Sample records for zinc 64 target

  1. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  2. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding.

    PubMed

    Zinn, K R; Chaudhuri, T R; Cheng, T P; Morris, J S; Meyer, W A

    1994-02-01

    Positron emission tomography offers advantages for radioimmunodiagnosis of cancer but requires radionuclides of appropriate half-life that have high specific activity and high radio-purity. This work was designed to develop a viable method to produce and purify 64Cu, which has high specific activity, for positron emission tomography. 64Cu was produced at the University of Missouri Research Reactor by the nuclear reaction, 64Zn(n,p)64Cu. Highly pure zinc metal (99.9999%) was irradiated in a specially designed boron nitrite lined container, which minimized thermal neutron reactions during irradiation. A new two-step procedure was developed to chemically separate the no-carrier-added 64Cu from the zinc metal target. 64Cu recovery for 24 runs averaged 0.393 (+/- 0.007) mCi per milligram of zinc irradiated. The boron-lined irradiation container reduced unwanted zinc radionuclides 14.3-fold. Zinc radionuclides and non-radioactive zinc were separated successfully from the 64Cu. The new separation technique was fast (2 hours total time) and highly efficient for removing the zinc. The zinc separation factor for this technique averaged 8.5 x 10(-8), indicating less than 0.0000085% of the zinc remained after separation. Thus far, the highest 64Cu specific activity at end of irradiation was 683 Ci/mg Cu, with an average of 512 Ci/mg Cu for the last six analyzed runs. The boron-lined irradiation container has sufficient capacity for 75-fold larger-sized zinc targets (up to 45 g). The new separation technique was excellent for separating 64Cu, which appears to be a radionuclide with great potential for positron emission tomography.

  3. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  4. Investigation of the 66Zn(p,2pn) 64Cu and 68Zn(p,x) 64Cu nuclear processes up to 100 MeV: Production of 64Cu

    NASA Astrophysics Data System (ADS)

    Szelecsényi, F.; Steyn, G. F.; Kovács, Z.; Vermeulen, C.; van der Meulen, N. P.; Dolley, S. G.; van der Walt, T. N.; Suzuki, K.; Mukai, K.

    2005-11-01

    Cross-sections of the 66Zn(p,2pn)64Cu and 68Zn(p,x)64Cu nuclear processes were measured on highly enriched zinc targets using the stacked-foil activation technique up to 100 MeV. The new cross-sections were compared to literature data. The optimum energy range for production of 64Cu was found to be 70 → 35 MeV on 66Zn and 37 → 20 MeV on 68Zn. The thick-target yields were determined as 777 MBq/μAh (21.0 mCi/μAh) and 185 MBq/μAh (5.0 mCi/μAh), respectively. The yields of the longer-lived contaminant copper radioisotopes (i.e. 61Cu when using 66Zn as target material and both 61Cu and 67Cu in the case of 68Zn target material) were also calculated. The results obtained from the present study indicate that both reactions are suited for the production of 64Cu at a medium energy cyclotron. The optimum energy ranges are also complementary therefore the potential to utilize tandem targetry exists.

  5. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  6. Improved composite targets for small scale 64Cu production comparing Au- and Pt-foils as 64Ni backing

    NASA Astrophysics Data System (ADS)

    Walther, M.; Preusche, S.; Fuechtner, F.; Pietzsch, H. J.; Steinbach, J.

    2012-12-01

    Advantages of a stacked assembly of target support components for 64Cu production via 64Ni(p,n)64Cu reaction were reported recently. The present work shows the applicability of these composite targets for beam currents up to 22 μA. Gold and platinum foils were evaluated as 64Ni backing. The effective specific activity (ESA) and specific activity (SA) were determined by TETA titration at room temperature and at 80 °C and compared with additional copper quantification results via ICP-MS and stripping voltammetric trace analysis (VA).

  7. 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging.

    PubMed

    Ma, Wenhui; Fu, Fanfan; Zhu, Jingyi; Huang, Rui; Zhu, Yizhou; Liu, Zhenwei; Wang, Jing; Conti, Peter S; Shi, Xiangyang; Chen, Kai

    2018-03-29

    We report the use of multifunctional folic acid (FA)-modified dendrimers as a platform to radiolabel with 64Cu for PET imaging of folate receptor (FR)-expressing tumors. In this study, amine-terminated generation 5 (G5) poly(amidoamine) dendrimers were sequentially modified with fluorescein isothiocyanate (FI), FA, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), followed by acetylation of the remaining dendrimer terminal amines. The as-formed multifunctional DOTA-FA-FI-G5·NHAc dendrimers were then radiolabeled with 64Cu via the DOTA chelation. We show that the FA modification renders the dendrimers with targeting specificity to cancer cells overexpressing FR in vitro. Importantly, the radiolabeled 64Cu-DOTA-FA-FI-G5·NHAc dendrimers can be used as a nanoprobe for specific targeting of FR-overexpressing cancer cells in vitro and targeted microPET imaging of the FR-expressing xenografted tumor model in vivo. The developed 64Cu-labeled multifunctional dendrimeric nanoprobe may hold great promise to be used for targeted PET imaging of different types of FR-expressing cancer.

  8. Cyclotron production of 61Cu using natural Zn & enriched 64Zn targets

    NASA Astrophysics Data System (ADS)

    Asad, A. H.; Smith, S. V.; Chan, S.; Jeffery, C. M.; Morandeau, L.; Price, R. I.

    2012-12-01

    Copper-61 (61Cu) shares with 64Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study 61Cu was produced using the 64Zn(p,α)61Cu reaction on natural Zn or enriched 64Zn targets. The enriched 64Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30μA; at 11.7, 14.5 or 17.6MeV over 30-60min. The 61Cu (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The 64Zn target material was recovered after each run, for re-use. In a direct comparison with enriched 64Zn-target results, 61Cu production using the cheaper natZn target proved to be an effective alternative.

  9. Thin-target excitation functions and optimisation of NCA 64Cu and 66,67Ga production by deuteron induced nuclear reactions on natural zinc target, for radiometabolic therapy and for PET

    NASA Astrophysics Data System (ADS)

    Groppi, F.; Bonardi, M. L.; Birattari, C.; Gini, L.; Mainardi, C.; Menapace, E.; Abbas, K.; Holzwarth, U.; Stroosnijder, R. M. F.

    2004-01-01

    A novel method for production of No-Carrier-Added 64Cu and 66,67Ga has been developed, based on reactions induced by deuterons up to 19 MeV on Zn target. HPGe and beta (by LSC) spectrometries proved very effective to determine radionuclidic purity of 64Cu and 66,67Ga fractions. Experimental specific activity for 64Cu was measured by ET-AAS and was of the order of 700 MBq · μg -1. Radiochemical yields for 64Cu and 66,67Ga were >80% and >99%.

  10. COPPER-64 Production Studies with Natural Zinc Targets at Deuteron Energy up to 19 Mev and Proton Energy from 141 Down to 31 Mev

    NASA Astrophysics Data System (ADS)

    Bonardi, Mauro L.; Birattari, Claudio; Groppi, Flavia; Song Mainard, Hae; Zhuikov, Boris L.; Kokhanyuk, Vladimir M.; Lapshina, Elena V.; Mebel, Michail V.; Menapace, Enzo

    2004-07-01

    High specific activity no-carrier-added 64Cu is a β-/β+ emitting radionuclide of increasing interest for PET imaging, as well as systemic and targeted radioimmunotherapy of tumors. Its peculiarity of intense Auger emitter is still under investigation. The cross-sections for production of 64Cu from Zn target of natural isotopic composition were measured in the deuteron energy range from threshold up to 19 MeV and proton energy range from 141 down to 31 MeV. The stacked-foil technique was used at both K=38 cyclotron of JRC-Ispra of CEC, Italy and 160 MeV intersection point of INR proton-LINAC in Troitsk, Russia. Several Ga, Zn, Cu, Ni, Co, V, Fe and Mn radionuclides were detected in Zn targets at the EOB. Optimized irradiation conditions are reported as a function of deuteron energy and energy loss into the Zn target, as well as target irradiation time and cooling time after radiochemistry. The activity of n.c.a. 64Cu was measured through its only γ emission of 1346 keV (i.e. 0.473 % intensity) both by instrumental and radiochemical methods, due to the non-specificity of annihilation radiation at 511 keV. To this last purpose, it was necessary to carry out a selective radiochemical separation of GaIII radionuclides by liquid/liquid extraction from the bulk of irradiated Zn targets and other spallation products, which remained in the 7 M HCl aqueous phase. Anion exchange chromatography tests had been carried out to separate the 64Cu from all others radionuclides in n.c.a. form. Theoretical calculations of cross-sections were performed with codes EMPIRE II and PENELOPE for deuteron reactions and CEF model and HMS-ALICE hybrid model for proton reactions. The theoretical results are presented and compared with the experimental values.

  11. 64Cu, a powerful positron emitter for immunoimaging and theranostic: Production via natZnO and natZnO-NPs.

    PubMed

    Karimi, Zahra; Sadeghi, Mahdi; Mataji-Kojouri, Naimeddin

    2018-07-01

    64 Cu is one of the most beneficial radionuclide that can be used as a theranostic agent in Positron Emission Tomography (PET) imaging. In this current work, 64 Cu was produced with zinc oxide nanoparticles ( nat ZnONPs) and zinc oxide powder ( nat ZnO) via the 64 Zn(n,p) 64 Cu reaction in Tehran Research Reactor (TRR) and the activity values were compared with each other. The theoretical activity of 64 Cu also was calculated with MCNPX-2.6 and the cross sections of this reaction were calculated by using TALYS-1.8, EMPIRE-3.2.2 and ALICE/ASH nuclear codes and were compared with experimental values. Transmission Electronic Microscopy (TEM), Scanning Electronic Microscopy (SEM) and X-Ray Diffraction (XRD) analysis were used for samples characterizations. From these results, it's concluded that 64 Cu activity value with nanoscale target was achieved more than the bulk state target and had a good adaptation with the MCNPX result. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Red fluorescent zinc oxide nanoparticle: A novel platform for cancer targeting

    DOE PAGES

    Hong, Hao; Wang, Fei; Zhang, Yin; ...

    2015-01-21

    Multifunctional zinc oxide (ZnO) nanoparticles (NPs) with well-integrated multimodality imaging capacities have generated increasing research interest in the past decade. However, limited progress has been made in developing ZnO NP-based multimodality tumor-imaging agents. In this paper, we developed novel red fluorescent ZnO NPs and described the successful conjugation of 64Cu ( t 1/2 = 12.7 h) and TRC105, a chimeric monoclonal antibody against CD105, to these ZnO NPs via well-developed surface engineering procedures. The produced dual-modality ZnO NPs were readily applicable for positron emission tomography (PET) imaging and fluorescence imaging of the tumor vasculature. Their pharmacokinetics and tumor-targeting efficacy/specificity inmore » mice bearing murine breast 4T1 tumor were thoroughly investigated. In conclusion, ZnO NPs with dual-modality imaging properties can serve as an attractive candidate for future cancer theranostics.« less

  13. Environmental exposure of road borders to zinc.

    PubMed

    Blok, J

    2005-09-15

    The emissions of zinc along roads originating from tyre wear, corrosion of safety fence and other traffic-related sources have been quantified and validated by measured long-term loads in road run-off and airborne solids (drift) for 29 published case studies. The distribution pattern over the road border at various distances from the edge of the paved surface is assessed on the basis of 38 published case studies with measured concentrations in soil. For the impact assessment, the road border is differentiated into a zone that is part of the "technosphere" and the "target zone" beyond that technosphere that can be considered as part of the receiving environment. The "technosphere" of the road includes the central reservation, the hard and the soft shoulder or, if one or both shoulders are not present, the so-called obstacle "free zone" that is defined by road engineers. Pollution within the technosphere may require appropriate management of solid disposal and isolation from groundwater to prevent further distribution of pollutants to the environment. In the target zone along regional roads, the zinc load is about 4 mg/m(2) year and this is of the same order of magnitude as that of atmospheric deposition in areas beyond the influence of roads (background). In the target zone along highways, the zinc load is increased in comparison to the background deposition. The average load of about 38 mg/m(2) year is similar to that in fertilised agricultural land. Because most of the emitted zinc stays in the technosphere, the total amount entering this target zone along highways is limited. From the 140 tons of zinc per year that is released from tyre wear in The Netherlands, 64 tons is emitted in the urban area, 6.5 tons reaches to the target zones of all roads and only 1.1 tons of zinc will enter the target zone along highways. This amount will be further decreased by the application of porous asphalt in the near future. The emission from safety fence corrosion does not enter

  14. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting.

    PubMed

    Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho

    2015-12-01

    Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans. © 2015 Authors; published by Portland Press Limited.

  15. Cyclotron production of {sup 61}Cu using natural Zn and enriched {sup 64}Zn targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asad, A. H.; Smith, S. V.; Chan, S.

    2012-12-19

    Copper-61 ({sup 61}Cu) shares with {sup 64}Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study {sup 61}Cu was produced using the {sup 64}Zn(p,{alpha}){sup 61}Cu reaction on natural Zn or enriched {sup 64}Zn targets. The enriched {sup 64}Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30{mu}A; at 11.7, 14.5 or 17.6MeV over 30-60min. The {sup 61}Cumore » (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The {sup 64}Zn target material was recovered after each run, for re-use. In a direct comparison with enriched {sup 64}Zn-target results, {sup 61}Cu production using the cheaper {sup nat}Zn target proved to be an effective alternative.« less

  16. OsSUV3 functions in cadmium and zinc stress tolerance in rice (Oryza sativa L. cv IR64).

    PubMed

    Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-01-01

    Protein of nuclear encoded SUV3 (suppressor of Var 3) gene is a DNA and RNA helicase, localized in mitochondria and is a subunit of the degradosome complex involved in regulation of RNA surveillance and turnover. To overcome the abiotic stress-induced loss of crop yield, a multi-stress tolerant trait is required. Beside salinity stress the heavy metals including cadmium and zinc also affect the yield and quality of food crops. Since rice is a one of the staple food therefore it is important to develop a multi-stress including salinity and metal tolerant variety. Recently we have reported the role of OsSUV3 in salinity stress tolerance in rice; however, its role in metal stress has not been studied so far. Here we report that in response to cadmium and zinc stress the OsSUV3 transcript level is induced in rice and its overexpression in transgenic IR64 rice plants confers the metal stress tolerance. In addition to its previously reported role in salinity stress tolerance, this study further shows the role of OsSUV3 helicase in cadmium and zinc stress tolerance suggesting its involvement in multi-stress tolerance.

  17. Novel hexadentate and pentadentate chelators for 64Cu-based targeted PET imaging

    PubMed Central

    Sin, Inseok; Kang, Chisoo; Bandara, Nilantha; Sun, Xiang; Zhong, Yongliang; Rogers, Buck E.; Chong, Hyun-Soon

    2014-01-01

    A series of new hexadentate and pentadentate chelators were designed and synthesized as chelators of 64Cu. The new pentadentate and hexadentate chelators contain different types of donor groups and are expected to form neutral complexes with Cu(II). The new chelators were evaluated for complex kinetics and stability with 64Cu. The new chelators instantly bound to 64Cu with high labeling efficiency and maximum specific activity. All 64Cu-radiolabeled complexes in human serum remained intact for 2 days. The 64Cu-radiolabeled complexes were further challenged by EDTA in a 100-fold molar excess. Among the 64Cu-radiolabeled complexes evaluated, 64Cu-complex of the new chelator E was well tolerated with a minimal transfer of 64Cu to EDTA. 64Cu-radiolabeled complex of the new chelator E was further evaluated for biodistribution studies using mice and displayed rapid blood clearance and low organ uptake. 64Cu-chelator E produced a favorable in vitro and in vivo complex stability profiles comparable to 64Cu complex of the known hexadentate NOTA chelator. The in vitro and in vivo data highlight strong potential of the new chelator E for targeted PET imaging application. PMID:24657050

  18. Experimental studies of the medical radioisotopes production in neutron spectra generated by 660 MeV protons and 1-8 GeV deuterons in massive uranium target

    NASA Astrophysics Data System (ADS)

    Zhadan, A.; Sotnikov, V.; Adam, J.; Solnyshkin, A.; Tyutyunnikov, S.; Voronko, V.; Zhivkov, P.; Zavorka, L.

    2017-06-01

    The possibility of medical radionuclide 64,67Cu production in spallation neutron spectrum induced by proton and deuteron beams has been studied. Experiments were performed on a massive natural uranium target at the accelerators Phasotron and Nuclotron JINR, Dubna. The main disadvantage of this method is a high 64Cu/67Cu ratio in the final product at EOB. Significantly reduce 64Cu/67Cu ratio is only possible if you use zinc target enriched with 68Zn or 67Zn. The MCNPX simulation of 67,64Cu production and definition of the theoretical limit of the specific activity of 67,64Cu by irradiation of natural zinc and zinc enriched by the 68 isotope were performed. The neutron flux density shouldnot be less than 5.1013 n/cm2/s if we want to obtain high specific activity (>200 GBq/mg) of 67Cu.

  19. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets

    NASA Astrophysics Data System (ADS)

    Alves, F.; Alves, V. H. P.; Do Carmo, S. J. C.; Neves, A. C. B.; Silva, M.; Abrunhosa, A. J.

    2017-06-01

    This work describes the production of two clinically relevant metal radioisotopes 64Cu and 68Ga with a medical cyclotron by the irradiation of liquid targets. New results are presented for the implementation of this methodology in a fully automated system, using commercially available equipment. Liquid target solutions containing enriched 64Ni and 68Zn were loaded, bombarded and transferred to synthesis modules where a purified solution containing the desired radiometal is obtained and can then be used to further radiolabeling within only one hour after End-Of-Bombardment (EOB). Typical production runs using enriched material lead to the production of 5 GBq and 6 GBq (0.14 MBq/(μAh ṡ mg) and 1.5 MBq/(μAh ṡ mg)) of 64Cu and 68Ga; although the technique can be used to obtain up to 25 GBq and 40 GBq, respectively, by simply scaling up the amount of the enriched material. Purified solutions containing 64Cu and 68Ga were obtained within 30 min after EOB and used to produce 64Cu-ATSM and 68Ga-DOTA-NOC, respectively, with quality parameters suitable for human use.

  20. Pentalysine β-Carbonylphthalocyanine Zinc: An Effective Tumor-Targeting Photosensitizer for Photodynamic Therapy

    PubMed Central

    Chen, Zhuo; Zhou, Shanyong; Chen, Jincan; Deng, Yicai; Luo, Zhipu; Chen, Hongwei; Hamblin, Michael R.

    2010-01-01

    Unsymmetrical phthalocyanine derivatives have been widely studied as photosensitizers for photodynamic therapy (PDT), targeting various tumor types. However, the preparation of unsymmetrical phthalocyanines is always a challenge due to the presence of many possible structural isomers. Herein we report a new unsymmetrical zinc phthalocyanine, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5), that was prepared in large quantity and high purity. This is a water-soluble cationic photosensitizer and maintains a high quantum yield of singlet oxygen generation similar to that of unsubstituted zinc phthalocyanine (ZnPc). Compared with anionic ZnPc counterparts, ZnPc-(Lys)5 shows a higher level cellular uptake and 20-fold higher phototoxicity toward tumor cells. Pharmacokinetics and PDT studies of ZnPc-(Lys)5 in S180 tumor-bearing mice showed a high ratio of tumor versus skin retention and significant tumor inhibition. This new molecular framework will allow synthetic diversity in the number of lysine residues incorporated and will facilitate future QSAR studies. PMID:20458713

  1. Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases1[W][OA

    PubMed Central

    Curtin, Shaun J.; Zhang, Feng; Sander, Jeffry D.; Haun, William J.; Starker, Colby; Baltes, Nicholas J.; Reyon, Deepak; Dahlborg, Elizabeth J.; Goodwin, Mathew J.; Coffman, Andrew P.; Dobbs, Drena; Joung, J. Keith; Voytas, Daniel F.; Stupar, Robert M.

    2011-01-01

    We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform—a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting DICER-LIKE (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome. PMID:21464476

  2. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs.

    PubMed

    Chen, Shu-Chuan; Jeng, King-Song; Lai, Michael M C

    2017-10-15

    Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5' untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of

  3. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs

    PubMed Central

    Chen, Shu-Chuan; Jeng, King-Song

    2017-01-01

    ABSTRACT Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5′ untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the

  4. Targeted Zinc Delivery: A Novel Treatment for Prostate Cancer

    DTIC Science & Technology

    2010-06-01

    aconitase, which normally functions to oxidize citrate during the Krebs cycle . Because citrate is a principle component of seminal fluid, prostate...tissue, likely due to the metabolic effects of zinc in the Krebs cycle . That is, because zinc inhibits m- aconitase, loss of zinc allows for greater...secretory cells do not complete the oxidation of citrate in the mitochondria and the zinc-mediated inhibition of m-aconitase is crucial for the

  5. Zinc at glutamatergic synapses.

    PubMed

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  6. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  7. Zinc for the common cold.

    PubMed

    Singh, Meenu; Das, Rashmi R

    2011-02-16

    The common cold is one of the most widespread illnesses and is a leading cause of visits to the doctor and absenteeism from school and work. Trials conducted since 1984 investigating the role of zinc for the common cold symptoms have had mixed results. Inadequate treatment masking and reduced bioavailability of zinc from some formulations have been cited as influencing results. To assess the effect of zinc on common cold symptoms. We searched CENTRAL (2010, Issue 2) which contains the Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to May week 3, 2010) and EMBASE (1974 to June 2010). Randomised, double-blind, placebo-controlled trials using zinc for at least five consecutive days to treat, or for at least five months to prevent the common cold. Two review authors independently extracted data and assessed trial quality. We included 13 therapeutic trials (966 participants) and two preventive trials (394 participants). Intake of zinc is associated with a significant reduction in the duration (standardized mean difference (SMD) -0.97; 95% confidence interval (CI) -1.56 to -0.38) (P = 0.001), and severity of common cold symptoms (SMD -0.39; 95% CI -0.77 to -0.02) (P = 0.04). There was a significant difference between the zinc and control group for the proportion of participants symptomatic after seven days of treatment (OR 0.45; 95% CI 0.2 to 1.00) (P = 0.05). The incidence rate ratio (IRR) of developing a cold (IRR 0.64; 95% CI 0.47 to 0.88) (P = 0.006), school absence (P = 0.0003) and prescription of antibiotics (P < 0.00001) was lower in the zinc group. Overall adverse events (OR 1.59; 95% CI 0.97 to 2.58) (P = 0.06), bad taste (OR 2.64; 95% CI 1.91 to 3.64) (P < 0.00001) and nausea (OR 2.15; 95% CI 1.44 to 3.23) (P = 0.002) were higher in the zinc group. Zinc administered within 24 hours of onset of symptoms reduces the duration and severity of the common cold in healthy people. When supplemented for at least five months, it reduces cold

  8. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    PubMed Central

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  9. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach.

    PubMed

    Amato, Anastasia; Lucas, Xavier; Bortoluzzi, Alessio; Wright, David; Ciulli, Alessio

    2018-04-20

    Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.

  10. Synthetic Zinc Finger Proteins: The Advent of Targeted Gene Regulation and Genome Modification Technologies

    PubMed Central

    2015-01-01

    Conspectus The understanding of gene regulation and the structure and function of the human genome increased dramatically at the end of the 20th century. Yet the technologies for manipulating the genome have been slower to develop. For instance, the field of gene therapy has been focused on correcting genetic diseases and augmenting tissue repair for more than 40 years. However, with the exception of a few very low efficiency approaches, conventional genetic engineering methods have only been able to add auxiliary genes to cells. This has been a substantial obstacle to the clinical success of gene therapies and has also led to severe unintended consequences in several cases. Therefore, technologies that facilitate the precise modification of cellular genomes have diverse and significant implications in many facets of research and are essential for translating the products of the Genomic Revolution into tangible benefits for medicine and biotechnology. To address this need, in the 1990s, we embarked on a mission to develop technologies for engineering protein–DNA interactions with the aim of creating custom tools capable of targeting any DNA sequence. Our goal has been to allow researchers to reach into genomes to specifically regulate, knock out, or replace any gene. To realize these goals, we initially focused on understanding and manipulating zinc finger proteins. In particular, we sought to create a simple and straightforward method that enables unspecialized laboratories to engineer custom DNA-modifying proteins using only defined modular components, a web-based utility, and standard recombinant DNA technology. Two significant challenges we faced were (i) the development of zinc finger domains that target sequences not recognized by naturally occurring zinc finger proteins and (ii) determining how individual zinc finger domains could be tethered together as polydactyl proteins to recognize unique locations within complex genomes. We and others have since used

  11. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach

    PubMed Central

    2018-01-01

    Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers. PMID:29529862

  12. Development of 64Cu-NOTA-Trastuzumab for HER2 targeting: radiopharmaceutical with improved pharmacokinetics for human study.

    PubMed

    Woo, Sang-Keun; Jang, Su Jin; Seo, Min-Jung; Park, Ju Hui; Kim, Byoung Soo; Kim, Eun Jung; Lee, Yong Jin; Lee, Tae Sup; An, Gwang Il; Song, In Ho; Seo, Youngho; Kim, Kwang Il; Kang, Joo Hyun

    2018-05-18

    Purpose The purpose of this study was to develop 64 Cu-labeled trastuzumab with improved pharmacokinetics for human epidermal growth factor receptor 2. Methods Trastuzumab was conjugated with SCN-Bn-NOTA and radiolabeled with 64 Cu. Serum stability and immunoreactivity of 64 Cu-NOTA-trastuzumab were tested. Small animal PET imaging and biodistribution study were performed in HER2-positive breast cancer xenograft model (BT-474). Internal dosimetry of experimental animals was performed using the image-based approach with the Monte Carlo N-Particle Code. Results 64 Cu-NOTA-trastuzumab was prepared with high radiolabel yield and radiochemical purity (>98%) and showed high stability in serum and good immunoreactivity. Uptake of 64 Cu-NOTA-trastuzumab was highest at 48 h after injection determined by PET imaging and biodistribution results in BT-474 tumors. The blood radioactivity concentrations of 64 Cu-NOTA-trastuzumab decreased bi-exponentially with time in both mice with and without BT-474 tumor xenografts. The calculated absorbed dose of 64 Cu-NOTA-trastuzumab was 0.048 mGy/MBq for the heart, 0.079 for the liver and 0.047 for the spleen. Conclusion 64 Cu-NOTA-trastuzumab was effectively targeted to the HER2-expressing tumor in vitro and in vivo , and it exhibited relatively low absorbed dose due to short residence time. Therefore, 64 Cu-NOTA-trastuzumab could be applied to select the right patients/right timing for HER2 therapy, to monitor the treatment response after HER2-targeted therapy, and to detect distal or metastatic spread. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field

    PubMed Central

    Trijatmiko, Kurniawan R.; Dueñas, Conrado; Tsakirpaloglou, Nikolaos; Torrizo, Lina; Arines, Felichi Mae; Adeva, Cheryl; Balindong, Jeanette; Oliva, Norman; Sapasap, Maria V.; Borrero, Jaime; Rey, Jessica; Francisco, Perigio; Nelson, Andy; Nakanishi, Hiromi; Lombi, Enzo; Tako, Elad; Glahn, Raymond P.; Stangoulis, James; Chadha-Mohanty, Prabhjit; Johnson, Alexander A. T.; Tohme, Joe; Barry, Gerard; Slamet-Loedin, Inez H.

    2016-01-01

    More than two billion people are micronutrient deficient. Polished grains of popular rice varieties have concentration of approximately 2 μg g−1 iron (Fe) and 16 μg g−1 zinc (Zn). The HarvestPlus breeding programs for biofortified rice target 13 μg g−1 Fe and 28 μg g−1 Zn to reach approximately 30% of the estimated average requirement (EAR). Reports on engineering Fe content in rice have shown an increase up to 18 μg g−1 in glasshouse settings; in contrast, under field conditions, 4 μg g−1 was the highest reported concentration. Here, we report on selected transgenic events, field evaluated in two countries, showing 15 μg g−1 Fe and 45.7 μg g−1 Zn in polished grain. Rigorous selection was applied to 1,689 IR64 transgenic events for insert cleanliness and, trait and agronomic performances. Event NASFer-274 containing rice nicotianamine synthase (OsNAS2) and soybean ferritin (SferH-1) genes showed a single locus insertion without a yield penalty or altered grain quality. Endosperm Fe and Zn enrichment was visualized by X-ray fluorescence imaging. The Caco-2 cell assay indicated that Fe is bioavailable. No harmful heavy metals were detected in the grain. The trait remained stable in different genotype backgrounds. PMID:26806528

  14. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  15. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  16. Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging

    PubMed Central

    Rockey, William M.; Huang, Ling; Kloepping, Kyle C.; Baumhover, Nicholas J.; Giangrande, Paloma H.; Schultz, Michael K.

    2014-01-01

    Ribonucleic acid (RNA) aptamers with high affinity and specificity for cancer-specific cell-surface antigens are promising reagents for targeted molecular imaging of cancer using positron emission tomography (PET). For this application, aptamers must be conjugated to chelators capable of coordinating PET-radionuclides (e.g. copper-64, 64Cu) to enable radiolabeling for in vivo imaging of tumors. This study investigates the choice of chelator and radiolabeling parameters such as pH and temperature for the development of 64Cu-labeled RNA-based targeted agents for PET imaging. The characterization and optimization of labeling conditions are described for four chelator-aptamer complexes. Three commercially available bifunctional macrocyclic chelators (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid mono N-hydroxysuccinimide [DOTA-NHS]; S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid [p-SCN-Bn-NOTA]; and p-SCN-Bn-3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid [p-SCN-Bn-PCTA]), as well as the polyamino-macrocyclic diAmSar (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane-1,8-diamine) were conjugated to A10–3.2, a RNA aptamer which has been shown to bind specifically to a prostate cancer-specific cell-surface antigen (PSMA). Although a commercial bifunctional version of diAmSar was not available, RNA conjugation with this chelator was achieved in a two-step reaction by the addition of a disuccinimidyl suberate linker. Radiolabeling parameters (e.g. pH, temperature, and time) for each chelator-RNA conjugate were assessed in order to optimize specific activity and RNA stability. Furthermore, the radiolabeled chelator-coupled RNA aptamers were evaluated for binding specificity to their target antigen. In summary, key parameters were established for optimal radiolabeling of RNA aptamers for eventual PET imaging with 64Cu. PMID:21658962

  17. Screening for target toxins of the antiophidic protein DM64 through a gel-based interactomics approach.

    PubMed

    Rocha, Surza L G; Neves-Ferreira, Ana G C; Trugilho, Monique R O; Angulo, Yamileth; Lomonte, Bruno; Valente, Richard H; Domont, Gilberto B; Perales, Jonas

    2017-01-16

    DM64 is a glycosylated protein with antivenom activity isolated from the serum of the opossum Didelphis aurita. It binds non-covalently to myotoxins I (Asp49) and II (Lys49) from Bothrops asper venom and inhibits their myotoxic effect. In this study, an affinity column with immobilized DM64 as bait was used to fish potential target toxins. All ten isolated myotoxins tested were able to effectively bind to the DM64 column. To better access the specificity of the inhibitor, crude venoms from Bothrops (8 species), Crotalus (2 species) and Naja naja atra were submitted to the affinity purification. Venom fractions bound and nonbound to the DM64 column were analyzed by two-dimensional gel electrophoresis and MALDI-TOF/TOF MS. Although venom fractions bound to the column were mainly composed of basic PLA 2 , a few spots corresponding to acidic PLA 2 were also observed. Some unexpected protein spots were also identified: C-type lectins and CRISP may represent putative new targets for DM64, whereas the presence of serine peptidases in the venom bound fraction is likely a consequence of nonspecific binding to the column matrix. The present results contribute to better delineate the inhibitory potential of DM64, providing a framework for the development of more specific antivenom therapies. Local tissue damage induced by myotoxic PLA 2 remains a serious consequence of snake envenomation, since it is only partially neutralized by traditional antivenom serotherapy. Myotoxin inhibition by highly specific molecules offers great promise in the treatment of snakebites, a health problem largely neglected by governments and pharmaceutical industries. Bioactive compounds such as DM64 can represent a valuable source of scaffolds for drug development in this area. The present study has systematically profiled the binding specificity of DM64 toward a variety of snake venom toxin classes and therefore can lead to a better understanding of the structure-function relationship of this

  18. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model.

    PubMed

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-09-26

    Here, we report that it's feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64 Cu. 64 Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro . The specificity of 64 Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated ( n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64 Cu-PSMA-617. All those results suggested 64 Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer.

  19. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model

    PubMed Central

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-01-01

    Here, we report that it’s feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64Cu. 64Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro. The specificity of 64Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated (n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64Cu-PSMA-617. All those results suggested 64Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer. PMID:29088775

  20. αVβ3 Integrin-Targeted Radionuclide Therapy with 64Cu-cyclam-RAFT-c(-RGDfK-)4.

    PubMed

    Jin, Zhao-Hui; Furukawa, Takako; Degardin, Mélissa; Sugyo, Aya; Tsuji, Atsushi B; Yamasaki, Tomoteru; Kawamura, Kazunori; Fujibayashi, Yasuhisa; Zhang, Ming-Rong; Boturyn, Didier; Dumy, Pascal; Saga, Tsuneo

    2016-09-01

    The transmembrane cell adhesion receptor αVβ3 integrin (αVβ3) has been identified as an important molecular target for cancer imaging and therapy. We have developed a tetrameric cyclic RGD (Arg-Gly-Asp) peptide-based radiotracer (64)Cu-cyclam-RAFT-c(-RGDfK-)4, which successfully captured αVβ3-positive tumors and angiogenesis by PET. Here, we subsequently evaluated its therapeutic potential and side effects using an established αVβ3-positive tumor mouse model. Mice with subcutaneous U87MG glioblastoma xenografts received single administrations of 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 (37 MBq/nmol), peptide control, or vehicle solution and underwent tumor growth evaluation. Side effects were assessed in tumor-bearing and tumor-free mice in terms of body weight, routine hematology, and hepatorenal functions. Biodistribution of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 with ascending peptide doses (0.25-10 nmol) and with the therapeutic dose of 2 nmol were determined at 3 hours and at various time points (2 minutes-24 hours) postinjection, respectively, based on which radiation-absorbed doses were estimated. The results revealed that (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently slowed down the tumor growth. The mean tumor doses were 1.28 and 1.81 Gy from 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4, respectively. Peptide dose study showed that the tumor uptake of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently decreased at doses ≥1 nmol, indicating a saturation of αVβ3 with the administered therapeutic doses (1 and 2 nmol). Combined analysis of the data from tumor-bearing and tumor-free mice revealed no significant toxicity caused by 37-74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 Our study demonstrates the therapeutic efficacy and safety of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 for αVβ3-targeted radionuclide therapy. (64)Cu-cyclam-RAFT-c(-RGDfK-)4 would be a promising theranostic drug for cancer imaging and therapy. Mol Cancer Ther; 15(9); 2076-85. ©2016 AACR

  1. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  2. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  3. Design and Modular Construction of A Polymeric Nanoparticle for Targeted Atherosclerosis Positron Emission Tomography Imaging: A Story of 25% 64Cu-CANF-Comb

    PubMed Central

    Woodard, Pamela K.; Liu, Yongjian; Pressly, Eric D.; Luehmann, Hannah P.; Detering, Lisa; Sultan, Deborah; Laforest, Richard; McGrath, Alaina J.; Gropler, Robert J.; Hawker, Craig J.

    2016-01-01

    Purpose To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles. Methods To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after 64Cu radiolabeling. PET imaging was performed on an apolipoprotein E–deficient (ApoE−/−) mouse atherosclerosis model to assess the NPRC targeting efficiency. For comparison, an in vivo blood metabolism study was carried out in WT mice. Results All three 64Cu-CANF-comb nanoparticles showed improved biodistribution profiles, including significantly reduced accumulation in both liver and spleen, compared to the non-targeted 64Cu-comb. Of the three nanoparticles, the 25% 64Cu-CANF-comb demonstrated the best NPRC targeting specificity and sensitivity in ApoE−/− mice. Metabolism studies showed that the radiolabeled CANF-comb was stable in blood up to 9 days. Histopathological analyses confirmed the up-regulation of NPRC along the progression of atherosclerosis. Conclusion The 25% 64Cu-CANF-comb demonstrated its potential as a PET imaging agent to detect atherosclerosis progression and status. PMID:27286872

  4. Thermodynamic properties of lanthanum in gallium-zinc alloys

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. S.; Shepin, I. E.; Kharina, E. A.; Shchetinskiy, A. V.; Volkovich, V. A.; Yamshchikov, L. F.

    2016-09-01

    Thermodynamic properties of lanthanum were determined in gallium-zinc alloys of the eutectic and over-eutectic compositions. The electromotive force measurements were used to determine thermodynamic activity and sedimentation technique to measure solubility of lanthanum in liquid metal alloys. Temperature dependencies of lanthanum activity, solubility and activity coefficients in alloys with Ga-Zn mixtures containing 3.64, 15 and 50 wt. % zinc were obtained.

  5. Observation of the effect of targeted therapy of 64-slice spiral CT combined with cryoablation for liver cancer.

    PubMed

    Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang

    2017-06-14

    To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group ( n = 56, 65 tumors) and 64-slice group ( n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. Guided scan times in the dual-slice group was longer than that in the 64-slice group ( t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ 2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice group at four weeks

  6. An overview of zinc addition for BWR dose rate control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marble, W.J.

    1995-03-01

    This paper presents an overview of the BWRs employing feedwater zinc addition to reduce primary system dose rates. It identifies which BWRs are using zinc addition and reviews the mechanical injection and passive addition hardware currently being employed. The impact that zinc has on plant chemistry, including the factor of two to four reduction in reactor water Co-60 concentrations, is discussed. Dose rate results, showing the benefits of implementing zinc on either fresh piping surfaces or on pipes with existing films are reviewed. The advantages of using zinc that is isotopically enhanced by the depletion of the Zn-64 precursor tomore » Zn-65 are identified.« less

  7. Preparation and In Vitro Photodynamic Activity of Glucosylated Zinc(II) Phthalocyanines as Underlying Targeting Photosensitizers.

    PubMed

    Liu, Jian-Yong; Wang, Chen; Zhu, Chun-Hui; Zhang, Zhi-Hong; Xue, Jin-Ping

    2017-05-19

    Two novel glucosylated zinc(ІІ) phthalocyanines 7a-7b, as well as the acetyl-protected counterparts 6a-6b, have been synthesized by the Cu(I)-catalyzed 1,3-dipolar cycloaddition between the propargylated phthalocyanine and azide-substituted glucoses. All of these phthalocyanines were characterized with various spectroscopic methods and studied for their photo-physical, photo-chemical, and photo-biological properties. With glucose as the targeting unit, phthalocyanines 7a-7b exhibit a specific affinity to MCF-7 breast cancer cells over human embryonic lung fibroblast (HELF) cells, showing higher cellular uptake. Upon illumination, both photosensitizers show high cytotoxicity with IC 50 as low as 0.032 µM toward MCF-7 cells, which are attributed to their high cellular uptake and low aggregation tendency in the biological media, promoting the generation of intracellular reactive oxygen species (ROS). Confocal laser fluorescence microscopic studies have also revealed that they have high and selective affinities to the lysosomes, but not the mitochondria, of MCF-7 cells. The results show that these two glucosylated zinc(II) phthalocyanines are potential anticancer agents for targeting photodynamic therapy.

  8. Selective inhibitors of zinc-dependent histone deacetylases. Therapeutic targets relevant to cancer.

    PubMed

    Kollar, Jakub; Frecer, Vladimir

    2015-01-01

    Histone deacetylases (HDACs), which act on acetylated histones and/or other non-histone protein substrates, represent validated epigenetic targets for the treatment of cancer and other human diseases. The inhibition of HDAC activity was shown to induce cell cycle arrest, differentiation, apoptosis as well as a decrease in proliferation, angiogenesis, migration, and cell resistance to chemotherapy. Targeting single HDAC isoforms with selective inhibitors will help to reveal the role of individual HDACs in cancer development or uncover further biological consequences of protein acetylation. This review focuses on conventional zinc-containing HDACs. In its first part, the biological role of individual HDACs in various types of cancer is summarized. In the second part, promising HDAC inhibitors showing activity both in enzymatic and cell-based assays are surveyed with an emphasis on the inhibitors selective to the individual HDACs.

  9. VPAC1 Targeted 64Cu-TP3805 kit preparation and its evaluation.

    PubMed

    Tripathi, Sushil K; Kumar, Pardeep; Trabulsi, Edouard J; Kim, Sung; McCue, Peter A; Intenzo, Charles; Berger, Adam; Gomella, Leonard; Thakur, Mathew L

    2017-08-01

    Previously, our laboratory has shown that 64 Cu-TP3805 can specifically target VPAC1 receptors and be used for positron emission tomography (PET) imaging of breast (BC) and prostate cancer (PC) in humans. Present work is aimed at the formulation of a freeze-dried diaminedithiol-peptide (N 2 S 2 -TP3805) kit and it's evaluation for the preparation of 64 Cu labeled TP3805. Parameters such as pH, temperature and incubation time were examined that influenced the radiolabeling efficiency and stability of the product. Kits were prepared under different conditions and radiolabeling efficiency of TP3805 kit was evaluated for a range of pH3.5-8.5, after addition of 64 Cu in 30μl, 0.1M HCl. Incubation temperature (37-90°C) and time (30-120min.) were also investigated. Kits were stored at -10°C and their long term stability was determined as a function of their radiolabeling efficiency. Further, stability of 64 Cu-TP3805 complex was evaluated in presence of fetal bovine serum and bovine serum albumin by using SDS polyacrylamide gel electrophoresis. Kits were then used for PET imaging of BC and PC following eIND (101550) and institutional approvals. Specificity of 64 Cu-TP3805 for VPAC1 was examined with digital autoradiography (DAR) of prostate tissues obtained after prostatectomy, benign prostatic hyperplasia (BPH) tissue, and benign and malignant lymph nodes. Results were compared with corresponding tissue histology. Radiolabeling efficiency was ≥95% at final pH ~7.2 when incubated at 50°C for 90min. Kits were stable up to 18months when stored at -10°C, and 64 Cu-TP3805 complex exhibited excellent stability for up to 4h at room temperature. 64 Cu-TP3805 complex did not show any transchelation even after 2h incubation at 37°C in 10% FBS as well as in BSA as determined by SDS PAGE analysis. DAR identified ≥95% of malignant lesions 11 new PC lesions, 20 high grade prostatic intraepithelial neoplasia, 2/2 ejaculatory ducts and 5/5 urethra verumontanum not previously

  10. Targeting Phosphatidylserine with a 64Cu-Labeled Peptide for Molecular Imaging of Apoptosis.

    PubMed

    Perreault, Amanda; Richter, Susan; Bergman, Cody; Wuest, Melinda; Wuest, Frank

    2016-10-03

    Molecular imaging of programmed cell death (apoptosis) in vivo is an innovative strategy for early assessment of treatment response and treatment efficacy in cancer patients. Externalization of phosphatidylserine (PS) to the cell membrane surface of dying cells makes this phospholipid an attractive molecular target for the development of apoptosis imaging probes. In this study, we have radiolabeled PS-binding 14-mer peptide FNFRLKAGAKIRFG (PSBP-6) with positron-emitter copper-64 ( 64 Cu) for PET imaging of apoptosis. Peptide PSBP-6 was conjugated with radiometal chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) through an aminovaleric acid (Ava) linker for subsequent radiolabeling with 64 Cu to prepare radiotracer 64 Cu-NOTA-Ava-PSBP-6. PS-binding potencies of PSBP-6, NOTA-Ava-PSBP-6, and nat Cu-NOTA-Ava-PSBP-6 were determined in a competitive radiometric PS-binding assay. Radiotracer 64 Cu-NOTA-Ava-PSBP-6 was studied in camptothecin-induced apoptotic EL4 mouse lymphoma cells and in a murine EL4 tumor model of apoptosis using dynamic PET imaging. Peptide PSBP-6 was also conjugated via an Ava linker with fluorescein isothiocyanate (FITC). FITC-Ava-PSBP-6 was evaluated in flow cytometry and fluorescence confocal microscopy experiments. Radiopeptide 64 Cu-NOTA-Ava-PSBP-6 was synthesized in high radiochemical yields of >95%. The IC 50 values for PS-binding potency of PSBP-6, NOTA-Ava-PSBP-6, and nat Cu-NOTA-PSBP-6 were 600 μM, 30 μM, and 23 μM, respectively. A competitive radiometric cell binding assay confirmed binding of 64 Cu-NOTA-Ava-PSBP-6 to camptothecin-induced apoptotic EL4 cells in a Ca 2+ -independent manner. PET imaging studies demonstrated significantly higher uptake of 64 Cu-NOTA-Ava-PSBP-6 in apoptotic EL4 tumors (SUV 5min 0.95 ± 0.04) compared to control tumors (SUV 5min 0.74 ± 0.03). Flow cytometry studies showed significantly higher binding of FITC-Ava-PSBP-6 to EL4 cells treated with camptothecin compared to untreated cells

  11. Observation of the effect of targeted therapy of 64-slice spiral CT combined with cryoablation for liver cancer

    PubMed Central

    Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang

    2017-01-01

    AIM To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. METHODS A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group (n = 56, 65 tumors) and 64-slice group (n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. RESULTS Guided scan times in the dual-slice group was longer than that in the 64-slice group (t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice

  12. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  13. Negative modulation of presynaptic activity by zinc released from Schaffer collaterals.

    PubMed

    Takeda, Atsushi; Fuke, Sayuri; Tsutsumi, Wataru; Oku, Naoto

    2007-12-01

    The role of zinc in excitation of Schaffer collateral-CA1 pyramidal cell synapses is poorly understood. Schaffer collaterals stained with ZnAF-2 or ZnAF-2DA, a membrane-impermeable or a membrane-permeable zinc indicator, respectively, were treated by tetanic stimulation (200 Hz, 1 sec). Extracellular and intracellular ZnAF-2 signals were increased in the stratum radiatum of the CA1, in which Schaffer collateral synapses exist. Both the increases were completely blocked in the presence of 1 mM CaEDAT, a membrane-impermeable zinc chelator, suggesting that 1 mM CaEDTA is effective for chelating zinc released from Schaffer collaterals. The role of Schaffer collateral zinc in presynaptic activity was examined by using FM4-64, a fluorescent indicator for vesicular exocytosis. The decrease in FM4-64 signal during tetanic stimulation (10 Hz, 180 sec) was enhanced in Schaffer collaterals in the presence of 1 mM CaEDTA but suppressed in the presence of 5 microM ZnC1(2), suggesting that zinc released from Schaffer collaterals suppresses presynaptic activity during tetanic stimulation. When Schaffer collateral synapses stained with calcium orange AM, a membrane-permeable calcium indicator, were regionally stimulated with 1 mM glutamate, calcium orange signal was increased in the CA1 pyramidal cell layer. This increase was enhanced in the presence of CaEDTA and attenuated in the presence of zinc. These results suggest that zinc attenuates excitation of Schaffer collateral synapses elicited with glutamate via suppression of presynaptic activity. (c) 2007 Wiley-Liss, Inc.

  14. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases

    PubMed Central

    Merlin, Christine; Beaver, Lauren E.; Taylor, Orley R.; Wolfe, Scot A.; Reppert, Steven M.

    2013-01-01

    The development of reverse-genetic tools in “nonmodel” insect species with distinct biology is critical to establish them as viable model systems. The eastern North American monarch butterfly (Danaus plexippus), whose genome is sequenced, has emerged as a model to study animal clocks, navigational mechanisms, and the genetic basis of long-distance migration. Here, we developed a highly efficient gene-targeting approach in the monarch using zinc-finger nucleases (ZFNs), engineered nucleases that generate mutations at targeted genomic sequences. We focused our ZFN approach on targeting the type 2 vertebrate-like cryptochrome gene of the monarch (designated cry2), which encodes a putative transcriptional repressor of the monarch circadian clockwork. Co-injections of mRNAs encoding ZFNs targeting the second exon of monarch cry2 into “one nucleus” stage embryos led to high-frequency nonhomologous end-joining-mediated, mutagenic lesions in the germline (up to 50%). Heritable ZFN-induced lesions in two independent lines produced truncated, nonfunctional CRY2 proteins, resulting in the in vivo disruption of circadian behavior and the molecular clock mechanism. Our work genetically defines CRY2 as an essential transcriptional repressor of the monarch circadian clock and provides a proof of concept for the use of ZFNs for manipulating genes in the monarch butterfly genome. Importantly, this approach could be used in other lepidopterans and “nonmodel” insects, thus opening new avenues to decipher the molecular underpinnings of a variety of biological processes. PMID:23009861

  15. SIMS depth profiling of rubber-tyre cord bonding layers prepared using 64Zn depleted ZnO

    NASA Astrophysics Data System (ADS)

    Fulton, W. S.; Sykes, D. E.; Smith, G. C.

    2006-07-01

    Zinc oxide and copper/zinc sulphide layers are formed during vulcanisation and moulding of rubber to brass-coated steel tyre reinforcing cords. Previous studies have described how zinc diffuses through the rubber-brass interface to form zinc sulphide, and combines with oxygen to create zinc oxide during dezincification. The zinc is usually assumed to originate in the brass of the tyre cord, however, zinc oxide is also present in the rubber formulation. We reveal how zinc from these sources is distributed within the interfacial bonding layers, before and after heat and humidity ageing. Zinc oxide produced using 64Zn-isotope depleted zinc was mixed in the rubber formulation in place of the natural ZnO and the zinc isotope ratios within the interfacial layers were followed by secondary ion mass spectroscopy (SIMS) depth profiling. Variations in the relative ratios of the zinc isotopes during depth profiling were measured for unaged, heat-aged and humidity-aged wire samples and in each case a relatively large proportion of the zinc incorporated into the interfacial layer as zinc sulphide was shown to have originated from ZnO in the rubber compound.

  16. Synthesis and characterization of theranostic poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymer targeting tumor angiogenesis: tumor localization visualized by positron emission tomography.

    PubMed

    Yuan, Jianchao; Zhang, Haiyuan; Kaur, Harpreet; Oupicky, David; Peng, Fangyu

    2013-05-01

    Poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers were synthesized and characterized for tumor localization in vivo as a theranostic scaffold for cancer imaging and anticancer drug delivery targeting tumor angiogenesis. Tumor localization of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was visualized in mice bearing human prostate cancer xenografts by positron emission tomography (PET) using a microPET scanner. PET quantitative analysis demonstrated that tumor 64Cu radioactivity (2.75 ± 0.34 %ID/g) in tumor-bearing mice 3 hours following intravenous injection of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was significantly higher than the tumor 64Cu radioactivity (1.29 ± 0.26 %ID/g) in tumor-bearing mice injected with the nontargeted poly(HPMA)-DOTA-64Cu copolymers (p = .004). The poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers hold potential as a theranostic scaffold for cancer imaging and radiochemotherapy of prostate cancer targeting tumor angiogenesis by noninvasive tracking with PET.

  17. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Improved electrolyte for zinc-bromine flow batteries

    NASA Astrophysics Data System (ADS)

    Wu, M. C.; Zhao, T. S.; Wei, L.; Jiang, H. R.; Zhang, R. H.

    2018-04-01

    Conventional zinc bromide electrolytes offer low ionic conductivity and often trigger severe zinc dendrite growth in zinc-bromine flow batteries. Here we report an improved electrolyte modified with methanesulfonic acid, which not only improves the electrolyte conductivity but also ameliorates zinc dendrite. Experimental results also reveal that the kinetics and reversibility of Zn2+/Zn and Br2/Br- are improved in this modified electrolyte. Moreover, the battery's internal resistance is significantly reduced from 4.9 to 2.0 Ω cm2 after adding 1 M methanesulfonic acid, thus leading to an improved energy efficiency from 64% to 75% at a current density of 40 mA cm-2. More impressively, the battery is capable of delivering an energy efficiency of about 78% at a current density of as high as 80 mA cm-2 when the electrode is replaced by a thermally treated one. Additionally, zinc dendrite growth is found to be effectively suppressed in methanesulfonic acid supported media, which, as a result, enables the battery to be operated for 50 cycles without degradation, whereas the one without methanesulfonic acid suffers from significant decay after only 40 cycles, primarily due to severe zinc dendrite growth. These superior results indicate methanesulfonic acid is a promising supporting electrolyte for zinc-bromine flow batteries.

  19. Selection of organic acid leaching reagent for recovery of zinc and manganese from zinc-carbon and alkaline spent batteries

    NASA Astrophysics Data System (ADS)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Ramadhan, I. T.; Kusumadewi, F. A.

    2018-03-01

    Zinc-carbon and alkaline batteries are often used in electronic equipment that requires small quantities of power. The waste from these batteries contains valuable metals, such as zinc and manganese, that are needed in many industries and can pollute the environment if not treated properly. This paper concerns the recovery of zinc and manganese metals from zinc-carbon and alkaline spent batteries with leaching method and using organic acid as the environmental friendly leaching reagent. Three different organic acids, namely citric acid, malic acid and aspartic acid, were used as leaching reagents and compared with sulfuric acid as non-organic acid reagents that often used for leaching. The presence of hydrogen peroxide as manganese reducers was investigated for both organic and non-organic leaching reagents. The result showed that citric acid can recover 64.37% Zinc and 51.32% Manganese, while malic acid and aspartic acid could recover less than these. Hydrogen peroxide gave the significant effect for leaching manganese with non-organic acid, but not with organic acid.

  20. Nuclear and Fluorescent Labeled PD-1-Liposome-DOX-64Cu/IRDye800CW Allows Improved Breast Tumor Targeted Imaging and Therapy.

    PubMed

    Du, Yang; Liang, Xiaolong; Li, Yuan; Sun, Ting; Jin, Zhengyu; Xue, Huadan; Tian, Jie

    2017-11-06

    The overexpression of programmed cell death-1 (PD-1) in tumors as breast cancer makes it a possible target for cancer imaging and therapy. Advances in molecular imaging, including radionuclide imaging and near-infrared fluorescence (NIRF) imaging, enable the detection of tumors with high sensitivity. In this study, we aim to develop a novel PD-1 antibody targeted positron emission tomography (PET) and NIRF labeled liposome loaded with doxorubicin (DOX) and evaluate its application for in vivo cancer imaging and therapy. IRDye800CW and 64 Cu were conjugated to liposomes with PD-1 antibody labeling, and DOX was inside the liposomes to form theranostic nanoparticles. The 4T1 tumors were successfully visualized with PD-1-Liposome-DOX- 64 Cu/IRDye800CW using NIRF/PET imaging. The bioluminescent imaging (BLI) results showed that tumor growth was significantly inhibited in the PD-1-Liposome-DOX-treated group than the IgG control. Our results highlight the potential of using dual-labeled theranostic PD-1 mAb-targeted Liposome-DOX- 64 Cu/IRDye800CW for the management of breast tumor.

  1. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus

    PubMed Central

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G; Stork, Christian; Li, Yang V

    2016-01-01

    Zinc (Zn2+) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis. PMID:27186321

  2. The zinc paradigm for metalloneurochemistry.

    PubMed

    Barr, Chelsea A; Burdette, Shawn C

    2017-05-09

    Neurotransmission and sensory perception are shaped through metal ion-protein interactions in various brain regions. The term "metalloneurochemistry" defines the unique field of bioinorganic chemistry focusing on these processes, and zinc has been the leading target of metalloneurochemists in the almost 15 years since the definition was introduced. Zinc in the hippocampus interacts with receptors that dictate ion flow and neurotransmitter release. Understanding the intricacies of these interactions is crucial to uncovering the role that zinc plays in learning and memory. Based on receptor similarities and zinc-enriched neurons (ZENs) in areas of the brain responsible for sensory perception, such as the olfactory bulb (OB), and dorsal cochlear nucleus (DCN), zinc participates in odor and sound perception. Development and improvement of methods which allow for precise detection and immediate manipulation of zinc ions in neuronal cells and in brain slices will be critical in uncovering the synaptic action of zinc and, more broadly, the bioinorganic chemistry of cognition. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos

    PubMed Central

    Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi

    2012-01-01

    To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830

  4. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    USGS Publications Warehouse

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  5. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees.

    PubMed

    Peer, Reut; Rivlin, Gil; Golobovitch, Sara; Lapidot, Moshe; Gal-On, Amit; Vainstein, Alexander; Tzfira, Tzvi; Flaishman, Moshe A

    2015-04-01

    Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs. Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees-apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.

  6. Zinc in Infection and Inflammation.

    PubMed

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  7. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding*

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Sun, Xi; Liu, Ke J.; Hudson, Laurie G.

    2015-01-01

    Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation. PMID:26063799

  8. Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes

    PubMed Central

    Maret, Wolfgang

    2017-01-01

    About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic β- and α-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the patho-biochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of β-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions. PMID:28401081

  9. Diagnosis of abnormal biliary copper excretion by positron emission tomography with targeting of 64Copper-asialofetuin complex in LEC rat model of Wilson’s disease

    PubMed Central

    Bahde, Ralf; Kapoor, Sorabh; Bhargava, Kuldeep K; Palestro, Christopher J; Gupta, Sanjeev

    2014-01-01

    Identification by molecular imaging of key processes in handling of transition state metals, such as copper (Cu), will be of considerable clinical value. For instance, the ability to diagnose Wilson’s disease with molecular imaging by identifying copper excretion in an ATP7B-dependent manner will be very significant. To develop highly effective diagnostic approaches, we hypothesized that targeting of radiocopper via the asialoglycoprotein receptor will be appropriate for positron emission tomography, and examined this approach in a rat model of Wilson’s disease. After complexing 64Cu to asialofetuin we studied handling of this complex compared with 64Cu in healthy LEA rats and diseased homozygous LEC rats lacking ATP7B and exhibiting hepatic copper toxicosis. We analyzed radiotracer clearance from blood, organ uptake, and biliary excretion, including sixty minute dynamic positron emission tomography recordings. In LEA rats, 64Cu-asialofetuin was better cleared from blood followed by liver uptake and greater biliary excretion than 64Cu. In LEC rats, 64Cu-asialofetuin activity cleared even more rapidly from blood followed by greater uptake in liver, but neither 64Cu-asialofetuin nor 64Cu appeared in bile. Image analysis demonstrated rapid visualization of liver after 64Cu-asialofetuin administration followed by decreased liver activity in LEA rats while liver activity progressively increased in LEC rats. Image analysis resolved this difference in hepatic activity within one hour. We concluded that 64Cu-asialofetuin complex was successfully targeted to the liver and radiocopper was then excreted into bile in an ATP7B-dependent manner. Therefore, hepatic targeting of radiocopper will be appropriate for improving molecular diagnosis and for developing drug/cell/gene therapies in Wilson’s disease. PMID:25250203

  10. Disruption of zinc neuromodulation by Aß oligomers: therapeutic implications.

    PubMed

    Vogler, Emily C; Busciglio, Jorge

    2014-01-01

    So far, therapeutics focusing on reducing levels of amyloid beta for treatment of Alzheimer's disease have not been successful in completing clinical trials to come to market, suggesting the need of a wider perspective and the consideration of novel targets of intervention to slow or halt the progression of this disease. One such target is soluble amyloid beta in oligomeric forms, which have been demonstrated to bind with high affinity to zinc released during synaptic activity. This review considers the interaction of AβO and zinc and the role of zinc in neurotransmission along with possible neurotoxic effects of this interaction. Finally, it also discusses recent experimental data in animal models that have translated into potential treatments for AD based on the modulation of hyperexcitability and zinc homeostasis.

  11. Zinc activates damage-sensing TRPA1 ion channels.

    PubMed

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J; Zhu, Michael X; Patapoutian, Ardem

    2009-03-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.

  12. Zinc in Infection and Inflammation

    PubMed Central

    Gammoh, Nour Zahi; Rink, Lothar

    2017-01-01

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136

  13. Targeting Tumor Associated Phosphatidylserine with New Zinc Dipicolylamine-Based Drug Conjugates.

    PubMed

    Liu, Yu-Wei; Shia, Kak-Shan; Wu, Chien-Huang; Liu, Kuan-Liang; Yeh, Yu-Cheng; Lo, Chen-Fu; Chen, Chiung-Tong; Chen, Yun-Yu; Yeh, Teng-Kuang; Chen, Wei-Han; Jan, Jiing-Jyh; Huang, Yu-Chen; Huang, Chen-Lung; Fang, Ming-Yu; Gray, Brian D; Pak, Koon Y; Hsu, Tsu-An; Huang, Kuan-Hsun; Tsou, Lun K

    2017-07-19

    A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.

  14. Downstream resource utilization following hybrid cardiac imaging with an integrated cadmium-zinc-telluride/64-slice CT device.

    PubMed

    Fiechter, Michael; Ghadri, Jelena R; Wolfrum, Mathias; Kuest, Silke M; Pazhenkottil, Aju P; Nkoulou, Rene N; Herzog, Bernhard A; Gebhard, Cathérine; Fuchs, Tobias A; Gaemperli, Oliver; Kaufmann, Philipp A

    2012-03-01

    Low yield of invasive coronary angiography and unnecessary coronary interventions have been identified as key cost drivers in cardiology for evaluation of coronary artery disease (CAD). This has fuelled the search for noninvasive techniques providing comprehensive functional and anatomical information on coronary lesions. We have evaluated the impact of implementation of a novel hybrid cadmium-zinc-telluride (CZT)/64-slice CT camera into the daily clinical routine on downstream resource utilization. Sixty-two patients with known or suspected CAD were referred for same-day single-session hybrid evaluation with CZT myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA). Hybrid MPI/CCTA images from the integrated CZT/CT camera served for decision-making towards conservative versus invasive management. Based on the hybrid images patients were classified into those with and those without matched findings. Matched findings were defined as the combination of MPI defect with a stenosis by CCTA in the coronary artery subtending the respective territory. All patients with normal MPI and CCTA as well as those with isolated MPI or CCTA finding or combined but unmatched findings were categorized as "no match". All 23 patients with a matched finding underwent invasive coronary angiography and 21 (91%) were revascularized. Of the 39 patients with no match, 5 (13%, p < 0.001 vs matched) underwent catheterization and 3 (8%, p < 0.001 vs matched) were revascularized. Cardiac hybrid imaging in CAD evaluation has a profound impact on patient management and may contribute to optimal downstream resource utilization.

  15. Pseudomonas aeruginosa Trent and zinc homeostasis.

    PubMed

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children.

    PubMed

    Vaz-Tostes, Maria das Graças; Verediano, Thaisa Agrizzi; de Mejia, Elvira Gonzalez; Brunoro Costa, Neuza Maria

    2016-03-15

    Biofortified beans have been produced with higher nutrient concentrations. The objective was to evaluate the in vitro and in vivo iron and zinc bioavailability of common beans Pontal (PO), targeted for biofortification, compared with conventional Perola (PE) and their effects on the iron and zinc nutritional status of preschool children. In Caco-2 cells, PO and PE beans did not show differences in ferritin (PO, 13.1 ± 1.4; PE, 13.6 ± 1.4 ng mg(-1) protein) or zinc uptake (PO, 15.9 ± 1.5; PE, 15.5 ± 3.5 µmol mg(-1) protein). In the rat, PO and PE beans presented high iron bioavailability (PO, 109.6 ± 29.5; PE, 110.7 ± 13.9%). In preschool children, no changes were observed in iron and zinc nutritional status comparing before and after PO consumption (ferritin, 41.2 ± 23.2 and 28.9 ± 40.4 µg L(-1) ; hemoglobin, 13.7 ± 2.2 and 13.1 ± 3.2 g dL(-1) ; plasma zinc, 119.2 ± 24.5 and 133.9 ± 57.7 µg dL(-1) ; erythrocyte zinc, 53.5 ± 13.8 and 59.4 ± 17.1 µg g(-1) hemoglobin). Iron and zinc bioavailability in PO and PE beans was not statistically different using either cell culture, animal or human models. Efforts should focus on increasing mineral bioavailability of beans targeted for biofortification. © 2015 Society of Chemical Industry.

  17. Zinc and volatile element loss during planetary magma ocean phases

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2016-10-01

    Zinc is a moderately volatile element and a key tracer of volatile depletion on planetary bodies due to lack of significant isotopic fractionation under high-temperature processes. Terrestrial basalts have δ66Zn values similar to some chondrites (+ 0.15 to 0.3‰ where [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000]) and elevated Zn concentrations (100 ppm). Lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ and have low Zn concentrations (~2 ppm). Late-stage lunar magmatic products, such as ferroan anorthosite, Mg-suite and Alkali suite rocks exhibit heavier δ66Zn values (+3 to +6‰). The heavy δ66Zn lunar signature is thought to reflect evaporative loss and fractionation of zinc, either during a giant impact or in a magma ocean phase.We explore conditions of volatile element loss within a lunar magma ocean (LMO) using models of Zn isotopic fractionation that are widely applicable to planetary magma oceans. For the Moon, our objective was to identify conditions that would yield a δ66Zn signature of ~ +1.4‰ within the mantle, assuming a terrestrial mantle zinc starting composition.We examine two cases of zinc evaporative fractionation: (1) lunar surface zinc fractionation that was completed prior to LMO crystallization and (2) lunar surface zinc fractionation that was concurrent with LMO crystallization. The first case resulted in a homogeneous lunar mantle and the second case yielded a stratified lunar mantle, with the greatest zinc isotopic enrichment in late-stage crystallization products. This latter case reproduces the distribution of zinc isotope compositions in lunar materials quite well.We find that hydrodynamic escape was not a dominant process in losing Zn, but that erosion of a nascent lunar atmosphere, or separation of condensates into a proto-lunar crust are possible. While lunar volatile depletion is still possible as a consequence of the giant impact, this process cannot reproduce the variable δ66Zn found in the Moon. Outgassing

  18. Targeting Serous Epithelial Ovarian Cancer with Designer Zinc Finger Transcription Factors*

    PubMed Central

    Lara, Haydee; Wang, Yuhua; Beltran, Adriana S.; Juárez-Moreno, Karla; Yuan, Xinni; Kato, Sumie; Leisewitz, Andrea V.; Cuello Fredes, Mauricio; Licea, Alexei F.; Connolly, Denise C.; Huang, Leaf; Blancafort, Pilar

    2012-01-01

    Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers. PMID:22782891

  19. Activation cross sections of the 64Ni(d,2n) reaction for the production of the medical radionuclide 64Cu

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Kovalev, S. F.; Ignatyuk, A.

    2007-05-01

    Deuteron particle induced reactions for generation of 64Cu used in diagnostic and therapeutic nuclear medicine and its possible short lived contaminant 61Cu were investigated with the stacked foil activation technique on natural nickel targets up to Ed = 20.5 MeV. Excitation functions for the reactions 64Ni(d,2n) 64Cu and natNi(d, x) 61Cu are obtained by gamma spectroscopy and are compared with earlier literature values. Thick target yields have been deduced from the experimental cross sections and the predictive capability of the ALICE-IPPE, EMPIRE II and GNASH model codes is tested.

  20. Effects of targeting moiety, linker, bifunctional chelator, and molecular charge on biological properties of 64Cu-labeled triphenylphosphonium cations.

    PubMed

    Kim, Young-Seung; Yang, Chang-Tong; Wang, Jianjun; Wang, Lijun; Li, Zi-Bo; Chen, Xiaoyuan; Liu, Shuang

    2008-05-22

    In this report, we present the synthesis and evaluation of six new 64Cu-labeled triphenylphosphonium (TPP) cations. Biodistribution studies were performed using the athymic nude mice bearing U87MG human glioma xenografts to explore the impact of TPP moieties, linkers, bifunctional chelators (BFCs), and molecular charge on biological properties of 64Cu radiotracers. On the basis of the results from this study, it is concluded that (1) mTPP (tris(4-methoxyphenyl)phosphonium) is a better mitochondrion-targeting molecule than TPP and 3mTPP (tris(2,4,6-trimethoxyphenyl)phosphonium); (2) DO3A (1,4,7,10-tetraazacyclododecane-4,7,10-triacetic acid) and DO2A (1,4,7,10-tetraazacyclododecane-4,7-diacetic acid) are suitable BFCs for the 64Cu-labeling of TPP cations; (3) NOTA-Bn ( S-2-(4-thioureidobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid) has a significant adverse effect on the radiotracer tumor uptake and tumor-to-background ratios; and (4) monoanionic BFCs should be avoided to ensure that 64Cu chelate has a neutral or negative charge. Considering the tumor uptake and tumor/liver ratios, 64Cu(DO2A-xy-TPP)+ is the best candidate for more extensive evaluations in different tumor-bearing animal models.

  1. Zinc and the modulation of redox homeostasis

    PubMed Central

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  2. Zinc stress induces copper depletion in Acinetobacter baumannii.

    PubMed

    Hassan, Karl A; Pederick, Victoria G; Elbourne, Liam D H; Paulsen, Ian T; Paton, James C; McDevitt, Christopher A; Eijkelkamp, Bart A

    2017-03-11

    The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.

  3. Development of Biodegradable Zinc Oxide Nanowires Targeting Breast Cancer Metastasis

    DTIC Science & Technology

    2013-09-01

    of highly-specificity anti-CD146 monoclonal antibody. 2. Bioconjugation of YY146 to a chelating moiety (NOTA) for the radiolabeling with 64Cu and...vivo investigation of 64Cu -NOTA-ZnO-PEG-TRC105 in 4T1 tumor bearing mice. A serial of coronal PET images about 4T1 tumor-bearing mice at 0.5, 3, 17...and 24 post-injection of 64Cu -NOTA-ZnO-PEG-TRC105, 64Cu -NOTA-ZnO-PEG and TRC105 before 64Cu -NOTA-ZnO-PEG-TRC105 (i.e., blocking). Tumors are

  4. Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii*

    PubMed Central

    Malasarn, Davin; Kropat, Janette; Hsieh, Scott I.; Finazzi, Giovanni; Casero, David; Loo, Joseph A.; Pellegrini, Matteo; Wollman, Francis-André; Merchant, Sabeeha S.

    2013-01-01

    Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites. PMID:23439652

  5. Routine production of copper-64 using 11.7MeV protons

    NASA Astrophysics Data System (ADS)

    Jeffery, C. M.; Smith, S. V.; Asad, A. H.; Chan, S.; Price, R. I.

    2012-12-01

    Reliable production of copper-64 (64Cu) was achieved by irradiating enriched nickel-64 (64Ni, >94.8%) in an IBA 18/9 cyclotron. Nickel-64 (19.1 ± 3.0 mg) was electroplated onto an Au disc (125μm × 15mm). Targets were irradiated with 11.7 MeV protons for 2 hours at 40μA. Copper isotopes (60,61,62,64Cu) were separated from target nickel and cobalt isotopes (55,57,61Co) using a single ion exchange column, eluted with varying concentration of low HCl alcohol solutions. The 64Ni target material was recovered and reused. The 64Cu production rate was 1.46±0.3MBq/μA.hr/mg64Ni(n = 10) (with a maximum of 2.6GBq of 64Cu isolated after 2hr irradiation at 40uA. Radionuclidic purity of the 64Cu was 98.7 ± 1.6 % at end of separation. Cu content was < 6mg/L (n = 21). The specific activity of 64Cu was determined by ICP-MS and by titration with Diamsar to be 28.9±13.0GBq/μmol[0.70±0.35Ci/μmol]/(μA.hr/mg64Ni)(n = 10) and 13.1±12.0GBq/μmol[0.35±0.32Ci/μmol]/(μA.hr/mg64Ni)(n = 9), respectively; which are in agreement, however, further work is required.

  6. Reduction of zinc emissions from buildings; the policy of Amsterdam.

    PubMed

    Gouman, E

    2004-01-01

    In Amsterdam zinc coming from the roofs and gutters of the buildings accounts for about 50% of the zinc emissions into the surface water (i.e. canals and rivers). This causes water and sediment pollution. Dumping strongly polluted sediment costs ten times more then dumping less polluted mud. Therefore the City of Amsterdam has developed a policy for reducing the zinc emissions from buildings based on the current environmental legislation and the current national targets for surface water quality. Zinc roofs on new and renovated buildings are not permitted. Run off water from zinc roofs of existing buildings is allowed to contain a maximum of 200 microg/l zinc. For the zinc gutters of houses, Amsterdam will promote measures to reduce zinc emissions. To investigate the feasibility of measures, research has been carried out on the zinc emissions of gutters and the effect of covering gutters with an impermeable foil. This research shows clearly that covering zinc gutters with EPDM foil reduces the zinc emissions by 90% from 8.5 to 0.88 gram per square metre per year including the atmospheric deposition.

  7. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D.

    1981-01-01

    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.

  8. Bombesin functionalized 64Cu-copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer.

    PubMed

    Cai, Huawei; Xie, Fang; Mulgaonkar, Aditi; Chen, Lihong; Sun, Xiankai; Hsieh, Jer-Tsong; Peng, Fangyu; Tian, Rong; Li, Lin; Wu, Changqiang; Ai, Hua

    2018-05-22

    To synthesize and evaluate the imaging potential of Bom-PEG-[ 64 Cu]CuS nanoparticles (NPs) in orothotopic prostate tumor. [ 64 Cu]CuS NPs were synthesized in aqueous solution by 64 CuCl 2 and Na 2 S reaction. Then PEG linker with or without bombesin peptide were conjugated to the surface of [ 64 Cu]CuS NPs to produce Bom-PEG-[ 64 Cu]CuS and PEG-[ 64 Cu]CuS NPs. These two kinds of NPs were used for testing specific uptake in prostate cancer cells in vitro and imaging of orthotopic prostate tumor in vivo. Bom-PEG-[ 64 Cu]CuS and PEG-[ 64 Cu]CuS NPs were successfully synthesized with core diameter of approximately 5 nm. Radioactive cellular uptake revealed that Bom-PEG-[ 64 Cu]CuS was able to specifically bind to prostate cancer cells, and the microPET-CT imaging indicated clear visualization of orthotopic prostate tumors. Radiolabeled Bom-PEG-[ 64 Cu]CuS NPs have potential as an ideal agent for orthotopic prostate tumor imaging by microPET-CT.

  9. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    NASA Astrophysics Data System (ADS)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  10. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  11. Enhancement of hippocampal mossy fiber activity in zinc deficiency and its influence on behavior.

    PubMed

    Takeda, Atsushi; Itoh, Hiromasa; Yamada, Kohei; Tamano, Haruna; Oku, Naoto

    2008-10-01

    The extracellular concentration of glutamate in the hippocampus is increased by hippocampal perfusion with CaEDTA, a membrane-impermeable zinc chelator, suggesting that the activity of glutamatergic neurons in the hippocampus are influenced by the extracellular concentrations of zinc. In the present study, the relationship between the extracellular concentrations of zinc and mossy fiber activity in the hippocampus was examined in mice and rats fed a zinc-deficient diet for 4 weeks. Timm's stain, by which histochemically reactive zinc in the presynaptic vesicles is detected, was attenuated in the hippocampus in zinc deficiency. The extracellular signal of ZnAF-2, a membrane-impermeable zinc indicator, was also lower in the hippocampal CA3, suggesting that the basal extracellular concentrations of zinc are lower maintained in zinc deficiency. To check mossy fiber activity after 4-week zinc deprivation, the decrease in the signal of FM4-64, an indicator of presynaptic activity (exocytosis), at mossy fiber synapses was measured under the condition of spontaneous depolarization. The decrease was significantly facilitated by zinc deficiency, suggesting that the basal exocytosis at mossy fiber synapses is enhanced by zinc deficiency. On the other hand, the increase in anxiety-like behavior was observed in the open-field test after 4-week zinc deprivation. The present study demonstrates that the decrease in the basal extracellular concentrations of zinc may be linked to the enhancement of the basal mossy fiber activity in zinc deficiency. This decrease seems to be also involved in neuropsychological behavior in zinc deficiency.

  12. ZifBASE: a database of zinc finger proteins and associated resources.

    PubMed

    Jayakanthan, Mannu; Muthukumaran, Jayaraman; Chandrasekar, Sanniyasi; Chawla, Konika; Punetha, Ankita; Sundar, Durai

    2009-09-09

    Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP) to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence. ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available) and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones), the number of finger units in each of the zinc finger proteins (with multiple fingers), the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public databases like UniprotKB, PDB, ModBase and Protein Model

  13. Nutrition intervention strategies to combat zinc deficiency in developing countries.

    PubMed

    Gibson, R S; Ferguson, E L

    1998-06-01

    Widespread zinc deficiency is likely to exist in developing countries where staple diets are predominantly plant based and intakes of animal tissues are low. The severe negative consequences of zinc deficiency on human health in developing countries, however, have only recently been recognized. An integrated approach employing targeted supplementation, fortification and dietary strategies must be used to maximize the likelihood of eliminating zinc deficiency at a national level in developing countries. Supplementation is appropriate only for populations whose zinc status must be improved over a relatively short time period, and when requirements cannot be met from habitual dietary sources. As well, the health system must be capable of providing consistent supply, distribution, delivery and consumption of the zinc supplement to the targeted groups. Uncertainties still exist about the type, frequency, and level of supplemental zinc required for prevention and treatment of zinc deficiency. Salts that are readily absorbed and at levels that will not induce antagonistic nutrient interactions must be used. At a national level, fortification with multiple micronutrients could be a cost effective method for improving micronutrient status, including zinc, provided that a suitable food vehicle which is centrally processed is available. Alternatively, fortification could be targeted for certain high risk groups (e.g. complementary foods for infants). Efforts should be made to develop protected fortificants for zinc, so that potent inhibitors of zinc absorption (e.g. phytate) present either in the food vehicle and/or indigenous meals do not compromise zinc absorption. Fortification does not require any changes in the existing food beliefs and practices for the consumer and, unlike supplementation, does not impose a burden on the health sector. A quality assurance programme is required, however, to ensure the quality of the fortified food product from production to consumption

  14. Computational exploration of zinc binding groups for HDAC inhibition.

    PubMed

    Chen, Kai; Xu, Liping; Wiest, Olaf

    2013-05-17

    Histone deacetylases (HDACs) have emerged as important drug targets in epigenetics. The most common HDAC inhibitors use hydroxamic acids as zinc binding groups despite unfavorable pharmacokinetic properties. A two-stage protocol of M05-2X calculations of a library of 48 fragments in a small model active site, followed by QM/MM hybrid calculations of the full enzyme with selected binders, is used to prospectively select potential bidentate zinc binders. The energetics and interaction patterns of several zinc binders not previously used for the inhibition of HDACs are discussed.

  15. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc.

    PubMed

    Cao, Kun; Li, Nan; Wang, Hongcui; Cao, Xin; He, Jiaojiao; Zhang, Bing; He, Qing-Yu; Zhang, Gong; Sun, Xuesong

    2018-04-20

    Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes , we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Relation of morphology of electrodeposited zinc to ion concentration profile

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.; Sabo, B. B.

    1977-01-01

    The morphology of electrodeposited zinc was studied with special attention to the ion concentration profile. The initial concentrations were 9M hydroxide ion and 1.21M zincate. Current densities were 6.4 to 64 mA/sq cm. Experiments were run with a horizontal cathode which was observed in situ using a microscope. The morphology of the zinc deposit was found to be a function of time as well as current density; roughly, the log of the transition time from mossy to large crystalline type deposit is inversely proportional to current density. Probe electrodes indicated that the electrolyte in the cathode chamber was mixed by self inducted convection. However, relatively large concentration gradients of the involved species existed across the boundary layer of the cathode. Analysis of the data suggests that the morphology converts from mossy to large crystalline when the hydroxide activity on the cathode surface exceeds about 12 M. Other experiments show that the pulse discharge technique had no effect on the morphology in the system where the bulk concentration of the electrolyte was kept homogeneous via self induced convection.

  17. Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation.

    PubMed

    Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi

    2006-01-01

    Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.

  18. Short-Term Subclinical Zinc Deficiency in Weaned Piglets Affects Cardiac Redox Metabolism and Zinc Concentration.

    PubMed

    Brugger, Daniel; Windisch, Wilhelm M

    2017-04-01

    Background: Subclinical zinc deficiency (SZD) represents the common zinc malnutrition phenotype. However, its association with oxidative stress is not well understood. The heart muscle may be a promising target for studying early changes in redox metabolism. Objective: We investigated the effects of short-term SZD on cardiac redox metabolism in weaned piglets. Methods: Forty-eight weaned German Large White × Landrace × Piétrain piglets (50% castrated males and 50% females; body weight of 8.5 kg) were fed diets with different zinc concentrations for 8 d. Measurements included cardiac parameters of antioxidative capacity, stress-associated gene expression, and tissue zinc status. Analyses comprised (linear, broken-line) regression models and Pearson correlation coefficients. Results: Glutathione and α-tocopherol concentrations as well as catalase, glutathione reductase, B-cell lymphoma 2-associated X protein, and caspase 9 gene expression plateaued in response to reduction in dietary zinc from 88.0 to 57.6, 36.0, 36.5, 41.3, 55.3, and 33.8 mg/kg, respectively ( P < 0.0001). Further reduction in dietary zinc promoted a linear decrease of glutathione and α-tocopherol (30 and 0.6 nmol/mg dietary Zn, respectively; P < 0.05) and a linear increase of gene expression [0.02, 0.01, 0.003, and 0.02 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05)]. Tissue zinc declined linearly with reduction in dietary zinc (0.21 mg tissue Zn/mg dietary Zn; P = 0.004) from 88.0 to 42.7 mg/kg ( P < 0.0001), below which it linearly increased inversely to further reduction in dietary zinc (0.57 mg tissue Zn/mg dietary Zn; P = 0.006). H 2 O 2 -detoxification activity and metallothionein 1A gene expression decreased linearly with reduction in dietary zinc from 88.0 to 28.1 mg/kg [0.02 mU and 0.008 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05]. Fas cell-surface death receptor, etoposide-induced 2.4 and cyclin-dependent kinase inhibitor 1A gene expression correlated

  19. Zinc and its importance for human health: An integrative review

    PubMed Central

    Roohani, Nazanin; Hurrell, Richard; Kelishadi, Roya; Schulin, Rainer

    2013-01-01

    Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency. PMID:23914218

  20. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  1. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage.

    PubMed

    Hemilä, Harri

    2017-05-01

    To compare the efficacy of zinc acetate lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of zinc acetate found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as zinc acetate lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further.

  2. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Zinc for the common cold.

    PubMed

    Singh, Meenu; Das, Rashmi R

    2013-06-18

    cold (IRR 0.64, 95% CI 0.47 to 0.88) (P = 0.006) (I(2) statistic = 88%), school absence (P = 0.0003) and prescription of antibiotics (P < 0.00001) was lower in the zinc group. Overall adverse events (OR 1.58, 95% CI 1.19 to 2.09) (P = 0.002), bad taste (OR 2.31, 95% CI 1.71 to 3.11) (P < 0.00001) and nausea (OR 2.15, 95% CI 1.44 to 3.23) (P = 0.002) were higher in the zinc group. The very high heterogeneity means that the averaged estimates must be viewed with caution. Zinc administered within 24 hours of onset of symptoms reduces the duration of common cold symptoms in healthy people but some caution is needed due to the heterogeneity of the data. As the zinc lozenges formulation has been widely studied and there is a significant reduction in the duration of cold at a dose of ≥ 75 mg/day, for those considering using zinc it would be best to use it at this dose throughout the cold. Regarding prophylactic zinc supplementation, currently no firm recommendation can be made because of insufficient data. When using zinc lozenges (not as syrup or tablets) the likely benefit has to be balanced against side effects, notably a bad taste and nausea.

  4. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  5. Inhibition of bacterial carbonic anhydrases and zinc proteases: from orphan targets to innovative new antibiotic drugs.

    PubMed

    Supuran, C T

    2012-01-01

    Zinc-containing enzymes, such as carbonic anhydrases (CAs) and metalloproteases (MPs) play critical functions in bacteria, being involved in various steps of their life cycle, which are important for survival, colonization, acquisition of nutrients for growth and proliferation, facilitation of dissemination, invasion and pathogenicity. The development of resistance to many classes of clinically used antibiotics emphasizes the need of new antibacterial drug targets to be explored. There is a wealth of data regarding bacterial CAs and zinc MPs present in many pathogenic species, such as Neisseria spp., Helycobacter pylori Escherichia coli, Mycobacterium tuberculosis, Brucella spp., Streptococcus pneumoniae, Salmonella enterica, Haemophilus influenzae, Listeria spp, Vibrio spp., Pseudomonas aeruginosa, Legionella pneumophila, Streptomyces spp., Clostridium spp., Enterococcus spp., etc. Some of these enzymes have been cloned, purified and characterized by crystallographic techniques. However, for the moment, few potent and specific inhibitors for bacterial MPs have been reported except for Clostridium histolyticum collagenase, botulinum and tetanus neurotoxin and anthrax lethal factor, which will be reviewed in this article. Bacteria encode α-,β-, and/or γ-CA families, but up to now only the first two classes have been investigated in some detail in different species. The α-CAs from Neisseria spp. and H. pylori as well as the β-class enzymes from E. coli, H. pylori, M. tuberculosis, Brucella spp., S. pneumoniae, S. enterica and H. influenzae have been cloned and characterized. The catalytic/inhibition mechanisms of these CAs are well understood as X-ray crystal structures are available for some of them, but no adducts of these enzymes with inhibitors have been characterized so far. In vitro and in vivo studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates have been reported. Only for Neisseria spp., H. pylori, B. suis and S

  6. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  7. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    PubMed

    Craddock, Travis J A; Tuszynski, Jack A; Chopra, Deepak; Casey, Noel; Goldstein, Lee E; Hameroff, Stuart R; Tanzi, Rudolph E

    2012-01-01

    microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.

  8. Zinc

    MedlinePlus

    ... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...

  9. Zinc and copper balances in healthy adult males during and after 17 wk of bed rest

    NASA Technical Reports Server (NTRS)

    Krebs, J. M.; Schneider, V. S.; LeBlanc, A. D.; Kuo, M. C.; Spector, E.; Lane, H. W.

    1993-01-01

    The effects of long-term bed rest on zinc and copper balances were measured in seven healthy men. Volunteers aged 22-54 y (mean +/- SD, 34 +/- 12 y), 168-185 cm in height (173 +/- 5 cm), and 64-86 kg in weight (74 +/- 9 kg) remained on a metabolic ward for 29 wk. Subjects were ambulatory during weeks 1-5, remained in continuous bed rest for weeks 6-22, and were reambulated during weeks 23-29. Copper and zinc were measured in weekly urine and fecal composites. Dietary intakes provided (mean +/- SD) 19.2 +/- 1.2 mumol Cu (1.22 +/- 0.08 mg), 211 +/- 11 mumol Zn (13.81 +/- 0.72 mg), 25.2 +/- 1.2 mmol Ca (1011 +/- 46 mg), 1086 +/- 46 mmol N (15.21 +/- 0.65 g), and 48.1 +/- 1.4 mmol K (1489 +/- 44 mg)/d. Bed rest increased fecal zinc excretion and decreased zinc balance, whereas copper balance was unchanged. Reambulation decreased fecal zinc excretion and increased both zinc and copper balances. These results suggest that during long-term bed rest or space flight, individuals will lose total body zinc and will retain more zinc and copper when they reambulate.

  10. Zinc delivery from non-woven fibres within a therapeutic nipple shield.

    PubMed

    Maier, Theresa; Scheuerle, Rebekah L; Markl, Daniel; Bruggraber, Sylvaine; Zeitler, Axel; Fruk, Ljiljana; Slater, Nigel K H

    2018-02-15

    A Therapeutic Nipple Shield (TNS) was previously developed to respond to the global need for new infant therapeutic delivery technologies. However, the release efficiency for the same Active Pharmaceutical Ingredient (API) from different therapeutic matrices within the TNS formulation has not yet been investigated. To address this, in-vitro release of elemental zinc into human milk from two types of Texel non-woven fibre mats of varying thickness and different gram per square meter values, placed inside the TNS was explored and compared to the release from zinc-containing rapidly disintegrating tablets. In-vitro delivery was performed by means of a breastfeeding simulation apparatus, with human milk flow rates and suction pressure adjusted to physiologically relevant values, and release was quantified using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). It was found that a total recovery of 62-64 % elemental zinc was obtained after the human milk had passed through the fibre insert, amounting to a 20-48% increase compared to previous zinc delivery studies using rapidly disintegrating tablets within the TNS. This indicates that non-woven Texel fibre mats were identified as the superior dosage form for oral zinc delivery into human milk using a TNS. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xi; Zhou, Xixi; Du, Libo

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects ofmore » arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of

  12. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    PubMed

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian

    2018-01-01

    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  13. Directing an artificial zinc finger protein to new targets by fusion to a non-DNA-binding domain.

    PubMed

    Lim, Wooi F; Burdach, Jon; Funnell, Alister P W; Pearson, Richard C M; Quinlan, Kate G R; Crossley, Merlin

    2016-04-20

    Transcription factors are often regarded as having two separable components: a DNA-binding domain (DBD) and a functional domain (FD), with the DBD thought to determine target gene recognition. While this holds true for DNA bindingin vitro, it appears thatin vivoFDs can also influence genomic targeting. We fused the FD from the well-characterized transcription factor Krüppel-like Factor 3 (KLF3) to an artificial zinc finger (AZF) protein originally designed to target the Vascular Endothelial Growth Factor-A (VEGF-A) gene promoter. We compared genome-wide occupancy of the KLF3FD-AZF fusion to that observed with AZF. AZF bound to theVEGF-Apromoter as predicted, but was also found to occupy approximately 25,000 other sites, a large number of which contained the expected AZF recognition sequence, GCTGGGGGC. Interestingly, addition of the KLF3 FD re-distributes the fusion protein to new sites, with total DNA occupancy detected at around 50,000 sites. A portion of these sites correspond to known KLF3-bound regions, while others contained sequences similar but not identical to the expected AZF recognition sequence. These results show that FDs can influence and may be useful in directing AZF DNA-binding proteins to specific targets and provide insights into how natural transcription factors operate. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Extracellular zinc and ATP-gated P2X receptor calcium entry channels: New zinc receptors as physiological sensors and therapeutic targets.

    PubMed

    Schwiebert, Erik M; Liang, Lihua; Cheng, Nai-Lin; Williams, Clintoria Richards; Olteanu, Dragos; Welty, Elisabeth A; Zsembery, Akos

    2005-12-01

    In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.

  15. Aluminum-doped zinc oxide thin films grown on various substrates using facing target sputtering system

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Min; Lee, Chang Hyun; Shon, Sun Young; Kim, Bong Hwan

    2017-11-01

    Aluminum-doped zinc oxide (AZO) films were fabricated on various substrates, such as glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET), at room temperature using a facing target sputtering (FTS) system with hetero ZnO and Al2O3 targets, and their electrical and optical properties were investigated. The AZO film on glass exhibited compressive stress while the films on the plastic substrates showed tensile stress. These stresses negatively affected the crystalline quality of the AZO films, and it is suggested that the poor crystalline quality of the films may be related to the neutral Al-based defect complexes formed in the films; these complexes act as neutral impurity scattering centers. AZO films with good optoelectronic properties could be formed on the glass and plastic substrates by the FTS technique using the hetero targets. The AZO films deposited on the glass, PEN, and PET substrates showed very low resistivities, of 5.0 × 10-4 Ω cm, 7.0 × 10-4 Ω cm, and 7.4 × 10-4 Ω cm, respectively. Further, the figure merit of the AZO film formed on the PEN substrate in the visible range (400-700 nm) was significantly higher than that of the AZO film on PET and similar to that of the AZO film on glass. Finally, the average transmittances of the films in the visible range (400-700 nm) were 83.16% (on glass), 76.3% (on PEN), and 78.16% (on PET).

  16. Infection and immunity in Down syndrome: a trial of long-term low oral doses of zinc.

    PubMed

    Lockitch, G; Puterman, M; Godolphin, W; Sheps, S; Tingle, A J; Quigley, G

    1989-05-01

    To determine whether orally administered zinc supplements could correct the abnormal humoral and cell-mediated immunity of Down syndrome, we randomly assigned 64 children with Down syndrome, aged 1 to 19 years and living at home, to receive either zinc gluconate or placebo daily for 6-month periods with crossover from one regimen to another. Control subjects were siblings and age-matched, unrelated children. Serum zinc, copper, and measures of immune system competence were tested at 3- or 6-month intervals. Parents kept daily logs of clinical symptoms such as cough and diarrhea and of physician visits. Mean serum zinc concentrations increased to about 150% of baseline during zinc supplementation, but we found no effect on serum levels of copper, immunoglobulins, or complement; on lymphocyte number or subset distribution; or on in vitro response to mitogens. Children with Down syndrome who were receiving zinc had a trend toward fewer days or episodes of cough and fever but no change in other clinical variables. Long-term, low-dose oral zinc supplementation to improve depressed immune response or to decrease infections in children with Down syndrome cannot be recommended.

  17. 64Cu-Labeled Lissamine Rhodamine B: A Promising PET Radiotracer Targeting Tumor Mitochondria

    PubMed Central

    Zhou, Yang; Kim, Young-Seung; Yan, Xin; Jacobson, Orit; Chen, Xiaoyuan; Liu, Shuang

    2011-01-01

    The enhanced mitochondrial potential in carcinoma cells is an important characteristic of cancer. It is of great current interest to develop a radiotracer that is sensitive to the mitochondrial potential changes at the early stage of tumor growth. In this report, we present the synthesis and evaluation of 64Cu-labeled Lissamine Rhodamine B (LRB), 64Cu(DOTA-LRB) (DOTA-LRB = 2-(6-(diethylamino)-3-(diethyliminio)-3H-xanthen-9-yl)-5-(N-(2-(2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclo-dodecan-1-yl)acetamido)ethyl)-sulfamoyl)benzenesulfonate), as a new radiotracer for imaging tumors in athymic nude mice bearing U87MG human glioma xenografts by positron emission tomography (PET). We also explored its localization mechanism using Cu(DOTA-LRB) as the fluorescent probe in both U87MG human glioma cell line and the cultured primary U87MG glioma cells. It was found that 64Cu(DOTA-LRB) had the highest tumor uptake (6.54 ± 1.50, 6.91 ± 1.26, 5.68 ± 1.13, 7.58 ± 1.96, and 5.14 ± 1.50 %ID/g at 0.5, 1, 2, 4 and 24 h post-injection, respectively) among many 64Cu-labeled organic cations evaluated in the same animal model. The cellular staining study indicated that Cu(DOTA-LRB) was able to localize in mitochondria of U87MG glioma cells due to the enhanced negative mitochondrial potential. This statement is completely supported by the results from decoupling experiment with carbonylcyanide-m-chlorophenylhydrazone (CCCP). MicroPET data showed that the U87MG glioma tumors were clearly visualized as early as 30 min post-injection with 64Cu(DOTA-LRB). 64Cu(DOTA-LRB) remained stable during renal excretion, but underwent extensive degradation during hepatobiliary excretion. On the basis of the results from this study, it was concluded that 64Cu(DOTA-LRB) represents a new class of promising PET radiotracers for noninvasive imaging of the MDR-negative tumors. PMID:21545131

  18. Zinc-finger Nuclease-induced Gene Repair With Oligodeoxynucleotides: Wanted and Unwanted Target Locus Modifications

    PubMed Central

    Radecke, Sarah; Radecke, Frank; Cathomen, Toni; Schwarz, Klaus

    2010-01-01

    Correcting a mutated gene directly at its endogenous locus represents an alternative to gene therapy protocols based on viral vectors with their risk of insertional mutagenesis. When solely a single-stranded oligodeoxynucleotide (ssODN) is used as a repair matrix, the efficiency of the targeted gene correction is low. However, as shown with the homing endonuclease I-SceI, ssODN-mediated gene correction can be enhanced by concomitantly inducing a DNA double-strand break (DSB) close to the mutation. Because I-SceI is hardly adjustable to cut at any desired position in the human genome, here, customizable zinc-finger nucleases (ZFNs) were used to stimulate ssODN-mediated repair of a mutated single-copy reporter locus stably integrated into human embryonic kidney-293 cells. The ZFNs induced faithful gene repair at a frequency of 0.16%. Six times more often, ZFN-induced DSBs were found to be modified by unfaithful addition of ssODN between the termini and about 60 times more often by nonhomologous end joining-related deletions and insertions. Additionally, ZFN off-target activity based on binding mismatch sites at the locus of interest was detected in in vitro cleavage assays and also in chromosomal DNA isolated from treated cells. Therefore, the specificity of ZFN-induced ssODN-mediated gene repair needs to be improved, especially regarding clinical applications. PMID:20068556

  19. Synthesis and Evaluation of a Novel 64Cu- and 67Ga-Labeled Neurokinin 1 Receptor Antagonist for in Vivo Targeting of NK1R-Positive Tumor Xenografts.

    PubMed

    Zhang, Hanwen; Kanduluru, Ananda Kumar; Desai, Pooja; Ahad, Afruja; Carlin, Sean; Tandon, Nidhi; Weber, Wolfgang A; Low, Philip S

    2018-04-18

    Neurokinin 1 receptor (NK1R) is expressed in gliomas and neuroendocrine malignancies and represents a promising target for molecular imaging and targeted radionuclide therapy. The goal of this study was to synthesize and evaluate a novel NK1R ligand (NK1R-NOTA) for targeting NK1R-expressing tumors. Using a carboxymethyl moiety linked to L-733060 as a starting reagent, NK1R-NOTA was synthesized in a three-step reaction and then labeled with 64 Cu (or 67 Ga for in vitro studies) in the presence of CH 3 COONH 4 buffer. The radioligand affinity and cellular uptake were evaluated with NK1R-transduced HEK293 cells (HEK293-NK1R) and NK1R nontransduced HEK293 cells (HEK293-WT) and their xenografts. Radiolabeled NK1R-NOTA was obtained with a radiochemical purity of >95% and specific activities of >7.0 GBq/μmol for 64 Cu and >5.0 GBq/μmol for 67 Ga. Both 64 Cu- and 67 Ga-labeled NK1R-NOTA demonstrated high levels of uptake in HEK293-NK1R cells, whereas co-incubation with an excess of NK1R ligand L-733060 reduced the level of uptake by 90%. Positron emission tomography (PET) imaging showed that [ 64 Cu]NK1R-NOTA had a accumulated rapidly in HEK293-NK1R xenografts and a 10-fold lower level of uptake in HEK293-WT xenografts. Radioactivity was cleared by gastrointestinal tract and urinary systems. Biodistribution studies confirmed that the tumor-to-organ ratios were ≥5 for all studied organs at 1 h p.i., except kidneys, liver, and intestine, and that the tumor-to-intestine and tumor-to-kidney ratios were also improved 4 and 20 h post-injection. [ 64 Cu]NK1R-NOTA is a promising ligand for PET imaging of NK1R-expressing tumor xenografts. Delayed imaging with [ 64 Cu]NK1R-NOTA improves image contrast because of the continuous clearance of radioactivity from normal organs.

  20. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  1. Production of .sup.64 Cu and other radionuclides using a charged-particle accelerator

    DOEpatents

    Welch, Michael J.; McCarthy, Deborah W.; Shefer, Ruth E.; Klinkowstein, Robert E.

    2000-01-01

    Radionuclides are produced according to the present invention at commercially significant yields and at specific activities which are suitable for use in radiodiagnostic agents such as PET imaging agents and radiotherapeutic agents and/or compositions. In the method and system of the present invention, a solid target having an isotopically enriched target layer electroplated on an inert substrate is positioned in a specially designed target holder and irradiated with a charged-particle beam. The beam is preferably generated using an accelerator such as a biomedical cyclotron at energies ranging from about 5 MeV to about 25 MeV. The target is preferably directly irradiated, without an intervening attenuating foil, and with the charged particle beam impinging an area which substantially matches the target area. The irradiated target is remotely and automatically transferred from the target holder, preferably without transferring any target holder subassemblies, to a conveyance system which is preferably a pneumatic or hydraulic conveyance system, and then further transferred to an automated separation system. The system is effective for processing a single target or a plurality of targets. After separation, the unreacted target material can be recycled for preparation of other targets. In a preferred application of the invention, a biomedical cyclotron has been used to produce over 500 mCi of .sup.64 Cu having a specific activity of over 300 mCi/.mu.g Cu according to the reaction .sup.64 Ni(p,n).sup.64 Cu. These results indicate that accelerator-produced .sup.64 Cu is suitable for radiopharmaceutical diagnostic and therapeutic applications.

  2. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. 64Cu-p-NH2-Bn-DOTA-hu14.18K322A, a PET radiotracer targeting neuroblastoma and melanoma.

    PubMed

    Vavere, Amy L; Butch, Elizabeth R; Dearling, Jason L J; Packard, Alan B; Navid, Fariba; Shulkin, Barry L; Barfield, Raymond C; Snyder, Scott E

    2012-11-01

    The hu14.18K322A variant of the GD2-targeting antibody hu14.18 has been shown to elicit a level of antibody-dependent cell-mediated cytotoxicity toward human neuroblastoma cells similar to that of the parent antibody. However, hu14.18K322A exhibited a decreased complement activation and associated pain, the dose-limiting toxicity in neuroblastoma immunotherapy. PET with a radiolabeled analog of the same antibody used in treatment will provide insight into the ability of hu14.18K322A to reach its target, as well as nontarget uptake that may cause side effects. Such antibody radiotracers might also provide a method for measuring GD2 expression in tumors, thus enabling the prediction of response to anti-GD2 therapy for individual patients. The conjugation of hu14.18K322A with p-NH(2)-Bn-DOTA was accomplished using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide with subsequent (64)Cu radiolabeling at 37°C for 30 min. Immunoreactivity of the conjugate was assessed by a dose-escalation blocking experiment measuring binding to purified GD2 versus GD1b as a negative control. Cell uptake and biodistribution studies in M21 (GD2-positive) and PC-3 (GD2-negative) tumor models were performed, as was small-animal PET/CT of M21 and PC-3 tumor-bearing mice. The labeling of (64)Cu-p-NH(2)-Bn-DOTA-hu14.18K322A was achieved at more than 95% radiochemical purity and a specific activity of 127-370 MBq/mg (3.4-10 mCi/mg) after chromatographic purification. Preliminary in vitro data demonstrated a greater than 6-fold selectivity of binding to GD2 versus GD1b and dose-dependent inhibition of binding by unmodified hu14.8K322A. In vivo data, including small-animal PET/CT, showed significant GD2-positive tumor-targeting ability, with a persistent 2-fold-higher uptake of radiotracer than in GD2-negative tumors. (64)Cu-p-NH(2)-Bn-DOTA-hu14.18K322A represents a novel PET radiotracer to facilitate clinical investigations of anti-GD2 immunotherapies and to complement other imaging modalities in

  4. Method of capturing or trapping zinc using zinc getter materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  5. CstF-64 and 3'-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα.

    PubMed

    Kandala, Divya T; Mohan, Nimmy; A, Vivekanand; A P, Sudheesh; G, Reshmi; Laishram, Rakesh S

    2016-01-29

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3'-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3'-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3'-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3'-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    PubMed

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  7. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.

    PubMed

    Jabalameli, Hamid Reza; Zahednasab, Hamid; Karimi-Moghaddam, Amin; Jabalameli, Mohammad Reza

    2015-03-01

    Zinc finger nucleases (ZFNs) are engineered restriction enzymes designed to target specific DNA sequences within the genome. Assembly of zinc finger DNA-binding domain to a DNA-cleavage domain enables the enzyme machinery to target unique locus in the genome and invoke endogenous DNA repair mechanisms. This machinery offers a versatile approach in allele editing and gene therapy. Here we discuss the architecture of ZFNs and strategies for generating targeted modifications within the genome. We review advances in gene therapy and modelling of the disease using these enzymes and finally, discuss the practical obstacles in using this technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Characteristics of Zinc Phosphate Coating Activated by Different Concentrations of Nickel Acetate Solution

    NASA Astrophysics Data System (ADS)

    Abdalla, Khalid; Zuhailawati, H.; Rahmat, Azmi; Azizan, A.

    2017-02-01

    Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.

  9. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF

  10. Toxicity to woodlice of zinc and lead oxides added to soil litter

    USGS Publications Warehouse

    Beyer, W.N.; Anderson, A.

    1985-01-01

    Previous studies have shown that high concentrations of metals in soil are associated with reductions in decomposer populations. We have here determined the relation between the concentrations of lead and zinc added as oxides to soil litter and the survival and reproduction of a decomposer population under controlled conditions. Laboratory populations of woodlice (Porcellio scaber Latr) were fed soil litter treated with lead or zinc at concentrations that ranged from 100 to 12,800 ppm. The survival of the adults, the maximum number of young alive, and the average number of young alive, were recorded over 64 weeks. Lead at 12,800 ppm and zinc at 1,600 ppm or more had statistically significant (p < 0.05) negative effects on the populations. These results agree with field observations suggesting that lead and zinc have reduced populations of decomposers in contaminated forest soil litter, and concentrations are similar to those reported to be associated with reductions in natural populations of decomposers. Poisoning of decomposers may disrupt nutrient cycling, reduce the numbers of invertebrates available to other wildlife for food, and contribute to the contamination of food chains.

  11. Zinc binding groups for histone deacetylase inhibitors.

    PubMed

    Zhang, Lei; Zhang, Jian; Jiang, Qixiao; Zhang, Li; Song, Weiguo

    2018-12-01

    Zinc binding groups (ZBGs) play a crucial role in targeting histone deacetylase inhibitors (HDACIs) to the active site of histone deacetylases (HDACs), thus determining the potency of HDACIs. Due to the high affinity to the zinc ion, hydroxamic acid is the most commonly used ZBG in the structure of HDACs. An alternative ZBG is benzamide group, which features excellent inhibitory selectivity for class I HDACs. Various ZBGs have been designed and tested to improve the activity and selectivity of HDACIs, and to overcome the pharmacokinetic limitations of current HDACIs. Herein, different kinds of ZBGs are reviewed and their features have been discussed for further design of HDACIs.

  12. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    PubMed Central

    Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.

    2013-01-01

    Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081

  13. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remainsmore » unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.« less

  14. Zinc Absorption from Representative Diet in a Chinese Elderly Population Using Stable Isotope Technique.

    PubMed

    Li, Ya Jie; Li, Min; Liu, Xiao Bing; Ren, Tong Xiang; Li, Wei Dong; Yang, Chun; Wu, Meng; Yang, Lin Li; Ma, Yu Xia; Wang, Jun; Piao, Jian Hua; Yang, Li Chen; Yang, Xiao Guang

    2017-06-01

    To determine the dietary zinc absorption in a Chinese elderly population and provide the basic data for the setting of zinc (Zn) recommended nutrient intakes (RNI) for Chinese elderly people. A total of 24 elderly people were recruited for this study and were administered oral doses of 3 mg 67Zn and 1.2 mg dysprosium on the fourth day. The primary macronutrients, energy, and phytic acid in the representative diet were examined based on the Chinese National Standard Methods. Fecal samples were collected during the experimental period and analyzed for zinc content, 67Zn isotope ratio, and dysprosium content. The mean (± SD) zinc intake from the representative Chinese diet was 10.6 ± 1.5 mg/d. The phytic acid-to-zinc molar ratio in the diet was 6.4. The absorption rate of 67Zn was 27.9% ± 9.2%. The RNI of zinc, which were calculated by the absorption rate in elderly men and women, were 10.4 and 9.2 mg/d, respectively. This study got the dietary Zn absorption in a Chinese elderly population. We found that Zn absorption was higher in elderly men than in elderly women. The current RNI in elderly female is lower than our finding, which indicates that more attention is needed regarding elderly females' zinc status and health. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. Reactively-sputtered zinc semiconductor films of high conductivity for heterojunction devices

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1986-01-01

    A high conductivity, n-doped semiconductor film is produced from zinc, or Zn and Cd, and group VI elements selected from Se, S and Te in a reactive magnetron sputtering system having a chamber with one or two targets, a substrate holder, means for heating the substrate holder, and an electric field for ionizing gases in the chamber. Zinc or a compound of Zn and Cd is placed in the position of one of the two targets and doping material in the position of the other of the two targets. Zn and Cd may be placed in separate targets while a dopant is placed in the third target. Another possibility is to place an alloy of Zn and dopant, or Zn, Cd and dopant in one target, thus using only one target. A flow of the inert gas is ionized and directed toward said targets, while a flow of a reactant gas consisting of hydrides of the group VI elements is directed toward a substrate on the holder. The targets are biased to attract negatively ionized inert gas. The desired stochiometry for high conductivity is achieved by controlling the temperature of the substrate, and partial pressures of the gases, and the target power and total pressure of the gases in the chamber.

  16. Zinc pharmacokinetic parameters in the determination of body zinc status in children.

    PubMed

    Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J

    2014-02-01

    Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.

  17. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  18. Prevention of upper aerodigestive tract cancer in zinc-deficient rodents: Inefficacy of genetic or pharmacological disruption of COX-2

    PubMed Central

    Fong, Louise Y.Y.; Jiang, Yubao; Riley, Maurisa; Liu, Xianglan; Smalley, Karl J.; Guttridge, Denis C.; Farber, John L.

    2009-01-01

    Zinc deficiency in humans is associated with an increased risk of upper aerodigestive tract (UADT) cancer. In rodents, zinc deficiency predisposes to carcinogenesis by causing proliferation and alterations in gene expression. We examined whether in zinc-deficient rodents, targeted disruption of the cyclooxygenase (COX)-2 pathway by the COX-2 selective inhibitor celecoxib or by genetic deletion prevent UADT carcinogenesis. Tongue cancer prevention studies were conducted in zinc-deficient rats previously exposed to a tongue carcinogen by celecoxib treatment with or without zinc replenishment, or by zinc replenishment alone. The ability of genetic COX-2 deletion to protect against chemically-induced for-estomach tumorigenesis was examined in mice on zinc-deficient versus zinc-sufficient diet. The expression of 3 predictive bio-markers COX-2, nuclear factor (NF)-κ B p65 and leukotriene A4 hydrolase (LTA4H) was examined by immunohistochemistry. In zinc-deficient rats, celecoxib without zinc replenishment reduced lingual tumor multiplicity but not progression to malignancy. Celecoxib with zinc replenishment or zinc replenishment alone significantly lowered lingual squamous cell carcinoma incidence, as well as tumor multiplicity. Celecoxib alone reduced overexpression of the 3 biomarkers in tumors slightly, compared with intervention with zinc replenishment. Instead of being protected, zinc-deficient COX-2 null mice developed significantly greater tumor multiplicity and forestomach carcinoma incidence than wild-type controls. Additionally, zinc-deficient COX-2−/− forestomachs displayed strong LTA4H immunostaining, indicating activation of an alter-native pathway under zinc deficiency when the COX-2 pathway is blocked. Thus, targeting only the COX-2 pathway in zinc-deficient animals did not prevent UADT carcinogenesis. Our data suggest zinc supplementation should be more thoroughly explored in human prevention clinical trials for UADT cancer. PMID:17985342

  19. A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.

    PubMed

    Wastney, Meryl E; McDonald, Christine M; King, Janet C

    2018-05-01

    Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.

  20. Synthesis and evaluation of [64Cu]PSMA-617 targeted for prostate-specific membrane antigen in prostate cancer.

    PubMed

    Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng

    2017-01-01

    We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 ( 64 Cu), to evaluate the metabolism, biodistribution, and potential of [ 64 Cu]PSMA-617 for PET imaging of prostate cancer. [ 64 Cu]PSMA-617 was synthesized by heating PSMA-617 with [ 64 Cu]CuCl 2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64 Cu for PSMA-617 yielded [ 64 Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [ 64 Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [ 64 Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [ 64 Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [ 64 Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64 Cu or 67 Cu-labeled PSMA ligands for imaging and radiotherapy.

  1. Synthesis and evaluation of [64Cu]PSMA-617 targeted for prostate-specific membrane antigen in prostate cancer

    PubMed Central

    Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng

    2017-01-01

    We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 (64Cu), to evaluate the metabolism, biodistribution, and potential of [64Cu]PSMA-617 for PET imaging of prostate cancer. [64Cu]PSMA-617 was synthesized by heating PSMA-617 with [64Cu]CuCl2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64Cu for PSMA-617 yielded [64Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [64Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [64Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [64Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [64Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64Cu or 67Cu-labeled PSMA ligands for imaging and radiotherapy. PMID:28533936

  2. CstF-64 and 3′-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα

    PubMed Central

    Kandala, Divya T.; Mohan, Nimmy; A, Vivekanand; AP, Sudheesh; G, Reshmi; Laishram, Rakesh S.

    2016-01-01

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. PMID:26496945

  3. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  4. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  5. Automation of (64)Cu production at Turku PET Centre.

    PubMed

    Elomaa, Viki-Veikko; Jurttila, Jori; Rajander, Johan; Solin, Olof

    2014-07-01

    At Turku PET Centre automation for handling solid targets for the production of (64)Cu has been built. The system consists of a module for moving the target from the irradiation position into a lead transport shield and a robotic-arm assisted setup for moving the target within radiochemistry laboratory. The main motivation for designing automation arises from radiation hygiene. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.

    PubMed

    Mashimo, Tomoji

    2014-01-01

    The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  7. A high prevalence of zinc- but not iron-deficiency among women in rural Malawi: a cross-sectional study.

    PubMed

    Siyame, Edwin W P; Hurst, Rachel; Wawer, Anna A; Young, Scott D; Broadley, Martin R; Chilimba, Allan D C; Ander, Louise E; Watts, Michael J; Chilima, Benson; Gondwe, Jellita; Kang'ombe, Dalitso; Kalimbira, Alexander; Fairweather-Tait, Susan J; Bailey, Karl B; Gibson, Rosalind S

    2013-01-01

    Zinc deficiency is often associated with nutritional iron deficiency (ID), and may be exacerbated by low selenium status. To investigate risk of iron and zinc deficiency in women with contrasting selenium status. In a cross-sectional study, 1-day diet composites and blood samples were collected from self-selected Malawian women aged 18-50 years from low- (Zombwe) (n=60) and high-plant-available soil selenium (Mikalango) (n=60) districts. Diets were analyzed for trace elements and blood for biomarkers. Zinc deficiency (>90 %) was greater than ID anemia (6 %), or ID (5 %), attributed to diets low in zinc (median 5.7 mg/day) with high phytate:zinc molar ratios (20.0), but high in iron (21.0 mg/day) from soil contaminant iron. Zombwe compared to Mikalango women had lower (p<0.05) intakes of selenium (6.5 vs. 55.3 µg/day), zinc (4.8 vs. 6.4 mg/day), iron (16.6 vs. 29.6 mg/day), lower plasma selenium (0.72 vs. 1.60 µmol/L), and higher body iron (5.3 vs. 3.8 mg/kg), although plasma zinc was similar (8.60 vs. 8.87 µmol/L). Body iron and plasma zinc were positive determinants of hemoglobin. Risk of zinc deficiency was higher than ID and was shown not to be associated with selenium status. Plasma zinc was almost as important as body iron as a hemoglobin determinant.

  8. Zinc transporter-1 concentrates at the postsynaptic density of hippocampal synapses.

    PubMed

    Sindreu, Carlos; Bayés, Álex; Altafaj, Xavier; Pérez-Clausell, Jeús

    2014-03-07

    Zinc concentrates at excitatory synapses, both at the postsynaptic density and in a subset of glutamatergic boutons. Zinc can modulate synaptic plasticity, memory formation and nociception by regulating transmitter receptors and signal transduction pathways. Also, intracellular zinc accumulation is a hallmark of degenerating neurons in several neurological disorders. To date, no single zinc extrusion mechanism has been directly localized to synapses. Based on the presence of a canonical PDZ I motif in the Zinc Transporter-1 protein (ZnT1), we hypothesized that ZnT1 may be targeted to synaptic compartments for local control of cytosolic zinc. Using our previously developed protocol for the co-localization of reactive zinc and synaptic proteins, we further asked if ZnT1 expression correlates with presynaptic zinc content in individual synapses. Here we demonstrate that ZnT1 is a plasma membrane protein that is enriched in dendritic spines and in biochemically isolated synaptic membranes. Hippocampal CA1 synapses labelled by postembedding immunogold showed over a 5-fold increase in ZnT1 concentration at synaptic junctions compared with extrasynaptic membranes. Subsynaptic analysis revealed a peak ZnT1 density on the postsynaptic side of the synapse, < 10 nm away from the postsynaptic membrane. ZnT1 was found in the vast majority of excitatory synapses regardless of the presence of vesicular zinc in presynaptic boutons. Our study has identified ZnT1 as a novel postsynaptic density protein, and it may help elucidate the role of zinc homeostasis in synaptic function and disease.

  9. Zinc transporter-1 concentrates at the postsynaptic density of hippocampal synapses

    PubMed Central

    2014-01-01

    Background Zinc concentrates at excitatory synapses, both at the postsynaptic density and in a subset of glutamatergic boutons. Zinc can modulate synaptic plasticity, memory formation and nociception by regulating transmitter receptors and signal transduction pathways. Also, intracellular zinc accumulation is a hallmark of degenerating neurons in several neurological disorders. To date, no single zinc extrusion mechanism has been directly localized to synapses. Based on the presence of a canonical PDZ I motif in the Zinc Transporter-1 protein (ZnT1), we hypothesized that ZnT1 may be targeted to synaptic compartments for local control of cytosolic zinc. Using our previously developed protocol for the co-localization of reactive zinc and synaptic proteins, we further asked if ZnT1 expression correlates with presynaptic zinc content in individual synapses. Findings Here we demonstrate that ZnT1 is a plasma membrane protein that is enriched in dendritic spines and in biochemically isolated synaptic membranes. Hippocampal CA1 synapses labelled by postembedding immunogold showed over a 5-fold increase in ZnT1 concentration at synaptic junctions compared with extrasynaptic membranes. Subsynaptic analysis revealed a peak ZnT1 density on the postsynaptic side of the synapse, < 10 nm away from the postsynaptic membrane. ZnT1 was found in the vast majority of excitatory synapses regardless of the presence of vesicular zinc in presynaptic boutons. Conclusions Our study has identified ZnT1 as a novel postsynaptic density protein, and it may help elucidate the role of zinc homeostasis in synaptic function and disease. PMID:24602382

  10. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells.

    PubMed

    Cortese-Krott, Miriam M; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D; Suschek, Christoph V

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  11. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    PubMed Central

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  12. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    PubMed

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  13. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications.

    PubMed

    Kogan, Samuel; Sood, Aditya; Garnick, Mark S

    2017-04-01

    Our understanding of the role of zinc in normal human physiology is constantly expanding, yet there are major gaps in our knowledge with regard to the function of zinc in wound healing. This review aims to provide the clinician with sufficient understanding of zinc biology and an up-to-date perspective on the role of zinc in wound healing. Zinc is an essential ion that is crucial for maintenance of normal physiology, and zinc deficiency has many manifestations ranging from delayed wound healing to immune dysfunction and impairment of multiple sensory systems. While consensus has been reached regarding the detrimental effects of zinc deficiency on wound healing, there is considerable discord in the literature on the optimal methods and true benefits of zinc supplementation.

  14. Zinc

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of zinc: U.S. Department of Agriculture's (USDA’s) National Nutrient Database Nutrient List for zinc ( ...

  15. The effectiveness of high dose zinc acetate lozenges on various common cold symptoms: a meta-analysis.

    PubMed

    Hemilä, Harri; Chalker, Elizabeth

    2015-02-25

    A previous meta-analysis found that high dose zinc acetate lozenges reduced the duration of common colds by 42%, whereas low zinc doses had no effect. Lozenges are dissolved in the pharyngeal region, thus there might be some difference in the effect of zinc lozenges on the duration of respiratory symptoms in the pharyngeal region compared with the nasal region. The objective of this study was to determine whether zinc acetate lozenges have different effects on the duration of common cold symptoms originating from different anatomical regions. We analyzed three randomized trials on zinc acetate lozenges for the common cold administering zinc in doses of 80-92 mg/day. All three trials reported the effect of zinc on seven respiratory symptoms, and three systemic symptoms. We pooled the effects of zinc lozenges for each symptom and calculated point estimates and 95% confidence intervals (95% CI). Zinc acetate lozenges shortened the duration of nasal discharge by 34% (95% CI: 17% to 51%), nasal congestion by 37% (15% to 58%), sneezing by 22% (-1% to 45%), scratchy throat by 33% (8% to 59%), sore throat by 18% (-10% to 46%), hoarseness by 43% (3% to 83%), and cough by 46% (28% to 64%). Zinc lozenges shortened the duration of muscle ache by 54% (18% to 89%), but there was no difference in the duration of headache and fever. The effect of zinc acetate lozenges on cold symptoms may be associated with the local availability of zinc from the lozenges, with the levels being highest in the pharyngeal region. However our findings indicate that the effects of zinc ions are not limited to the pharyngeal region. There is no indication that the effect of zinc lozenges on nasal symptoms is less than the effect on the symptoms of the pharyngeal region, which is more exposed to released zinc ions. Given that the adverse effects of zinc in the three trials were minor, zinc acetate lozenges releasing zinc ions at doses of about 80 mg/day may be a useful treatment for the common cold

  16. Polyacrylamide Gel-Contained Zinc Finger Peptide as the "Lock" and Zinc Ions as the "Key" for Construction of Ultrasensitive Prostate-Specific Antigen SERS Immunosensor.

    PubMed

    Xie, Linglin; Yang, Xia; He, Yi; Yuan, Ruo; Chai, Yaqin

    2018-05-02

    In this work, we adopted polyacrylamide gel-contained zinc finger peptide (PZF) as a "lock" of Raman signal and zinc ions (Zn 2+ ) as a sensitive "key", which was converted from target-captured ZnO NPs, to achieve the measurement of prostate-specific antigen (PSA). Owing to the lock effect from PZF, the surface-enhanced Raman scattering (SERS) tag toluidine blue (TB) connected on Ag NP-coating silica wafer was sheltered leading to low Raman response. Meanwhile, target PSA can specifically connect with antibody 2-coupled ZnO nanocomplexes (ZnO@Au@Ab 2 ) and antibody 1-coupled magnetic (CoFe 2 O 4 @Au@Ab 1 ) nanocomposite through sandwich immunoassay. In the presence of HCl, the ZnO NPs would convert into Zn 2+ to open the PZF because Zn 2+ can specifically react with zinc finger peptide to destroy the PZF structure forming abundant pores. In this way, Zn 2+ could act as the key of Raman signal to open the PZF structure obtaining a strong Raman signal of TB. The proposed SERS sensor can have a quantitative detection of PSA within the range of 1 pg mL -1 to 10 ng mL -1 with a detection limit of 0.65 pg mL -1 . The interaction between zinc finger peptide and Zn 2+ was firstly applied in SERS sensor for the sensitive detection of PSA. These results demonstrated that the new designed SERS biosensor could be a promising tool in biomarker diagnosis.

  17. New measurement and evaluation of the excitation function of 64Ni(p,n) reaction for the production of 64Cu

    NASA Astrophysics Data System (ADS)

    Adam Rebeles, R.; Van den Winkel, P.; Hermanne, A.; Tárkányi, F.

    2009-02-01

    One of the radioisotopes for which a growing interest exists in nuclear medicine is 64Cu. Its branched decay makes it suitable for both diagnostic and therapeutic purposes. Activation cross sections of the proton induced reaction on enriched 64Ni have been studied using the stacked foil technique up to 24 MeV. The experimental cross sections are compared with values available from literature. Thick target yields, based on the discrete measured values of the cross sections are calculated and allow a better estimation of the optimum production parameters.

  18. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  19. Update on zinc biology.

    PubMed

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  20. MiRNA-101 inhibits oral squamous-cell carcinoma growth and metastasis by targeting zinc finger E-box binding homeobox 1

    PubMed Central

    Wu, Baolei; Lei, Delin; Wang, Lei; Yang, Xinjie; Jia, Sen; Yang, Zihui; Shan, Chun; Yang, Xi; Zhang, Chenping; Lu, Bin

    2016-01-01

    MicroRNAs (miRNAs) are implicated in the pathogenesis of oral squamous-cell carcinoma (OSCC). miR-101 is involved in the development and progression of OSCC, but the biological functions and underlying molecular mechanisms of this miRNA remain largely unknown. In this study, we showed that miR-101 was underexpressed in OSCC tissues and cell lines. miR-101 downregulation was inversely correlated with zinc finger E-box binding homeobox 1 (ZEB1) expression, lymph-node metastasis, and poor prognosis in OSCC patients. Enhanced expression of miR-101 significantly inhibited OSCC cell proliferation, apoptosis resistance, migration and invasion in vitro, and suppressed tumor growth and lung metastasis in vivo. Bioinformatics analyses showed that miR-101 directly targeted ZEB1, as confirmed by a dual-luciferase reporter assay. The inhibitory effects of miR-101 on OSCC growth and metastasis were attenuated and phenocopied by ZEB1 overexpression and knockdown, respectively. Overall, our findings indicated that miRNA-101 reduced OSCC growth and metastasis by targeting ZEB1 and provided new evidence of miR-101 as a potential therapeutic target for OSCC patients. PMID:27429852

  1. Zinc is a potent and specific inhibitor of IFN-λ3 signalling

    PubMed Central

    Read, Scott A.; O'Connor, Kate S.; Suppiah, Vijay; Ahlenstiel, Chantelle L. E.; Obeid, Stephanie; Cook, Kristina M.; Cunningham, Anthony; Douglas, Mark W.; Hogg, Philip J.; Booth, David; George, Jacob; Ahlenstiel, Golo

    2017-01-01

    Lambda interferons (IFNL, IFN-λ) are pro-inflammatory cytokines important in acute and chronic viral infection. Single-nucleotide polymorphisms rs12979860 and rs8099917 within the IFNL gene locus predict hepatitis C virus (HCV) clearance, as well as inflammation and fibrosis progression in viral and non-viral liver disease. The underlying mechanism, however, is not defined. Here we show that the rs12979860 CC genotype correlates with increased hepatic metallothionein expression through increased systemic zinc levels. Zinc interferes with IFN-λ3 binding to IFNL receptor 1 (IFNLR1), resulting in decreased antiviral activity and increased viral replication (HCV, influenza) in vitro. HCV patients with high zinc levels have low hepatocyte antiviral and inflammatory gene expression and high viral loads, confirming the inhibitory role of zinc in vivo. We provide the first evidence that zinc can act as a potent and specific inhibitor of IFN-λ3 signalling and highlight its potential as a target of therapeutic intervention for IFN-λ3-mediated chronic disease. PMID:28513591

  2. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.

    PubMed

    Lin, Wen; Li, Deqiang

    2018-06-01

    Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

  3. Analysis of illegitimate genomic integration mediated by zinc-finger nucleases: implications for specificity of targeted gene correction

    PubMed Central

    2010-01-01

    Background Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase. Results A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes. Conclusions The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of

  4. Zinc nitride thin films: basic properties and applications

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Gómez-Castaño, M.; García Núñez, C.; Domínguez, M.; Vázquez, L.; Pau, J. L.

    2017-02-01

    Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.

  5. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  6. Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2014-01-01

    The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797

  7. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    PubMed

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  8. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  9. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field

    USDA-ARS?s Scientific Manuscript database

    Iron (Fe) and zinc (Zn) deficiencies are the most prevalent micronutrient malnutrition globally1. Fe in rice has proven efficacious in improving serum ferritin concentration and body Fe levels2. Rapid progress in biofortification demonstrates the feasibility to enhance Fe in polished rice by expre...

  10. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    PubMed

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  11. Purifying Properly Folded Cysteine-rich, Zinc Finger Containing Recombinant Proteins for Structural Drug Targeting Studies: the CH1 Domain of p300 as a Case Example

    PubMed Central

    Kim, Yong Joon; Kaluz, Stefan; Mehta, Anil; Weinert, Emily; Rivera, Shannon; Van Meir, Erwin G.

    2017-01-01

    The transcription factor Hypoxia-Inducible Factor (HIF) complexes with the coactivator p300, activating the hypoxia response pathway and allowing tumors to grow. The CH1 and CAD domains of each respective protein form the interface between p300 and HIF. Small molecule compounds are in development that target and inhibit HIF/p300 complex formation, with the goal of reducing tumor growth. High resolution NMR spectroscopy is necessary to study ligand interaction with p300-CH1, and purifying high quantities of properly folded p300-CH1 is needed for pursuing structural and biophysical studies. p300-CH1 has 3 zinc fingers and 9 cysteine residues, posing challenges associated with reagent compatibility and protein oxidation. A protocol has been developed to overcome such issues by incorporating zinc during expression and streamlining the purification time, resulting in a high yield of optimally folded protein (120 mg per 4 L expression media) that is suitable for structural NMR studies. The structural integrity of the final recombinant p300-CH1 has been verified to be optimal using onedimensional 1H NMR spectroscopy and circular dichroism. This protocol is applicable for the purification of other zinc finger containing proteins. PMID:28966947

  12. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat.

    PubMed

    Kamran, Sana; Shahid, Izzah; Baig, Deeba N; Rizwan, Muhammad; Malik, Kauser A; Mehnaz, Samina

    2017-01-01

    Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 ( Pseudomonas fragi) , EPS 6 ( Pantoea dispersa) , EPS 13 ( Pantoea agglomerans) , PBS 2 ( E. cloacae) and LHRW1 ( Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO 3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS

  13. Dietary Zinc Intake and Its Association with Metabolic Syndrome Indicators among Chinese Adults: An Analysis of the China Nutritional Transition Cohort Survey 2015.

    PubMed

    Wang, Yun; Jia, Xiao-Fang; Zhang, Bing; Wang, Zhi-Hong; Zhang, Ji-Guo; Huang, Fei-Fei; Su, Chang; Ouyang, Yi-Fei; Zhao, Jian; Du, Wen-Wen; Li, Li; Jiang, Hong-Ru; Zhang, Ji; Wang, Hui-Jun

    2018-05-08

    The dietary zinc consumed in Chinese households has decreased over the past decade. However, the national dietary zinc intake in the last five years has seldom been investigated. Using data from 12,028 participants 18 to 64 years old (52.9% male) in the China Nutritional Transition Cohort Survey (CNTCS) 2015, we describe the intake of dietary zinc and the contributions of major foods and we examine the relationship between the level of dietary zinc intake and metabolic syndrome indicators, including blood pressure, fasting glucose, and triglycerides (TG), in Chinese adults. We assessed dietary zinc intake using 24 h recalls on three consecutive days. The mean daily dietary zinc intake for all participants was 10.2 milligrams per day (males 11.2 mg/day, females 9.4 mg/day, p < 0.001). The mean daily dietary zinc density for all participants was 5.2 mg/day per 1000 kilocalories. Among all participants, 31.0% were at risk of zinc deficiency, with dietary zinc intakes of less than the Estimated Average Requirement (EAR) (males 49.2%, females 14.8%, p < 0.050), and 49.9% had adequate dietary zinc intakes, equal to or greater than the recommended nutrient intake (RNI) (males 30.7%, females 67.0%, p < 0.050). We found substantial gender differences in dietary zinc intake and zinc deficiency, with nearly half of the men at risk of zinc deficiency. Males of younger age, with higher education and incomes, and who consumed higher levels of meat, had higher zinc intakes, higher zinc intake densities, and higher rates of meeting the EAR. Among all participants, grains, livestock meat, fresh vegetables, legumes, and seafood were the top five food sources of zinc, and their contributions to total dietary zinc intake were 39.5%, 17.3%, 8.9%, 6.4%, and 4.8%, respectively. The groups with relatively better dietary zinc intakes consumed lower proportions of grains and higher proportions of livestock meat. For males with adequate dietary zinc intake (≥RNI), TG levels increased by 0

  14. Zinc

    USDA-ARS?s Scientific Manuscript database

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  15. Zinc and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less

  16. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation.

    PubMed

    Klug, Aaron

    2010-02-01

    A long-standing goal of molecular biologists has been to construct DNA-binding proteins for the control of gene expression. The classical Cys2His2 (C2H2) zinc finger design is ideally suited for such purposes. Discriminating between closely related DNA sequences both in vitro and in vivo, this naturally occurring design was adopted for engineering zinc finger proteins (ZFPs) to target genes specifically. Zinc fingers were discovered in 1985, arising from the interpretation of our biochemical studies on the interaction of the Xenopus protein transcription factor IIIA (TFIIIA) with 5S RNA. Subsequent structural studies revealed its three-dimensional structure and its interaction with DNA. Each finger constitutes a self-contained domain stabilized by a zinc (Zn) ion ligated to a pair of cysteines and a pair of histidines and also by an inner structural hydrophobic core. This discovery showed not only a new protein fold but also a novel principle of DNA recognition. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, functioning as homo- or heterodimers, zinc fingers can be linked linearly in tandem to recognize nucleic acid sequences of varying lengths. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA (or RNA). It is therefore not surprising that the zinc finger is found widespread in nature, including 3% of the genes of the human genome. The zinc finger design can be used to construct DNA-binding proteins for specific intervention in gene expression. By fusing selected zinc finger peptides to repression or activation domains, genes can be selectively switched off or on by targeting the peptide to the desired gene target. It was also suggested that by combining an appropriate zinc finger peptide with other effector or functional domains, e.g. from nucleases or integrases to form chimaeric proteins, genomes could be modified or manipulated. The first example of the

  17. Zinc complexes developed as metallopharmaceutics for treating diabetes mellitus based on the bio-medicinal inorganic chemistry.

    PubMed

    Yoshikawa, Yutaka; Yasui, Hiroyuki

    2012-01-01

    Biological trace metals such as iron, zinc, copper, and manganese are essential to life and health of humans, and the success of platinum drugs in the cancer chemotherapy has rapidly grown interest in developing inorganic pharmaceutical agents in medicinal chemistry, that is, medicinal inorganic chemistry, using essential elements and other biological trace metals. Transition metal complexes with unique chemical structures may be useful alternatives to the drugs available to address some of the incurable diseases. In this review, we emphasize that metal complexes are an expanding of interest in the research field of treatment of diabetes mellitus. Especially, orally active anti-diabetic and anti-metabolic syndrome zinc complexes have been developed and progressed since the discovery in 2001, where several highly potent anti-diabetic zinc complexes with different coordination structures have quite recently been disclosed, using experimental diabetic animals. In all of the complexes discussed, zinc is found to be biologically active and function by interacting with some target proteins related with diabetes mellitus. The design and screening of zinc complexes with higher activity is not efficient without consideration of the translational research. For the development of a clinically useful metallopharmaceutics, the research of zinc complexes on the long-term toxicity including side effects, clear-cut evidence of target molecule for the in vivo pharmacological action, and good pharmacokinetic property are essential in the current and future studies.

  18. Dosimetry Prediction for Clinical Translation of 64Cu-Pembrolizumab ImmunoPET Targeting Human PD-1 Expression.

    PubMed

    Natarajan, Arutselvan; Patel, Chirag B; Habte, Frezghi; Gambhir, Sanjiv S

    2018-01-12

    The immune checkpoint programmed death 1 receptor (PD-1) expressed on some tumor-infiltrating lymphocytes, and its ligand (PD-L1) expressed on tumor cells, enable cancers to evade the immune system. Blocking PD-1 with the monoclonal antibody pembrolizumab is a promising immunotherapy strategy. Thus, noninvasively quantifying the presence of PD-1 expression in the tumor microenvironment prior to initiation of immune checkpoint blockade may identify the patients likely to respond to therapy. We have developed a 64 Cu-pembrolizumab radiotracer and evaluated human dosimetry. The tracer was utilized to image hPD-1 levels in two subcutaneous mouse models: (a) 293 T/hPD-1 cells xenografted into NOD-scid IL-2Rγnull mice (NSG/293 T/hPD-1) and (b) human peripheral blood mononuclear cells engrafted into NSG bearing A375 human melanoma tumors (hNSG/A375). In each mouse model two cohorts were evaluated (hPD-1 blockade with pembrolizumab [blk] and non-blocked [nblk]), for a total of four groups (n = 3-5/group). The xenograft-to-muscle ratio in the NSG/293 T/hPD-1 model at 24 h was significantly increased in the nblk group (7.0 ± 0.5) compared to the blk group (3.4 ± 0.9), p = 0.01. The radiotracer dosimetry evaluation (PET/CT ROI-based and ex vivo) in the hNSG/A375 model revealed the highest radiation burden to the liver. In summary, we validated the 64 Cu-pembrolizumab tracer's specific hPD-1 receptor targeting and predicted human dosimetry.

  19. A heterodimeric [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] αvβ3/GRPr-targeting antagonist radiotracer for PET imaging of prostate tumors.

    PubMed

    Durkan, Kubra; Jiang, Zongrun; Rold, Tammy L; Sieckman, Gary L; Hoffman, Timothy J; Bandari, Rajendra Prasad; Szczodroski, Ashley F; Liu, Liqin; Miao, Yubin; Reynolds, Tamila Stott; Smith, Charles J

    2014-02-01

    In the present study, we describe a (64)Cu-radiolabeled heterodimeric peptide conjugate for dual αvβ3/GRPr (αvβ3 integrin/gastrin releasing peptide receptor) targeting of the form [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] (RGD: the amino acid sequence [Arg-Gly-Asp], a nonregulatory peptide used for αvβ3 integrin receptor targeting; Glu: glutamic acid; NO2A: 1,4,7-triazacyclononane-1,4-diacetic acid; 6-Ahx: 6-amino hexanoic acid; and RM2: (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2), an antagonist analogue of bombesin (BBN) peptide used for GRPr targeting). RGD-Glu-6Ahx-RM2] was conjugated to a NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) complexing agent to produce [RGD-Glu-[NO2A]-6-Ahx-RM2], which was purified by reversed-phase high-performance liquid chromatography (RP-HPLC) and characterized by electrospray ionization-mass spectrometry (ESI-MS). Radiolabeling of the conjugate with (64)Cu produced [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2 in high radiochemical yield (≥95%). In vivo behavior of the radiolabeled peptide conjugate was investigated in normal CF-1 mice and in the PC-3 human prostate cancer experimental model. A competitive displacement receptor binding assay in human prostate PC-3 cells using (125)I-[Tyr(4)]BBN as the radioligand showed high binding affinity of [RGD-Glu-[(nat)Cu-NO2A]-6-Ahx-RM2] conjugate for the GRPr (3.09±0.34 nM). A similar assay in human, glioblastoma U87-MG cells using (125)I-Echistatin as the radioligand indicated a moderate receptor-binding affinity for the αvβ3 integrin (518±37.5 nM). In vivo studies of [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] showed high accumulation (4.86±1.01 %ID/g, 1h post-intravenous injection (p.i.)) and prolonged retention (4.26±1.23 %ID/g, 24h p.i.) of tracer in PC-3 tumor-bearing mice. Micro-positron emission tomography (microPET) molecular imaging studies produced high-quality, high contrast images in PC-3 tumor-bearing mice at 4h p.i. The favorable pharmacokinetics and enhanced tumor uptake of (64)Cu

  20. Promising Bifunctional Chelators for Copper 64-PET imaging: Practical 64Cu Radiolabeling and High In Vitro and In Vivo Complex Stability

    PubMed Central

    Wu, Ningjie; Kang, Chi Soo; Sin, Inseok; Ren, Siyuan; Liu, Dijie; Ruthengael, Varyanna C.; Lewis, Michael R.; Chong, Hyun-Soon

    2016-01-01

    Positron emission tomography (PET) using copper-64 is a sensitive and non-invasive imaging technique for diagnosis and staging of cancer. A bifunctional chelator that can present rapid radiolabeling kinetics and high complex stability with 64Cu is a critical component for targeted PET imaging. Bifunctional chelates 3p-C-NE3TA, 3p-C-NOTA, and 3p-C-DE4TA were evaluated for complexation kinetics and stability with 64Cu in vitro and in vivo. Hexadentate 3p-C-NOTA and heptadentate 3p-C-NE3TA possess a smaller TACN-based macrocyclic backbone, while nonadentate 3p-C-DE4TA is constructed on a larger CYCLEN-based ring. The frequently explored chelates of 64Cu, octadentate C-DOTA and hexadentate C-NOTA were also comparatively evaluated. Radiolabeling kinetics of bifunctional chelators with 64Cu was assessed under mild conditions. All bifunctional chelates instantly bound to 64Cu in excellent radiolabeling efficiency at room temperature. C-DOTA was less efficient in binding 64Cu than all other chelates. All 64Cu-radiolabeled bifunctional chelates remained stable in human serum without any loss of 64Cu for 2 days. When challenged by an excess amount of EDTA, 64Cu complexes of 3p-C-NE3TA and 3p-C-NOTA were shown to be more stable than 64Cu-C-DOTA and 64Cu-C-DE4TA. 3p-C-NE3TA and 3p-C-NOTA displayed comparable in vitro and in vivo complex stability to 64Cu-C-NOTA. In vivo biodistribution result indicates that the 64Cu-radiolabeled complexes of 3p-C-NOTA and 3p-C-NE3TA possess excellent in vivo complex stability, while 64Cu-3p-C-DE4TA was dissociated as evidenced by high renal and liver retention in mice. The results of in vitro and in vivo studies suggest that the bifunctional chelates 3p-C-NOTA and 3p-C-NE3TA offer excellent chelation chemistry with 64Cu for potential PET imaging applications. PMID:26666778

  1. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  2. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  3. Zinc-containing yeast extract promotes nonrapid eye movement sleep in mice.

    PubMed

    Cherasse, Yoan; Saito, Hitomi; Nagata, Nanae; Aritake, Kosuke; Lazarus, Michael; Urade, Yoshihiro

    2015-10-01

    Zinc is an essential trace element for humans and animals, being located, among other places, in the synaptic vesicles of cortical glutamatergic neurons and hippocampal mossy fibers in the brain. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate and GABA receptors. Because of the central role of these neurotransmitters in brain activity, we examined in this study the sleep-promoting activity of zinc by monitoring locomotor activity and electroencephalogram after its administration to mice. Zinc-containing yeast extract (40 and 80 mg/kg) dose dependently increased the total amount of nonrapid eye movement sleep and decreased the locomotor activity. However, this preparation did not change the amount of rapid eye movement sleep or show any adverse effects such as rebound of insomnia during a period of 24 h following the induction of sleep; whereas the extracts containing other divalent cations (manganese, iron, and copper) did not decrease the locomotor activity. This is the first evidence that zinc can induce sleep. Our data open the way to new types of food supplements designed to improve sleep. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Zinc triggers microglial activation.

    PubMed

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  5. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter.

    PubMed

    Isalan, M; Klug, A; Choo, Y

    2001-07-01

    DNA-binding domains with predetermined sequence specificity are engineered by selection of zinc finger modules using phage display, allowing the construction of customized transcription factors. Despite remarkable progress in this field, the available protein-engineering methods are deficient in many respects, thus hampering the applicability of the technique. Here we present a rapid and convenient method that can be used to design zinc finger proteins against a variety of DNA-binding sites. This is based on a pair of pre-made zinc finger phage-display libraries, which are used in parallel to select two DNA-binding domains each of which recognizes given 5 base pair sequences, and whose products are recombined to produce a single protein that recognizes a composite (9 base pair) site of predefined sequence. Engineering using this system can be completed in less than two weeks and yields proteins that bind sequence-specifically to DNA with Kd values in the nanomolar range. To illustrate the technique, we have selected seven different proteins to bind various regions of the human immunodeficiency virus 1 (HIV-1) promoter.

  6. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    PubMed Central

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  7. Zinc Information

    MedlinePlus

    ... for Eye Conditions Clinical Digest: Hepatitis C and Dietary Supplements Related Resources From Other Agencies Age-Related Eye Disease Study 2 (AREDS2) ( NEI ) Can Zinc Be Harmful? ( ODS ) Zinc ( ODS ) Follow NCCIH: Read our disclaimer ...

  8. Styrene-maleic acid-copolymer conjugated zinc protoporphyrin as a candidate drug for tumor-targeted therapy and imaging.

    PubMed

    Fang, Jun; Tsukigawa, Kenji; Liao, Long; Yin, Hongzhuan; Eguchi, Kanami; Maeda, Hiroshi

    2016-01-01

    Previous studies indicated the potential of zinc protoporphyrin (ZnPP) as an antitumor agent targeting to the tumor survival factor heme oxygenase-1, and/or for photodynamic therapy (PDT). In this study, to achieve tumor-targeted delivery, styrene-maleic acid-copolymer conjugated ZnPP (SMA-ZnPP) was synthesized via amide bond, which showed good water solubility, having ZnPP loading of 15%. More importantly, it forms micelles in aqueous solution with a mean particle size of 111.6 nm, whereas it has an apparent Mw of 65 kDa. This micelle formation was not detracted by serum albumin, suggesting it is stable in circulation. Further SMA-ZnPP conjugate will behave as an albumin complex in blood with much larger size (235 kDa) by virtue of the albumin binding property of SMA. Consequently, SMA-ZnPP conjugate exhibited prolonged circulating retention and preferential tumor accumulation by taking advantage of enhanced permeability and retention (EPR) effect. Clear tumor imaging was thus achieved by detecting the fluorescence of ZnPP. In addition, the cytotoxicity and PDT effect of SMA-ZnPP conjugate was confirmed in human cervical cancer HeLa cells. Light irradiation remarkably increased the cytotoxicity (IC50, from 33 to 5 μM). These findings may provide new options and knowledge for developing ZnPP based anticancer theranostic drugs.

  9. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  10. Inhibitors incorporating zinc-binding groups target the GlcNAc-PI de-N-acetylase in Trypanosoma brucei, the causative agent of African sleeping sickness.

    PubMed

    Abdelwahab, Nuha Z; Crossman, Arthur T; Sullivan, Lauren; Ferguson, Michael A J; Urbaniak, Michael D

    2012-03-01

    Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC(50) values 0.1-1.5mM and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC(50)= 19±0.5μm. © 2011 John Wiley & Sons A/S.

  11. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  12. Zinc triggers microglial activation

    PubMed Central

    Kauppinen, Tiina M.; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A.

    2009-01-01

    Microglia are resident immune cells of the central nervous system. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, “amoeboid” morphology and release matrix metalloproteinases, reactive oxygen species, and other pro-inflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here we show that zinc directly triggers microglial activation. Microglia transfected with an NF-kB reporter gene showed a several-fold increase in NF-kB activity in response to 30 μM zinc. Cultured mouse microglia exposed to 15 – 30 μM zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-κB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-κB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders. PMID:18509044

  13. Cu-64-Labeled Lactam Bridge-Cyclized α-MSH Peptides for PET Imaging of Melanoma

    PubMed Central

    Guo, Haixun; Miao, Yubin

    2012-01-01

    The purpose of this study was to examine and compare the melanoma targeting and imaging properties of 64Cu-NOTA-GGNle-CycMSHhex {64Cu-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and 64Cu-DOTA-GGNle-CycMSHhex {64Cu-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-GGNle-CycMSHhex}. Two lactam bridge-cyclized peptides, NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex, were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and imaging properties of 64Cu-NOTA-GGNle-CycMSHhex and 64Cu-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs. 2.1 nM). The substitution of DOTA with NOTA dramatically increased the melanoma uptake and decreased the renal and liver uptake of 64Cu-NOTA-GGNle-CycMSHhex. The tumor uptake of 64Cu-NOTA-GGNle-CycMSHhex was between 12.39 ± 1.61 and 12.71 ± 2.68 % ID/g at 0.5, 2 and 4 h post-injection. The accumulation of 64Cu-NOTA-GGNle-CycMSHhex activity in normal organs was lower than 1.02 % ID/g except for the kidneys 2, 4 and 24 h post-injection. The tumor/liver uptake ratios of 64Cu-NOTA-GGNle-CycMSHhex were 17.96, 16.95 and 8.02, whereas the tumor/kidney uptake ratios of 64Cu-NOTA-GGNle-CycMSHhex were 2.52, 3.60 and 5.74 at 2, 4 and 24 h post-injection, respectively. Greater than 91% of the injected radioactivity cleared through the urinary system by 2 h post-injection. The substitution of DOTA with NOTA resulted in a dramatic increase in melanoma uptake and decrease in renal and liver uptake of 64Cu-NOTA-GGNle-CycMSHhex compared to 64Cu-DOTA-GGNle-CycMSHhex. High melanoma uptake coupled with low accumulation in non-target organs suggested 64Cu-NOTA-GGNle-CycMSHhex as a lead

  14. Attenuation of hippocampal mossy fiber long-term potentiation by low micromolar concentrations of zinc.

    PubMed

    Takeda, Atsushi; Kanno, Shingo; Sakurada, Naomi; Ando, Masaki; Oku, Naoto

    2008-10-01

    The role of zinc in long-term potentiation (LTP) at hippocampal mossy fiber synapses is controversial because of the contrary results obtained when using zinc chelators. On the basis of the postulation that exogenous zinc enhances the action of zinc released from mossy fibers, mossy fiber LTP after tetanic stimulation (100 Hz, 1 sec) was checked in the presence of exogenous zinc at low micromolar concentrations. Mossy fiber LTP was significantly attenuated in the presence of 5-30 microM ZnCl(2), and the amplitude of field excitatory postsynaptic potentials 60 min after tetanic stimulation was decreased to almost the basal level. Mossy fiber LTP was also attenuated in the presence of 5 microM ZnCl(2) 5 min after tetanic stimulation. The present study is the first to demonstrate that low micromolar concentrations of zinc attenuate mossy fiber LTP. When mossy fiber LTP was induced in the presence of CaEDTA and ZnAF-2 DA, a membrane-impermeable and a membrane-permeable zinc chelator, respectively, extracellular and intracellular chelation of zinc enhanced a transient posttetanic potentiation (PTP) without altering LTP. It is likely that zinc released by tetanic stimulation is immediately taken up into the mossy fibers and attenuates mossy fiber PTP. These results suggest that attenuation of PTP rather than LTP at mossy fiber synapses is a more physiological role for endogenous zinc. Targeting molecules of zinc in mossy fiber LTP seem to be different between during and after LTP induction because of the differential synaptic activity between them. (c) 2008 Wiley-Liss, Inc.

  15. Comparison of two cross-bridged macrocyclicchelators for the evaluation of 64Cu-labeled-LLP2A, a peptidomimetic ligand targeting VLA-4-positive tumors

    PubMed Central

    Jiang, Majiong; Ferdani, Riccardo; Shokeen, Monica; Anderson, Carolyn J.

    2013-01-01

    Integrin α4β1 (also called very late antigen-4 or VLA-4) plays an important role in tumor growth, angiogenesis and metastasis, and there has been increasing interest in targeting this receptor for cancer imaging and therapy. In this study, we conjugated a peptidomimetic ligand known to have good binding affinity for α4β1 integrin to a cross-bridged macrocyclicchelator with a methane phosphonic acid pendant arm, CB-TE1A1P. CB-TE1A1P-LLP2A was labeled with 64Cu under mild conditions in high specific activity, in contrast to conjugates based on the “gold standard” di-acid cross-bridged chelator, CB-TE2A, which require high temperatures for efficient radiolabeling. Saturation binding assays demonstrated that 64Cu-CB-TE1A1P-LLP2A had comparable binding affinity(1.2 nM vs 1.6 nM) but more binding sites(Bmax = 471 fmol/mg) in B16F10 melanoma tumor cells than 64Cu-CB-TE2A-LLP2A (Bmax = 304 fmol/mg, p < 0.03). In biodistribution studies, 64Cu-CB-TE1A1P-LLP2A had less renal retention but higher uptake in tumor(11.4 ± 2.3 %ID/g versus 3.1± 0.6 %ID/g, p<0.001)and other receptor-rich tissues compared to 64Cu-CB-TE2A-LLP2A. At 2 h post-injection, 64Cu-CB-TE1A1P-LLP2A also had significantly higher tumor: blood and tumor: muscle ratios than 64Cu-CB-TE2A-LLP2A(CB-TE1A1P = 19.5 ± 3.0 and 13.0 ± 1.4, respectively, CB-TE2A = 4.2 ± 1.4 and 5.5 ± 0.9, respectively, p< 0.001). These data demonstrate that 64Cu-CB-TE1A1P-LLP2A is an excellent PET radiopharmaceutical for the imaging of α4β1 positive tumors and also has potential for imaging other α4β1 positive cells such as those of the pre-metastatic niche. PMID:23265977

  16. Comparative Evaluation of Anti-HER2 Affibody Molecules Labeled with 64Cu Using NOTA and NODAGA

    PubMed Central

    Yim, Cheng-Bin; Rajander, Johan; Perols, Anna; Karlström, Amelie Eriksson; Haaparanta-Solin, Merja; Grönroos, Tove J.; Solin, Olof; Orlova, Anna

    2017-01-01

    Imaging using affibody molecules enables discrimination between breast cancer metastases with high and low expression of HER2, making appropriate therapy selection possible. This study aimed to evaluate if the longer half-life of 64Cu (T1/2 = 12.7 h) would make 64Cu a superior nuclide compared to 68Ga for PET imaging of HER2 expression using affibody molecules. The synthetic ZHER2:S1 affibody molecule was conjugated with the chelators NOTA or NODAGA and labeled with 64Cu. The tumor-targeting properties of 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 were evaluated and compared with the targeting properties of 68Ga-NODAGA-ZHER2:S1 in mice. Both 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 demonstrated specific targeting of HER2-expressing xenografts. At 2 h after injection of 64Cu-NOTA-ZHER2:S1, 64Cu-NODAGA-ZHER2:S1, and 68Ga-NODAGA-ZHER2:S1, tumor uptakes did not differ significantly. Renal uptake of 64Cu-labeled conjugates was dramatically reduced at 6 and 24 h after injection. Notably, radioactivity uptake concomitantly increased in blood, lung, liver, spleen, and intestines, which resulted in decreased tumor-to-organ ratios compared to 2 h postinjection. Organ uptake was lower for 64Cu-NODAGA-ZHER2:S1. The most probable explanation for this biodistribution pattern was the release and redistribution of renal radiometabolites. In conclusion, monoamide derivatives of NOTA and NODAGA may be suboptimal chelators for radiocopper labeling of anti-HER2 affibody molecules and, possibly, other scaffold proteins with high renal uptake. PMID:29097939

  17. Precise determination of neutron binding energy of 64Cu

    NASA Astrophysics Data System (ADS)

    Telezhnikov, S. A.; Granja, C.; Honzatko, J.; Pospisil, S.; Tomandl, I.

    2016-05-01

    The neutron binding energy in 64Cu has been accurately measured in thermal neutron capture. A composite target of natural Cu and NaCl was used on a high flux neutron beam using a large measuring time. The γ-ray spectrum emitted in the ( n, γ) reaction was measured with a HPGe detector in large statistics (up to 106 events per channel). Intrinsic limitations of HPGe detectors, which restrict the accuracy of energy calibration, were determined. The value B n of 64Cu was determined as 7915.867(24) keV.

  18. Supplemental levels of iron and calcium interfere with repletion of zinc status in zinc-deficient animals.

    PubMed

    Jayalakshmi, S; Platel, Kalpana

    2016-05-18

    Negative interactions between minerals interfering with each other's absorption are of concern when iron and calcium supplements are given to pregnant women and children. We have previously reported that supplemental levels of iron and calcium inhibit the bioaccessibility of zinc, and compromise zinc status in rats fed diets with high levels of these two minerals. The present study examined the effect of supplemental levels of iron and calcium on the recovery of zinc status during a zinc repletion period in rats rendered zinc-deficient. Iron and calcium, both individually and in combination, significantly interfered with the recovery of zinc status in zinc deficient rats during repletion with normal levels of zinc in the diet. Rats maintained on diets containing supplemental levels of these two minerals had significantly lower body weight, and the concentration of zinc in serum and organs was significantly lower than in zinc-deficient rats not receiving the supplements. Iron and calcium supplementation also significantly inhibited the activity of zinc-containing enzymes in the serum as well as liver. Both iron and calcium independently exerted this negative effect on zinc status, while their combination seemed to have a more prominent effect, especially on the activities of zinc containing enzymes. This investigation is probably the first systematic study on the effect of these two minerals on the zinc status of zinc deficient animals and their recovery during repletion with normal amounts of zinc.

  19. Rapid, efficient charging of lead-acid and nickel-zinc traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1978-01-01

    Lead-acid and nickel-zinc traction cells were rapidly and efficiently charged using a high rate tapered direct current (HRTDC) charge method which could possibly be used for on-the-road service recharge of electric vehicles. The HRTDC method takes advantage of initial high cell charge acceptance and uses cell gassing rate and temperature as an indicator of charging efficiency. On the average, in these preliminary tests, 300 amp-hour nickel-zinc traction cells were given a HRTDC (initial current 500 amps, final current 100 amps) to 78 percent of rated amp-hour capacity within 53 minutes at an amp-hour efficiency of 92 percent and an energy efficiency of 52 percent. Three hundred amp-hour lead-acid traction cells were charged to 69 percent of rated amp-hour capacity within 46 minutes at an amp-hour efficiency of 91 percent with an energy efficiency of 64 percent. In order to find ways to further decrease the recharge times, the effect of periodically (0 to 400 Hz) pulse discharging cells during a constant current charging process (94% duty cycle) was investigated. Preliminary data indicate no significant effect of this type of pulse discharging during charge on charge acceptance of lead-acid or nickel-zinc cells.

  20. Zinc supplements for treating thalassaemia and sickle cell disease.

    PubMed

    Swe, Kye Mon Min; Abas, Adinegara B L; Bhardwaj, Amit; Barua, Ankur; Nair, N S

    2013-06-28

    control group, mean difference 47.40 (95% confidence interval -12.95 to 107.99). Regarding anthropometry, in one trial, height velocity was significantly increased in patients who received zinc supplementation for one to seven years duration, mean difference 3.37 (95% confidence interval 2.36 to 4.38) (total number of participants = 26). In one trial, however, there was no difference in body mass index between treatment groups.Zinc acetate supplementation for three months (in one trial) and one year (in two trials) (total number of participants = 71) was noted to increase the serum zinc level significantly in patients with sickle cell anaemia, mean difference 14.90 (95% confidence interval 6.94 to 22.86) and 20.25 (95% confidence interval 11.73 to 28.77) respectively. There was no significant difference in haemoglobin level between intervention and control groups, at either three months (one trial) or one year (one trial), mean difference 0.06 (95% confidence interval -0.84 to 0.96) and mean difference -0.07 (95% confidence interval -1.40 to 1.26) respectively. Regarding anthropometry, one trial showed no significant changes in body mass index or weight after one year of zinc acetate supplementation. In patients with sickle cell disease, the total number of sickle cell crises at one year were significantly decreased in the zinc sulphate supplemented group as compared to controls, mean difference -2.83 (95% confidence interval -3.51 to -2.15) (total participants 130), but not in zinc acetate group, mean difference 1.54 (95% confidence interval -2.01 to 5.09) (total participants 22). In one trial at three months and another at one year, the total number of clinical infections were significantly decreased in the zinc supplemented group as compared to controls, mean difference 0.05 (95% confidence interval 0.01 - 0.43) (total number of participants = 36), and mean difference -7.64 (95% confidence interval -10.89 to -4.39) (total number of participants = 21) respectively

  1. [Zinc and chronic enteropathies].

    PubMed

    Giorgi, P L; Catassi, C; Guerrieri, A

    1984-01-01

    In recent years the nutritional importance of zinc has been well established; its deficiency and its symptoms have also been recognized in humans. Furthermore, Acrodermatitis Enteropathica has been isolated, a rare but severe disease, of which skin lesions, chronic diarrhoea and recurring infections are the main symptoms. The disease is related to the malfunctioning of intestinal absorption of zinc and can be treated by administering pharmacological doses of zinc orally. Good dietary sources of zinc are meat, fish and, to a less extent, human milk. The amount of zinc absorbed in the small intestine is influenced by other nutrients: some compounds inhibit this process (dietary fiber, phytate) while others (picolinic acid, citric acid), referred to as Zn-binding ligands (ZnBL) facilitate it. Citric acid is thought to be the ligand which accounts for the high level of bioavailability of zinc in human milk. zinc absorption occurs throughout the small intestine, not only in the prossimal tract (duodenum and jejunum) but also in the distal tract (ileum). Diarrhoea is one of the clinical manifestations of zinc deficiency, thus many illnesses distinguished by chronic diarrhoea entail a bad absorption of zinc. In fact, in some cases of chronic enteropathies in infants, like coeliac disease and seldom cystic fibrosis, a deficiency of zinc has been isolated. Some of the symptoms of Crohn's disease, like retarded growth and hypogonadism, have been related to hypozinchemia which is present in this illness. Finally, it is possible that some of the dietary treatments frequently used for persistent post-enteritis diarrhoea (i.e. cow's milk exclusion, abuse and misuse of dietary fiber like carrot and carub powder, use of soy formula) can constitute a scarce supply of zinc and therefore could promote the persistency of diarrhoea itself.

  2. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    PubMed Central

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-01-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584

  3. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  4. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  5. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  6. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994

  7. Plasma zinc in institutionalized elderly individuals: Relation with immune and cardiometabolic biomarkers.

    PubMed

    Sales, Márcia Cristina; de Oliveira, Larissa Praça; de Araújo Cabral, Natalia Louise; de Sousa, Sara Estéfani Soares; das Graças Almeida, Maria; Lemos, Telma Maria Araújo Moura; de Oliveira Lyra, Clélia; de Lima, Kenio Costa; Sena-Evangelista, Karine Cavalcanti Mauricio; de Fatima Campos Pedrosa, Lucia

    2018-04-24

    Changes in zinc metabolism caused by aging and the institutionalization process may contribute to zinc deficiency in elderly individuals. Hypozincemia results in changes in glycemic, lipid, and inflammatory profiles. The aim of this study was to evaluate plasma zinc concentrations and their relationships with sociodemographic, dietary, inflammatory, and cardiometabolic biomarkers in institutionalized elderly individuals. A cross-sectional study was carried out including 255 elderly adults living in nursing homes. The associations between plasma zinc and dietary zinc intake, sociodemographic indicators, and glycemic, lipid, and inflammatory biomarkers were evaluated. Independent variables were analyzed according to quartiles of plasma zinc concentrations (Q1: <71.1 μg/dL; Q2: 71.1-83.3 μg/dL; Q3: <83.3-93.7 μg/dL; Q4: >93.7 μg/dL). The relationship between plasma zinc concentrations and predictor variables was also tested. In Q1, higher concentrations of the following variables were observed, compared with those in other quartiles: total cholesterol and low-density lipoprotein cholesterol (LDL-c; Q1 > Q2, Q3, Q4; all p <0.001); triglycerides (Q1 > Q3, Q4; all p < 0.001); interleukin (IL)-6 (Q1 > Q3, Q4; p = 0.024 and p = 0.010, respectively); tumor necrosis factor (TNF)-α (Q1 > Q3, p = 0.003). A significant reduction in plasma zinc concentrations was observed with increasing age-adjusted institutionalization time (Δ = - 0.10; 95% confidence interval [CI]: -0.18 to -0.01). The concentrations of total cholesterol (Δ = - 0.19; 95% CI: -0.23 to -0.15), LDL-c (Δ = - 0.19; 95% CI: -0.23 to -0.15), triglycerides (Δ = - 0.11; 95% CI: -0.16 to -0.06), IL-6 (Δ = - 1.41; 95% CI: -2.64 to -0.18), and TNF-α (Δ = - 1.04; 95% CI: -1.71 to -0.36) were also significantly increased. In conclusion, decreased plasma zinc concentrations were associated with longer institutionalization time and worse

  8. Allosteric ligands for the pharmacologically important Flavivirus target (NS5) from ZINC database based on pharmacophoric points, free energy calculations and dynamics correlation.

    PubMed

    Khan, Abbas; Saleem, Shoaib; Idrees, Muhammad; Ali, Syed Shujait; Junaid, Muhammad; Chandra Kaushik, Aman; Wei, Dong-Qing

    2018-04-11

    Dengue virus belongs to a group of human pathogens, which causes different diseases, dengue hemorrhagic fever and dengue shock syndrome in humans. It possesses RNA as a genetic material and is replicated with the aid of NS5 protein. RNA-dependent RNA polymerase (RdRp) is an important domain of NS5 in the replication of that virus. The catalytic process activity of RdRp is making it an important target for antiviral chemical therapy. To date, No FDA drug has been approved and marketed for the treatment of diseases caused by Dengue virus. So, there is a dire need to advance an area of active antiviral inhibitors that is safe, less expensive and widely available. An experimentally validated complex of Dengue NS5 and compound 27 (6LS) were used as pharmacophoric input and hits were identified. We also used Molecular dynamics (MD) simulations alongside free energy and dynamics of the internal residues of the apo and holo systems to understand the binding mechanism. Our analysis resulted that the three inhibitors (ZINC72070002, ZINC6551486, and ZINC39588257) greatly affected the interior dynamics and residual signaling to dysfunction the replicative role of NS5. The interaction of these inhibitors caused the loss of the correlated motion of NS5 near to the N terminus and helped the stability of the binding complex. This investigation provided a methodological route to discover allosteric inhibitors against the epidemics of this Flaviviruses. Allosteric inhibitors are important and major assets in considering the development of the competitive and robust antiviral agents such as against Dengue viral infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    PubMed

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.

  10. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  11. Optical model potentials for 6He+64Zn from 63Cu(7Li,6He)64Zn reactions

    NASA Astrophysics Data System (ADS)

    Yang, L.; Lin, C. J.; Jia, H. M.; Wang, D. X.; Sun, L. J.; Ma, N. R.; Yang, F.; Wu, Z. D.; Xu, X. X.; Zhang, H. Q.; Liu, Z. H.; Bao, P. F.

    2017-03-01

    Angular distributions of the transfer reaction 63Cu(7Li,6He )64Zn were measured at Elab(7Li) =12.67 , 15.21, 16.33, 23.30, 27.30, and 30.96 MeV. With the interaction potentials of the entrance channel 7Li+63Cu obtained from elastic scattering data as input, the optical potentials of the halo nuclear system 6He+64Zn in the exit channel were extracted by fitting the experimental data with the distorted-wave Born approximation (DWBA) and coupled reaction channels (CRC) methods, respectively. The results show that the threshold anomaly presents in the weakly bound system of 7Li+63Cu and the dispersion relation can be adopted to describe the connection between the real and imaginary potentials, while both the real and imaginary potentials nearly keep constant within the researched energy region for the halo system of 6He+64Zn . Moreover, calculations by the potentials extracted from the CRC method can reproduce the experimental elastic scattering of the 6He+64Zn system rather well, but those by the potentials from the DWBA method cannot, where the couplings between 7Li and 6He are absent. This work verifies the validity of the transfer method in the medium-mass target region and lays a solid foundation for the further study of optical potentials for exotic nuclear systems.

  12. Pancreatic imaging using an antibody fragment targeting the zinc transporter type 8: a direct comparison with radio-iodinated Exendin-4.

    PubMed

    Eriksson, Olof; Korsgren, Olle; Selvaraju, Ram Kumar; Mollaret, Marjorie; de Boysson, Yann; Chimienti, Fabrice; Altai, Mohamed

    2018-01-01

    The zinc transporter 8 (ZnT8) has been suggested as a suitable target for non-invasive visualization of the functional pancreatic beta cell mass, due to both its pancreatic beta cell restricted expression and tight involvement in insulin secretion. In order to examine the potential of ZnT8 as a surrogate target for beta cell mass, we performed mRNA transcription analysis in pancreatic compartments. A novel ZnT8 targeting antibody fragment Ab31 was radiolabeled with iodine-125, and evaluated by in vitro autoradiography in insulinoma and pancreas as well as by in vivo biodistribution. The evaluation was performed in a direct comparison with radio-iodinated Exendin-4. Transcription of the ZnT8 mRNA was higher in islets of Langerhans compared to exocrine tissue. Ab31 targeted ZnT8 in the cytosol and on the plasma membrane with 108 nM affinity. Ab31 was successfully radiolabeled with iodine-125 with high yield and > 95% purity. [ 125 I]Ab31 binding to insulinoma and pancreas was higher than for [ 125 I]Exendin-4, but could only by partially competed away by 200 nM Ab31 in excess. The in vivo uptake of [ 125 I]Ab31 was higher than [ 125 I]Exendin-4 in most tissues, mainly due to slower clearance from blood. We report a first-in-class ZnT8 imaging ligand for pancreatic imaging. Development with respect to ligand miniaturization and radionuclide selection is required for further progress. Transcription analysis indicates ZnT8 as a suitable target for visualization of the human endocrine pancreas.

  13. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    PubMed

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    PubMed

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  15. 99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, LOOKING NORTH. NOTE ONE STYLE OF DENVER AGITATOR IN LOWER RIGHT CELL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  16. Serum thymulin in human zinc deficiency.

    PubMed Central

    Prasad, A S; Meftah, S; Abdallah, J; Kaplan, J; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no overt clinical manifestations of zinc deficiency. The diagnosis of mild zinc deficiency was based on the assay of zinc in lymphocytes, granulocytes, and platelets. Serum thymulin activity was decreased as a result of mild zinc deficiency and was corrected by in vivo and in vitro zinc supplementation, suggesting that this parameter was a sensitive indicator of zinc deficiency in humans. An increase in T101-, sIg-cells, decrease in T4+/T8+ ratio, and decreased IL 2 activity were observed in the experimental human model during the zinc depletion phase, all of which were corrected after repletion with zinc. Similar changes in lymphocyte subpopulation, correctable with zinc supplementation, were also observed in mildly ZD SCA subjects. Inasmuch as thymulin is known to induce intra- and extrathymic T cell differentiation, our studies provide a possible mechanism for the role of zinc on T cell functions. Images PMID:3262625

  17. Zinc supplementation in public health.

    PubMed

    Penny, Mary Edith

    2013-01-01

    Zinc is necessary for physiological processes including defense against infections. Zinc deficiency is responsible for 4% of global child morbidity and mortality. Zinc supplements given for 10-14 days together with low-osmolarity oral rehydration solution (Lo-ORS) are recommended for the treatment of childhood diarrhea. In children aged ≥ 6 months, daily zinc supplements reduce the duration of acute diarrhea episodes by 12 h and persistent diarrhea by 17 h. Zinc supplements could reduce diarrhea mortality in children aged 12-59 months by an estimated 23%; they are very safe but are associated with an increase in vomiting especially with the first dose. Heterogeneity between the results of trials is not understood but may be related to dose and the etiology of the diarrhea infection. Integration of zinc and Lo-ORS into national programs is underway but slowly, procurement problems are being overcome and the greatest challenge is changing health provider and caregiver attitudes to diarrhea management. Fewer trials have been conducted of zinc adjunct therapy in severe respiratory tract infections and there is as yet insufficient evidence to recommend addition of zinc to antibiotic therapy. Daily zinc supplements for all children >12 months of age in zinc deficient populations are estimated to reduce diarrhea incidence by 11-23%. The greatest impact is in reducing multiple episodes of diarrhea. The effect on duration of diarrheal episodes is less clear, but there may be up to 9% reduction. Zinc is also efficacious in reducing dysentery and persistent diarrhea. Zinc supplements may also prevent pneumonia by about 19%, but heterogeneity across studies has not yet been explained. When analyses are restricted to better quality studies using CHERG (Child Health Epidemiology Reference Group) methodology, zinc supplements are estimated to reduce diarrheal deaths by 13% and pneumonia deaths by 20%. National-level programs to combat childhood zinc deficiency should be

  18. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  19. History of Zinc in Agriculture12

    PubMed Central

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  20. Effect of Zinc in Enteropathogenic Escherichia coli Infection▿ †

    PubMed Central

    Crane, John K.; Naeher, Tonniele M.; Shulgina, Irina; Zhu, Chengru; Boedeker, Edgar C.

    2007-01-01

    Enteropathogenic Escherichia coli (EPEC) infection triggers the release of ATP from host intestinal cells, and the ATP is broken down to ADP, AMP, and adenosine in the lumen of the intestine. Ecto-5′-nucleotidase (CD73) is the main enzyme responsible for the conversion of 5′-AMP to adenosine, which triggers fluid secretion from host intestinal cells and also has growth-promoting effects on EPEC bacteria. In a recent study, we examined the role of the host enzyme CD73 in EPEC infection by testing the effect of ecto-5′-nucleotidase inhibitors. Zinc was a less potent inhibitor of ecto-5′-nucleotidase in vitro than the nucleotide analog α,β-methylene-ADP, but in vivo, zinc was much more efficacious in preventing EPEC-induced fluid secretion in rabbit ileal loops than α,β-methylene-ADP. This discrepancy between the in vitro and in vivo potencies of the two inhibitors prompted us to search for potential targets of zinc other than ecto-5′-nucleotidase. Zinc, at concentrations that produced little or no inhibition of EPEC growth, caused a decrease in the expression of EPEC protein virulence factors, such as bundle-forming pilus (BFP), EPEC secreted protein A, and other EPEC secreted proteins, and reduced EPEC adherence to cells in tissue culture. The effects of zinc were not mimicked by other transition metals, such as manganese, iron, copper, or nickel, and the effects were not reversed by an excess of iron. Quantitative real-time PCR showed that zinc reduced the abundance of the RNAs encoded by the bfp gene, by the plasmid-encoded regulator (per) gene, by the locus for the enterocyte effacement (LEE)-encoded regulator (ler) gene, and by several of the esp genes. In vivo, zinc reduced EPEC-induced fluid secretion into ligated rabbit ileal loops, decreased the adherence of EPEC to rabbit ileum, and reduced histopathological damage such as villus blunting. Some of the beneficial effects of zinc on EPEC infection appear to be due to the action of the metal on

  1. Measurements of zinc absorption: application and interpretation in research designed to improve human zinc nutriture.

    PubMed

    Hambidge, K Michael; Miller, Leland V; Tran, Cuong D; Krebs, Nancy F

    2005-11-01

    The focus of this paper is on the application of measurements of zinc absorption in human research, especially studies designed to assess the efficacy of intervention strategies to prevent and manage zinc deficiency in populations. Emphasis is given to the measurement of quantities of zinc absorbed rather than restricting investigations to measurements of fractional absorption of zinc. This is especially important when determining absorption of zinc from the diet, whether it be the habitual diet or an intervention diet under evaluation. Moreover, measurements should encompass all meals for a minimum of one day with the exception of some pilot studies. Zinc absorption is primarily via an active saturable transport process into the enterocytes of the proximal small intestine. The relationship between quantity of zinc absorbed and the quantity ingested is best characterized by saturable binding models. When applied to human studies that have sufficient data to examine dose-response relationships, efficiency of absorption is high until approximately 50-60% maximal absorption is achieved, even with moderate phytate intakes. This also coincides approximately with the quantity of absorbed zinc necessary to meet physiologic requirements. Efficiency of absorption with intakes that exceed this level is low or very low. These observations have important practical implications for the design and interpretation of intervention studies to prevent zinc deficiency. They also suggest the potential utility of measurements of the quantity of zinc absorbed when evaluating the zinc status of populations.

  2. Interaction of zinc with dental mineral.

    PubMed

    Ingram, G S; Horay, C P; Stead, W J

    1992-01-01

    As some currently available toothpastes contain zinc compounds, the reaction of zinc with dental mineral and its effect on crystal growth rates were studied using three synthetic calcium-deficient hydroxyapatites (HAP) as being representative of dental mineral. Zinc was readily acquired by all HAP samples in the absence of added calcium, the amount adsorbed being proportional to the HAP surface area; about 9 mumol Zn/m2 was adsorbed at high zinc concentrations. As zinc was acquired, calcium was released, consistent with 1:1 Ca:Zn exchange. Soluble calcium reduced zinc uptake and similarly, calcium post-treatment released zinc. Pretreatment of HAP with 0.5 mM zinc reduced its subsequent ability to undergo seeded crystal growth, as did extracts of a toothpaste containing 0.5% zinc citrate, even in the presence of saliva. The reverse reaction, i.e. displacement of adsorbed zinc by salivary levels of calcium, however, indicates the mechanism by which zinc can reduce calculus formation in vivo by inhibiting plaque mineralisation without adversely affecting the anti-caries effects of fluoride.

  3. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, T.C.; McLarnon, F.R.; Cairns, E.J.

    1994-04-12

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K[sub 2]CO[sub 3] salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics. 8 figures.

  4. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1994-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  5. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  6. The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling

    PubMed Central

    Lee, Sung Ryul; Noh, Su Jin; Pronto, Julius Ryan; Jeong, Yu Jeong; Kim, Hyoung Kyu; Song, In Sung; Xu, Zhelong; Kwon, Hyog Young; Kang, Se Chan; Sohn, Eun-Hwa; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari

    2015-01-01

    Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn2+) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn2+ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn2+ levels are largely regulated by metallothioneins (MTs), Zn2+ importers (ZIPs), and Zn2+ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn2+. However, these regulatory actions of Zn2+ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn2+ levels, Zn2+-mediated signal transduction, impacts of Zn2+ on ion channels and mitochondrial metabolism, and finally, the implications of Zn2+ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn2+. PMID:26330751

  7. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  8. Uptake and partitioning of zinc in Lemnaceae.

    PubMed

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  9. Zinc: an essential but elusive nutrient123

    PubMed Central

    King, Janet C

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515

  10. Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Napolitano, Mauro; Rubio, Miguel Ángel; Santamaría-Gómez, Javier; Olmedo-Verd, Elvira; Robinson, Nigel J; Luque, Ignacio

    2012-05-01

    Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium.

  11. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  12. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway

    PubMed Central

    Matsunaga, Mayu; Takeda, Taka-aki

    2017-01-01

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review. PMID:29048339

  13. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.

    PubMed

    Kambe, Taiho; Matsunaga, Mayu; Takeda, Taka-Aki

    2017-10-19

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.

  14. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  15. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    NASA Astrophysics Data System (ADS)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  16. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    PubMed Central

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  17. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  18. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    NASA Astrophysics Data System (ADS)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  19. 64Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques.

    PubMed

    Jiang, Lei; Tu, Yingfeng; Kimura, Richard H; Habte, Frezghi; Chen, Hao; Cheng, Kai; Shi, Hongcheng; Gambhir, Sanjiv Sam; Cheng, Zhen

    2015-06-01

    The rupture of vulnerable atherosclerotic plaques that lead to stroke and myocardial infarction may be induced by macrophage infiltration and augmented by the expression of integrin αvβ3. Indeed, atherosclerotic angiogenesis may be a promising marker of inflammation. In this study, an engineered integrin αvβ3-targeting PET probe, (64)Cu-NOTA-3-4A, derived from a divalent knottin miniprotein was evaluated in a mouse model for carotid atherosclerotic plaques. Atherosclerotic plaques in BALB/C mice, maintained on a high-fat diet, were induced with streptozotocin injection and carotid artery ligation and verified by MR imaging. Knottin 3-4A was synthesized by solid-phase peptide synthesis chemistry and coupled to 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) before radiolabeling with (64)Cu. PET probe stability in mouse serum was evaluated. Mice with carotid atherosclerotic plaques were injected via the tail vein with (64)Cu-NOTA-3-4A or (18)F-FDG, followed by small-animal PET/CT imaging at different time points. Receptor targeting specificity of the probe was verified by coinjection of c(RGDyK) administered in molar excess. Subsequently, carotid artery dissection and immunofluorescence staining were performed to evaluate target expression. (64)Cu-NOTA-3-4A was synthesized in high radiochemical purity and yield and demonstrated molecular stability in both phosphate-buffered saline and mouse serum at 4 h. Small-animal PET/CT showed that (64)Cu-NOTA-3-4A accumulated at significantly higher levels in the neovasculature of carotid atherosclerotic plaques (7.41 ± 1.44 vs. 0.67 ± 0.23 percentage injected dose/gram, P < 0.05) than healthy or normal vessels at 1 h after injection. (18)F-FDG also accumulated in atherosclerotic lesions at 0.5 and 1 h after injection but at lower plaque-to-normal tissue ratios than (64)Cu-NOTA-3-4A. For example, plaque-to-normal carotid artery ratios for (18)F-FDG and (64)Cu-NOTA-3-4A at 1 h after injection were 3.75 and 14.71 (P < 0

  20. ZNT7 binds to CD40 and influences CD154-triggered p38 MAPK activity in B lymphocytes-a possible regulatory mechanism for zinc in immune function

    USDA-ARS?s Scientific Manuscript database

    Zinc deficiency impairs immune system leading to frequent infections. Although it is known that zinc plays critical roles in maintaining healthy immune function, the underlying molecular targets are largely unknown. In this study, we showed that zinc is important for the CD154-CD40-mediated activati...

  1. TNFα Post-Translationally Targets ZnT2 to Accumulate Zinc in Lysosomes.

    PubMed

    Hennigar, Stephen R; Kelleher, Shannon L

    2015-10-01

    Mammary epithelial cells undergo widespread lysosomal-mediated cell death (LCD) during early mammary gland involution. Recently, we demonstrated that tumor necrosis factor-α (TNFα), a cytokine released during early involution, redistributes the zinc (Zn) transporter ZnT2 to accumulate Zn in lysosomes and activate LCD and involution. The objective of this study is to determine how TNFα retargets ZnT2 to lysosomes. We tested the hypothesis that TNFα signaling dephosphorylates ZnT2 to uncover a highly conserved dileucine motif (L294L) in the C-terminus of ZnT2, allowing adaptor protein complex-3 (AP-3) to bind and traffic ZnT2 to lysosomes. Confocal micrographs showed that TNFα redistributed wild-type (WT) ZnT2 from late endosomes (Pearson's coefficient = 0.202 ± 0.05 and 0.097 ± 0.03; P<0.05) to lysosomes (0.292 ± 0.03 and 0.649 ± 0.03; P<0.0001), which increased lysosomal Zn (P<0.0001) and activated LCD (P<0.0001) compared to untreated cells. Mutation of the dileucine motif (L294V) eliminated the ability of TNFα to redistribute ZnT2 from late endosomes to lysosomes, increase lysosomal Zn, or activate LCD. Moreover, TNFα increased (P<0.05) AP-3 binding to wt ZnT2 but not to L294V immunoprecipitates. Finally, using phospho- and dephospho-mimetics of predicted phosphorylation sites (T281, T288, and S296), we found that dephosphorylated S296 was required to target ZnT2 to accumulate Zn in lysosomes and activate LCD. Our findings suggest that women with variation in the C-terminus of ZnT2 may be at risk for inadequate involution and breast disease due the inability to traffic ZnT2 to lysosomes. © 2015 Wiley Periodicals, Inc.

  2. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    PubMed

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer

    PubMed Central

    Franklin, Renty B; Feng, Pei; Milon, B; Desouki, Mohamed M; Singh, Keshav K; Kajdacsy-Balla, André; Bagasra, Omar; Costello, Leslie C

    2005-01-01

    Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands). In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN). These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down-regulation in adenocarcinomatous

  4. PAPERCLIP identifies microRNA targets and a role of CstF64/64tau in promoting non-canonical poly(A) site usage

    PubMed Central

    Hwang, Hun-Way; Park, Christopher Y.; Goodarzi, Hani; Fak, John J.; Mele, Aldo; Moore, Michael J.; Saito, Yuhki; Darnell, Robert B.

    2016-01-01

    Accurate and precise annotation of the 3′ untranslated regions (3′ UTRs) is critical in understanding how mRNAs are regulated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). Here we describe a method, PAPERCLIP (Poly(A) binding Protein-mediated mRNA 3′ End Retrieval by CrossLinking ImmunoPrecipitation), which shows high specificity for the mRNA 3′ ends and compares favorably to existing 3′ end mapping methods. PAPERCLIP uncovers a previously unrecognized role of CstF64/64tau in promoting the usage of a selected group of non-canonical poly(A) sites, the majority of them containing a downstream GUKKU motif. Furthermore, in mouse brain, PAPERCLIP discovers extended 3′ UTR sequences harboring functional miRNA binding sites and reveals developmentally regulated APA shifts including one in Atp2b2 that is evolutionarily conserved in human and results in a gain of a functional binding site of miR-137. PAPERCLIP provides a powerful tool to decipher post-transcriptional regulation of mRNAs through APA in vivo. PMID:27050522

  5. Effect of Zinc Oxide Film Deposition Position on the Characteristics of Zinc Oxide Thin Film Transistors Fabricated by Low-Temperature Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Takechi, Kazushige; Nakata, Mitsuru; Eguchi, Toshimasa; Otsuki, Shigeyoshi; Yamaguchi, Hirotaka; Kaneko, Setsuo

    2008-09-01

    We report on the effect of zinc oxide (ZnO) film deposition position on the characteristics of ZnO thin-film transistors (TFTs) fabricated by magnetron sputtering with no intentional heating of the substrate. We evaluate the properties of ZnO (channel semiconductor) films deposited at various positions with respect to the target position. We show that the film deposition at a position off-centered from the target results in good TFT characteristics. This might be due to the fact that the off-centered deposition position is effective for suppressing the effect of energetic negative ions in the plasma.

  6. Cardiac hypoxia imaging: second-generation analogues of 64Cu-ATSM.

    PubMed

    Handley, Maxwell G; Medina, Rodolfo A; Mariotti, Erika; Kenny, Gavin D; Shaw, Karen P; Yan, Ran; Eykyn, Thomas R; Blower, Philip J; Southworth, Richard

    2014-03-01

    Myocardial hypoxia is an attractive target for diagnostic and prognostic imaging, but current approaches are insufficiently sensitive for clinical use. The PET tracer copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) ((64)Cu-ATSM) has promise, but its selectivity and sensitivity could be improved by structural modification. We have therefore evaluated a range of (64)Cu-ATSM analogs for imaging hypoxic myocardium. Isolated rat hearts (n = 5/group) were perfused with normoxic buffer for 30 min and then hypoxic buffer for 45 min within a custom-built triple-γ-detector system to quantify radiotracer infusion, hypoxia-dependent cardiac uptake, and washout. A 1-MBq bolus of each candidate tracer (and (18)F-fluoromisonidazole for comparative purposes) was injected into the arterial line during normoxia, and during early and late hypoxia, and their hypoxia selectivity and pharmacokinetics were evaluated. The in vivo pharmacokinetics of promising candidates in healthy rats were then assessed by PET imaging and biodistribution. All tested analogs exhibited hypoxia sensitivity within 5 min. Complexes less lipophilic than (64)Cu-ATSM provided significant gains in hypoxic-to-normoxic contrast (14:1 for (64)Cu-2,3-butanedione bis(thiosemicarbazone) (ATS), 17:1 for (64)Cu-2,3-pentanedione bis(thiosemicarbazone) (CTS), 8:1 for (64)Cu-ATSM, P < 0.05). Hypoxic first-pass uptake was 78.2% ± 7.2% for (64)Cu-ATS and 70.7% ± 14.5% for (64)Cu-CTS, compared with 63.9% ± 11.7% for (64)Cu-ATSM. Cardiac retention of (18)F-fluoromisonidazole increased from 0.44% ± 0.17% during normoxia to 2.24% ± 0.08% during hypoxia. In vivo, normoxic cardiac retention of (64)Cu-CTS was significantly lower than that of (64)Cu-ATSM and (64)Cu-ATS (0.13% ± 0.02% vs. 0.25% ± 0.04% and 0.24% ± 0.03% injected dose, P < 0.05), with retention of all 3 tracers falling to less than 0.7% injected dose within 6 min. (64)Cu-CTS also exhibited lower uptake in liver and lung. (64)Cu-ATS and (64)Cu-CTS exhibit

  7. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  8. Copper-64 Labeled Liposomes for Imaging Bone Marrow

    PubMed Central

    Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2016-01-01

    Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056

  9. RC64, a Rad-Hard Many-Core High- Performance DSP for Space Applications

    NASA Astrophysics Data System (ADS)

    Ginosar, Ran; Aviely, Peleg; Gellis, Hagay; Liran, Tuvia; Israeli, Tsvika; Nesher, Roy; Lange, Fredy; Dobkin, Reuven; Meirov, Henri; Reznik, Dror

    2015-09-01

    RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 38 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 3.125 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.

  10. RC64, a Rad-Hard Many-Core High-Performance DSP for Space Applications

    NASA Astrophysics Data System (ADS)

    Ginosar, Ran; Aviely, Peleg; Liran, Tuvia; Alon, Dov; Mandler, Alberto; Lange, Fredy; Dobkin, Reuven; Goldberg, Miki

    2014-08-01

    RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 20 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 2.5 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.

  11. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each ofmore » which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes« less

  12. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks.

    PubMed

    Que, Emily L; Bleher, Reiner; Duncan, Francesca E; Kong, Betty Y; Gleber, Sophie C; Vogt, Stefan; Chen, Si; Garwin, Seth A; Bayer, Amanda R; Dravid, Vinayak P; Woodruff, Teresa K; O'Halloran, Thomas V

    2015-02-01

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.

  13. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE PAGES

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; ...

    2014-12-15

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. Here we show that the zinc spark arises from a system of thousands ofmore » zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. We conclude that the discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.« less

  14. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    PubMed Central

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak; Woodruff, Teresa K.; O’Halloran, Thomas V.

    2015-01-01

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes. PMID:25615666

  15. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells.

    PubMed

    Stuart, Christopher H; Singh, Ravi; Smith, Thomas L; D'Agostino, Ralph; Caudell, David; Balaji, K C; Gmeiner, William H

    2016-05-01

    To evaluate the potential use of zinc chelation for prostate cancer therapy using a new liposomal formulation of the zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). TPEN was encapsulated in nontargeted liposomes or liposomes displaying an aptamer to target prostate cancer cells overexpression prostate-specific membrane antigen. The prostate cancer selectivity and therapeutic efficacy of liposomal (targeted and nontargeted) and free TPEN were evaluated in vitro and in tumor-bearing mice. TPEN chelates zinc and results in reactive oxygen species imbalance leading to cell death. Delivery of TPEN using aptamer-targeted liposomes results in specific delivery to targeted cells. In vivo experiments show that TPEN-loaded, aptamer-targeted liposomes reduce tumor growth in a human prostate cancer xenograft model.

  16. Targeting SDF-1/CXCL12 with a ligand that prevents activation of CXCR4 through structure based drug design

    PubMed Central

    Veldkamp, Christopher T.; Ziarek, Joshua J.; Peterson, Francis C.; Chen, Yu; Volkman, Brian F.

    2010-01-01

    CXCL12 is an attractive target for clinical therapy because of its involvement in autoimmune diseases, cancer growth, metastasis, and neovascularization. Tyrosine sulfation at three positions in the CXCR4 N-terminus is crucial for specific, high-affinity CXCL12 binding. An NMR structure of the complex between the CXCL12 dimer and a sulfotyrosine-containing CXCR4 fragment enabled high-throughput in silico screening for inhibitors of the chemokine-receptor interface. A total of 1.4 million compounds from the ZINC database were docked into a cleft on the CXCL12 surface normally occupied by sulfotyrosine 21 (sY21), and five were selected for experimental screening. NMR titrations with CXCL12 revealed that four compounds occupy the sY21 site, one of which binds with a Kd of 64 µM. This compound selectively inhibits SDF1-induced CXCR4 signaling in THP1 cells. Our results suggest that sulfotyrosine recognition sites can be targeted for the development of novel chemokine inhibitors. PMID:20459090

  17. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7-14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer.

    PubMed

    Bandari, Rajendra Prasad; Jiang, Zongrun; Reynolds, Tamila Stott; Bernskoetter, Nicole E; Szczodroski, Ashley F; Bassuner, Kurt J; Kirkpatrick, Daniel L; Rold, Tammy L; Sieckman, Gary L; Hoffman, Timothy J; Connors, James P; Smith, Charles J

    2014-04-01

    Gastrin-releasing peptide receptors (GRPr) and prostate-specific membrane antigen (PSMA) are two identifying biomarkers expressed in very high numbers on prostate cancer cells and could serve as a useful tool for molecular targeting and diagnosis of disease via positron-emission tomography (PET). The aim of this study was to produce the multipurpose, bivalent [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] radioligand for prostate cancer imaging, where DUPA = (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), a small-molecule, PSMA-targeting probe, 6Ahx = 6-aminohexanoic acid, 5-Ava = 5-aminovaleric acid, NODAGA = [2-(4,7-biscarboxymethyl)-1,4,7-(triazonan-1-yl)pentanedioic acid] (a derivative of NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid)), and BBN(7-14)NH2 = bombesin, a GRPr-specific peptide targeting probe. The PSMA/GRPr dual targeting ligand precursor [DUPA-6-Ahx-K-5-Ava-BBN(7-14)NH2], was synthesized by solid-phase and manual peptide synthesis, after which NODAGA was added via manual conjugation to the ε-amine of lysine (K). The new bivalent GRPr/PSMA targeting vector was purified by reversed-phase high performance liquid chromatography (RP-HPLC), characterized by electrospray-ionization mass spectrometry (ESI-MS), and metallated with (64)CuCl2 and (nat)CuCl2. The receptor binding affinity was evaluated in human, prostate, PC-3 (GRPr-positive) and LNCaP (PSMA-positive) cells and the tumor-targeting efficacy determined in severe combined immunodeficient (SCID) and athymic nude mice bearing PC-3 and LNCaP tumors. Whole-body maximum intensity microPET/CT images of PC-3/LNCaP tumor-bearing mice were obtained 18 h post-injection (p.i.). Competitive binding assays in PC-3 and LNCaP cells indicated high receptor binding affinity for the [DUPA-6-Ahx-((nat)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] conjugate. MicroPET scintigraphy in PC-3/LNCaP tumor-bearing mice indicated that xenografted tumors were visible at 18h p.i. with collateral, background radiation also

  18. Synthesis and Biological Evaluation of Copper-64 Radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7-14)NH2], a Novel Bivalent Targeting Vector Having Affinity for Two Distinct Biomarkers (GRPr/PSMA) of Prostate Cancer

    PubMed Central

    Bandari, Rajendra Prasad; Jiang, Zongrun; Reynolds, Tamila Stott; Bernskoetter, Nicole E.; Szczodroski, Ashley F.; Bassuner, Kurt J.; Kirkpatrick, Daniel L.; Rold, Tammy L.; Sieckman, Gary L.; Hoffman, Timothy J.; Connors, James P.; Smith, Charles J.

    2014-01-01

    Gastrin-releasing peptide receptors (GRPr) and prostate-specific membrane antigen (PSMA) are two identifying biomarkers expressed in very high numbers on prostate cancer cells and could serve as a useful tool for molecular targeting and diagnosis of disease via positron-emission tomography (PET). The aim of this study was to produce the multipurpose, bivalent [DUPA-6-Ahx-(64Cu-NODAGA)-5-Ava-BBN(7-14)NH2] radioligand for prostate cancer imaging, where DUPA = 2-[3-(1,3-Bis-tertbutoxycarbonylpropyl)-ureido]pentanedioic acid, a small-molecule, PSMA-targeting probe, 6Ahx = 6-aminohexanoic acid, 5-Ava = 5-aminovaleric acid, NODAGA = [2-(4,7-biscarboxymethyl)-1,4,7-(triazonan-1-yl)pentanedioic acid] (a derivative of NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid)), and BBN(7-14)NH2 = bombesin or BBN, a GRPr-specific peptide targeting probe. Methods The PSMA/GRPr dual targeting ligand precursor [DUPA-6-Ahx-K-5-Ava-BBN(7-14)NH2], was synthesized by solid-phase and manual peptide synthesis, after which NODAGA was added via manual conjugation to the ε-amine of lysine (K). The new bivalent GRPr/PSMA targeting vector was purified by reversed-phase high performance liquid chromatography (RP-HPLC), characterized by electrospray-ionization mass spectrometry (ESI-MS), and metallated with 64CuCl2 and natCuCl2. The receptor binding affinity was evaluated in human, prostate, PC-3 (GRPr-positive) and LNCaP (PSMA-positive) cells and the tumor-targeting efficacy determined in severe combined immunodeficient (SCID) and athymic nude mice bearing PC-3 and LNCaP tumors. Whole-body maximum intensity microPET/CT images of PC-3/LNCaP tumor-bearing mice were obtained 18 h post-injection (p.i.). Results Competitive binding assays in PC-3 and LNCaP cells indicated high receptor binding affinity for the [DUPA-6-Ahx-(natCu-NODAGA)-5-Ava-BBN(7-14)NH2] conjugate. MicroPET scintigraphy in PC-3/LNCaP tumor-bearing mice indicated that xenografted tumors were visible at 18 h p.i. with collateral

  19. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    PubMed

    Kumari, Anjali; Singh, Krishn Pratap; Mandal, Abhishek; Paswan, Ranjeet Kumar; Sinha, Preeti; Das, Pradeep; Ali, Vahab; Bimal, Sanjiva; Lal, Chandra Shekhar

    2017-01-01

    Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) and Zinc Sulfate (ZnSO4). Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death. Therefore, cellular

  20. Mineral resource of the month: zinc

    USGS Publications Warehouse

    Tolcin, Amy C.

    2009-01-01

    The article provides information on zinc, the fourth most-widely consumed metal. It traces the first use of zinc with the Romans' production of brass. It describes the presence of zinc in Earth's crust and the importance of sphalerite as a source of zinc and other some minor metal production. The production and consumption of zinc as well as the commercial and industrial uses of this metal are also discussed.

  1. Zinc Therapy in Dermatology: A Review

    PubMed Central

    Mahajan, Vikram K.; Mehta, Karaninder S.; Chauhan, Pushpinder S.

    2014-01-01

    Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts), inflammatory dermatoses (acne vulgaris, rosacea), pigmentary disorders (melasma), and neoplasias (basal cell carcinoma). Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc. PMID:25120566

  2. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    PubMed

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  3. Knockdown of zinc transporter ZIP8 expression inhibits neuroblastoma progression and metastasis in vitro.

    PubMed

    Mei, Zhengrong; Yan, Pengke; Wang, Ying; Liu, Shaozhi; He, Fang

    2018-05-02

    Neuroblastoma is one of the leading causes of cancer‑associated mortality worldwide, particularly in children, partially due to the absence of effective therapeutic targets and diagnostic biomarkers. Therefore, novel molecular targets are critical to the development of therapeutic approaches for neuroblastoma. In the present study, the functions of zinc transporter ZIP8 (Zip8), a member of the zinc transporting protein family, were investigated as novel molecular targets in neuroblastoma cancer cells. The proliferation rates of neuroblastoma cancer cells were significantly decreased when Zip8 was knocked down by lentiviral‑mediated RNA interference. Study of the molecular mechanism suggested that Zip8 modulated the expression of key genes involved in the nuclear factor‑κB signaling pathway. Furthermore, Zip8 depletion suppressed the migratory potential of neuroblastoma cancer cells by reducing the expression levels of matrix metalloproteinases. In conclusion, the results of the present study suggested that Zip8 was an important regulator of neuroblastoma cell proliferation and migration, indicating that Zip8 may be a potential anticancer therapeutic target and a promising diagnostic biomarker for human neuroblastoma.

  4. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern.

    PubMed

    Wani, Ab Latif; Ahmad, Ajaz; Shadab, G G H A; Usmani, Jawed Ahmad

    2017-03-01

    Lead and zinc are mostly present at the same occupational source and usually found as co-contaminants. Lead is known to associate with detrimental effects to humans. Zinc however is an essential nutrient and its deficiency causes debilitating effects on growth and development. Besides, it acts as core ion of important enzymes and proteins. The purpose of this study was to examine if zinc concentrations are associated with blood lead levels and if zinc may prevent lead-induced DNA damage. Blood samples were collected from 92 workers as participants occupationally exposed to lead or lead and zinc and 38 comparison participants having no history of such exposure. Lead and zinc levels were determined from blood by atomic absorption spectrophotometry and genetic damage was assessed by comet assay. Correlation was calculated by Spearman's rho. Lead concentrations were observed to increase among workers with increase in years of exposure. There was a significant difference (p < 0.001) in blood lead levels between workers and controls. In addition, significant difference (p < 0.001) in the genetic damage was observed among workers and controls. A clear effect of increased occupational exposure was visible among workers. Multiple regression analysis further reveals the positive effect of lead, while as the inverse effect of zinc on DNA damage. The results suggest that zinc may influence body lead absorption and may have a role in preventing the genetic damage caused by lead.

  5. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Wang, Hua-Jie; Cao, Cui; Sun, Yuan-Yuan; Yang, Lin; Wang, Bao-Qing; Zhou, Jian-Guo

    2011-07-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  6. Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs.

    PubMed

    Deng, Bo; Zhou, Xihong; Wu, Jie; Long, Ciming; Yao, Yajun; Peng, Hongxing; Wan, Dan; Wu, Xin

    2017-10-01

    An experiment was conducted to compare the effects of zinc sulfate (ZS) and tribasic zinc sulfate (TBZ) as sources of supplemental zinc on growth performance, serum zinc (Zn) content and messenger RNA (mRNA) expression of Zn transporters (ZnT1/ZnT2/ZnT5/ZIP4/DMT1) of young growing pigs. A total of 96 Duroc × Landrace × Yorkshire pigs were randomly allotted to two treatments and were fed a basal diet supplemented with 100 mg/kg Zn from either ZS or TBZ for 28 days. Feed : gain ratio in pigs fed TBZ were lower (P < 0.05) than pigs fed ZS, and average daily weight gain tended to increase (0.05 ≤ P ≤ 0.10) in pigs fed TBZ. Compared with pigs fed ZS, pigs fed TBZ had a higher CuZn-superoxide dismutase and Zn content in serum (P < 0.05) while they had a lower Zn content in feces (P < 0.05). In addition, ZIP4 mRNA expression of zinc transporter in either duodenum or jejunum of pigs fed TBZ were higher (P < 0.05) than pigs fed ZS. These results indicate that TBZ is more effective in serum Zn accumulation and intestinal Zn absorption, and might be a potential substitute for ZS in young growing pigs. © 2017 Japanese Society of Animal Science.

  7. Recovering Zinc From Discarded Tires

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Zinc sulfate monohydrate sold at profit. Shredded tire material steeped in three sulfuric acid baths to extract zinc. Final product removed by evaporating part of solution until product crystallizes out. Recovered as zinc sulfate monohydrate and sold as fertilizer or for general use.

  8. Zinc Signal in Brain Diseases.

    PubMed

    Portbury, Stuart D; Adlard, Paul A

    2017-11-23

    The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.

  9. Zinc in Entamoeba invadens.

    NASA Technical Reports Server (NTRS)

    Morgan, R. S.; Sattilaro, R. F.

    1972-01-01

    Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.

  10. A Photoluminescence Study of the Changes Induced in the Zinc White Pigment by Formation of Zinc Complexes

    PubMed Central

    Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela

    2017-01-01

    It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700

  11. Characterising urban zinc generation to identify surface pollutant hotspots in a low intensity rainfall climate.

    PubMed

    Charters, F J; Cochrane, T A; O'Sullivan, A D

    2017-09-01

    Characterising stormwater runoff quality provides useful insights into the dynamics of pollutant generation and wash off rates. These can be used to prioritise stormwater management strategies. This study examined the effects of a low intensity rainfall climate on zinc contributions from different impermeable urban surface types. First flush (FF) and steady state samples were collected from seven different surfaces for characterisation, and the data were also used to calibrate an event-based pollutant load model to predict individual 'hotspot' surfaces across the catchment. Unpainted galvanised roofs generated very high concentrations of zinc, primarily in the more biologically available dissolved form. An older, unpainted galvanised roof had FF concentrations averaging 32,338 μg/L, while the new unpainted roof averaged 4,782 μg/L. Roads and carparks also had elevated zinc, but FF concentrations averaged only 822-1,584 μg/L. Modelling and mapping expected zinc loads from individual impermeable surfaces across the catchment identified specific commercial roof surfaces to be targeted for zinc management. The results validate a policy strategy to replace old galvanised roof materials and avoid unpainted galvanised roofing in future urban development for better urban water quality outcomes. In the interim, readily-implemented treatment options are required to help mitigate chronic zinc impacts on receiving waterways.

  12. PET Imaging of 64Cu-DOTA-scFv-Anti-PSMA Lipid Nanoparticles (LNPs): Enhanced Tumor Targeting over Anti-PSMA scFv or Untargeted LNPs

    PubMed Central

    Wong, Patty; Li, Lin; Chea, Junie; Delgado, Melissa K.; Crow, Desiree; Poku, Erasmus; Szpikowska, Barbara; Bowles, Nicole; Channappa, Divya; Colcher, David; Wong, Jeffrey Y.C.; Shively, John E.; Yazaki, Paul J.

    2017-01-01

    Introduction Single chain (scFv) antibodies are ideal targeting ligands due to their modular structure, high antigen specificity and affinity. These monovalent ligands display rapid tumor targeting but have limitations due to their fast urinary clearance. Methods An anti-prostate membrane antigen (PSMA) scFv with a site-specific cysteine was expressed and evaluated in a prostate cancer xenograft model by Cu-64 PET imaging. To enhance tumor accumulation, the scFv-cys was conjugated to the co-polymer DSPE-PEG-maleimide that spontaneously assembled into a homogeneous multivalent lipid nanoparticle (LNP). Results The targeted LNP exhibited a 2-fold increase in tumor uptake compared to the scFv alone using two different thiol ester chemistries. The anti-PSMA scFv-LNP exhibited a 1.6 fold increase in tumor targeting over the untargeted LNP. Conclusions The targeted anti-PSMA scFv-LNP showed enhanced tumor accumulation over the scFv alone or the untargeted DOTA-micelle providing evidence for the development of this system for drug delivery. Advances in Knowledge and implications for patient care Anti-tumor scFv antibody fragments have not achieved their therapeutic potential due to their fast blood clearance. Conjugation to a LNP enables multivalency to the tumor antigen as well as increased molecular size for chemotherapy drug delivery. PMID:28126683

  13. Survey of Nuclear Activations for Intense Proton and Deuteron Beams

    DTIC Science & Technology

    1992-12-24

    1.115 64Zn(d,t)6𔃽 Zn -5.60 ÷ 38 min 2.34 0.51 64Zn(d,a)’ 2 Cu 7.52 ÷ 9.8 min 2.93 0.51 6’Zn(d,2p) 64Cu -2.01 - 12.8 hr 0.575 - c,o+ 12.8 hr 0.656...and for the activation of 5aCo by deuterons on a natural nickel target. 43 THICK-TARGET YIELDS Copper Target 1000 63Cu(d,p) 64Cu 65Cu(d,p)66Cu o 100 6...activation of 1 5 Zn by deuterons and for the GCZn(d,n)"Ga, ’,IZn(d,p)60 Zn, 6SZn(d,p)69mZn, 6 6 Zn(d,(X) 64Cu , and 68Zn(d,2n)6,8Ga reactions in a natural zinc target. 45

  14. A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, C.; Jeong, S.

    2018-01-01

    In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.

  15. Audiovisual signal compression: the 64/P codecs

    NASA Astrophysics Data System (ADS)

    Jayant, Nikil S.

    1996-02-01

    Video codecs operating at integral multiples of 64 kbps are well-known in visual communications technology as p * 64 systems (p equals 1 to 24). Originally developed as a class of ITU standards, these codecs have served as core technology for videoconferencing, and they have also influenced the MPEG standards for addressable video. Video compression in the above systems is provided by motion compensation followed by discrete cosine transform -- quantization of the residual signal. Notwithstanding the promise of higher bit rates in emerging generations of networks and storage devices, there is a continuing need for facile audiovisual communications over voice band and wireless modems. Consequently, video compression at bit rates lower than 64 kbps is a widely-sought capability. In particular, video codecs operating at rates in the neighborhood of 64, 32, 16, and 8 kbps seem to have great practical value, being matched respectively to the transmission capacities of basic rate ISDN (64 kbps), and voiceband modems that represent high (32 kbps), medium (16 kbps) and low- end (8 kbps) grades in current modem technology. The purpose of this talk is to describe the state of video technology at these transmission rates, without getting too literal about the specific speeds mentioned above. In other words, we expect codecs designed for non- submultiples of 64 kbps, such as 56 kbps or 19.2 kbps, as well as for sub-multiples of 64 kbps, depending on varying constraints on modem rate and the transmission rate needed for the voice-coding part of the audiovisual communications link. The MPEG-4 video standards process is a natural platform on which to examine current capabilities in sub-ISDN rate video coding, and we shall draw appropriately from this process in describing video codec performance. Inherent in this summary is a reinforcement of motion compensation and DCT as viable building blocks of video compression systems, although there is a need for improving signal quality

  16. Study of silicon doped with zinc ions and annealed in oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Privezentsev, V. V., E-mail: v.privezentsev@mail.ru; Kirilenko, E. P.; Goryachev, A. N.

    2017-02-15

    The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with {sup 64}Zn{sup +} ions with an energy of 50 keV and a dose of 5 × 10{sup 16} cm{sup –2} at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-raymore » photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn{sub 2}SiO{sub 4} and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.« less

  17. New Insights into the Role of Zinc Acquisition and Zinc Tolerance in Group A Streptococcal Infection.

    PubMed

    Ong, Cheryl-Lynn Y; Berking, Olga; Walker, Mark J; McEwan, Alastair G

    2018-06-01

    Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus ; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (Δ adcA Δ adcAII ) and export (Δ czcD ) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens. Copyright © 2018 American Society for Microbiology.

  18. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity.

    PubMed

    Zhang, Ziran; Zhou, Feibai; Liu, Xiaoling; Zhao, Mouming

    2018-08-30

    An oyster protein hydrolysates-zinc complex (OPH-Zn) was prepared and investigated to improve zinc bioaccessibility. Zinc ions chelating with oyster protein hydrolysates (OPH) cause intramolecular and intermolecular folding and aggregation, homogeneously forming the OPH-Zn complex as nanoclusters with a Z-average at 89.28 nm (PDI: 0.16 ± 0.02). The primary sites of zinc-binding in OPH were carboxyl groups, carbonyl groups, and amino groups, and they were related to the high number of charged amino acid residues. Furthermore, formation of the OPH-Zn complex could significantly enhance zinc solubility both under specific pH conditions as well as during simulated gastrointestinal digestion, compared to the commonly used ZnSO 4 . Additionally, after digestion, either preserved or enhanced antioxidant activity of OPH was found when chelated with zinc. These results indicated that the OPH-Zn complex could be a potential functional ingredient with improved antioxidant bioactivity and zinc bioaccessibility. Copyright © 2018. Published by Elsevier Ltd.

  19. AN OPTIMIZED 64X64 POINT TWO-DIMENSIONAL FAST FOURIER TRANSFORM

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1994-01-01

    Scientists at Goddard have developed an efficient and powerful program-- An Optimized 64x64 Point Two-Dimensional Fast Fourier Transform-- which combines the performance of real and complex valued one-dimensional Fast Fourier Transforms (FFT's) to execute a two-dimensional FFT and its power spectrum coefficients. These coefficients can be used in many applications, including spectrum analysis, convolution, digital filtering, image processing, and data compression. The program's efficiency results from its technique of expanding all arithmetic operations within one 64-point FFT; its high processing rate results from its operation on a high-speed digital signal processor. For non-real-time analysis, the program requires as input an ASCII data file of 64x64 (4096) real valued data points. As output, this analysis produces an ASCII data file of 64x64 power spectrum coefficients. To generate these coefficients, the program employs a row-column decomposition technique. First, it performs a radix-4 one-dimensional FFT on each row of input, producing complex valued results. Then, it performs a one-dimensional FFT on each column of these results to produce complex valued two-dimensional FFT results. Finally, the program sums the squares of the real and imaginary values to generate the power spectrum coefficients. The program requires a Banshee accelerator board with 128K bytes of memory from Atlanta Signal Processors (404/892-7265) installed on an IBM PC/AT compatible computer (DOS ver. 3.0 or higher) with at least one 16-bit expansion slot. For real-time operation, an ASPI daughter board is also needed. The real-time configuration reads 16-bit integer input data directly into the accelerator board, operating on 64x64 point frames of data. The program's memory management also allows accumulation of the coefficient results. The real-time processing rate to calculate and accumulate the 64x64 power spectrum output coefficients is less than 17.0 mSec. Documentation is included

  20. Zinc-mediated Allosteric Inhibition of Caspase-6*

    PubMed Central

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  1. The biological inorganic chemistry of zinc ions.

    PubMed

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn 2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn 2+ differs from s-block cations such as Ca 2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  2. Fast and cost-effective cyclotron production of 61Cu using a natZn liquid target: an opportunity for radiopharmaceutical production and R&D.

    PubMed

    do Carmo, S J C; Alves, V H P; Alves, F; Abrunhosa, A J

    2017-10-31

    Following our previous work on the production of radiometals, such as 64 Cu and 68 Ga, through the irradiation of liquid targets using a medical cyclotron, we describe in this paper a technique to produce 61 Cu through the irradiation of natural zinc using a liquid target. The proposed method is very cost-effective, as it avoids the use of expensive enriched material, and is fast, as a purified solution of 61 CuCl 2 is obtained in less than 30 min after the end of beam. Considering its moderate half-life of 3.33 h and favourable decay properties as a positron emitter, 61 Cu is a very attractive nuclide for the labelling of PET tracers for pre-clinical and clinical use with PET as well as to support the intense R&D programmes being carried out worldwide by taking advantage of the rich and versatile chemistry of copper.

  3. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...

  4. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...

  5. Longitudinal changes in zinc transport kinetics, metallothionein, and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment$

    PubMed Central

    Gauthier, Nicole A.; Karki, Shakun; Olley, Bryony J.; Thomas, W. Kelly

    2008-01-01

    A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 µmol Zn/L) in cell culture and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression, and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2), and Zip1 (SLC39A1). Zinc release by cells of the BBB model was significantly increased after 12–24 h of exposure, but decreased back to control levels after 48–96 h, as indicated by transport across the BBB from both the ablumenal (brain) and lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and ablumenal directions within 12–24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB’s response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cell’s capacity to sequester zinc with additional MT and increase zinc export with the ZnT-1 protein. But, the longer term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and maintain brain zinc homeostasis. PMID:18061429

  6. Zinc-The key to preventing corrosion

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  7. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1995-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing one or more hydroxides having the formula M(OH), one or more fluorides having the formula MF, and one or more carbonates having the formula M.sub.2 CO.sub.3, where M is a metal selected from the group consisting of alkali metals. The electrolyte inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  8. A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity.

    PubMed

    Richards, Christopher D; Warr, Coral G; Burke, Richard

    2017-01-01

    Zinc absorption in animals is thought to be regulated in a local, cell autonomous manner with intestinal cells responding to dietary zinc content. The Drosophila zinc transporter Zip88E shows strong sequence similarity to Zips 42C.1, 42C.2 and 89B as well as mammalian Zips 1, 2 and 3, suggesting that it may act in concert with the apically-localised Drosophila zinc uptake transporters to facilitate dietary zinc absorption by importing ions into the midgut enterocytes. However, the functional characterisation of Zip88E presented here indicates that Zip88E may instead play a role in detecting and responding to zinc toxicity. Larvae homozygous for a null Zip88E allele are viable yet display heightened sensitivity to elevated levels of dietary zinc. This decreased zinc tolerance is accompanied by an overall decrease in Metallothionein B transcription throughout the larval midgut. A Zip88E reporter gene is expressed only in the salivary glands, a handful of enteroendocrine cells at the boundary between the anterior and middle midgut regions, and in two parallel strips of sensory cell projections connecting to the larval ventral ganglion. Zip88E expression solely in this restricted subset of cells is sufficient to rescue the Zip88E mutant phenotype. Together, our data suggest that Zip88E may be functioning in a small subset of cells to detect excessive zinc levels and induce a systemic response to reduce dietary zinc absorption and hence protect against toxicity.

  9. Zinc Fortification Decreases ZIP1 Gene Expression of Some Adolescent Females with Appropriate Plasma Zinc Levels

    PubMed Central

    Méndez, Rosa O.; Santiago, Alejandra; Yepiz-Plascencia, Gloria; Peregrino-Uriarte, Alma B.; de la Barca, Ana M. Calderón; García, Hugo S.

    2014-01-01

    Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall), absorption, plasma zinc (by absorption spectrophotometry) and the expression levels (by quantitative PCR), of the transporters ZIP1 (zinc importer) and ZnT1 (zinc exporter) in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001) from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05) near 150 µg/dL, but increased by 31 µg/dL (p < 0.05) for 6/24 adolescents (group A) and decreased by 25 µg/dL (p < 0.05) for other 6/24 adolescents (group B). Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006) in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39). An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05) the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1. PMID:24922175

  10. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells.

    PubMed

    Shao, Yuxin; Wolf, Patricia G; Guo, Shuangshuang; Guo, Yuming; Gaskins, H Rex; Zhang, Bingkun

    2017-05-01

    Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 μM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 μM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 μM) significantly elevated TEER at 6-24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 μM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  12. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells.

    PubMed

    Abreu, Isidro; Saéz, Ángela; Castro-Rodríguez, Rosario; Escudero, Viviana; Rodríguez-Haas, Benjamín; Senovilla, Marta; Larue, Camille; Grolimund, Daniel; Tejada-Jiménez, Manuel; Imperial, Juan; González-Guerrero, Manuel

    2017-11-01

    Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone. © 2017 John Wiley & Sons Ltd.

  13. VPAC1 targeted 64Cu-TP3805 PET imaging of prostate cancer: preliminary evaluation in man

    PubMed Central

    Tripathi, Sushil; Trabulsi, Edouard J; Gomella, Leonard; Kim, Sung; McCue, Peter; Intenzo, Charles; Birbe, Ruth; Gandhe, Ashish; Kumar, Pardeep; Thakur, Mathew

    2015-01-01

    Objectives To evaluate 64Cu-TP3805 as a novel biomolecule, to PET image prostate cancer (PC), at the onset of which VPAC1, the superfamily of G-protein coupled receptors, is expressed in high density on PC cells, but not on normal cells. Methods 25 patients undergoing radical prostatectomy were PET/CT imaged preoperatively with 64Cu-TP3805. Standardized uptake values (SUVmax) were determined, malignant lesions (SUV > 1.0) counted, and compared with histologic findings. Whole mount pathology slides from 6 VPAC1 PET imaged patients, 3 BPH patients, one malignant and one benign lymph node underwent digital autoradiography (DAR) after 64Cu-TP3805 incubation and compared to H&E stained slides. Results In 25 patient PET imaging, 212 prostate gland lesions had SUVmax > 1.0 vs.127 lesions identified by histology of biopsy tissues. The status of the additional 85 PET identified prostate lesions remains to be determined. In 68 histological slides from 6 PET imaged patients, DAR identified 105/107 PC foci, 19/19 HGPIN, and ejaculatory ducts and verumontanum involved with cancer. Additionally, DAR found 9 PC lesions not previously identified histologically. The positive and negative lymph nodes were correctly identified and in 3/3 BPH patients and 5/5 cysts, DAR was negative. Conclusion This feasibility study demonstrated that 64Cu-TP3805 delineates PC in vivo and ex vivo, provided normal images for benign masses, and is worthy of further studies. PMID:26519886

  14. Total Zinc Intake May Modify the Glucose-Raising Effect of a Zinc Transporter (SLC30A8) Variant

    PubMed Central

    Kanoni, Stavroula; Nettleton, Jennifer A.; Hivert, Marie-France; Ye, Zheng; van Rooij, Frank J.A.; Shungin, Dmitry; Sonestedt, Emily; Ngwa, Julius S.; Wojczynski, Mary K.; Lemaitre, Rozenn N.; Gustafsson, Stefan; Anderson, Jennifer S.; Tanaka, Toshiko; Hindy, George; Saylor, Georgia; Renstrom, Frida; Bennett, Amanda J.; van Duijn, Cornelia M.; Florez, Jose C.; Fox, Caroline S.; Hofman, Albert; Hoogeveen, Ron C.; Houston, Denise K.; Hu, Frank B.; Jacques, Paul F.; Johansson, Ingegerd; Lind, Lars; Liu, Yongmei; McKeown, Nicola; Ordovas, Jose; Pankow, James S.; Sijbrands, Eric J.G.; Syvänen, Ann-Christine; Uitterlinden, André G.; Yannakoulia, Mary; Zillikens, M. Carola; Wareham, Nick J.; Prokopenko, Inga; Bandinelli, Stefania; Forouhi, Nita G.; Cupples, L. Adrienne; Loos, Ruth J.; Hallmans, Goran; Dupuis, Josée; Langenberg, Claudia; Ferrucci, Luigi; Kritchevsky, Stephen B.; McCarthy, Mark I.; Ingelsson, Erik; Borecki, Ingrid B.; Witteman, Jacqueline C.M.; Orho-Melander, Marju; Siscovick, David S.; Meigs, James B.; Franks, Paul W.; Dedoussis, George V.

    2011-01-01

    OBJECTIVE Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. RESEARCH DESIGN AND METHODS We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. RESULTS We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: −0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: −0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. CONCLUSIONS Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels. PMID:21810599

  15. Electrochemical behavior of zinc particles with silica based coatings as anode material for zinc air batteries with improved discharge capacity

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Willert-Porada, M.

    2017-05-01

    Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.

  16. Zinc Levels in Left Ventricular Hypertrophy.

    PubMed

    Huang, Lei; Teng, Tianming; Bian, Bo; Yao, Wei; Yu, Xuefang; Wang, Zhuoqun; Xu, Zhelong; Sun, Yuemin

    2017-03-01

    Zinc is one of the most important trace elements in the body and zinc homeostasis plays a critical role in maintaining cellular structure and function. Zinc dyshomeostasis can lead to many diseases, such as cardiovascular disease. Our aim was to investigate whether there is a relationship between zinc and left ventricular hypertrophy (LVH). A total of 519 patients was enrolled and their serum zinc levels were measured in this study. We performed analyses on the relationship between zinc levels and LVH and the four LV geometry pattern patients: normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH. We performed further linear and multiple regression analyses to confirm the relationship between zinc and left ventricular mass (LVM), left ventricular mass index (LVMI), and relative wall thickness (RWT). Our data showed that zinc levels were 710.2 ± 243.0 μg/L in the control group and were 641.9 ± 215.2 μg/L in LVH patients. We observed that zinc levels were 715 ± 243.5 μg/L, 694.2 ± 242.7 μg/L, 643.7 ± 225.0 μg/L, and 638.7 ± 197.0 μg/L in normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH patients, respectively. We further found that there was a significant inverse linear relationship between zinc and LVM (p = 0.001) and LVMI (p = 0.000) but did not show a significant relationship with RWT (p = 0.561). Multiple regression analyses confirmed that the linear relationship between zinc and LVM and LVMI remained inversely significant. The present study revealed that serum zinc levels were significantly decreased in the LVH patients, especially in the eccentric LVH and concentric LVH patients. Furthermore, zinc levels were significantly inversely correlated with LVM and LVMI.

  17. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury.

    PubMed

    Cope, Elise C; Morris, Deborah R; Gower-Winter, Shannon D; Brownstein, Naomi C; Levenson, Cathy W

    2016-05-01

    There is great deal of debate about the possible role of adult-born hippocampal cells in the prevention of depression and related mood disorders. We first showed that zinc supplementation prevents the development of the depression-like behavior anhedonia associated with an animal model of traumatic brain injury (TBI). This work then examined the effect of zinc supplementation on the proliferation of new cells in the hippocampus that have the potential to participate in neurogenesis. Rats were fed a zinc adequate (ZA, 30ppm) or zinc supplemented (ZS, 180ppm) diet for 4wk followed by TBI using controlled cortical impact. Stereological counts of EdU-positive cells showed that TBI doubled the density of proliferating cells 24h post-injury (p<0.05), and supplemental zinc significantly increased this by an additional 2-fold (p<0.0001). While the survival of these proliferating cells decreased at the same rate in ZA and in ZS rats after injury, the total density of newly born cells was approximately 60% higher in supplemented rats 1wk after TBI. Furthermore, chronic zinc supplementation resulted in significant increases in the density of new doublecortin-positive neurons one week post-TBI that were maintained for 4wk after injury (p<0.01). While the effect of zinc supplementation on neuronal precursor cells in the hippocampus was robust, use of targeted irradiation to eliminate these cells after zinc supplementation and TBI revealed that these cells are not the sole mechanism through which zinc acts to prevent depression associated with brain injury, and suggest that other zinc dependent mechanisms are needed for the anti-depressant effect of zinc in this model of TBI. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing

    PubMed Central

    Zhang, Xiao-an; Lovejoy, Katherine S.; Jasanoff, Alan; Lippard, Stephen J.

    2007-01-01

    We report a molecular platform for dual-function fluorescence/MRI sensing of mobile zinc. Zinc-selective binding units were strategically attached to a water-soluble porphyrin template. The synthetic strategy for achieving the designed target ligand is flexible and convenient, and the key intermediates can be applied as general building blocks for the construction of other metal sensors based on a similar mechanism. The metal-free form, (DPA-C2)2-TPPS3 (1), where DPA is dipicolylamine and TPPS3 is 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphine, is an excellent fluorescent sensor for zinc. It has certain superior physical properties compared with earlier-generation zinc sensors including emission in the red and near-IR regions [λem = 645 nm (s) and 715 nm (m)], with a large Stokes shift of >230 nm. The fluorescence intensity of 1 increases by >10-fold upon zinc binding. The fluorescence “turn-on” is highly selective for zinc versus other divalent metal ions and is relatively pH-insensitive within the biologically relevant pH window. The manganese derivative, [(DPA-C2)2-TPPS3Mn(III)] (2), switches the function of the molecule to generate an MRI contrast agent. In the presence of zinc, the relaxivity of 2 in aqueous solution is significantly altered, which makes it a promising zinc MRI sensor. Both metal-free and Mn(III)-inserted forms are efficiently taken up by live cells, and the intracellular zinc can be imaged by either fluorescence or MR, respectively. We anticipate that in vivo applications of the probes will facilitate a deeper understanding of the physiological roles of zinc and allow detection of abnormal zinc homeostasis for pathological diagnoses. PMID:17578918

  19. Architecture, Design and Implementation of RC64, a Many-Core High-Performance DSP for Space Applications

    NASA Astrophysics Data System (ADS)

    Ginosar, Ran; Aviely, Peleg; Liran, Tuvia; Alon, Dov; Dobkin, Reuven; Goldberg, Michael

    2013-08-01

    RC64, a novel 64-core many-core signal processing chip targets DSP performance of 12.8 GIPS, 100 GOPS and 12.8 single precision GFLOS while dissipating only 3 Watts. RC64 employs advanced DSP cores, a multi-bank shared memory and a hardware scheduler, supports DDR2 memory and communicates over five proprietary 6.4 Gbps channels. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 200 MHz ASIC on Tower 130nm CMOS technology, assembled in hermetically sealed ceramic QFP package and qualified to the highest space standards.

  20. Oxidative stress in newly-hatched Chorthippus brunneus--the effects of zinc treatment during diapause, depending on the female's age and its origins.

    PubMed

    Augustyniak, Maria; Babczyńska, Agnieszka; Augustyniak, Michał

    2011-09-01

    The responses of glutathione, glutathione S-transferases (GSTs), and catalase (CAT) were determined in 1-day-old larvae of Chorthippus brunneus Thunberg, 1815, a grasshopper exposed to zinc during diapause, from unpolluted (Pilica) or polluted (Olkusz, Szopienice) sites. The aim of the work was to search for differences among populations of the insects as a result of various multistress pressures in their habitats. The question of zinc toxicity in the context of energy allocation was also considered. Zinc caused a decrease in glutathione concentration in the body of zinc-treated larvae. Significant differences between control and zinc-treated groups were confirmed for young females' progeny from Pilica and Olkusz as well as old females' progeny from Olkusz. GSTs activity was generally not influenced by zinc. It is possible that GSTs were not the most important target of zinc action. On the contrary, the influence of zinc on CAT activity was found. The increase in CAT activity after zinc treatment was similar for all studied populations. An increase in CAT activity after zinc exposure seems to be the most universal reaction. CAT activity in zinc-treated grasshoppers may explain the mechanism of zinc toxicity based on reactive oxygen forms generation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Mechanisms of zinc binding to the solute-binding protein AztC and transfer from the metallochaperone AztD.

    PubMed

    Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T

    2017-10-20

    Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Preparation, characterization and bioactivities of Athelia rolfsii exopolysaccharide-zinc complex (AEPS-zinc).

    PubMed

    Dong, Jinman; Li, Hongmei; Min, Weihong

    2018-07-01

    A new Athelia rolfsii exopolysaccharides (AEPS) were purified by Sephacryl S-300 and S-200. The physicochemical characteristics of AEPS fractions were assayed by HPGPC and GC methods. The structures of AEPS and AEPS‑zinc complex were characterized by SEM, FTIR and NMR. Moreover, the bioactivities of complex were also evaluated by experiments in vitro and in vivo. AEPSI consisted of glucose, galacturonic acid, talose, galactose, mannose and xylose, the relative contents of them were 24.74, 19.60, 33.65, 8.77, 7.97 and 5.28%, respectively. AEPSII consisted of glucose, inositol, galacturonic acid, ribitol, gluconic acid, talose and xylose, whose relative contents were 36.06, 21.21, 12.78, 11.07, 6.58, 5.45 and 6.82%, respectively. The Mw and Mn of AEPSI were 6.1324×10 4 and 1.4218×10 4 Da, those of AEPSII were 517 and 248Da. SEM observations showed that microstructures of AEPS and AEPS‑zinc complex were obviously different both in size and shape. FTIR and NMR analysis indicated that AEPS might chelate with zinc ion through hydroxy and carboxy group. In vitro experiments showed that AEPS‑zinc complex had a good bioavailability, in vivo experiments showed that it had good effect on improving zinc deficiency and antioxidant activities, which suggested that it could be used as zinc supplementation with high antioxidant activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. History of zinc in agriculture

    USDA-ARS?s Scientific Manuscript database

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, over 20 years would past before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure a parakeratosis in swine. In 1958, it wa...

  4. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples.

    PubMed

    Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang

    2015-01-01

    Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed

  5. Responses of Pseudomonas putida to Zinc Excess Determined at the Proteome Level: Pathways Dependent and Independent of ColRS.

    PubMed

    Mumm, Karl; Ainsaar, Kadi; Kasvandik, Sergo; Tenson, Tanel; Hõrak, Rita

    2016-12-02

    Zinc is an important micronutrient for bacteria, but its excess is toxic. Recently, the ColRS two-component system was shown to detect and respond to zinc excess and to contribute to zinc tolerance of Pseudomonas putida. Here, we applied a label-free whole-cell proteome analysis to compare the zinc-induced responses of P. putida and colR knockout. We identified dozens of proteins that responded to zinc in a ColR-independent manner, among others, known metal efflux systems CzcCBA1, CzcCBA2, CadA2 and CzcD. Nine proteins were affected in a ColR-dependent manner, and besides known ColR targets, four new candidates for ColR regulon were identified. Despite the relatively modest ColR-dependent changes of wild-type, colR deficiency resulted in drastic proteome alterations, with 122 proteins up- and 62 down-regulated by zinc. This zinc-promoted response had remarkable overlap with the alternative sigma factor AlgU-controlled regulon in P. aeruginosa. The most prominent hallmark was a high induction of alginate biosynthesis proteins and regulators. This response likely alleviates the zinc stress, as the AlgU-regulated alginate regulator AmrZ was shown to contribute to zinc tolerance of colR knockout. Thus, the ColRS system is important for zinc homeostasis, and in its absence, alternative stress response pathways are activated to support the zinc tolerance.

  6. The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains

    PubMed Central

    Baglivo, Ilaria; Russo, Luigi; Esposito, Sabrina; Malgieri, Gaetano; Renda, Mario; Salluzzo, Antonio; Di Blasio, Benedetto; Isernia, Carla; Fattorusso, Roberto; Pedone, Paolo V.

    2009-01-01

    The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed. PMID:19369210

  7. Improved colorimetric determination of serum zinc.

    PubMed

    Johnson, D J; Djuh, Y Y; Bruton, J; Williams, H L

    1977-07-01

    We show how zinc may easily be quantified in serum by first using an optimum concentration of guanidine hydrochloride to cause release of zinc from proteins, followed by complexation of released metals with cyanide. The cyanide complex of zinc is preferentially demasked with chloral hydrate, followed by a colorimetric reaction between zinc and 4-(2-pyridylazo)resorcinol. This is a sensitive water-soluble ligand; its complex with zinc has an absorption maximum at 497 nm. Values found by this technique compare favorably with those obtained by atomic absorption spectroscopy.

  8. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  9. Modeling the temporal variability of zinc concentrations in zinc roof runoff-experimental study and uncertainty analysis.

    PubMed

    Sage, Jérémie; El Oreibi, Elissar; Saad, Mohamed; Gromaire, Marie-Christine

    2016-08-01

    This study investigates the temporal variability of zinc concentrations from zinc roof runoff. The influence of rainfall characteristics and dry period duration is evaluated by combining laboratory experiment on small zinc sheets and in situ measurements under real weather conditions from a 1.6-m(2) zinc panel. A reformulation of a commonly used conceptual runoff quality model is introduced and its ability to simulate the evolution of zinc concentrations is evaluated. A systematic and sharp decrease from initially high to relatively low and stable zinc concentrations after 0.5 to 2 mm of rainfall is observed for both experiments, suggesting that highly soluble corrosion products are removed at early stages of runoff. A moderate dependence between antecedent dry period duration and the magnitude of zinc concentrations at the beginning of a rain event is evidenced. Contrariwise, results indicate that concentrations are not significantly influenced by rainfall intensities. Simulated rainfall experiment nonetheless suggests that a slight effect of rainfall intensities may be expected after the initial decrease of concentrations. Finally, this study shows that relatively simple conceptual runoff quality models may be adopted to simulate the variability of zinc concentrations during a rain event and from a rain event to another.

  10. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  11. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  12. Zinc in innate and adaptive tumor immunity

    PubMed Central

    2010-01-01

    Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order. PMID:21087493

  13. Effects of Different Zinc Species on Cellar Zinc Distribution, Cell Cycle, Apoptosis and Viability in MDAMB231 Cells.

    PubMed

    Wang, Yan-hong; Zhao, Wen-jie; Zheng, Wei-juan; Mao, Li; Lian, Hong-zhen; Hu, Xin; Hua, Zi-chun

    2016-03-01

    Intracellular metal elements exist in mammalian cells with the concentration range from picomoles per litre to micromoles per litre and play a considerable role in various biological procedures. Element provided by different species can influence the availability and distribution of the element in a cell and could lead to different biological effects on the cell's growth and function. Zinc as an abundant and widely distributed essential trace element, is involved in numerous and relevant physiological functions. Zinc homeostasis in cells, which is regulated by metallothioneins, zinc transporter/SLC30A, Zrt-/Irt-like proteins/SLC39A and metal-response element-binding transcription factor-1 (MTF-1), is crucial for normal cellular functioning. In this study, we investigated the influences of different zinc species, zinc sulphate, zinc gluconate and bacitracin zinc, which represented inorganic, organic and biological zinc species, respectively, on cell cycle, viability and apoptosis in MDAMB231 cells. It was found that the responses of cell cycle, apoptosis and death to different zinc species in MDAMB231 cells are different. Western blot analysis of the expression of several key proteins in regulating zinc-related transcription, cell cycle, apoptosis, including MTF-1, cyclin B1, cyclin D1, caspase-8 and caspase-9 in treated cells further confirmed the observed results on cell level.

  14. Identification of autophagy genes participating in zinc-induced necrotic cell death in Saccharomyces cerevisiae.

    PubMed

    Dziedzic, Slawomir A; Caplan, Allan B

    2011-05-01

    Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.

  15. Status of zinc injection in PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, C.A.

    1995-03-01

    Based on laboratory and other studies, it was concluded that zinc addition in a PWR primary coolant should result in reduced Alloy 600 PWSCC and general corrosion rates of the materials of construction. Because of these positive results, a Westinghouse Owner`s Subgroup, EPRI, and Westinghouse provided funds to continue the development and application of zinc in an operating plant. As part of the program, Southern Operating Nuclear Company agreed to operate the Farley 2 plant with zinc addition as a demonstration test of the effectiveness of zinc. Since zinc is incorporated in the corrosion oxide film on the primary systemmore » surfaces and Farley 2 is a mature plant, it was estimated that about 10 kgs of zinc would be needed to condition the plant before an equilibrium value in the coolant would be reached. The engineered aspects of a Zinc Addition and Monitoring System (ZAMS) considered such items as the constitutents, location, sizing and water supply of the ZAMS. Baseline data such as the PWSCC history of the Alloy 600 steam generator tubing, fuel oxide thickness, fuel crud deposits, radiation levels, and RCP seal leak-off rates were obtained before zinc addition is initiated. This presentation summarizes some of the work performed under the program, and the status of zinc injection in the Farley 2 plant.« less

  16. Effects of cadmium and zinc on solar-simulated light-irradiated cells: potential role of zinc-metallothionein in zinc-induced genoprotection.

    PubMed

    Jourdan, Eric; Emonet-Piccardi, Nathalie; Didier, Christine; Beani, Jean-Claude; Favier, Alain; Richard, Marie-Jeanne

    2002-09-15

    Zinc is an essential oligoelement for cell growth and cell survival and has been demonstrated to protect cells from oxidative stress induced by UVA or from genotoxic stress due to UVB. In a recent work we demonstrated that the antioxidant role of zinc could be related to its ability to induce metallothioneins (MTs). In this study we identified the mechanism of zinc protection against solar-simulated light (SSL) injury. Cultured human keratinocytes (HaCaT) were used to examine MTs expression and localization in response to solar-simulated radiation. We found translocation to the nucleus, with overexpression of MTs in irradiated cells, a novel observation. The genoprotective effect of zinc was dependent on time and protein synthesis. DNA damage was significantly decreased after 48 h of ZnCl(2) (100 microM) treatment and is inhibited by actinomycin D. ZnCl(2) treatment (100 microM) led to an intense induction, redistribution, and accumulation of MT in the nucleus of irradiated cells. MT expression correlated with the time period of ZnCl(2) treatment. CdCl(2), a potent MT inducer, did not show any genoprotection, although the MTs were expressed in the nucleus. Overall our findings demonstrate that MTs could be a good candidate for explaining the genoprotection mediated by zinc on irradiated cells.

  17. [64Cu]NOTA-pentixather enables high resolution PET imaging of CXCR4 expression in a preclinical lymphoma model.

    PubMed

    Poschenrieder, Andreas; Schottelius, Margret; Osl, Theresa; Schwaiger, Markus; Wester, Hans-Jürgen

    2017-01-01

    The chemokine receptor 4 (CXCR4) is an important molecular target for both visualization and therapy of tumors. The aim of the present study was the synthesis and preclinical evaluation of a 64 Cu-labeled, CXCR4-targeting peptide for positron emission tomography (PET) imaging of CXCR4 expression in vivo. For this purpose, 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), or 1,4,7-triazacyclononane-triacetic acid (NOTA) was conjugated to the highly affine CXCR4-targeting pentixather scaffold. Affinities were determined using Jurkat T-lymphocytes in competitive binding assays employing [ 125 I]FC131 as the radioligand. Internalization and efflux studies of [ 64 Cu]NOTA-pentixather were performed in chem-1 cells, stably transfected with hCXCR4. The stability of the tracer was evaluated in vitro and in vivo . Small-animal PET and biodistribution studies at different time points were performed in Daudi lymphoma-bearing severe combined immunodeficiency (SCID) mice. [ 64 Cu]NOTA-pentixather was rapidly radiolabeled at 60 °C with high radiochemical yields ≥90% and purities >99%. [ 64 Cu]NOTA-pentixather offered the highest affinity of the evaluated peptides in this study (IC 50  = 14.9 ± 2.1 nM), showed efficient CXCR4-targeting in vitro and was stable in blood and urine with high resistance to transchelation in ethylenediaminetetraacetic acid (EDTA) challenge studies. Due to the enhanced lipophilicity of [ 64 Cu]NOTA-pentixather (logP = -1.2), biodistribution studies showed some nonspecific accumulation in the liver and intestines. However, tumor accumulation (13.1 ± 1.5% ID/g, 1.5 h p.i.) was CXCR4-specific and higher than in all other organs and resulted in high resolution delineation of Daudi tumors in PET/CT images in vivo. [ 64 Cu]NOTA-pentixather was fast and efficiently radiolabeled, showed effective CXCR4-targeting, high stability in vitro and in vivo and resulted in high resolution PET/CT images accompanied with a suitable

  18. Systematic review of zinc fortification trials.

    PubMed

    Das, Jai K; Kumar, Rohail; Salam, Rehana A; Bhutta, Zulfiqar A

    2013-01-01

    Zinc is one of the essential trace elements required by the human body as it is present in more than a hundred specific enzymes and serves as an important structural ion in transcription factors. Around one third of the world population lives in countries with a high prevalence of zinc deficiency. Food fortification with zinc seems to be an attractive public health strategy and a number of programs have been initiated, especially in developing countries. We conducted a systematic review to assess the efficacy of zinc fortification. A total of 11 studies with 771 participants were included in our analysis. Zinc fortification was associated with significant improvements in plasma zinc concentrations [standard mean difference (SMD) 1.28, 95% CI 0.56, 2.01] which is a functional indicator of zinc status. Significant improvement was observed for height velocity (SMD 0.52, 95% CI 0.01, 1.04); however, this finding was weak and based on a restricted analysis. Further subgroup analysis showed significant improvement in height velocity among very-low-birth-weight infants (SMD 0.70, 95% CI 0.02, 1.37), while for healthy newborns, the impact was insignificant. Zinc fortification had insignificant impacts on serum alkaline levels, serum copper levels, hemoglobin and weight gain. Although the findings highlight that zinc fortification is associated with an increased serum concentration of the micronutrient, overall evidence of the effectiveness of this approach is limited. Data on pregnant and lactating women is scarce. Large-scale fortification programs with robust impact assessment should be initiated to cover larger populations in all age groups. Mass fortification of zinc may be a cost-effective strategy to overcome zinc deficiency. Copyright © 2013 S. Karger AG, Basel.

  19. Early Hematopoietic Zinc Finger Protein Prevents Tumor Cell Recognition by Natural Killer Cells1

    PubMed Central

    La Rocca, Rosanna; Fulciniti, Mariateresa; Lakshmikanth, Tadepally; Mesuraca, Maria; Ali, Talib Hassan; Mazzei, Valerio; Amodio, Nicola; Catalano, Lucio; Rotoli, Bruno; Ouerfelli, Ouathek; Grieco, Michele; Gulletta, Elio; Bond, Heather M.; Morrone, Giovanni; Ferrone, Soldano; Carbone, Ennio

    2009-01-01

    Early hematopoietic zinc finger/zinc finger protein 521 (EHZF/ZNF521) is a novel zinc finger protein expressed in hematopoietic stem and progenitor cells and is down-regulated during their differentiation. Its transcript is also abundant in some hematopoietic malignancies. Analysis of the changes in the antigenic profile of cells transfected with EHZF cDNA revealed up-regulation of HLA class I cell surface expression. This phenotypic change was associated with an increased level of HLA class I H chain, in absence of detectable changes in the expression of other Ag-processing machinery components. Enhanced resistance of target cells to NK cell-mediated cytotoxicity was induced by enforced expression of EHZF in the cervical carcinoma cell line HeLa and in the B lymphoblastoid cell line IM9. Preincubation of transfected cells with HLA class I Ag-specific mAb restored target cell susceptibility to NK cell-mediated lysis, indicating a specific role for HLA class I Ag up-regulation in the NK resistance induced by EHZF. A potential clinical significance of these findings is further suggested by the inverse correlation between EHZF and MHC class I expression levels, and autologous NK susceptibility of freshly explanted multiple myeloma cells. PMID:19342626

  20. The Relationship between Zinc Intake and Serum/Plasma Zinc Concentration in Children: A Systematic Review and Dose-Response Meta-Analysis

    PubMed Central

    Moran, Victoria Hall; Stammers, Anna-Louise; Medina, Marisol Warthon; Patel, Sujata; Dykes, Fiona; Souverein, Olga W.; Dullemeijer, Carla; Pérez-Rodrigo, Carmen; Serra-Majem, Lluis; Nissensohn, Mariela; Lowe, Nicola M.

    2012-01-01

    Recommendations for zinc intake during childhood vary widely across Europe. The EURRECA project attempts to consolidate the basis for the definition of micronutrient requirements, taking into account relationships among intake, status and health outcomes, in order to harmonise these recommendations. Data on zinc intake and biomarkers of zinc status reported in randomised controlled trials (RCTs) can provide estimates of dose-response relationships which may be used for underpinning zinc reference values. This systematic review included all RCTs of apparently healthy children aged 1–17 years published by February 2010 which provided data on zinc intake and biomarkers of zinc status. An intake-status regression coefficient () was calculated for each individual study and calculated the overall pooled and SE () using random effects meta-analysis on a double log scale. The pooled dose-response relationship between zinc intake and zinc status indicated that a doubling of the zinc intake increased the serum/plasma zinc status by 9%. This evidence can be utilised, together with currently used balance studies and repletion/depletion studies, when setting zinc recommendations as a basis for nutrition policies. PMID:23016120

  1. Associations between intestinal mucosal function and changes in plasma zinc concentration following zinc supplementation1

    PubMed Central

    Wessells, K. Ryan; Hess, Sonja Y.; Rouamba, Noel; Ouédraogo, Zinewendé P.; Kellogg, Mark; Goto, Rie; Duggan, Christopher; Ouédraogo, Jean-Bosco; Brown, Kenneth H.

    2015-01-01

    Objectives Subclinical environmental enteropathy is associated with malabsorption of fats, carbohydrates, and vitamins A, B12 and folate; however, little information is available on mineral absorption. We therefore investigated the relationship between intestinal mucosal function (measured by the lactulose:mannitol permeability test and plasma citrulline concentration), and zinc absorption, as estimated by the change in plasma zinc concentration (PZC) following short-term zinc or placebo supplementation. Methods We conducted a randomized, partially-masked, placebo-controlled trial among 282 apparently healthy children 6–23 mo of age in Burkina Faso. After completing baseline intestinal function tests, participants received either 5 mg zinc, as zinc sulfate, or placebo, daily for 21 d. Results At baseline, mean ± SD PZC was 62.9 ± 11.9 µg/dL; median (IQR) urinary lactulose:mannitol (L:M) recovery ratio and plasma citrulline concentration were 0.04 (0.03 – 0.07) and 11.4 (9.0 – 15.6) µmol/L, respectively. Change in PZC was significantly greater in the zinc supplemented versus placebo group (15.6 ± 13.3 µg/dL vs. 0.02 ± 10.9 µg/dL; P < 0.0001), and was negatively associated with initial urinary L:M recovery ratio (−1.1 µg/dL per 50% increase in urinary L:M recovery ratio; P = 0.014); this latter relationship did not differ between supplementation groups (P = 0.26). Baseline plasma citrulline concentration was not associated with change in PZC. Conclusions Although altered intestinal permeability may reduce dietary zinc absorption, it likely does not undermine the efficacy of zinc supplementation, given the large increases in PZC following short-term zinc supplementation observed in this study, even among those with increased urinary L:M recovery ratios. PMID:23689263

  2. A moderate increase in dietary zinc reduces DNA strand breaks in leukocytes and alters plasma proteins without changing plasma zinc concentrations123

    PubMed Central

    Zyba, Sarah J; Killilea, David W; Holland, Tai C; Kim, Elijah; Moy, Adrian; Sutherland, Barbara; Shigenaga, Mark K

    2017-01-01

    Background: Food fortification has been recommended to improve a population’s micronutrient status. Biofortification techniques modestly elevate the zinc content of cereals, but few studies have reported a positive impact on functional indicators of zinc status. Objective: We determined the impact of a modest increase in dietary zinc that was similar to that provided by biofortification programs on whole-body and cellular indicators of zinc status. Design: Eighteen men participated in a 6-wk controlled consumption study of a low-zinc, rice-based diet. The diet contained 6 mg Zn/d for 2 wk and was followed by 10 mg Zn/d for 4 wk. To reduce zinc absorption, phytate was added to the diet during the initial period. Indicators of zinc homeostasis, including total absorbed zinc (TAZ), the exchangeable zinc pool (EZP), plasma and cellular zinc concentrations, zinc transporter gene expression, and other metabolic indicators (i.e., DNA damage, inflammation, and oxidative stress), were measured before and after each dietary-zinc period. Results: TAZ increased with increased dietary zinc, but plasma zinc concentrations and EZP size were unchanged. Erythrocyte and leukocyte zinc concentrations and zinc transporter expressions were not altered. However, leukocyte DNA strand breaks decreased with increased dietary zinc, and the level of proteins involved in DNA repair and antioxidant and immune functions were restored after the dietary-zinc increase. Conclusions: A moderate 4-mg/d increase in dietary zinc, similar to that which would be expected from zinc-biofortified crops, improves zinc absorption but does not alter plasma zinc. The repair of DNA strand breaks improves, as do serum protein concentrations that are associated with the DNA repair process. This trial was registered at clinicaltrials.gov as NCT02861352. PMID:28003206

  3. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  4. Ferritin: a zinc detoxicant and a zinc ion donor.

    PubMed Central

    Price, D; Joshi, J G

    1982-01-01

    Rats were injected with 1 mg of Zn2+ as zinc sulfate or 2 mg of Cd2+ as cadmium sulfate per kg of body weight on a daily basis. After seven injections, ferritin and metallothionein were isolated from the livers of the rats. Significant amounts of zinc were associated with ferritin. Incubation of such ferritin with apoenzymes of calf intestinal alkaline phosphatase, yeast phosphoglucomutase, and yeast aldolase restored their enzymic activity. The amount of zinc injected was insufficient to stimulate significant synthesis of metallothionein, but similar experiments with injection of cadmium did stimulate the synthesis of metallothionein. The amount of Zn2+ in ferritin of Cd-injected rats was greater than that in ferritin in Zn-injected rats, which was greater than that in ferritin of normal rats. Thus at comparable protein concentration ferritin from Cd-injected rats was a better Zn2+ donor than was ferritin from Zn-injected or normal animals. Ferritin is a normal constituent of several tissues, whereas metallothionein is synthesized under metabolic stress. Thus ferritin may function as a "metal storage and transferring agent" for iron and for zinc. It is suggested that ferritin probably serves as the initial chelator for Zn2+ and perhaps other metal ions as well and that under very high toxic levels of metal ions the synthesis of metallothionein is initiated as the second line of defense. PMID:6212927

  5. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  6. Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries

    NASA Astrophysics Data System (ADS)

    De Michelis, I.; Ferella, F.; Karakaya, E.; Beolchini, F.; Vegliò, F.

    This paper concerns the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. The metals were dissolved by a reductive-acid leaching with sulphuric acid in the presence of oxalic acid as reductant. Leaching tests were realised according to a full factorial design, then simple regression equations for Mn, Zn and Fe extraction were determined from the experimental data as a function of pulp density, sulphuric acid concentration, temperature and oxalic acid concentration. The main effects and interactions were investigated by the analysis of variance (ANOVA). This analysis evidenced the best operating conditions of the reductive acid leaching: 70% of manganese and 100% of zinc were extracted after 5 h, at 80 °C with 20% of pulp density, 1.8 M sulphuric acid concentration and 59.4 g L -1 of oxalic acid. Both manganese and zinc extraction yields higher than 96% were obtained by using two sequential leaching steps.

  7. AH-64E Apache New Build (AH-64E New Build)

    DTIC Science & Technology

    2015-12-01

    night, obscured battlefield and adverse weather conditions. The AH-64E enables the Joint Air/Ground Maneuver Team to dominate the battle space by...capability over the AH-64A and AH-64D. It is capable of being employed day or night in adverse weather and obscurants , and can effectively engage and...80 Survivability Safe operation (minutes) 30 30 30 Met Objective 30 Survive Band IV MANPADS IR Missile Engagement IAW JROCM 086-10 IAW JROCM 086-10 IAW

  8. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  9. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  10. Cu-64-labeled lactam bridge-cyclized α-MSH peptides for PET imaging of melanoma.

    PubMed

    Guo, Haixun; Miao, Yubin

    2012-08-06

    The purpose of this study was to examine and compare the melanoma targeting and imaging properties of (64)Cu-NOTA-GGNle-CycMSH(hex) {(64)Cu-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (64)Cu-DOTA-GGNle-CycMSH(hex) {(64)Cu-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-GGNle-CycMSH(hex)}. Two lactam bridge-cyclized peptides, NOTA-GGNle-CycMSH(hex) and DOTA-GGNle-CycMSH(hex), were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSH(hex) was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSH(hex). The melanoma targeting and imaging properties of (64)Cu-NOTA-GGNle-CycMSH(hex) and (64)Cu-DOTA-GGNle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSH(hex) and DOTA-GGNle-CycMSH(hex) displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM). The substitution of DOTA with NOTA dramatically increased the melanoma uptake and decreased the renal and liver uptake of (64)Cu-NOTA-GGNle-CycMSH(hex). The tumor uptake of (64)Cu-NOTA-GGNle-CycMSH(hex) was between 12.39 ± 1.61 and 12.71 ± 2.68% ID/g at 0.5, 2, and 4 h postinjection. The accumulation of (64)Cu-NOTA-GGNle-CycMSH(hex) activity in normal organs was lower than 1.02% ID/g except for the kidneys 2, 4, and 24 h postinjection. The tumor/liver uptake ratios of (64)Cu-NOTA-GGNle-CycMSHhex were 17.96, 16.95, and 8.02, whereas the tumor/kidney uptake ratios of (64)Cu-NOTA-GGNle-CycMSH(hex) were 2.52, 3.60, and 5.74 at 2, 4, and 24 h postinjection, respectively. Greater than 91% of the injected radioactivity cleared through the urinary system by 2 h postinjection. The substitution of DOTA with NOTA resulted in a dramatic increase in melanoma uptake and decrease in renal and liver uptake of (64)Cu-NOTA-GGNle-CycMSH(hex) as compared to (64)Cu-DOTA-GGNle-CycMSH(hex). High melanoma uptake coupled with low accumulation in nontarget

  11. Effects of serum zinc level on tinnitus.

    PubMed

    Berkiten, Güler; Kumral, Tolgar Lütfi; Yıldırım, Güven; Salturk, Ziya; Uyar, Yavuz; Atar, Yavuz

    2015-01-01

    The aim of this study was to assess zinc levels in tinnitus patients, and to evaluate the effects of zinc deficiency on tinnitus and hearing loss. One-hundred patients, who presented to an outpatient clinic with tinnitus between June 2009 and 2014, were included in the study. Patients were divided into three groups according to age: Group I (patients between 18 and 30years of age); Group II (patients between 31 and 60years of age); and Group III (patients between 61 and 78years of age). Following a complete ear, nose and throat examination, serum zinc levels were measured and the severity of tinnitus was quantified using the Tinnitus Severity Index Questionnaire (TSIQ). Patients were subsequently asked to provide a subjective judgment regarding the loudness of their tinnitus. The hearing status of patients was evaluated by audiometry and high-frequency audiometry. An average hearing sensitivity was calculated as the mean value of hearing thresholds between 250 and 20,000Hz. Serum zinc levels between 70 and 120μg/dl were considered normal. The severity and loudness of tinnitus, and the hearing thresholds of the normal zinc level and zinc-deficient groups, were compared. Twelve of 100 (12%) patients exhibited low zinc levels. The mean age of the zinc-deficient group was 65.41±12.77years. Serum zinc levels were significantly lower in group III (p<0.01). The severity and loudness of tinnitus were greater in zinc-deficient patients (p=0.011 and p=0.015, respectively). Moreover, the mean thresholds of air conduction were significantly higher in zinc-deficient patients (p=0.000). We observed that zinc levels decrease as age increases. In addition, there was a significant correlation between zinc level and the severity and loudness of tinnitus. Zinc deficiency was also associated with impairments in hearing thresholds. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells

    PubMed Central

    Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai

    2016-01-01

    Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways. PMID:27196542

  13. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells.

    PubMed

    Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai; Hao, Zhi-Hui

    2016-01-01

    Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.

  14. Zinc Status of Vegetarians during Pregnancy: A Systematic Review of Observational Studies and Meta-Analysis of Zinc Intake.

    PubMed

    Foster, Meika; Herulah, Ursula Nirmala; Prasad, Ashlini; Petocz, Peter; Samman, Samir

    2015-06-05

    Pregnant women are vulnerable to a low zinc status due to the additional zinc demands associated with pregnancy and foetal development. The present systematic review explores the relationship between habitual vegetarian diets and dietary zinc intake/status during pregnancy. The association between vegetarian diets and functional pregnancy outcome also is considered. A literature search was conducted of MEDLINE; PubMed; Embase; the Cochrane Library; Web of Science; and Scopus electronic databases up to September 2014. Six English-language observational studies qualified for inclusion in the systematic review. A meta-analysis was conducted that compared the dietary zinc intake of pregnant vegetarian and non-vegetarian (NV) groups; the zinc intake of vegetarians was found to be lower than that of NV (-1.38 ± 0.35 mg/day; p < 0.001); and the exclusion of low meat eaters from the analysis revealed a greater difference (-1.53 ± 0.44 mg/day; p = 0.001). Neither vegetarian nor NV groups met the recommended dietary allowance (RDA) for zinc. In a qualitative synthesis; no differences were found between groups in serum/plasma zinc or in functional outcomes associated with pregnancy. In conclusion; pregnant vegetarian women have lower zinc intakes than NV control populations and both groups consume lower than recommended amounts. Further information is needed to determine whether physiologic adaptations in zinc metabolism are sufficient to meet maternal and foetal requirements during pregnancy on a low zinc diet.

  15. Zinc Status of Vegetarians during Pregnancy: A Systematic Review of Observational Studies and Meta-Analysis of Zinc Intake

    PubMed Central

    Foster, Meika; Herulah, Ursula Nirmala; Prasad, Ashlini; Petocz, Peter; Samman, Samir

    2015-01-01

    Pregnant women are vulnerable to a low zinc status due to the additional zinc demands associated with pregnancy and foetal development. The present systematic review explores the relationship between habitual vegetarian diets and dietary zinc intake/status during pregnancy. The association between vegetarian diets and functional pregnancy outcome also is considered. A literature search was conducted of MEDLINE; PubMed; Embase; the Cochrane Library; Web of Science; and Scopus electronic databases up to September 2014. Six English-language observational studies qualified for inclusion in the systematic review. A meta-analysis was conducted that compared the dietary zinc intake of pregnant vegetarian and non-vegetarian (NV) groups; the zinc intake of vegetarians was found to be lower than that of NV (−1.38 ± 0.35 mg/day; p < 0.001); and the exclusion of low meat eaters from the analysis revealed a greater difference (−1.53 ± 0.44 mg/day; p = 0.001). Neither vegetarian nor NV groups met the recommended dietary allowance (RDA) for zinc. In a qualitative synthesis; no differences were found between groups in serum/plasma zinc or in functional outcomes associated with pregnancy. In conclusion; pregnant vegetarian women have lower zinc intakes than NV control populations and both groups consume lower than recommended amounts. Further information is needed to determine whether physiologic adaptations in zinc metabolism are sufficient to meet maternal and foetal requirements during pregnancy on a low zinc diet. PMID:26056918

  16. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  17. Long life, rechargeable nickel-zinc battery

    NASA Technical Reports Server (NTRS)

    Luksha, E.

    1974-01-01

    A production version of the inorganic separator was evaluated for improving the life of the nickel-zinc system. Nickel-zinc cells (7-10 Ah capacities) of different electrode separator configurations were constructed and tested. The nickel-zinc cells using the inorganic separator encasing the zinc electrode, the nickel electrode, or both electrodes had shorter lives than cells using Visking and cellophane separation. Cells with the inorganic separation all fell below 70% of their theoretical capacity within 30 cycles, but the cells constructed with organic separation required 80 cycles. Failure of the cells using the ceramic separator was irreversible capacity degradation due to zinc loss through cracks developed in the inorganic separator. Zinc loss through the separator was minimized with the use of combinations of the inorganic separator with Visking and cellophane. Cells using the combined separation operated 130 duty cycles before degrading to 70% of their theoretical capacity.

  18. Stabilized nickel-zinc battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himy, A.; Wagner, O.C.

    An alkaline nickel-zinc cell which has (1) a nickel-nickel hydroxide cathode; (2) a zinc-zinc oxide anode containing (A) a corrosion inhibitor such as PBO, SNO2, Tl2O3, in(OH)3 or mixtures thereof; (B) a slight corrosion accelerator such as cdo, bi2o3, ga2o3, or mixtures thereof; and (C) a zinc active material; (3) a mass-transport separator; (4) an alkaline electrolyte; and (5) means for charging the cell with an interrupted current having a frequency of from more than zero to 16 hertz with a rest period of not less than 60 milliseconds. Another desirable feature is the use of a pressure-cutoff switch tomore » terminate charging when the internal pressure of the cell reaches a selected value in the range of from 5 to 8 psig.« less

  19. Factors influencing zinc status of apparently healthy indians.

    PubMed

    Agte, Vaishali V; Chiplonkar, Shashi A; Tarwadi, Kirtan V

    2005-10-01

    To identify dietary, environmental and socio-economic factors associated with mild zinc deficiency, three zinc status indices; erythrocyte membrane zinc (RBCMZn), plasma zinc and super oxide dismutase (SOD) were assessed in free living and apparently healthy Indian population. Dietary patterns of 232 men and 223 women (20-65 yr) from rural, industrial and urban regions of Western India were evaluated by food frequency questionnaire. RBCMZn was estimated using atomic absorption spectrometry, hemoglobin and serum ceruloplasmin by spectrophotometer. On a sub sample (48 men and 51 women) plasma zinc and SOD were also assessed. Mean RBCMZn was 0.5 +/- 0.1 micromols/g protein with 46% individuals showing zinc deficiency. Mean plasma zinc was 0.98 +/- 0.12 microg/mL with 25% men and 2.5% women having values below normal range. Mean SOD was 0.97 +/- 0.1 (u/mL cells). A significant positive correlation was observed between intakes of green leafy vegetables, other vegetables and milk products with RBCMZn status (p < 0.05). But these were not correlated with plasma zinc (p > 0.2). Cereal and legume intakes were negatively correlated with RBCMZn (p < 0.05) but positively correlated with plasma zinc (p < 0.05) and not correlated with SOD (p > 0.2). Fruit and other vegetable intake were positively correlated with SOD (p < 0.05) alone. Logistic regression analyses revealed that RBCMZn was positively associated with intakes of beta-carotene, zinc and environmental conditions and negatively associated with family size (p < 0.05). Plasma zinc indicated positive association with zinc, thiamin and riboflavin intakes (p < 0.05) and SOD showed negative association with iron and family size. RBCMZn was a more sensitive indicator of long-term zinc status than plasma zinc and SOD. Prominent determinants of zinc status were intakes of beta-carotene and zinc along with environmental conditions and family size.

  20. Multi-modular, tris(triphenylamine) zinc porphyrin-zinc phthalocyanine-fullerene conjugate as a broadband capturing, charge stabilizing, photosynthetic 'antenna-reaction center' mimic.

    PubMed

    Kc, Chandra B; Lim, Gary N; D'Souza, Francis

    2015-04-21

    A broadband capturing, charge stabilizing, photosynthetic antenna-reaction center model compound has been newly synthesized and characterized. The model compound is comprised of a zinc porphyrin covalently linked to three units of triphenylamine entities and a zinc phthalocyanine entity. The absorption and fluorescence spectra of zinc porphyrin complemented that of zinc phthalocyanine offering broadband coverage. Stepwise energy transfer from singlet excited triphenylamine to zinc porphyrin, and singlet excited zinc porphyrin to zinc phthalocyanine (kENT ∼ 10(11) s(-1)) was established from spectroscopic and time-resolved transient absorption techniques. Next, an electron acceptor, fullerene was introduced via metal-ligand axial coordination to both zinc porphyrin and zinc phthalocyanine centers, and they were characterized by spectroscopic and electrochemical techniques. An association constant of 4.9 × 10(4) M(-1) for phenylimidazole functionalized fullerene binding to zinc porphyrin, and 5.1 × 10(4) M(-1) for it binding to zinc phthalocyanine was obtained. An energy level diagram for the occurrence of different photochemical events within the multi-modular donor-acceptor conjugate was established from spectral and electrochemical data. Unlike the previous zinc porphyrin-zinc phthalocyanine-fullerene conjugates, the newly assembled donor-acceptor conjugate has been shown to undergo the much anticipated initial charge separation from singlet excited zinc porphyrin to the coordinated fullerene followed by a hole shift process to zinc phthalocyanine resulting in a long-lived charge separated state as revealed by femto- and nanosecond transient absorption spectroscopic techniques. The lifetime of the final charge separated state was about 100 ns.

  1. Prediction of Serum Zinc Levels in Mexican Children at 2 Years of Age Using a Food Frequency Questionnaire and Different Zinc Bioavailability Criteria

    PubMed Central

    Cantoral, Alejandra; Téllez-Rojo, Martha; Shamah-Levy, Teresa; Schnaas, Lourdes; Hernández-Ávila, Mauricio; Peterson, Karen; Ettinger, Adrienne

    2017-01-01

    Background The 2006 Mexican National Health and Nutrition Survey documented a prevalence of zinc deficiency of almost 30% in children aged one to two years old. Objective We sought to validate a Food Frequency Questionnaire (FFQ) for quantifying dietary bioavailable zinc intake in two-year old Mexican children accounting for phytic acid intake and using serum zinc as a reference. Methods This cross-sectional study was nested within a longitudinal birth cohort of 333 young children in Mexico City. Non-fasting serum zinc concentration was measured and dietary zinc intake was calculated on the basis of a semi-quantitative FFQ administered to their mothers. The relationship between dietary zinc intake and serum zinc was assessed using linear regression, adjusting for phytic acid intake, and analyzed according to two distinct international criteria to estimate bioavailable zinc. Models were stratified by zinc deficiency status. Results Dietary zinc, adjusted for phytic acid intake, explained the greatest proportion of the variance of serum zinc. For each mg of dietary zinc intake, serum zinc increased on average by 0.95 μg/dL (0.15 μmol/L) (p=0.06). When stratified by zinc status, this increase was 0.74 μg/dL (p=0.12) for each milligram of zinc consumed among children with adequate serum zinc (N=276) whereas among those children with zinc deficiency (N=57), serum zinc increased by only 0.11 μg/dL (p=0.82). Conclusion A semi-quantitative FFQ can be used for predicting serum zinc in relation to dietary intake in young children, particularly among those who are zinc-replete, and when phytic acid/phytate intake is considered. Future studies should be conducted accounting for both zinc status and dietary zinc inhibitors to further elucidate and validate these findings. PMID:26121697

  2. Pycup – A bifunctional, cage-like ligand for 64Cu radiolabeling

    PubMed Central

    Boros, Eszter; Rybak-Akimova, Elena; Holland, Jason P.; Rietz, Tyson; Rotile, Nicholas; Blasi, Francesco; Day, Helen; Latifi, Reza; Caravan, Peter

    2014-01-01

    In developing targeted probes for positron emission tomography (PET) based on 64Cu, stable complexation of the radiometal is key, and a flexible handle for bioconjugation is highly advantageous. Here, we present the synthesis and characterization of the chelator pycup and 4 derivatives. Pycup is a cross-bridged cyclam derivative with a pyridyl donor atom integrated into the cross-bridge resulting in a pentadentate ligand. The pycup platform provides kinetic inertness toward 64Cu de-chelation and offers versatile bioconjugation chemistry. We varied the number and type of additional donor atoms by alkylation of the remaining two secondary amines, providing three model ligands, pycup2A, pycup1A1Bn and pycup2Bn in 3–4 synthetic steps from cyclam. All model copper complexes displayed very slow decomplexation in 5 M HCl and 90 °C (t1/2: 1.5 h for pycup1A1Bn, 2.7 h for pycup2A, 20.3 h for pycup2Bn). The single crystal crystal X-ray structure of the [Cu(pycup2Bn)]2+ complex showed that the copper was coordinated in a trigonal, bi-pyramidal manner. The corresponding radiochemical complexes were at least 94% stable in rat plasma after 24 h. Biodistribution studies conducted in Balb/c mice at 2 h post-injection of 64Cu labeled pycup2A revealed low residual activity in kidney, liver and blood pool with predominantly renal clearance observed. Pycup2A was readily conjugated to a fibrin-targeted peptide and labeled with 64Cu for successful PET imaging of arterial thrombosis in a rat model, demonstrating the utility of our new chelator in vivo. PMID:24294970

  3. Health risk assessment of zinc, chromium, and nickel from cow meat consumption in an urban Nigerian population

    PubMed Central

    Ihedioha, Janefrances N; Okoye, Chukwuma O B; Onyechi, Uchenna A

    2014-01-01

    Background: Meat consumption is increasingly becoming a larger part of diets worldwide. However, the bioaccumulation of toxic metals from anthropogenic pollution is a potential health risk to human health. Objective: To measure the daily intake of zinc, chromium, and nickel from cow meat consumption and assess the possible health risks in an urban population in Nigeria. Methods: Dried meat samples were digested with 3 : 2HNO3 : HClO4 v/v. Zinc, chromium, and nickel concentrations were determined with atomic absorption spectrophotometer. Daily intakes of meat were obtained using a food frequency questionnaire (FFQ). Results: The estimated daily intakes (EDI) (μg/person/day) ranges were: zinc (10 496–13 459), chromium (310.90–393.73), and nickel (26.72–34.87). Estimated daily intake for zinc was 15–30% of provisional maximum tolerable daily intake (PMTDI) and for nickel it was 8–15% of tolerable daily intake (TDI). Conclusion: Chromium intakes were above recommended daily intake (RDI). Target hazard quotient (THQ) for nickel and zinc were within WHO/FAO limit. There was no evidence of possible health risk to consumers with regard to zinc and nickel. However, chromium intake should be of utmost concern, while disposal of tanning waste should be checked. PMID:25078345

  4. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc methionine sulfate. 172.399 Section 172.399... CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...

  5. Process for preparing zinc oxide-based sorbents

    DOEpatents

    Gangwal, Santosh Kumar [Cary, NC; Turk, Brian Scott [Durham, NC; Gupta, Raghubir Prasad [Durham, NC

    2011-06-07

    The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  6. Changes in zinc status and zinc transporters expression in whole blood of patients with Systemic Inflammatory Response Syndrome (SIRS).

    PubMed

    Florea, Daniela; Molina-López, Jorge; Hogstrand, Christer; Lengyel, Imre; de la Cruz, Antonio Pérez; Rodríguez-Elvira, Manuel; Planells, Elena

    2018-09-01

    Critically ill patients develop severe stress, inflammation and a clinical state that may raise the utilization and metabolic replacement of many nutrients and especially zinc, depleting their body reserves. This study was designed to assess the zinc status in critical care patients with systemic inflammatory response syndrome (SIRS), comparing them with a group of healthy people, and studying the association with expression of zinc transporters. This investigation was a prospective, multicentre, comparative, observational and analytic study. Twelve critically ill patients from different hospitals and 12 healthy subjects from Granada, Spain, all with informed consent were recruited. Data on daily nutritional assessment, ICU severity scores, inflammation, clinical and nutritional parameters, plasma and blood cell zinc concentrations, and levels of transcripts for zinc transporters in whole blood were taken at admission and at the seventh day of the ICU stay. Zinc levels on critical ill patient are diminish comparing with the healthy control (HS: 0.94 ± 0.19; CIPF: 0.67 ± 0.16 mg/dL). The 58% of critical ill patients showed zinc plasma deficiency at beginning of study while 50.0% of critical ill after 7 days of ICU stay. ZnT7, ZIP4 and ZIP9 were the zinc transporters with highest expression in whole blood. In general, all zinc transporters were significantly down-regulated (P < 0.05) in the critical ill population at admission in comparison with healthy subjects. Severity scores and inflammation were significantly associated (P < 0.05) with zinc plasma levels, and zinc transporters ZIP3, ZIP4, ZIP8, ZnT6, ZnT7. Expression of 11 out of 24 zinc transporters was analysed, and ZnT1, ZnT4, ZnT5 and ZIP4, which were downregulated by more than 3-fold in whole blood of patients. In summary, in our study an alteration of zinc status was related with the severity-of-illness scores and inflammation in critical ill patients since admission in ICU stay. SIRS

  7. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    PubMed Central

    Donangelo, Carmen Marino; King, Janet C.

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide. PMID:22852063

  8. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans.

    PubMed

    Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee

    2018-01-01

    Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.

  9. AH-64E Apache Remanufacture (AH-64E Remanufacture)

    DTIC Science & Technology

    2015-12-01

    Support Operations to Major Combat Operations, when required, in day, night, obscured battlefield and adverse weather conditions. The AH-64E enables the...adverse weather and obscurants , and can effectively engage and destroy advanced threat weapon systems on the air-land battlefield. Tactically, the AH-64E...Objective 30 Survive Band IV MANPADS IR Missile Engagement IAW JROCM 086-10 IAW JROCM 086-10 IAW JROCM 086-10 Met Objective IAW JROCM 086-10 Force Protection

  10. High performance zinc anode for battery applications

    NASA Technical Reports Server (NTRS)

    Casey, John E., Jr. (Inventor)

    1998-01-01

    An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.

  11. The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation

    PubMed Central

    Didierlaurent, Ludovic; Houzet, Laurent; Morichaud, Zakia; Darlix, Jean-Luc; Mougel, Marylène

    2008-01-01

    Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs. PMID:18641038

  12. Zinc Regulation of Aminopeptidase B Involved in Neuropeptide Production

    PubMed Central

    Hwang, Shin-Rong; Hook, Vivian

    2009-01-01

    Aminopeptidase B (AP-B) is a metallopeptidase that removes basic residues from the N-termini of neuropeptide substrates in secretory vesicles. This study assessed zinc regulation of AP-B activity, since secretory vesicles contain endogenous zinc. AP-B was inhibited by zinc at concentrations typically present in secretory vesicles. Zinc effects were dependent on concentration, incubation time, and the molar ratio of zinc to enzyme. AP-B activity was recovered upon removal of zinc. AP-B with zinc became susceptible to degradation by trypsin, suggesting that zinc alters enzyme conformation. Zinc regulation demonstrates the metallopeptidase property of AP-B. PMID:18571504

  13. Method for the regeneration of spent molten zinc chloride

    DOEpatents

    Zielke, Clyde W.; Rosenhoover, William A.

    1981-01-01

    In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

  14. Serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin concentrations in infants receiving intravenous zinc and copper supplementation.

    PubMed

    Lockitch, G; Godolphin, W; Pendray, M R; Riddell, D; Quigley, G

    1983-02-01

    One hundred twenty-seven newborn infants requiring parenteral nutrition were randomly assigned to receive differing amounts of zinc (40 to 400 micrograms/kg/day) and copper (20 or 40 micrograms/kg/day) supplementation within five birth weight groups (600 to 2,500 gm). The serum zinc concentration remained relatively constant in the group receiving the most zinc supplementation after two weeks of therapy, but declined sharply in the groups receiving less supplementation. No effect of increased copper intake was noted on ceruloplasmin values, but a difference in serum copper concentrations was noted at two weeks. No correlation was noted between serum zinc and copper values or among those for serum zinc, retinol-binding protein, and prealbumin. Reference ranges were defined for serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin in the preterm infant.

  15. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any mixtues... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc...). It is principally composed of Zn. (2) Color additive mixtures for drug use made with zinc oxide may...

  16. 21 CFR 182.8988 - Zinc gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc gluconate. 182.8988 Section 182.8988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8988 Zinc gluconate. (a) Product. Zinc gluconate. (b...

  17. 64Cu-Labeled Inhibitors of Prostate-Specific Membrane Antigen for PET Imaging of Prostate Cancer

    PubMed Central

    2015-01-01

    Prostate-specific membrane antigen (PSMA) is a well-recognized target for identification and therapy of a variety of cancers. Here we report five 64Cu-labeled inhibitors of PSMA, [64Cu]3–7, which are based on the lysine–glutamate urea scaffold and utilize a variety of macrocyclic chelators, namely NOTA(3), PCTA(4), Oxo-DO3A(5), CB-TE2A(6), and DOTA(7), in an effort to determine which provides the most suitable pharmacokinetics for in vivo PET imaging. [64Cu]3–7 were prepared in high radiochemical yield (60–90%) and purity (>95%). Positron emission tomography (PET) imaging studies of [64Cu]3–7 revealed specific accumulation in PSMA-expressing xenografts (PSMA+ PC3 PIP) relative to isogenic control tumor (PSMA– PC3 flu) and background tissue. The favorable kinetics and high image contrast provided by CB-TE2A chelated [64Cu]6 suggest it as the most promising among the candidates tested. That could be due to the higher stability of [64Cu]CB-TE2A as compared with [64Cu]NOTA, [64Cu]PCTA, [64Cu]Oxo-DO3A, and [64Cu]DOTA chelates in vivo. PMID:24533799

  18. 21 CFR 182.8994 - Zinc stearate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc stearate. 182.8994 Section 182.8994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a) Product. Zinc stearate prepared from...

  19. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of...

  20. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions...

  1. 21 CFR 182.8994 - Zinc stearate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc stearate. 182.8994 Section 182.8994 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from chickedema factor. (b) Conditions of use. This...

  2. 21 CFR 182.8994 - Zinc stearate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc stearate. 182.8994 Section 182.8994 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from chickedema factor. (b) Conditions of use. This...

  3. 21 CFR 182.8988 - Zinc gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc gluconate. 182.8988 Section 182.8988 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance is generally recognized as safe when used...

  4. 21 CFR 182.8988 - Zinc gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc gluconate. 182.8988 Section 182.8988 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance is generally recognized as safe when used...

  5. Biomarkers of Nutrition for Development (BOND)—Zinc Review12345

    PubMed Central

    King, Janet C; Brown, Kenneth H; Gibson, Rosalind S; Krebs, Nancy F; Lowe, Nicola M; Siekmann, Jonathan H; Raiten, Daniel J

    2016-01-01

    Zinc is required for multiple metabolic processes as a structural, regulatory, or catalytic ion. Cellular, tissue, and whole-body zinc homeostasis is tightly controlled to sustain metabolic functions over a wide range of zinc intakes, making it difficult to assess zinc insufficiency or excess. The BOND (Biomarkers of Nutrition for Development) Zinc Expert Panel recommends 3 measurements for estimating zinc status: dietary zinc intake, plasma zinc concentration (PZC), and height-for-age of growing infants and children. The amount of dietary zinc potentially available for absorption, which requires an estimate of dietary zinc and phytate, can be used to identify individuals and populations at risk of zinc deficiency. PZCs respond to severe dietary zinc restriction and to zinc supplementation; they also change with shifts in whole-body zinc balance and clinical signs of zinc deficiency. PZC cutoffs are available to identify individuals and populations at risk of zinc deficiency. However, there are limitations in using the PZC to assess zinc status. PZCs respond less to additional zinc provided in food than to a supplement administered between meals, there is considerable interindividual variability in PZCs with changes in dietary zinc, and PZCs are influenced by recent meal consumption, the time of day, inflammation, and certain drugs and hormones. Insufficient data are available on hair, urinary, nail, and blood cell zinc responses to changes in dietary zinc to recommend these biomarkers for assessing zinc status. Of the potential functional indicators of zinc, growth is the only one that is recommended. Because pharmacologic zinc doses are unlikely to enhance growth, a growth response to supplemental zinc is interpreted as indicating pre-existing zinc deficiency. Other functional indicators reviewed but not recommended for assessing zinc nutrition in clinical or field settings because of insufficient information are the activity or amounts of zinc-dependent enzymes

  6. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  7. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  8. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc oxide. 182.8991 Section 182.8991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use...

  9. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  11. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  12. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used in...

  13. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.5988 - Zinc gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 582.5988 Section 582.5988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance is...

  15. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  16. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  17. 21 CFR 582.5994 - Zinc stearate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from chick...

  18. 21 CFR 582.5994 - Zinc stearate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from chick...

  19. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used in...

  20. 21 CFR 582.5988 - Zinc gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 582.5988 Section 582.5988 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally...

  2. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  3. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  4. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  5. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walle, J. van de; ISOLDE, CERN, Geneva; Aksouh, F.

    2009-01-15

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,2{sub 1}{sup +}{yields}0{sub 1}{sup +}) values in {sup 74-80}Zn, B(E2,4{sub 1}{sup +}{yields}2{sub 1}{sup +}) values in {sup 74,76}Zn and the determination of the energy of the first excited 2{sub 1}{sup +} states in {sup 78,80}Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of {sup 238}U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondarymore » target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.« less

  6. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA

    PubMed Central

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-01-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P < 0.04). Furthermore, transgene integration has been confirmed by sequencing in the majority of the mice treated with both vectors. Targeted alleles were 4.6-fold more common in livers of mice with GSD Ia, as compared with normal littermates, at 8 months following vector administration (P < 0.02). This suggests a selective advantage for vector-transduced hepatocytes following ZFN-mediated integration of the G6Pase vector. A short-term experiment also showed that 3-month-old mice receiving the ZFN had significantly-improved biochemical correction, in comparison with mice that received the donor vector alone. These data suggest that the use of ZFNs to drive integration of G6Pase at a safe harbor locus might improve vector persistence and efficacy, and lower mortality in GSD Ia. PMID:26865405

  7. Meta-QTL analysis of seed iron and zinc concentration in common bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrien...

  8. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  9. Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP

    PubMed Central

    Zhang, Yuxia; Andrews, Glen K.; Wang, Li

    2012-01-01

    Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatment induces Dnmt1 transcription by increasing the occupancy of MTF-1 on the Dnmt1 promoter while decreasing SHP expression. SHP in turn represses MTF-1 expression and abolishes zinc-mediated changes in the chromatin configuration of the Dnmt1 promoter. Dnmt1 expression is increased in SHP-knockout (sko) mice but decreased in SHP-transgenic (stg) mice. In human hepatocellular carcinoma (HCC), increased DNMT1 expression is negatively correlated with SHP levels. Our study provides a molecular explanation for increased Dnmt1 expression in HCC and highlights SHP as a potential therapeutic target. PMID:22362755

  10. Zinc oxide nanocolloids prepared by picosecond pulsed laser ablation in water at different temperatures

    NASA Astrophysics Data System (ADS)

    D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza

    2018-01-01

    Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.

  11. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  12. 21 CFR 558.78 - Bacitracin zinc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573 in...

  13. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of § 73.1991...

  14. 21 CFR 558.78 - Bacitracin zinc.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573 in...

  15. Speciation And Bioavailability Of Zinc In Amended Sediments

    EPA Science Inventory

    The speciation and bioavailability of zinc (Zn) in smelter-contaminated sediments was investigated as a function of phosphate (apatite) and organic amendment loading rate. Zinc species identified in preamendment sediment were zinc hydroxide-like phases, sphalerite, and zinc sorbe...

  16. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya)

    NASA Astrophysics Data System (ADS)

    Jaouen, Klervia; Beasley, Melanie; Schoeninger, Margaret; Hublin, Jean-Jacques; Richards, Michael P.

    2016-05-01

    In order to explore the possibilities of using zinc (Zn) stable isotope ratios as dietary indicators, we report here on the measurements of the ratio of stable isotopes of zinc (66Zn/64Zn, expressed here as δ66Zn) in bioapatite (bone and dental enamel) of animals from a modern food web in the Koobi Fora region of the Turkana Basin in Kenya. We demonstrate that δ66Zn values in both bone and enamel allow a clear distinction between carnivores and herbivores from this food web. Differences were also observed between browsers and grazers as well as between carnivores that consumed bone (i.e. hyenas) compared to those that largely consume flesh (i.e. lions). We conclude that Zn isotope ratio measurements of bone and teeth are a new and promising dietary indicator.

  17. CRISPR/Cas9-Mediated Gene Disruption Reveals the Importance of Zinc Metabolism for Fitness of the Dimorphic Fungal Pathogen Blastomyces dermatitidis

    PubMed Central

    Kujoth, Gregory C.; Sullivan, Thomas D.; Merkhofer, Richard; Lee, Taek-Jin; Wang, Huafeng; Brandhorst, Tristan; Wüthrich, Marcel

    2018-01-01

    ABSTRACT Blastomyces dermatitidis is a human fungal pathogen of the lung that can lead to disseminated disease in healthy and immunocompromised individuals. Genetic analysis of this fungus is hampered by the relative inefficiency of traditional recombination-based gene-targeting approaches. Here, we demonstrate the feasibility of applying CRISPR/Cas9-mediated gene editing to Blastomyces, including to simultaneously target multiple genes. We created targeting plasmid vectors expressing Cas9 and either one or two single guide RNAs and introduced these plasmids into Blastomyces via Agrobacterium gene transfer. We succeeded in disrupting several fungal genes, including PRA1 and ZRT1, which are involved in scavenging and uptake of zinc from the extracellular environment. Single-gene-targeting efficiencies varied by locus (median, 60% across four loci) but were approximately 100-fold greater than traditional methods of Blastomyces gene disruption. Simultaneous dual-gene targeting proceeded with efficiencies similar to those of single-gene-targeting frequencies for the respective targets. CRISPR/Cas9 disruption of PRA1 or ZRT1 had a variable impact on growth under zinc-limiting conditions, showing reduced growth at early time points in low-passage-number cultures and growth similar to wild-type levels by later passage. Individual impairment of PRA1 or ZRT1 resulted in a reduction of the fungal burden in a mouse model of Blastomyces infection by a factor of ~1 log (range, up to 3 logs), and combined disruption of both genes had no additional impact on the fungal burden. These results underscore the utility of CRISPR/Cas9 for efficient gene disruption in dimorphic fungi and reveal a role for zinc metabolism in Blastomyces fitness in vivo. PMID:29615501

  18. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in...

  19. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5991 Zinc oxide. (a) Product. Zinc...

  20. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in...

  1. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5991 Zinc oxide. (a) Product. Zinc...

  2. Zinc release contributes to hypoglycemia-induced neuronal death.

    PubMed

    Suh, Sang Won; Garnier, Philippe; Aoyama, Koji; Chen, Yongmei; Swanson, Raymond A

    2004-08-01

    Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.

  3. LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites

    PubMed Central

    Carvalho, Sandra; da Silva, Rosa Barreira; Shawki, Ali; Castro, Helena; Lamy, Márcia; Eide, David; Costa, Vítor; Mackenzie, Bryan; Tomás, Ana M.

    2016-01-01

    Summary Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn2+ was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 μM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis. PMID:25644708

  4. Maternal and fetal plasma zinc in pre-eclampsia.

    PubMed

    Bassiouni, B A; Foda, A I; Rafei, A A

    1979-04-01

    Zinc is important for fetal growth and is involved in several important enzyme systems. Maternal and umbilical plasma zinc concentrations were determined in 52 parturient women with mild and severe pre-eclampsia, and were compared with those obtained from 20 women in labor whose pregnancies had progressed normally. A decrease in maternal as well as umbilical plasma zinc concentrations was observed in pre-eclamptic women, and this decrease was statistically significant in severe pre-eclampsia. The causes of these changes in plasma zinc concentrations in pre-eclampsia were discussed, and the possible adverse effects of zinc deficiency on the mother and fetus were mentioned. Low plasma zinc concentrations in pre-eclampsia may be a sign of zinc deficiency, implying possible risks to the mother and her fetus. It is recommended that maintenance of adequate dietary zinc nutrition during pregnancy, and particularly in pre-eclampsia, is important.

  5. Role of nutritional zinc in the prevention of osteoporosis.

    PubMed

    Yamaguchi, Masayoshi

    2010-05-01

    Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and

  6. Prognostic value of serum zinc levels in patients with acute HC/zinc chloride smoke inhalation

    PubMed Central

    Xie, Fei; Zhang, Xingang; Xie, Lixin

    2017-01-01

    Abstract Hexachloroethane (HC)/zinc chloride (ZnCl, smoke bomb) exposure in the military setting results in lung injury which is uncommon and has been rarely described in previous studies. The aim of this study is to investigate the correlation between the serum zinc in patients with HC/ZnCl smoke inhalation lung injury and disease severity. A total of 15 patients with HC/ZnCl-related conditions were recruited in this study. The serum zinc level and the pulmonary function tests and liver function tests including total lung capacity (TLC), forced vital capacity (FVC), forced expiratory pressure in 1 second (FEV1), alanine aminotransferase (ALT), and aspartate transaminase (AST) were analyzed. Eleven cases had mild clinical manifestations. Four cases rapidly developed features typical of severe adult respiratory distress syndrome. The level of serum zinc was increased, but FVC, FEV1, and TLC was decreased significantly in the moderate and severe cases. In addition, the serum zinc level correlated well with the TLC, FVC, and FEV1 (r = −0.587, −0.626, −0.617, respectively; P = .027, .017, .019, respectively). The 4 cases in moderate and severe group had delayed impairment of liver functions after the accident. This study suggested that the serum zinc level may be associated with the severity of lung and liver injuries after HC/ZnCl smoke inhalation. PMID:28953660

  7. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  8. Decrease of non-point zinc runoff using porous concrete.

    PubMed

    Harada, Shigeki; Komuro, Yoshinori

    2010-01-01

    The use of porous concrete columns to decrease the amount of zinc in stormwater runoff is examined. The concentration of zinc in a simulated stormwater fluid (zinc acetate solution), fed through concrete columns (slashed circle10x10cm) decreased by 50-81%, suggesting physical adsorption of zinc by the porous concrete. We propose the use of porous concrete columns (slashed circle50x10cm) as the base of sewage traps. Longer-term, high-zinc concentration monitoring revealed that porous concrete blocks adsorb 38.6mgcm(-3) of zinc. A period of no significant zinc runoff (with an acceptable concentration of zinc in runoff of 0.03mgL(-1), a zinc concentration equal to the Japanese Environmental Standard) is estimated for 41years using a 1-ha catchment area with 20 porous concrete sewage traps. Scanning electron microscopy of the porous concrete used in this study indicates that the needle-like particles formed by hydration action significantly increase zinc adsorption. Evidence suggests that the hydrant is ettringite and has an important role in zinc adsorption, the resulting immobilization of zinc and the subsequent effects on groundwater quality. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    PubMed

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  10. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    PubMed Central

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  11. Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64).

    PubMed

    Poznar, Monika; Hołubowicz, Rafał; Wojtas, Magdalena; Gapiński, Jacek; Banachowicz, Ewa; Patkowski, Adam; Ożyhar, Andrzej; Dobryszycki, Piotr

    2017-11-01

    Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Role of Zinc Layer During Wetting of Aluminium on Zinc-coated Steel in Laser Brazing and Welding

    NASA Astrophysics Data System (ADS)

    Gatzen, M.; Radel, T.; Thomy, C.; Vollertsen, F.

    The zinc layer of zinc-coated steel is known to be a crucial factor for the spreading of liquid aluminium on the coated surface. For industrial brazing and welding processes these zinc-coatings enable a fluxless joining between aluminium and steel in many cases. Yet, the reason for the beneficial effect of the zinc to the wetting process is not completely understood. Fundamental investigations on the wetting behaviour of single aluminium droplets on different zinc-coated steel surfaces have revealed a distinct difference between coated surfaces at room temperature and at elevated temperature regarding the influence of different coating thicknesses. In this paper the case of continuous laser brazing and welding processes of aluminium and commercial galvanized zinc-coated steel sheets are presented. It is shown that in the case of bead-on-plate laser beam brazing, the coating thickness has a measureable effect on the resulting wetting angle and length but does not have a significant impact in case of overlap laser beam welding. This might be linked to different heat transfer conditions. The results also strongly indicate that proper initialbreakup of oxide layers is still required to accomplish good wetting on zinc-coated surfaces.

  13. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc oxide is a white or yellow-white amorphous...

  14. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc oxide is a white or yellow-white amorphous...

  15. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc oxide is a white or yellow-white amorphous...

  16. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  17. Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells.

    PubMed

    Ajjimaporn, Amornpan; Swinscoe, John; Shavali, Shaik; Govitrapong, Piyarat; Ebadi, Manuchair

    2005-11-30

    Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.

  18. 38 CFR 17.64 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false [Reserved] 17.64 Section 17.64 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Community Residential Care § 17.64 [Reserved] ...

  19. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plapp, Bryce V.; Savarimuthu, Baskar Raj; Ferraro, Daniel J.

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentatemore » chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ~1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.« less

  20. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    PubMed Central

    2017-01-01

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5′-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2′-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ∼1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water. PMID:28640600

  1. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide

    2015-02-01

    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  2. Behavioral impairments in animal models for zinc deficiency

    PubMed Central

    Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin

    2015-01-01

    Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379

  3. Hyper-dendritic nanoporous zinc foam anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  4. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGES

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; ...

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  5. Zinc-Catalyzed Synthesis of Conjugated Dienoates through Unusual Cross-Couplings of Zinc Carbenes with Diazo Compounds.

    PubMed

    Mata, Sergio; González, María J; González, Jesús; López, Luis A; Vicente, Rubén

    2017-01-23

    Zinc-catalyzed selective cross-coupling of two carbene sources, such as vinyl diazo compounds and enynones, enabled the synthesis of conjugated dienoate derivatives. This reaction involved the unprecedented coupling of a zinc furyl carbene with vinyl diazo compounds through the γ-carbon. Alternatively, dienoates were also prepared by a commutative cross-coupling of zinc vinyl carbenes generated from cyclopropenes and simple diazo compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recyclingmore » flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)« less

  7. 7 CFR 1955.64 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true [Reserved] 1955.64 Section 1955.64 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Management of Property § 1955.64 [Reserved] ...

  8. Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study.

    PubMed

    Gong, Wenjing; Wu, Ruibo; Zhang, Yingkai

    2015-11-15

    Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding toward class IIa HDACs. © 2015 Wiley Periodicals, Inc.

  9. Thiol Versus Hydroxamate as Zinc Binding Group In HDAC Inhibition: An Ab Initio QM/MM Molecular Dynamics Study

    PubMed Central

    Gong, Wenjing; Wu, Ruibo; Zhang, Yingkai

    2015-01-01

    Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding towards class IIa HDACs. PMID:26452222

  10. Acceptability and solubility of iron and zinc contents of modified Moringa oleifera sauces consumed in the Far-north region of Cameroon.

    PubMed

    Mawouma, Saliou; Ponka, Roger; Mbofung, Carl Moses

    2017-03-01

    Consumption of Moringa oleifera leaves is a local and inexpensive solution to iron and zinc deficiencies in the Far-north region of Cameroon. However, traditional household's cooking techniques result in sauces with high pH levels and low leaves incorporation rates that compromise the bioavailability of iron and zinc. The aim of our study was to investigate the effect of modifying a standard Moringa sauce on consumer acceptability and the solubility of iron and zinc, which is an indicator of their bioavailability. Lime juice or tamarind pulp was added to a standard recipe in order to reduce the pH by about one unit, and Moringa leaf powder was incorporated in each acidulated sauce at three levels (1, 2, and 4 g/100 g of sauce). All the formulations were evaluated for their acceptability by 30 housewives using a five-point hedonic scale. The pH was measured by a digital electronic pH-meter. Moisture and ash were determined by AOAC methods. Total iron and zinc contents were determined by atomic absorption spectrophotometry, and soluble iron and zinc by HCl-extractability. The lime juice-acidulated sauce and the tamarind pulp-acidulated sauce enriched with 1 g of Moringa leaf powder were the most acceptable formulations with scores of 3.4 and 3.6, respectively. Their chemical analysis showed a reduced pH (6.4 and 6.1, respectively), compared to the Control (7.2). Lime juice-acidulated sauce improved iron and zinc solubility from 42.19 to 66.38% and 54.03 to 82.03%, respectively. Tamarind pulp-acidulated sauce enriched with 1 g of Moringa leaf powder showed a decrease in iron solubility from 42.19 to 38.26% and an increase in zinc solubility from 54.03 to 72.86%. These results confirm the beneficial effect of lime juice in improving iron and zinc bioavailability.

  11. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain.

    PubMed

    Nunez, Noelia; Clifton, Molly M K; Funnell, Alister P W; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G R; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C M; Mackay, Joel P; Crossley, Merlin

    2011-11-04

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.

  12. The Multi-zinc Finger Protein ZNF217 Contacts DNA through a Two-finger Domain*

    PubMed Central

    Nunez, Noelia; Clifton, Molly M. K.; Funnell, Alister P. W.; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G. R.; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C. M.; Mackay, Joel P.; Crossley, Merlin

    2011-01-01

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif. PMID:21908891

  13. Evaluation of Serum Levels of Zinc, Copper, Iron, and Zinc/Copper Ratio in Cutaneous Leishmaniasis

    PubMed Central

    Pourfallah, F; Javadian, S; Zamani, Z; Saghiri, R; Sadeghi, S; Zarea, B; Faiaz, Sh; Mirkhani, F; Fatemi, N

    2009-01-01

    Background: The purpose of this study was to evaluate the levels of zinc (Zn), copper (Cu), iron (Fe) and zinc/ copper ratio in the serum of patients with cutaneous leishmaniasis in Qom Province, center of Iran. Methods: Serum levels of zinc and copper were determined by flame atomic absorption spectrophotometer and serum iron concentration was measured by using an Auto Analyzer. The study group consisted of 60 patients with cutaneous leishmaniasis and the control group of 100 healthy volunteers from the same area who were not exposed to cutaneous leishmaniasis. Result: There were no statistically significant differences in age and body mass index between the two groups. Serum Zn (P< 0.001) and Fe (P< 0.05) levels were lower in patients with cutaneous leishmaniasis than the control group. We also found serum Cu concentration (P< 0.05) in the patient group was significantly higher than that of the control group. However, zinc/ copper ratio (P< 0.001) was lower in patients with cutaneous leishmaniasis than in the control group. Conclusion: Our data indicated that Zn/Cu ratio was significantly lower in patients with CL as compared to the controls. Earlier reports suggest that, this ratio imbalance could be a useful marker for immune dysfunction in leishmaniasis. There was also strong association of Zn, Cu and Fe with CL. It suggests the use of blood zinc, copper, iron concentration and the copper/zinc ratio (Zn/Cu), as a means for estimating the prognosis of CL. PMID:22808376

  14. 40 CFR 418.64 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true [Reserved] 418.64 Section 418.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Sulfate Production Subcategory § 418.64 [Reserved] ...

  15. 40 CFR 418.64 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false [Reserved] 418.64 Section 418.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Sulfate Production Subcategory § 418.64 [Reserved] ...

  16. 40 CFR 418.64 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true [Reserved] 418.64 Section 418.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Sulfate Production Subcategory § 418.64 [Reserved] ...

  17. 40 CFR 418.64 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true [Reserved] 418.64 Section 418.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Sulfate Production Subcategory § 418.64 [Reserved] ...

  18. 40 CFR 418.64 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 418.64 Section 418.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonium Sulfate Production Subcategory § 418.64 [Reserved] ...

  19. 7 CFR 917.64 - Compliance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Compliance. 917.64 Section 917.64 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... CALIFORNIA Order Regulating Handling Miscellaneous Provisions § 917.64 Compliance. Each shipper shall comply...

  20. 7 CFR 917.64 - Compliance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Compliance. 917.64 Section 917.64 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... CALIFORNIA Order Regulating Handling Miscellaneous Provisions § 917.64 Compliance. Each shipper shall comply...

  1. Polyadenylation proteins CstF-64 and τCstF-64 exhibit differential binding affinities for RNA polymers

    PubMed Central

    Monarez, Roberto R.; Macdonald, Clinton C.; Dass, Brinda

    2006-01-01

    CstF-64 (cleavage stimulation factor-64), a major regulatory protein of polyadenylation, is absent during male meiosis. Therefore a paralogous variant, τCstF-64 is expressed in male germ cells to maintain normal spermatogenesis. Based on sequence differences between τCstF-64 and CstF-64, and on the high incidence of alternative polyadenylation in testes, we hypothesized that the RBDs (RNA-binding domains) of τCstF-64 and CstF-64 have different affinities for RNA elements. We quantified Kd values of CstF-64 and τCstF-64 RBDs for various ribopolymers using an RNA cross-linking assay. The two RBDs had similar affinities for poly(G)18, poly(A)18 or poly(C)18, with affinity for poly(C)18 being the lowest. However, CstF-64 had a higher affinity for poly(U)18 than τCstF-64, whereas it had a lower affinity for poly(GU)9. Changing Pro-41 to a serine residue in the CstF-64 RBD did not affect its affinity for poly(U)18, but changes in amino acids downstream of the C-terminal α-helical region decreased affinity towards poly(U)18. Thus we show that the two CstF-64 paralogues differ in their affinities for specific RNA sequences, and that the region C-terminal to the RBD is important in RNA sequence recognition. This supports the hypothesis that τCstF-64 promotes germ-cell-specific patterns of polyadenylation by binding to different downstream sequence elements. PMID:17029590

  2. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress

    PubMed Central

    Ohashi, Wakana; Kimura, Shunsuke; Iwanaga, Toshihiko; Furusawa, Yukihiro; Irié, Tarou; Izumi, Hironori; Watanabe, Takashi; Hara, Takafumi; Ohara, Osamu; Koseki, Haruhiko; Sato, Toshiro; Robine, Sylvie; Mori, Hisashi; Hattori, Yuichi; Mishima, Kenji; Ohno, Hiroshi; Hase, Koji; Fukada, Toshiyuki

    2016-01-01

    Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. PMID:27736879

  3. Oral zinc for treating diarrhoea in children

    PubMed Central

    Lazzerini, Marzia; Wanzira, Humphrey

    2016-01-01

    Background In developing countries, diarrhoea causes around 500,000 child deaths annually. Zinc supplementation during acute diarrhoea is currently recommended by the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). Objectives To evaluate oral zinc supplementation for treating children with acute or persistent diarrhoea. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (the Cochrane Library 2016, Issue 5), MEDLINE, Embase, LILACS, CINAHL, mRCT, and reference lists up to 30 September 2016. We also contacted researchers. Selection criteria Randomized controlled trials (RCTs) that compared oral zinc supplementation with placebo in children aged one month to five years with acute or persistent diarrhoea, including dysentery. Data collection and analysis Both review authors assessed trial eligibility and risk of bias, extracted and analysed data, and drafted the review. The primary outcomes were diarrhoea duration and severity. We summarized dichotomous outcomes using risk ratios (RR) and continuous outcomes using mean differences (MD) with 95% confidence intervals (CI). Where appropriate, we combined data in meta-analyses (using either a fixed-effect or random-effects model) and assessed heterogeneity. We assessed the certainty of the evidence using the GRADE approach. Main results Thirty-three trials that included 10,841 children met our inclusion criteria. Most included trials were conducted in Asian countries that were at high risk of zinc deficiency. Acute diarrhoea There is currently not enough evidence from well-conducted RCTs to be able to say whether zinc supplementation during acute diarrhoea reduces death or number of children hospitalized (very low certainty evidence). In children older than six months of age, zinc supplementation may shorten the average duration of diarrhoea by around half a day (MD −11.46 hours, 95% CI −19.72 to −3.19; 2581 children, 9 trials, low

  4. 40 CFR 64.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Applicability. 64.2 Section 64.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) COMPLIANCE ASSURANCE MONITORING § 64.2 Applicability. (a) General applicability. Except for backup utility units that...

  5. 40 CFR 64.2 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Applicability. 64.2 Section 64.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) COMPLIANCE ASSURANCE MONITORING § 64.2 Applicability. (a) General applicability. Except for backup utility units that...

  6. 40 CFR 64.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Definitions. 64.1 Section 64.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) COMPLIANCE ASSURANCE MONITORING § 64.1 Definitions. The following definitions apply to this part. Except as...

  7. 40 CFR 64.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Definitions. 64.1 Section 64.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) COMPLIANCE ASSURANCE MONITORING § 64.1 Definitions. The following definitions apply to this part. Except as...

  8. 40 CFR 64.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Applicability. 64.2 Section 64.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) COMPLIANCE ASSURANCE MONITORING § 64.2 Applicability. (a) General applicability. Except for backup utility units that...

  9. 7 CFR 985.64 - Compliance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Compliance. 985.64 Section 985.64 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements....64 Compliance. No person shall handle oil except in conformity with the provisions of this part. ...

  10. 7 CFR 985.64 - Compliance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Compliance. 985.64 Section 985.64 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements....64 Compliance. No person shall handle oil except in conformity with the provisions of this part. ...

  11. Fatigue of die cast zinc alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appearedmore » to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.« less

  12. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    PubMed Central

    De Mel, Damitha; Suphioglu, Cenk

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration. PMID:25195602

  13. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells.

    PubMed

    De Mel, Damitha; Suphioglu, Cenk

    2014-08-15

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  14. [Effect of cultivation in zinc media on the growth of and the degree of zinc in organic form in transgenic metallothionein mushroom].

    PubMed

    Sheng, Ji-Ping; Shen, Lin; Ru, Bing-Gen

    2009-03-01

    Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich and metal-binding functional proteins. Transgenic MT mushroom can be used as functional food additives, but its zinc-enriching ability has not been studied systemically until now. The zinc contents in mycelia of transgenic MT mushroom (Pleurotus ostreatus) and wild type mushroom mycelia cultivated in different zinc concentration media were analyzed by ICP-OES. The growth status, zinc-enriching ability and degree of zinc in organic form (DZOF) were also analyzed. Results showed that MT mushroom mycelia grew rapidly, but the growth was inhibited when the zinc content in solid media was higher than 1.6 mmol x L(-1). MT mushroom mycelia could enrich more zinc than that of wild type, and the zinc content in MT mushroom mycelia could be 2.56-27.49 mg x kg(-1) when it was cultivated in a liquid media with 0.6-1.2 mmol x L(-1) zinc. DZOF of MT mushroom mycelia in a liquid media with 0.6 mmol x L(-1) zinc at 7 d was significantly higher (88.7%) than that in the wild type (82.1%, alpha = 0.05), but there was no significant difference in DZOF when the MT mushroom mycelia was cultivated in a liquid media with different zinc content at 7 d.

  15. Zinc supplementation in children with cystic fibrosis

    USDA-ARS?s Scientific Manuscript database

    Cystic fibrosis (CF) leads to malabsorption of macro- and micronutrients. Symptomatic zinc deficiency has been reported in CF but little is known about zinc homeostasis in children with CF. Zinc supplementation (Zn suppl) is increasingly common in children with CF but it is not without theoretcial r...

  16. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...

  17. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...

  18. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    ERIC Educational Resources Information Center

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  19. 40 CFR 471.64 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contact cooling water Cyanide 0.142 0.059 Lead 0.205 0.098 Zinc 0.713 0.298 Ammonia 65.1 28.6 Fluoride 29... 0.021 0.009 Lead 0.030 0.015 Zinc 0.105 0.044 Ammonia 9.59 4.22 Fluoride 4.28 1.90 (f) Extrusion....022 Lead 0.75 0.036 Zinc 0.260 0.109 Ammonia 23.7 10.5 Fluoride 10.6 4.70 (g) Forging spent lubricants...

  20. 40 CFR 471.64 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contact cooling water Cyanide 0.142 0.059 Lead 0.205 0.098 Zinc 0.713 0.298 Ammonia 65.1 28.6 Fluoride 29... 0.021 0.009 Lead 0.030 0.015 Zinc 0.105 0.044 Ammonia 9.59 4.22 Fluoride 4.28 1.90 (f) Extrusion....022 Lead 0.75 0.036 Zinc 0.260 0.109 Ammonia 23.7 10.5 Fluoride 10.6 4.70 (g) Forging spent lubricants...

  1. 40 CFR 471.64 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contact cooling water Cyanide 0.142 0.059 Lead 0.205 0.098 Zinc 0.713 0.298 Ammonia 65.1 28.6 Fluoride 29... 0.021 0.009 Lead 0.030 0.015 Zinc 0.105 0.044 Ammonia 9.59 4.22 Fluoride 4.28 1.90 (f) Extrusion....022 Lead 0.75 0.036 Zinc 0.260 0.109 Ammonia 23.7 10.5 Fluoride 10.6 4.70 (g) Forging spent lubricants...

  2. 40 CFR 471.64 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contact cooling water Cyanide 0.142 0.059 Lead 0.205 0.098 Zinc 0.713 0.298 Ammonia 65.1 28.6 Fluoride 29... 0.021 0.009 Lead 0.030 0.015 Zinc 0.105 0.044 Ammonia 9.59 4.22 Fluoride 4.28 1.90 (f) Extrusion....022 Lead 0.75 0.036 Zinc 0.260 0.109 Ammonia 23.7 10.5 Fluoride 10.6 4.70 (g) Forging spent lubricants...

  3. 40 CFR 471.64 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contact cooling water Cyanide 0.142 0.059 Lead 0.205 0.098 Zinc 0.713 0.298 Ammonia 65.1 28.6 Fluoride 29... 0.021 0.009 Lead 0.030 0.015 Zinc 0.105 0.044 Ammonia 9.59 4.22 Fluoride 4.28 1.90 (f) Extrusion....022 Lead 0.75 0.036 Zinc 0.260 0.109 Ammonia 23.7 10.5 Fluoride 10.6 4.70 (g) Forging spent lubricants...

  4. 14 CFR 1260.64 - Taxes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Taxes. 1260.64 Section 1260.64 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.64 Taxes. Taxes (For grants or cooperative agreements with foreign organizations...

  5. 16 CFR 1025.64 - Attorneys.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Attorneys. 1025.64 Section 1025.64 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL RULES OF PRACTICE FOR ADJUDICATIVE PROCEEDINGS Appearances, Standards of Conduct § 1025.64 Attorneys. Any attorney at law who is admitted to...

  6. 44 CFR 64.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Definitions. 64.2 Section 64.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND... OF INSURANCE § 64.2 Definitions. The definitions set forth in part 59 of this subchapter are...

  7. 14 CFR 1260.64 - Taxes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Taxes. 1260.64 Section 1260.64 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.64 Taxes. Taxes (For grants or cooperative agreements with foreign organizations...

  8. Quantitative analysis of vacuum-ultraviolet radiation from nanosecond laser-zinc interaction

    NASA Astrophysics Data System (ADS)

    Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin

    2018-07-01

    The paper reports measurements of the vacuum-ultraviolet spectral irradiances of a flat zinc target over a wavelength region of 124-164 nm generated by 10 and 60 ns duration low-intensities, 5 ×109 - 3 ×1010 W cm-2, 1.06 μm wavelength laser pulses. Maximum radiation conversion efficiencies of 2.5%/2πsr and 0.8%/2πsr were measured for 60 and 10 ns laser pulses at the intensities of 5 ×109 and 1.4 ×1010 W cm-2, respectively. Atomic structure calculations using a relativistic configuration-interaction, flexible atomic code and a developed non-local thermodynamic equilibrium population kinetics model in comparison to the experimental spectra detected by the Seya-Namioka type monochromator reveal the strong broadband experimental emission originates mainly from 3d94p-3d94s, 3d94d-3d94p and 3d84p-3d84s, 3d84d-3d84p unresolved-transition arrays of double and triple ionized zinc, respectively. Two-dimensional radiation-hydrodynamics code is used to investigate time-space plasma evolution and spectral radiation of a 10 ns full-width-at-half-maximum Gaussian laser pulse-zinc interaction.

  9. Cytoprotection by Endogenous Zinc in the Vertebrate Retina

    PubMed Central

    Anastassov, Ivan; Ripps, Harris; Chappell, Richard L.

    2014-01-01

    Our recent studies have shown that endogenous zinc, co-released with glutamate from the synaptic terminals of vertebrate retinal photoreceptors, provides a feedback mechanism that reduces calcium entry and the concomitant vesicular release of glutamate. We hypothesized that zinc feedback may serve to protect the retina from glutamate excitotoxicity, and conducted in vivo experiments on the retina of the skate (Raja erinacea) to determine the effects of removing endogenous zinc by chelation. These studies showed that removal of zinc by injecting the zinc chelator histidine results in inner retinal damage similar to that induced by the glutamate receptor agonist kainic acid. In contrast, when an equimolar quantity of zinc followed the injection of histidine, the retinal cells were unaffected. Our results are a good indication that zinc, co-released with glutamate by photoreceptors, provides an auto-feedback system that plays an important cytoprotective role in the retina. PMID:24286124

  10. Zinc transport in rabbit tissues. Some hormonal aspects of the turnover of zinc in female reproductive organs, liver and body fluids

    PubMed Central

    McIntosh, J. E. A.; Lutwak-Mann, C.

    1972-01-01

    1. To investigate the influence of hormonal conditions upon the kinetics of zinc transport, specific radioactivity of 65Zn was determined in certain tissues and fluids from unmated or pregnant rabbits during the first half of gestation. 2. Compartmental analysis was used to find the simplest mathematical model that simulated satisfactorily tracer behaviour. Models were fitted to experimental results by a numerical procedure using a computer. 3. The kinetics of zinc exchange in most tissues investigated could adequately be described by a three-compartment model, in which total tissue zinc content was divided into a rapidly exchanging pool, with a turnover time of about 1h, and a slowly exchanging pool, the turnover time of which was in liver 15h, in peak-stage corpus luteum 8h, and in the other tissues 30–70h. 4. In rabbit endometrium zinc transport varied with hormonal conditions, the turnover rate being higher in non-pregnant than pregnant endometrium. 5. Uptake of 65Zn by uterine fluid was slow, and in the free-lying embryos (blastocysts) slower still, in keeping with uterine fluid acting as carrier of zinc into the unimplanted embryos. 6. In placental tissue zinc transport varied with gestational stage. Foetal placenta exchanged zinc with blood plasma four times faster than maternal placenta. In foetuses zinc turnover time and flux equalled that of the slow zinc compartment in foetal placenta. 7. Corpus luteum on days 5–6 of gestation showed peak specific radioactivity and zinc flux values, which exceeded those of all other tissues. 8. In liver the slow zinc compartment had a higher rate of turnover than corresponding compartments in tissues other than peak-stage corpus luteum, but no hormone-dependent changes were observed. 9. Zinc uptake by erythrocytes was the slowest of all examined. PMID:5073239

  11. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer

    PubMed Central

    Ahrens, Bradley J.; Li, Lin; Ciminera, Alexandra K.; Chea, Junie; Poku, Erasmus; Bading, James R.; Weist, Michael R.; Miller, Marcia M.; Colcher, David M.

    2017-01-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague–Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64Cu-DOTA-alendronate. Results: 64Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as

  12. 17 CFR 204.64 - Hearing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Hearing. 204.64 Section 204.64... Administrative Wage Garnishment § 204.64 Hearing. (a) Request for hearing. The Commission will order a hearing... hearing concerning, for debts not previously established by judicial or administrative order, the...

  13. 42 CFR 35.64 - Donors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Donors. 35.64 Section 35.64 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND EXAMINATIONS HOSPITAL AND STATION MANAGEMENT Contributions for the Benefit of Patients § 35.64 Donors. Authorized contributions may...

  14. 42 CFR 35.64 - Donors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Donors. 35.64 Section 35.64 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND EXAMINATIONS HOSPITAL AND STATION MANAGEMENT Contributions for the Benefit of Patients § 35.64 Donors. Authorized contributions may...

  15. 42 CFR 35.64 - Donors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Donors. 35.64 Section 35.64 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND EXAMINATIONS HOSPITAL AND STATION MANAGEMENT Contributions for the Benefit of Patients § 35.64 Donors. Authorized contributions may...

  16. 42 CFR 35.64 - Donors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Donors. 35.64 Section 35.64 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND EXAMINATIONS HOSPITAL AND STATION MANAGEMENT Contributions for the Benefit of Patients § 35.64 Donors. Authorized contributions may...

  17. 42 CFR 35.64 - Donors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Donors. 35.64 Section 35.64 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND EXAMINATIONS HOSPITAL AND STATION MANAGEMENT Contributions for the Benefit of Patients § 35.64 Donors. Authorized contributions may...

  18. 10 CFR 40.64 - Reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Reports. 40.64 Section 40.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Records, Reports, and Inspections § 40.64 Reports. (a... in the fabrication of mixed-oxide fuels, shall complete a Nuclear Material Transaction Report in...

  19. 10 CFR 40.64 - Reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Reports. 40.64 Section 40.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Records, Reports, and Inspections § 40.64 Reports. (a... in the fabrication of mixed-oxide fuels, shall complete a Nuclear Material Transaction Report in...

  20. 10 CFR 40.64 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reports. 40.64 Section 40.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Records, Reports, and Inspections § 40.64 Reports. (a... in the fabrication of mixed-oxide fuels, shall complete a Nuclear Material Transaction Report in...

  1. 10 CFR 40.64 - Reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Reports. 40.64 Section 40.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Records, Reports, and Inspections § 40.64 Reports. (a... in the fabrication of mixed-oxide fuels, shall complete a Nuclear Material Transaction Report in...

  2. Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources.

    PubMed

    Sahu, Kamala Kanta; Agrawal, Archana; Pandey, Banshi Dhar

    2004-08-01

    Almost all metallurgical processes are associated with the generation of wastes and residues that may be hazardous or non-hazardous in nature depending upon the criteria specified by institutions such as the US Environment Protection Agency, etc. Wastes containing heavy and toxic metals such as arsenic, cadmium, chromium, nickel, lead, copper, mercury, zinc, etc., that are present beyond permissible limits deemed to be treated or disposed of, and non-hazardous wastes can be utilized for metal recovery or safe disposal. Zinc is in growing demand all over the world. In India, a major amount of zinc is imported and therefore processing of zinc secondaries will assist in satisfying the gap between demand and supply to some extent. This report mainly focuses on the current practices and recent trends on the secondary processing of zinc. Attempts made by various laboratories to develop ecofriendly processes for the recovery of zinc from secondary raw materials are also described and discussed.

  3. 21 CFR 522.2112 - Sometribove zinc suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sometribove zinc suspension. 522.2112 Section 522....2112 Sometribove zinc suspension. (a) Specifications. Each single-dose syringe contains 500 milligrams (mg) sometribove zinc in a prolonged-release suspension. (b) Sponsor. See No. 000986 in § 510.600(c...

  4. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  5. Structural and Thermodynamic Consequences of the Replacement of Zinc with Environmental Metals on ERα-DNA Interactions

    PubMed Central

    Deegan, Brian J.; Bona, Anna M.; Bhat, Vikas; Mikles, David C.; McDonald, Caleb B.; Seldeen, Kenneth L.; Farooq, Amjad

    2011-01-01

    Estrogen receptor α (ERα) acts as a transcription factor by virtue of the ability of its DNA-binding (DB) domain, comprised of a tandem pair of zinc fingers, to recognize the estrogen response element (ERE) within the promoters of target genes. Herein, using an array of biophysical methods, we probe structural consequences of the replacement of zinc within the DB domain of ERα with various environmental metals and their effects on the thermodynamics of binding to DNA. Our data reveal that while the DB domain reconstituted with divalent ions of zinc, cadmium, mercury and cobalt binds to DNA with affinities in the nanomolar range, divalent ions of barium, copper, iron, lead, manganese, nickel and tin are unable to regenerate DB domain with DNA-binding potential though they can compete with zinc for coordinating the cysteine ligands within the zinc fingers. We also show that the metal-free DB domain is a homodimer in solution and that the binding of various metals only results in subtle secondary and tertiary structural changes, implying that metal-coordination may only be essential for DNA-binding. Collectively, our findings provide mechanistic insights into how environmental metals may modulate the physiological function of a key nuclear receptor involved in mediating a plethora of cellular functions central to human health and disease. PMID:22038807

  6. 46 CFR 64.21 - Material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...

  7. 46 CFR 64.21 - Material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...

  8. 46 CFR 64.21 - Material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...

  9. 46 CFR 64.21 - Material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...

  10. 46 CFR 64.21 - Material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...

  11. 42 CFR 64.6 - Awards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Awards. 64.6 Section 64.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.6 Awards. (a) Criteria. Within the limits of available funds, the...

  12. 42 CFR 64.6 - Awards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Awards. 64.6 Section 64.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.6 Awards. (a) Criteria. Within the limits of available funds, the...

  13. 42 CFR 64.6 - Awards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Awards. 64.6 Section 64.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.6 Awards. (a) Criteria. Within the limits of available funds, the...

  14. 42 CFR 64.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Definitions. 64.2 Section 64.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.2 Definitions. As used in this part: HHS means the Department of...

  15. 42 CFR 64.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Definitions. 64.2 Section 64.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.2 Definitions. As used in this part: HHS means the Department of...

  16. 42 CFR 64.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Definitions. 64.2 Section 64.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.2 Definitions. As used in this part: HHS means the Department of...

  17. 42 CFR 64.6 - Awards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Awards. 64.6 Section 64.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.6 Awards. (a) Criteria. Within the limits of available funds, the...

  18. 42 CFR 64.6 - Awards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Awards. 64.6 Section 64.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.6 Awards. (a) Criteria. Within the limits of available funds, the...

  19. 42 CFR 64.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Definitions. 64.2 Section 64.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.2 Definitions. As used in this part: HHS means the Department of...

  20. 42 CFR 64.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Definitions. 64.2 Section 64.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL LIBRARY OF MEDICINE TRAINING GRANTS § 64.2 Definitions. As used in this part: HHS means the Department of...