B"><span>Infrastructure for collaborative science and societal applications in the Columbia <span class="hlt">River</span> <span class="hlt">estuary</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baptista, António M.; Seaton, Charles; Wilkin, Michael P.; Riseman, Sarah F.; Needoba, Joseph A.; Maier, David; Turner, Paul J.; Kärnä, Tuomas; Lopez, Jesse E.; Herfort, Lydie; Megler, V. M.; McNeil, Craig; Crump, Byron C.; Peterson, Tawnya D.; Spitz, Yvette H.; Simon, Holly M.</p> <p>2015-12-01</p> <p>To meet societal needs, modern estuarine science needs to be interdisciplinary and collaborative, combine discovery with hypotheses testing, and be responsive to issues facing both regional and global stakeholders. Such an approach is best conducted with the benefit of data-rich environments, where information from sensors and models is openly accessible within convenient timeframes. Here, we introduce the operational infrastructure of one such data-rich environment, a collaboratory created to support (a) interdisciplinary research in the Columbia <span class="hlt">River</span> <span class="hlt">estuary</span> by the multi-institutional team of investigators of the Science and Technology Center for Coastal Margin Observation & Prediction and (b) the integration of scientific knowledge into regional decision making. Core components of the operational infrastructure are an observation network, a modeling system and a cyber-infrastructure, each of which is described. The observation network is anchored on an extensive array of long-term stations, many of them interdisciplinary, and is complemented by on-demand deployment of temporary stations and mobile platforms, often in coordinated field campaigns. The modeling system is based on finiteelement unstructured-grid codes and includes operational and process-oriented simulations of circulation, sediments and ecosystem processes. The flow of information is managed through a dedicated cyber-infrastructure, conversant with regional and national observing systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS53E1093S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS53E1093S"><span>Pathways of Methylmercury Transfer to the Water Column Across Multiple <span class="hlt">Estuaries</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schartup, A. T.; Balcom, P. H.; Mason, R. P.; Chen, C.</p> <p>2014-12-01</p> <p>Estuarine water column methylmercury (MeHg) is an important driver of bioaccumulation in pelagic organisms so it is important to understand the sources and cycling of MeHg. As MeHg biomagnifies in food webs, increased water column concentrations can be transferred to fish consumed by humans. Few studies have taken a multi-<span class="hlt">estuary</span> approach to look at MeHg cycling in the water column of these important MeHg producing areas. We examined the distributions and partitioning of sediment and water column MeHg across a geographic range of <span class="hlt">estuaries</span>. In 2008 we sampled 10 shallow-water estuarine sites from Maine to New Jersey, sampled 11 sites in 4 <span class="hlt">estuaries</span> in 2009, and sampled at 3 estuarine turbidity maximum (ETM) sites in 1 <span class="hlt">estuary</span> in 2012. Sediment measurements included both solid phase and pore water MeHg and total mercury (HgT). Water column parameters included dissolved and particulate MeHg and HgT, total suspended solids, nutrients, and dissolved organic carbon. Average suspended particle MeHg was highest at Wells (ME; 6 to 11.5 pmol/g; 4.5 to 7% of HgT) and lowest at Portsmouth (NH) and in Long Island Sound (CT-NY; 0.2 to 5.5 pmol/g; 0.25 to 3.75% of HgT). Average water column dissolved MeHg was highest in the Delaware <span class="hlt">River</span> ETM (0.5 to 0.7 pM; 16 to 24% of HgT) and lowest at Portsmouth (0.06 to 0.12 pM; 1 to 2% of HgT). Significant positive correlations were found between MeHg and HgT across multiple <span class="hlt">estuaries</span> in both sediment and the water column in 2008 and 2009. In contrast, water column dissolved and suspended particle MeHg do not correlate well with sediment MeHg or HgT, pore water MeHg or methylation rates in sediment across <span class="hlt">estuaries</span>, indicating that sediment is often not a good predictor of water MeHg levels. However, ratios of average dissolved:pore water MeHg and suspended particle:sediment MeHg are close to 1 in the Delaware <span class="hlt">River</span> ETM, suggesting that sediment supplies MeHg to the water column in this turbulent region, but average pore water MeHg was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP23C..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP23C..08M"><span>Suspended-Sediment Impacts on Light-limited Productivity in the Delaware <span class="hlt">Estuary</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McSweeney, J.; Chant, R. J.; Wilkin, J.; Sommerfield, C. K.</p> <p>2016-12-01</p> <p>The Delaware <span class="hlt">Estuary</span> has a history of high anthropogenic nutrient loadings, but has been classified as a high-nutrient, low-growth system due persistent light limitations caused by turbidity. While the biogeochemical implications of light limitation in turbid <span class="hlt">estuaries</span> has been well-studied, there has been minimal effort focused on the connectivity between hydrodynamics, sediment dynamics, and light-limitation. Our understanding of sediment dynamics in the Delaware <span class="hlt">Estuary</span> has advanced significantly in the last decade, and this study provides insight about how the spatiotemporal variability of the estuarine turbidity maximum controls the light available for primary productivity. This analysis uses data from eight along-<span class="hlt">estuary</span> cruises from March, June, September, and December 2010 and 2011 to look at the seasonality of suspended sediment and chlorophyll distributions. By estimating the absorption due to sediment under a range of environmental conditions, we describe how the movement of the turbidity maximum affects light availability. We also use an idealized 2-dimensional Regional Ocean Modeling System (ROMS) numerical model to evaluate how <span class="hlt">river</span> discharge and spring-neap variability modulate the location of phytoplankton blooms. We conclude that high <span class="hlt">river</span> flows and neap tides can drive stratification that is strong enough to prevent sediment from being resuspended into the surface layer, thus providing light conditions favorable for primary productivity. This study sheds light on the importance of sediment in the limiting primary productivity, and the role of stratification in promoting production, highlighting the potential limitations of biogeochemical models that do not account for sediment absorption.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713076S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713076S"><span>The herbicide Glyphosate affects nitrification in the Elbe <span class="hlt">estuary</span>, Germany</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanders, Tina; Lassen, Stephan</p> <p>2015-04-01</p> <p>The Elbe <span class="hlt">River</span> is one of the biggest European <span class="hlt">rivers</span> discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the <span class="hlt">river</span> catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the <span class="hlt">river</span> and <span class="hlt">estuary</span> into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe <span class="hlt">estuary</span>, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe <span class="hlt">estuary</span> with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3304118','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3304118"><span>Use of a Real-Time Remote Monitoring Network (RTRM) to Characterize the Guadalquivir <span class="hlt">Estuary</span> (Spain)</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Navarro, Gabriel; Huertas, Isabel Emma; Costas, Eduardo; Flecha, Susana; Díez-Minguito, Manuel; Caballero, Isabel; López-Rodas, Victoria; Prieto, Laura; Ruiz, Javier</p> <p>2012-01-01</p> <p>The temporal variability of hydrological variables in the Guadalquivir <span class="hlt">estuary</span> was examined during three years through a real-time remote monitoring network (RTRM). The network was developed with the aim of studying the influence of hydrodynamical and hydrological features within the <span class="hlt">estuary</span> on the functioning of the pelagic ecosystem. Completing this data-gathering network, monthly cruises were performed in order to measure biogeochemical variables that are indicative of the trophic status of the aquatic environment. The results showed that several sources of physical forcing, such as wind, tide-associated currents and <span class="hlt">river</span> discharge were responsible for the spatio-temporal patterns of dissolved oxygen, salinity and turbidity in the <span class="hlt">estuary</span>. The analysis was conducted under tidal and flood regime, which allowed us to identify <span class="hlt">river</span> discharge as the main forcing agent of the hydrology inside the <span class="hlt">estuary</span>. In particular, episodes of elevated turbidity detected by the network, together with episodes of low salinity and dissolved oxygen were closely related to the increase in water supply from a dam located upstream. The network installed provided accurate data that can be rapidly used for research or educational applications and by policy-makers or agencies in charge of the management of the coastal area. PMID:22438716</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-04-24/pdf/2012-9863.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-04-24/pdf/2012-9863.pdf"><span>77 FR 24471 - Takes of Marine Mammals Incidental to Specified Activities; Russian <span class="hlt">River</span> <span class="hlt">Estuary</span> Management...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-04-24</p> <p>... <span class="hlt">Estuary</span> Outlet Channel Adaptive Management Plan; and Feasibility of Alternatives to the Goat Rock State... to, migration, breathing, nursing, breeding, feeding, or sheltering [Level B harassment].'' Summary... is located at Goat Rock State Beach; the <span class="hlt">estuary</span> extends from the mouth upstream approximately 10 to...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1224511','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1224511"><span>Facilitation of the <span class="hlt">Estuary</span>/Ocean Subgroup and the Expert Regional Technical Group, Annual Report for 2015</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, Gary E.</p> <p></p> <p>This document is the annual report for the period September 1, 2014 through August 31, 2015 for the project—Facilitation of the <span class="hlt">Estuary</span>/Ocean Subgroup (EOS) and the Expert Regional Technical Group (ERTG). Pacific Northwest National Laboratory (PNNL) conducted the project for the Bonneville Power Administration (BPA). The EOS and ERTG are part of the research, monitoring, and evaluation (RME) and habitat restoration efforts, respectively, developed by the Action Agencies (BPA, U.S. Army Corps of Engineers [Corps or USACE], and U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federalmore » Columbia <span class="hlt">River</span> Power System (FCRPS) and implemented under the Columbia <span class="hlt">Estuary</span> Ecosystem Restoration Program (CEERP). BPA/Corps (2015) explain the CEERP and the role of RME and the ERTG. For the purposes of this report, the lower Columbia <span class="hlt">River</span> and <span class="hlt">estuary</span> (LCRE) includes the floodplain from Bonneville Dam down through the lower <span class="hlt">river</span> and <span class="hlt">estuary</span> into the river’s plume in the ocean. The main purpose of this project is to facilitate EOS and ERTG meetings and work products. Other purposes are to provide technical support for CEERP adaptive management, CEERP restoration design challenges, and tributary RME. From 2002 through 2008, the EOS worked to design the federal RME program for the <span class="hlt">estuary</span>/ocean (Johnson et al. 2008). From 2009 to the present day, EOS activities have involved RME implementation; however, EOS activities were minimal during the current reporting period. PNNL provided technical support to CEERP’s adaptive management process by convening 1.2 meetings of the Action Agencies (AAs) and drafting material for the “CEERP 2015 Restoration and Monitoring Plan” (BPA/Corps 2015).« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/4323967','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/4323967"><span>Distribution of excess temperature from the Morgantown Generating Station on the Potomac <span class="hlt">Estuary</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carter, H.H.</p> <p>1973-10-01</p> <p>Research undertaken to determine the effects of thermal effluents on the temperature distribution in estuarine waters is described. Procedures for and results from measurements of the temperature, <span class="hlt">river</span> flow, tidal currents, salinity, wind, etc at the Potomac <span class="hlt">River</span> <span class="hlt">estuary</span> in 1969 and 1972, which represent pre- and post-operation conditions for the operation of the fossil- fueled Morgantown power plant, are reported. (LC L)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22078370','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22078370"><span>Land-ocean contributions of arsenic through a <span class="hlt">river-estuary</span>-ria system (SW Europe) under the influence of arsenopyrite deposits in the fluvial basin.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Costas, Marta; Prego, Ricardo; Filgueiras, Ana V; Bendicho, Carlos</p> <p>2011-12-15</p> <p>Water was sampled monthly from September 2005 to August 2006 at 14 stations distributed throughout the coastal system of Anllóns-Laxe, from where 30 surface sediment samples were also taken. After filtration through 0.22 μm polycarbonate filters, dissolved inorganic and total arsenic (UV oxidation) concentration was determined by HG-AFS. After microwave digestion, the arsenic in SPM and sediment was determined by AAS. Ultra-clean procedures were adopted during sampling, handling and analysis and the analytical accuracy was checked using certified reference material. Spatial distribution of As in water (0.2-4.0 μg L(-1)), SPM (21-169 mg kg(-1)) and sediment of the <span class="hlt">river</span> reservoir was altered by the presence of arsenopyrite deposits in the middle fluvial basin that increases 2.1±0.5 and 1.7±0.5 times the concentrations of inorganic dissolved (DI-As) and particulate (P-As) arsenic, respectively. At the termination fluvial zone As fluxes can be calculated to be: [DI-As]=7.09·Q(-0.69). The Anllóns <span class="hlt">River</span> exports to its <span class="hlt">estuary</span> 460 kg a(-1) of dissolved (<7% as organic) arsenic annually. It is higher (i.e. 0.83 kgs(-1) km(-2) of DI-As) than that of most of European <span class="hlt">rivers</span>. In the <span class="hlt">estuary</span> reservoir, the influence of arsenopyrite is also evident as the <span class="hlt">river</span> concentration of DI-As, which was lower than in seawater during the wet season and higher during the dry season. Arsenic has non-conservative behaviour, as in other European <span class="hlt">estuaries</span>, but the Anllóns shows an ambivalent pattern: as it usually gains DI-As during the wet season and loses it during the dry season, whilst P-As seems to behave contrary to the DI-As. When the fluvial arsenic reaches the ria its concentration varies due to the estuarine processes. In the wet season DI-As increases its concentration by one third whilst in the dry season it decreases by one fifth and the annual contribution to the ria is 10% higher than the fluvial output. In the case of P-As more data are necessary to quantify its</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>