Sample records for zinc cadmium lead

  1. Influence of zinc, lead, and cadmium pollutants on the microflora of hawthorn leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewley, R.J.F.; Campbell, R.

    1980-01-01

    Transect studies were conducted to determine the relative effects of zinc, lead, and cadmium pollution on microorganisms occurring on hawthorn leaves at varying distances from a smelting complex. Sporobolomyces roseus was absent from the most heavily contaminated leaves but, although lead was inhibitory, other environmental factors were also important in determining its overall population level. Conversely, Aureobasidium pullulans and nonpigmented yeasts showed a significant partial positive correlation with lead but were inhibited by zinc and/or cadmium. Numbers of bacterial colonies were only slightly reduced by the combined effect of all three metals, but total numbers of bacteria were highly negativelymore » correlated with lead. Filamentous fungi, isolated by leaf washing, were only slightly inhibited by all three metals, and the degree of mycelial proliferation on senescent leaves was little affected by heavy metal pollution. Computer-generated maps were produced of the distribution of A. pullulans in relation to zinc and lead fallout. 14 references, 7 figures, 2 tables.« less

  2. Temporal and spatial variations of copper, cadmium, lead, and zinc in Ten Mile Creek in South Florida, USA.

    PubMed

    Yang, Yuangen; He, Zhenli; Lin, Youjian; Phlips, Edward J; Stoffella, Peter J; Powell, Charles A

    2009-01-01

    Lead (Pb), zinc (Zn), copper (Cu), and cadmium (Cd) often seriously deteriorate water quality. Spatial and temporal fluctuations of the metal concentrations in the Ten Mile Creek (Florida) (TMC) were monitored on a weekly basis at 7 sampling sites, from June 2005 to September 2007. River sediment samples were also collected from these sites in April, June, and October 2006 and January 2007, and analyzed for water, Mehlich 1 (M1), and Mehlich 3 (M3)-extractable metals (Mehlich, 1953, 1984), to examine the role of sediments as sources or sinks of the metals. The concentrations of lead, zinc, copper, and cadmium in the water samples were lead (zinc (6.45 microg/L), copper (2.53 microg/L), and cadmium (lead, 120 microg/L for zinc, 9.0 microg/L for copper, and 0.25 microg/L for cadmium), pulse concentrations of the metals significantly exceeded these limits. Correlations of lead, zinc, copper, and cadmium concentrations in the TMC to other environmental factors, including the results of principal component analysis, suggest that there are different sources of metals. These sources include surface runoff from agricultural lands or urban wastewater, geological backgrounds, and tidal flow. Water-, M1-, and M3-extractable lead, zinc, copper, and cadmium concentrations in river sediments indicate the possibility that river sediment serves as an internal source of the metals for the TMC. This hypothesis was supported by positive correlations between concentrations of copper, lead, and zinc in the river water and their respective water-extractable concentrations in the sediments.

  3. Determination of Cadmium, Lead and Zinc in Vegetables in Jaipur (India).

    PubMed

    Kumar, Ashok; Verma, P S

    2014-01-01

    An atomic absorption spectroscopic method was used for the determination of Lead, Cadmium and Zinc in vegetables grown in and around Jaipur food stuffs irrigated with industrial waste water. Vegetable samples were collected after maturity, and analyzed, such as spinach (Spinacia oleracea), ladyfinger (Abelmoschus esulentus), pepper mint (Menthe pipereta), brinjal (Solanum melongena), coriander (Coriandrum sativum), cauliflower (Brassica oleracea), onion (Allium cepa), radish (Raphanus sativus), pointedgourd (Trichosanthes dioica), bottlegourd (Lagenaria siceraria), chilies (Capsicum annum), ribbedgourd (Luffa acutangula) and pumpkin (Curcurbites pepo). The concentration of Lead ranged between 1.40-71.06 ppm, Cadmium 0.61-34.48 ppm and Zinc 0.39-187.26 ppm in vegetable samples. The results reveal that urban consumers are at greater risk of purchasing fresh vegetables with high levels of heavy metal, beyond the permissible limits, as defined by the Indian Prevention of Food Adulteration Act, 1954 and WHO.

  4. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.

    PubMed

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P < 0.05). Amount of zinc and lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.

  5. Natural Attenuation of Arsenic, Cadmium, Lead, and Zinc Using Hydrograph Separation

    NASA Astrophysics Data System (ADS)

    Burrows, J. E.; Peters, S. C.

    2009-12-01

    Strategies for remediating contaminated sites range from complete removal of the contaminated soil to in-situ monitored natural attenuation. The decision to let a property naturally attenuate is partially based on the estimated time it will take to return to ambient conditions. The Lehigh Gap Wildlife Refuge at Palmerton, PA was historically contaminated with arsenic, cadmium, lead, and zinc from a zinc smelting operation that ceased emissions twenty-nine years ago. This property provides an opportunity to assess whether the length of time required for the natural attenuation of metals in soil has been achieved using a watershed mass balance approach, focusing particularly on perturbations observed in the concentration-discharge relationships of contaminants compared to the conservative tracers sodium and chloride, and silicon as an indicator of rock-water interactions. Water samples were collected from 3 springs in the Wildlife Refuge for approximately 4 days following the onset of storm events and analyzed for cation and anion concentrations. Preliminary results show that while the concentrations of arsenic and lead were below detection limits, the fluxes of zinc and cadmium increase corresponding with the peak in the hydrograph relative to the fluxes of the tracers, indicating the solutes are being released from adsorption sites located in an unsaturated zone that is temporarily inundated during storm events. In comparison, the flux of the tracers remains constant, indicative of a steady-state leakage of the solutes from their respective reservoirs in the soil. Along with flux, the concentrations of zinc and cadmium also increase following the rise in discharge after storm events, further suggesting that these contaminants are being mobilized out of the soil profile.

  6. Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkin, S.P.; Martin, M.H.

    1985-02-01

    In this paper, an experiment is described on the assimilation of zinc, cadmium, lead, copper and iron by Dysdera crocata collected from a site in central Bristol. The spiders were fed on woodlice from their own site, and on woodlice from a site contaminated by a smelting works which contained much higher levels of zinc, cadmium and lead than the spiders would have been used to in their normal diet.

  7. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: Characterization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puranik, P.R.; Paknikar, K.M.

    1999-03-01

    The biosorption process for removal of lead, cadmium, and zinc by Citrobacter strain MCM B-181, a laboratory isolate, was characterized. Effects of environmental factors and growth conditions on metal uptake capacity were studied. Pretreatment of biomass with chemical agents increased cadmium sorption efficiency; however, there was no significant enhancement in lead and zinc sorption capacity. Metal sorption by Citrobacter strain MCM B-181 was found to be influenced by the pH of the solution, initial metal concentration, biomass concentration, and type of growth medium. The metal sorption process was not affected by the age of the culture or change in temperature.more » Equilibrium metal sorption was found to fit the Langmuir adsorption model. Kinetic studies showed that metal uptake by Citrobacter strain MCm B-181 was a fast process, requiring < 20 min to achieve > 90% adsorption efficiency. The presence of cations reduced lead, zinc, and cadmium sorption to the extent of 11.8%, 84.3%, and 33.4%, respectively. When biomass was exposed to multimetal solutions, metals were adsorbed in the order Co{sup 2+} < Ni{sup 2+} < Cd{sup 2+} < Cu{sup 2+}, Zn{sup 2+} < Pb{sup 2+}. A new mathematical model used for batch kinetic studies was found to be highly useful in prediction of experimentally obtained metal concentration profiles as a function of time.« less

  8. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities

    PubMed Central

    Richter, Patricia; Faroon, Obaid; Pappas, R. Steven

    2017-01-01

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs. PMID:28961214

  9. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities.

    PubMed

    Richter, Patricia; Faroon, Obaid; Pappas, R Steven

    2017-09-29

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs.

  10. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources.

    PubMed

    Davis, A P; Shokouhian, M; Ni, S

    2001-08-01

    Urban stormwater runoff is being recognized as a substantial source of pollutants to receiving waters. A number of investigators have found significant levels of metals in runoff from urban areas, especially in highway runoff. As an initiatory study, this work estimates lead, copper, cadmium, and zinc loadings from various sources in a developed area utilizing information available in the literature, in conjunction with controlled experimental and sampling investigations. Specific sources examined include building siding and roofs; automobile brakes, tires, and oil leakage; and wet and dry atmospheric deposition. Important sources identified are building siding for all four metals, vehicle brake emissions for copper and tire wear for zinc. Atmospheric deposition is an important source for cadmium, copper, and lead. Loadings and source distributions depend on building and automobile density assumptions and the type of materials present in the area examined. Identified important sources are targeted for future comprehensive mechanistic studies. Improved information on the metal release and distributions from the specific sources, along with detailed characterization of watershed areas will allow refinements in the predictions.

  11. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    USGS Publications Warehouse

    Wang, Ning; Ingersoll, Christopher G.; Dorman, Rebecca A.; Brumbaugh, William G.; Mebane, Christopher A.; Kunz, James L.; Hardesty, Douglas K.

    2014-01-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th–82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  12. The relationship between bone health and plasma zinc, copper lead and cadmium concentration in osteoporotic women.

    PubMed

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behzad, Masoomeh; Behfar, Abdolazim; Sadeghi, Fatemeh; Saadatmand, Sahereh

    2014-01-01

    Osteoporosis is a multi factorial disease with dimension of genetic and nutritional considerations. The aim of this study was to present data from the association of plasma zinc, copper and toxic elements of lead and cadmium levels with bone mineral density in Iranian women. 135 women gave their information and enrolled. Fasting plasma was used for measurement of trace elements and heavy metals by Differential Pulse Anodic Stripping Voltammetry. Control group (n = 51) were normal in both lumbar spine (L1-L4) and femoral neck density (T-score ≥ -1), but just femoral neck T-score was considered as criterion in selection of patient group (n = 49, Tscore < -1). No differences were found in the nutritional status, number of diseases, drugs and functional activities between these groups. Plasma Zn, Cu, Pb, Cd levels were analyzed by, a method of voltammetry. Mean ± SD levels of copper and zinc was 1.168 ± 0.115, 1.097 ± 0.091 μg/ml in control group, 1.394 ± 0.133, 1.266 ± 0.11 μg/ml in total patient (TP) and 1.237 ± 0.182, 1.127 ± 0.176 μg/ml in Mild patients(-1 > T-score > -1.7), 1.463 ± 0.174, 1.327 ± 0.147 μg/ml in Severe patient group (T-score < -1.7); respectively. Mean ± SD plasma level of lead and cadmium was 168.42 ± 9.61 ng/l, 2.91 ± 0.18 ng/ml in control group, 176.13 ± 8.64 ng/l, 2.97 ± 0.21 ng/ml in TP, 176.43 ± 13.2 ng/l, 2.99 ± 0.1 ng/ml in mild patients, 221.44 ± 20 ng/l and 3.80 ± 0.70 ng/ml in severe patient group, respectively. In this study plasma zinc, copper, lead & cadmium concentrations were higher in the patients than in the control, though differences were not significant. However, differences were higher between the controls and patients with severe disease (T-score < -1.7). In addition adjusted T-score of femur with age and BMI showed negative significant correlation with plasma levels of zinc and lead in total participants (p < 0.05, r = -0.201, p = 0.044, r = -0.201). It seems that more extensive study with larger

  13. Concentrations and sources of cadmium, copper, lead and zinc in house dust in Christchurch, New Zealand.

    PubMed

    Kim, N; Fergusson, J

    1993-09-30

    The amounts (microgram m-2) and concentrations (microgram g-1) of cadmium, copper, lead and zinc have been measured in house dust in Christchurch, New Zealand. For 120 houses surveyed the geometric mean concentrations of the four metals are 4.24 micrograms g-1, 165 micrograms g-1, 573 micrograms g-1 and 10,400 micrograms g-1, respectively. In addition eleven variables, such as house age, carpet wear and traffic density, were recorded for each property and the results analysed with respect to their effects on the amounts and concentrations of the four elements. The amounts of all the metals were highly correlated with the overall dustiness of the houses, which was found to be predominantly determined by the degree of carpet wear. No one dominant source of cadmium was identified, although several minor sources including carpet wear, galvanized iron roofs and red/orange/yellow coloured carpets were implicated. Petrol lead and lead-based paints were identified as significant sources of lead in house dust. Rubber carpet underlays or backings were identified as a significant source of zinc, with some contribution from galvanized iron roofs. Road traffic and probably the existence of a fire place appear to contribute to the copper levels.

  14. Cadmium in forest ecosystems around lead smelters in Missouri.

    PubMed Central

    Gale, N L; Wixson, B G

    1979-01-01

    The development of Missouri's new lead belt within the past decase has provided an excellent opportunity to study the dissemination and effects of heavy metals in a deciduous forest ecosystem. Primary lead smelters within the new lead belt have been identified as potential sources of cadmium as well as lead, zinc, and copper. Sintering and blast furnace operations tend to produce significant quantities of small particulates highly enriched in cadmium and other heavy metals. At one smelter, samples of stack particulate emissions indicate that as ms accompanied by 0.44 lb zinc, 4.66 lb lead, and 0.01 lb copper/hr. These point-source emissions, as well as a number of other sources of fugitive (wind blown) and waterborne emissions contribute to a significant deposition of cadmium in the surrounding forest and stream beds. Mobilization of vagrant heavy metals may be significantly increased by contact of baghouse dusts or scrubber slurries with acidic effluents emanating from acid plants designed to produce H2SO4 as a smelter by-product. Two separate drainage forks within the Crooked Creek watershed permit some comparisons of the relative contributions of cadmium by air-borne versus water-borne contaminants. Cadmium and other heavy metals have been found to accumulate in the forest litter and partially decomposed litter along stream beds. Greater solubility, lower levels of complexation with organic ligands in the litter, and greater overall mobility of cadmium compared with lead, zinc, and copper result in appreciable contributions of dissolved cadmium to the watershed runoff. The present paper attempts to define the principle sources and current levels of heavy metal contamination and summarizes the efforts undertaken by the industry to curtail the problem. PMID:488037

  15. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    USGS Publications Warehouse

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  16. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia.

    PubMed

    Barwick, M; Maher, W

    2003-10-01

    In this study the biotransference of selenium copper, cadmium, zinc, arsenic and lead was measured in a contaminated seagrass ecosystem in Lake Macquarie, NSW, Australia, to determine if biomagnification of these trace metals is occurring and if they reach concentrations that pose a threat to the resident organisms or human consumers. Selenium was found to biomagnify, exceeding maximum permitted concentrations for human consumption within carnivorous fish tissue, the highest trophic level examined. Selenium concentrations measured within carnivorous fish were also above those shown to elicit sub-lethal effects in freshwater fish. As comparisons are made to selenium concentrations known to effect freshwater fish, inferences must be made with caution. There was no evidence of copper, cadmium, zinc or lead biomagnification within the food web examined. Copper, cadmium, zinc and lead concentrations were below concentrations shown to elicit adverse responses in biota. Copper concentrations within crustaceans M. bennettae and P. palagicus were found to exceed maximum permitted concentrations for human consumption. It is likely that copper concentrations within these species were accumulated due to the essential nature of this trace metal for many species of molluscs and crustaceans. Arsenic showed some evidence of biomagnification. Total arsenic concentrations are similar to those found in other uncontaminated marine ecosystems, thus arsenic concentrations are unlikely to cause adverse effects to aquatic organisms. Inorganic arsenic concentrations are below maximum permitted concentrations for human consumption.

  17. Zinc-induced protection against cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Early, J.L.; Schnell, R.C.

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  18. [Simultaneous determination of trace amounts of zinc, cadmium, lead and copper by the method of anodic voltammetry using factor experimental design].

    PubMed

    Koen, E

    1975-01-01

    Using the method of factor planning of the experiment, the author studies and demonstrates the influence exerted by the potential and time of electrolysis, and by the concentration of the background and elements on the heights of anodal peaks upon simultaneous determination of zinc, cadmium, lead and copper microconcentrations. On the ground of statistical elaboration of the results, the optimal condition for polarographic determination through anodal voltamperometry are outlined. According to the cyclic voltametry method, the electrod processes reversibility for zinc, cadmium and lead, as well as the incomplete reversibility for copper are established; the number of electrons participating in the electrochemical reaction are found using the method of gas coulometry. The possibility of simultaneous determination of the four elements' ultramicroconcentrations after the method of voltamperometry with enrichment is proved. The standard deviation is in the range 3.02 to 4.9.

  19. Determination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry

    PubMed Central

    Hurdebise, Quentin; Tarayre, Cédric; Fischer, Christophe; Colinet, Gilles; Hiligsmann, Serge; Delvigne, Frank

    2015-01-01

    Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP) accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed. PMID:25894939

  20. Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence.

    PubMed

    Paraszkiewicz, Katarzyna; Frycie, Aleksandra; Słaba, Mirosława; Długoński, Jerzy

    2007-10-01

    The influence of cadmium, zinc and lead on fungal emulsifier synthesis and on the growth of filamentous fungus Curvularia lunata has been studied. Tolerance to heavy metals established for C. lunata was additionally compared with the sensitivity exhibited by strains of Curvularia tuberculata and Paecilomyces marquandii-fungi which do not secrete compounds of emulsifying activity. Although C. lunata, as the only one out of all studied fungi, exhibited the lowest tolerance to heavy metals when grown on a solid medium (in conditions preventing emulsifier synthesis), it manifested the highest tolerance in liquid culture - in conditions allowing exopolymer production. Cadmium, zinc and lead presented in liquid medium up to a concentration of 15 mM had no negative effect on C. lunata growth and stimulated emulsifier synthesis. In the presence of 15 mM of heavy metals, both the emulsifier and 24-h-old growing mycelium exhibited maximum sorption capacities, which were determined as 18.2 +/- 2.67, 156.1 +/- 10.32 mg g(-1) for Cd2+, 22.2 +/- 3.40, 95.2 +/- 14.21 mg g(-1) for Zn2+ and 51.1 +/- 1.85, 230.0 +/- 28.47 mg g(-1) for Pb2+ respectively. The results obtained by us in this work indicate that the emulsifier acts as a protective compound increasing the ability of C. lunata to survive in heavy metal polluted environment. Enhancement of exopolymer synthesis in the presence of Cd2+, Zn2+ and Pb2+ may also suggest, at least to some extent, a metal-specific nature of emulsifier production in C. lunata. Due to accumulation capability and tolerance to heavy metals, C. lunata mycelium surrounded by the emulsifier could be applied for toxic metal removal.

  1. Effects of Nano-zinc on Biochemical Parameters in Cadmium-Exposed Rats.

    PubMed

    Hejazy, Marzie; Koohi, Mohammad Kazem

    2017-12-01

    Cadmium (Cd) is a toxic environmental and occupational pollutant with reported toxic effects on the kidneys, liver, lungs, bones, and the immunity system. Based on its physicochemical similarity to cadmium, zinc (Zn) shows protective effects against cadmium toxicity and cadmium accumulation in the body. Nano-zinc and nano-zinc oxide (ZnO), recently used in foods and pharmaceutical products, can release a great amount of Zn 2+ in their environment. This research was carried out to investigate the more potent properties of the metal zinc among sub-acute cadmium intoxicated rats. Seventy-five male Wistar rats were caged in 15 groups. Cadmium chloride (CdCl 2 ) was used in drinking water to induce cadmium toxicity. Different sizes (15, 20, and 30 nm) and doses of nano-zinc particles (3, 10, 100 mg/kg body weight [bw]) were administered solely and simultaneously with CdCl 2 (2-5 mg/kg bw) for 28 days. The experimental animals were decapitated, and the biochemical biomarkers (enzymatic and non-enzymatic) were determined in their serum after oral exposure to nano-zinc and cadmium. Statistical analysis was carried out with a one-way ANOVA and t test. P < 0.05 was considered as statistically significant. The haematocrit (HCT) significantly increased and blood coagulation time significantly reduced in the nano-zinc-treated rats. AST, ALT, triglyceride, total cholesterol, LDL, and free fatty acids increased significantly in the cadmium- and nano-zinc-treated rats compared with the controls. However, albumin, total protein, and HDLc significantly decreased in the cadmium- and nano-zinc-treated rats compared with the controls (P < 0.05). It seems that in the oral administration of nano-zinc, the smaller sizes with low doses and the larger sizes with high doses are more toxic than metallic zinc. In a few cases, an inverse dose-dependent relationship was seen as well. This research showed that in spite of larger sizes of zinc, smaller sizes of nano-zinc particles are not

  2. Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium

    NASA Astrophysics Data System (ADS)

    Petrovský, E.; Kapička, A.; Jordanova, N.; Borůvka, L.

    2001-09-01

    Several proxy methods have been used recently to outline increased levels of pollution. One of them is based on measurements of the concentration of (ferri)magnetic minerals of anthropogenic origin. This method has been used recently in the mapping of both polluted and unpolluted areas. In order to validate this method, a more detailed study of links between magnetic parameters characterising the physical shape of magnetic minerals and concentrations of heavy metals is needed. In this study, we analysed the magnetic characteristics of alluvial soils, formed as a result of several breakdowns of wet deposit sink of ashes from a lead ore smelter. The soils were previously analysed for concentration of lead, zinc and cadmium. Our results show that in this case of a shared source of heavy metals and magnetic minerals, simple measurements of magnetic susceptibility discriminate well between polluted and clean areas. In addition, the concentration pattern agrees with the concentrations of the heavy metals studied in deeper soil layers that were not affected by post-depositional changes due to climate and remediation efforts.

  3. Annual trace-metal load estimates and flow-weighted concentrations of cadmium, lead, and zinc in the Spokane River basin, Idaho and Washington, 1999-2004

    USGS Publications Warehouse

    Donato, Mary M.

    2006-01-01

    Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow

  4. Arsenic, cadmium, lead, and zinc in the Danville and Springfield coal members (Pennsylvanian) from Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.

    2007-01-01

    Arsenic, cadmium, lead, and zinc contents and distributions are discussed in two major Pennsylvanian coal beds in Indiana: the Danville Coal Member and the Springfield Coal Member. Arsenic contents of the Danville and Springfield coals show similar ranges from 0.5 to 43??ppm for the Danville Coal and 1 to 50??ppm for the Springfield Coal, with an average of 12.7??ppm for the Danville and 9.4??ppm for the Springfield Coal. Cadmium concentrations do not exceed 9??ppm, with an average of 0.4 for Danville and 0.7??ppm for the Springfield. Average Pb contents are 21.3 and 6.3??ppm, whereas Zn contents are 101 and 54??ppm for the Danville and the Springfield, respectively. The distribution of these elements varies both laterally and vertically within the coals, as functions of their mineral associations and the time of their emplacement. ?? 2006 Elsevier B.V. All rights reserved.

  5. [Comparative characteristics of lead and cadmium intoxication in the Khanty-Mansi autonomous district].

    PubMed

    Korchina, T Ia; Korchin, V I

    2011-01-01

    The Khanty-Mansi Autonomous District (KMAD) occupies a prominent place in the economy of Russia in oil and gas production and energy generation. The development of hydrocarbon raw material extraction in the district does great damage to the environment and nature. This results in the accumulation of toxic chemical elements in man. The levels of lead, cadmium, calcium, and zinc were measured in the hair of indigenous and non-indigenous populations of the district. High lead and cadmium and low calcium and zinc concentration were found in indigenous adults and children in the KMAD.

  6. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yu-Sheng, E-mail: Lin.Yu-Sheng@epa.gov; Ho, Wen-Chao; Caffrey, James L.

    Background: Despite animal evidence suggests that zinc modulates cadmium nephrotoxicity, limited human data are available. Objective: To test the hypothesis that low serum zinc concentrations may increase the risk of cadmium-mediated renal dysfunction in humans. Methods: Data from 1545 subjects aged 20 or older in the National Health and Nutrition Examination Survey (NHANES), 2011–2012 were analyzed. Renal function was defined as impaired when estimated glomerular filtration rate (eGFR) fell below 60 ml/min/1.73 m{sup 2} and/or the urinary albumin-to-creatinine ratio surpassed 2.5 in men and 3.5 mg/mmol in women. Results: Within the study cohort, 117 subjects had reduced eGFR and 214more » had elevated urinary albumin. After adjusting for potential confounders, subjects with elevated blood cadmium (>0.53 μg/L) were more likely to have a reduced eGFR (odds ratio [OR]=2.21, 95% confidence interval [CI]: 1.09–4.50) and a higher urinary albumin (OR=2.04, 95% CI: 1.13–3.69) than their low cadmium (<0.18 μg/L) peers. In addition, for any given cadmium exposure, low serum zinc is associated with elevated risk of reduced eGFR (OR=3.38, 95% CI: 1.39–8.28). A similar increase in the odds ratio was observed between declining serum zinc and albuminuria but failed to reach statistical significance. Those with lower serum zinc/blood cadmium ratios were likewise at a greater risk of renal dysfunction (p<0.01). Conclusions: This study results suggest that low serum zinc concentrations are associated with an increased risk of cadmium nephrotoxicity. Elevated cadmium exposure is global public health issue and the assessment of zinc nutritional status may be an important covariate in determining its effective renal toxicity. - Highlights: • Blood cadmium was associated with increased risk of nephrotoxicity. • Low serum zinc may exacerbate risk of cadmium-mediated renal dysfunction. • Both zinc deficiency and elevated cadmium exposure are global public health issues

  7. Levels of cadmium, lead and zinc protoporphyrin absorption in different risk groups.

    PubMed

    Aurelio, L M; Pilar, D L; Fulgencio, G G; Adoración, P B; Enrique, G C; Alicia, H M; Aurelio, L M

    1993-12-01

    We studied groups of workers, of pregnant women and of neonates exposed and unexposed to cadmium and lead at their place of work or in the environment. A total of 118 exposed and 28 unexposed workers were studied, together with 90 exposed and 100 unexposed pregnant women and neonates. Concentrations of cadmium and lead in the blood were determined by atomic absorption spectrophotometry. There were significant differences in cadmium concentrations between workers and neonates, and significant differences in lead concentrations between workers and pregnant women. We believe these differences are due mainly to high levels of pollution in the area studied.

  8. Correlations between lead, cadmium, copper, zinc, and iron concentrations in frozen tuna fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo, L.; Hardisson, A.; Montelongo, F.G.

    1986-04-01

    The presence of metallic pollutants in marine ecosystems has promoted wide research plans in order to evaluate pollution levels in marine organisms. However, little is known concerning environmental and physiological processes that regulate the concentration of trace metals in marine organisms. Even though the toxicity of lead and cadmium is well established, copper, zinc and iron are considered as essential elements for mammals. Little is known about heavy metals, other than mercury, concentrations in fresh and frozen tuna fish. Fifty samples obtained at the entrance of a canning factory in Santa Cruz de Tenerife (Canary Islands), were analyzed by atomicmore » absorption spectrophotometry. Results were treated by applying the Statistical Package for the Social Sciences compiled and linked in the software of a Digital VAX/VMS 11/780 computer.« less

  9. EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc.

    PubMed

    Waters, R S; Bryden, N A; Patterson, K Y; Veillon, C; Anderson, R A

    2001-12-01

    The efficacy of a chelating agent in binding a given metal in a biological system depends on the binding constants of the chelator for the particular metals in the system, the concentration of the metals, and the presence and concentrations of other ligands competing for the metals in question. In this study, we make a comparison of the in vitro binding constants for the chelator, ethylenediaminetetraacetic acid, with the quantitative urinary excretion of the metals measured before and after EDTA infusion in 16 patients. There were significant increases in lead, zinc, cadmium, and calcium, and these increases roughly corresponded to the expected relative increases predicted by the EDTA-metal-binding constants as measured in vitro. There were no significant increases in urinary cobalt, chromium, or copper as a result of EDTA infusion. The actual increase in cobalt could be entirely attributed to the cobalt content of the cyanocobalamin that was added to the infusion. Although copper did increase in the post-EDTA specimens, the increase was not statistically significant. In the case of magnesium, there was a net retention of approximately 85% following chelation. These data demonstrate that EDTA chelation therapy results in significantly increased urinary losses of lead, zinc, cadmium, and calcium following EDTA chelation therapy. There were no significant changes in cobalt, chromium, or copper and a retention of magnesium. These effects are likely to have significant effects on nutrient concentrations and interactions and partially explain the clinical improvements seen in patients undergoing EDTA chelation therapy.

  10. Life-cycle changes and zinc shortage in cadmium-tolerant midges, Chironomus riparius (Diptera), reared in the absence of cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postma, J.F.; Mol, S.; Larsen, H.

    1995-01-01

    Adaptation to selected metals is known to modify life-cycle characteristics of some invertebrates and can modify the response to other metals. The reverse process, i.e., adaptation to nonpolluted conditions in a metal-tolerant strain, was studied here for a cadmium-tolerant population of the midge Chironomus riparius to detect whether this backward adaptation followed the same lines. It appeared that cadmium-tolerant populations, reared in the absence of cadmium, continued to suffer from high mortality rates and lowered larval growth rates and reproductive success. Also, some cadmium-tolerant populations accumulated more zinc than did nontolerant populations. Successive experiments in which both cadmium-tolerant and nontolerantmore » populations were exposed to zinc indicated that the reduced growth rate and reproduction were a direct consequence of zinc shortage in tolerant midges reared in the absence of cadmium. Mortality among cadmium-tolerant midges was, however, not lowered by zinc exposure and, judged by their high mortality rates, these midges were even more sensitive to zinc than were nontolerant chironomids. It was concluded that cadmium-tolerant chironomid populations recovering from prolonged exposure are affected by an increased need for zinc as well as by an increased mortality rate as a direct consequence of their earlier adaptation process.« less

  11. A screening-level assessment of lead, cadmium, and zinc in fish and crayfish from northeastern Oklahoma, USA

    USGS Publications Warehouse

    Schmitt, C.J.; Brumbaugh, W.G.; Linder, G.L.; Hinck, J.E.

    2006-01-01

    The objective of this study was to evaluate potential human and ecological risks associated with metals in fish and crayfish from mining in the Tri-States Mining District (TSMD). Crayfish (Orconectes spp.) and fish of six frequently consumed species (common carp, Cyprinus carpio; channel catfish, Ictalurus punctatus; flathead catfish, Pylodictis olivaris; largemouth bass, Micropterus salmoides; spotted bass, M. punctulatus; and white crappie, Pomoxis annularis) were collected in 2001-2002 from the Oklahoma waters of the Spring River (SR) and Neosho River (NR), which drain the TSMD. Samples from a mining-contaminated site in eastern Missouri and from reference sites were also analyzed. Individual fish were prepared for human consumption in the manner used locally by Native Americans (headed, eviscerated, and scaled) and analyzed for lead, cadmium, and zinc. Whole crayfish were analyzed as composite samples of 5-60 animals. Metals concentrations were typically higher in samples from sites most heavily affected by mining and lowest in reference samples. Within the TSMD, most metals concentrations were higher at sites on the SR than on the NR and were typically highest in common carp and crayfish than in other taxa. Higher concentrations and greater risk were associated with fish and crayfish from heavily contaminated SR tributaries than the SR or NR mainstems. Based on the results of this and previous studies, the human consumption of carp and crayfish could be restricted based on current criteria for lead, cadmium, and zinc, and the consumption of channel catfish could be restricted due to lead. Metals concentrations were uniformly low in Micropterus spp. and crappie and would not warrant restriction, however. Some risk to carnivorous avian wildlife from lead and zinc in TSMD fish and invertebrates was also indicated, as was risk to the fish themselves. Overall, the wildlife assessment is consistent with previously reported biological effects attributed to metals

  12. Accumulation of metals in fish from lead-zinc mining areas of southeastern Missouri, USA

    USGS Publications Warehouse

    Schmitt, Christopher J.; Brumbaugh, William G.; May, Thomas W.

    2007-01-01

    The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 yr under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) were collected from 16 sites representing a range of conditions relative to lead-zinc mining and ore beneficiation in southeastern Missouri. Samples were analyzed for lead, zinc, and cadmium, and for a suite of biomarkers (reported in a companion paper). A subset of the hog sucker (n=9) representing three sites were also analyzed for nickel and cobalt. Blood and liver lead concentrations were highly correlated (r=0.84-0.85, P < 0.01) in all three species and were significantly (ANOVA, P < 0.01) greater at sites < 10 km downstream of active lead-zinc mines and mills and in a historical lead-zinc mining area than at reference sites, including a site in the area proposed for new mining. Correlations between blood and liver cadmium concentrations were less evident than for lead but were nevertheless statistically significant (r=0.26-0.69, P < 0.01-0.07). Although blood and liver cadmium concentrations were highest in all three species at sites near mines, within-site variability was greater and mining-related trends were less evident than for lead. Blood and liver zinc concentrations were significantly correlated only in stoneroller (r=0.46, P < 0.01) and mining-related trends were not evident. Concentrations of cobalt and nickel in blood and liver were significantly higher (ANOVA, P < 0.01) at a site near an active mine than at a reference site and a site in the historical lead-zinc mining area. These findings confirm previous studies indicating that lead and other metals are released to streams from active lead-zinc

  13. Accumulation of metals in fish from lead-zinc mining areas of southeastern Missouri, USA.

    PubMed

    Schmitt, Christopher J; Brumbaugh, William G; May, Thomas W

    2007-05-01

    The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 yr under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) were collected from 16 sites representing a range of conditions relative to lead-zinc mining and ore beneficiation in southeastern Missouri. Samples were analyzed for lead, zinc, and cadmium, and for a suite of biomarkers (reported in a companion paper). A subset of the hog sucker (n=9) representing three sites were also analyzed for nickel and cobalt. Blood and liver lead concentrations were highly correlated (r=0.84-0.85, P<0.01) in all three species and were significantly (ANOVA, P<0.01) greater at sites <10 km downstream of active lead-zinc mines and mills and in a historical lead-zinc mining area than at reference sites, including a site in the area proposed for new mining. Correlations between blood and liver cadmium concentrations were less evident than for lead but were nevertheless statistically significant (r=0.26-0.69, P <0.01-0.07). Although blood and liver cadmium concentrations were highest in all three species at sites near mines, within-site variability was greater and mining-related trends were less evident than for lead. Blood and liver zinc concentrations were significantly correlated only in stoneroller (r=0.46, P<0.01) and mining-related trends were not evident. Concentrations of cobalt and nickel in blood and liver were significantly higher (ANOVA, P<0.01) at a site near an active mine than at a reference site and a site in the historical lead-zinc mining area. These findings confirm previous studies indicating that lead and other metals are released to streams from active lead-zinc mines and

  14. Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.

    PubMed

    Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide

    2016-03-01

    The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes.

  15. Milk trace elements in lactating cows environmentally exposed to higher level of lead and cadmium around different industrial units.

    PubMed

    Patra, R C; Swarup, D; Kumar, P; Nandi, D; Naresh, R; Ali, S L

    2008-10-01

    The present investigation was carried out to assess the trace mineral profile of milk from lactating cows reared around different industrial units and to examine the effect of blood and milk concentration of lead and cadmium on copper, cobalt, zinc and iron levels in milk. Respective blood and milk samples were collected from a total of 201 apparently healthy lactating cows above 3 years of age including 52 cows reared in areas supposed to be free from pollution. The highest milk lead (0.85+/-0.11 microg/ml) and cadmium (0.23+/-0.02 microg/ml) levels were recorded in lactating cows reared around lead-zinc smelter and steel manufacturing plant, respectively. Significantly (P<0.05) higher concentration of milk copper, cobalt, zinc and iron compared to control animals was recorded in cows around closed lead cum operational zinc smelter. Analysis of correlation between lead and other trace elements in milk from lactating cows with the blood lead level>0.20 microg/ml (n=79) revealed a significant negative correlations between milk iron and milk lead (r=-0.273, P=0.015). However, such trend was not recorded with blood lead level<0.20 microg/ml (n=122). The milk cobalt concentration was significantly correlated (r=0.365, P<0.001) with cadmium level in milk and the highest milk cadmium (>0.10 to 0.39 microg/ml) group had significantly (P<0.05) increased milk cobalt. It is concluded that increased blood and milk lead or cadmium level as a result of natural exposure of lactating cows to these environmental toxicants significantly influences trace minerals composition of milk and such alterations affect the milk quality and nutritional values.

  16. SUBSTITUTION OF CADMIUM CYANIDE ELECTROPLATING WITH ZINC CHLORIDE ELECTROPLATING

    EPA Science Inventory

    The study evaluated the zinc chloride electroplating process as a substitute for cadmium cyanide electroplating in the manufacture of industrial connectors and fittings at Aeroquip Corporation. The process substitution eliminates certain wastes, specifically cadmium and cyanide, ...

  17. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues.

    PubMed

    Li, Meng; Zheng, Shili; Liu, Biao; Du, Hao; Dreisinger, David Bruce; Tafaghodi, Leili; Zhang, Yi

    2017-07-01

    A large amount of Cu-Cd zinc plant residues (CZPR) are produced from the hydrometallurgical zinc plant operations. Since these residues contain substantial amount of heavy metals including Cd, Zn and Cu, therefore, they are considered as hazardous wastes. In order to realize decontamination treatment and efficient extraction of the valuable metals from the CZPR, a comprehensive recovery process using sulfuric acid as the leaching reagent and air as the oxidizing reagent has been proposed. The effect of temperature, sulfuric acid concentration, particle size, solid/liquid ratio and stirring speed on the cadmium extraction efficiency was investigated. The leaching kinetics of cadmium was also studied. It was concluded that the cadmium leaching process was controlled by the solid film diffusion process. Moreover, the order of the reaction rate constant versus H 2 SO 4 concentration, particle size, solid/liquid ratio and stirring speed was calculated. The XRD and SEM-EDS analysis results showed that the main phases of the secondary sulfuric acid leaching residues were lead sulfate and calcium sulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lead and cadmium content in human milk from the Northern Adriatic area of Croatia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frkovic, A.; Kras, M.; Alebic-Juretic, A.

    Though occupational exposure to toxic metals (lead, cadmium) is well documented, harmful effects of environmental exposure to lower levels of these two metals is still under investigation. Most toxic metals are emitted by human activities and the atmosphere is the main transport route for these elements. According to some authors, 332 358 t of lead and 7570 t of cadmium were emitted in the atmosphere from anthropogenic sources in 1983. The principle source of lead is traffic, e.g. leaded petrol, still widely used in Croatia, as well as coal combustion, iron and steal production. Volcanic activity, zinc production and wastemore » incineration are the main sources of cadmium. Recent study indicates that traffic could also be the main source of cadmium found along busy streets. Chronic lead exposure at low levels is associated with adverse health effects especially in fetus and young children. This study examines lead and cadmium levels in breast milk from nursing women living in the Northern Adriatic area of Croatia. 15 refs., 2 tabs.« less

  19. Prevention by zinc of cadmium-induced alterations in pancreatic and hepatic functions.

    PubMed Central

    Merali, Z; Singhal, R L

    1976-01-01

    Subacute cadmium treatment (CdCl2, 1 mg/kg twice daily for 7 days) in rats disturbs glucose homeostasis as shown by hyperglycemia and decreased glucose tolerance associated with suppression of insulin release, enhancement of hepatic gluconeogenic enzymes and decrease in hepatic glycogen content. 2 Exposure to cadmium increases hepatic cyclic adenosine 3',5'-monophosphate (cyclic AMP) and this is accompanied by stimulation of basal, adrenaline- as well as glucagon-stimulated form(s) of adenylate cyclase. 3 In contrast to cadmium, subacute administration of zinc (ZnCl2, 2 mg/kg twice daily for 7 days) fails to alter the activities of hepatic gluconeogenic enzymes, cyclic AMP synthesis, as well as glucose clearance and insulin release in response to a glucose load. 4 Zinc, when administered at the same time as cadmium, prevents the cadmium-induced lesions in both hepatic and pancreatic functions. 5 The results are discussed in relation to the possible mechanisms of cadmium toxicity and to the role of sulphydryl groups in the protection exercised by zinc. PMID:183849

  20. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    PubMed

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  1. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide

    PubMed Central

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Adam, Vojtech

    2017-01-01

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II), 3 and 10 µg·L−1 for Cd(II), 3 and 10 µg·L−1 for Pb(II), 3 and 10 µg·L−1 for Cu(II), and 3 and 10 µg·L−1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II), 25 µg·L−1 for Cd(II), 3 µg·L−1 for Pb(II) and 3 µg·L−1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters. PMID:28792450

  2. The Role of Blood Lead, Cadmium, Zinc and Copper in Development and Severity of Acne Vulgaris in a Nigerian Population.

    PubMed

    Ikaraoha, C I; Mbadiwe, N C; Anyanwu, C J; Odekhian, J; Nwadike, C N; Amah, H C

    2017-04-01

    Acne vulgaris is a very common skin disorder affecting human beings. There is a paucity of report on the role of heavy metals-lead (Pb) and cadmium (Cd)-globally, and trace metals-zinc (Zn) and copper (Cd)-particularly in Nigeria in the development/severity of acne vulgaris. This study is aimed to determine the blood levels of some heavy metals-cadmium and lead-and trace metals-zinc and copper-in acne vulgaris sufferers in a Nigerian population. Venous blood samples were collected from a total number of 90 non-obese female subjects consisting of 30 mild, 30 moderate and 30 severe acne vulgaris sufferers for blood Cd, Pb, Cu and Zn determination. They were age-matched with 60 females without acne vulgaris who served as the control subjects. Acne sufferers had significantly higher blood Cd and Pb (P = 0.0143 and P = 0.0001 respectively) and non-significantly different blood levels of Cu and Zn (P = 0.910 and P = 0.2140 respectively) compared to controls. There were significant progressive increases in blood levels of Cd and Pb (P = 0.0330 and P = 0.0001 respectively) and non-significant differences in the mean blood level of Cu and Zn (P = 0.1821 and P = 0.2728 respectively) from mild to moderate and severe acne vulgaris sufferers. Increases in blood Cd and Pb may play critical roles in the pathogenesis/severity of acne vulgaris, while Cu and Zn seem to play less significant roles in the development of this disorder in this environment.

  3. [Effect of cigarette smoking on coexistence of cadmium and zinc in retained wisdom teeth].

    PubMed

    Malara, Piotr; Kwapuliński, Jerzy; Drugacz, Jan; Malara, Beata

    2005-01-01

    The change in coexistence pattern of elements (antagonism-synergism) in conditions of excessive level of toxic element is observed in many biological samples. The aim of this study was to establish the cadmium and zinc content in hard tissues of retained wisdom teeth of smokers and non-smokers and to find out if active exposure to cigarette smoke has an influence on coexistence of both metals in these tissues. Material consisted of 127 retained wisdom teeth (65 from smokers and 62 from non-smokers). Cadmium and zinc contents were determined by means of atomic absorption spectrometry. We found out that retained wisdom tooth from smokers exhibited higher cadmium and zinc contents compared to non-smokers' teeth. Moreover, coexistence pattern of cadmium and zinc in teeth depends on exposure to heavy metals and exhibits strong synergism in smokers.

  4. Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings.

    PubMed

    Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming

    2018-05-19

    To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.

  5. Reduction by monovalent zinc, cadmium, and nickel cations

    NASA Technical Reports Server (NTRS)

    Meyerstein, D.; Mulac, W. A.

    1969-01-01

    Understanding of chemical properties of monovalent transition metal cations in aqueous solutions was obtained by a study of kinetics of reduction of different inorganic substrates by zinc, cadmium, and nickel.

  6. The Cadmium Zinc Telluride Imager on AstroSat

    NASA Astrophysics Data System (ADS)

    Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Pawar, P.; Rao, A. R.; Hingar, M. K.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Patil, M. H.; Arora, Y. K.; Sinha, S.; Priya, P.; Samuel, Essy; Sreekumar, S.; Vinod, P.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Seetha, S.; Subbarao, K.

    2017-06-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17^' over a 4.6° × 4.6° (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ˜ 100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  7. Impact of Cadmium on Intracellular Zinc Levels in HepG2 Cells: Quantitative Evaluations and Molecular Effects.

    PubMed

    Urani, Chiara; Melchioretto, Pasquale; Bruschi, Maurizio; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura

    2015-01-01

    Cadmium is classified as a human carcinogen, and its disturbance in zinc homeostasis has been well established. However, its extent as well as molecular mechanisms involved in cadmium carcinogenesis has yet to be fully clarified. To this end, we used the zinc specific probe Zinquin to visualize and to quantitatively evaluate changes in the concentration of labile zinc, in an in vitro model of human hepatic cells (HepG2) exposed to cadmium. A very large increase (+93%) of intracellular labile zinc, displaced by cadmium from the zinc proteome, was measured when HepG2 were exposed to 10 µM cadmium for 24 hrs. Microarray expression profiling showed that in cells, featuring an increase of labile zinc after cadmium exposure, one of the top regulated genes is Snail1 (+3.6), which is included in the adherens junction pathway and linked to cancer. In the same pathway MET, TGF-βR, and two members of the Rho-family GTPase, Rac, and cdc42 all implicated in the loss of adherence features and acquisition of migratory and cancer properties were regulated, as well. The microRNAs analysis showed a downregulation of miR-34a and miR-200a, both implicated in the epithelial-mesenchymal transition. These microRNAs results support the role played by zinc in affecting gene expression at the posttranscriptional level.

  8. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    PubMed

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  9. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    PubMed Central

    2012-01-01

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area. PMID:23369182

  10. Levels of dissolved zinc and cadmium in some surface waters of western Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatoki, O.S.

    1993-12-31

    Dissolved zinc and cadmium in some surface waters of Western Nigeria were separated and quantified using anion exchange of their chloro-complexes and detected by atomic absorption spectrophotometry. Concentrations of zinc and cadmium found in tested water samples ranged from 0.99 to 2.97 mg L{sup {minus}1} and 0.13 to 0.17 mg L{sup {minus}1}, respectively. 35 refs., 2 tabs.

  11. Environmental zinc and cadmium pollution associated with generalized osteochondrosis, osteoporosis, and nephrocalcinosis in horses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunson, D.E.; Kowalczyk, D.F.; Shoop, C.R.

    1982-02-01

    Several suspect causes of chronic zinc/cadmium toxicosis in horses near a zinc smelter were investigated following observations of lameness, swollen joints, and unthriftiness, particularly in foals. Two foals born and raised near the smelter were lame and had joint swellings that were attributable to severe generalized osteochondrosis. Zinc and cadmium concentrations were markedly increased in the pancreas, liver, and kidney. The serum of 1 foal, zinc and potassium concentrations were high, whereas calcium and magnesium concentrations were low. Marked nephrocalcinosis and osteoporosis were observed in this foal. Nephrocalcinosis also was observed in his dam, who died of a punctured lungmore » following rib fractures, though there was no history of trauma. The joint cartilage lesions were similar to those induced experimentally in animals fed high-zinc diets and may have been the result of zin-induced abnormality of copper metabolism. The osteoporosis and nephrocalcinosis were consistent with chronic cadmium toxicosis.« less

  12. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  13. Acute toxicity and synergism of cadmium and zinc in white shrimp, Penaeus setiferus, Juveniles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanegas, C.; Espina, S.; Botello, A.V.

    1997-01-01

    Toxic effects of individual heavy metals on decapod crustaceans have been reported frequently, but little information exists concerning interactions. Among the non-essential heavy metals, cadmium is one of the most hazardous elements in the aquatic environment; on the other hand, zinc is an essential element, but toxic when present in greater than trace amounts. Biological effects of cadmium in aquatic organisms are complex due to the interactions with both environmental variables and other toxic agents. In decapod crustaceans, the toxicity of cadmium and zinc is modified by salinity, temperature, hypoxia, calcium ion concentrations and life-cycle stage. Heavy metal pollution hasmore » increased in the coastal waters of the Gulf of Mexico, particularly in shrimp habitat. This study examined the toxicity of cadmium and zinc to white shrimp juveniles and looked at the interaction of the metals. 16 refs., 2 tabs.« less

  14. Effects of cadmium and zinc on ozone-induced phytotoxicity in cress and lettuce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czuba, M.; Ormrod, D.P.

    1973-01-01

    Cadmium or zinc solutions were applied to the foliage or roots of lettuce (Lactuca sativa L. cv. Grand Rapids) and cress (Lepidium sativum L. cv. Fine Curled) at concentrations of 100 parts per million (ppm) every four days for several weeks. Four weeks after sowing, plants were fumigated with 35 parts per hundred million (pphm) ozone, for 6 hours. Cress plants which had received root application of cadmium showed markedly increased ozone-induced phytotoxicity in terms of visible leaf damage and pigment degradation; in lettuce only pigment degradation was evident. There was less effect of zinc or foliar-applied cadmium on ozonemore » phytotoxicity.« less

  15. Survey of mercury, cadmium and lead content of household batteries.

    PubMed

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline-manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc-carbon batteries, on average, contained the highest levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Cadmium, copper, lead and zinc in cultured oysters under two contrasting climatic conditions in coastal lagoons from SE Gulf of California, Mexico.

    PubMed

    Osuna-Martínez, Carmen C; Páez-Osuna, Federico; Alonso-Rodríguez, Rosalba

    2011-09-01

    In order to determine the metal concentrations in cultured oysters from four coastal lagoons from SE Gulf of California, several individuals of Crassostrea gigas and C. corteziensis were collected and their cadmium, copper, lead and zinc levels were measured by atomic absorption spectrometry after acid digestion. The concentration of metals in oyster soft tissue was Zn > Cu > Cd > Pb. In two lagoons, Cd concentrations (10.1-13.5 μg g(-1) dw) exceeded the maximum level allowed according to the Official Mexican Standard (NOM-031-SSA1-1993), which is equivalent to the WHO recommended Cd levels in organisms used for human consumption.

  17. Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils.

    PubMed

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The integrated potential of oilcake manure (OM), elemental sulphur (S(0)), Glomus fasciculatum and Pseudomonas putida by growing Helianthus annuus L for phytoremediation of cadmium and zinc contaminated soils was investigated under pot experiment. The integrated treatment (2.5 g kg(-1) OM, 0.8 g kg(-1) S(0) and co-inoculation with G. fasciculatum and P. putida promoted the dry biomass of the plant. The treatment was feasible for enhanced cadmium accumulation up to 6.56 and 5.25 mg kg(-1) and zinc accumulation up to 45.46 and 32.56 mg kg(-1) in root and shoot, respectively, which caused maximum remediation efficiency (0.73 percent and 0.25 percent) and bioaccumulation factor (2.39 and 0.83) for Cd and Zn, respectively showing feasible uptake (in mg kg(-1) dry biomass) of Cd (5.55) and Zn (35.51) at the contaminated site. Thus, authors conclude to integrate oilcake manure, S(0) and microbial co-inoculation for enhanced clean-up of cadmium and zinc-contaminated soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources.

    PubMed

    Sahu, Kamala Kanta; Agrawal, Archana; Pandey, Banshi Dhar

    2004-08-01

    Almost all metallurgical processes are associated with the generation of wastes and residues that may be hazardous or non-hazardous in nature depending upon the criteria specified by institutions such as the US Environment Protection Agency, etc. Wastes containing heavy and toxic metals such as arsenic, cadmium, chromium, nickel, lead, copper, mercury, zinc, etc., that are present beyond permissible limits deemed to be treated or disposed of, and non-hazardous wastes can be utilized for metal recovery or safe disposal. Zinc is in growing demand all over the world. In India, a major amount of zinc is imported and therefore processing of zinc secondaries will assist in satisfying the gap between demand and supply to some extent. This report mainly focuses on the current practices and recent trends on the secondary processing of zinc. Attempts made by various laboratories to develop ecofriendly processes for the recovery of zinc from secondary raw materials are also described and discussed.

  19. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  20. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  1. Common and metal-specific proteomic responses to cadmium and zinc in the metal tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn.

    PubMed

    Chiapello, M; Martino, E; Perotto, S

    2015-05-01

    Although adaptive metal tolerance may arise in fungal populations in polluted soils, the mechanisms underlying metal-specific tolerance are poorly understood. Comparative proteomics is a powerful tool to identify variation in protein profiles caused by changing environmental conditions, and was used to investigate protein accumulation in a metal tolerant isolate of the ericoid mycorrhizal fungus Oidiodendron maius exposed to zinc and cadmium. Two-dimensional gel electrophoresis and shotgun proteomics followed by mass spectrometry lead to the identification of common and metal-specific proteins and pathways. Proteins selectively induced by cadmium exposure were molecular chaperons of the Hsp90 family, cytoskeletal proteins and components of the translation machinery. Zinc significantly up-regulated metabolic pathways related to energy production and carbohydrates metabolism, likely mirroring zinc adaptation of this fungal isolate. Common proteins induced by the two metal ions were the antioxidant enzyme Cu/Zn superoxide dismutase and ubiquitin. In mycelia exposed to zinc and cadmium, both proteomic techniques also identified agmatinase, an enzyme involved in polyamine biosynthesis. This novel finding suggests that, like plants, polyamines may have important functions in response to abiotic environmental stress in fungi. Genetic evidence also suggests that the biosynthesis of polyamines via an alternative metabolic pathway may be widespread in fungi.

  2. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.

    PubMed

    Vera-Estrella, Rosario; Gómez-Méndez, María F; Amezcua-Romero, Julio C; Barkla, Bronwyn J; Rosas-Santiago, Paul; Pantoja, Omar

    2017-09-01

    Tobacco germinated and grew in the presence of high concentrations of cadmium and zinc without toxic symptoms. Evidence suggests that these ions are sequestered into the vacuole by heavy metal/H + exchanger mechanisms. Heavy metal hyperaccumulation and hypertolerance are traits shared by a small set of plants which show specialized physiological and molecular adaptations allowing them to accumulate and sequester toxic metal ions. Nicotiana tabacum was used to test its potential as a metal-accumulator in a glass house experiment. Seed germination was not affected in the presence of increasing concentrations of zinc and cadmium. Juvenile and adult plants could concentrate CdCl 2 and ZnSO 4 to levels exceeding those in the hydroponic growth medium and maintained or increased their leaf dry weight when treated with 0.5- or 1-mM CdCl 2 or 1-mM ZnSO 4 for 5 days. Accumulation of heavy metals did not affect the chlorophyll and carotenoid levels, while variable effects were observed in cell sap osmolarity. Heavy metal-dependent H + transport across the vacuole membrane was monitored using quinacrine fluorescence quenching. Cadmium- or zinc-dependent fluorescence recovery revealed that increasing concentrations of heavy metals stimulated the activities of the tonoplast Cd 2+ or Zn 2+ /H + exchangers. Immunodetection of the V-ATPase subunits showed that the increased proton transport by zinc was not due to changes in protein amount. MTP1 and MTP4 immunodetection and semiquantitative RT-PCR of NtMTP1, NtNRAMP1, and NtZIP1 helped to identify the genes that are likely involved in sequestration of cadmium and zinc in the leaf and root tissue. Finally, we demonstrated that cadmium and zinc treatments induced an accumulation of zinc in leaf tissues. This study shows that N. tabacum possesses a hyperaccumulation response, and thus could be used for phytoremediation purposes.

  3. Resistance to zinc and cadmium in Staphylococcus aureus of human and animal origin.

    PubMed

    Nair, Rajeshwari; Thapaliya, Dipendra; Su, Yutao; Smith, Tara C

    2014-10-01

    Studies conducted in Europe have observed resistance to trace metals such as zinc chloride and copper sulfate in livestock-associated Staphylococcus aureus. This study was conducted to determine the prevalence of zinc and cadmium resistance in S. aureus isolated in the United States. Cross-sectional study of convenience sample of S. aureus isolates. Three hundred forty-nine S. aureus isolates, including methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) obtained from human, swine, and retail meat were included in the sample set. Polymerase chain reaction was used to test for the presence of genes for zinc and cadmium resistance (czrC), methicillin resistance (mecA), and staphylococcal complement inhibitor (scn). Antibiotic susceptibility of isolates was tested using the broth microdilution method. Data were analyzed using the multivariable logistic regression method. Twenty-nine percent (102/349) of S. aureus isolates were czrC positive. MRSA isolates were more likely to be czrC positive compared to MSSA (MRSA czrC positive: 12/61, 19.6%; MSSA czrC positive: 12/183, 6.6%). After adjustment for oxacillin and clindamycin susceptibility in analysis, multidrug-resistant S. aureus was observed to have low odds of being czrC positive (P = .03). The odds of being czrC positive were observed to be significantly high in tetracycline-resistant S. aureus isolated from noninfection samples (P = .009) and swine (P < .0001). Resistance to zinc and cadmium was observed to be associated with MRSA, a finding consistently observed in European studies. Prolonged exposure to zinc in livestock feeds and fertilizers could propagate resistance to the metal ion, thereby hindering use of zinc-based topical agents in treating S. aureus infections.

  4. Towards prenatal biomonitoring in Nanjing, China: lead and cadmium levels in the duration of pregnancy.

    PubMed

    Liu, Kang-sheng; Mao, Xiao-dong; Hao, Jia-hu; Shi, Juan; Dai, Chun-fang; Chen, Wen-jun

    2013-08-01

    Prenatal lead and cadmium exposure will not only influence the mother' organ systems, but also will provide an environment that may influence the fetus and neonate in a harmful way.In the present study, we detected the blood lead levels (BLLS) and cadmium levels for the duration of pregnancy and 6-12 weeks after delivery and to analyze the influencing factors of BLLs in healthy pregnant women. A cohort study survey was carried out. We recruited 174 healthy pregnant women without pregnancy or obstetric complications or abnormal pregnancy outcomes as the gravida group, and 120 healthy non-pregnant women as the control group. The lead concentrations in the three pregnancy trimesters and in the postpartum period were: (5.98 ± 2.43), (5.54 ± 2.01), (5.59 ± 1.97), and (6.76 ± 1.74) µg/dl; and (6.75 ± 2.13) µg/dl in the control group. The cadmium concentrations in the three pregnancy trimesters and postpartum period were 1.61 ± 0.45, 1.63 ± 0.46, 1.64 ± 0.49, and 1.67 ± 0.57. We found that the BLLs in the gravida group were lower than in the control group during all three trimesters. Occupations, supplement nutritional elements (dietary supplements and nutritional (food) elements), and the time of house painting could affect BLLs in pregnant women. Lead-related occupations, using cosmetics, and living in a house painted more recently than one year previously are risk factors of high BLLs among pregnant women, while calcium, iron, zinc, and milk supplements are protective factors. These findings may help people, especially pregnant women, to reduce lead exposure via supplements of calcium, iron, zinc, and milk or avoiding contacting risk factors.

  5. Spectral analysis techniques for characterizing cadmium zinc telluride polarization modulators

    NASA Astrophysics Data System (ADS)

    FitzGerald, William R.; Taherion, Saeid; Kumar, F. Joseph; Giles, David; Hore, Dennis K.

    2018-04-01

    The low frequency electro-optic characteristics of cadmium zinc telluride are demonstrated in the mid-infrared, in the spectral range 2.5-11 μm. Conventional methods for characterizing the dynamic response by monitoring the amplitude of the time-varying light intensity do not account for spatial variation in material properties. In such cases, a more revealing method involves monitoring two distinct frequency components in order to characterize the dynamic and static contributions to the optical retardation. We demonstrate that, while this method works well for a ZnSe photo-elastic modulator, it does not fully capture the response of a cadmium zinc telluride electro-optic modulator. Ultimately, we show that acquiring the full waveform of the optical response enables a model to be created that accounts for inhomogeneity in the material that results in an asymmetric response with respect to the polarity of the driving voltage. This technique is applicable to broadband and fixed-wavelength applications in a variety of spectral ranges.

  6. Maternal Cadmium, Iron and Zinc Levels, DNA Methylation and Birth Weight

    EPA Science Inventory

    BACKGROUND:Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationsh...

  7. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    DOEpatents

    Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  8. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  9. Long-term (1992-2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: determination by chemical analysis of moss bags and leaves of Crimean linden.

    PubMed

    Dmuchowski, Wojciech; Bytnerowicz, Andrzej

    2009-12-01

    Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less.

  10. Mineral commodity profiles: Cadmium

    USGS Publications Warehouse

    Butterman, W.C.; Plachy, Jozef

    2004-01-01

    Overview -- Cadmium is a soft, low-melting-point metal that has many uses. It is similar in abundance to antimony and bismuth and is the 63d element in order of crustal abundance. Cadmium is associated in nature with zinc (and, less closely, with lead and copper) and is extracted mainly as a byproduct of the mining and processing of zinc. In 2000, it was refined in 27 countries, of which the 8 largest accounted for two-thirds of world production. The United States was the third largest refiner after Japan and China. World production in 2000 was 19,700 metric tons (t) and U.S. production was 1,890 t. In the United States, one company in Illinois and another in Tennessee refined primary cadmium. A Pennsylvania company recovered cadmium from scrap, mainly spent nickel-cadmium (NiCd) batteries. The supply of cadmium in the world and in the United States appears to be adequate to meet future industrial needs; the United States has about 23 percent of the world reserve base.

  11. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint.

    PubMed

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Jakóbik-Kolon, Agata; Kluczka, Joanna; Babuśka-Roczniak, Magdalena

    2017-08-01

    Osteoarthritis causes the degradation of the articular cartilage and periarticular bones. Trace elements influence the growth, development and condition of the bone tissue. Changes to the mineral composition of the bone tissue can cause degenerative changes and fractures. The aim of the research was to determine the content of cadmium (Cd), nickel (Ni), copper (Cu) and zinc (Zn) in the tibia, the femur and the meniscus in men and women who underwent a knee replacement surgery. Samples were collected from 50 patients, including 36 women and 14 men. The determination of trace elements content were performed by ICP-AES method, using Varian 710-ES. Average concentration in the tissues of the knee joint teeth amounted for cadmium 0.015, nickel 0.60, copper 0.89 and zinc 80.81 mg/kg wet weight. There were statistically significant differences in the content of cadmium, copper and zinc in different parts of the knee joint. There were no statistically significant differences in the content of cadmium, nickel, copper and zinc in women and men in the examined parts of the knee joint. Among the elements tested, copper and nickel showed a high content in the connective tissue (the meniscus) compared to the bone tissue (the tibia and the femur).

  12. Bioconcentration patterns of zinc, copper, cadmium and lead in selected fish species from the Fox River, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinikour, W.S.; Goldstein, R.M.; Anderson, R.V.

    1980-05-01

    This study was conducted to determine if bioconcentration patterns were similar between four common essential and nonessential trace elements. The whole body concentrations of Zn, Cu, Cd and Pb were related to the whole body dry weights of blue-gill (Lepomis macrochirus), black crappie (Pomoxis nigromaculatus), black bullhead (Ictalurus melas), and yellow perch (Perca flavescens). Zinc, Cu, Cd, and Pb were selected because most studies of heavy metal concentrations in fish have examined one or more of these elements. These metals are often closely associated with each other as natural impurities or as alloys. Zinc and Cu are essential components ofmore » metallo-enzymes. Cadmium and Pb have not been shown to have essential functions in fishes, but rather inhibit biological systems and competitively interfere with Zn and Cu. The fish species were chosen on the basis of their importance as recreational and food species and their frequent use in both field and laboratory studies. Patterns of metal bioconcentrations with fish size were determined by simple linear regression.« less

  13. Cadmium, zinc, copper, sodium and potassium concentrations in rooster and turkey semen and their correlation.

    PubMed

    Massanyi, Peter; Weis, Jan; Lukac, Norbert; Trandzik, Jozef; Bystricka, Judita

    2008-04-01

    The purpose of this study was to assess concentration of selected elements (cadmium, zinc, copper, sodium and potassium) in rooster and turkey semen and to find possible correlations between these elements. Samples were analyzed on the atomic absorption spectrophotometer. The analysis of cadmium showed that the concentration in rooster is 9.06 +/- 7.70 and in turkey 4.10 +/- 3.59 microg/mL. In zinc 5.25 +/- 1.96 microg/mL in rooster and 3.70 +/- 1.26 microg/mL in turkey were detected. Higher concentration of copper was found in rooster semen (6.79 +/- 6.42 microg/mL) in comparison with turkey semen (4.29 +/- 5.43 microg/mL). The level of sodium (3.96 +/- 1.02 microg/mL; 3.14 +/- 0.85 microg/mL) and potassium (2.88 +/- 0.65 microg/mL; 3.42 +/- 1.41 microg/mL) was very similar in both species. Correlation analysis detected high positive correlation between cadmium and zinc (r = 0.701) in rooster and between sodium and potassium (r = 0.899) in turkey semen.

  14. Synthesis and interface structures of zinc sulfide sheathed zinc-cadmium nanowire heterojunctions.

    PubMed

    Shen, Guozhen; Bando, Yoshio; Gao, Yihua; Golberg, Dmitri

    2006-07-27

    Zinc sulfide (ZnS) sheathed zinc (Zn)-cadmium (Cd) nanowire heterojunctions have been prepared by thermal evaporating of ZnS and CdS powders in a vertical induction furnace at 1200 degrees C. Studies found that both the Zn and Cd subnanowires, within a single nanoheterojunction, are single-crystallines with the growth directions perpendicular to the [210] plane, whereas the sheathed ZnS is polycrystalline with a thickness of ca. 5 nm. The Zn/Cd interface structure in the ZnS sheathed Zn-Cd nanowire heterojunctions was thoroughly experimentally studied by high-resolution transmission electron microscopy and theoretically studied using a near-coincidence site lattice (NCSL) concept. The results show that the Cd and Zn have a crystalline orientation relationship as [0001]Zn//[0001]Cd, (10(-)10)Zn//(10(-)10)Cd, (01(-)10)Zn//(01(-)10)Cd, and ((-)1100)Zn//((-)1100)Cd.

  15. Cadmium plating replacements

    NASA Technical Reports Server (NTRS)

    Nelson, Mary J.; Groshart, Earl C.

    1995-01-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  16. Effects of cadmium and zinc toxicity on orientation behaviour of Echinoparyphium recurvatum (Digenea: Echinostomatidae) cercariae.

    PubMed

    Morley, N J; Crane, M; Lewis, J W

    2003-08-15

    The effects of cadmium and zinc toxicity on orientation behaviour (photo- and geo-taxis) of Echinoparyphium recurvatum cercariae was investigated at concentrations ranging from 10 to 1000 microg l(-1). Exposure to the toxicants at all metal concentrations caused a change in orientation to negative phototaxis and positive geotaxis during the submaximal dispersal phase (0.5 h cercarial age). Autometallography staining of cercariae exposed to 1000 microg l(-1) cadmium or zinc showed selective binding of heavy metals to tegumental surface sites associated with sensory receptors. The significance to parasite transmission of changes in cercarial orientation behaviour in metal polluted environments is discussed.

  17. Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead.

    PubMed

    Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2010-10-01

    The tolerance of wild flora to heavy-metal exposure has received very little research. In this study, the tolerance of four native tree species, four native grass species, and lettuce to copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) was investigated in a root-elongation study using Petri dishes. The results of these studies show a diverse range of responses to Cu, Zn, Cd, and Pb amongst the tested plant species. Toxicity among metals decreased in the following order: Cd ~ Cu > Pb > Zn. Metal concentrations resulting in a 50% reduction in growth (EC(50)) varied considerably, ranging from (microM) 30 (Dichanthium sericeum) to >2000 (Acacia spp.) for Cu; from 260 (Lactuca sativa) to 2000 (Acacia spp.) for Zn; from 27 (L. sativa) to 940 (Acacia holosericea) for Cd; and from 180 (L. sativa) to >1000 (Acacia spp.) for Pb. Sensitive native plant species identified included D. sericeum, Casuarina cunninghamiana, and Austrodanthonia caespitosa. However, L. sativa (lettuce) was also among the most sensitive to all four metals. Acacia species showed a high tolerance to metal exposure, suggesting that the Acacia genus shows potential for use in contaminated-site revegetation.

  18. Lead and cadmium excretion in feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia.

    PubMed

    Yabe, John; Nakayama, Shouta M M; Ikenaka, Yoshinori; Yohannes, Yared B; Bortey-Sam, Nesta; Kabalo, Abel Nketani; Ntapisha, John; Mizukawa, Hazuki; Umemura, Takashi; Ishizuka, Mayumi

    2018-07-01

    Lead (Pb) and cadmium (Cd) are toxic metals that exist ubiquitously in the environment. Children in polluted areas are particularly vulnerable to metal exposure, where clinical signs and symptoms could be nonspecific. Absorbed metals are excreted primarily in urine and reflect exposure from all sources. We analyzed Pb and Cd concentrations in blood, feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia, to determine concurrent childhood exposure to the metals. Moreover, the study determined the Pb and Cd relationships among urine, feces and blood as well as accessed the potential of urine and fecal analysis for biomonitoring of Pb and Cd exposure in children. Fecal Pb (up to 2252 mg/kg, dry weight) and urine Pb (up to 2914 μg/L) were extremely high. Concentrations of Cd in blood (Cd-B) of up to 7.7 μg/L, fecal (up to 4.49 mg/kg, dry weight) and urine (up to 18.1 μg/L) samples were elevated. metal levels were higher in younger children (0-3 years old) than older children (4-7). Positive correlations were recorded for Pb and Cd among blood, urine and fecal samples whereas negative correlations were recorded with age. These findings indicate children are exposed to both metals at their current home environment. Moreover, urine and feces could be useful for biomonitoring of metals due to their strong relationships with blood levels. There is need to conduct a clinical evaluation of the affected children to fully appreciate the health impact of these metal exposure. Copyright © 2018. Published by Elsevier Ltd.

  19. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    PubMed

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.

  20. Investigation of Electrodeposited Alloys and Pure Metals as Substitutes for Zinc and Cadmium for Protective Finishes for Steel Parts of Aircraft

    DTIC Science & Technology

    1949-09-01

    ON LOAN FROM 7k a. **+dU fefeÄtüiÄ: .<*-#=« Investigation of Electrodeposited Alloys and Pure Metals as Substitutes for Zinc and Cadmium for...graphs Eight alloys, selected as being superior to pure zinc or cadmium for protecting steel, were evaluated on the basis of static and dynamic... zinc -silver alloy of 25% silver. A tabulated summary of the testing program on all cast and electrodeposited alloys tested is included. * and

  1. Environmental exposures to lead and cadmium measured in human placenta.

    PubMed

    Falcón, María; Viñas, Pilar; Osuna, Eduardo; Luna, Aurelio

    2002-01-01

    Pregnant women exposed to even low levels of environmental lead and cadmium may experience adverse perinatal effects. To evaluate the usefulness of the placenta for monitoring environmental lead and cadmium exposure, concentrations of both metals were measured in placentas (n = 86) with atomic absorption spectrometry. Environmental exposure was assessed in accordance with the degree of industrial activity and transport pollution near the places of residence. The authors found significantly higher lead and cadmium levels in placentas of women living in urban-industrial areas than in placentas of women living in rural areas. Lead concentrations in placenta reflect environmental exposures; smoking during gestation explained a large portion of placental cadmium. This finding suggests that when a pregnant woman is a heavy smoker, tobacco exposure masks environmental cadmium exposure, especially in areas with low levels of cadmium pollution.

  2. Cadmium zinc sulfide by solution growth

    DOEpatents

    Chen, Wen S.

    1992-05-12

    A process for depositing thin layers of a II-VI compound cadmium zinc sulfide (CdZnS) by an aqueous solution growth technique with quality suitable for high efficiency photovoltaic or other devices which can benefit from the band edge shift resulting from the inclusion of Zn in the sulfide. A first solution comprising CdCl.sub.2 2.5H.sub.2 O, NH.sub.4 Cl, NH.sub.4 OH and ZnCl.sub.2, and a second solution comprising thiourea ((NH.sub.2).sub.2 CS) are combined and placed in a deposition cell, along with a substrate to form a thin i.e. 10 nm film of CdZnS on the substrate. This process can be sequentially repeated with to achieve deposition of independent multiple layers having different Zn concentrations.

  3. Associations of lead and cadmium with sex hormones in adult males

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kresovich, Jacob K., E-mail: jkreso2@uic.edu; Argos, Maria; Turyk, Mary E.

    Heavy metal exposures are ubiquitous in the environment and their relation to sex hormones is not well understood. This paper investigates the associations between selected heavy metals (lead and cadmium) and sex hormones (testosterone, free testosterone, estradiol, free estradiol) as well as other major molecules in the steroid biosynthesis pathway (androstanedione glucuronide and sex-hormone binding globulin (SHBG)). Blood lead and cadmium were selected as biomarkers of exposure, and tested for associations in males using National Health and Nutritional Examination Survey (NHANES) data from 1999–2004. After adjustment for age, race, body mass index, smoking status, diabetes and alcohol intake, blood leadmore » was positively associated with testosterone and SHBG while blood cadmium was positively associated with SHBG. After controlling for additional heavy metal exposure, the associations between lead and testosterone as well as cadmium and SHBG remained significant. Furthermore, the association between blood lead and testosterone was modified by smoking status (P for interaction=0.011), diabetes (P for interaction=0.021) and blood cadmium (P for interaction=0.029). The association between blood cadmium and SHBG levels was modified by blood lead (P for interaction=0.004). This study is the most comprehensive investigation to date regarding the association between heavy metals and sex hormones in males. - Highlights: • We used a nationally representative dataset (NHANES) and employed sample weighting. • We examined associations between lead and cadmium with sex-hormone levels. • Blood lead level was positively associated with serum testosterone and SHBG levels. • Blood cadmium level was positively associated with SHBG levels, modified by lead. • Diabetes, smoking and cadmium modified lead and testosterone association.« less

  4. Effects of blood lead and cadmium levels on homocysteine level in plasma.

    PubMed

    Cai, R; Zheng, Y-F; Bu, J-G; Zhang, Y-Y; Fu, S-L; Wang, X-G; Guo, L-L; Zhang, J-R

    2017-01-01

    We studied the effect of non-occupational exposure to lead and cadmium on homocysteine level in plasma. Homocysteine is a marker for plasma folate folic acid metabolism in urban populations. 159 individuals from Beijing, Guangzhou, Shenzhen and Shanghai with no history of close exposure to heavy metals and no history of metabolic diseases were enrolled to participate in this study. Blood lead and cadmium levels were detected using ICP-MS method and the level of homocysteine was also measured using enzyme method. Our results showed that blood lead and cadmium levels in males were significantly higher than those in females. Also, blood lead and cadmium levels in smokers were higher than those in non-smokers; homocysteine level was significantly higher in smokers as well. According to blood lead and cadmium levels, cases were divided into four groups. Our results showed that a surge in blood lead and cadmium levels could result in an increase in homocysteine level. We concluded that in the Chinese population, smoking and gender might be the risk factors for elevated levels of lead and cadmium. Meanwhile, blood lead and cadmium levels may influence the homocysteine levels in the body. It is possible to speculate that non-occupational exposure to lead and cadmium, by increasing the homocysteine levels, negatively affect the cardiovascular and nervous system.

  5. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metalmore » trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  6. Biochemical changes in longear sunfish, Lepomis megalotis, associated with lead, cadmium and zinc from mine tailings

    USGS Publications Warehouse

    Dwyer, F.J.; Schmitt, C.J.; Finger, S.E.; Mehrle, P.M.

    1988-01-01

    Longear sunfish were collected from a stream contaminated with mine tailings rich in lead (Pb), cadmium (Cd) and zinc (Zn). Blood samples were analysed for δ-aminolevulinic acid dehydratase (ALA-D) activity and Pb concentration. Vertebrae were tested for bone strength and composition, and Pb, Zn, and Cd concentrations were determined in muscle tissue. ALA-D activity was negatively correlated with blood Pb concentration (r=–0.66), and enzyme activity was significantly higher and blood Pb significantly lower at the reference site than at the contaminated sites. Blood Pb was highly correlated with Pb in muscle tissue (r= 0.72), and the concentrations of Pb and Cd in muscle tissues were themselves correlated (r= 0.64). In fish from contaminated sites, two of the mechanical properties of the vertebrae measured (elastic limit and modulus of elasticity) were significantly different from values in fish from the reference site. These properties and one other (stress) were weakly correlated with muscle Cd concentration (0.42 < r < 0.46). Biochemical differences among fish from different sites were also evident; concentrations of calcium, phosphorus and collagen were lower in the vertebrae of fish from some of the contaminated sites than at the reference site, and bone phosphorus was negatively correlated with concentrations of Pb in both muscle (r=– 0.62) and blood (r=– 0.75). Collectively, these results indicate that, in addition to the well-documented effects of Pb on haem synthesis, other important biochemical pathways may be disrupted by continuous low-level exposure to elemental contaminants.

  7. Determinants of serum zinc in a random population sample of four Belgian towns with different degrees of environmental exposure to cadmium

    PubMed Central

    Thijs, Lutgarde; Staessen, Jan; Amery, Antoon; Bruaux, Pierre; Buchet, Jean-Pierre; Claeys, FranÇoise; De Plaen, Pierre; Ducoffre, Geneviève; Lauwerys, Robert; Lijnen, Paul; Nick, Laurence; Remy, Annie Saint; Roels, Harry; Rondia, Désiré; Sartor, Francis

    1992-01-01

    This report investigated the distribution of serum zinc and the factors determining serum zinc concentration in a large random population sample. The 1977 participants (959 men and 1018 women), 20–80 years old, constituted a stratified random sample of the population of four Belgian districts, representing two areas with low and two with high environmental exposure to cadmium. For each exposure level, a rural and an urban area were selected. The serum concentration of zinc, frequently used as an index for zinc status in human subjects, was higher in men (13.1 μmole/L, range 6.5–23.0 μmole/L) than in women (12.6 μmole/L, range 6.3–23.2 μmole/L). In men, 20% of the variance of serum zinc was explained by age (linear and squared term, R = 0.29), diurnal variation (r = 0.29), and total cholesterol (r = 0.16). After adjustment for these covariates, a negative relationship was observed between serum zinc and both blood (r = −0.10) and urinary cadmium (r = −0.14). In women, 11% of the variance could be explained by age (linear and squared term, R = 0.15), diurnal variation in serum zinc (r = 0.27), creatinine clearance (r = −0.11), log γ-glutamyltranspeptidase (r = 0.08), cholesterol (r = 0.07), contraceptive pill intake (r = −0.07), and log serum ferritin (r = 0.06). Before and after adjustment for significant covariates, serum zinc was, on average, lowest in the two districts where the body burden of cadmium, as assessed by urinary cadmium excretion, was highest. These results were not altered when subjects exposed to heavy metals at work were excluded from analysis. PMID:1486857

  8. Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc

    NASA Astrophysics Data System (ADS)

    Assael, Marc J.; Armyra, Ivi J.; Brillo, Juergen; Stankus, Sergei V.; Wu, Jiangtao; Wakeham, William A.

    2012-09-01

    The available experimental data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc have been critically examined with the intention of establishing both a density and a viscosity standard. All experimental data have been categorized into primary and secondary data according to the quality of measurement, the technique employed and the presentation of the data, as specified by a series of criteria. The proposed standard reference correlations for the density of liquid cadmium, cobalt, gallium, indium, silicon, thallium, and zinc are characterized by percent deviations at the 95% confidence level of 0.6, 2.1, 0.4, 0.5, 2.2, 0.9, and 0.7, respectively. In the case of mercury, since density reference values already exist, no further work was carried out. The standard reference correlations for the viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc are characterized by percent deviations at the 95% confidence level of 9.4, 14.0, 13.5, 2.1, 7.3, 15.7, 5.1, and 9.3, respectively.

  9. Lead and cadmium in wild birds in southeastern Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Fernandez, A.J.; Sanchez-Garcia, J.A.; Luna, A.

    1995-12-01

    The main purpose of this study was to monitor exposure to lead and cadmium in wild birds in Murcia, a southeastern region of Spain on the Mediterranean coast. This region lies on one of the African-European flyways. Samples of liver, kidney, brain, bone, and whole blood from several species of wild birds were obtained during 1993. The authors found a clear relationship between cadmium and lead concentrations in birds and their feedings habits. Vultures (Gyps fulvus) had the highest concentrations of lead (mean 40 {micro}g/dl in blood), and seagulls (Larus argentatus and Larus ridibundus) the highest concentrations of cadmium (meanmore » 4.43 {micro}g/g in kidney). Insectivores had high concentrations of both metals, and diurnal and nocturnal raptors showed the lowest tissue concentrations. The findings that tissue and blood concentrations were generally not elevated suggests environmental (rather than acute) exposure. Birds from more industrialized areas of the region studied here had higher concentrations of both lead and cadmium.« less

  10. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1984-01-01

    .Mining allowed oxidation of ore deposits which, on saturation with water, resulted in poor-quality water that generally contains large concentrations of sulfate and trace metals. Water from mines in the eastern area contained dissolved-solids concentrations of less than 500 mg/L (milligrams per liter), a median pH of 3.9, sulfate concentrations that ranged between 98 and 290 mg/L, and median concentrations for zinc of 37,600 pg/L (micrograms per liter), for lead of 240 pg/L, for cadmium of 180 ug/L, for iron of 70 pg/L, for manganese of 240 pg/L, and for silica of 15 mg/L. Water from mines in the western area contained dissolved-solids concentrations of generally more than 500 mg/L, a median pH of 6.8, sulfate concentrations that ranged between 170 and 2,150 mg/L, and median concentrations for zinc of 3,200 pg/L, for lead of 0 pg/L (minimum detection limit is 10 pg/L), for cadmium of 6 pg/L, for iron of 840 pg/L, for manganese of 440 ug/L, and for silica of 11 mg/L.No conclusive evidence of lateral migration of water from the mines into domestic well-water supplies in the shallow aquifer was found in the study area in Kansas. Analyses of water from public-supply wells tapping the deep aquifer did not indicate contamination with trace metals, although chemical analyses from four of six wells exhibited increasing trends through time in sulfate concentrations. These increases probably reflect localized leakage of water from the shallow aquifer along corroded or leaky well casings.Effects of abandoned lead and zinc mines on tributaries of the Spring River in the eastern area are most severe in Short Creek. Compared with water samples from three other major streams in the eastern area, a sample collected from Short Creek, 2 miles west of Galena, Kansas, during August 1981, contained the largest concentrations of dissolved sulfate (240 mg/L), zinc (25,000 pg/L), cadmium (170 pg/L), manganese (1,700 ug/L), and the lowest pH (6.0). Concentrations of these constituents are due primarily

  11. Biomonitoring of lead, zinc, and cadmium in streams draining lead-mining and non-mining areas, Southeast Missouri, USA

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; May, Thomas W.; Schmitt, Christopher J.

    2007-01-01

    We evaluated exposure of aquatic biota to lead (Pb), zinc (Zn), and cadmium (Cd) in streams draining a Pb-mining district in southeast Missouri. Samples of plant biomass (detritus, periphyton, and filamentous algae), invertebrates (snails, crayfish, and riffle benthos), and two taxa of fish were collected from seven sites closest to mining areas (mining sites), four sites further downstream from mining (downstream sites), and eight reference sites in fall 2001. Samples of plant biomass from mining sites had highest metal concentrations, with means 10- to 60-times greater than those for reference sites. Mean metal concentrations in over 90% of samples of plant biomass from mining sites were significantly greater than those from reference sites. Mean concentrations of Pb, Zn, and Cd in most invertebrate samples from mining sites, and mean Pb concentrations in most fish samples from mining sites, were also significantly greater than those from reference sites. Concentrations of all three metals were lower in samples from downstream sites, but several samples of plant biomass from downstream sites had metal concentrations significantly greater than those from reference sites. Analysis of supplemental samples collected in the fall of 2002, a year of above-average stream discharge, had lower Pb concentrations and higher Cd concentrations than samples collected in 2001, near the end of a multi-year drought. Concentrations of Pb measured in fish and invertebrates collected from mining sites during 2001 and 2002 were similar to those measured at nearby sites in the 1970s, during the early years of mining in the Viburnum Trend. Results of this study demonstrate that long-term Pb mining activity in southeast Missouri has resulted in significantly elevated concentrations of Pb, Cd, and Zn in biota of receiving streams, compared to biota of similar streams without direct influence of mining. Our results also demonstrate that metal exposure in the study area differed

  12. Biomonitoring of lead, zinc, and cadmium in streams draining lead-mining and non-mining areas, Southeast Missouri, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Schmitt, C.J.

    2007-01-01

    We evaluated exposure of aquatic biota to lead (Pb), zinc (Zn), and cadmium (Cd) in streams draining a Pb-mining district in southeast Missouri. Samples of plant biomass (detritus, periphyton, and filamentous algae), invertebrates (snails, crayfish, and riffle benthos), and two taxa of fish were collected from seven sites closest to mining areas (mining sites), four sites further downstream from mining (downstream sites), and eight reference sites in fall 2001. Samples of plant biomass from mining sites had highest metal concentrations, with means 10- to 60-times greater than those for reference sites. Mean metal concentrations in over 90% of samples of plant biomass from mining sites were significantly greater than those from reference sites. Mean concentrations of Pb, Zn, and Cd in most invertebrate samples from mining sites, and mean Pb concentrations in most fish samples from mining sites, were also significantly greater than those from reference sites. Concentrations of all three metals were lower in samples from downstream sites, but several samples of plant biomass from downstream sites had metal concentrations significantly greater than those from reference sites. Analysis of supplemental samples collected in the fall of 2002, a year of above-average stream discharge, had lower Pb concentrations and higher Cd concentrations than samples collected in 2001, near the end of a multi-year drought. Concentrations of Pb measured in fish and invertebrates collected from mining sites during 2001 and 2002 were similar to those measured at nearby sites in the 1970s, during the early years of mining in the Viburnum Trend. Results of this study demonstrate that long-term Pb mining activity in southeast Missouri has resulted in significantly elevated concentrations of Pb, Cd, and Zn in biota of receiving streams, compared to biota of similar streams without direct influence of mining. Our results also demonstrate that metal exposure in the study area differed

  13. Cadmium, Zinc, and Selenium Levels in Carcinoma of the Human Prostate

    DTIC Science & Technology

    2007-04-01

    tissue (4-6). Cadmium (Cd) possesses carcinogenic effect that is hormonally mediated (7, 8), and is recognized as a risk factor in development of...in prostatic cells [28], and that the carcinogenic effect of Cd can be hormonally mediated [13, 29]. Protective Factors - Selenium and Zinc Se...studies have shown that this generation of Pacific Islands people have traditional diets, eating more taro, shellfish and fresh vegetables, and

  14. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  15. Growth of Cadmium-Zinc Telluride Crystals by Controlled Seeding Contactless Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Gillies, D.; Jerman, G.

    1996-01-01

    Bulk crystals of cadmium-zinc telluride, 23 mm in diameter and up to 45 grams in weight were grown. Controlled seed formation procedure was used to limit the number of grains in the crystal. Most uniform distribution of ZnTe in the crystals was obtained using excess (Cd + Zn) pressure in the ampoule.

  16. Electrodeposited Zinc-Nickel as an Alternative to Cadmium Plating for Aerospace Application

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1991-01-01

    Corrosion evaluation studies were conducted on 4130 alloy steel samples coated with electrodeposited zinc-nickel and samples coated with electrodeposited cadmium. The zinc nickel was deposited by the selection electrochemical metallizing process. These coated samples were exposed to a 5-percent salt fog environment at 35 plus or minus 2 C for a period ranging from 96 to 240 hours. An evaluation of the effect of dichromate coatings on the performance of each plating was conducted. The protection afforded by platings with a dichromate seal was compared to platings without the seal. During the later stages of testing, deposit adhesion and the potential for hydrogen entrapment were also evaluated.

  17. Effect of soil and foliar application of zinc on grain zinc and cadmium concentration of wheat genotypes differing in Zn-efficiency

    USDA-ARS?s Scientific Manuscript database

    A two-year field experiment was carried out to investigate the effectiveness of soil and foliar applications of zinc sulfate and soil application of waste rubber ash to increase Zn and decrease cadmium (Cd) concentration in grain of 10 wheat genotypes with different Zn-efficiency. Foliar spray of zi...

  18. OsSUV3 functions in cadmium and zinc stress tolerance in rice (Oryza sativa L. cv IR64).

    PubMed

    Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-01-01

    Protein of nuclear encoded SUV3 (suppressor of Var 3) gene is a DNA and RNA helicase, localized in mitochondria and is a subunit of the degradosome complex involved in regulation of RNA surveillance and turnover. To overcome the abiotic stress-induced loss of crop yield, a multi-stress tolerant trait is required. Beside salinity stress the heavy metals including cadmium and zinc also affect the yield and quality of food crops. Since rice is a one of the staple food therefore it is important to develop a multi-stress including salinity and metal tolerant variety. Recently we have reported the role of OsSUV3 in salinity stress tolerance in rice; however, its role in metal stress has not been studied so far. Here we report that in response to cadmium and zinc stress the OsSUV3 transcript level is induced in rice and its overexpression in transgenic IR64 rice plants confers the metal stress tolerance. In addition to its previously reported role in salinity stress tolerance, this study further shows the role of OsSUV3 helicase in cadmium and zinc stress tolerance suggesting its involvement in multi-stress tolerance.

  19. Remediation of lead and cadmium-contaminated soils.

    PubMed

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  20. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern.

    PubMed

    Wani, Ab Latif; Ahmad, Ajaz; Shadab, G G H A; Usmani, Jawed Ahmad

    2017-03-01

    Lead and zinc are mostly present at the same occupational source and usually found as co-contaminants. Lead is known to associate with detrimental effects to humans. Zinc however is an essential nutrient and its deficiency causes debilitating effects on growth and development. Besides, it acts as core ion of important enzymes and proteins. The purpose of this study was to examine if zinc concentrations are associated with blood lead levels and if zinc may prevent lead-induced DNA damage. Blood samples were collected from 92 workers as participants occupationally exposed to lead or lead and zinc and 38 comparison participants having no history of such exposure. Lead and zinc levels were determined from blood by atomic absorption spectrophotometry and genetic damage was assessed by comet assay. Correlation was calculated by Spearman's rho. Lead concentrations were observed to increase among workers with increase in years of exposure. There was a significant difference (p < 0.001) in blood lead levels between workers and controls. In addition, significant difference (p < 0.001) in the genetic damage was observed among workers and controls. A clear effect of increased occupational exposure was visible among workers. Multiple regression analysis further reveals the positive effect of lead, while as the inverse effect of zinc on DNA damage. The results suggest that zinc may influence body lead absorption and may have a role in preventing the genetic damage caused by lead.

  1. Developing acute-to-chronic toxicity ratios for lead, cadmium, and zinc using rainbow trout, a mayfly, and a midge

    USGS Publications Warehouse

    Mebane, C.A.; Hennessy, D.P.; Dillon, F.S.

    2008-01-01

    In order to estimate acute-to-chronic toxicity ratios (ACRs) relevant to a coldwater stream community, we exposed rainbow trout (Oncorhynchus mykiss) to cadmium (Cd), lead (Pb), and zinc (Zn) in 96-h acute and 60+ day early-life stage (ELS) exposures. We also tested the acute and sublethal responses of a mayfly (Baetis tricaudatus) and a midge (Chironomus dilutus, formerly C. tentans) with Pb. We examine the statistical interpretation of test endpoints and the acute-to-chronic ratio concept. Increasing the number of control replicates by 2 to 3x decreased the minimum detectable differences by almost half. Pb ACR estimates mostly increased with increasing acute resistance of the organisms (rainbow trout ACRs

  2. Spatial clustering of toxic trace elements in adolescents around the Torreón, Mexico lead-zinc smelter.

    PubMed

    Garcia-Vargas, Gonzalo G; Rothenberg, Stephen J; Silbergeld, Ellen K; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J; Steuerwald, Amy J; Navas-Acién, Ana; Guallar, Eliseo

    2014-11-01

    High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world's fourth largest lead-zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12-15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6-14.7 μg/dl) and urine cadmium (0.18-1.14 μg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28-0.93 μg/g creatinine) and uranium (0.07-0.13 μg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods.

  3. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.

    PubMed

    Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas

    2014-12-01

    Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.

  4. Associations of lead and cadmium with sex hormones in adult males.

    PubMed

    Kresovich, Jacob K; Argos, Maria; Turyk, Mary E

    2015-10-01

    Heavy metal exposures are ubiquitous in the environment and their relation to sex hormones is not well understood. This paper investigates the associations between selected heavy metals (lead and cadmium) and sex hormones (testosterone, free testosterone, estradiol, free estradiol) as well as other major molecules in the steroid biosynthesis pathway (androstanedione glucuronide and sex-hormone binding globulin (SHBG)). Blood lead and cadmium were selected as biomarkers of exposure, and tested for associations in males using National Health and Nutritional Examination Survey (NHANES) data from 1999-2004. After adjustment for age, race, body mass index, smoking status, diabetes and alcohol intake, blood lead was positively associated with testosterone and SHBG while blood cadmium was positively associated with SHBG. After controlling for additional heavy metal exposure, the associations between lead and testosterone as well as cadmium and SHBG remained significant. Furthermore, the association between blood lead and testosterone was modified by smoking status (P for interaction=0.011), diabetes (P for interaction=0.021) and blood cadmium (P for interaction=0.029). The association between blood cadmium and SHBG levels was modified by blood lead (P for interaction=0.004). This study is the most comprehensive investigation to date regarding the association between heavy metals and sex hormones in males. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.

    PubMed

    Teemu, Halttunen; Seppo, Salminen; Jussi, Meriluoto; Raija, Tahvonen; Kalle, Lertola

    2008-07-15

    Extensive cadmium and lead contamination of water has been reported to occur locally as a result of human activities. Lactic acid bacteria have been reported to remove cadmium and lead from water. The aim of this work was to clarify the mechanisms of cadmium and lead removal from water. In addition, the effect of other metals, reversibility of binding and recyclability of the biomass was assessed. Based on our earlier data, the two most promising lactic acid bacteria, Lactobacillus fermentum ME3 and Bifidobacterium longum 46, were selected for these experiments. The results showed that the presence of other cationic metals and blocking of carboxyl and phosphoryl groups reduced cadmium and lead removal. These results suggest involvement of electrostatic interactions in cadmium and lead removal, and support our earlier findings. Transmission electron micrographs showed large deposits of lead on the bacterial surface suggesting formation of metallic lead precipitates. Both cadmium and lead removal were reversible processes established by full recovery of removed metal after desorption with dilute solutions of EDTA and HNO(3). Resorption capacity of both biomasses tested was reduced after regeneration with 10 mM EDTA and 15 mM HNO(3). Taken together, the results suggest involvement of several reversible mechanisms such as ion exchange and precipitation in cadmium and lead binding by lactic acid bacteria. The results show that specific lactic acid bacteria have the potential for removal of cadmium and lead from water although reduction in resorption capacity after regeneration of the biomass may form a problem. Since the studies so far have mainly focused on removal of single metals from pure water, metal removal in conditions of natural waters should be assessed in further experiments.

  6. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp; Tsuruta, Osamu; Akao, Naoya

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}-more » or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.« less

  7. Measurement of vitamin D3 metabolites in smelter workers exposed to lead and cadmium

    PubMed Central

    Chalkley, S. R.; Richmond, J.; Barltrop, D.

    1998-01-01

    OBJECTIVES: To investigate the effects of lead and cadmium on the metabolic pathway of vitamin D3. METHODS: Blood and urinary cadmium and urinary total proteins were measured in 59 smelter workers occupationally exposed to lead and cadmium. In 19 of these workers, the plasma vitamin D3 metabolites, (25-hydroxycholecalciferol (25 OHD3), 24R, 25-dihydroxycholecalciferol (24R,25(OH)2D3) and 1 alpha,25- dihydroxycholecalciferol (1 alpha, 25(OH)2D3)) were measured together with blood lead. Vitamin D3 metabolites were measured by radioimmunoassay, (RIA), lead and cadmium by atomic absorption spectrophotometry, and total proteins with a test kit. RESULTS: Ranges for plasma 25(OH)D3, 24R,25(OH)2D3 and 1 alpha,25(OH)2D3 were 1.0-51.9 ng/ml, 0.6-5.8 ng/ml, and 0.1-75.7 pg/ml, respectively. Ranges for blood lead were 1-3.7 mumol/l, (21-76 micrograms/dl), blood cadmium 6- 145 nmol/l, and urinary cadmium 3-161 nmol/l. Total proteins in random urine samples were 2.1-32.6 mg/dl. Concentrations of lead and cadmium in blood showed no correlation (correlation coefficient -0.265) but there was a highly significant correlation between blood and urinary cadmium. Concentrations for 24R,25(OH)2D3 were depressed below the normal range as blood and urinary cadmium increased, irrespective of lead concentrations. High cadmium concentrations were associated with decreased plasma 1 alpha,25(OH)2D3 when lead concentrations were < 1.9 mumol/l and with above normal plasma 1 alpha,25(OH)2D3 when lead concentrations were > 1.9 mumol/l, Kruskal-Wallis analysis of variance (K-W ANOVA) chi 2 = 10.3, p = 0.006. Plasma 25(OH)D3 was negatively correlated with both urinary total proteins and urinary cadmium, but showed no correlation with plasma 24R,25(OH)2D3, 1 alpha,25(OH)2D3, blood lead, or blood cadmium. CONCLUSION: Continuous long term exposure to cadmium may result in a state of equilibrium between blood and urinary cadmium. Cadmium concentrations in blood could be predicted from the cadmium

  8. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in methicillin-resistant Staphylococcus aureus CC398 isolates.

    PubMed

    Cavaco, L M; Hasman, H; Stegger, M; Andersen, P S; Skov, R; Fluit, A C; Ito, T; Aarestrup, F M

    2010-09-01

    We recently reported a phenotypic association between reduced susceptibility to zinc and methicillin resistance in Staphylococcus aureus CC398 isolates from Danish swine (F. M. Aarestrup, L. M. Cavaco, and H. Hasman, Vet. Microbiol. 142:455-457, 2009). The aim of this study was to identify the genetic determinant causing zinc resistance in CC398 and examine its prevalence in isolates of animal and human origin. Based on the sequence of the staphylococcal cassette chromosome mec (SCCmec) element from methicillin-resistant S. aureus (MRSA) CC398 strain SO385, a putative metal resistance gene was identified in strain 171 and cloned in S. aureus RN4220. Furthermore, 81 MRSA and 48 methicillin-susceptible S. aureus (MSSA) strains, isolated from pigs (31 and 28) and from humans (50 and 20) in Denmark, were tested for susceptibility to zinc chloride and for the presence of a putative resistance determinant, czrC, by PCR. The cloning of czrC confirmed that the zinc chloride and cadmium acetate MICs for isogenic constructs carrying this gene were increased compared to those for S. aureus RN4220. No difference in susceptibility to sodium arsenate, copper sulfate, or silver nitrate was observed. Seventy-four percent (n = 23) of the animal isolates and 48% (n = 24) of the human MRSA isolates of CC398 were resistant to zinc chloride and positive for czrC. All 48 MSSA strains from both human and pig origins were found to be susceptible to zinc chloride and negative for czrC. Our findings showed that czrC is encoding zinc and cadmium resistance in CC398 MRSA isolates, and that it is widespread both in humans and animals. Thus, resistance to heavy metals such as zinc and cadmium may play a role in the coselection of methicillin resistance in S. aureus.

  9. Zinc, lead, and cadmium levels in serum and milk of lactating women in Ibadan, Nigeria.

    PubMed

    Edem, Victory Fabian; Akintunde, Kikelomo; Adelaja, Yewande Adeola; Nwozo, Sarah O; Charles-Davies, Mabel

    2017-01-01

    Zinc (Zn) is known to interact with lead (Pb) and cadmium (Cd) reversing their toxicity and reducing their concentrations. However, lactating women are at high risk of developing Zn deficiency, which may result in Pb and Cd intoxication or increased exposure of breast-fed infants to Pb and Cd from breast milk. The aim of this study was to determine Zn, Pb, and Cd concentrations and examine their relationship in serum and breast milk of lactating women in Ibadan, Nigeria. Ninety-two lactating women were recruited into this study. Anthropometric measurements were assessed by standard methods while serum and breast milk concentrations of Zn, Pb, and Cd were assessed by atomic absorption spectrophotometry. Data analyzed statistically by Student's t test, Pearson's correlation coefficient, and a multiple regression model were significant at p < 0.05. Zn deficiency was observed in 12 (17.1%) of lactating women. Breast milk levels of Zn, Pb, and Cd were significantly higher than their levels in serum, whereas the ratios Zn:Pb and Zn:Cd in milk were significantly less than serum ratios. Significant negative correlation was observed between milk Pb and serum Zn:Pb while milk Cd correlated positively with milk Zn. Significant positive correlations were observed between serum Zn and serum Zn:Pb, serum Zn and serum Zn:Cd, as well as serum Zn:Cd and serum Zn:Pb. Serum Cd and serum Zn were significantly negatively related. Significant negative correlations between serum Pb and serum Zn:Pb as well as milk Zn:Pb. Serum Cd and serum Zn:Pb as well as serum Zn:Cd correlated negatively. Milk Cd and Zn/Cd positively related with milk Pb while milk Zn was a negatively related with milk Pb in a multiple regression model ( R 2 = 0.333; p = 0.023). Breast milk may be contaminated by toxic metals. However, Zn supplementation in deficient mothers may protect maternal and infant health.

  10. Association of lead and cadmium exposure with frailty in US older adults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Esquinas, Esther, E-mail: esthergge@gmail.com; CIBER of Epidemiology and Public Health; Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with amore » slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  11. A macroinvertebrate assessment of Ozark streams located in lead-zinc mining areas of the Viburnum Trend in southeastern Missouri, USA

    USGS Publications Warehouse

    Poulton, Barry C.; Allert, Ann L.; Besser, John M.; Schmitt, Christopher J.; Brumbaugh, William G.; Fairchild, James F.

    2010-01-01

    The Viburnum Trend lead-zinc mining subdistrict is located in the southeast Missouri portion of the Ozark Plateau. In 2003 and 2004, we assessed the ecological effects of mining in several watersheds in the region. We included macroinvertebrate surveys, habitat assessments, and analysis of metals in sediment, pore water, and aquatic biota. Macroinvertebrates were sampled at 21 sites to determine aquatic life impairment status (full, partial, or nonsupport) and relative biotic condition scores. Macroinvertebrate biotic condition scores were significantly correlated with cadmium, nickel, lead, zinc, and specific conductance in 2003 (r = -0.61 to -0.68) and with cadmium, lead, and pore water toxic units in 2004 (r = -0.55 to -0.57). Reference sites were fully supporting of aquatic life and had the lowest metals concentrations and among the highest biotic condition scores in both years. Sites directly downstream from mining and related activities were partially supporting, with biotic condition scores 10% to 58% lower than reference sites. Sites located greater distances downstream from mining activities had intermediate scores and concentrations of metals. Results indicate that elevated concentrations of metals originating from mining activities were the underlying cause of aquatic life impairment in several of the streams studied. There was general concurrence among the adversely affected sites in how the various indicators responded to mining activities during the overall study.

  12. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cadmium Alternatives High Strength Steel JTP

    DTIC Science & Technology

    2005-03-01

    Cadmium Alternatives HSS JTP Alternative Coatings Selected by JCAT: Primary Repair LHE Cadmium (control) IVD Aluminum (control) Zinc-Nickel, acid...Tin-Zinc Cadmium Alternatives HSS JTP Demonstration Tests Selected by JCAT: Phase I Phase II Hydrogen Embrittlement Hydrogen Re-Embrittlement (NRB...immersion, exposed C-ring (Army)) Bend Adhesion (Q/A) Appearance Throwing Power Composition Uniformity Strippability Galvanic Potential Bend Adhesion

  14. Lead and cadmium in some cereal products on the Finnish market 1990-91.

    PubMed

    Tahvonen, R; Kumpulainen, J

    1993-01-01

    Lead and cadmium contents were determined in representatively collected (commercial mills, wholesalers) samples of rye flour, breakfast cereals, porridge flakes, muesli cereals and pasta products. The samples were digested by heating them overnight in concentrated HNO3. Lead and cadmium concentrations were determined by GFAAS using a platform and (NH4)H2PO4 as a matrix modifier. ARC/CL coded wheat flour and other reference materials (NBS 1567a, BCR no. 189, BCR no. 191) were employed for the analytical quality control. Lead and cadmium contents found in the above samples were generally much lower than the present tolerance limits in Finland (300 micrograms/kg and 100 micrograms/kg respectively). The mean cadmium and lead contents of rye flours studied were very low, being 9 micrograms/kg and 16 micrograms/kg respectively. The mean contents of lead and cadmium in wheat-based breakfast cereals were 22 and 42, in rye products 19 and 26, in oats 17 and 2, in maize products 11 and 18 and in rice products 31 and 10 micrograms/kg, respectively. The mean contents of lead and cadmium in muesli cereals were 34 and 27 micrograms/kg. Remarkably high cadmium contents were found in some pastas made from imported durum wheat. The mean cadmium content of all past products was 79 micrograms/kg with a range of 26-182 micrograms/kg. Lead contents were low, with a mean of 18 micrograms/kg, and a range of 8 to 66 micrograms/kg. Cereals contribute about 59% of the average total dietary cadmium intake in Finland. Nearly 60% of the total cereal consumption is wheat and 27% rye. Since rye has a lower cadmium content than wheat, rye is preferable to wheat. About 15% of lead is derived from cereals. As the total intake of heavy metals is very low in Finland, there is no need to alter cereal consumption.

  15. Seeded Physical Vapor Transport of Cadmium-Zinc Telluride Crystals: Growth and Characterization

    NASA Technical Reports Server (NTRS)

    Palosz, W.; George, M. A.; Collins, E. E.; Chen, K.-T.; Zhang, Y.; Burger, A.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te with x = 0.2 and 40 g in weight were grown on monocrystalline cadmium-zinc telluride seeds by closed-ampoule physical vapor transport with or without excess (Cd + Zn) in the vapor phase. Two post-growth cool-down rates were used. The crystals were characterized using low temperature photoluminescence, atomic force microscopy, chemical etching, X-ray diffraction and electrical measurements. No formation of a second, ZnTe-rich phase was observed.

  16. Cycle life test. Evaluation program for secondary spacecraft cells. [performance tests on silver zinc batteries, silver cadmium batteries, and nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1976-01-01

    Considerable research is being done to find more efficient and reliable means of starting electrical energy for orbiting satellites. Rechargeable cells offer one such means. A test program is described which has been established in order to further the evaluation of certain types of cells and to obtain performance and failure data as an aid to their continued improvement. The purpose of the program is to determine the cycling performance capabilities of packs of cells under different load and temperature conditions. The various kinds of cells tested were nickel-cadmium, silver-cadmium, and silver-zinc sealed cells. A summary of the results of the life cycling program is given in this report.

  17. Differential survivorship among allozyme genotypes of Hyalella azteca exposed to cadmium, zinc or low pH.

    PubMed

    Duan, Y; Guttman, S I; Oris, J T; Bailer, A J

    2001-09-01

    The survival functions (SF) during acute exposures to cadmium, zinc or low pH were examined for amphipods exhibiting variation at three loci. Significant differences were observed in eight of nine locus/toxicant combinations. Two general types of survival curve patterns were identified when genotype-related SF differences were observed. In the first pattern, the survival differences between genotypes were immediately apparent with two SF curves separated at the beginning of exposure with little or no overlap. For the second pattern, both genotypes had similar SF for a period of time, during which the two survival curves crossed or overlapped. After this period, the survival probability of one genotype dropped sharply relative to the other. While SF was related to genotype, it was not related to heterozygosity. Genetic distance analysis showed that exposure to cadmium, zinc or low pH each resulted in directional selection, suggesting the potential use of genetic distance as a bioindicator.

  18. Heavy metal accumulation and growth of seedlings of five forest species as influenced by soil cadmium level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.M.; Parker, G.R.; McFee, W.W.

    1979-07-01

    White pine (Pinus strobus L.), loblolly pine (P. taeda L.), yellow poplar (Liriodendron tulipifera L.), yellow birch (Betula alleghaniensis Britt.), and choke cherry (Prunus virginiana L.) were grown from seeds in the greenhouse for 17 weeks. Plainfield fine sand, with pretreatment cadmium, lead, copper, and zinc concentrations of 0.6, 11.4, 2.0, and 20.6 ppM, respectively, was used as the growth medium. This soil was amended with CdCl/sub 2/ to produce cadmium addition levels of 0, 15, and 100 ppM. Shoot elongation and root and shoot dry weights were reduced with increasing levels of soil cadmium. All species exhibited increased cadmiummore » content in roots and shoots in response to increased soil cadmium levels; however, content varied according to species. Root and shoot accumulations of lead, copper, and zinc also varied with species as well as cadmium concentration in the soil.« less

  19. [Estimation of maximum acceptable concentration of lead and cadmium in plants and their medicinal preparations].

    PubMed

    Zitkevicius, Virgilijus; Savickiene, Nijole; Abdrachmanovas, Olegas; Ryselis, Stanislovas; Masteiková, Rūta; Chalupova, Zuzana; Dagilyte, Audrone; Baranauskas, Algirdas

    2003-01-01

    Heavy metals (lead, cadmium) are possible dashes which quantity is defined by the limiting acceptable contents. Different drugs preparations: infusions, decoctions, tinctures, extracts, etc. are produced using medicinal plants. The objective of this research was to study the impurities of heavy metals (lead, cadmium) in medicinal plants and some drug preparations. We investigated liquid extracts of fruits Crataegus monogyna Jacq. and herbs of Echinacea purpurea Moench., tinctures--of herbs Leonurus cardiaca L. The raw materials were imported from Poland. Investigations were carried out in cooperation with the Laboratory of Antropogenic Factors of the Institute for Biomedical Research. Amounts of lead and cadmium were established after "dry" mineralisation using "Perkin-Elmer Zeeman/3030" model electrothermic atomic absorption spectrophotometer (ETG AAS/Zeeman). It was established that lead is absorbed most efficiently after estimation of absorption capacity of cellular fibers. About 10.73% of lead crosses tinctures and extracts, better cadmium--49.63%. Herbs of Leonurus cardiaca L. are the best in holding back lead and cadmium. About 14.5% of lead and cadmium crosses the tincture of herbs Leonurus cardiaca L. We estimated the factors of heavy metals (lead, cadmium) in the liquid extracts of Crataegus monogyna Jacq. and Echinacea purpurea Moench., tincture of Leonurus cardiaca L. after investigations of heavy metals (lead, cadmium) in drugs and preparations of it. The amounts of heavy metals (lead, cadmium) don't exceed the allowable norms in fruits of Crataegus monogyna Jacq., herbs of Leonurus cardiaca L. and Echinacea purpurea Moench. after estimation of lead and cadmium extraction factors, the maximum of acceptable daily intake and the quantity of drugs consumption in day.

  20. Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions.

    PubMed

    Kristensen, L J; Taylor, M P; Morrison, A L

    2015-03-01

    This study investigates an unusual source of environmental lead contamination - the emission and deposition of lead and zinc concentrates along train lines into and out of Australia's oldest silver-lead-zinc mine at Broken Hill, Australia. Transport of lead and zinc ore concentrates from the Broken Hill mines has occurred for more than 125 years, during which time the majority was moved in uncovered rail wagons. A significant amount of ore was lost to the adjoining environments, resulting in soil immediately adjacent to train lines elevated with concentrations of lead (695 mg kg(-1)) and zinc (2230 mg kg(-1)). Concentrations of lead and zinc decreased away from the train line and also with depth shown in soil profiles. Lead isotopic compositions demonstrated the soil lead contained Broken Hill ore in increasing percentages closer to the train line, with up to 97% apportioned to the mined Broken Hill ore body. SEM examination showed ceiling dusts collected from houses along the train line were composed of unweathered galena particles, characteristic of the concentrate transported in the rail wagons. The loss of ore from the uncovered wagons has significantly extended the environmental footprint of contamination from local mining operations over an area extending hundreds of kilometres along each of the three train lines.

  1. Metals in riparian wildlife of the lead mining district of southeastern Missouri

    USGS Publications Warehouse

    Niethammer, K.R.; Atkinson, R.D.; Baskett, T.S.; Samson, F.B.

    1985-01-01

    Five species of riparian vertebrates (425 individuals) primarily representing upper trophic levels were collected from the Big River and Black River drainages in two lead mining districts of southeastern Missouri, 1981?82. Big River is subject to metal pollution via erosion and seepage from large tailings piles from inactive lead mines. Black River drains part of a currently mined area. Bullfrogs (Rana catesbeiana), muskrats (Ondatra zibethicus), and green-backed herons (Butorides striatus) collected downstream from the source of metal contamination to Big River had significantly (ANOVA, P<0.05) higher lead and cadmium levels than specimens collected at either an uncontaminated upstream site or on Black River. Northern water snakes (Nerodia sipedon) had elevated lead levels below the tailings source, but did not seem to accumulate cadmium. Levels of lead, cadmium, or zinc in northern rough-winged swallows (Stelgidopteryx serripennis) were not related to collecting locality. Carcasses of ten bank swallows (Riparia riparia) collected from a colony nesting in a tailings pile along the Big River had lead concentrations of 2.0?39 ppm wet weight. Differences between zinc concentrations in vertebrates collected from contaminated and uncontaminated sites were less apparent than differences in lead and cadmium. There was little relationship between metal concentrations in the animals studied and their trophic levels. Bullfrogs are the most promising species examined for monitoring environmental levels of lead, cadmium, and zinc. Downstream from the source of tailings, bullfrogs had markedly higher levels of these metals in most of their tissues. The species is also widely distributed in North America, easily caught, and relatively sedentary.

  2. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.

    PubMed

    Jalali, Mohsen; Khanlari, Zahra V

    2007-11-01

    Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.

  3. Distribution of lead and cadmium in trophic levels of some marine organisms.

    PubMed

    Mesmar, M

    1987-01-01

    The concentrations of lead and cadmium in two species of algae, two species of invertebrates, and one species of fish (from Fehmern Baltic Sea) were determined using atomic absorption spectrophotometry. The concentrations of these metals at the producer level (algae) were always higher than at the consumer level. Also, among the consumers there was an obvious difference according to feeding habits, in such a way that they could be ranked according to their high content of lead and cadmium as follows: filter feeder (detritous feeder), plankton feeder. In addition, distribution of lead and cadmium varied within the individual producer (Fucus vesiculosus) in such a way that the holdfast exhibited the highest concentration followed by the apcial tip and the branches of the first dichotomy was the lowest. This alga reflects clear selectivity in absorbing more lead than cadmium.

  4. Cadmium, copper, iron, and zinc concentrations in kidneys of grey wolves, Canis lupus, from Alaska, Idaho, Montana (USA) and the Northwest Territories (Canada).

    PubMed

    Hoffmann, S R; Blunck, S A; Petersen, K N; Jones, E M; Koval, J C; Misek, R; Frick, J A; Cluff, H D; Sime, C A; McNay, M; Beckman, K B; Atkinson, M W; Drew, M; Collinge, M D; Bangs, E E; Harper, R G

    2010-11-01

    Cadmium, copper, iron, and zinc levels were measured in the kidneys of 115 grey wolves (Canis lupus) from Idaho, Montana and Alaska (United States), and from the Northwest Territories (Canada). No significant differences in the levels of iron or copper were observed between locations, but wolf kidneys from more northern locations had significantly higher cadmium levels (Alaska > Northwest Territories > Montana ≈ Idaho), and wolves from Alaska showed significantly higher zinc than other locations. Additionally, female wolves in Alaska had higher iron levels than males, and adult wolves in Montana had higher copper levels than subadults.

  5. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone.

    PubMed

    Kazemipour, Maryam; Ansari, Mehdi; Tajrobehkar, Shabnam; Majdzadeh, Majdeh; Kermani, Hamed Reihani

    2008-01-31

    In this work, adsorption of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) that exist in industrial wastewater onto the carbon produced from nutshells of walnut, hazelnut, pistachio, almond, and apricot stone has been investigated. All the agricultural shell or stone used were ground, sieved to a defined size range, and carbonized in an oven. Time and temperature of heating were optimized at 15 min and 800 degrees C, respectively, to reach maximum removal efficiency. Removal efficiency was optimized regarding to the initial pH, flow rate, and dose of adsorbent. The maximum removal occurred at pH 6-10, flow rate of 3 mL/min, and 0.1g of the adsorbent. Capacity of carbon sources for removing cations will be considerably decreased in the following times of passing through them. Results showed that the cations studied significantly can be removed by the carbon sources. Efficiency of carbon to remove the cations from real wastewater produced by copper industries was also studied. Finding showed that not only these cations can be removed considerably by the carbon sources noted above, but also removing efficiency are much more in the real samples. These results were in adoption to those obtained by standard mixture synthetic wastewater.

  6. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.

    PubMed

    Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien

    2007-06-01

    This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to

  7. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea) compared to standard test organisms

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Brumbaugh, William G.; Kemble, Nile E.; May, Thomas W.; Wang, Ning; MacDonald, Donald D.; Roberts, Andrew D.

    2015-01-01

    Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms—amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)—in sediments from 2 lead–zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2–4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.

  8. Synchrotron-based X-Ray Spectroscopy Studies for Redox-based Remediation of Lead, Zinc, and Cadmium in Mine Waste Materials.

    PubMed

    Karna, Ranju R; Hettiarachchi, Ganga M; Newville, Matthew; Sun, ChengJun; Ma, Qing

    2016-11-01

    Several studies have examined the effect of submergence on the mobility of metals present in mine waste materials. This study examines the effect of organic carbon (OC) and sulfur (S) additions and submergence time on redox-induced biogeochemical transformations of lead (Pb), zinc (Zn), and cadmium (Cd) present in mine waste materials collected from the Tri-State mining district located in southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. A completely randomized design, with a two-way treatment structure, was used for conducting a series of column experiments. Two replicates were used for each treatment combination. Effluent samples were collected at several time points, and soil samples were collected at the end of each column experiment. Because these samples are highly heterogeneous, we used a variety of synchrotron-based techniques to identify Pb, Zn, and Cd speciation at both micro- and bulk-scale. Spectroscopic analysis results from the study revealed that the addition of OC, with and without S, promoted metal-sulfide formation, whereas metal carbonates dominated in the nonamended flooded materials and in mine waste materials only amended with S. Therefore, the synergistic effect of OC and S may be more promising for managing mine waste materials disposed of in flooded subsidence mine pits instead of individual S or OC treatments. The mechanistic understanding gained in this study is also relevant for remediation of waste materials using natural or constructed wetland systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  10. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Long-Lian, E-mail: Longlian57@163.com; Lu, Ling; Pan, Ya-Juan

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu,more » Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.« less

  11. Assessment of semen function and lipid peroxidation among lead exposed men

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasperczyk, Aleksandra; Kasperczyk, Slawomir; Horak, Stanislaw

    The study population included healthy, fertile men, employees of Zinc and Lead Metalworks (n = 63). Workers exposed to lead were divided into two groups: a group with moderate exposure to lead (ME) - blood lead level (PbB) 25-40 {mu}g/dl and a group with high exposure to lead (HE) PbB = 40-81 {mu}g/dl. The control group consisted of office workers with no history of occupational exposure to lead. Evaluation of lead, cadmium and zinc level in blood and seminal plasma, zinc protoporphyrin in blood (ZPP), 5-aminolevulinic acid in urine (ALA), malondialdehyde (MDA) in seminal plasma and sperm analysis were performed.more » No differences were noted in the concentration of cadmium and zinc in blood and seminal plasma in the study population. Lipid peroxidation in seminal plasma, represented as MDA concentration, significantly increased by about 56% in the HE group and the percentage of motile sperm cells after 1 h decreased by about 34% in comparison to the control group. No statistically significant correlation between other parameters of sperm analysis and lead exposure parameters nor between lead, cadmium and zinc concentration in blood and seminal plasma were found. A positive association between lead intoxication parameters (PbB, ZPP, lead seminal plasma) and MDA concentration in sperm plasma and inverse correlation with sperm cells motility (PbB, ZPP) was found. An increased concentration of MDA was accompanied by a drop in sperm cells motility. In conclusion, we report that high exposure to lead causes a decrease of sperm motility in men most likely as a result of increased lipid peroxidation, especially if the level in the blood surpasses the concentration of 40 {mu}g/dl.« less

  12. [The content of zinc and cadmium in medicinal plants and their infusions].

    PubMed

    Celechovská, O; Pízová, M; Konícková, J

    2004-11-01

    The content of cadmium and zinc in the elder (Sambucus nigra) and the lime tree (Tilia spec.) collected from four different localities in the Czech Republic was studied. From the elder, the flowers (Sambuci flos), pollen, and fruits (Sambuci fructus) were collected, from the lime tree, the flowers (Tiliae flos) were used. The highest content of Zn and Cd was found in the pollen of the elder ( Zn 65.0-94.4 mg.kg(-1), Cd 14.1-43.1 microg.kg(-1)), the lowest in its fruits (Zn 4.5-14.7 mg.kg(-1), Cd max. 8.1 microg.kg(-1)). The content of Zn was lower in the Tiliae flos (13.8-32.5 mg.kg(-1)) than in the Sambuci flos (30.8-49.9 mg.kg(-1)). The Cd content in Tiliae flos (9.9-58.9 microg.kg(-1)) was higher in comparison with the Sambuci flos (3.3-15.3 microg.kg(-1)). The concentration of Cd in the infusion (10, 30 and 60 min) was found under the detection limit of the used metod (0.04 microg.l(-1)). The highest content of Zn transported to the infusion came from the Tiliae flos (20-36%), from the Sambuci flos (17-25%), and from the Sambuci fruits (12-19%). The content of both zinc and cadmium in the studied drugs depends on the localities of the original of plants.

  13. Analysis of the accelerated crucible rotation technique applied to the gradient freeze growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-06-01

    We employ finite-element modeling to assess the effects of the accelerated crucible rotation technique (ACRT) on cadmium zinc telluride (CZT) crystals grown from a gradient freeze system. Via consideration of tellurium segregation and transport, we show, for the first time, that steady growth from a tellurium-rich melt produces persistent undercooling in front of the growth interface, likely leading to morphological instability. The application of ACRT rearranges melt flows and tellurium transport but, in contrast to conventional wisdom, does not altogether eliminate undercooling of the melt. Rather, a much more complicated picture arises, where spatio-temporal realignment of undercooled melt may act to locally suppress instability. A better understanding of these mechanisms and quantification of their overall effects will allow for future growth optimization.

  14. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    NASA Astrophysics Data System (ADS)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-07-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  15. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    PubMed

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Biomarker responses of Peromyscus leucopus exposed to lead and cadmium in the Southeast Missouri Lead Mining District

    USGS Publications Warehouse

    Beyer, W. Nelson; Casteel, Stan W.; Friedrichs, Kristen R.; Gramlich, Eric; Houseright, Ruth A.; Nichols, John W.; Karouna-Renier, Natalie; Kim, Dae Young; Rangen, Kathleen; Rattner, Barnett A.; Schultz, Sandra

    2018-01-01

    Biomarker responses and histopathological lesions have been documented in laboratory mammals exposed to elevated concentrations of lead and cadmium. The exposure of white-footed mice (Peromyscus leucopus) to these metals and the potential associated toxic effects were examined at three contaminated sites in the Southeast Missouri Lead Mining District and at a reference site in MO, USA. Mice from the contaminated sites showed evidence of oxidative stress and reduced activity of red blood cell δ-aminolevulinic acid dehydratase (ALAD). Histological examinations of the liver and kidney, cytologic examination of blood smears, and biomarkers of lipid peroxidation and DNA damage failed to show indications of toxic effects from lead. The biomagnification factor of cadmium (hepatic concentration/soil concentration) at a site with a strongly acid soil was 44 times the average of the biomagnification factors at two sites with slightly alkaline soils. The elevated concentrations of cadmium in the mice did not cause observable toxicity, but were associated with about a 50% decrease in expected tissue lead concentrations and greater ALAD activity compared to the activity at the reference site. Lead was associated with a decrease in concentrations of hepatic glutathione and thiols, whereas cadmium was associated with an increase. In addition, to support risk assessment efforts, we developed linear regression models relating both tissue lead dosages (based on a previously published a laboratory study) and tissue lead concentrations in Peromyscus to soil lead concentrations.

  17. Biomarker responses of Peromyscus leucopus exposed to lead and cadmium in the Southeast Missouri Lead Mining District.

    PubMed

    Beyer, W Nelson; Casteel, Stan W; Friedrichs, Kristen R; Gramlich, Eric; Houseright, Ruth A; Nichols, John R; Karouna-Renier, Natalie K; Kim, Dae Young; Rangen, Kathleen L; Rattner, Barnett A; Schultz, Sandra L

    2018-01-29

    Biomarker responses and histopathological lesions have been documented in laboratory mammals exposed to elevated concentrations of lead and cadmium. The exposure of white-footed mice (Peromyscus leucopus) to these metals and the potential associated toxic effects were examined at three contaminated sites in the Southeast Missouri Lead Mining District and at a reference site in MO, USA. Mice from the contaminated sites showed evidence of oxidative stress and reduced activity of red blood cell δ-aminolevulinic acid dehydratase (ALAD). Histological examinations of the liver and kidney, cytologic examination of blood smears, and biomarkers of lipid peroxidation and DNA damage failed to show indications of toxic effects from lead. The biomagnification factor of cadmium (hepatic concentration/soil concentration) at a site with a strongly acid soil was 44 times the average of the biomagnification factors at two sites with slightly alkaline soils. The elevated concentrations of cadmium in the mice did not cause observable toxicity, but were associated with about a 50% decrease in expected tissue lead concentrations and greater ALAD activity compared to the activity at the reference site. Lead was associated with a decrease in concentrations of hepatic glutathione and thiols, whereas cadmium was associated with an increase. In addition, to support risk assessment efforts, we developed linear regression models relating both tissue lead dosages (based on a previously published a laboratory study) and tissue lead concentrations in Peromyscus to soil lead concentrations.

  18. Lead, cadmium and chromium in raw and boiled portions of Norway lobster.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Tarasco, Renata; Amorena, Michele

    2014-01-01

    Lead, cadmium and chromium levels were determined in different raw and boiled portions of Norway lobster caught in the central Adriatic Sea (Italy). In raw specimens, the lowest concentrations were always detected in the white meat. Lead and cadmium content in the edible portion never exceeded the maximum levels set by European legislation. The highest cadmium and chromium values (0.47 ± 0.04 and 0.62 ± 0.13 mg/kg wet weight, respectively) were detected in the brown meat, while the highest lead concentrations were found in the exoskeleton (0.21 ± 0.01 mg/kg wet weight). Also, the boiled samples showed the lowest metal levels in the white meat, even if a significant increase (p < 0.01) was found for lead and cadmium compared to the corresponding raw portions. Among metals, chromium showed the highest concentrations in both raw and boiled portions, but up to now, the European legislation did not envisage any limits in seafood.

  19. Variation of Metallothionein I and II Gene Expression in the Bank Vole (Clethrionomys glareolus) Under Environmental Zinc and Cadmium Exposure.

    PubMed

    Mikowska, Magdalena; Dziublińska, Barbara; Świergosz-Kowalewska, Renata

    2018-07-01

    The main idea of the study was to assess how environmental metal pollution activates defence responses at transcription levels in the tissues of bank voles (Clethrionomys glareolus). For this purpose, the metallothioneine (MT) genes expression (a well known biomarker of exposure and response to various metals) was measured. The real-time PCR method was used for relative quantification of metallothionein I and metallothionein II expressions in the livers, kidneys and testes of bank voles from six populations exposed to different contaminants, mainly zinc, cadmium and iron. The assessment of Zn, Cu and Fe concentrations in the tissues allowed to study the MTs gene expression responses to these metals. ANOVA analysis showed differences between populations in terms of metal concentration in tissues, livers and kidneys. Student T test showed significant differences in metal concentration between unpolluted and polluted sites only for the liver tissue: significantly lower Zn levels and significantly higher Fe levels in the unpolluted sites. Kruskal-Wallis test performed on C T data shows differences in the gene expressions between populations for both MT genes for liver and testes. In the liver metallothionein I gene expression was upregulated in populations considered as more polluted (up to 7.5 higher expression in Miasteczko Śląskie comparing to Mikołajki). Expression of metallothionein II revealed a similar pattern. In kidneys, differences in expression of both MT genes were not that evident. In testes, MT upregulation in polluted sites was noted for metallothionein II. For metallothionein however, we found downregulation in populations from more contaminated sites. The expressions of both MTs were positively influenced by cadmium in kidney (concentration data from the previous study) and zinc and copper in liver, while cadmium had effects only on the liver MT II gene expression. Positive relationship was obtained for lead and metallothionein II expression in the

  20. Essential elements, cadmium, and lead in raw and pasteurized cow and goat milk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, A.; Collins, W.F.; Williams, H.L.

    1985-08-01

    Fifteen essential elements plus cadmium and lead were determined in raw and pasteurized cow and goat milks by atomic absorption spectrophotometry. When results were compared on a wet weight basis, there were no significant differences between the raw and pasteurized milks except for cobalt, iron, and lead in goat milk. When copper in goat milk was expressed on a dry weight basis, there was a significant difference between raw and pasteurized milk. There were significantly higher amounts of cobalt, copper, iron, lead, magnesium, and phosphorus, wet weight basis, in pasteurized goat milk than in pasteurized cow milk. Significantly more nickelmore » and sodium were in pasteurized cow milk. No difference in the content of chloride, calcium, potassium, and zinc was significant between the two milks. When dry weights of the two milks were compared, statistical differences were the same, except there was significantly more calcium and potassium in pasteurized cow milk than in pasteurized goat milk and there were no significant differences in the content of lead and phosphorus between the two milks. Percentages of the established and estimated recommended daily allowances show both cow and goat milk to be excellent sources of calcium, phosphorus, and potassium and fair sources of iron, magnesium, and sodium.« less

  1. Blood Cadmium and Lead and Chronic Kidney Disease in US Adults: A Joint Analysis

    PubMed Central

    Navas-Acien, Ana; Tellez-Plaza, Maria; Guallar, Eliseo; Muntner, Paul; Silbergeld, Ellen; Jaar, Bernard

    2009-01-01

    Environmental cadmium and lead exposures are widespread, and both metals are nephrotoxic at high exposure levels. Few studies have evaluated the associations between low-level cadmium and clinical renal outcomes, particularly with respect to joint cadmium and lead exposure. The geometric mean levels of blood cadmium and lead were 0.41 μg/L (3.65 nmol/L) and 1.58 μg/dL (0.076 μmol/L), respectively, in 14,778 adults aged ≥20 years who participated in the National Health and Nutrition Examination Survey (1999–2006). After adjustment for survey year, sociodemographic factors, chronic kidney disease risk factors, and blood lead, the odds ratios for albuminuria (≥30 mg/g creatinine), reduced estimated glomerular filtration rate (eGFR) (<60 mL/minute/1.73 m2), and both albuminuria and reduced eGFR were 1.92 (95% confidence interval (CI): 1.53, 2.43), 1.32 (95% CI: 1.04, 1.68), and 2.91 (95% CI: 1.76, 4.81), respectively, comparing the highest with the lowest blood cadmium quartiles. The odds ratios comparing participants in the highest with the lowest quartiles of both cadmium and lead were 2.34 (95% CI: 1.72, 3.18) for albuminuria, 1.98 (95% CI: 1.27, 3.10) for reduced eGFR, and 4.10 (95% CI: 1.58, 10.65) for both outcomes. These findings support consideration of cadmium and lead as chronic kidney disease risk factors in the general population and provide novel evidence of risk with environmental exposure to both metals. PMID:19700501

  2. Concentrations of arsenic, cadmium, copper, lead, selenium, and zinc in fish from the Mississippi River Basin, 1995

    USGS Publications Warehouse

    Schmitt, Christopher J.

    2004-01-01

    Fish were collected in late 1995 from 34 National Contaminant Biomonitoring Program (NCBP) stations and 12 National Water Quality Assessment Program (NAWQA) stations in the Mississippi River basin (MRB), and in late 1996 from a reference site in West Virginia. The NCBP sites represented key points (dams, tributaries, etc.) in the largest rivers of the MRB. The NAWQA sites were typically on smaller rivers and were selected to represent dominant land uses in their watersheds. The West Virginia site, which is in an Eastern U.S. watershed adjacent to the MRB, was selected to document elemental concentrations in fish used for other aspects of a larger study and to provide additional contemporaneous data on background elemental concentrations. At each site four samples, each comprising (nominally) 10 adult common carp (Cyprinus carpio, `carp') or black bass (Micropterus spp., `bass') of the same sex, were collected. The whole fish were composited by station, species, and gender for analysis of arsenic (As), lead (Pb), and selenium (Se) by atomic absorption spectroscopy and for cadmium (Cd), copper (Cu), and zinc (Zn) by inductively-coupled plasma emission spectroscopy. Concentrations of most of the elements examined were lower in both carpand bass from the reference site, a small impoundment located in a rural area, than from the NCBP and NAWQA sites on rivers and larger impoundments. In contrast, there were few overall differences between NCBP sites NAWQA sites. The 1995 results generally confirmed the continued weathering and re-distribution of these elemental contaminants in the MRB; concentrations declined or were unchanged from 1984–1986 to 1995 at most NCBP sites, thus continuing two-decade trends. Exceptions were Se at Station 77 (Arkansas R. at John Martin Reservoir, CO), where concentrations have been elevated historically and increased slightly (to 3.8–4.7 μg g-1 in bass and carp); and Pb, Cd, and Zn at Station 67 (Allegheny R. at Natrona, PA), where

  3. Assessment of copper, cadmium and zinc remobilization in Mediterranean marine coastal sediments

    NASA Astrophysics Data System (ADS)

    Sakellari, Aikaterini; Plavšić, Marta; Karavoltsos, Sotiris; Dassenakis, Manos; Scoullos, Michael

    2011-01-01

    The remobilization of copper, cadmium and zinc in sediments of three selected coastal microenvironments of the Aegean Sea (Eastern Mediterranean) is assessed. Various analytical methods and techniques were employed providing concentrations, profiles and forms of metals and organic matter in sediments and pore waters. At Loutropyrgos, a non-industrial site located, however, within an intensively industrialized enclosed gulf, an intense resupply of zinc in pore water from sediment was recorded, correlating with the highest value of weakly bound fraction of zinc determined at this area. The comparatively high zinc concentrations measured in the pore waters (394 nM), exceed considerably those in the overlying seawater (12.5 nM determined by DGT; 13.5 nM total), resulting in the formation of a strong concentration gradient at the sediment-water interface. Potential zinc flux at the sediment-water interface at Loutropyrgos (based on 0.4 mm DGT profile) was calculated equal to 0.8 mmol.m -2.d -1. The half lives of trace metals at Loutropyrgos site, based on the aforementioned DGT profiles, amount to 0.1 y (Zn), 2.8 y (Cd), 4.5 y (Cu), 2.2 y (Mn) and 0.4 y (Fe) pointing out to the reactivity of these metals at the sediment-water interface. The concentration of dissolved organic carbon (DOC) in pore waters of the three selected sites (2.7-5.2 mg/L) was up to four times higher compared to that of the corresponding overlying seawater. Similarly, the concentrations of carbohydrates in pore waters (0.20-0.91 mg/L monosaccharides; 0.71-1.6 mg/L polysaccharides) are an order of magnitude higher than those of seawater, forming a concentration gradient at the sediment-water interface. Total carbohydrates contribute between 34 and 48% of the organic carbon of the pore waters, being significantly higher than those of seawater from the corresponding areas, which were in the range of 15-21%. The complexing capacity as for copper ions (CCu) determined in pore water ranges widely, from 0

  4. Lead and cadmium concentrations in mink from northern Idaho

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.

    1990-01-01

    The purposes of this study were to determine concentrations of cadmium and lead in mink (Mustela vison) in northern Idaho, to discuss potential effects, and to determine whether levels have declined. Mink (skinned carcasses) from the Coeur d'Alene River system (northern Idaho) were ohtained from trappers during the 1981-82 (n = 17) and 1986-87 (n= 14) seasons. Livers of all eight mink from the uncontaminated North Fork contained low levels of lead; whereas, 9 of the 23 mink from lateral lakes adjoining the contaminated main stem, downstream from a mining-smelting complex, contained potentially hazardous lead levels (>5 ?g/g). Stomach contents of nine mink contained variahle concentrations of lead (0.15 to 51 ?g/g); samples from the main stem contained the highest values. No difference was detected in lead concentrations in livers of mink trapped from the lateral lakes in 1981-82 and 1986-87. Levels of cadmium were low in all samples, but lead levels were the highest ever recorded in mink. Our results suggest that metal pollution has probably led to localized declines in mink populations.

  5. Adverse health effects in Canada geese (Branta canadensis) associated with waste from zinc and lead mines in the Tri-State Mining District (Kansas, Oklahoma, and Missouri, USA).

    PubMed

    van der Merwe, Deon; Carpenter, James W; Nietfeld, Jerome C; Miesner, John F

    2011-07-01

    Lead and zinc poisoning have been recorded in a variety of bird species, including migrating waterfowl such as Canada Geese (Branta canadensis), at sites contaminated with mine waste from lead and zinc mines in the Tri-State Mining District, Kansas, Oklahoma, and Missouri, USA. The adverse health impacts from mine waste on these birds may, however, be more extensive than is apparent from incidental reports of clinical disease. To characterize health impacts from mine waste on Canada Geese that do not have observable signs of poisoning, four to eight apparently healthy birds per site were collected from four contaminated sites and an uncontaminated reference site, and examined for physical and physiologic evidence of metals poisoning. Tissue concentrations of silver, aluminum, arsenic, barium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, nickel, lead, selenium, thallium, vanadium, and zinc were determined by inductively coupled plasma mass spectroscopy. Adverse health effects due to lead were characterized by assessing blood δ-aminolevulinic acid dehydratase (ALAD) enzyme activity. Adverse effects associated with zinc poisoning were determined from histologic examination of pancreas tissues. Elevated tissue lead concentrations and inhibited blood ALAD enzyme activities were consistently found in birds at all contaminated sites. Histopathologic signs of zinc poisoning, including fibrosis and vacuolization, were associated with elevated pancreatic zinc concentrations at one of the study sites. Adverse health effects associated with other analyzed elements, or tissue concentrations indicating potentially toxic exposure levels to these elements, were not observed.

  6. Effect of steady crucible rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Patrick Doty, F.; Derby, Jeffrey J.

    1999-05-01

    Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of steady crucible rotation on axial and radial segregation in the grown crystal. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and pseudo-binary zinc segregation. Imposing a moderate rotation rate of 10 rpm on the system slightly improves axial segregation but makes radial segregation much worse. Moreover, values of dimensionless thermal Rossby and Taylor numbers calculated for this system indicate that the baroclinic instability may occur at the rotation rates studied.

  7. Determination of cadmium and lead in table salt by sequential multi-element flame atomic absorption spectrometry.

    PubMed

    Amorim, Fábio A C; Ferreira, Sérgio L C

    2005-02-28

    In the present paper, a simultaneous pre-concentration procedure for the sequential determination of cadmium and lead in table salt samples using flame atomic absorption spectrometry is proposed. This method is based on the liquid-liquid extraction of cadmium(II) and lead(II) ions as dithizone complexes and direct aspiration of the organic phase for the spectrometer. The sequential determination of cadmium and lead is possible using a computer program. The optimization step was performed by a two-level fractional factorial design involving the variables: pH, dithizone mass, shaking time after addition of dithizone and shaking time after addition of solvent. In the studied levels these variables are not significant. The experimental conditions established propose a sample volume of 250mL and the extraction process using 4.0mL of methyl isobutyl ketone. This way, the procedure allows determination of cadmium and lead in table salt samples with a pre-concentration factor higher than 80, and detection limits of 0.3ngg(-1) for cadmium and 4.2ngg(-1) for lead. The precision expressed as relative standard deviation (n = 10) were 5.6 and 2.6% for cadmium concentration of 2 and 20ngg(-1), respectively, and of 3.2 and 1.1% for lead concentration of 20 and 200ngg(-1), respectively. Recoveries of cadmium and lead in several samples, measured by standard addition technique, proved also that this procedure is not affected by the matrix and can be applied satisfactorily for the determination of cadmium and lead in saline samples. The method was applied for the evaluation of the concentration of cadmium and lead in table salt samples consumed in Salvador City, Bahia, Brazil.

  8. Solution structure of the His12 --> Cys mutant of the N-terminal zinc binding domain of HIV-1 integrase complexed to cadmium.

    PubMed Central

    Cai, M.; Huang, Y.; Caffrey, M.; Zheng, R.; Craigie, R.; Clore, G. M.; Gronenborn, A. M.

    1998-01-01

    The solution structure of His12 --> Cys mutant of the N-terminal zinc binding domain (residues 1-55; IN(1-55)) of HIV-1 integrase complexed to cadmium has been solved by multidimensional heteronuclear NMR spectroscopy. The overall structure is very similar to that of the wild-type N-terminal domain complexed to zinc. In contrast to the wild-type domain, however, which exists in two interconverting conformational states arising from different modes of coordination of the two histidine side chains to the metal, the cadmium complex of the His12 --> Cys mutant exists in only a single form at low pH. The conformation of the polypeptide chain encompassing residues 10-18 is intermediate between the two forms of the wild-type complex. PMID:9865962

  9. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    USGS Publications Warehouse

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  10. Removal of lead and zinc ions from water by low cost adsorbents.

    PubMed

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  11. Lead and zinc intoxication in companion birds.

    PubMed

    Puschner, Birgit; Poppenga, Robert H

    2009-01-01

    Although the toxicity of lead and zinc to birds is widely recognized by veterinarians and bird owners, these metals are frequently found in the environments of pet and aviary birds, and intoxications are common. Clinical signs exhibited by intoxicated birds are often nonspecific, which makes early diagnosis difficult. Fortunately, lead and zinc analyses of whole blood and serum or plasma, respectively, are readily available and inexpensive; elevated concentrations can confirm intoxication. Once diagnosed, intoxication can be effectively treated by (1) preventing further exposure, (2) administering chelating drugs, and (3) providing symptomatic and supportive care.

  12. Assessment of the pollution and ecological risk of lead and cadmium in soils.

    PubMed

    Wieczorek, Jerzy; Baran, Agnieszka; Urbański, Krzysztof; Mazurek, Ryszard; Klimowicz-Pawlas, Agnieszka

    2018-03-27

    The aim of the study was to assess the content, distribution, soil binding capacity, and ecological risk of cadmium and lead in the soils of Malopolska (South Poland). The investigation of 320 soil samples from differently used land (grassland, arable land, forest, wasteland) revealed a very high variation in the metal content in the soils. The pollution of soils with cadmium and lead is moderate. Generally, a point source of lead and cadmium pollution was noted in the study area. The highest content of cadmium and lead was found in the northwestern part of the area-the industrial zones (mining and metallurgical activity). These findings are confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. Among the different types of land use, forest soils had by far the highest mean content of bioavailable forms of both metals. The results showed a higher soil binding capacity for lead than for cadmium. However, for both metals, extremely high (class 5) accumulation capacities were dominant. Based on the results, the investigated soils had a low (Pb) and moderate (Cd) ecological risk on living components. Soil properties, such as organic C, pH, sand, silt, and clay content, correlated with the content of total and bioavailable forms of metals in the soils. The correlations, despite being statistically significant, were characterized by very low values of correlation coefficient (r = 0.12-0.20, at p ≤ 0.05). Therefore, the obtained data do not allow to define any conclusions as to the relationships between these soil properties. However, it must be highlighted that there was a very strong positive correlation between the total content of cadmium and lead and their bioavailable forms in the soils.

  13. Dynamics of manganese, cadmium, and lead in experimental power plant ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, B.J.; Cummings, T.F.; Gower, M.

    1977-06-01

    This study was designed to determine the effect of heated power plant cooling water on the compartmentalization of manganese, lead, and cadmium in experimental ponds. Caged channel catfish and green sunfish were kept in an experimental pond and a control pond. Periodically, whole fishes, gill, heart, kidney, liver, and musculature were analyzed for the three metals. Concentrations of the three metals in fishes were not affected by the temperature differential maintained during the study. There was no correlation in concentrations of cadmium and lead with age (weight and length) of fishes but manganese concentrations declined slightly with age. Aquatic organismsmore » such as snails, fingernail clams, leeches, tubificid annelids, and dragonfly nymphs exhibited concentrations of cadmium higher than sediments while snails and duckweed more closely reflected concentrations of manganese in sediments.« less

  14. Lead and cadmium concentrations in seawater and algae of the Tunisian coast.

    PubMed

    El Ati-Hellal, M; Hedhili, A; Hellal, F; Boujlel, K; Dachraoui, M; Bousnina, M; Ghorbel, H; Ndhif, M

    2005-01-01

    Both lead and cadmium are toxic trace metals, even in very weak concentrations. The aim of this study was to estimate lead and cadmium pollution in various sites of the Tunisian coast and to verify the possibility of modification of the algae bioconcentration power according to water physico-chemical conditions. Our study concerned 99 samples of algae and 99 samples of seawater, taken in different sites of the Tunisian littoral. The analysis was realized by atomic absorption spectrophotometry (oven graphite). In algae, Sfax site presented the highest concentrations of lead when Sousse site showed the lowest ones. In seawater, the most amounts of lead were observed in Bizerte, Mahdia and Sfax sites, and those of cadmium in Bizerte and Medenine coasts. Bizerte's coast seems to be the most exposed zone to pollution. Indeed, the intensification of sea traffic may take place on this pollution because hydrocarbons derived from petroleum contain some tetraethylic lead characterised by its great toxicity. Sousse's region is the least polluted zone; it might be due to the development of tourism and a strict regulation of pollution in this district.

  15. Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features.

    PubMed

    dos Santos, Rodrigo W; Schmidt, Éder C; de L Felix, Marthiellen R; Polo, Luz K; Kreusch, Marianne; Pereira, Debora T; Costa, Giulia B; Simioni, Carmen; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-07-01

    Heavy metals, such as lead, copper, cadmium, zinc, and nickel, are among the most common pollutants found in both industrial and urban effluents. High concentrations of these metals cause severe toxic effects, especially to organisms living in the aquatic ecosystem. Cadmium (Cd), lead (Pb) and copper (Cu) are the heavy metals most frequently implicated as environmental contaminants, and they have been shown to affect development, growth, photosynthesis and respiration, and morphological cell organization in seaweeds. This paper aimed to evaluate the effects of 50μM and 100μM of Cd, Pb and Cu on growth rates, photosynthetic pigments, biochemical parameters and ultrastructure in Gelidium floridanum. To accomplish this, apical segments of G. floridanum were individually exposed to the respective heavy metals over a period of 7 days. Plants exposed to Cd, Cu and Pb showed discoloration of thallus pigmentation, chloroplast alteration, especially degeneration of thylakoids, and decrease in photosynthetic pigments, such as chlorophyll a and phycobiliproteins, in samples treated with Cd and Cu. Moreover, cell wall thickness and the volume of plastoglobuli increased. X-ray microanalysis detected Cd, Cu and Pb absorption in the cell wall. The results indicate that Cd, Pb and Cu negatively affect metabolic performance and cell ultrastructure in G. floridanum and that Cu was more toxic than either Pb or Cd. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Exposure to lead and cadmium released from ceramics and glassware intended to come into contact with food.

    PubMed

    Rebeniak, Małgorzata; Wojciechowska-Mazurek, Maria; Mania, Monika; Szynal, Tomasz; Strzelecka, Agnieszka; Starska, Krystyna

    2014-01-01

    The dietary intake of harmful elements, particularly lead and cadmium constitutes a health threat and essential measures should be undertaken to reduce consumer exposure. The latest risk assessments by the European Food Safety Authority (EFSA) and Joint FAO/WHO Expert Committee on Food Additives (JECFA) have indicated that the Provisional Tolerable Weekly Intake (PTWI) for lead and cadmium do not ensure health safety and their review had to be undertaken. Migration from ceramics and glassware intended for food contact is an important source of lead and cadmium intake. To study the release of lead and cadmium from ceramics and glassware (including decorated products) intended for food contact that are available on the Polish market and to assess the resulting health risk to the consumer. Ceramics and glassware (mainly decorated) were sampled from the Polish market during 2010- 2012 throughout the country by staff of the Sanitary-Epidemiological Stations in accordance with monitoring procedures and guidelines designed by the National Institute of Public Health-National Institute of Hygiene. Migration of lead and cadmium was measured by incubating the samples with 4% acetic acid for 24 hours at a temperature of 22±2ºC in the dark. Flame Atomic Absorption Spectrometry (FAAS) was used to measure these elements in food simulant according to a validated and accredited method (PN-EN ISO/IEC 17025). 1273 samples of ceramics and glass wares were analysed in 2010-2012. Lead and cadmium release were usually found to be below analytical detection limits. Permissible migration limits (as prescribed by the legislation) of these metals were rarely exceeded and were reported mainly in articles imported from outside the EU. Two imported and decorated ceramic flat plates released lead at 0.9 and 11.9 mg/dm2 (limit 0.8 mg/dm2) and 5 imported deep plates gave migration values of 4.7 mg/L, 4.9 mg/L, 5.6 mg/L, 6.1 mg/L, 8.6 mg/L (limit 4.0 mg/L). Lead migrations from ceramic ware rims

  17. Determination of cadmium in sewage sludge by differential pulse anodic stripping voltammetry.

    PubMed

    Pacer, R A; Scott Ellis, C K; Peng, R

    1999-07-12

    A procedure was developed for the determination of cadmium in sewage sludge by differential pulse anodic stripping voltammetry. A sodium peroxide fusion carried out in zirconium crucibles was found to give satisfactory results, based on analysis of standard reference materials. Samples collected from the municipal sludge lagoon in Fort Wayne, Indiana were found to have cadmium abundances ranging from 120 to 250 ppm, with most samples falling in the 120 to 170 ppm range. Interference from zinc is easily eliminated by carrying out the deposition step at -0.95 V vs. Ag/AgCl. Lead-to-cadmium ratios as high as 50:1 (ppm basis) have no effect on the height of the cadmium peak.

  18. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda.

    PubMed

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-05-01

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0+/-2.3 to 64.6+/-11.7 mg/kg Pb, 78.4+/-18.4 to 265.6+/-63.2 mg/kg Zn, and 0.8+/-0.13 to 1.40+/-0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas.

  19. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-05-15

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0{+-}2.3 to 64.6{+-}11.7more » mg/kg Pb, 78.4{+-}18.4 to 265.6{+-}63.2 mg/kg Zn, and 0.8{+-}0.13 to 1.40{+-}0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas.« less

  20. The toxic Doppelganger: on the ionic and molecular mimicry of cadmium.

    PubMed

    Chmielowska-Bąk, Jagna; Izbiańska, Karolina; Deckert, Joanna

    2013-01-01

    Cadmium is a toxic heavy metal which can cause numerous alterations in cell functioning. Exposure to cadmium leads to generation of reactive oxygen species, disorders in membrane structure and functioning, inhibition of respiration, disturbances in ion homeostasis, perturbations in cell division, and initiation of apoptosis and necrosis. This heavy metal is considered a carcinogen by the Agency for Toxic Substances and Disease Registry. At least some of the described toxic effects could result from the ability of cadmium to mimic other divalent ions and alert signal transduction networks. This review describes the role of cadmium mimicry in its uptake, reactive oxygen species generation, alterations in calmodulin, Wnt/β-catenin and estrogen signaling pathways, and modulation of neurotransmission. The last section is dedicated to the single known case of a favorable function performed by cadmium mimicry: marine diatoms, which live in zinc deficient conditions, utilize cadmium as a cofactor in carbonic anhydrase - so far the only described cadmium enzyme.

  1. The use of vegetables in the biomonitoring of cadmium and lead pollution in the environment.

    PubMed

    Szczygłowska, Marzena; Bodnar, Małgorzata; Namieśnik, Jacek; Konieczka, Piotr

    2014-01-01

    Lead and cadmium emitted from various anthropogenic sources have the ability to accumulate in tissues of living organisms. The phenomenon of accumulation of metals in the body is harmful and undesirable. The ability of plants to accumulate heavy metals from the individual elements of the environment has been used in biomonitoring of pollution. Leaves and roots of vegetables have particular predisposition for accumulating toxic metals such as lead and cadmium and therefore can be used for biomonitoring of the environment, mainly as a tool for assessing the extent of soil contamination. The article discusses information in the literature on entry paths of lead and cadmium into the body, toxic effects of lead and cadmium on the human organism, and the use of vegetables as a tool in the biomonitoring of heavy metals in different elements of the environment.

  2. [Effect of fluorine, selenium and cadmium on anti-oxidase and microelements in rat's body].

    PubMed

    Mou, Suhua; Qin, Si; Hu, Qituo; Duan, Xianyu

    2004-03-01

    To study the effect of fluorine, selenium and cadmium on lipid peroxide(LPO), the activity of glutathione peroxidase (GSH-Px) and microelements such as cadmium, selenium and zinc in rats. Measurement of the contents of LPO, GSH-Px and microelements such as cadmium, selenium and zinc in SD rats after killing that have drunk water containing fluorine, selenium and cadmium eight-week ago. The contents of GSH-Px in the serum, liver and kidney of rats that were contaminated with fluorine, selenium and cadmium respectively remarkably reduced and the content of LPO noticeably increased in comparison with those of rats without being contaminated. The contents of GSH-Px noticeably increased and LPO remarkably reduced in those contaminated with the combination of any two of the three elements when compared with those in the rats contaminated with any one element of them, while the contents of GSH-Px in those contaminated with the combination of the three elements increased even more. Excessive selenium or cadmium led to the increase of selenium content in kidney and cadmium content in liver by several times. Excessive fluorine or cadmium gave rise to the lack of selenium and zinc. Selenium brought out universal increase of zinc in liver and kidney. The combination of fluorine and selenium or the combination of cadmium and selenium or that of fluorine, selenium and cadmium produced remarkable decrease of the accumulation of selenium in kidney and cadmium in liver. They also lowed the loss of zinc caused by fluorine or cadmium. Excessive fluorine, selenium or cadmium could inhabit the activity of GSH-Px in rats, which could diminish the antioxidation ability of the body. But when two or three of the chemical elements coexisted, they reduced the inhabitation of each of them on the activity of GSH-Px and in the meantime decreased the accumulation of cadmium and selenium and diminished the loss of zinc caused by fluorine and cadmium.

  3. Copper and zinc content in wild game shot with lead or non-lead ammunition - implications for consumer health protection.

    PubMed

    Schlichting, Daniela; Sommerfeld, Christine; Müller-Graf, Christine; Selhorst, Thomas; Greiner, Matthias; Gerofke, Antje; Ulbig, Ellen; Gremse, Carl; Spolders, Markus; Schafft, Helmut; Lahrssen-Wiederholt, Monika

    2017-01-01

    The aim of this study was to examine the contamination of game meat with copper and zinc and establish whether the use of alternative (non-lead) ammunition can lead to higher or unsafe levels of copper and zinc in the meat of roe deer, wild boar and red deer. The research project "Safety of game meat obtained through hunting" (LEMISI) was conducted in Germany with the purpose of examining the entry of lead as well as copper and zinc into the meat of hunted game when using either lead or non-lead ammunition. The outcome of this study shows that the usage of both lead-based ammunition and alternative non-lead ammunition results in the entry of copper and zinc into the edible parts of the game. Using non-lead ammunition does not entail dangerously elevated levels of copper and zinc, so replacing lead ammunition with alternative ammunition does not introduce a further health problem with regard to these metals. The levels of copper and zinc in game meat found in this study are in the range found in previous studies of game. The content of copper and zinc in game meat is also comparable to those regularly detected in meat and its products from livestock (pig, cattle, sheep) for which the mean human consumption rate is much higher. From the viewpoint of consumer health protection, the use of non-lead ammunition does not pose an additional hazard through copper and zinc contamination. A health risk due to the presence of copper and zinc in game meat at typical levels of consumer exposure is unlikely for both types of ammunition.

  4. Cadmium zinc telluride as a mid-infrared variable retarder

    NASA Astrophysics Data System (ADS)

    FitzGerald, William; Taherion, Saeid; Kumar, F. Joseph; Giles, David; Hore, Dennis

    2018-04-01

    The electro-optic behavior of cadmium zinc telluride is examined in the mid-infrared region between 3 and 11 μm, for applied DC field strengths of up to 106 V/m. The measurements performed here include full characterization of the polarization state of the transmitted light by means of the Stokes vector. We demonstrate the suitability of this material for DC variable retarder applications such as those achieved by quarter- or half-wave retardation. A comparison of two different metallic coatings for electrodes, gold and indium, reveals important differences in performance that are attributed to the homogeneity of the field through the bulk of the crystal. We illustrate that, in the case of both metals, the same electro-optic coefficients are measured, but regions of higher and lower retardation result in significant depolarization in the case of gold. Such depolarization may adversely affect the contrast ratio in a light valve, or increase the voltage necessary for the operation of an arbitrary polarization state generator.

  5. Associations of cadmium, zinc, and lead in soils from a lead and zinc mining area as studied by single and sequential extractions.

    PubMed

    Anju, M; Banerjee, D K

    2011-05-01

    An exploratory study of the area surrounding a historical Pb-Zn mining and smelting area in Zawar, India, detected significant contamination of the terrestrial environment by heavy metals. Soils (n=87) were analyzed for pH, EC, total organic matter (TOM), Pb, Zn, Mn, and Cd levels. The statistical analysis indicated that the frequency distribution of the analyzed parameters for these soils was not normal. The median concentrations of metals in surface soils were: Pb 420.21 μ g/g, Zn 870.25 μ g/g, Mn 696.70 μ g/g, and Cd 2.09 μ g/g. Zn concentrations were significantly correlated with Cd (r=0.867), indicating that levels of Cd are dependent on Zn. However, pH, electrical conductivity and total organic matter were not correlated significantly with Cd, Pb, Zn, and Mn. To assess the potential mobility of Cd, Pb, and Zn in soils, single (EDTA) as well as sequential extraction scheme (modified BCR) were applied to representative (n=23) soil samples. The amount of Cd, Pb, and Zn extracted by EDTA and their total concentrations showed linear positive correlation, which are statistically significant (r values for Cd, Pb, and Zn being 0.901, 0.971, and 0.795, respectively, and P values being <0.001). The correlation coefficients indicate a strong relation between EDTA-extractable metal and total metal. These results appear to justify the use of 'total' metal contents as a useful preliminary indicator of areas where the risks of metal excess or deficiency are high. The EDTA extractability was maximum for Cd followed by Pb and Zn in soils from all the locations. As indicated by single extraction, the apparent mobility and potential bioavailability of metals in soils followed the order: Cd ≥ Pb > > Zn. Soil samples were sequentially extracted (modified BCR) so that solid pools of Cd, Zn, and Pb could be partitioned into four operationally defined fractions viz. acid-soluble, reducible, oxidizable, and residual. Cadmium was present appreciably (39.41%) in the acid

  6. The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium

    PubMed Central

    2014-01-01

    Background The ColRS two-component system has been shown to contribute to the membrane functionality and stress tolerance of Pseudomonas putida as well as to the virulence of Pseudomonas aeruginosa and plant pathogenic Xanthomonas species. However, the conditions activating the ColRS pathway and the signal(s) sensed by ColS have remained unknown. Here we aimed to analyze the role of the ColRS system in metal tolerance of P. putida and to test whether ColS can respond to metal excess. Results We show that the ColRS system is necessary for P. putida to tolerate the excess of iron and zinc, and that it also contributes to manganese and cadmium tolerance. Excess of iron, zinc, manganese or cadmium activates ColRS signaling and as a result modifies the expression of ColR-regulated genes. Our data suggest that the genes in the ColR regulon are functionally redundant, as several loci have to be deleted to observe a significant decrease in metal tolerance. Site-directed mutagenesis of ColS revealed that excess of iron and, surprisingly, also zinc are sensed by a conserved ExxE motif in ColS’s periplasmic domain. While ColS is able to sense different metals, it still discriminates between the two oxidation states of iron, specifically responding to ferric and not ferrous iron. We propose a signal perception model involving a dimeric ColS, where each monomer donates one ExxE motif for metal binding. Conclusions Several transition metals are essential for living organisms in certain amounts, but toxic in excess. We show that ColRS is a sensor system which detects and responds to the excess of physiologically important metals such as zinc, iron and manganese. Thus, the ColRS system is an important factor for metal homeostasis and tolerance in P. putida. PMID:24946800

  7. Histochemical detection of lead and zinc in plant tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, G.; Temple, P.J.

    1975-01-01

    Histochemical studies on uptake and localization of lead and zinc in plant tissues were carried out. A histochemical stain technique was developed to differentiate zinc from lead. Lead was detected in plant tissues by soaking fresh plant materials in freshly prepared sodium rhodizonate stain (0.2% Na rhodizonate acidified to pH3 with glacial acetic acid). Samples were evacuated 5 min and soaked for 30 min before embedding in the congealed stain, then sectioned with a cryostat and examined under a light microscope. Lead particles in plant tissues were stained scarlet-red. Gelatinous, proteinaceous or saccharic embedding materials normally used to prepare plantmore » sampled for sectioning in the cryostat interfered with the color reaction. Sectioning plant samples without staining whole tissues resulted in a weakened response to the stain. Color of stained sample materials were retained for several months if stored in a frozen condition. This technique was used to detect lead both inside and on the surface of plant samples collected in the vicinity of highway and industrial lead sources and to trace the pathways of lead uptake from the air or from contaminated soils. A sodium rhodizonate technique was also developed to be specific for zinc in plant tissues. Plant samples were soaked in a neutral Na-rhodizonate in phosphate buffer at pH 7.5 for observation. The color of zinc developed to produce a purplish or reddish-brown color.« less

  8. Nationwide residues of mercury, lead, cadmium, arsenic, and selenium in starlings, 1973

    USGS Publications Warehouse

    White, D.H.; Bean, J.R.; Longcore, J.R.

    1977-01-01

    Starlings (Sturnus vulgaris) collected in 1973 at 51 sites throughout the continental United States were analyzed for mercury, lead, cadmium, arsenic, and selenium. All samples contained detectable levels of these elements. In general, residues were low: mercury residues ranged from <0.01 to 0.20 ppm: lead, from <0.10 10 3.20 ppm: cadmium, from <0.05 to 0.20 ppm: arsenic, from <0.05 to 1.40 ppm: and selenium, from 0.10 to 1.10 ppm. There was a significant overall decline in mercury and lead residues in starlings since 1971, and a significant increase in arsenic residues. Lead residues were significantly higher in starlings from urban areas than from rural areas.

  9. Concentrations of cadmium, Cobalt, Lead, Nickel, and Zinc in Blood and Fillets of Northern Hog Sucker (Hypentelium nigricans) from streams contaminated by lead-Zinc mining: Implications for monitoring

    USGS Publications Warehouse

    Schmitt, C.J.; Brumbaugh, W.G.; May, T.W.

    2009-01-01

    Lead (Pb) and other metals can accumulate in northern hog sucker (Hypentelium nigricans) and other suckers (Catostomidae), which are harvested in large numbers from Ozark streams by recreational fishers. Suckers are also important in the diets of piscivorous wildlife and fishes. Suckers from streams contaminated by historic Pb-zinc (Zn) mining in southeastern Missouri are presently identified in a consumption advisory because of Pb concentrations. We evaluated blood sampling as a potentially nonlethal alternative to fillet sampling for Pb and other metals in northern hog sucker. Scaled, skin-on, bone-in "fillet" and blood samples were obtained from northern hog suckers (n = 75) collected at nine sites representing a wide range of conditions relative to Pb-Zn mining in southeastern Missouri. All samples were analyzed for cadmium (Cd), cobalt (Co), Pb, nickel (Ni), and Zn. Fillets were also analyzed for calcium as an indicator of the amount of bone, skin, and mucus included in the samples. Pb, Cd, Co, and Ni concentrations were typically higher in blood than in fillets, but Zn concentrations were similar in both sample types. Concentrations of all metals except Zn were typically higher at sites located downstream from active and historic Pb-Zn mines and related facilities than at nonmining sites. Blood concentrations of Pb, Cd, and Co were highly correlated with corresponding fillet concentrations; log-log linear regressions between concentrations in the two sample types explained 94% of the variation for Pb, 73-83% of the variation for Co, and 61% of the variation for Cd. In contrast, relations for Ni and Zn explained <12% of the total variation. Fillet Pb and calcium concentrations were correlated (r = 0.83), but only in the 12 fish from the most contaminated site; concentrations were not significantly correlated across all sites. Conversely, fillet Cd and calcium were correlated across the range of sites (r = 0.78), and the inclusion of calcium in the fillet

  10. Residues of lead, cadmium, and arsenic in livers of Mexican free-tailed bats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thies, M.; Gregory, D.

    Since 1936, the size of the summer population of Mexican free-tailed bats, Tadarida brasiliensisat Carlsbad Caverns, New Mexico, declined from an estimated 8.7 million to 700,000 in 1991. This decline has been attributed primarily to human disturbance and the heavy agricultural use of organochlorine pesticides. Members of this species forage extensively over heavily agricultural areas, feeding on insects potentially contaminated with high levels of insecticides and trace metals. However, contamination from elements such as lead, cadmium, and arsenic have not been examined. The accumulation of these elements in wild vertebrates is often a primary reflection of contamination of the foodmore » supply. The presence of elemental contaminants in body tissues of bats is poorly documented. The objectives of this study were to examine and compare lead, cadmium, and arsenic contamination in livers of adult T. Brasiliensis from Carlsbad Caverns and Vickery Cave, a maternity colony in northwestern Oklahoma. Lead, cadmium, and arsenic were specifically selected because of their documented toxic and/or reproductive effects and their potential availability to this species. Large quantities of tetraethyl lead have been released into the environment and other lead compounds continue to be released by industrial manufacturing and petroleum refinement processes. Cadmium is used in a number of industrial processes such as metal plating and fabrication of alloys and is released from phosphate fertilizers and combusted coals. Teratogenicity appears to be greater for cadmium than for other elements. Arsenical compounds have been commonly used as herbicides and defoliants. These compounds have been demonstrated to cause abnormal embryonic development, degenerative tissue changes, cancer, chromosomal damage, and death in domestic animals.« less

  11. Assessment of Lead and Cadmium Levels in Frequently Used Cosmetic Products in Iran

    PubMed Central

    Nourmoradi, H.; Foroghi, M.; Farhadkhani, M.; Vahid Dastjerdi, M.

    2013-01-01

    This study aims to investigate the content of lead and cadmium in most frequently used brands of cosmetic products (lipstick and eye shadow) in Iran. Fifty samples of lipstick (5 colors in 7 brands) and eye shadow (3 colors in 5 brands) were selected taken from large cosmetic stores in Isfahan (Iran) and lead and cadmium of them were analyzed. The results showed that the concentration of lead and cadmium in the lipsticks was within the range of 0.08–5.2 µg/g and 4.08–60.20 µg/g, respectively. The eye shadow samples had a lead level of 0.85–6.90 µg/g and a cadmium level of 1.54–55.59 µg/g. The content range of the heavy metals in the eye shadows was higher than that of the lipsticks. There was significant difference between the average of the lead content in the different brands of the lipsticks and eye shadows. Thus, the continuous use of these cosmetics can increase the absorption of heavy metals, especially Cd and Pb, in the body when swallowing lipsticks or through dermal cosmetic absorption. The effects of heavy metals such as lead can be harmful, especially for pregnant women and children. Therefore, effort must be made to inform the users and the general public about the harmful consequences of cosmetics. PMID:24174937

  12. Cadmium, lead and mercury levels in feeding yeast produced in Czechoslovakia.

    PubMed

    Cibulka, J; Turecki, T; Miholová, D; Mader, P; Száková, J; Brabec, M

    1992-04-01

    Ninety-six samples of the feeding yeast known as VITEX were analyzed for Cd, Pb and Hg content during 1987-1989. Cadmium content ranged from 0.30 to 5.12 mg/kg(-1), lead content from 0.21 to 3.01 mg/kg(-1) and mercury content from 0.008 to 0.187 mg/kg(-1). Our findings meet the current government standards (max. allowed Pb = 5.00, Cd = 0.50 and Hg = 0.100 mg/kg(-1)) only for lead, and with five exceptions, for mercury. With two exceptions, all cadmium levels found in the samples exceeded the limit. One raw material - the wood chips - was shown to be the main source of cadmium in the technological process. Relatively high Hg contents were measured in the wood chips (up to 0.155 mg/kg(-1)); the highest Hg level (1.105 mg/kg(-1)) however was found in a sample of KOH.

  13. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.

    PubMed

    Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang

    2014-08-01

    This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapán, a historical polymetalic mining zone of México

    NASA Astrophysics Data System (ADS)

    Espinosa, Erik; Armienta, María Aurora; Cruz, Olivia; Aguayo, Alejandra; Ceniceros, Nora

    2009-10-01

    In the historical mining zone of Zimapán, México, unprotected tailings deposits are supplying contaminants to the local fluvial system. This research was conducted to assess the environmental hazard of these wastes and river sediments by determining the input, transport and seasonal variability of arsenic, cadmium, lead and zinc, and their speciation by an operationally defined scheme of decreasing lability: F1, fraction soluble in deionized water; F2, associated to carbonates; F3, oxides and hydroxides of iron; F4, sulfides and organic matter; F5, residual. Higher total concentrations of Cd, Pb and Zn were present in sediments in the dry season regarding the rainy season. In the dry season, As and Pb were principally associated with the more stable F3 and F5 fractions, whereas Cd was in F2 and F5, and Zn in F3, F2 and F5. In the rainy season the association was mainly F3 for As, while F2 and F3 contained most Cd, Pb and Zn. This fractionation indicates that the environmental hazard of Cd, Pb and Zn enhances upon a pH decrease due to their proportion in the carbonatic fraction, and shows a mobility increase during the rainy season.

  15. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1987-01-01

    allowed oxidation of ore deposits which, on saturation with water, resulted in poor-quality water that generally contains large concentrations of sulfate and trace metals. Water from mines in the eastern area contained dissolved-solids concentrations of less than 500 mg/L (milligrams per liter), a median pH of 3.9, sulfate concentrations that ranged between 98 and 290 mg/L, and median concentrations for zinc of 37,600 micrograms/L (micrograms per liter), for lead of 240 micrograms/L, for cadmium of 180 micrograms/L, for iron of 70 micrograms/L, for manganese of 240 micrograms/L, and for silica of 15 mg/L. Water from mines in the western area contained dissolved-solids concentrations of generally more than 500 mg/L, a median pH of 6.8, sulfate concentrations that ranged between 170 and 2,150 mg/L, and median concentrations for zinc of 3,200 micrograms/L, for lead of 0 micrograms/L (minimum detection limit is 10 micrograms/L), for cadmium of 6 micrograms/L, for iron of 840 micrograms/L, for manganese of 440 micrograms/L, and for silica of 11 mg/L. No conclusive evidence of lateral migration of water from the mines into domestic well-water supplies in the shallow aquifer was found in the study area in Kansas. Analyses of water from public-supply wells tapping the deep aquifer did not indicate contamination with trace metals, although chemical analyses from four of six wells exhibited increasing trends through time in sulfate concentrations. These increases probably reflect localized leakage of water from the shallow aquifer along corroded or leaky well casings. Effects of abandoned lead and zinc mines on tributaries of the Spring River in the eastern area are most severe in Short Creek. Compared with water samples from three other major streams in the eastern area, a sample collected from Short Creek, 2 miles west of Galena, Kansas, during August 1981, contained the largest concentrations of dissolved sulfate (240 mg/L), zinc (25,000 micrograms/L), ca

  16. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  17. Cadmiun and Zinc Adsorption by Acric Soils

    NASA Astrophysics Data System (ADS)

    da Silva, Luiz Gabriel; Colato, Alexandre; Casagrande, José Carlos; Soares, Marcio Roberto

    2017-04-01

    Acrodox soils are very weathered soils, characterized by having buildup of iron and aluminum oxides and hydroxides. These soils are present in extensive productive regions in the state of São Paulo. This work aimed at verifying the adequacy of constant capacitance model in describing the adsorption of cadmium and zinc in Anionic Rhodic Acrudox, Anionic Xanthic Acrudox and Rhodic Hapludalf. The chemical, mineralogical and physical attributes of these soils were determined in the layers 0-20 cm and 20-40 cm. Adsorption data of cadmium and zinc were also previously determined for samples of both layers of each soil. Were applied 5 mg dm-3 of cadmium and zinc to 2,0 g of soil to ample pH range (3 to 10) to build the adsorption envelops to three ionic strength. The constant capacitance model was adequate to simulate the adsorption of zinc and cadmium. It was not possible to make appropriate distinctions between measurements and simulations for two soil layers studied, neither between the three concentrations of background electrolyte.

  18. Environmental contamination by lead and cadmium in plants from urban area of Madrid, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, L.M.; Rico, M.C.; Gonzalez, J.

    1987-02-01

    The monitoring of atmospheric pollution is of great importance. The use of biological materials as metal indicators has been reported to be a relatively cheap, simple and reliable method. Many studies have been made on the influence of air pollution upon plants; however, studies on the relation between metals in airborne particulates and plants are few. Plants are important in the biogeochemical cycle of heavy metals: lead associated with leaves or other deciduous tissue is recycled relatively fast, while lead contained in woody parts of the plant is recycled over a much longer period of time. The aim of thismore » paper is: (a) to determine the lead and cadmium content of the plants investigated; (b) to determine the variations in lead and cadmium in 15 places of the city of Madrid (Spain); (c) to obtain correlations between lead, cadmium, motor traffic, and rain.« less

  19. Bioavailability of Lead in Small Arms Range Soils

    DTIC Science & Technology

    2009-08-01

    titanium TOC total organic carbon USEPA U.S. Environmental Protection Agency XRF X-ray fluorescence Zn zinc Zr zirconium 1 1.0 EXECUTIVE...particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and physical properties may influence the absorption...zirconium, Pb=lead, Cu=copper, Mn=manganese, Si=silicon, Zn= zinc , As=arsenic, Cd=cadmium, CEC= cation exchange capacity, TOC = total organic carbon, Sb

  20. Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling.

    PubMed

    Chen, Yi-ping; Liu, Qiang; Yue, Xiao-zhen; Meng, Zhong-wen; Liang, Jing

    2013-07-01

    Heavy metals have long-term adverse impacts on the health of soil ecosystems and even exhibit hazardous influences on human health. Literatures have shown that heavy metals could result in the reduction of crops growth and development and finally result in crops production decline. To determine whether or not ultrasonic vibration alleviate damage induced by cadmium and lead in crops, the wheat seeds, which is one of the most important agriculture crops in China and other countries in the world, were exposed to 10 min ultrasonic vibration and then the toxicological effects were investigated. Wheat seeds were soaked for 3 h with water and then the seeds were placed in clean beaker with some water, the beaker were placed in ultrasonic apparatus to vibrate (model, KQ-200VDV; frequency, 45 KHz; power, 160 W). Pretreatment seeds of 80 were sown in dishes (Ø 15 cm). After seeds emergence, the seedlings were thinned to 60 per dish. The dishes with seedlings were placed in a growth chamber maintained at 25 °C, 70% relative humidity and 380 μmol mol(-1) CO2 under dark condition. A 400 μmol m(-2) s(-1) photosynthetically active radiation was provided for 8 h (dark for 16 h) after the seed germination. When the seedlings were 2 days old, the seedlings were subjected to cadmium and lead for 4 days and then some selective biochemical and physiological parameters were measured. (1) Although each doses of ultrasonic vibration could improve seed germination, enhance biosynthesis of protein and chlorophyll and seedlings growth, the optimum dosage of ultrasonic vibration was 10 min. (2) Compared with the controls, cadmium and lead stress led to significant increase in the concentrations of malondialdehyde (MDA) and O(-2) and in the conductivity of electrolyte leakage, but the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), the glutathione concentration, and the shoot weight were decreased by Cd and Pb stress. In the case of the seeds

  1. Copper and zinc content in wild game shot with lead or non-lead ammunition – implications for consumer health protection

    PubMed Central

    Sommerfeld, Christine; Müller-Graf, Christine; Selhorst, Thomas; Greiner, Matthias; Gerofke, Antje; Ulbig, Ellen; Gremse, Carl; Spolders, Markus; Schafft, Helmut; Lahrssen-Wiederholt, Monika

    2017-01-01

    The aim of this study was to examine the contamination of game meat with copper and zinc and establish whether the use of alternative (non-lead) ammunition can lead to higher or unsafe levels of copper and zinc in the meat of roe deer, wild boar and red deer. The research project “Safety of game meat obtained through hunting” (LEMISI) was conducted in Germany with the purpose of examining the entry of lead as well as copper and zinc into the meat of hunted game when using either lead or non-lead ammunition. The outcome of this study shows that the usage of both lead-based ammunition and alternative non-lead ammunition results in the entry of copper and zinc into the edible parts of the game. Using non-lead ammunition does not entail dangerously elevated levels of copper and zinc, so replacing lead ammunition with alternative ammunition does not introduce a further health problem with regard to these metals. The levels of copper and zinc in game meat found in this study are in the range found in previous studies of game. The content of copper and zinc in game meat is also comparable to those regularly detected in meat and its products from livestock (pig, cattle, sheep) for which the mean human consumption rate is much higher. From the viewpoint of consumer health protection, the use of non-lead ammunition does not pose an additional hazard through copper and zinc contamination. A health risk due to the presence of copper and zinc in game meat at typical levels of consumer exposure is unlikely for both types of ammunition. PMID:28934259

  2. Total arsenic, mercury, lead, and cadmium contents in edible dried seaweed in Korea.

    PubMed

    Hwang, Y O; Park, S G; Park, G Y; Choi, S M; Kim, M Y

    2010-01-01

    Total arsenic, mercury, lead, and cadmium contents were determined in 426 samples of seaweed sold in Korea in 2007-08. The average concentrations, expressed in mg kg(-1), dry weight, were: total arsenic 17.4 (less than the limit of detection [LOD] to 88.8), Hg 0.01 (from 0.001 to 0.050), lead 0.7 (less than the LOD to 2.7), and cadmium 0.50 (less than the LOD to 2.9). There were differences in mercury, cadmium, and arsenic content in seaweed between different kinds of products and between coastal areas. The intakes of total mercury, lead, and cadmium for Korean people from seaweed were estimated to be 0.11, 0.65, and 0.45 µg kg(-1) body weight week(-1), respectively. With respect to food safety, consumption of 8.5 g day(-1) of the samples analysed could represent up to 0.2-6.7% of the respective provisional tolerable weekly intakes established by the World Health Organization (WHO). Therefore, even if Korean people have a high consumption of seaweed, this study confirms the low probability of health risks from these metals via seaweed consumption.

  3. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  4. An induction furnace for the determination of cadmium in solutions and zinc-base metals by atomic-absorption spectroscopy.

    PubMed

    Headridge, J B; Smith, D R

    1971-03-01

    An induction furnace coupled to a Unicam SP90 atomic-absorption spectrophotometer is described for the determination of traces of volatile elements in solutions and volatile matrices. The apparatus has been used to obtain calibration graphs for 1-20 and 50-750 ng of cadmium in microl-volumes of solution, the 228.8 and 326.2 nm resonance lines respectively being used, and to determine cadmium in 5-mg samples of zinc-base metals within the concentration range 5-400 microg g by using the less sensitive 326-2-nm line. A furnace temperature of 1,350 degrees was used. Data on accuracy and precision are presented. The apparatus could readily be used to determine trace elements in volatile materials at concentrations of 10-1000 ng/g .

  5. The effect of ambient cadmium air pollution on the hair mineral content of children.

    PubMed

    Stewart-Pinkham, S M

    1989-01-01

    Hair analyses of 80 children with learning and behavioral problems were assessed by age, sex, season, place of residence, exposure to passive smoke and excess contact with known cadmium air pollutant sources. All children had been exposed for at least 2 years to air pollution from a refuse-derived fuel incineration plant. All of the patients had increased hair cadmium compared with a control group, but there was a strong seasonal influence on hair cadmium. Exposure to cadmium was ubiquitous. A neurobehavioral toxic effect was found in children who showed evidence of inhibition of pyrimidine-5'-nucleotidase by low hair phosphorus levels and low zinc levels in whom there was enhanced lead absorption. Hair analyses appear to be a useful biological monitor for detecting toxic effects from ambient air cadmium levels in subsets of the population at risk for heavy metal toxicity. Air filter measurements appear worthless for detecting environmental contamination with cadmium in air with low levels of lead. Trees, on the other hand, which are more adversely affected by cadmium than other heavy metals, show evidence of inhibition of pyrimidine-5'-nucleosidase by excess seeding.

  6. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Other minerals and deep-lying lead and zinc minerals. 215... LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead and zinc minerals. Except as provided in § 215.6(b), leases on Quapaw Indian lands, for mining...

  7. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Other minerals and deep-lying lead and zinc minerals. 215... LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead and zinc minerals. Except as provided in § 215.6(b), leases on Quapaw Indian lands, for mining...

  8. Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress

    Treesearch

    P. Thangavel; Stephanie Long; Rakesh Minocha

    2007-01-01

    Cell suspension cultures of red spruce (Picea rubens Sarg.) were selected to study the effects of cadmium (Cd) and zinc (Zn) on phytochelatins (PCs) and related metabolites after 24 h exposure. The PC2 and its precursor, γ-glutamylcysteine (γ-EC) increased two to fourfold with Cd concentrations ranging from 12...

  9. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame.

    PubMed

    Mahnam, Karim; Raisi, Fatame

    2017-03-01

    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe 2+ , Ca 2+ , Cd 2+ , and Zn 2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  10. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    PubMed

    Wan, Jinzhong; Meng, Die; Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  11. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    PubMed Central

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  12. 25 CFR 215.21 - Payment of gross production tax on lead and zinc.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Payment of gross production tax on lead and zinc. 215.21 Section 215.21 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.21 Payment of gross production tax on lead and zinc. The superintendent of the Quapaw...

  13. 25 CFR 215.21 - Payment of gross production tax on lead and zinc.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Payment of gross production tax on lead and zinc. 215.21 Section 215.21 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.21 Payment of gross production tax on lead and zinc. The superintendent of the Quapaw...

  14. Maternal and neonatal scalp hair concentrations of zinc, copper, cadmium, and lead: relationship to some lifestyle factors.

    PubMed

    Razagui, Ibrahim B-A; Ghribi, Ibrahim

    2005-07-01

    Postpartum scalp hair samples from 82 term-pregnancy mother/ neonate pairs were analyzed for their concentrations of zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb), using inductively coupled plasma-mass spectrometry. Maternal and neonatal Zn concentrations had geometric means (and 99% confidence intervals) of 122.5 microg/g (117.9--131.5 microg/g) and 146.9 microg (141.5--156.7 microg/g) respectively. Corresponding Cu values were 18.4 microg/g (17.6--23.8 microg/g) and 6.7 microg/g (6.3--7.6 microg/g). Those of Cd were 0.49 microg/g (0.47--0.69 microg/g) in the mothers and 0.57 microg/g (0.55--0.86 microg/g) in the neonates. For Pb, they were 7.95 microg/g (7.60--9.32 microg/g) and 4.56 microg/g (4.39--5.56 microg/g). Cigarette smoking, despite its relatively low prevalence (19.5%), was associated with lower Zn and higher Cd and Pb concentrations and in lower Zn/Cd and Zn/Pb molar concentration ratios. Smoking also altered interelemental relationships, particularly those of Zn with Cd and Pb and those between Cd and Pb. Smoking frequency appeared to show negative dose-response effects on maternal and neonatal Zn concentrations, Zn/Pb molar concentration ratios, and birth weight. Mothers with a history of oral contraceptive (OC) usage had significantly higher Cu concentrations and lower Zn/Cu molar concentration ratios than non users, with the highest Cu concentrations and lowest Zn/Cu values being associated with third-generation OCs. No similar effects were elicited in the respective neonatal Cu concentrations. Neither alcohol consumption nor prenatal supplementation with iron and/or folic acid had discernible effects on the maternal or neonatal elemental concentrations. The data from this study suggest that in a given population of term-pregnancy mothers and neonates, significant interindividual variations in hair trace element concentrations can occur, irrespective of commonality of general environment, and that lifestyle factors, including cigarette

  15. Lead, cadmium, chromium, cobalt, and copper in chicken feathers from Tuskegee, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.T.; Love, M.J.; Booker, T.

    1994-12-31

    The feather has been widely used as a indicator tissue of metal exposure in birds. The feathers were collected from Tuskegee University poultry farm (TUPF) and Harrison Poultry farm (HPF) chicken and analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy for lead, cadmium, cobalt, chromium, and copper contaminations. The mean levels of lead, cadmium, cobalt, chromium, and copper in TUPF chicken were 3.67, 0.13, 12.23, 0.22, and 7.71 ppm, respectively, and in HPF chicken were 5.32, 0.096, 11.03, 0.15, and 8.06 ppm, respectively. The mean levels of these metals did not show any significant difference between TUPF and HPF chicken.

  16. Sensitivity of mottled sculpins (Cottus bairdi) and rainbow trout (Onchorhynchus mykiss) to acute and chronic toxicity of cadmium, copper, and zinc

    USGS Publications Warehouse

    Besser, John M.; Mebane, Christopher A.; Mount, David R.; Ivey, Chris D.; Kunz, James L.; Greer, I. Eugene; May, Thomas W.; Ingersoll, Christopher G.

    2007-01-01

    Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 μg/L for Missouri sculpins and 37 μg/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 μg/L (Missouri) and 1.9 μg/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 μg/L) than Missouri sculpins (chronic ChV = 219 μg/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested.

  17. Sensitivity of mottled sculpins (Cottus bairdi) and rainbow trout (Onchorhynchus mykiss) to acute and chronic toxicity of cadmium, copper, and zinc

    USGS Publications Warehouse

    Besser, J.M.; Mebane, C.A.; Mount, D.R.; Ivey, C.D.; Kunz, J.L.; Greer, I.E.; May, T.W.; Ingersoll, C.G.

    2007-01-01

    Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 ??g/L for Missouri sculpins and 37 ??g/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 ??g/L (Missouri) and 1.9 ??g/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 ??g/L) than Missouri sculpins (chronic ChV = 219 ??g/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested. ?? 2007 SETAC.

  18. Lead and cadmium contamination of soil and vegetables in the Upper Silesia region of Poland.

    PubMed

    Gzyl, J

    1990-07-01

    Studies of the lead and cadmium content of soils and vegetables from 126 allotments in 12 towns in a polluted region of Poland are described. Metal concentrations in parsley, celery, carrots and red beet were determined using AAS. In most cases, metal concentrations in soils and vegetables exceeded accepted standards and concentrations found in rural regions. A total of 756 vegetable samples were studied and only 170 met the standard for lead and 17 for cadmium. The lowest lead content was found in parsley roots and the highest in celery leaves. Cadmium content between species did not differ greatly and the highest concentrations were recorded for celery. The metal intake by the consumer was also calculated using questionnaire data concerning vegetable consumption. In relation to the reference area, the metal intake in the polluted area was 2-5 times higher for lead and 2-16 times higher for cadmium. The main species responsible for the high metal concentrations were carrots and red beet. Replacing carrots and red beet with the same species grown in an unpolluted region would reduce the consumer's metal intake from vegetables considerably.

  19. Cadmium and lead residue control in a hazard analysis and critical control point (HACCP) environment.

    PubMed

    Pagan-Rodríguez, Doritza; O'Keefe, Margaret; Deyrup, Cindy; Zervos, Penny; Walker, Harry; Thaler, Alice

    2007-02-21

    In 2003-2004, the U.S. Department of Agriculture Food Safety and Inspection Service (FSIS) conducted an exploratory assessment to determine the occurrence and levels of cadmium and lead in randomly collected samples of kidney, liver, and muscle tissues of mature chickens, boars/stags, dairy cows, and heifers. The data generated in the study were qualitatively compared to data that FSIS gathered in a 1985-1986 study in order to identify trends in the levels of cadmium and lead in meat and poultry products. The exploratory assessment was necessary to verify that Hazard Analysis and Critical Control Point plans and efforts to control exposure to these heavy metals are effective and result in products that meet U.S. export requirements. A comparison of data from the two FSIS studies suggests that the incidence and levels of cadmium and lead in different slaughter classes have remained stable since the first study was conducted in 1985-1986. This study was conducted to fulfill FSIS mandate to ensure that meat, poultry, and egg products entering commerce in the United States are free of adulterants, including elevated levels of environmental contaminants such as cadmium and lead.

  20. Levels of blood lead and urinary cadmium in industrial complex residents in Ulsan.

    PubMed

    Kim, Sang Hoon; Kim, Yang Ho; An, Hyun Chan; Sung, Joo Hyun; Sim, Chang Sun

    2017-01-01

    Populations neighboring industrial complexes are at an increased health risk, due to constant exposure to various potentially hazardous compounds released during industrial production activity. Although there are many previous studies that focus on occupational exposure to heavy metals, studies that focused on environmental exposure to lead and cadmium are relatively rare. The purpose of this study is to evaluate the extent of the environmental exposure of heavy metals in residents of industrial area. Four areas in close proximity to the Ulsan petrochemical industrial complex and the Onsan national industrial complex were selected to be included in the exposure group, and an area remotely located from these industrial complexes was selected as the non-exposure group. Among the residents of our study areas, a total of 1573 subjects aged 20 years and older were selected and all study subjects completed a written questionnaire. Blood and urine samples were obtained from about one third of the subjects (465 subjects) who provided informed consent for biological sample collection. Total 429 subjects (320 subjects from exposure area, 109 subjects from non-exposure area) were included in final analysis. The geometric mean blood lead level among the subjects in the exposed group was 2.449 μg/dL, which was significantly higher than the non-exposure group's level of 2.172 μg/dL. Similarly, the geometric mean urine cadmium levels between the two groups differed significantly, at 1.077 μg/g Cr. for the exposed group, and 0.709 μg/g Cr. for the non-exposure group. In a multiple linear regression analysis to determine the relationship between blood lead level and related factors, the results showed that blood lead level had a significant positive correlation with age, the male, exposure area, and non-drinkers. In the same way, urine cadmium level was positively correlated with age, the female, exposure area, and smokers. This study found that blood lead levels and urine

  1. 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water.

    PubMed

    Mattio, Elodie; Robert-Peillard, Fabien; Vassalo, Laurent; Branger, Catherine; Margaillan, André; Brach-Papa, Christophe; Knoery, Joël; Boudenne, Jean-Luc; Coulomb, Bruno

    2018-06-01

    In recent years, the development of 3D printing in flow analysis has allowed the creation of new systems with various applications. Up to now, 3D printing was mainly used for the manufacture of small units such as flow detection cells, preconcentration units or mixing systems. In the present study, a new 3D printed lab-on-valve system was developed to selectively quantify lead and cadmium in water. Different technologies were compared for lab-on-valve 3D printing. Printed test units have shown that stereolithography or digital light processing are satisfactory techniques for creating complex lab-on-valve units. The lab-on-valve system was composed of two columns, eight peripheral ports and a central port, and a coil integrating baffles to increase mixing possibilities. A selective extraction of lead was first carried out by TrisKem Pb™ Resin column. Then, cadmium not retained on the first column was extracted on a second column of Amberlite® IR 120 resin. In a following step, lead and cadmium were eluted with ammonium oxalate and potassium iodide, respectively. Finally, the two metals were sequentially detected by the same Rhod-5N™ fluorescent reagent. This 3D printed lab-on-valve flow system allowed us to quantify lead and cadmium with a linear response from 0.2 to 15 µg L -1 and detection limits of 0.17 and 0.20 µg L -1 for lead and cadmium, respectively, which seems adapted for natural water analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Properties of Nitrogen-Doped Zinc Telluride Films for Back Contact to Cadmium Telluride Photovoltaics

    NASA Astrophysics Data System (ADS)

    Shimpi, Tushar M.; Drayton, Jennifer; Swanson, Drew E.; Sampath, Walajabad S.

    2017-08-01

    Zinc telluride (ZnTe) films have been deposited onto uncoated glass superstrates by reactive radiofrequency (RF) sputtering with different amounts of nitrogen introduced into the process gas, and the structural and electronic transport properties of the resulting nitrogen-doped ZnTe (ZnTe:N) films characterized. Based on transmission and x-ray diffraction measurements, it was observed that the crystalline quality of the ZnTe:N films decreased with increasing nitrogen in the deposition process. The bulk carrier concentration of the ZnTe:N films determined from Hall-effect measurements showed a slight decrease at 4% nitrogen flow rate. The effect of ZnTe:N films as back contact to cadmium telluride (CdTe) solar cells was also investigated. ZnTe:N films were deposited before or after CdCl2 passivation on CdTe/CdS samples. Small-area devices were characterized for their electronic properties. Glancing-angle x-ray diffraction measurements and energy-dispersive spectroscopy analysis confirmed substantial loss of zinc from the samples where CdCl2 passivation was carried out after ZnTe:N film deposition.

  3. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients.

    PubMed

    D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E

    1999-09-01

    Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and

  4. Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Azusa; Yang, Wen-Yi; Petit, Thibault

    Whether environmental exposure to nephrotoxic agents that potentially interfere with calcium homeostasis, such as lead and cadmium, contribute to the incidence of nephrolithiasis needs further clarification. We investigated the relation between nephrolithiasis incidence and environmental lead and cadmium exposure in a general population. In 1302 participants randomly recruited from a Flemish population (50.9% women; mean age, 47.9 years), we obtained baseline measurements (1985–2005) of blood lead (BPb), blood cadmium (BCd), 24-h urinary cadmium (UCd) and covariables. We monitored the incidence of kidney stones until October 6, 2014. We used Cox regression to calculate multivariable-adjusted hazard ratios for nephrolithiasis. At baseline,more » geometric mean BPb, BCd and UCd was 0.29 µmol/L, 9.0 nmol/L, and 8.5 nmol per 24 h, respectively. Over 11.5 years (median), nephrolithiasis occurred in 40 people. Contrasting the low and top tertiles of the distributions, the sex- and age-standardized rates of nephrolithiasis expressed as events per 1000 person-years were 0.68 vs. 3.36 (p=0.0016) for BPb, 1.80 vs. 3.28 (p=0.11) for BCd, and 1.65 vs. 2.95 (p=0.28) for UCd. In continuous analysis, with adjustments applied for sex, age, serum magnesium, and 24-h urinary volume and calcium, the hazard ratios expressing the risk associated with a doubling of the exposure biomarkers were 1.35 (p=0.015) for BPb, 1.13 (p=0.22) for BCd, and 1.23 (p=0.070) for UCd. In conclusion, our results suggest that environmental lead exposure is a risk factor for nephrolithiasis in the general population. - Highlights: • Prevalence and incidence rates of nephrolithiasis are increasing worldwide. • Lead and cadmium interfere with calcium homeostasis and might cause nephrolithiasis. • Environmental exposure to lead, not cadmium, predicts nephrolithiasis in the population. • Safety standards for environmental lead exposure need to account for nephrolithiasis. • Reducing environmental

  5. Strong positive association of traditional Asian-style diets with blood cadmium and lead levels in the Korean adult population.

    PubMed

    Park, Sunmin; Lee, Byung-Kook

    2013-12-01

    Blood lead and cadmium levels are more than twofold to fivefold higher in the Korean population compared to that of the USA. This may be related to the foods consumed. We examined which food categories are related to blood lead and cadmium levels in the Korean adult population using the 2008-2010 Korean National Health and Nutrition Examination Survey (n = 5504). High and moderate consumption of bread and crackers, potatoes, meat and meat products, milk and dairy products, and pizza and hamburger resulted in significantly lower odds ratios for blood lead levels than their low consumption. However, consumption of salted fish, white fish, green vegetables, white and yellow vegetables, coffee, and alcohol resulted in significantly higher odds ratios of blood lead and cadmium. In conclusion, the typical Asian diet based on rice, fish, vegetables, regular coffee, and alcoholic drinks may be associated with higher blood cadmium and lead levels. This study suggests that lead and cadmium contents should be monitored and controlled in agricultural products to reduce health risks from heavy metals.

  6. 25 CFR 215.21 - Payment of gross production tax on lead and zinc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Payment of gross production tax on lead and zinc. 215.21... ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.21 Payment of gross production tax on lead and zinc. The superintendent of the Quapaw Indian Agency is hereby authorized and directed to pay at the...

  7. 25 CFR 215.21 - Payment of gross production tax on lead and zinc.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Payment of gross production tax on lead and zinc. 215.21... ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.21 Payment of gross production tax on lead and zinc. The superintendent of the Quapaw Indian Agency is hereby authorized and directed to pay at the...

  8. Effects of blood lead and cadmium levels on the functioning of children with behaviour disorders in the family environment.

    PubMed

    Szkup-Jabłońska, Małgorzata; Karakiewicz, Beata; Grochans, Elżbieta; Jurczak, Anna; Nowak-Starz, Grażyna; Rotter, Iwona; Prokopowicz, Adam

    2012-01-01

    The developing brain of a child is extremely prone to damage resulting from exposure to harmful environmental factors, e.g. heavy metals. Intoxication of children's organisms with lead and cadmium affects their intellectual development. Even a relatively small amount of this metal in children's blood can lead to developmental dysfunctions. The aim of this study was to analyse the correlation between blood lead and cadmium levels in children with behaviour disorders and their functioning in the home. This survey-based study was conducted among 78 families with children diagnosed as having behaviour disorders. It was performed using the ADHD-Rating Scale-IV. To determine lead and cadmium levels the laboratory procedure was based on Stoppler and Brandt's method. The mean blood lead level was 19.71 µg/l and the mean blood cadmium level was 0.215 µg/l. Higher blood lead levels in children correlates positively with incidences of hyperactive and impulsive behaviour in the home, as assessed by parents (p=0.048). Statistically significant effects of cadmium on children's behaviour were not noticed. The effect of lead on the developing organism of a child has such behavioural consequences as attention disorders, hyperactivity and impulsive behaviour which, in turn, may interfere with children's functioning in the home. A negative effect of cadmium on the functioning of children with behaviour disorders in the home was not proved.

  9. Cadmium and zinc isotopes of organic-rich marine sediments during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Sweere, T.; Dickson, A. J.; Jenkyns, H. C.; Porcelli, D.; Henderson, G. M.; van den Boorn, S.

    2017-12-01

    Mesozoic Oceanic Anoxic Events (OAEs) are characterized by widespread deposition of organic-rich sediments and the spread of low-oxygen marine environments. To drive and sustain unusually efficient carbon-burial during these events requires high export productivity rates, which has to be supported by an abundance of nutrients in the surface ocean. The presence of redox-sensitive bio-essential micronutrients may be particularly important, and potentially bio-limiting, during such events as they may be drawn down into sediment under low-oxygen conditions. Cadmium and zinc isotopes have potential as tracers for past (micro)nutrient dynamics considering their nutrient-like distribution in the modern ocean and isotope fractionation with uptake by primary producers. The modern deep ocean is generally well mixed for Cd and Zn while short-term cycling of these elements in the surface ocean imposes regional variation. Additional regional variation may be caused by sulfide formation and associated isotope fractionation in euxinic environments. The impact of such regional environmental conditions on the Cd- and Zn-isotope composition of the sediment therefore needs to be addressed in order to explore the use of these elements as a proxy for past nutrient conditions. Here we present an extensive dataset of cadmium- and zinc-isotope compositions of organic-rich marine sediments from different basins deposited during OAE 2 (Late Cretaceous). This comparison highlights regional differences in Cd- and Zn-isotope compositions. However, despite regional environmental controls, a correlation between δ114Cd and δ66Zn across the different sites is observed, which implies a largely similar control on the two isotope systems. When regional environmental controls are accounted for, the data may provide insight in the δ66Zn and δ114Cd evolution of global seawater during OAE 2 as well as information on the global cycling of redox-sensitive micronutrients during the event

  10. Release of iron, zinc, and lead from common iron construction bars and zinc metallic bars in water solutions and meals.

    PubMed

    Lechtig, Aarón; Lòpez de Romaña, Daniel; Boy, Erick; Vargas, Alejandro; Rosas del Portal, Mauricio; Huaylinos, María Luisa

    2007-12-01

    The use of iron pots has decreased the prevalence of anemia. To investigate the release of iron, zinc, and lead from metallic iron and zinc bars incubated in water and in meals. Iron, zinc, and lead concentrations were measured at different incubation conditions in water and in meals. The iron concentration in water was 1.26 mg/L after incubation with one iron bar at pH 7 and 100 degrees C for 20 minutes and in meals was 0.97 mg per 100 g of wet meals, rich in phytate, cooking at 100 degrees C during 20 minutes. The maximum contents were 7720 mg/L of iron and 1826 mg/L of zinc in vinegar at pH 3 and 20 degrees C after 90 and 32 days, respectively. Lead was released from the bars, but at concentrations well below the upper tolerable limits. In outreach populations, the use of iron and zinc metallic bars in water and meals could contribute to sustainable, very low-cost prevention of iron and zinc deficiencies, and home-fortified vinegar could be used for treatment of both deficiencies. Field trials should be performed to determine the impact that the use of iron and zinc metallic bars in water and meals might have on the iron and zinc status of population groups.

  11. Ultrastructure of kidney of ducks exposed to methylmercury, lead and cadmium in combination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, P.V.; Jordan, S.A.; Bhatnagar, M.K.

    1989-01-01

    Ultrastructural alterations in the kidneys of Pekin ducks exposed to various combinations of methylmercury chloride (MeHgCl), lead acetate (PbAC) and cadmium chloride (CdCl2) for 12 weeks were studied. Eight groups (Gr), each consisting of 6 female ducks, were fed diets containing no heavy metals (control), 8 mg of methylmercury chloride (MeHgCl)/kg of feed (GrII), 80 mg of lead acetate (PbAC)/kg of feed (GrIII), 80 mg of cadmium chloride (CdCl2)/kg of feed (GrIV), 8 mg of MeHgCl + 80 mg of PbAC/kg of feed (GrV), 8 mg of MeHgCl + 80 mg of CdCl2/kg of feed (GrVI), 80 mg of PbACmore » + 80 mg of CdCl2/kg of feed (GrVII), and 8 mg of MeHgCl + 80 mg of PbAC + 80 mg of CdCl2/kg of feed (GrVIII). Renal corpuscles of the ducks treated with methylmercury (MdHg), lead (Pb), the cadmium (Cd), either alone or in two way combinations exhibited minor ultrastructural changes. The thickness of the glomerular basement membrane was significantly different from control only in Grs II, IV, V and VI. Crystallization of granules in the juxtaglomerular cells was also observed in Cd and Pb treated birds. Administration of the three metals in combination caused marked changes in podocytes with fusion of secondary processes and no pedicle differentiation. The proximal tubule cells approximately (PT) accumulated lipid droplets, lysosomal bodies and membrane bound vacuoles in methylmercury treated birds. Lead exposed birds had a large number of secondary lysosomes and swollen mitochondria in PT cells. Cadmium administration caused degenerative changes in PT cells which included accumulation of lysosomal bodies containing degenerating organelles, lipid droplets and vacuoles containing myelin figures. Marked degenerative changes in PT cells and interstitial fibrosis was prominent when cadmium was concomitantly administered with the other metals.« less

  12. Toxicity of cadmium and lead on tropical midge larvae, Chironomus kiiensis Tokunaga and Chironomus javanus Kieffer (Diptera: Chironomidae)

    PubMed Central

    Ebau, Warrin; Rawi, Che Salmah Md; Din, Zubir; Al-Shami, Salman Abdo

    2012-01-01

    Objective To investigate the acute toxicity of cadmium and lead on larvae of two tropical Chironomid species, Chironomus kiiensis (C. kiiensis) Tokunaga and Chironomus javanus (C. javanus) Kieffer. Methods Different larval instars (first-fourth) were exposed using a static non-replacement testing procedures to various concentrations of cadmium and lead. Results In general, younger larvae (first and second instars) of both species were more sensitive to both metals than older larvae (third and forth instars). The toxic effects of the metals on C. kiiensis and C. javanus were influenced by the age of the larvae (first to fourth instars), types of metals (cadmium or lead) and duration of larval exposure (24, 48, 72 and 96 h) to the metals. Conclusions Cadmium was more toxic to the chironomids than lead and C. javanus was significantly more sensitive to both metals than C. kiiensis (P<0.05). PMID:23569984

  13. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance*

    PubMed Central

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-xi; Gao, Ling-ling; Yang, Xiao-e

    2012-01-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards. PMID:23024051

  14. Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum.

    PubMed

    Zhang, Xu; Li, Xinxin; Yang, Huanhuan; Cui, Zhaojie

    2018-08-15

    This study focused on the bioremediation mechanisms of lead (0, 100, 500, 1000 mg kg -1 ) and cadmium (0,10,50,100 mg kg -1 ) contaminated soil using two indigenous fungi selected from mine tailings as the phytostimulation of Arabidopsis thaliana. The two fungal strains were characterized as Mucor circinelloides (MC) and Trichoderma asperellum (TA) by internal transcribed spacer sequencing at the genetic levels. Our research revealed that Cadmium was more toxic to plant growth than lead and meanwhile, MC and TA can strengthen A. thaliana tolerance to cadmium and lead with 40.19-117.50% higher root length and 58.31-154.14% shoot fresh weight of plant compared to non-inoculation. In this study, TA exhibited a higher potential to the inactivation of cadmium; however, MC was more effective in lead passivation. There was a direct correlation between the type of fungi, heavy metal content, heavy metal type and oxidative damage in plant. Both lead and cadmium induced oxidative damage as indicated by increased superoxide dismutase and catalase activities, while the antioxidant levels were significantly higher in fungal inoculated plants compared with those non-inoculated. The analysis of soil enzyme activity and taxonomic richness uncovered that the dominant structures of soil microbial community were altered by exogenous microbial agents. MC enhanced higher microbial diversity and soil enzyme activity than TA. The two indigenous fungi lessened several limiting factors with respect to phytoremediation technology, such as soil chemistry, contamination level and transformation, and metal solubility. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Contamination of wells completed in the Roubidoux aquifer by abandoned zinc and lead mines, Ottawa County, Oklahoma

    USGS Publications Warehouse

    Christenson, Scott C.

    1995-01-01

    The Roubidoux aquifer in Ottawa County Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. Water in the Roubidoux aquifer in eastern Ottawa County has relatively low dissolved-solids concentrations (less than 200 mg/L) with calcium, magnesium, and bicarbonate as the major ions. The Boone Formation is stratigraphically above the Roubidoux aquifer and is the host rock for zinc and lead sulfide ores, with the richest deposits located in the vicinity of the City of Picher. Mining in what became known as the Picher mining district began in the early 1900's and continued until about 1970. The water in the abandoned zinc and lead mines contains high concentrations of calcium, magnesium, bicarbonate, sulfate, fluoride, cadmium, copper, iron, lead, manganese, nickel, and zinc. Water from the abandoned mines is a potential source of contamination to the Roubidoux aquifer and to wells completed in the Roubidoux aquifer. Water samples were collected from wells completed in the Roubidoux aquifer in the Picher mining district and from wells outside the mining district to determine if 10 public supply wells in the mining district are contaminated. The chemical analyses indicate that at least 7 of the 10 public supply wells in the Picher mining district are contaminated by mine water. Application of the Mann-Whitney test indicated that the concentrations of some chemical constituents that are indicators of mine-water contamination are different in water samples from wells in the mining area as compared to wells outside the mining area. Application of the Wilcoxon signed-rank test showed that the concentrations of some chemical constituents that are indicators of mine-water contamination were higher in current (1992-93) data than in historic (1981-83) data, except for pH, which was lower in current than in historic data. pH and sulfate, alkalinity, bicarbonate, magnesium, iron, and tritium concentrations consistently

  16. Heavy metal tolerant halophilic bacteria from Vembanad Lake as possible source for bioremediation of lead and cadmium.

    PubMed

    Sowmya, M; Rejula, M P; Rejith, P G; Mohan, Mahesh; Karuppiah, Makesh; Hatha, A A Mohamed

    2014-07-01

    Microorganisms which can resist high concentration of toxic heavy metals are often considered as effective tools of bioremediation from such pollutants. In the present study, sediment samples from Vembanad Lake were screened for the presence of halophilic bacteria that are tolerant to heavy metals. A total of 35 bacterial strains belonging to different genera such as Alcaligenes, Vibrio, Kurthia, Staphylococcus and members of the family Enterobacteriaceae were isolated from 21 sediment samples during February to April, 2008. The salt tolerance and optimum salt concentrations of the isolates revealed that most of them were moderate halophiles followed by halotolerant and extremely halotolerant groups. The minimum inhibitory concentrations (MICs) against cadmium and lead for each isolate revealed that the isolates showed higher MIC against lead than cadmium. Based on the resistance limit concentration, most of them were more tolerant to lead than cadmium at all the three salt concentrations tested. Heavy metal removal efficiency of selected isolates showed a maximum reduction of 37 and 99% against cadmium and lead respectively. The study reveals the future prospects of halophilic microorganisms in the field of bioremediation.

  17. Lead and Cadmium in Vinyl Children's Products. A Greenpeace Expose.

    ERIC Educational Resources Information Center

    Di Gangi, Joseph

    Polyvinyl chloride (vinyl or PVC) is a substance widely used in children's products. Because children in contact with these products may ingest substantial quantities of potentially harmful chemicals during normal play, especially when they chew on the product, this Greenpeace study examined the levels of lead and cadmium in a variety of consumer…

  18. Determining the content of lead and cadmium in infant food from the Polish market.

    PubMed

    Winiarska-Mieczan, Anna; Kiczorowska, Bożena

    2012-09-01

    The present study aimed to analyse the toxic metals in the baby fruit and vegetable desserts, juices and dinners available on the Polish market, and find that these products a less are safe for infants. The average daily intake of cadmium and lead found in one jar of dessert, one bottle of juice and one jar of baby dinner is, respectively, 0.20 μg (2% of PTDI) and 0.82 μg (2.2% of PTDI), 0.15 μg (2% of PTDI) and 4.86 μg (13.6% of PTDI), and 0.98 μg (10% of PTDI) and 2.36 μg (6.7% of PTDI). It was confirmed that all the examined baby food met the requirements regarding lead and cadmium contamination, and the obtained results were lower than the maximum acceptable level of the contamination with these metals. It may be assumed that fruit and vegetable products available on the Polish market are safe for infants. However, in some products, the levels of cadmium and lead were high.

  19. Sensitivity of early life stages of freshwater mussels (Unionidae) to acute and chronic toxicity of lead, cadmium, and zinc in water

    USGS Publications Warehouse

    Wang, N.; Ingersoll, C.G.; Ivey, C.D.; Hardesty, D.K.; May, T.W.; Augspurger, T.; Roberts, A.D.; Van Genderen, E.; Barnhart, M.C.

    2010-01-01

    Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299??g Pb/L, >227??g Cd/L, 2,685??g Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426??g Pb/L, 199??g Cd/L, 1,700??g Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298??g Pb/L, 16??g Cd/L, 151 and 175??g Zn/L) and Neosho mucket (188??g Pb/L, 20??g Cd/L, 145??g Zn/L). Chronic values for fatmucket were 10??g Pb/L, 6.0??g Cd/L, and 63 and 68??g Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species. ?? 2010 SETAC.

  20. Sensitivity of early life stages of freshwater mussels (Unionidae) to acute and chronic toxicity of lead, cadmium, and zinc in water.

    PubMed

    Wang, Ning; Ingersoll, Christopher G; Ivey, Christopher D; Hardesty, Douglas K; May, Thomas W; Augspurger, Tom; Roberts, Andy D; van Genderen, Eric; Barnhart, M Chris

    2010-09-01

    Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299 microg Pb/L, >227 microg Cd/L, 2,685 microg Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426 microg Pb/L, 199 microg Cd/L, 1,700 microg Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298 microg Pb/L, 16 microg Cd/L, 151 and 175 microg Zn/L) and Neosho mucket (188 microg Pb/L, 20 microg Cd/L, 145 microg Zn/L). Chronic values for fatmucket were 10 microg Pb/L, 6.0 microg Cd/L, and 63 and 68 microg Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species. Copyright 2010 SETAC.

  1. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  2. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  3. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  4. Research keeps lead and zinc viable in high-tech markets

    NASA Astrophysics Data System (ADS)

    Cole, Jerome F.

    1989-08-01

    Lead and zinc have long enjoyed widespread use in a variety of applications. To insure growing markets for the future, however, new applications for these durable metals must be developed. Currently, projects are underway to determine the capabilities of lead for such high-technology uses as earthquake damping and nuclear waste containment. Zinc's capabilities are being developed further, too, particularly in the areas of direct injection die casting, composites and the improvement of coating properties. Other ongoing research initiatives are attempting to better determine the health and environmental influences of these metals.

  5. 25 CFR 215.21 - Payment of gross production tax on lead and zinc.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Payment of gross production tax on lead and zinc. 215.21 Section 215.21 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.21 Payment of gross production tax on lead and...

  6. House dust as possible route of environmental exposure to cadmium and lead in the adult general population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogervorst, Janneke; Plusquin, Michelle; Vangronsveld, Jaco

    2007-01-15

    Contaminated soil particles and food are established routes of exposure. We investigated the relations between biomarkers of exposure to cadmium and lead, and the metal loading rates in house dust in the adult residents of an area with a soil cadmium concentration of >=3mg/kg (n=268) and a reference area (n=205). We determined the metal concentrations in house dust allowed to settle for 3 months in Petri dishes placed in the participants' bedrooms. The continuously distributed vegetable index was the first principal component derived from the metal concentrations in six different vegetables. The biomarkers of exposure (blood cadmium 9.2 vs. 6.2nmol/L;more » 24-h urinary cadmium 10.5 vs. 7.0nmol; blood lead 0.31 vs. 0.24{mu}mol/L), the loading rates of cadmium and lead in house dust (0.29 vs. 0.12 and 7.52 vs. 3.62ng/cm{sup 2}/92 days), and the vegetable indexes (0.31 vs. -0.44 and 0.13 vs. -0.29 standardized units) were significantly higher in the contaminated area. A two-fold increase in the metal loading rate in house dust was associated with increases (P<0.001) in blood cadmium (+2.3%), 24-h urinary cadmium (+3.0%), and blood lead (+2.0%), independent of the vegetable index and other covariates. The estimated effect sizes on the biomarkers of internal exposure were three times greater for house dust than vegetables. In conclusion, in the adult population, house dust is potentially an important route of exposure to heavy metals in areas with contaminated soils, and should be incorporated in the assessment of health risks.« less

  7. Charge trapping in detector grade thallium bromide and cadmium zinc telluride: Measurement and theory

    NASA Astrophysics Data System (ADS)

    Elshazly, Ezzat S.; Tepper, Gary; Burger, Arnold

    2010-08-01

    Carrier trapping times were measured in detector grade thallium bromide (TlBr) and cadmium zinc telluride (CZT) from 300 to 110 K and the experimental data were analyzed using a trapping model. In CZT, because the majority carrier concentration is close to the intrinsic carrier concentration, the trapping time increases exponentially as the temperature decreases below about 160 K. In TlBr, the majority carrier concentration is many orders of magnitude greater than the intrinsic carrier concentration and the trapping time followed a (1/ T) 1/2 temperature dependence over the range of temperatures studied. The results of the model suggest that a moderately deep compensation center could be used to significantly increase the room temperature trapping time in TlBr.

  8. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  9. Balance ability in 7- and 10-year-old children: associations with prenatal lead and cadmium exposure and with blood lead levels in childhood in a prospective birth cohort study

    PubMed Central

    Taylor, Caroline M; Humphriss, Rachel; Hall, Amanda; Golding, Jean; Emond, Alan M

    2015-01-01

    Objectives Most studies reporting evidence of adverse effects of lead and cadmium on the ability to balance have been conducted in high-exposure groups or have included adults. The effects of prenatal exposure have not been well studied, nor have the effects in children been directly studied. The aim of the study was to identify the associations of lead (in utero and in childhood) and cadmium (in utero) exposure with the ability to balance in children aged 7 and 10 years. Design Prospective birth cohort study. Participants Maternal blood lead (n=4285) and cadmium (n=4286) levels were measured by inductively coupled plasma mass spectrometry in women enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC) during pregnancy. Child lead levels were measured in a subsample of 582 of ALSPAC children at age 30 months. Main outcome measures Children completed a heel-to-toe walking test at 7 years. At 10 years, the children underwent clinical tests of static and dynamic balance. Statistical analysis using SPSS V.19 included logistic regression modelling, comparing categories of ≥5 vs <5 µg/dL for lead, and ≥1 vs <1 µg/L for cadmium. Results Balance at age 7 years was not associated with elevated in utero lead or cadmium exposure (adjusted OR for balance dysfunction: Pb 1.01 (95% CI 0.95 to 1.01), n=1732; Cd 0.95 (0.77 to 1.20), n=1734), or with elevated child blood lead level at age 30 months (adjusted OR 0.98 (0.92 to 1.05), n=354). Similarly, neither measures of static nor dynamic balance at age 10 years were associated with in utero lead or cadmium exposure, or child lead level. Conclusions These findings do not provide any evidence of an association of prenatal exposure to lead or cadmium, or lead levels in childhood, on balance ability in children. Confirmation in other cohorts is needed. PMID:26719320

  10. [Contamination by lead and cadmium during smoke drying of cereals].

    PubMed

    Woggon, H; Malkus, Z

    1978-01-01

    Direct drying of cereals with diesel oil as a fuel does not increase the lead and cadmium contents. From the viewpoint of food hygiene and in the interest of the consumer's protection, however, it is recommendable to abandon this kind of drying since previous studies have shown that it involves the risk of contamination by cancerogenic hydrocarbons.

  11. Uptake of Cadmium, Lead and Arsenic by Tenebrio molitor and Hermetia illucens from Contaminated Substrates.

    PubMed

    van der Fels-Klerx, H J; Camenzuli, L; van der Lee, M K; Oonincx, D G A B

    2016-01-01

    Insects have potential as a novel source of protein in feed and food production in Europe, provided they can be used safely. To date, limited information is available on the safety of insects, and toxic elements are one of the potential hazards of concern. Therefore, we aimed to investigate the potential accumulation of cadmium, lead and arsenic in larvae of two insect species, Tenebrio molitor (yellow mealworm) and Hermetia illucens (black soldier fly), which seem to hold potential as a source of food or feed. An experiment was designed with 14 treatments, each in triplicate, per insect species. Twelve treatments used feed that was spiked with cadmium, lead or arsenic at 0.5, 1 and 2 times the respective maximum allowable levels (ML) in complete feed, as established by the European Commission (EC). Two of the 14 treatments consisted of controls, using non-spiked feed. All insects per container (replicate) were harvested when the first larva in that container had completed its larval stage. Development time, survival rates and fresh weights were similar over all treatments, except for development time and total live weight of the half of the maximum limit treatment for cadmium of the black soldier fly. Bioaccumulation (bioaccumulation factor > 1) was seen in all treatments (including two controls) for lead and cadmium in black soldier fly larvae, and for the three arsenic treatments in the yellow mealworm larvae. In the three cadmium treatments, concentrations of cadmium in black soldier fly larvae are higher than the current EC maximum limit for feed materials. The same was seen for the 1.0 and 2.0 ML treatments of arsenic in the yellow mealworm larvae. From this study, it can be concluded that if insects are used as feed materials, the maximum limits of these elements in complete feed should be revised per insect species.

  12. Uptake of Cadmium, Lead and Arsenic by Tenebrio molitor and Hermetia illucens from Contaminated Substrates

    PubMed Central

    van der Fels-Klerx, H. J.; Camenzuli, L.; van der Lee, M. K.; Oonincx, D. G. A. B.

    2016-01-01

    Insects have potential as a novel source of protein in feed and food production in Europe, provided they can be used safely. To date, limited information is available on the safety of insects, and toxic elements are one of the potential hazards of concern. Therefore, we aimed to investigate the potential accumulation of cadmium, lead and arsenic in larvae of two insect species, Tenebrio molitor (yellow mealworm) and Hermetia illucens (black soldier fly), which seem to hold potential as a source of food or feed. An experiment was designed with 14 treatments, each in triplicate, per insect species. Twelve treatments used feed that was spiked with cadmium, lead or arsenic at 0.5, 1 and 2 times the respective maximum allowable levels (ML) in complete feed, as established by the European Commission (EC). Two of the 14 treatments consisted of controls, using non-spiked feed. All insects per container (replicate) were harvested when the first larva in that container had completed its larval stage. Development time, survival rates and fresh weights were similar over all treatments, except for development time and total live weight of the half of the maximum limit treatment for cadmium of the black soldier fly. Bioaccumulation (bioaccumulation factor > 1) was seen in all treatments (including two controls) for lead and cadmium in black soldier fly larvae, and for the three arsenic treatments in the yellow mealworm larvae. In the three cadmium treatments, concentrations of cadmium in black soldier fly larvae are higher than the current EC maximum limit for feed materials. The same was seen for the 1.0 and 2.0 ML treatments of arsenic in the yellow mealworm larvae. From this study, it can be concluded that if insects are used as feed materials, the maximum limits of these elements in complete feed should be revised per insect species. PMID:27846238

  13. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    PubMed Central

    Buzzo, Márcia Liane; de Arauz, Luciana Juncioni; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health. PMID:27766178

  14. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  15. LEAD AND COPPER CONTROL WITH NON-ZINC ORTHOPHOSPHATE

    EPA Science Inventory

    Successful application of orthophosphate formulations not containing zinc for achieving control of copper and lead corrosion requires careful consideration of the background water chemistry, particularly pH and DIC. Inhibitor performance is extremely dependent upon dosage and pH,...

  16. On the problem of zinc extraction from the slags of lead heat

    NASA Astrophysics Data System (ADS)

    Kozyrev, V. V.; Besser, A. D.; Paretskii, V. M.

    2013-12-01

    The possibilities of zinc extraction from the slags of lead heat are studied as applied to the ZAO Karat-TsM lead plant to be built for processing ore lead concentrates. The process of zinc extraction into commercial fumes using the technology of slag fuming by natural gas developed in Gintsvetmet is recommended for this purpose. Technological rules are developed for designing a commercial fuming plant, as applied to the conditions of the ZAO Karat-TsM plant.

  17. Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species.

    PubMed

    Perelomov, L V; Sarkar, Binoy; Sizova, O I; Chilachava, K B; Shvikin, A Y; Perelomova, I V; Atroshchenko, Y M

    2018-04-30

    The effect of humic substances (HS) and their different fractions (humic acids (HA) and hymatomelanic acids (HMA)) on the toxicity of zinc and lead to different strains of bacteria was studied. All tested bacteria demonstrated a lower resistance to zinc than lead showing minimum inhibitory concentrations of 0.1 - 0.3mM and 0.3-0.5mM, respectively. The highest resistance to lead was characteristic of Pseudomonas chlororaphis PCL1391 and Rhodococcus RS67, while Pseudomonas chlororaphis PCL1391 showed the greatest resistance to zinc. The combined fractions of HS and HA alone reduced zinc toxicity at all added concentrations of the organic substances (50 - 200mgL -1 ) to all microorganisms, while hymatomelanic acids reduced zinc toxicity to Pseudomonas chlororaphis PCL1391 at 200mgL -1 organic concentration only. The HS fractions imparted similar effects on lead toxicity also. This study demonstrated that heavy metal toxicity to bacteria could be reduced through complexation with HS and their fractions. This was particularly true when the metal-organic complexes held a high stability, and low solubility and bioavailability. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology.

    PubMed

    S Herath, H M Ayala; Kawakami, Tomonori; Nagasawa, Shiori; Serikawa, Yuka; Motoyama, Ayuri; Chaminda, G G Tushara; Weragoda, S K; Yatigammana, S K; Amarasooriya, A A G D

    2018-04-01

    Chronic kidney disease of unknown etiology (CKDu) is spreading gradually in Sri Lanka. In the current research, 1,435 well water samples from all 25 districts of Sri Lanka, 91 rice samples, and 84 human urine samples from both CKDu-endemic and non-endemic areas in Sri Lanka were analyzed for arsenic, cadmium, lead, and chromium to detect whether toxic elements could be a cause of CKDu. The liver-type fatty acid binding protein (L-FABP) concentration and arsenic, cadmium, lead, and chromium concentrations of the urine samples were analyzed to determine the relation of L-FABP with arsenic, cadmium, lead, and chromium. High concentrations of arsenic, cadmium, lead, and chromium were not detected in the well water samples from CKDu-endemic areas. Arsenic, cadmium, and lead contents in the rice samples from both CKDu-endemic and non-endemic areas were well below the Codex standard. There were no relationships between the L-FABP concentration and concentrations of arsenic, cadmium, lead, and chromium in urine. In addition, arsenic, cadmium, lead, and chromium concentrations in human urine samples from CKDu-endemic areas were not significantly different from those from non-endemic areas. These findings indicated that arsenic, cadmium, lead, and chromium could not cause CKDu.

  19. Biochemical effects of lead, zinc, and cadmium from mining on fish in the Tri-States district of northeastern Oklahoma, USA

    USGS Publications Warehouse

    Schmitt, Christopher J.; Whyte, Jeffrey J.; Brumbaugh, William G.; Tillitt, Donald E.

    2005-01-01

    We assessed the exposure of fish from the Spring and Neosho Rivers in northeast Oklahoma, USA, to lead, zinc, and cadmium from historical mining in the Tri-States Mining District (TSMD). Fish (n = 74) representing six species were collected in October 2001 from six sites on the Spring and Neosho Rivers influenced to differing degrees by mining. Additional samples were obtained from the Big River, a heavily contaminated stream in eastern Missouri, USA, and from reference sites. Blood from each fish was analyzed for Pb, Zn, Cd, Fe, and hemoglobin (Hb). Blood also was analyzed for ??-aminolevulinic acid dehydratase (ALA-D) activity. The activity of ALA-D, an enzyme involved in heme synthesis, is inhibited by Pb. Concentrations of Fe and Hb were highly correlated (r = 0.89, p < 0.01) across all species and locations and typically were greater in common carp (Cyprinus carpio) than in other taxa. Concentrations of Pb, Zn, and Cd typically were greatest in fish from sites most heavily affected by mining and lowest in reference samples. The activity of ALA-D, but not concentrations of Hb or Fe, also differed significantly (p < 0.01) among sites and species. Enzyme activity was lowest in fish from mining-contaminated sites and greatest in reference fish, and was correlated negatively with Pb in most species. Statistically significant (p < 0.01) linear regression models that included negative terms for blood Pb explained as much as 68% of the total variation in ALA-D activity, but differences among taxa were highly evident. Positive correlations with Zn were documented in the combined data for channel catfish (Ictalurus punctatus) and flathead catfish (Pylodictis olivaris), as has been reported for other taxa, but not in bass (Micropterus spp.) or carp. In channel catfish, ALA-D activity appeared to be more sensitive to blood Pb than in the other species investigated (i.e., threshold concentrations for inhibition were lower). Such among-species differences are consistent

  20. Correlation Between Bulk Material Defects and Spectroscopic Response in Cadmium Zinc Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.

    1999-01-01

    One of the critical challenges for large area cadmium zinc telluride (CdZnTe) detector arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, infrared transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar detector. The two techniques have been used to develop a correlation between bulk defect type and detector performance. The correlation allows for the use of infrared imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe detector arrays.

  1. Toxicity of Military Unique Compounds in Aquatic Organisms: An Annotated Bibliography (Studies Published Through 1996)

    DTIC Science & Technology

    1998-04-01

    containing zinc, cadmium , arsenic, lead, aluminum, carbon tetrachloride, perchloroethylene, hexachloroethane, hexachlorobenzene, and hydrochloric...Siphonaptera/Solvent Dyes/Toxicity/Trout/Water/Zinc/SmokeMunitions/Propellants/Water Pollution/ Cadmium /Lead(Metal)/Carbon Tetrachloride/Aquatic Biology...combustion products that are a complex mixture containing zinc, cadmium , arsenic, lead, aluminum, carbon tetrachloride, perchloroethylene

  2. Toxicity to woodlice of zinc and lead oxides added to soil litter

    USGS Publications Warehouse

    Beyer, W.N.; Anderson, A.

    1985-01-01

    Previous studies have shown that high concentrations of metals in soil are associated with reductions in decomposer populations. We have here determined the relation between the concentrations of lead and zinc added as oxides to soil litter and the survival and reproduction of a decomposer population under controlled conditions. Laboratory populations of woodlice (Porcellio scaber Latr) were fed soil litter treated with lead or zinc at concentrations that ranged from 100 to 12,800 ppm. The survival of the adults, the maximum number of young alive, and the average number of young alive, were recorded over 64 weeks. Lead at 12,800 ppm and zinc at 1,600 ppm or more had statistically significant (p < 0.05) negative effects on the populations. These results agree with field observations suggesting that lead and zinc have reduced populations of decomposers in contaminated forest soil litter, and concentrations are similar to those reported to be associated with reductions in natural populations of decomposers. Poisoning of decomposers may disrupt nutrient cycling, reduce the numbers of invertebrates available to other wildlife for food, and contribute to the contamination of food chains.

  3. An evaluation of airborne nickel, zinc, and lead exposure at hot dip galvanizing plants.

    PubMed

    Verma, D K; Shaw, D S

    1991-12-01

    Industrial hygiene surveys were conducted at three hot dip galvanizing plants to determine occupational exposure to nickel, zinc, and lead. All three plants employed the "dry process" and used 2% nickel, by weight, in their zinc baths. A total of 32 personal and area air samples were taken. The air samples were analyzed for nickel, zinc, and lead. Some samples were also analyzed for various species of nickel (i.e., metallic, soluble, and oxidic). The airborne concentrations observed for nickel and its three species, zinc, and lead at the three plants were all well below the current and proposed threshold limit values recommended by the American Conference of Governmental Industrial Hygienists (ACGIH).

  4. Ferritin: a zinc detoxicant and a zinc ion donor.

    PubMed Central

    Price, D; Joshi, J G

    1982-01-01

    Rats were injected with 1 mg of Zn2+ as zinc sulfate or 2 mg of Cd2+ as cadmium sulfate per kg of body weight on a daily basis. After seven injections, ferritin and metallothionein were isolated from the livers of the rats. Significant amounts of zinc were associated with ferritin. Incubation of such ferritin with apoenzymes of calf intestinal alkaline phosphatase, yeast phosphoglucomutase, and yeast aldolase restored their enzymic activity. The amount of zinc injected was insufficient to stimulate significant synthesis of metallothionein, but similar experiments with injection of cadmium did stimulate the synthesis of metallothionein. The amount of Zn2+ in ferritin of Cd-injected rats was greater than that in ferritin in Zn-injected rats, which was greater than that in ferritin of normal rats. Thus at comparable protein concentration ferritin from Cd-injected rats was a better Zn2+ donor than was ferritin from Zn-injected or normal animals. Ferritin is a normal constituent of several tissues, whereas metallothionein is synthesized under metabolic stress. Thus ferritin may function as a "metal storage and transferring agent" for iron and for zinc. It is suggested that ferritin probably serves as the initial chelator for Zn2+ and perhaps other metal ions as well and that under very high toxic levels of metal ions the synthesis of metallothionein is initiated as the second line of defense. PMID:6212927

  5. Combined processing of lead concentrates

    NASA Astrophysics Data System (ADS)

    Kubasov, V. L.; Paretskii, V. M.; Sidorin, G. N.; Travkin, V. F.

    2013-06-01

    A combined scheme of processing of lead concentrates with the production of pure metallic lead and the important components containing in these concentrates is considered. This scheme includes sulfating roasting of the lead concentrates and two-stage leaching of the formed cinder with the formation of a sulfate solution and lead sulfate. When transformed into a carbonate form, lead sulfate is used for the production of pure metallic lead. Silver, indium, copper, cadmium, nickel, cobalt, and other important components are separately extracted from a solution. At the last stage, zinc is extracted by either extraction followed by electrolytic extraction of a metal or the return of the forming solution of sulfuric acid to cinder leaching.

  6. A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers.

    PubMed

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Kang, Renke; Zhang, Bi; Guo, Dongming

    2016-05-26

    A novel approach of chemical mechanical polishing (CMP) is developed for cadmium zinc telluride (CdZnTe or CZT) wafers. The approach uses environment-friendly slurry that consists of mainly silica, hydrogen peroxide, and citric acid. This is different from the previously reported slurries that are usually composed of strong acid, alkali, and bromine methanol, and are detrimental to the environment and operators. Surface roughness 0.5 nm and 4.7 nm are achieved for Ra and peak-to-valley (PV) values respectively in a measurement area of 70 × 50 μm(2), using the developed novel approach. Fundamental polishing mechanisms are also investigated in terms of X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Hydrogen peroxide dominates the passivating process during the CMP of CZT wafers, indicating by the lowest passivation current density among silica, citric acid and hydrogen peroxide solution. Chemical reaction equations are proposed during CMP according to the XPS and electrochemical measurements.

  7. A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers

    PubMed Central

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Kang, Renke; Zhang, Bi; Guo, Dongming

    2016-01-01

    A novel approach of chemical mechanical polishing (CMP) is developed for cadmium zinc telluride (CdZnTe or CZT) wafers. The approach uses environment-friendly slurry that consists of mainly silica, hydrogen peroxide, and citric acid. This is different from the previously reported slurries that are usually composed of strong acid, alkali, and bromine methanol, and are detrimental to the environment and operators. Surface roughness 0.5 nm and 4.7 nm are achieved for Ra and peak-to-valley (PV) values respectively in a measurement area of 70 × 50 μm2, using the developed novel approach. Fundamental polishing mechanisms are also investigated in terms of X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Hydrogen peroxide dominates the passivating process during the CMP of CZT wafers, indicating by the lowest passivation current density among silica, citric acid and hydrogen peroxide solution. Chemical reaction equations are proposed during CMP according to the XPS and electrochemical measurements. PMID:27225310

  8. Effect of accelerated crucible rotation on melt composition in high-pressure vertical Bridgman growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2000-02-01

    Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of accelerated crucible rotation (ACRT) on crystal growth dynamics. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and dilute zinc segregation. Application of ACRT greatly improves mixing in the melt, but causes an overall increased deflection of the solid-liquid interface. The flow exhibits a Taylor-Görtler instability at the crucible sidewall, which further enhances melt mixing. The rate of mixing depends strongly on the length of the ACRT cycle, with an optimum half-cycle length between 2 and 4 Ekman time units. Significant melting of the crystal occurs during a portion of the rotation cycle, caused by periodic reversal of the secondary flow at the solid-liquid interface, indicating the possibility of compositional striations.

  9. Horizontal and Vertical Distribution of Heavy Metals in Farm Produce and Livestock around Lead-Contaminated Goldmine in Dareta and Abare, Zamfara State, Northern Nigeria.

    PubMed

    Orisakwe, O E; Oladipo, O O; Ajaezi, G C; Udowelle, N A

    2017-01-01

    Background . Hitherto studies in response to the June 2010 lead poisoning, Zamfara State, Nigeria, have focused on clinical interventions without information on livestock and other metals. Objective . This study has investigated the distribution of heavy metals in farm produce and livestock around lead-contaminated goldmine in Dareta and Abare, Zamfara State, Nigeria. Methods . Vegetables, soil, water, blood, and different meat samples were harvested from goat, sheep, cattle, and chicken from Dareta, Abare, and Gusau communities. The samples were digested with 10 mL of a mix of nitric and perchloric acids; the mixture was then heated to dryness. Lead, cadmium, zinc, chromium, copper, magnesium, and nickel were analysed using flame Atomic Absorption Spectrophotometer. The daily intake, bioaccumulation factor, and target hazard quotient (THQ) were calculated. Results . Chicken bone-muscles from Dareta had the highest concentrations of lead, zinc, and nickel (28.2750, 16.1650, and 4.2700 mg/kg, resp.), while chicken brain had the highest levels of cadmium, magnesium (0.3800 and 67.5400 mg/kg), and chromium (6.1650 mg/kg, kidney tissue inclusive). Conclusion . In addition to lead, cadmium may also be of concern in the contaminated mining communities of Zamfara State, Nigeria, given the high levels of cadmium in meat and vegetables samples from these areas.

  10. Exposure of children to lead and cadmium from a mining area of Brazil.

    PubMed

    Paoliello, Monica Maria Bastos; De Capitani, Eduardo Mello; da Cunha, Fernanda Gonçalves; Matsuo, Tiemi; Carvalho, Maria de Fátima; Sakuma, Alice; Figueiredo, Bernardino Ribeiro

    2002-02-01

    During the past 50 years the Ribeira river valley, in the southern part of the state of São Paulo, Brazil, had been under the influence of the full activity of a huge lead refinery and mine working by the side of the river. The plant completely stopped all kinds of industrial activities at the end of 1995, and part of the worker population and their families still remain living nearby in small communities. The objective of the study was to assess the exposure of children to lead and cadmium in these areas, where residual environmental contamination from the past industrial activity still exists. Blood samples of 295 children aged 7 to 14 years, residing in rural and urban areas around the mine and the refinery, were collected. A questionnaire was given to gather information on food habits, leisure activities, father's past employment, current and former residential places, and other variables. Blood lead and cadmium concentrations were analyzed by graphite furnace atomic absorption spectrometry using Zeeman background correction. Cadmium values obtained in this population were mostly below established quantification limits (0.5 microg/dl). The median of blood lead level (BLL) obtained in children living close to the lead refinery was 11.25 microg/dl, and the median in other mining regions far from the refinery was 4.4 microg/dl. Logistic regression analysis was conducted to examine the independent contribution of selected variables in predicting BLL in these children. The following variables showed significant association with high BLL: residential area close to the lead refinery [odds ratio (OR)=10.38 (95% confidence interval (Cl)=4.86-23.25)], former father's occupational lead exposure [OR=4.07 (95% Cl=1.82-9.24)], and male gender [OR=2.60 (95% Cl=1.24-5.62)].

  11. Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics

    NASA Astrophysics Data System (ADS)

    Perez-Aguilar, Nancy Veronica; Muñoz-Sandoval, Emilio; Diaz-Flores, Paola Elizabeth; Rangel-Mendez, Jose Rene

    2010-02-01

    Nitrogen-doped multiwall carbon nanotubes (CNx) were chemically oxidized and tested to adsorb cadmium and lead from aqueous solution. Physicochemical characterization of carbon nanotubes included morphological analysis, textural properties, and chemical composition. In addition, the cadmium adsorption capacity of oxidized-CNx was compared with commercially available activated carbon and single wall carbon nanotubes. Carboxylic and nitro groups on the surface of oxidized CNx shifted the point of zero charge from 6.6 to 3.1, enhancing their adsorption capacity for cadmium and lead to 0.083 and 0.139 mmol/g, respectively, at pH 5 and 25 °C. Moreover, oxidized-CNx had higher selectivity for lead when both metal ions were in solution. Kinetic experiments for adsorption of cadmium showed that the equilibrium was reached at about 4 min. Finally, the small size, geometry, and surface chemical composition of oxidized-CNx are the key factors for their higher adsorption capacity than activated carbon.

  12. Deposition of lead and cadmium released by cigarette smoke in dental structures and resin composite.

    PubMed

    Takeuchi, Cristina Yoshie Garcia; Corrêa-Afonso, Alessandra Marques; Pedrazzi, Hamilton; Dinelli, Welingtom; Palma-Dibb, Regina Guenka

    2011-03-01

    Cigarette smoke is a significant source of cadmium, lead, and toxic elements, which are absorbed into the human organism. In this context, the aim of this study was to investigate in vitro the presence of toxic elements, cadmium, and lead deriving from cigarette smoke in the resin composite, dentine, and dental enamel. Eight cylindrical specimens were fabricated from resin composite, bovine enamel, and root dentin fragments that were wet ground and polished with abrasive paper to obtain sections with 6-mm diameter and 2-mm thickness. All specimens were exposed to the smoke of 10 cigarettes/day during 8 days. After the simulation of the cigarette smoke, the specimens were examined with scanning electron microscopy (SEM) and the energy-dispersive X-ray analysis. In the photomicrographic analysis in SEM, no morphological alterations were found; however, the microanalysis identified the presence of cadmium, arsenic, and lead in the different specimens. These findings suggest that the deposition of these elements derived from cigarette smoke could be favored by dental structures and resin composite. Copyright © 2010 Wiley-Liss, Inc.

  13. Copper, lead and zinc concentrations of human breast milk as affected by maternal dietary practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umoren, J.; Kies, C.

    1986-03-01

    Maternal dietary practices have been found to affect the concentrations of some nutrients in human breast milk. Lead toxicity is a concern in young children. Lead, copper and zinc are thought to compete for intestinal absorption sites. The objective of the current project was to compare copper, lead and zinc contents of breast milk from practicing lacto-vegetarian and omnivore, lactating women at approximately four months post-partum. Analyses were done by atomic absorption spectrophotometry using a carbon rod attachment. Copper concentrations were higher in milk samples from lacto-ovo-vegetarians. Milk samples from the omnivores had the highest lead and zinc concentrations. Leadmore » and copper concentrations in milk were negatively correlated. The higher zinc concentrations in the milk of the omnivore women may have been related to better utilization of zinc from meat than from plant food sources.« less

  14. Effects of lead and cadmium exposure from electronic waste on child physical growth.

    PubMed

    Yang, Hui; Huo, Xia; Yekeen, Taofeek Akangbe; Zheng, Qiujian; Zheng, Minghao; Xu, Xijin

    2013-07-01

    Many studies indicate that lead (Pb) and cadmium (Cd) exposure may alter bone development through both direct and indirect mechanisms, increasing the risk of osteoporosis later in life. The aim of this study was to investigate the association between Pb and Cd exposure, physical growth, and bone and calcium metabolism in children of an electronic waste (e-waste) processing area. We recruited 246 children (3-8 years) in a kindergarten located in Guiyu, China. Blood lead levels (BLLs) and blood cadmium levels (BCLs) of recruited children were measured as biomarkers for exposure. Serum calcium, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were used as biomarkers for bone and calcium metabolism. Physical indexes such as height, weight, and head and chest circumference were also measured. The mean values of BLLs and BCLs obtained were 7.30 μg/dL and 0.69 μg/L, respectively. The average of BCLs increased with age. In multiple linear regression analysis, BLLs were negatively correlated with both height and weight, and positively correlated with bone resorption biomarkers. Neither bone nor calcium metabolic biomarkers showed significant correlation with cadmium. Childhood lead exposure affected both physical development and increased bone resorption of children in Guiyu. Primitive e-waste recycling may threaten the health of children with elevated BLL which may eventually cause adult osteoporosis.

  15. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  16. Versatile chelating behavior of benzil bis(thiosemicarbazone) in zinc, cadmium, and nickel complexes.

    PubMed

    López-Torres, Elena; Mendiola, Ma Antonia; Pastor, César J; Pérez, Beatriz Souto

    2004-08-23

    Reactions of benzil bis(thiosemicarbazone), LH(6), with M(NO(3))(2).nH(2)O (M = Zn, Cd, and Ni), in the presence of LiOH.H(2)O, show the versatile behavior of this molecule. The structure of the ligand, with the thiosemicarbazone moieties on opposite sides of the carbon backbone, changes to form complexes by acting as a chelating molecule. Complexes of these metal ions with empirical formula [MLH(4)] were obtained, although they show different molecular structures depending on their coordinating preferences. The zinc complex is the first example of a crystalline coordination polymer in which a bis(thiosemicarbazone) acts as bridging ligand, through a nitrogen atom, giving a 1D polymeric structure. The coordination sphere is formed by the imine nitrogen and sulfur atoms, and the remaining position, in a square-based pyramid, is occupied by an amine group of another ligand. The cadmium derivative shows the same geometry around the metal ion but consists of a dinuclear structure with sulfur atoms acting as a bridge between the metal ions. However, in the nickel complex LH(6) acts as a N(2)S(2) ligand yielding a planar structure for the nickel atom. The ligand and its complexes have been characterized by X-ray crystallography, microanalysis, mass spectrometry, IR, (1)H, and (13)C NMR spectroscopies and for the cadmium complex by (113)Cd NMR in solution and in the solid state.

  17. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease

    PubMed Central

    Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328

  18. Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry.

    PubMed Central

    Baranowska, I

    1995-01-01

    OBJECTIVE--To measure the concentrations of the trace elements lead and cadmium in human placenta and in maternal and neonatal (cord) blood. To assess the influence of the strongly polluted environment on the content of metals in tissues and on the permeability of placenta to cadmium and lead. Various methods of mineralisation were tested before analysis. METHODS--Graphite furnace atomic absorption spectrometry was used for the determination of lead and cadmium. The samples for analysis were prepared by mineralisation under pressure in a Teflon bomb (HNO3, 110 degrees C), by wet ashing under normal pressure (HNO3 + H2O2 for 12 hours), and by microwave digestion in concentrated nitric acid. RESULTS--In analysed samples the following mean concentrations of cadmium and lead were found: in venous blood Pb = 72.50 ng/ml, Cd = 4.90 ng/ml; in placenta Pb = 0.50 microgram/g, Cd = 0.11 microgram/g; in cord blood Pb = 38.31 ng/ml, Cd = 1.13 ng/ml. CONCLUSION--High concentrations of lead and cadmium were found in placentas and in maternal blood whereas in neonatal blood there was an increased concentration of lead and only traces of cadmium. It is concluded that the placenta is a better barrier for cadmium than for lead. Among the examined methods of mineralisation, microwave digestion was the best. PMID:7795737

  19. Heavy Metals' Effect on Susceptibility to Attention-Deficit/Hyperactivity Disorder: Implication of Lead, Cadmium, and Antimony.

    PubMed

    Lee, Min-Jing; Chou, Miao-Chun; Chou, Wen-Jiun; Huang, Chien-Wei; Kuo, Ho-Chang; Lee, Sheng-Yu; Wang, Liang-Jen

    2018-06-10

    Background: Heavy metals are known to be harmful for neurodevelopment and they may correlate to attention deficit/hyperactivity disorder (ADHD). In this study, we aim to explore the relationships between multiple heavy metals (manganese, lead, cadmium, mercury, antimony, and bismuth), neurocognitive function, and ADHD symptoms. Methods: We recruited 29 patients with ADHD inattentive type (ADHD-I), 47 patients with ADHD hyperactivity/impulsivity type (ADHD-H/I), and 46 healthy control children. Urine samples were obtained to measure the levels of the aforementioned heavy metals in each child. Participants’ cognitive function and clinical symptoms were assessed, respectively. Results: We found ADHD-H/I patients demonstrated the highest antimony levels ( p = 0.028), and ADHD-I patients demonstrated the highest cadmium levels ( p = 0.034). Antimony levels were positively correlated with the severity of ADHD symptoms that were rated by teachers, and cadmium levels were negatively correlated with the Full Scale Intelligence Quotient. Lead levels were negatively correlated with most indices of the Wechsler Intelligence Scale for Children⁻Fourth Edition (WISC-IV), but positively correlated with inattention and hyperactivity/impulsivity symptoms ( p < 0.05). Conclusion: Lead, cadmium and antimony were associated with susceptibility to ADHD and symptom severity in school-age children. Eliminating exposure to heavy metals may help to prevent neurodevelopmental disorders in children.

  20. Towards optimization of ACRT schedules applied to the gradient freeze growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-12-01

    Historically, the melt growth of II-VI crystals has benefitted from the application of the accelerated crucible rotation technique (ACRT). Here, we employ a comprehensive numerical model to assess the impact of two ACRT schedules designed for a cadmium zinc telluride growth system per the classical recommendations of Capper and co-workers. The ;flow maximizing; ACRT schedule, with higher rotation, effectively mixes the solutal field in the melt but does not reduce supercooling adjacent to the growth interface. The ACRT schedule derived for stable Ekman flow, with lower rotation, proves more effective in reducing supercooling and promoting stable growth. These counterintuitive results highlight the need for more comprehensive studies on the optimization of ACRT schedules for specific growth systems and for desired growth outcomes.

  1. Cadmium, lead, and mercury exposure assessment among croatian consumers of free-living game.

    PubMed

    Lazarus, Maja; Prevendar Crnić, Andreja; Bilandžić, Nina; Kusak, Josip; Reljić, Slaven

    2014-09-29

    Free-living game can be an important source of dietary cadmium and lead; the question is whether exposure to these two elements is such that it might cause adverse health effects in the consumers. The aim of this study was to estimate dietary exposure to cadmium, lead, and mercury from free-living big game (fallow deer, roe deer, red deer, wild boar, and brown bear), and to mercury from small game (pheasant and hare), hunted in Croatia from 1990 to 2012. The exposure assessment was based on available literature data and our own measurements of metal levels in the tissues of the game, by taking into account different consumption frequencies (four times a year, once a month and once a week). Exposure was expressed as percentage of (provisional) tolerable weekly intake [(P)TWI] values set by the European Food Safety Authority (EFSA). Consumption of game meat (0.002-0.5 % PTWI) and liver (0.005-6 % PTWI) assumed for the general population (four times a year) does not pose a health risk to consumers from the general population, nor does monthly (0.02-6 % PTWI) and weekly (0.1-24 % PTWI) consumption of game meat. However, because of the high percentage of free-living game liver and kidney samples exceeding the legislative limits for cadmium (2-99 %) and lead (1-82 %), people should keep the consumption of certain game species' offal as low as possible. Children and pregnant and lactating women should avoid eating game offal altogether. Free-living game liver could be an important source of cadmium if consumed on a monthly basis (3-74 % TWI), and if consumed weekly (11-297 % TWI), it could even give rise to toxicological concern.

  2. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Hussain, Afzal; Ali, Qasim; Shakoor, Muhammad Bilal; Zia-Ur-Rehman, Muhammad; Farid, Mujahid; Asma, Maliha

    2017-11-01

    Cadmium (Cd) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. The role of micronutrient-amino chelates on reducing Cd toxicity in crop plants is recently introduced. The current study was conducted to highlight the role of foliar application of zinc-lysine (Zn-lys) complex on biochemical and growth parameters and Cd uptake in wheat (Triticum aestivum) grown in aged Cd-contaminated soil. Foliar concentration of Zn-lys (0, 10, 20, and 30 mg L -1 ) was applied at different time intervals (2nd, 3rd, 5th and 7th week of sowing) and plants were harvested at maturity. Folliar application of Zinc-lys significantly increased the photosynthesis, grain yield, enzyme activities and Zn contents in different plant tissues. Zinc-lys reduced Cd contents in grains, shoot and root as well as reduced the oxidative stress in wheat linearly in a dose-additive manner. Taken together, Zn-lys chelate efficiently improved wheat growth and fortified Zn contents while reduced Cd concentration in plant in a Zn-deficient Cd-contaminated soil. Although, health risk index (HRI) from the soil sampling area seems to be lower than <1 for Cd but may exceed due to long-term consumption of grains produced from such contaminated soil. Foliar applied Zn-lys reduced HRI which may help to reduce health risks associated with Cd. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Levels of iron, silver, zinc, and lead in oranges and avocados from two gold-rich towns compared with levels in an adjacent gold-deficient town

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golow, A.A.; Laryea, J.N.

    1994-09-01

    Fruits such as oranges and avocados are important sources of drinks and food in the Ghanaian Society. If such fruits contain various types of metals they may augument the types and amounts of them in the human body. The metals in fruits may depend on what is in the soils from which they are grown. If the soils contain toxic metals like lead, mercury and cadmium then the consumers may be poisoned as happened in the [open quotes]Ouchi - ouchi[close quotes], disease in Japan and similar episodes. In the area under study, the Geological Survey indicates the presence of 2.5more » ppm of lead, 10 - 20 ppm of copper and less than 15 ppm of nickel. Silver, not reported in commercial amounts, is a byproduct of gold productions at Obuasi. Since copper and nickel are presented in the area traces of silver will certainly occur. In the same manner zinc is usually associated with lead as sulphide of zinc blend trace amounts of it are likely to occur in the area. Of the four metals measured, iron and zinc essential for citrus. The extractable iron and zinc in the area of study were 90 and 1.8 mg/kg, levels on the low side for the healthy growth of crops. The investigation reported here is the comparison of the levels of some metals in oranges and avocados from farms in Obuasi and Konongo with those from farms in Kumasi City. This is a part of a project aimed at finding out differences in the metal contents of various food crops grown in various regions of the country. Konongo and Obuasi have soils which are rich in gold but Kumasi city, which is not too distant from these towns, does not have gold in its soil. 18 refs., 1 tab.« less

  4. Cadmium and lead uptake by Red Swamp crayfish (Procambarus clarkii) of Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naqvi, S.M.; Howell, R.D.

    1993-08-01

    Environmental contamination by heavy metals such as cadmium and lead is generally reflected by an increase in the tissue residues of aquatic animals. This is also true for fresh-water crayfish as reported by Bagatto and Khan (1987) for Orconectes virilis collected in the vicinity of Canadian smelters. They found a positive correlation between the residues of Cd and Pb in crayfish tissues and the distance from smelters. Stinson and Eaton reported similar findings for another crayfish, Pacifasticus leniusculus, collected from a lake on the West Coast of the US which was receiving urban runoff. Cadmium and lead were more concentratedmore » in the viscera and exoskeleton, respectively. Madigosky et al. (1991) found that Procambarus clarkii collected from roadside drainage ditches of Louisiana contained greater amounts of Cd and Pb than commercially harvested control groups. Lead accumulation has been attributed to the use of farm machinery runoff in agricultural areas and Cd to rubber tires. Cadmium and lead are known to accumulate even in those crayfish where no known contamination can be established, e.g., Dickson et al. (1980) found metal residues in troglobitic crayfish. Accumulation of Pb and Cd in the tissues in laboratory-exposed crayfish of different species has been documented by several investigators. These metals accumulate in exoskeleton, hepatopancreas, gills, antennal glands, mid-gut glands and abdominal muscles of crayfish. Generally, all studies mentioned above report metal uptake by crayfish but have not quantified the amount of metal remaining after the crayfish are transferred to uncontaminated water (depuration). The purpose of this study was to: (1) assess Cd and Pb accumulation in laboratory-exposed male and female P. clarkii (total body wet weight basis), and (2) to determine how much metal is lost when crayfish are transferred to uncontaminated aged tap water. 17 refs., 3 tabs.« less

  5. Environmental pollution levels of lead and zinc in Ishiagu and Uburu communities of Ebonyi State, Nigeria.

    PubMed

    Oje, Obinna A; Uzoegwu, Peter N; Onwurah, Ikechukwu N E; Nwodo, Uchechukwu U

    2010-09-01

    Water and soil samples from the area were therefore analyzed for their lead and zinc content. Computation of pollution statuses of lead and zinc revealed topsoil lead geoaccumulation indices of -0.143 and -0.069 and zinc geoaccumulation indices of 1.168 and 0.713 for Ishiagu and Uburu respectively. The pollution indices were determined to be 0.499 and 0.3564 for soil in Ishiagu and Uburu respectively and also 5.11 and 2.42 for water in Ishiagu and Uburu communities respectively. Water/soil concentration ratio were found to be 0.0018 and 0.0014 for lead in Ishiagu and Uburu respectively. On the other hand, the water/soil concentration ratio for zinc was computed to be 0.001 and 0.0008 for Ishiagu and Uburu respectively. These results seem to suggest that the pollution of the environment by these heavy metals in the areas were as a result of the water being contaminated by lead and zinc not necessarily their concentrations in the soil.

  6. Influence of proton-pump inhibitors on stomach wall uptake of 99mTc-tetrofosmin in cadmium-zinc-telluride SPECT myocardial perfusion imaging.

    PubMed

    Mouden, Mohamed; Rijkee, Karlijn S; Schreuder, Nanno; Timmer, Jorik R; Jager, Pieter L

    2015-02-01

    Proton-pump inhibitors (PPIs) induce potentially interfering stomach wall activity in single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) with technetium-99m ((99m)Tc)-sestamibi. However, no data are available for (99m)Tc-tetrofosmin. We assessed the influence of prolonged (>2 weeks) PPI use on the stomach wall uptake of (99m)Tc-tetrofosmin in patients referred for stress MPI with a cadmium-zinc-telluride-based SPECT camera and its relation with dyspepsia symptoms. Consecutive patients (n=127) underwent a 1-day adenosine stress-first SPECT-MPI with (99m)Tc-tetrofosmin, of whom 54 (43%) patients had been on PPIs for more than 2 weeks. Stomach wall activity was identified on stress SPECT using computed tomographic attenuation maps and was scored using a four-point grading scale into clinically relevant (scores 2 or 3) or nonrelevant (scores 0 or 1).Patients on PPIs had stomach wall uptake more frequently as compared with patients not using PPIs (22 vs. 7%, P=0.017). Dyspepsia was similar in both groups. Prolonged use of PPIs is associated with stomach wall uptake of (99m)Tc-tetrofosmin in stress cadmium-zinc-telluride-SPECT images. Gastric symptoms were not associated with stomach wall uptake.

  7. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    PubMed

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  8. Characterization of a 2-mm thick, 16x16 Cadmium-Zinc-Telluride Pixel Array

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Richardson, Georgia; Mitchell, Shannon; Ramsey, Brian; Seller, Paul; Sharma, Dharma

    2003-01-01

    The detector under study is a 2-mm-thick, 16x16 Cadmium-Zinc-Telluride pixel array with a pixel pitch of 300 microns and inter-pixel gap of 50 microns. This detector is a precursor to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation. In addition, we discuss electric field modeling for this specific detector geometry and the role this mapping will play in terms of charge sharing and charge loss in the detector.

  9. Cadmium, environmental exposure, and health outcomes

    PubMed Central

    Satarug, Soisungwan; Garrett, Scott H.; Sens, Mary Ann; Sens, Donald A.

    2018-01-01

    We provide an update of the issues surrounding health risk assessment of exposure to cadmium in food. Bioavailability of ingested cadmium has been confirmed in studies of persons with elevated dietary exposure, and the findings have been strengthened by the substantial amounts of cadmium accumulated in kidneys, eyes, and other tissues and organs of environmentally exposed individuals. We hypothesized that such accumulation results from the efficient absorption and systemic transport of cadmium, employing multiple transporters that are used for the body’s acquisition of calcium, iron, zinc, and manganese. Adverse effects of cadmium on kidney and bone have been observed in environmentally exposed populations at frequencies higher than those predicted from models of exposure. Population data raise concerns about the validity of the current safe intake level that uses the kidney as the sole target in assessing the health risk from ingested cadmium. The data also question the validity of incorporating the default 5% absorption rate in the threshold-type risk assessment model, known as the provisional tolerable weekly intake (PTWI), to derive a safe intake level for cadmium. PMID:21655733

  10. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  11. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  12. Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.

    PubMed

    Vinichuk, Mykhailo M

    2013-01-01

    Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil < soil-root interface (or rhizosphere) < fungal mycelium < fungal sporocarps. The uptake of Cu, Zn and Cd during the entire transfer process in natural conditions between soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.

  13. Horizontal and Vertical Distribution of Heavy Metals in Farm Produce and Livestock around Lead-Contaminated Goldmine in Dareta and Abare, Zamfara State, Northern Nigeria

    PubMed Central

    Oladipo, O. O.; Ajaezi, G. C.; Udowelle, N. A.

    2017-01-01

    Background. Hitherto studies in response to the June 2010 lead poisoning, Zamfara State, Nigeria, have focused on clinical interventions without information on livestock and other metals. Objective. This study has investigated the distribution of heavy metals in farm produce and livestock around lead-contaminated goldmine in Dareta and Abare, Zamfara State, Nigeria. Methods. Vegetables, soil, water, blood, and different meat samples were harvested from goat, sheep, cattle, and chicken from Dareta, Abare, and Gusau communities. The samples were digested with 10 mL of a mix of nitric and perchloric acids; the mixture was then heated to dryness. Lead, cadmium, zinc, chromium, copper, magnesium, and nickel were analysed using flame Atomic Absorption Spectrophotometer. The daily intake, bioaccumulation factor, and target hazard quotient (THQ) were calculated. Results. Chicken bone-muscles from Dareta had the highest concentrations of lead, zinc, and nickel (28.2750, 16.1650, and 4.2700 mg/kg, resp.), while chicken brain had the highest levels of cadmium, magnesium (0.3800 and 67.5400 mg/kg), and chromium (6.1650 mg/kg, kidney tissue inclusive). Conclusion. In addition to lead, cadmium may also be of concern in the contaminated mining communities of Zamfara State, Nigeria, given the high levels of cadmium in meat and vegetables samples from these areas. PMID:28539940

  14. [Remediation Pb, Cd contaminated soil in lead-zinc mining areas by hydroxyapatite and potassium chloride composites].

    PubMed

    Wang, Li; Li, Yong-Hua; Ji, Yan-Fang; Yang, Lin-Sheng; Li, Hai-Rong; Zhang, Xiu-Wu; Yu, Jiang-Ping

    2011-07-01

    The composite agents containing potassium chloride (KCl) and Hydroxyapatite (HA) were used to remediate the lead and cadmium contaminated soil in Fenghuang lead-zinc mining-smelting areas, Hunan province. The objective of this study was to identify and evaluate the influence of Cl- to the fixing efficiency of Pb and Cd by HA. Two types of contaminated soil (HF-1, HF-2) were chosen and forty treatments were set by five different Hydroxyapatite (HA) dosages and four different Cl- dosages. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the results. It showed that HA could efficiently fix the Pb and Cd from TCLP form. The maximum Pb-fixing efficiency and Cd-fixing efficiency of two types of soil were 83.3%, 97.27% and 35.96%, 57.82% when the HA: Pb: KCl molar ratio was 8: 1: 2. Compared to the fixing efficiency without KCl, KCl at the KCl: Pb molar ratio of 2 improved Pb-fixing efficiency and Cd-fixing efficiency by 6.26%, 0.33% and 7.74%, 0.83% respectively when the HA: Pb molar ratio was 8. Generally, Cl- can improve the Pb/Cd-fixing efficiency in heavy metal contaminated soil by Hydroxyapatite.

  15. Blood lead and cadmium levels in preschool children and associated risk factors in São Paulo, Brazil.

    PubMed

    Olympio, Kelly Polido Kaneshiro; Silva, Júlia Prestes da Rocha; Silva, Agnes Soares da; Souza, Vanessa Cristina de Oliveira; Buzalaf, Marília Afonso Rabelo; Barbosa, Fernando; Cardoso, Maria Regina Alves

    2018-05-18

    In Brazil, there are scarce data on lead (Pb) and cadmium (Cd) contamination, especially for more vulnerable populations such as preschool children. In this paper, we answer two questions: (1) What are the exposure levels of lead and cadmium in preschool children, in Sao Paulo, Brazil? and (2) What are the risk factors associated with this exposure? This cross-sectional study included 50 day care centers (DCCs), totaling 2463 children aged 1-4 years. Venous blood samples were analyzed by ICP-MS. Questionnaires were administered to the parents. Multiple logistic regression models were used to identify associations between blood lead levels (BLLs) and blood cadmium levels (BCLs) and potential risk factors. The geometric mean for BLLs was 2.16 μg/dL (95% CI: 2.10-2.22 μg/dL), and the 97.5th percentile was 13.9 μg/dL (95% CI: 10.0-17.3 μg/dL). For cadmium exposure, the geometric mean for BCLs was 0.48 μg/L (95% CI: 0.47-0.50 μg/L), and the 95th percentile was 2.57 μg/L (95% CI: 2.26-2.75 μg/L). The DCCs' geographic region was associated with high BLLs and BCLs, indicating hot spots for lead and cadmium exposures. In addition, it was found that the higher the vehicles flow, the higher were the BLLs in children. Red lead in household gates was also an important risk factor for lead exposure. Comparing these results with the findings of the Fourth National Report on Human Exposure to Environmental Chemicals by CDC-2013, it was found that in Brazilian preschool children the BLLs are almost three times higher (97.5th percentile) and the BCLs are almost twelve times higher (95th percentile) than those in U.S. children. This information is essential to formulate public health policies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis.

    PubMed

    Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun

    2017-07-01

    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Relationship of human levels of lead and cadmium to the consumption of fish caught in and around Lake Coeur d'Alene, Idaho. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, B.S.; Rondinelli, R.

    A pilot exposure study was conducted to determine whether the consumption of fish captured in Lake Coeur d'Alene (LCD), the Coeur d'Alene River, and the adjacent Chain Lakes, could substantially increase lead and cadmium levels in human blood and urine. The goals of the study were: to characterize fish and duck consumption patterns of people living around LCD; and to determine the association between fish and duck consumption and lead/cadmium levels. The lead and cadmium levels among participants living near LCD were within the expected range and are not of any known clinical importance. After adjusting for age and smoking,more » it was found that persons eating fish or duck were more likely to have higher than the median levels of cadmium in their urine. There were no statistically significant associations between fish or duck consumption and blood levels of lead or cadmium or urine levels of cadmium when adjusted for creatinine.« less

  18. Towards Optimization of ACRT Schedules Applied to the Gradient Freeze Growth of Cadmium Zinc Telluride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divecha, Mia S.; Derby, Jeffrey J.

    Historically, the melt growth of II-VI crystals has benefitted by the application of the accelerated crucible rotation technique (ACRT). Here, we employ a comprehensive numerical model to assess the impact of two ACRT schedules designed for a cadmium zinc telluride growth system per the classical recommendations of Capper and co-workers. The “flow maximizing” ACRT schedule, with higher rotation, effectively mixes the solutal field in the melt but does not reduce supercooling adjacent to the growth interface. The ACRT schedule derived for stable Ekman flow, with lower rotation, proves more effective in reducing supercooling and promoting stable growth. Furthermore, these counterintuitivemore » results highlight the need for more comprehensive studies on the optimization of ACRT schedules for specific growth systems and for desired growth outcomes.« less

  19. Towards Optimization of ACRT Schedules Applied to the Gradient Freeze Growth of Cadmium Zinc Telluride

    DOE PAGES

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-10-03

    Historically, the melt growth of II-VI crystals has benefitted by the application of the accelerated crucible rotation technique (ACRT). Here, we employ a comprehensive numerical model to assess the impact of two ACRT schedules designed for a cadmium zinc telluride growth system per the classical recommendations of Capper and co-workers. The “flow maximizing” ACRT schedule, with higher rotation, effectively mixes the solutal field in the melt but does not reduce supercooling adjacent to the growth interface. The ACRT schedule derived for stable Ekman flow, with lower rotation, proves more effective in reducing supercooling and promoting stable growth. Furthermore, these counterintuitivemore » results highlight the need for more comprehensive studies on the optimization of ACRT schedules for specific growth systems and for desired growth outcomes.« less

  20. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...

  1. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...

  2. [The morphofunctional state of the bone marrow in lead and zinc intoxication].

    PubMed

    Vladimtseva, T M; Pashkevich, I A; Salmina, A B

    2006-01-01

    The nucleolus is a compulsory nuclear structure of all cells of eukaryotes. The quantitative and qualitative characteristics of nuclei show the functional activity of a cell, the rate of its synthesis of RNA and portents, and its metabolic state. Heavy metals (zinc chloride and lead acetate) were comparatively investigated for their effects on the nucleolar apparatus of bone marrow cells in in vivo experiments. Zinc chloride and lead acetate were ascertained to damage the nucleolar apparatus of cells, thus decreasing their transcriptional activity or irreversibly damaging them.

  3. Deletion of phytochelatin synthase modulates the metal accumulation pattern of cadmium exposed C. elegans

    DOE PAGES

    Essig, Yona J.; Webb, Samuel M.; Stürzenbaum, Stephen R.

    2016-02-19

    Here, environmental metal pollution is a growing health risk to flora and fauna. It is therefore important to fully elucidate metal detoxification pathways. Phytochelatin synthase (PCS), an enzyme involved in the biosynthesis of phytochelatins (PCs), plays an important role in cadmium detoxification. The PCS and PCs are however not restricted to plants, but are also present in some lower metazoans. The model nematode Caenorhabditis elegans, for example, contains a fully functional phytochelatin synthase and phytochelatin pathway. By means of a transgenic nematode strain expressing a pcs-1 promoter-tagged GFP ( pcs-1::GFP) and a pcs-1 specific qPCR assay, further evidence is presentedmore » that the expression of the C. elegans phytochelatin synthase gene (pcs-1) is transcriptionally non-responsive to a chronic (48 h) insult of high levels of zinc (500 μM) or acute (3 h) exposures to high levels of cadmium (300 μM). However, the accumulation of cadmium, but not zinc, is dependent on the pcs-1 status of the nematode. Synchrotron based X-ray fluorescence imaging uncovered that the cadmium body burden increased significantly in the pcs-1(tm1748) knockout allele. Taken together, this suggests that whilst the transcription of pcs-1 may not be mediated by an exposure zinc or cadmium, it is nevertheless an integral part of the cadmium detoxification pathway in C. elegans.« less

  4. Deletion of phytochelatin synthase modulates the metal accumulation pattern of cadmium exposed C. elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Yona J.; Webb, Samuel M.; Stürzenbaum, Stephen R.

    Here, environmental metal pollution is a growing health risk to flora and fauna. It is therefore important to fully elucidate metal detoxification pathways. Phytochelatin synthase (PCS), an enzyme involved in the biosynthesis of phytochelatins (PCs), plays an important role in cadmium detoxification. The PCS and PCs are however not restricted to plants, but are also present in some lower metazoans. The model nematode Caenorhabditis elegans, for example, contains a fully functional phytochelatin synthase and phytochelatin pathway. By means of a transgenic nematode strain expressing a pcs-1 promoter-tagged GFP ( pcs-1::GFP) and a pcs-1 specific qPCR assay, further evidence is presentedmore » that the expression of the C. elegans phytochelatin synthase gene (pcs-1) is transcriptionally non-responsive to a chronic (48 h) insult of high levels of zinc (500 μM) or acute (3 h) exposures to high levels of cadmium (300 μM). However, the accumulation of cadmium, but not zinc, is dependent on the pcs-1 status of the nematode. Synchrotron based X-ray fluorescence imaging uncovered that the cadmium body burden increased significantly in the pcs-1(tm1748) knockout allele. Taken together, this suggests that whilst the transcription of pcs-1 may not be mediated by an exposure zinc or cadmium, it is nevertheless an integral part of the cadmium detoxification pathway in C. elegans.« less

  5. Mineral resource of the month: cadmium

    USGS Publications Warehouse

    Tolcin, Amy C.

    2012-01-01

    The element cadmium was discovered in 1817 by Friedrich Stromeyer, a professor of chemistry at the University of Göttingen in Germany. Stromeyer noticed that a yellowish glow would occur when heat was applied to certain samples of calamine, a zinc-carbonate. This was unusual as the reaction was expected to be colorless. After further testing, Stromeyer deduced that an unknown metallic impurity in the carbonate caused the color change. He called the new metal "cadmium" after "kadmeia," the Greek word for calamine.

  6. Impact of zinc roofing on urban runoff pollutant loads: the case of Paris.

    PubMed

    Gromaire, M C; Chebbo, G; Constant, A

    2002-01-01

    Previous research on the Marais catchment in Paris demonstrated the very high zinc and cadmium contamination of runoff from zinc roofing. Thus further investigations were aimed at evaluating the relative importance of this type of roofing in Paris and its potential contribution to zinc and cadmium loads in wet weather flows. According to these results, about 40% of the surface of roofs in Paris is covered with rolled zinc (1016 ha), and this proportion is not likely to vary significantly in the next years, due to architectural rules. The Zn and Cd concentrations measured in runoff from these roofs are in accordance with literature

  7. [The occurance lead and cadmium in hip joint in aspect of exposure on tobacco smoke].

    PubMed

    Bogunia, Mariusz; Brodziak-Dopierała, Barbara; Kwapuliński, Jerzy; Ahnert, Bozena; Kowol, Jolanta; Nogaj, Ewa

    2008-01-01

    The objective of this study was qualification of content cadmium and lead in selected elements of the hip joint in aspect of tobacco smoking. The material for the research were 5 elements of hip joint (articular cartilage, trabecular bone and cortical bone femur head, fragment articular capsule and fragment trabecular bone from region intertrochanteric femoral bone), obtained intraoperatively during endoprothesoplastic surgeries. The samples come from habitants of Upper Silesian Region. Determination of trace elements contents were performed by ASA method (Pye Unicam SP-9) in acetylene-oxygen flame. Higher contents of lead were observed for smoking people, however in case of cadmium the differences of this element were not statistical essential between smokers and non-smokers.

  8. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium.

    PubMed

    Tang, Lu; Yao, Aijun; Ming Yuan; Tang, Yetao; Liu, Jian; Liu, Xi; Qiu, Rongliang

    2016-12-01

    Zinc (Zn) and cadmium (Cd) are two closely related chemical elements with very different biological roles in photosynthesis. Zinc plays unique biochemical functions in photosynthesis. Previous studies suggested that in some Zn/Cd hyperaccumulators, many steps in photosynthesis may be Cd tolerant or even Cd stimulated. Using RNA-seq data, we found not only that Cd and Zn both up-regulated the CA1 gene, which encodes a β class carbonic anhydrase (CA) in chloroplasts, but that a large number of other Zn up-regulated genes in the photosynthetic pathway were also significantly up-regulated by Cd in leaves of the Zn/Cd hyperaccumulator Sedum alfredii. These genes also include chloroplast genes involved in transcription and translation (rps18 and rps14), electron transport and ATP synthesis (atpF and ccsA), Photosystem II (PSBI, PSBM, PSBK, PSBZ/YCF9, PSBO-1, PSBQ, LHCB1.1, LHCB1.4, LHCB2.1, LHCB4.3 and LHCB6) and Photosystem I (PSAE-1, PSAF, PSAH2, LHCA1 and LHCA4). Cadmium and Zn also up-regulated the VAR1 gene, which encodes the ATP-dependent zinc metalloprotease FTSH 5 (a member of the FtsH family), and the DAG gene, which influences chloroplast differentiation and plastid development, and the CP29 gene, which supports RNA processing in chloroplasts and has a potential role in signal-dependent co-regulation of chloroplast genes. Further morphological parameters (dry biomass, cross-sectional thickness, chloroplast size, chlorophyll content) and chlorophyll fluorescence parameters confirmed that leaf photosynthesis of S. alfredii responded to Cd much as it did to Zn, which will contribute to our understanding of the positive effects of Zn and Cd on growth of this plant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Behavior of lead and zinc in plasma, erythrocytes, and urine and ALAD in erythrocytes following intravenous infusion of CaEDTA in lead workers.

    PubMed

    Araki, S; Aono, H; Fukahori, M; Tabuki, K

    1984-01-01

    To evaluate the effect of calcium disodium ethylenediamine tetraacetate (CaEDTA) on concentrations of lead and zinc in plasma, erythrocytes, whole blood, and urine, we administered CaEDTA by intravenous infusion for 1 hr to seven lead workers with blood lead concentrations of 46-67 micrograms/100 g (mean 54 micrograms/100 g). The plasma lead concentration (PPb) and the mobilization yield of lead in urine by CaEDTA were highest during the period between 1 and 2 hr after the infusion was started. In contrast, the lead concentration in erythrocytes (EPb) and in whole blood (BPb) remained unchanged during the 24 hr following infusion. Plasma zinc concentration (PZn) also fell rapidly following CaEDTA infusion; the decline was followed by a gradual rise in the zinc concentration in erythrocytes (EZn) without alteration in the zinc in whole blood. The mobilization yield of zinc in urine by CaEDTA (MZn) reached its highest level within 1 hr after the start of the infusion. Delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocytes gradually increased for 5 hr following CaEDTA infusion. These observations suggest that (1) PPb concentration is a more sensitive indicator of the body burden of chelatable lead than is either BPb or EPb; (2) MZn is mobilized mostly from plasma during the first several hours following the start of CaEDTA infusion, and the fall in PZn concentration following infusion is compensated first by a rise in EZn concentration and then by an immediate redistribution of zinc in other organs to the blood; and (3) Pb-inhibited ALAD activity is reactivated by the increased EZn during and shortly after CaEDTA infusion.

  10. A Study on Dielectric Properties of Cadmium Sulfide-Zinc Sulfide Core-Shell Nanocomposites for Application as Nanoelectronic Filter Component in the Microwave Domain

    NASA Astrophysics Data System (ADS)

    Devi, Jutika; Datta, Pranayee

    2018-07-01

    Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.

  11. A Study on Dielectric Properties of Cadmium Sulfide-Zinc Sulfide Core-Shell Nanocomposites for Application as Nanoelectronic Filter Component in the Microwave Domain

    NASA Astrophysics Data System (ADS)

    Devi, Jutika; Datta, Pranayee

    2018-03-01

    Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.

  12. Low zinc serum levels and high blood lead levels among school-age children in coastal area

    NASA Astrophysics Data System (ADS)

    Pramono, Adriyan; Panunggal, Binar; Rahfiludin, M. Zen; Swastawati, Fronthea

    2017-02-01

    The coverage of environmental lead toxicant was quiet wide. Lead exposure recently has been expected to be associated with zinc deficiency and blood indices disturbance. Emphasizing on children, which could absorb more than 50 % of lead that enters the body. Lead became the issue on the coastal area due to it has polluted the environment and waters as the source of fisheries products. This was a cross sectional study to determined nutritional status, blood lead levels, zinc serum levels, blood indices levels, fish intake among school children in coastal region of Semarang. This study was carried out on the school children aged between 8 and 12 years old in coastal region of Semarang. Nutritional status was figured out using anthropometry measurement. Blood lead and zinc serum levels were analyzed using the Atomic Absorbent Spectrophotometry (AAS) at a wavelength of 213.9 nm for zinc serum and 283.3 nm for blood lead. Blood indices was measured using auto blood hematology analyzer. Fish intake was assessed using 3-non consecutive days 24-hours food recall. The children had high lead levels (median 34.86 μg/dl, range 11.46 - 58.86 μg/dl) compared to WHO cut off. Zinc serum levels was low (median 18.10 μg/dl, range 10.25 - 41.39 μg/dl) compared to the Joint WHO/UNICEF/IAEA/IZiNCG cut off. Approximately 26.4% of children were anemic. This study concluded that all school children had high blood lead levels, low zinc serum, and presented microcytic hypochromic anemia. This phenomenon should be considered as public health concern.

  13. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    PubMed

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study.

    PubMed

    Hara, Azusa; Yang, Wen-Yi; Petit, Thibault; Zhang, Zhen-Yu; Gu, Yu-Mei; Wei, Fang-Fei; Jacobs, Lotte; Odili, Augustine N; Thijs, Lutgarde; Nawrot, Tim S; Staessen, Jan A

    2016-02-01

    Whether environmental exposure to nephrotoxic agents that potentially interfere with calcium homeostasis, such as lead and cadmium, contribute to the incidence of nephrolithiasis needs further clarification. We investigated the relation between nephrolithiasis incidence and environmental lead and cadmium exposure in a general population. In 1302 participants randomly recruited from a Flemish population (50.9% women; mean age, 47.9 years), we obtained baseline measurements (1985-2005) of blood lead (BPb), blood cadmium (BCd), 24-h urinary cadmium (UCd) and covariables. We monitored the incidence of kidney stones until October 6, 2014. We used Cox regression to calculate multivariable-adjusted hazard ratios for nephrolithiasis. At baseline, geometric mean BPb, BCd and UCd was 0.29µmol/L, 9.0nmol/L, and 8.5nmol per 24h, respectively. Over 11.5 years (median), nephrolithiasis occurred in 40 people. Contrasting the low and top tertiles of the distributions, the sex- and age-standardized rates of nephrolithiasis expressed as events per 1000 person-years were 0.68 vs. 3.36 (p=0.0016) for BPb, 1.80 vs. 3.28 (p=0.11) for BCd, and 1.65 vs. 2.95 (p=0.28) for UCd. In continuous analysis, with adjustments applied for sex, age, serum magnesium, and 24-h urinary volume and calcium, the hazard ratios expressing the risk associated with a doubling of the exposure biomarkers were 1.35 (p=0.015) for BPb, 1.13 (p=0.22) for BCd, and 1.23 (p=0.070) for UCd. In conclusion, our results suggest that environmental lead exposure is a risk factor for nephrolithiasis in the general population. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Survey of mercury, cadmium and lead content of household batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146more » different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.« less

  16. Environmental Cadmium and Lead Exposures and Hearing Loss in U.S. Adults: The National Health and Nutrition Examination Survey, 1999 to 2004

    PubMed Central

    Choi, Yoon-Hyeong; Hu, Howard; Mukherjee, Bhramar; Miller, Josef

    2012-01-01

    Background: Although cadmium and lead are known risk factors for hearing loss in animal models, few epidemiologic studies have been conducted on their associations with hearing ability in the general population. Objectives: We investigated the associations between blood cadmium and lead exposure and hearing loss in the U.S. general population while controlling for noise and other major risk factors contributing to hearing loss. Methods: We analyzed data from 3,698 U.S. adults 20–69 years of age who had been randomly assigned to the National Health and Nutrition Examination Survey (NHANES) 1999–2004 Audiometry Examination Component. Pure-tone averages (PTA) of hearing thresholds at frequencies of 0.5, 1, 2, and 4 kHz were computed, and hearing loss was defined as a PTA > 25 dB in either ear. Results: The weighted geometric means of blood cadmium and lead were 0.40 [95% confidence interval (CI): 0.39. 0.42] µg/L and 1.54 (95% CI: 1.49, 1.60) µg/dL, respectively. After adjusting for sociodemographic and clinical risk factors and exposure to occupational and nonoccupational noise, the highest (vs. lowest) quintiles of cadmium and lead were associated with 13.8% (95% CI: 4.6%, 23.8%) and 18.6% (95% CI: 7.4%, 31.1%) increases in PTA, respectively (p-trends < 0.05). Conclusions: Our results suggest that low-level exposure to cadmium and lead found in the general U.S. population may be important risk factors for hearing loss. The findings support efforts to reduce environmental cadmium and lead exposures. PMID:22851306

  17. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Junenette L., E-mail: petersj@bu.edu; Patricia Fabian, M., E-mail: pfabian@bu.edu; Levy, Jonathan I., E-mail: jonlevy@bu.edu

    High blood pressure is associated with exposure to multiple chemical and non-chemical risk factors, but epidemiological analyses to date have not assessed the combined effects of both chemical and non-chemical stressors on human populations in the context of cumulative risk assessment. We developed a novel modeling approach to evaluate the combined impact of lead, cadmium, polychlorinated biphenyls (PCBs), and multiple non-chemical risk factors on four blood pressure measures using data for adults aged ≥20 years from the National Health and Nutrition Examination Survey (1999–2008). We developed predictive models for chemical and other stressors. Structural equation models were applied to accountmore » for complex associations among predictors of stressors as well as blood pressure. Models showed that blood lead, serum PCBs, and established non-chemical stressors were significantly associated with blood pressure. Lead was the chemical stressor most predictive of diastolic blood pressure and mean arterial pressure, while PCBs had a greater influence on systolic blood pressure and pulse pressure, and blood cadmium was not a significant predictor of blood pressure. The simultaneously fit exposure models explained 34%, 43% and 52% of the variance for lead, cadmium and PCBs, respectively. The structural equation models were developed using predictors available from public data streams (e.g., U.S. Census), which would allow the models to be applied to any U.S. population exposed to these multiple stressors in order to identify high risk subpopulations, direct intervention strategies, and inform public policy. - Highlights: • We evaluated joint impact of chemical and non-chemical stressors on blood pressure. • We built predictive models for lead, cadmium and polychlorinated biphenyls (PCBs). • Our approach allows joint evaluation of predictors from population-specific data. • Lead, PCBs and established non-chemical stressors were related to blood pressure.

  18. SORBENT CAPTURE OF NICKEL, LEAD, AND CADMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    EPA Science Inventory

    The paper gives results of an investigation of the in-situ capture of toxic metals by sorbents in a small semi-industrial scale 82 kW research combustor. The metals considered, nickel, lead, and cadmium, were introduced into the system as aqueous nitrate solutions sprayed down th...

  19. Rapid, efficient charging of lead-acid and nickel-zinc traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1978-01-01

    Lead-acid and nickel-zinc traction cells were rapidly and efficiently charged using a high rate tapered direct current (HRTDC) charge method which could possibly be used for on-the-road service recharge of electric vehicles. The HRTDC method takes advantage of initial high cell charge acceptance and uses cell gassing rate and temperature as an indicator of charging efficiency. On the average, in these preliminary tests, 300 amp-hour nickel-zinc traction cells were given a HRTDC (initial current 500 amps, final current 100 amps) to 78 percent of rated amp-hour capacity within 53 minutes at an amp-hour efficiency of 92 percent and an energy efficiency of 52 percent. Three hundred amp-hour lead-acid traction cells were charged to 69 percent of rated amp-hour capacity within 46 minutes at an amp-hour efficiency of 91 percent with an energy efficiency of 64 percent. In order to find ways to further decrease the recharge times, the effect of periodically (0 to 400 Hz) pulse discharging cells during a constant current charging process (94% duty cycle) was investigated. Preliminary data indicate no significant effect of this type of pulse discharging during charge on charge acceptance of lead-acid or nickel-zinc cells.

  20. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xi; Zhou, Xixi; Du, Libo

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects ofmore » arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of

  1. Do cadmium, lead, and aluminum in drinking water increase the risk of hip fractures? A NOREPOS study.

    PubMed

    Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir

    2014-01-01

    The aim of this study was to investigate relations between cadmium, lead, and aluminum in municipality drinking water and the incidence of hip fractures in the Norwegian population. A trace metals survey in 566 waterworks was linked geographically to hip fractures from hospitals throughout the country (1994-2000). In all those supplied from these waterworks, 5,438 men and 13,629 women aged 50-85 years suffered a hip fracture. Poisson regression models were fitted, adjusting for age, region of residence, urbanization, and type of water source as well as other possibly bone-related water quality factors. Effect modification by background variables and interactions between water quality factors were examined (correcting for false discovery rate). Men exposed to a relatively high concentration of cadmium (IRR = 1.10; 95 % CI 1.01, 1.20) had an increased risk of fracture. The association between relatively high lead and hip fracture risk was significant in the oldest age group (66-85 years) for both men (IRR = 1.11; 95 % CI 1.02, 1.21) and women (IRR = 1.10; 95 % CI 1.04, 1.16). Effect modification by degree of urbanization on hip fracture risk in men was also found for all three metals: cadmium, lead, and aluminum. In summary, a relatively high concentration of cadmium, lead, and aluminum measured in drinking water increased the risk of hip fractures, but the associations depended on gender, age, and urbanization degree. This study could help in elucidating the complex effects on bone health by risk factors found in the environment.

  2. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.

    PubMed

    Li, Siliang; Wang, Fengping; Ru, Mei; Ni, Wuzhong

    2014-01-01

    In this study, a hydroponics experiment was conducted to investigate the characteristics of Cd tolerance and accumulation of Elsholtzia argyi natively growing on the soil with high levels of heavy metals in a Zn/Pb mining site. Seedlings of E. argyi grown for 4 weeks and then were treated with 0(CK), 5,10,15, 20, 25, 30, 40, 50,100 umM Cd for 21 days. Each treatment had three replications. No visual toxic symptoms on shoots of E. argyi were observed at Cd level < or = 50 muM. The results indicated that the dry biomass of each tissue and the whole plants of the treatments with < or =40 umM cadmium were similar to that of the control, implying that E. argyi was a cadmium tolerant plant. The results also showed that the shoot Cd concentration significantly (P < 0.05) increased with the increase in the Cd level in nutrient solution. The shoot Cd concentration of the treatment with 40 umM Cd was as high as 237.9 mg kg(-1), which was higher than 100 mg kg(-1), normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. It could be concluded that E. argyi was a Cd tolerant and accumulating plant species.

  3. Zinc, nickel and cadmium in carambolas marketed in Guangzhou and Hong Kong, China: implication for human health.

    PubMed

    Li, J T; Liao, B; Lan, C Y; Qiu, J W; Shu, W S

    2007-12-15

    Carambola (Averrhoa carambola L.) is a popular juicy fruit throughout the tropical and subtropical world. This study was designed to quantify the levels of zinc (Zn), nickel (Ni) and cadmium (Cd) in carambolas marketed in southern China, and further to evaluate the potential health risk of human consumption of carambola. Zinc concentrations, ranging from 1.471 to 2.875 mg/kg (on fresh weight basis), were below the maximum permissible concentration for Zn in fruit of China (5 mg/kg). However, Ni concentrations (0.134-0.676 mg/kg) were considerably higher than the related recommendation values. Furthermore, Cd concentrations in 51% of the carambolas purchased from Guangzhou exceeded the maximum permissible concentration for Cd in fruit of China (0.03 mg/kg). Our results implicated that the consumption of 0.385 kg carambola contaminated by Cd per day would cause the tolerable daily intake (TDI) of Cd by the consumer to be exceeded. In addition, the remarkably high Ni concentrations in carambolas should also be of concern. The status of heavy metal contamination of carambola products marketed in the other regions and their implications for human health should be identified urgently by in-depth studies.

  4. 78 FR 46948 - Proposed Agreement Regarding Site Costs and Covenants Not To Sue for American Lead and Zinc Mill...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... Not To Sue for American Lead and Zinc Mill Site, Ouray County, Colorado AGENCY: Environmental... provides for Settling Party's payment of certain response costs incurred at the American Lead and Zinc Mill... reference the American Lead and Zinc Mill Site, the EPA Docket No. CERCLA-08-2013- 0004. The Agency's...

  5. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils

    PubMed Central

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kang, Yerin; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-01-01

    It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB) using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II) associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II) amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency. PMID:27171374

  6. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils.

    PubMed

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kang, Yerin; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-01-01

    It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB) using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II) associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II) amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency.

  7. Synthesis and crystal structures of coordination compounds of pyridoxine with zinc and cadmium sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furmanova, N. G., E-mail: furm@ns.crys.ras.ru; Berdalieva, Zh. I., E-mail: kakin@inbox.ru; Chernaya, T. S.

    2009-03-15

    The pyridoxine complexes with zinc and cadmium sulfates are synthesized. The IR absorption spectra and thermal behavior of the synthesized compounds are described. Crystals of the [M(C{sub 8}H{sub 11}O{sub 3}N){sub 2}(H{sub 2}O){sub 2}]SO{sub 4} . 3H{sub 2}O (M = Zn, Cd) compounds are investigated using X-ray diffraction. In the structures of both compounds, the M atoms are coordinated by the oxygen atoms of the deprotonated OH group and the CH{sub 2}OH group retaining its own hydrogen atom, as well as by two H{sub 2}O molecules, and have an octahedral coordination. The nitrogen atom of the heterocycle is protonated, so thatmore » the heterocycle acquires a pyridinium character. The cationic complexes form layers separated by the anions and crystallization water molecules located in between. The structural units of the crystals are joined together by a complex system of hydrogen bonds.« less

  8. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Erin W.; Schaumberg, Debra A.; Center for Translational Medicine, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT

    Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005–2008more » National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02–2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91–2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37–8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40–5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn. - Highlights: • We examined the association of cadmium and lead with age

  10. Zinc, iron, and lead: relations to head start children's cognitive scores and teachers' ratings of behavior.

    PubMed

    Hubbs-Tait, Laura; Kennedy, Tay Seacord; Droke, Elizabeth A; Belanger, David M; Parker, Jill R

    2007-01-01

    The objective of this study was to conduct a preliminary investigation of lead, zinc, and iron levels in relation to child cognition and behavior in a small sample of Head Start children. The design was cross-sectional and correlational. Participants were 42 3- to 5-year-old children attending rural Head Start centers. Nonfasting blood samples of whole blood lead, plasma zinc, and ferritin were collected. Teachers rated children's behavior on the California Preschool Social Competency Scale, Howes' Sociability subscale, and the Preschool Behavior Questionnaire. Children were tested individually with the McCarthy Scales of Children's Abilities. Hierarchical regression analyses revealed that zinc and ferritin jointly explained 25% of the variance in McCarthy Scales of Children's Abilities verbal scores. Lead levels explained 25% of the variance in teacher ratings of girls' sociability and 20% of the variance in teacher ratings of girls' classroom competence. Zinc levels explained 39% of the variance in teacher ratings of boys' anxiety. Univariate analysis of variance revealed that the four children low in zinc and iron had significantly higher blood lead (median=0.23 micromol/L [4.73 microg/dL]) than the 31 children sufficient in zinc or iron (median=0.07 micromol/L [1.54 microg/dL]) or the 7 children sufficient in both (median=0.12 micromol/L [2.52 microg/dL]), suggesting an interaction among the three minerals. Within this small low-income sample, the results imply both separate and interacting effects of iron, zinc, and lead. They underscore the importance of studying these three minerals in larger samples of low-income preschool children to make more definitive conclusions.

  11. Cadmium Accumulation in Periphyton from an Abandoned Mining District in the Buffalo National River, Arkansas.

    PubMed

    McCauley, Jacob R; Bouldin, Jennifer L

    2016-06-01

    The Rush Mining District along the Buffalo River in Arkansas has a significant history of zinc and lead mining operations. The tails and spoils of these operations deposit heavy amounts of raw ore into streams. One element commonly found in the earth's crust that becomes a minor constituent of the deposition is cadmium. Periphyton samples from Rush Creek and Clabber Creek, two creeks within the Rush Mining District were measured for cadmium as well as two creeks with no history of mining, Spring Creek and Water Creek. Periphyton samples from Rush and Clabber Creek contained mean cadmium concentrations of 436.6 ± 67.3 and 93.38 ± 8.67 µg/kg, respectively. Spring Creek and Water Creek had a mean cadmium concentration of 40.49 ± 3.40 and 41.78 ± 3.99 µg/kg within periphyton. The results indicate increased metal concentrations in algal communities from mined areas. As periphyton is the base of the aquatic food chain, it acts as a conduit for movement of cadmium in the food web.

  12. Environmental exposures to lead, mercury, and cadmium among South Korean teenagers (KNHANES 2010-2013): Body burden and risk factors.

    PubMed

    Kim, Nam-Soo; Ahn, Jaeouk; Lee, Byung-Kook; Park, Jungsun; Kim, Yangho

    2017-07-01

    Limited information is available on the association of age and sex with blood concentrations of heavy metals in teenagers. In addition, factors such as a shared family environment may have an association. We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES, 2010-2013) to determine whether blood levels of heavy metals differ by risk factors such as age, sex, and shared family environment in a representative sample of teenagers. This study used data obtained in the KNHANES 2010-2013, which had a rolling sampling design that involved a complex, stratified, multistage, probability-cluster survey of a representative sample of the non-institutionalized civilian population in South Korea. Our cross-sectional analysis was restricted to teenagers and their parents who completed the health examination survey, and for whom blood measurements of cadmium, lead, and mercury were available. The final analytical sample consisted of 1585 teenagers, and 376 fathers and 399 mothers who provided measurements of blood heavy metal concentrations. Male teenagers had greater blood levels of lead and mercury, but sex had no association with blood cadmium level. There were age-related increases in blood cadmium, but blood lead decreased with age, and age had little association with blood mercury. The concentrations of cadmium and mercury declined from 2010 to 2013. The blood concentrations of lead, cadmium, and mercury in teenagers were positively associated with the levels in their parents after adjustment for covariates. Our results show that blood heavy metal concentrations differ by risk factors such as age, sex, and shared family environment in teenagers. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quantification of lead and cadmium in poultry and bird game meat by square-wave anodic-stripping voltammetry.

    PubMed

    Trevisani, M; Cecchini, M; Taffetani, L; Vercellotti, L; Rosmini, R

    2011-02-01

    A square-wave anodic-stripping voltammetric method for the analysis of lead and cadmium in chicken muscle and liver was developed and validated, and the results of a monitoring study relative to chicken and pigeon meat are reported. The voltammetric method allows the analysis of lead and cadmium at the same time in samples after acid digestion. The use of perchloric acid for digestion and of acetate buffer in the supporting electrolyte are suitable to reduce matrix interferences and obtain limits of quantification which were below 10 ng g⁻¹ for meat and liver samples. The regression between the analytical signal and the concentration of the target analytes in spiked samples and Certified Reference Materials proved to be linear within the 10-100 ng g⁻¹ range for meat and within the 50-500 ng g⁻¹ range for liver. The analytical method was verified using available Certified Reference Materials BCR-184 (cattle meat) and BCR-185R (cattle liver) as well as with spiked chicken samples. Precision (i.e. repeatability and intermediate precision) and accuracy (percentage recovery and bias) were of the order of 0.3-4.5% for both lead and cadmium The level of lead in muscle was in the range between 6.4 and 59.8 ng g⁻¹ in chickens and between 7.9 and 63.6 ng g⁻¹ in farmed pigeons, whereas it was between 8.0 and 84.4 ng g⁻¹ in chicken liver. The cadmium concentration was 0.4-10.4 ng g⁻¹ in chicken muscle, 10.4-90.6 ng g⁻¹ in chicken liver and 2.2-8.0 ng g⁻¹ in farmed pigeons.

  14. Cadmium, lead, mercury and arsenic in animal feed and feed materials - trend analysis of monitoring results.

    PubMed

    Adamse, Paulien; Van der Fels-Klerx, H J Ine; de Jong, Jacob

    2017-08-01

    This study aimed to obtain insights into the presence of cadmium, lead, mercury and arsenic in feed materials and feed over time for the purpose of guiding national monitoring. Data from the Dutch feed monitoring programme and from representatives of the feed industry during the period 2007-13 were used. Data covered a variety of feed materials and compound feeds in the Netherlands. Trends in the percentage of samples that exceeded the maximum limit (ML) set by the European Commission, and trends in average, median and 90th percentile concentrations of each of these elements were investigated. Based on the results, monitoring should focus on feed material of mineral origin, feed material of marine origin, especially fish meal, seaweed and algae, as well as feed additives belonging to the functional groups of (1) trace elements (notably cupric sulphate, zinc oxide and manganese oxide for arsenic) and (2) binders and anti-caking agents. Mycotoxin binders are a new group of feed additives that also need attention. For complementary feed it is important to make a proper distinction between mineral and non-mineral feed (lower ML). Forage crops in general do not need high priority in monitoring programmes, although for arsenic grass meal still needs attention.

  15. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff.

    PubMed

    Harada, Shigeki; Yanbe, Miyu

    2018-04-01

    This report describes the use of porous concrete at the bottom of a sewage trap to prevent runoff of non-point heavy metals into receiving waters, and, secondarily, to reduce total runoff volume during heavy rains in urbanized areas while simultaneously increasing the recharge volume of heavy-metal-free water into underground aquifers. This idea has the advantage of preventing clogging, which is fundamentally very important when using pervious materials. During actual field experiments, two important parameters were identified: maximum adsorption weight of lead and zinc by the volume of porous concrete, and heavy metal recovery rate by artificial acidification after adsorption. To understand the effect of ambient heavy metal concentration, a simple mixing system was used to adjust the concentrations of lead and zinc solutions. The concrete blocks used had been prepared for a previous study by Harada & Komuro (2010). The results showed that maximum adsorption depended on the ambient concentration, expressed as the linear isothermal theory, and that recovery depended on the final pH value (0.5 or 0.0). The dependence on pH is very important for recycling the porous concrete. A pH of 0.5 is important for recycling both heavy metals, especially zinc, (8.0-22.1% of lead and 42-74% of zinc) and porous concrete because porous concrete has not been heavily damaged by acid. However, at a pH of 0.0, the heavy metals could be recovered: 30-60% of the lead and 75-125% of the zinc. At a higher pH, such as 2.0, no release of heavy metals occurred, indicating the safety to the environment of using porous concrete, because the lowest recorded pH of rainfall in Japan is. 4.0. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  17. Re-evaluation of blood mercury, lead and cadmium concentrations in the Inuit population of Nunavik (Québec): a cross-sectional study

    PubMed Central

    Fontaine, Julie; Dewailly, Éric; Benedetti, Jean-Louis; Pereg, Daria; Ayotte, Pierre; Déry, Serge

    2008-01-01

    Background Arctic populations are exposed to mercury, lead and cadmium through their traditional diet. Studies have however shown that cadmium exposure is most often attributable to tobacco smoking. The aim of this study is to examine the trends in mercury, lead and cadmium exposure between 1992 and 2004 in the Inuit population of Nunavik (Northern Québec, Canada) using the data obtained from two broad scale health surveys, and to identify sources of exposure in 2004. Methods In 2004, 917 adults aged between 18 and 74 were recruited in the 14 communities of Nunavik to participate to a broad scale health survey. Blood samples were collected and analysed for metals by inductively coupled plasma mass spectrometry, and dietary and life-style characteristics were documented by questionnaires. Results were compared with data obtained in 1992, where 492 people were recruited for a similar survey in the same population. Results Mean blood concentration of mercury was 51.2 nmol/L, which represent a 32% decrease (p < 0.001) between 1992 and 2004. Mercury blood concentrations were mainly explained by age (partial r2 = 0.20; p < 0.0001), and the most important source of exposure to mercury was marine mammal meat consumption (partial r2 = 0.04; p < 0.0001). In 2004, mean blood concentration of lead was 0.19 μmol/L and showed a 55% decrease since 1992. No strong associations were observed with any dietary source, and lead concentrations were mainly explained by age (partial r2 = 0.20.; p < 0.001). Blood cadmium concentrations showed a 22% decrease (p < 0.001) between 1992 and 2004. Once stratified according to tobacco use, means varied between 5.3 nmol/L in never-smokers and 40.4 nmol/L in smokers. Blood cadmium concentrations were mainly associated with tobacco smoking (partial r2 = 0.56; p < 0.0001), while consumption of caribou liver and kidney remain a minor source of cadmium exposure among never-smokers. Conclusion Important decreases in mercury, lead and cadmium exposure

  18. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  19. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides.

    PubMed

    Peng, Weihua; Li, Xiaomin; Song, Jingxiang; Jiang, Wei; Liu, Yingying; Fan, Wenhong

    2018-04-01

    Bioremediation using microorganisms is a promising technique to remediate soil contaminated with heavy metals. In this study, Rhodobacter sphaeroides was used to bioremediate soils contaminated with cadmium (Cd) and zinc (Zn). The study found that the treatment reduced the overall bioavailable fractions (e.g., exchangeable and carbonate bound phases) of Cd and Zn. More stable fractions (e.g., Fe-Mn oxide, organic bound, and residual phases (only for Zn)) increased after bioremediation. A wheat seedling experiment revealed that the phytoavailability of Cd was reduced after bioremediation using R. sphaeroides. After bioremediation, the exchangeable phases of Cd and Zn in soil were reduced by as much as 30.7% and 100.0%, respectively; the Cd levels in wheat leaf and root were reduced by as much as 62.3% and 47.2%, respectively. However, when the soils were contaminated with very high levels of Cd and Zn (Cd 54.97-65.33 mg kg -1 ; Zn 813.4-964.8 mg kg -1 ), bioremediation effects were not clear. The study also found that R. sphaeroides bioremediation in soil can enhance the Zn/Cd ratio in the harvested wheat leaf and root overall. This indicates potentially favorable application in agronomic practice and biofortification. Although remediation efficiency in highly contaminated soil was not significant, R. sphaeroides may be potentially and practically applied to the bioremediation of soils co-contaminated by Cd and Zn. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Association of Blood and Seminal Plasma Cadmium and Lead Levels With Semen Quality in Non-Occupationally Exposed Infertile Men in Abakaliki, South East Nigeria

    PubMed Central

    Famurewa, Ademola C.; Ugwuja, Emmanuel I.

    2017-01-01

    Objective: To evaluate association of blood and seminal plasma lead and cadmium with sperm quality of non-occupationally exposed male partners of couples with infertility. Materials and methods: A cross-sectional study was conducted on 75 men aged 20-45 years (mean = 37.1 ± 7.0 yrs.) with infertility recruited from the Fertility Clinic of a hospital in Abakaliki. Sperm count done in accordance with the WHO guidelines was used to classify the participants as normospamia, oligospermia and azospermia. Atomic absorption spectrophotometer was used to determine lead and cadmium levels in plasma from blood and semen. Results: There were 15 azospermics, 22 oligospermics and 36 normospermics. Seminal and blood plasma cadmium as well as blood plasma lead were significantly (p < 0.01) higher in azospermic and oligospermic men compared to normospermic men. However, while seminal plasma lead was significantly (p < 0.05) higher in oligospermic and normospernic men than in azospermic men, the seminal plasma lead was comparable between oligospermic and normospermic men. Significant inverse associations (p < 0.01) were found between blood and seminal cadmium levels and sperm count, motility and morphology; blood lead was inversely correlated with sperm count only. Conclusion: The study suggests that environmental exposure to cadmium and lead may contribute to development of poor sperm quality and infertility in men of reproductive age in Nigeria. PMID:29282417

  1. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebelo, Fernanda Maciel

    Metals are ubiquitous in nature, being found in all environmental compartments, and have a variety of applications in human activities. Metals are transferred by maternal blood to the fetus via the placenta, and exposure continues throughout life. For the general population, exposure comes mainly from water and food consumption, including breast milk. In this paper, we reviewed studies on the toxicity of arsenic, lead, mercury and cadmium, the toxic metals of most concern to human health, focusing on the potential risks to newborns and infants. A total of 75 studies published since 2000 reporting the levels of these metals inmore » breast milk were reviewed. Lead was the metal most investigated in breast milk (43 studies), and for which the highest levels were reported (up to 1515 µg/L). Arsenic was the least investigated (18 studies), with higher levels reported for breast milk (up to 149 µg/L) collected in regions with high arsenic concentrations in water (>10 µg/L). Data from 34 studies on mercury showed that levels in breast milk were generally higher in populations with high fish consumption, where it may be present mainly as MeHg. Cadmium levels in breast milk were the lowest, with means <2 µg/L in most of the 29 studies reviewed. Results of risk assessments indicated that the intake of arsenic, lead and mercury by infants through breastfeeding can be considered a health concern in most regions of the world. Although the potential risks to infants are mostly outweighed by the benefits of breast milk consumption, it is essential that contaminants be continuously monitored, especially in the most critical regions, and that measures be implemented by health authorities to reduce exposure of newborns and infants to these metals, and thus avoid unnecessary health risks. - Highlights: • Review of 75 studies that analyzed arsenic, lead, mercury and/or cadmium levels. • Higher levels of arsenic found in India; of mercury found in Brazil. • Lead was the

  2. Sierra Army Depot, Phase 1, Remedial Investigation/Feasibility Study, Lassen County, California. Final Remedial Investigation

    DTIC Science & Technology

    1991-10-01

    8.3.1.2 Cadmium ............................ 8-8 8.3.1.3 Lead .... ............................ 8-8 8.3.1.4 Zinc .... ............................ 8-8...Beryllium, Cadmium , Chromium, Cobalt, Copper, Fluoride Salts, Lead, Mercury, Molydenum, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc . I ~ 2 ,4... cadmium (4.070 ;&g/L), copper (20.100 ug/L), and zinc (28.700 ug/L). Round 2 background 3 groundwater results include arsenic (7.700 g/L), barium

  3. Determination of lead and cadmium in soils, sludges, and fertilizers by an ion-exchange/spectrophotometric method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinzig, M.; DeYong, G.D.; Anglin, R.J.

    1993-12-01

    The MetalTrace method, which consists of an anion-exchange separation coupled with a spectrophotometric quantification, was used to determine lead and cadmium in sulfuric acid-hydrogen peroxide digests of soils and sludges and hydrobromic acid extracts of soils. Cadmium only was determined in sulfuric acid-hydrogen peroxide digests of fertilizers because no standards were available with certified lead contents. The selectivity provided by the anion-exchange separation allowed the use of a spectrophotometric indicator with an extremely high extinction coefficient so that detection limits in the low parts per million range could be attained. The results obtained using this method compared favorably with thosemore » obtained using much more expensive methods requiring more specialized training and equipment.« less

  4. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  5. Main and interaction effects of iron, zinc, lead, and parenting on children's cognitive outcomes.

    PubMed

    Hubbs-Tait, Laura; Mulugeta, Afework; Bogale, Alemtsehay; Kennedy, Tay S; Baker, Eric R; Stoecker, Barbara J

    2009-01-01

    This study examined relations of blood lead < 10 microg/dL, iron, zinc, and parenting to Head Start children's (N = 112) scores on Peabody Picture Vocabulary Test-III (PPVT-III) and McCarthy Scales of Children's Abilities (MSCA). Venous whole blood and plasma samples were analyzed for lead and zinc by ICP-MS and iron status was assessed by serum transferrin receptors. Hierarchical regressions revealed significant effects of lead on MSCA perceptual scores and iron on PPVT-III and MSCA verbal scores. Children with lead > 2.5 microg/dL had significantly lower MSCA perceptual scores than children < 2.5 microg/dL. Permissive parenting significantly exacerbated negative effects of higher lead or lower iron on children's perceptual or verbal scores, respectively.

  6. Phytoremediation of cadmium and zinc by Populus deltoids and Pinus tada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.; Houpis, J.; Johnson, K.

    1998-12-31

    Phytoremediation, the use of plants to uptake contaminants and thereby lower soil contamination, is an emerging alternative to the costly and often impractical conventional methods of soil remediation. There has been limited research in using trees for metal extraction, despite their high potential for remediating contaminated soils. The authors investigated the cadmium phytoextraction capability of Pinus taeda. Cadmium uptake was investigated using a randomized design with four replicates of each treatment. Seeds were germinated, grown for 60 days and treated with cadmium at 4 mg/L [supplied as cadmium nitrate tetrahydrate (Cd-(NO{sub 3})2x4H{sub 2}O)] or with potassium nitrate (KNO{sub 3}) asmore » a control. Seedlings were harvested at either seven or seventeen days. Metal analysis of plant tissues was conducted by atomic absorption spectroscopy following acid digestion. A phytoextraction coefficient was determined and data were analyzed using analysis of variance. P. taeda seedlings treated with cadmium contained significantly higher Cd tissue levels than control seedlings. Cd tissue levels did not differ significantly between seedlings harvested seven days and seedlings harvested seventeen days after treatment. Cd levels also differed significantly between all plant organs (leaves, stems and roots).« less

  7. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    PubMed Central

    Alfaro-Cuevas-Villanueva, Ruth; Hidalgo-Vázquez, Aura Roxana; Cortés Penagos, Consuelo de Jesús; Cortés-Martínez, Raúl

    2014-01-01

    The sorption of cadmium (Cd) and lead (Pb) by calcium alginate beads (CAB) from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K 2) for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F) and Dubinin-Radushkevich (D-R) models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7. PMID:24587740

  8. Biomarkers of metals exposure in fish from lead-zinc mining areas of Southeastern Missouri, USA

    USGS Publications Warehouse

    Schmitt, C.J.; Whyte, J.J.; Roberts, A.P.; Annis, M.L.; May, T.W.; Tillitt, D.E.

    2007-01-01

    The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 y under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) from 16 sites representing a range of conditions relative to mining activities were collected. Samples were analyzed for metals (also reported in a companion paper) and for biomarkers of metals exposure [erythrocyte ??-aminolevulinic acid dehydratase (ALA-D) activity; concentrations of zinc protoporphyrin (ZPP), iron, and hemoglobin (Hb) in blood; and hepatic metallothionein (MT) gene expression and lipid peroxidation]. Blood lead concentrations were significantly higher and ALA-D activity significantly lower in all species at sites nearest to active lead-zinc mines and in a stream contaminated by historical mining than at reference or downstream sites. ALA-D activity was also negatively correlated with blood lead concentrations in all three species but not with other metals. Iron and Hb concentrations were positively correlated in all three species, but were not correlated with any other metals in blood or liver in any species. MT gene expression was positively correlated with liver zinc concentrations, but neither MT nor lipid peroxidase differences among fish grouped according to lead concentrations were statistically significant. ZPP was not detected by hematofluorometry in most fish, but fish with detectable ZPP were from sites affected by mining. Collectively, these results confirm that metals are released to streams from active lead-zinc mining sites and are accumulated by fish. ?? 2007 Elsevier Inc. All rights reserved.

  9. Air National Guard Installation Restoration Protram. Site Investigation Report: Georgia Air National Guard, Savannah, Georgia

    DTIC Science & Technology

    1992-01-01

    except TPH, which was detected at 0.06 mg/l in Monitor Well 01-MW-02. Some metals (arsenic, cadmium , chromium, lead, silver, and zinc ) were detected at...extraction. Trace quantities of some priority pollutant metals were detected in the surface water samples. Arsenic, cadmium , and zinc were detected at...storage tank. TPH was detected in all five groundwater samples. Arsenic, beryllium, cadmium , chromium, copper, lead, nickel, silver, and zinc were also

  10. Lead, cadmium and arsenic in human milk and their socio-demographic and lifestyle determinants in Lebanon.

    PubMed

    Bassil, Maya; Daou, Farah; Hassan, Hussein; Yamani, Osama; Kharma, Joelle Abi; Attieh, Zouheir; Elaridi, Jomana

    2018-01-01

    Exposure of newborns to toxic metals is of special interest due to their reported contamination in breast milk and potential harm. The aim of this study was to assess the occurrence and factors associated with lead, cadmium and arsenic contamination in breast milk collected from lactating mothers in Lebanon. A total of 74 breast milk samples were collected from primaparas according to guidelines set by the World Health Organization. A survey was administered to determine the demographic and anthropometric characteristics of participating lactating mothers. Dietary habits were assessed using a semi-quantitative food frequency questionnaire. The milk samples were analyzed for the presence of arsenic, cadmium and lead using microwave-assisted digestion and atomic absorption spectrophotometry. Arsenic contamination was found in 63.51% of breast milk samples (mean 2.36 ± 1.95 μg/L) whereas cadmium and lead were detected in 40.54% and 67.61% of samples respectively (means 0.87 ± 1.18 μg/L and 18.18 ± 13.31 μg/L). Regression analysis indicated that arsenic contamination was associated with cereal and fish intake (p = 0.013 and p = 0.042 respectively). Residence near cultivation activities (p = 0.008), smoking status before pregnancy (p = 0.046), potato consumption (p = 0.046) and education level (p = 0.041) were associated with lead contamination. Cadmium contamination was significantly associated with random smoke exposure (p = 0.002). Our study is the first in Lebanon to report toxic metal contamination in breast milk. Although estimated weekly infant intake of these metals from breast milk was found to be lower than the limit set by international guidelines, our results highlight the need for developing strategies to protect infants from exposure to these hazardous substances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Urinary cadmium concentration and the risk of ischemic stroke.

    PubMed

    Chen, Cheng; Xun, Pengcheng; Tsinovoi, Cari; McClure, Leslie A; Brockman, John; MacDonald, Leslie; Cushman, Mary; Cai, Jianwen; Kamendulis, Lisa; Mackey, Jason; He, Ka

    2018-06-22

    To examine the association between urinary cadmium levels and the incidence of ischemic stroke and to explore possible effect modifications. A case-cohort study was designed nested in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, including 680 adjudicated incident cases of ischemic stroke and 2,540 participants in a randomly selected subcohort. Urinary creatinine-corrected cadmium concentration was measured at baseline. Multivariable-adjusted hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) were estimated with the Barlow weighting method for the Cox proportional hazards regression model. The median urinary cadmium concentration was 0.42 (interquartile range 0.27-0.68) μg/g creatinine. After adjustment for potential confounders, urinary cadmium was associated with increased incidence of ischemic stroke (quintile 5 vs quintile 1: HR 1.50, 95% CI 1.01-2.22, p for trend = 0.02). The observed association was more pronounced among participants in the lowest serum zinc tertile (tertile 3 vs tertile 1: HR 1.82, 95% CI 1.06-3.11, p for trend = 0.004, p for interaction = 0.05) but was attenuated and became nonsignificant among never smokers (tertile 3 vs tertile 1: never smokers: HR 1.27, 95% CI 0.80-2.03, p for trend = 0.29; ever smokers: HR 1.60, 95% CI 1.06-2.43, p for trend = 0.07, p for interaction = 0.51). Findings from this study suggest that cadmium exposure may be an independent risk factor for ischemic stroke in the US general population. Never smoking and maintaining a high serum zinc level may ameliorate the potential adverse effects of cadmium exposure. © 2018 American Academy of Neurology.

  12. [Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application].

    PubMed

    Nai, Feng-Jiao; Wu, Long-Hua; Liu, Hong-Yan; Ren, Jing; Liu, Wu-Xing; Luo, Yong-Ming

    2013-05-01

    Taking the vegetable soil with zinc- and cadmium contamination from a long-term sewage sludge application as the object, a pot experiment was conducted to study the remediation effect of Sedum plumbizincicola and Apium graceolens under continuous monoculture and intercropping. With the remediation time increased, both S. plumbizincicola and A. graceolens under monoculture grew poorly, but S. plumbizincicola under intercropping grew well. Under intercropping, the soil organic matter, total N, extractable N, and total P contents decreased significantly while the soil extractable K content had a significant increase, the counts of soil bacteria and fungi increased by 7.9 and 18.4 times and 3.7 and 4.3 times, respectively, but the soil urease and catalase activities remained unchanged, as compared with those under A. graceolens and S. plumbizincicola monoculture. The BIOLOG ECO micro-plates also showed that the carbon sources utilization level and the functional diversity index of soil microbial communities were higher under intercropping than under monoculture, and the concentrations of soil zinc and cadmium under intercropping decreased by 5.8% and 50.0%, respectively, with the decrements being significantly higher than those under monoculture. It was suggested that soil microbial effect could be one of the important factors affecting plant growth.

  13. The cadmium and lead content of the grain produced by leading Chinese rice cultivars.

    PubMed

    Xie, L H; Tang, S Q; Wei, X J; Shao, G N; Jiao, G A; Sheng, Z H; Luo, J; Hu, P S

    2017-02-15

    The cadmium (Cd) and lead (Pb) content in both white and wholemeal flour milled from 110 leading rice cultivars was assessed. The white flour Cd content ranged from <0.0025 to 0.2530mg/kg (geometric mean (GM)=0.0150mg/kg), while its Pb content ranged from <0.0250 to 0.3830mg/kg (GM=0.0210mg/kg). The indica types took up higher amounts of Cd and Pb than did the japonica types. Although the heavy metal content of wholemeal flour tended to higher than that of white flour, nevertheless 84.5% (Cd) and 95.4% (Pb) of the entries were compliant with the national maximum allowable concentration of 0.2000mg/kg of each contaminant. An analysis of the Cd content in the white flour of three indica type cultivars grown in two consecutive years at two locations indicated that Cd content may be significantly affected by the conditions prevailing in the growing season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biosorption of lead, copper and cadmium using the extracellular polysaccharides (EPS) of Bacillus sp., from solar salterns.

    PubMed

    Shameer, Syed

    2016-12-01

    Extracellular Polysaccharides (EPS) from both prokaryotes and eukaryotes have a great deal of research interest as they protect the producer from different stresses including antibiotics, ionic stress, desiccation and assist in bio-film formation, pathogenesis, adhesion, etc. In this study haloalkaliphilic Bacillus sp., known to cope with osmophilic stress, was selected and screened for EPS production. The EPS were isolated, partially purified and chemical characteristics were documented using liquid FT-IR followed by assessment of heavy metal biosorption (lead, copper and cadmium) using Atomic Absorption Spectroscopy (AAS). The EPS extracted from three isolates B. licheniformis NSPA5, B. cereus NSPA8 and B. subtilis NSPA13 showed maximum biosorption of Lead followed by Copper and Cadmium. Of the tested isolates, the EPS from isolate B. cereus NSPA8 showed maximum (90 %) biosorption of the lead.

  15. Effect of cadmium incorporation on the properties of zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Bharath, S. P.; Bangera, Kasturi V.; Shivakumar, G. K.

    2018-02-01

    Cd x Zn1- x O (0 ≤ x ≤ 0.20) thin films are deposited on soda lime glass substrates using spray pyrolysis technique. To check the thermal stability, Cd x Zn1- x O thin films are subjected to annealing. Both the as-deposited and annealed Cd x Zn1- x O thin films are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDAX) to check the structural, surface morphological and compositional properties, respectively. XRD analysis reveals that the both as-deposited and annealed Cd x Zn1- x O thin films are (002) oriented with wurtzite structure. SEM studies confirm that as-deposited, as well as annealed Cd x Zn1- x O thin films are free from pinholes and cracks. Compositional analysis shows the deficiency in Cd content after annealing. Optical properties evaluated from UV-Vis spectroscopy shows red shift in the band gap for Cd x Zn1- x O thin films. Electrical property measured using two probe method shows a decrease in the resistance after Cd incorporation. The results indicate that cadmium can be successfully incorporated in zinc oxide thin films to achieve structural changes in the properties of films.

  16. Mercury, lead, and cadmium in blue crabs, Callinectes sapidus, from the Atlantic coast of Florida, USA: a multipredator approach.

    PubMed

    Adams, Douglas H; Engel, Marc E

    2014-04-01

    Blue crabs, Callinectes sapidus, from the Atlantic coast of Florida were analyzed for total mercury, methylmercury, lead, and cadmium. Paired samples of two tissue types were analyzed for each crab, (1) muscle tissue (cheliped and body muscles) and (2) whole-body tissue (all organs, muscle tissue and connective tissue), for evaluation of the concentration of metals available to human consumers as well as estuarine predators. There were clear patterns of tissue-specific partitioning for each metal. Total mercury was significantly greater in muscle tissue (mean=0.078 µg/g) than in whole-body tissue (mean=0.055 µg/g). Conversely, whole-body concentrations of lead and cadmium (means=0.131 and 0.079 µg/g, respectively) were significantly greater than concentrations in muscle (means=0.02 and 0.029 µg/g, respectively). There were no significant correlations between any metal contaminant and crab size. Cadmium levels were significantly greater in the muscle tissue of females, but, no other sex-related differences were seen for other metals or tissue types. Methylmercury composed 93-100% of the total mercury in tissues. Compared to previous blue crab studies from different regions of the United States, mean concentrations of mercury, lead, and cadmium were relatively low, although isolated groups or individual blue crabs accumulated high metal concentrations. © 2013 Published by Elsevier Inc.

  17. The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium.

    PubMed

    Tsai, Tsung-Lin; Kuo, Chin-Chi; Pan, Wen-Harn; Chung, Yu-Teh; Chen, Chiu-Ying; Wu, Trong-Neng; Wang, Shu-Li

    2017-09-01

    Environmental factors contribute significantly to the pathogenesis of chronic kidney disease. However, these factors, and particularly the toxic effects of heavy metals, have not been completely evaluated. Chromium is a widespread industrial contaminant that has been linked to nephrotoxicity in animal and occupational population studies. Nevertheless, its role in population renal health and its potential interactions with other nephrotoxic metals, such as lead and cadmium, remain unknown. We assessed the association between exposure to chromium, lead, and cadmium with renal function using estimated glomerular filtration rate (eGFR) in an analysis of 360 Taiwanese adults aged 19-84 years from the National Nutrition and Health Survey in Taiwan (2005-2008). Doubling of urinary chromium or lead decreased the eGFR by -5.99 mL/min/1.73 m 2 (95% confidence interval -9.70, -2.27) and -6.61 (-9.71, -3.51), respectively, after adjusting for age, sex, body mass index, hypertension, diabetes, cigarette smoking, sodium intake, education, urinary volume, and other metals. For those in the highest tertile of cadmium exposure, the eGFR decreased by -12.68 mL/min/1.73 m 2 (95% confidence interval -20.44, -4.93) and -11.22 mL/min/1.73 m 2 (-17.01, -5.44), as urinary chromium or lead levels doubled, respectively. Thus, there is a significant and independent association between chromium exposure and decreased renal function. Furthermore, co-exposure to chromium with lead and cadmium is potentially associated with additional decline in the glomerular filtration rate in Taiwanese adults. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Significant deposits of gold, silver, copper, lead, and zinc in the United States

    USGS Publications Warehouse

    Long, K.R.; DeYoung, J.H.; Ludington, S.

    2000-01-01

    Approximately 99 percent of past production and remaining identified resources of gold, silver, copper, lead, and zinc in the United States are accounted for by deposits that originally contained at least 2 metric tonnes (t) gold, 85 t silver, 50,000 t copper, 30,000 t lead, or 50,000 t zinc. The U.S. Geological Survey, beginning with the 1996 National Mineral Resource Assessment, is systematically compiling data on these deposits, collectively known as 'significant' deposits. As of December 31, 1996, the significant deposits database contained 1,118 entries corresponding to individual deposits or mining districts. Maintaining, updating and analyzing a database of this size is much easier than managing the more than 100,000 records in the Mineral Resource Data System and Minerals Availability System/Minerals Industry Location System, yet the significant deposits database accounts for almost all past production and remaining identified resources of these metals in the United States. About 33 percent of gold, 22 percent of silver, 42 percent of copper, 39 percent of lead, and 46 percent of zinc are contained in or were produced from deposits discovered after World War II. Even within a database of significant deposits, a disproportionate share of past production and remaining resources is accounted for by a very small number of deposits. The largest 10 producers for each metal account for one third of the gold, 60 percent of the silver, 68 percent of the copper, 85 percent of the lead, and 75 percent of the zinc produced in the United States. The 10 largest deposits in terms of identified remaining resources of each of the five metals contain 43 percent of the gold, 56 percent of the silver, 48 percent of the copper, 94 percent of the lead, and 72 percent of the zinc. Identified resources in significant deposits for each metal are less than the mean estimates of resources in undiscovered deposits from the 1996 U.S. National Mineral Resource Assessment. Identified

  19. Metal residues, histopathology and presence of parasites in the liver and gills of fourhorn sculpin (Myoxocephalus quadricornis) and shorthorn sculpin (Myoxocephalus scorpius) near a former lead-zinc mine in East Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Mai

    Fourhorn sculpins (Myoxocephalus quadricornis) and shorthorn sculpins (Myoxocephalus scorpius) have been considered suitable local bioindicators for environmental monitoring studies in the Arctic. Because these species share many characteristics, data from the two species have previously been pooled when assessing marine metal contamination. A chemical and histological study was conducted on fourhorn and shorthorn sculpins collected around a contaminated lead-zinc mine at East Greenland to investigate whether there were any differences in the residues of metals, histopathology and parasites in liver and gills between the two sculpin species. The results demonstrated that concentrations of copper (Cu), zinc (Zn), mercury (Hg) andmore » lead (Pb) were significantly higher in the fourhorn sculpins (p<0.001) while there were no significant differences for arsenic (As) or cadmium (Cd). Furthermore, density of blood vessel fibrosis (p=0.028), prevalence and density of chondroplasia (p=0.002 and p=0.005, respectively), number of mucin-containing mucous cells (p<0.001) and chloride cells (p<0.001) and mean intensity of colonial Peritricha (p<0.001) were significantly higher in fourhorn sculpin. Based on these results we suggest that pooling the two species when conducting environmental assessments is not recommended as it can lead to incorrect conclusions. We propose that a larger study investigating the biological effects of zinc-lead mining in Greenland is needed. - Highlights: • Fourhorn sculpins (Myoxocephalus quadricornis) more sensitive to pollution than shorthorn sculpins (Myoxocephalus scorpius). • Metal residues, histological changes and presence of parasites were species-specific. • Different sculpin species should not be pooled together as pollution biomarkers.« less

  20. Induction of reactivation of herpes simplex virus in murine sensory ganglia in vivo by cadmium.

    PubMed Central

    Fawl, R L; Roizman, B

    1993-01-01

    Herpes simplex viruses maintained in a latent state in sensory neurons in mice do not reactivate spontaneously, and therefore the factors or procedures which cause the virus to reactivate serve as a clue to the mechanisms by which the virus is maintained in a latent state. We report that cadmium sulfate induces latent virus to reactivate in 75 to 100% of mice tested. The following specific findings are reported. (i) The highest frequency of induction was observed after two to four daily administrations of 100 micrograms of cadmium sulfate. (ii) Zinc, copper, manganese, or nickel sulfate administered in equimolar amounts under the same regimen did not induce viral reactivation; however, zinc sulfate in molar ratios 25-fold greater than those of cadmium induced viral replication in 2 of 16 ganglia tested. (iii) Administration of zinc, nickel, or manganese prior to the cadmium sulfate reduced the incidence of ganglia containing infectious virus. (iv) Administration of cadmium daily during the first week after infection and at 2-day intervals to 13 days after infection resulted in the recovery from ganglia of infectious virus in titers 10- to 100-fold higher than those obtained from animals given saline. Moreover, infectious virus was recovered as late as 11 days after infection compared with 6 days in mice administered saline. (v) Administration of cadmium immediately after infection or repeatedly after establishment of latency did not exhaust the latent virus harbored by sensory neurons, inasmuch as the fraction of ganglia of mice administered cadmium and yielding infectious virus was similar to that observed in mice treated with saline. We conclude that induction of cadmium tolerance precludes reactivation of latent virus. If the induction of metallothionein genes was the sole factor required to cause reactivation of latent virus, it would have been expected that all metals which induce metallothioneins would also induce reactivation, which was not observed. The

  1. Comparison of cytotoxicity and expression of metal regulatory genes in zebrafish (Danio rerio) liver cells exposed to cadmium sulfate, zinc sulfate and quantum dots.

    PubMed

    Tang, Song; Allagadda, Vinay; Chibli, Hicham; Nadeau, Jay L; Mayer, Gregory D

    2013-10-01

    Recent advances in the ability to manufacture and manipulate materials at the nanometer scale have led to increased production and use of many types of nanoparticles. Quantum dots (QDs) are small, fluorescent nanoparticles composed of a core of semiconductor material (e.g. cadmium selenide, zinc sulfide) and shells or dopants of other elements. Particle core composition, size, shell, and surface chemistry have all been found to influence toxicity in cells. The aim of this study was to compare the toxicities of ionic cadmium (Cd) and zinc (Zn) and Cd- and Zn-containing QDs in zebrafish liver cells (ZFL). As expected, Cd(2+) was more toxic than Zn(2+), and the general trend of IC50-24 h values of QDs was determined to be CdTe < CdSe/ZnS or InP/ZnS, suggesting that ZnS-shelled CdSe/ZnS QDs were more cytocompatible than bare core CdTe crystals. Smaller QDs showed greater toxicity than larger QDs. Isolated mRNA from these exposures was used to measure the expression of metal response genes including metallothionein (MT), metal response element-binding transcription factor (MTF-1), divalent metal transporter (DMT-1), zrt and irt like protein (ZIP-1) and the zinc transporter, ZnT-1. CdTe exposure induced expression of these genes in a dose dependent manner similar to that of CdSO4 exposure. However, CdSe/ZnS and InP/ZnS altered gene expression of metal homeostasis genes in a manner different from that of the corresponding Cd or Zn salts. This implies that ZnS shells reduce QD toxicity attributed to the release of Cd(2+), but do not eliminate toxic effects caused by the nanoparticles themselves.

  2. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    PubMed

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.

  3. Experiments and Monte Carlo modeling of a higher resolution Cadmium Zinc Telluride detector for safeguards applications

    NASA Astrophysics Data System (ADS)

    Borella, Alessandro

    2016-09-01

    The Belgian Nuclear Research Centre is engaged in R&D activity in the field of Non Destructive Analysis on nuclear materials, with focus on spent fuel characterization. A 500 mm3 Cadmium Zinc Telluride (CZT) with enhanced resolution was recently purchased. With a full width at half maximum of 1.3% at 662 keV, the detector is very promising in view of its use for applications such as determination of uranium enrichment and plutonium isotopic composition, as well as measurement on spent fuel. In this paper, I report about the work done with such a detector in terms of its characterization. The detector energy calibration, peak shape and efficiency were determined from experimental data. The data included measurements with calibrated sources, both in a bare and in a shielded environment. In addition, Monte Carlo calculations with the MCNPX code were carried out and benchmarked with experiments.

  4. In vitro and in vivo evaluation of Weissella cibaria and Lactobacillus plantarum for their protective effect against cadmium and lead toxicities.

    PubMed

    Ojekunle, O; Banwo, K; Sanni, A I

    2017-05-01

    Thirty-two lactic acid bacteria (LAB) isolates were obtained from fermenting cassava mash and wara (African soft cheese) and screened for their resistance to cadmium and lead toxicities at 550-1050 mg l -1 and probiotic potentials. Four LAB strains that tolerated the heavy metals at 1050 mg l -1 were selected for antioxidative capacities, tolerance to acid, bile salts and simulated gastric and intestinal tract and safety status. The results revealed that Weissella cibaria WD2 and Lactobacillus plantarum CaD1 exhibited comparatively higher antioxidative capacities, survived in simulated gastric and intestinal transit, tolerated acid and bile salt and possessed safety status. The two strains were employed for the in vivo studies, which was monitored in male albino Wistar rats using skim milk as a carrier for the cultures over a period of 28 days. The rats given the cultures of W. cibaria WD2 and L. plantarum CaD1 in addition with the administration of heavy metals had improved renal and hepatic impairment, while damage was observed in rats fed with cadmium and lead only. Weissella cibaria WD2 and L. plantarum CaD1 demonstrated probiotic potentials and safety status. These strains can be used to effectively amend hepatic and renal histopathological alterations in rats caused by ingestion of cadmium and lead. This present study highlights the presence of lactic acid bacteria (LAB) from traditional fermented foods that were cadmium and lead resistant and possessed probiotic potentials. Weissella cibaria WD2 and Lactobacillus plantarum CaD1 selected for the in vivo studies ameliorated the build-up of cadmium and lead in the organs of the animals. This indicated that good cadmium and lead binding and probiotic lactic acid bacteria can be used to prevent exposure to these heavy metals. © 2017 The Society for Applied Microbiology.

  5. Lead and cadmium in the blood of nine species of seabirds, Marion Island, South Africa.

    PubMed

    Summers, Carly F; Bowerman, William W; Parsons, Nola; Chao, Wayne Y; Bridges, William C

    2014-10-01

    Levels of lead (Pb) and cadmium (Cd) were investigated as potential stressors in nine species of breeding seabirds on Marion Island, South Africa. The majority of blood Pb levels (95 %) were below background exposure levels. Species was a significant factor in ranked means analysis for mean blood Pb levels. Fewer individual blood Cd levels (<60 %) were within background exposure levels and species was not significant. Elevated levels of Cd have been documented in other seabird species without apparent outward effects, which suggests that seabirds may be adapted to high cadmium environments, particularly from their diets. Overall, the results suggest Pb and Cd are not primary causes for concern in these seabirds.

  6. Cadmium accumulation and protein binding patterns in tissues of the rainbow trout, Salmo gairdneri.

    PubMed Central

    Kay, J; Thomas, D G; Brown, M W; Cryer, A; Shurben, D; Solbe, J F; Garvey, J S

    1986-01-01

    Rainbow trout were exposed to defined levels of cadmium in their aquarium water for differing periods at a variety of near-lethal concentrations that ensured the survival of the majority of the fish. The gills, liver and kidney together accounted for 99% of the accumulated load of body cadmium in the fish under these conditions. Although the proportion of total cadmium present in the liver remained relatively constant throughout, the distribution of the remainder between gill and kidney altered with the time of exposure. The cadmium in all three organs was bound by two low molecular weight proteins distinct in character from metallothionein. The isoforms of metallothionein were also present but were found to bind only zinc and copper. By contrast, when trout were injected with cadmium intraperitoneally, most of the metal accumulated in the liver where it was sequestered by the two isoforms of metallothionein. Pre-exposure of the trout to either a low concentration of cadmium (for several months) or to an elevated concentration of zinc (for 5 days) allowed the animals to survive a subsequent exposure to a high, otherwise lethal concentration of cadmium. The proteins responsible for sequestration of the two metals were identified, but two different mechanisms seemed to be involved in the protection of the animals. The significance of these observations in terms of the induction of proteins and the prevention of the toxic effects of cadmium is considered. PMID:3709433

  7. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    PubMed Central

    Es’haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2013-01-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL−1 for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL−1 and 0.012 ng mL−1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537

  8. Effects of Copper, Cadmium, Lead, and Arsenic in a Live Diet on Juvenile Fish Growth

    EPA Science Inventory

    The effects of dietborne copper, cadmium, lead, and arsenic on juvenile fish were evaluated using a live diet consisting of the oligochaete Lumbriculus variegatus. In 30-d exposures, no effects on growth and survival of rainbow trout, fathead minnow, and channel catfish were obs...

  9. Chemical assessment of lead, cadmium, nitrate, and nitrite intakes with daily diets of children and adolescents from orphanages in Krakow, Poland.

    PubMed

    Pysz, Katarzyna; Leszczyńska, Teresa; Bieżanowska-Kopeć, Renata; Kopeć, Aneta

    2016-12-01

    The aim of this study has been to measure the level of lead, cadmium, nitrates, and nitrites in the daily diets of children and adolescents from orphanages located in Krakow (Poland). Diets were collected over four seasons of 2009. The content of cadmium and lead was measured with flameless atomic absorption spectrometry. Nitrates and nitrites in diets were measured using the Griess colorimetric method. In all orphanages, the average intake of lead with daily diets, regardless of the season, ranged from 1.11 ± 0.15 to 22.59 ± 0.07 μg/kg bw/week. The average cadmium intake by children and adolescents ranged between 3.09 ± 0.21 and 20.36 ± 2.21 μg/kg bw/week and, for all orphanages, exceeded the tolerable weekly intake (TWI) level. Daily intake of nitrates and nitrites ranged respectively from 27 to 289 % and from 9 to 99 % of the acceptable daily intake (ADI). The youngest children, with lower body mass, were particularly sensitive to the excessive intakes of cadmium and nitrates.

  10. Concentrations of cadmium, lead, and zinc in fish from mining-influenced waters of northeastern Oklahoma: Sampling of blood, carcass, and liver for aquatic biomonitoring

    USGS Publications Warehouse

    Brumbaugh, W.G.; Schmitt, C.J.; May, T.W.

    2005-01-01

    The Tri-States Mining District (TSMD) of Missouri (MO), Kansas (KS), and Oklahoma (OK), USA, was mined for lead (Pb) and zinc (Zn) for more than a century. Mining ceased more than 30 years ago, but wastes remain widely distributed in the region, and there is evidence of surface- and groundwater contamination in the Spring River-Neosho River (SR-NR) system of northeastern OK. In October 2001, we collected a total of 74 fish from six locations in the SR-NR system that included common carp (Cyprinus carpio), channel- and flathead catfish (Ictalurus punctatus and Pylodictis olivaris), largemouth- and spotted bass (Micropterus salmoides and Micropterus punctulatus), and white crappie (Pomoxis annularis). We obtained additional fish from locations in MO that included three reference sites and one site that served as a "positive control" (heavily contaminated by Pb). Blood, carcass (headed, eviscerated, and scaled) and liver (carp only) samples were analyzed for cadmium (Cd), Pb, and Zn. Our objectives were to assess the degree to which fish from the OK portion of the SR-NR system are contaminated by these elements and to evaluate fish blood sampling for biomonitoring. Concentrations of Cd and Pb in carp and catfish from OK sites were elevated and Pb concentrations of some approached those of the highly contaminated site in MO, but concentrations in bass and crappie were relatively low. For Zn, correlations were weak among concentrations in the three tissues and none of the samples appeared to reflect site contamination. Variability was high for Cd in all three tissues of carp; differences between sites were statistically significant (p < 0.05) only for blood even though mean liver concentrations were at least 100-fold greater than those in blood. Blood concentrations of Cd and Pb were positively correlated (r 2 = 0.49 to 0.84) with the concentration of the same element in carp and catfish carcasses or in carp livers, and the corresponding multiple regression models were

  11. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  12. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  13. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  14. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  15. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  16. Acute sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to copper, cadmium, or zinc in water-only laboratory exposures

    USGS Publications Warehouse

    Calfee, Robin D.; Little, Edward E.; Puglis, Holly J.; Scott, Erinn L.; Brumbaugh, William G.; Mebane, Christopher A.

    2014-01-01

    The acute toxicity of cadmium, copper, and zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) were determined for 7 developmental life stages in flow-through water-only exposures. Metal toxicity varied by species and by life stage. Rainbow trout were more sensitive to cadmium than white sturgeon across all life stages, with median effect concentrations (hardness-normalized EC50s) ranging from 1.47 µg Cd/L to 2.62 µg Cd/L with sensitivity remaining consistent during later stages of development. Rainbow trout at 46 d posthatch (dph) ranked at the 2nd percentile of a compiled database for Cd species sensitivity distribution with an EC50 of 1.46 µg Cd/L and 72 dph sturgeon ranked at the 19th percentile (EC50 of 3.02 µg Cd/L). White sturgeon were more sensitive to copper than rainbow trout in 5 of the 7 life stages tested with biotic ligand model (BLM)-normalized EC50s ranging from 1.51 µg Cu/L to 21.9 µg Cu/L. In turn, rainbow trout at 74 dph and 95 dph were more sensitive to copper than white sturgeon at 72 dph and 89 dph, indicating sturgeon become more tolerant in older life stages, whereas older trout become more sensitive to copper exposure. White sturgeon at 2 dph, 16 dph, and 30 dph ranked in the lower percentiles of a compiled database for copper species sensitivity distribution, ranking at the 3rd (2 dph), 5th (16 dph), and 10th (30 dph) percentiles. White sturgeon were more sensitive to zinc than rainbow trout for 1 out of 7 life stages tested (2 dph with an biotic ligand model–normalized EC50 of 209 µg Zn/L) and ranked in the 1st percentile of a compiled database for zinc species sensitivity distribution.

  17. Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover.

    PubMed

    Jin, Zhong Min; Sha, Wei; Zhang, Yan Fu; Zhao, Jing; Ji, Hongyang

    2013-07-01

    Phytoremediation combined with suitable microorganisms and biodegradable chelating agents can be a means of reclaiming lands contaminated by toxic heavy metals. We investigated the ability of a lead- and cadmium-resistant bacterial strain (JB12) and the biodegradable chelator ethylenediamine-N,N'-disuccinic acid (EDDS) to improve absorption of these metals from soil by tall fescue and red clover. Strain JB12 was isolated from contaminated soil samples, analysed for lead and cadmium resistance, and identified as Burkholderia cepacia. Tall fescue and red clover were grown in pots to which we added JB12, (S,S)-EDDS, combined JB12 and EDDS, or water only. Compared with untreated plants, the biomass of plants treated with JB12 was significantly increased. Concentrations of lead and cadmium in JB12-treated plants increased significantly, with few exceptions. Plants treated with EDDS responded variably, but in those treated with combined EDDS and JB12, heavy metal concentrations increased significantly in tall fescue and in the aboveground parts of red clover. We conclude that JB12 is resistant to lead and cadmium. Its application to the soil improved the net uptake of these heavy metals by experimental plants. The potential for viable phytoremediation of lead- and cadmium-polluted soils with tall fescue and red clover combined with JB12 was further enhanced by the addition of EDDS.

  18. The effects of CaEDTA injection on lead, zinc, copper and ALAD in erythrocyte, plasma and urine in lead-exposed workers: a 24-h observation.

    PubMed

    Aono, H; Araki, S

    1984-01-01

    To evaluate the effects of calcium disodium ethylenediamine tetraacetate (CaEDTA) on the concentrations of lead, zinc and copper in plasma, erythrocyte and urine, and the delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocyte, we administered CaEDTA in 1-h intravenous infusion to ten male gun metal founders with blood-lead concentration of 39 to 64 micrograms/dl (mean 49 micrograms/dl). We found that the plasma concentration of lead, following a rapid rise within the first 3 h, fell temporarily to the level significantly lower than the initial level 19 h after start of the infusion. The plasma concentration of zinc fell to the minimal level 5 h after the infusion; and the erythrocyte concentration of zinc and the ALAD activity concurrently rose to the maximal level 5 h after the infusion. By contrast, no significant alteration was observed in the concentrations of copper in plasma and erythrocyte. The maximal level of urinary metal excretion was attained during the period between 1 and 2 h after start of CaEDTA infusion for lead; within 2 h for zinc; and between 2 and 4 h for copper. The urinary metal excretion returned to the initial level 14 to 24 h after infusion for zinc and copper; but lead excretion was still higher than the initial level during this period. The difference in the kinetics of the three metals following CaEDTA injection is discussed in the light of these findings.

  19. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    PubMed

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  20. Epigenetics, obesity and early-life cadmium or lead exposure

    PubMed Central

    Park, Sarah S; Skaar, David A; Jirtle, Randy L; Hoyo, Cathrine

    2017-01-01

    Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures. PMID:27981852

  1. Epigenetics, obesity and early-life cadmium or lead exposure.

    PubMed

    Park, Sarah S; Skaar, David A; Jirtle, Randy L; Hoyo, Cathrine

    2017-01-01

    Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.

  2. Environmental risk assessment of lead-zinc mining: a case study of Adudu metallogenic province, middle Benue Trough, Nigeria.

    PubMed

    Igwe, Ogbonnaya; Una, Chuku Okoro; Abu, Ezekiel; Adepehin, Ekundayo Joseph

    2017-09-07

    Assessment of the impacts of lead-zinc mining in Adudu-Imon metallogenic province was carried out. Reconnaissance and detailed field studies were done. Lithologies, stream sediments, farmland soils, mine tailings, artificial pond water, stream water, well water, and borehole water were collected and subjected to atomic absorption spectrometry (AAS) and X-ray fluorescence (XRF) analyses. Geochemical maps were generated using ArcGIS 10.1. Significant contamination with cadmium (Cd), iron (Fe), and lead (Pb) was recorded in the collected water samples. Virtually all collected soil samples were observed to be highly contaminated when compared with the European Union environmental policy standard. The discharge of mining effluents through farmlands to the Bakebu stream, which drains the area, further exposes the dwellers of this environment to the accumulation of potentially harmful metals (PHMs) in their bodies through the consumption of food crops, aquatic animals, and domestic uses of the water collected from the stream channels. The study revealed non-conformity of past mining operations in the Adudu-Imon province to existing mining laws in Nigeria. Inhabitants of this region should stop farming in the vicinity of the mines, fishing from the Bakebu stream channels should be discouraged, and domestic use of the water should be condemned, even as concerned government agencies put necessary mercenaries in place to ensure conformity of miners to standard mining regulations in Nigeria.

  3. Single and Combined Exposure to Zinc- and Copper-Containing Welding Fumes Lead to Asymptomatic Systemic Inflammation.

    PubMed

    Markert, Agnieszka; Baumann, Ralf; Gerhards, Benjamin; Gube, Monika; Kossack, Veronika; Kraus, Thomas; Brand, Peter

    2016-02-01

    Recently, it has been shown that exposure to welding fumes containing both zinc and copper leads to asymptomatic systemic inflammation in humans as shown by an increase of blood C-reactive protein. In the present study, it was investigated which metal is responsible for this effect. Fifteen healthy male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc. For each exposure blood C-reactive protein increased. Copper- and zinc-containing welding fumes are able to induce systemic inflammation.

  4. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells.

    PubMed

    Ustündağ, Aylin; Behm, Claudia; Föllmann, Wolfram; Duydu, Yalçin; Degen, Gisela H

    2014-06-01

    The toxic heavy metals cadmium (Cd) and lead (Pb) are important environmental pollutants which can cause serious damage to human health. As the metal ions (Cd(2+) and Pb(2+)) accumulate in the organism, there is special concern regarding chronic toxicity and damage to the genetic material. Metal-induced genotoxicity has been attributed to indirect mechanisms, such as induction of oxidative stress and interference with DNA repair. Boron is a naturally occurring element and considered to be an essential micronutrient, although the cellular activities of boron compounds remain largely unexplored. The present study has been conducted to evaluate potential protective effects of boric acid (BA) against genotoxicity induced by cadmium chloride (CdCl2) and lead chloride (PbCl2) in V79 cell cultures. Cytotoxicity assays (neutral red uptake and cell titer blue assay) served to determine suitable concentrations for subsequent genotoxicity assays. Chromosomal damage and DNA strand breaks were assessed by micronucleus tests and comet assays. Both PbCl2 and CdCl2 (at 3, 5 and 10 µM) were shown to induce concentration-dependent increases in micronucleus frequencies and DNA strand breaks in V79 cells. BA itself was not cytotoxic (up to 300 µM) and showed no genotoxic effects. Pretreatment of cells with low levels of BA (2.5 and 10 µM) was found to strongly reduce the genotoxic effects of the tested metals. Based on the findings of this in vitro study, it can be suggested that boron provides an efficient protection against the induction of DNA strand breaks and micronuclei by lead and cadmium. Further studies on the underlying mechanisms for the protective effect of boron are needed.

  5. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies.

    PubMed

    Deng, Lin; Li, Zhu; Wang, Jie; Liu, Hongyan; Li, Na; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2016-01-01

    In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment "S. plumbizincicola intercropped with maize" was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha(-1) gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.

  6. Analysis of Selected Functional Characteristics of Wetlands.

    DTIC Science & Technology

    1979-02-01

    1978, Lead, Zinc, and Cadmium Budgets in Experimental- ly Enriched Salt Marsh Ecosystems, Eastern Coast, Mar. Sc.: Vol. 3, p. * 421-430. - -.q t...Sewage d and Retention of Lead, Zinc, and Cadmium by Marsh Sediments, Environ. Pollut., Vol. 7(Z), p. 149. Banus, M. D., et al., 1974, Export of Lead from...Hirshfield, H. 1., 1975, Cadmium in an Aquatic Ecosystem: Distribution and Effects, New York University, Medical Center, New York * Institute of Environmental

  7. Development of a predictive model for lead, cadmium and fluorine soil-water partition coefficients using sparse multiple linear regression analysis.

    PubMed

    Nakamura, Kengo; Yasutaka, Tetsuo; Kuwatani, Tatsu; Komai, Takeshi

    2017-11-01

    In this study, we applied sparse multiple linear regression (SMLR) analysis to clarify the relationships between soil properties and adsorption characteristics for a range of soils across Japan and identify easily-obtained physical and chemical soil properties that could be used to predict K and n values of cadmium, lead and fluorine. A model was first constructed that can easily predict the K and n values from nine soil parameters (pH, cation exchange capacity, specific surface area, total carbon, soil organic matter from loss on ignition and water holding capacity, the ratio of sand, silt and clay). The K and n values of cadmium, lead and fluorine of 17 soil samples were used to verify the SMLR models by the root mean square error values obtained from 512 combinations of soil parameters. The SMLR analysis indicated that fluorine adsorption to soil may be associated with organic matter, whereas cadmium or lead adsorption to soil is more likely to be influenced by soil pH, IL. We found that an accurate K value can be predicted from more than three soil parameters for most soils. Approximately 65% of the predicted values were between 33 and 300% of their measured values for the K value; 76% of the predicted values were within ±30% of their measured values for the n value. Our findings suggest that adsorption properties of lead, cadmium and fluorine to soil can be predicted from the soil physical and chemical properties using the presented models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Treatability Study Report for In SITU Lead Immobilization Using Phosphate-Based Binders

    DTIC Science & Technology

    2008-05-01

    include lead, zinc, copper, cadmium, nickel, uranium, barium, cesium, strontium, plutonium, thorium, and other lanthanide and actinide metals. There...Density Bulk density is the measure of the mass per unit volume of the whole soil specimen. American Society for Testing and Materials (ASTM) D 698...Where: m = mass of the soil (grams) V = Volume of sample (cm3) 4.2.2.1.3 Unconfined Compressive Strength (UCS) The UCS test was used to

  9. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT.

    PubMed

    Kowald, Gregory R; Stürzenbaum, Stephen R; Blindauer, Claudia A

    2016-01-05

    Earthworms express, as most animals, metallothioneins (MTs)-small, cysteine-rich proteins that bind d(10) metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd₇wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by ¹H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.

  10. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland.

    PubMed

    Qu, Juanjuan; Ren, Guangming; Chen, Bao; Fan, Jinghua; E, Yong

    2011-11-01

    In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.

  11. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  12. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples.

    PubMed

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-01-01

    For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants

    PubMed Central

    Krystofova, Olga; Trnkova, Libuse; Adam, Vojtech; Zehnalek, Josef; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2010-01-01

    Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic. PMID:22219663

  14. Mercury, cadmium, lead, and selenium in three waterbird species nesting in Galveston Bay, Texas, USA

    USGS Publications Warehouse

    King, K.A.; Cromartie, E.

    1986-01-01

    Heavy metal and selenium concentrations were determined in Olivaceous Cormorants (Phalacrocorax olivaceus ), Laughing gulls (Larus atricilla ), and Black Skimmers (Rynchops niger ) nesting in Galveston Bay, Texas, during 1980-81. Lead was detected at low levels in a small proportion of the liver samples. Mercury was present in all livers sampled, the highest levels being found in cormorants (7.8 ppm) and skimmers (16 ppm). Concentrations were considerably lower than those reported in birds from mercury-contaminated lakes in northern United States and Canada. Cadmium and selenium were detected in 93 and 95% of the kidneys. Cadmium was highest in gulls and skimmers with a maximum value of 16 ppm. Selenium levels were similar among species except for higher concentrations in gulls collected in 1981.

  15. Identification of sources of lead in children in a primary zinc-lead smelter environment.

    PubMed Central

    Gulson, Brian L; Mizon, Karen J; Davis, Jeff D; Palmer, Jacqueline M; Vimpani, Graham

    2004-01-01

    We compared high-precision lead isotopic ratios in deciduous teeth and environmental samples to evaluate sources of lead in 10 children from six houses in a primary zinc-lead smelter community at North Lake Macquarie, New South Wales, Australia. Teeth were sectioned to allow identification of lead exposure in utero and in early childhood. Blood lead levels in the children ranged from 10 to 42 micro g/dL and remained elevated for a number of years. For most children, only a small contribution to tooth lead can be attributed to gasoline and paint sources. In one child with a blood lead concentration of 19.7 microg/dL, paint could account for about 45% of lead in her blood. Comparison of isotopic ratios of tooth lead levels with those from vacuum cleaner dust, dust-fall accumulation, surface wipes, ceiling (attic) dust, and an estimation of the smelter emissions indicates that from approximately 55 to 100% of lead could be derived from the smelter. For a blood sample from another child, > 90% of lead could be derived from the smelter. We found varying amounts of in utero-derived lead in the teeth. Despite the contaminated environment and high blood lead concentrations in the children, the levels of lead in the teeth are surprisingly low compared with those measured in children from other lead mining and smelting communities. PMID:14698931

  16. Cadmium, lead, and chromium in large game: a local-scale exposure assessment for hunters consuming meat and liver of wild boar.

    PubMed

    Danieli, P P; Serrani, F; Primi, R; Ponzetta, M P; Ronchi, B; Amici, A

    2012-11-01

    Heavy metals are ubiquitous in soil, water, and air. Their entrance into the food chain is an important environmental issue that entails risks to humans. Several reports indicate that game meat can be an important source of heavy metals, particularly because of the increasing consumption of game meat, mainly by hunters. We performed an exposure assessment of hunters and members of their households, both adults and children, who consumed wild boar (WB) meat and offal. We estimated the amount of cadmium, lead, and chromium in the tissues of WB hunted in six areas within Viterbo Province (Italy) and gathered data on WB meat and offal consumption by conducting specific diet surveys in the same areas. The exposure to cadmium, lead, and chromium was simulated with specifically developed Monte Carlo simulation models. Cadmium and lead levels in WB liver and meat harvested in Viterbo Province (Italy) were similar to or lower than the values reported in other studies. However, some samples contained these metals at levels greater then the EU limits set for domestic animals. The chromium content of meat or liver cannot be evaluated against any regulatory limit, but our results suggest that the amounts of this metal found in WB products may reflect a moderate environmental load. Our survey of the hunter population confirmed that their consumption of WB meat and liver was greater than that of the general Italian population. This level of consumption was comparable with other European studies. Consumption of WB products contributes significantly to cadmium and lead exposure of both adults and children. More specifically, consumption of the WB liver contributed significantly to total cadmium and lead exposure of members of the households of WB hunters. As a general rule, liver consumption should be kept to a minimum, especially for children living in these hunter households. The exposure to chromium estimated for this population of hunters may be considered to be safe. However

  17. Effects of lead and cadmium co-exposure on bone mineral density in a Chinese population.

    PubMed

    Chen, Xiao; Wang, Keyue; Wang, Zhongqiu; Gan, Caohui; He, Ping; Liang, Yihuai; Jin, Taiyi; Zhu, Guoying

    2014-06-01

    It has been indicated that both cadmium (Cd) and lead (Pb) may have adverse effects on the bone. However, most studies have only focused on a single factor. The primary and main and interactive effects of Cd and Pb on bone mineral density (BMD) in a Chinese population were observed in this study. A total of 321 individuals (202 women and 119 men), aged 27 years and older, living in control and polluted areas, were recruited to participate in this study. The BMD was measured through dual energy X-ray absorptiometry (DXA) at the proximal radius and ulna. The samples of urine and blood were collected to determine the levels of Cd and Pb in the urine (UCd and UPb) and blood (BCd and BPb). The Cd and Pb levels of people living in the polluted area were significantly higher than those living in the control area (p<0.05). The BMD of women living in polluted area was significantly lower than that of women living in the control area (p<0.05). Furthermore, the BMD decreased with increasing of BCd (p<0.05), BPb and UPb in women. The likelihood of low BMD was associated with higher BCd in women (OR=2.5, 95% CI: 1.11-5.43) and BPb in men (OR=4.49, 95% CI: 1.37-14.6). The relative extra risk index of low BMD for female and male subjects with both high levels of BCd and BPb was 0.45 and 1.16, respectively. This study strengthens previous evidence that cadmium and lead may influence the bone and also demonstrates that cadmium and lead may have interactive effects on BMD. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Geological and Geochemical Characteristics of Skarn Type Lead-Zinc Deposit in Baoshan Block, Yunnan Province

    NASA Astrophysics Data System (ADS)

    Yao, Xue; Wang, Peng

    2017-11-01

    Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.

  19. Evaluation of the cadmium and lead phytoextraction by castor bean (Ricinus communis L.) in hydroponics

    NASA Astrophysics Data System (ADS)

    Niu, Z. X.; Sun, L. N.

    2017-06-01

    Phytoextraction has been considered as an innovative method to remove toxic metals from soil; higher biomass plants such as castor bean (Ricinus communis L.) have already been considered as a hyperaccumulating candidate. In the present study, castor bean was used to accumulate the cadmium and lead in hydroponic culture, and the root exudates and biomass changes were analyzed. Results demonstrated that ratios of aerial biomass/ root biomass (AW/RW) in treatments declined with concentrations of Cd or Pb. Optical density (OD) at 190 nm and 280 nm of root exudates observed in Cd and Pb treatments were lower than the control. In single Cd or Pb treatments, bioconcentration factors (BCF) of Cd or Pb increased with time and decreased with concentrations, the highest BCFs appeared in Cd5 (14.36) and Pb50 (6.48), respectively. Cd-BCF or Pb-BCF showed positive correlations with AW/RW ratios and OD values, and they were negative correlated with Cd and Pb concentration. Results in this study may supply useful information for phytoremediation of soil contaminated with cadmium and lead in situ.

  20. [FEATURES OF THE CONTENT OF MOVABLE FORMS OF HEAVY METALS AND SELENIUM IN SOILS OF THE YAROSLAVL REGION].

    PubMed

    Bakaeva, E A; Eremeyshvili, A V

    2016-01-01

    With the use of the method of inversion voltammetry there was analyzed the content of movableforms of trace elements: (selenium, zinc, copper lead, cadmium) in soils in the Yaroslavl district of the Yaroslavl region, and also content of zinc, copper lead, cadmium in soils and snow cover in the city of Yaroslavl. According to values of concentrations of movable compounds in soils determined trace elements can be ranked into the following row: zinc > lead > copper > selenium > cadmium. There was revealed insufficient if compared with literature data concentrations, content of movable compounds of selenium, copper and zinc in examined explored soils. The maximal concentrations of lead are revealed in the close proximity to both the city of Yaroslavl and large highways of the city. It indicates to the anthropogenic pollution of soils by this element.

  1. Cadmium, lead, tin, total mercury, and methylmercury in canned tuna commercialised in São Paulo, Brazil.

    PubMed

    de Paiva, Esther Lima; Morgano, Marcelo Antonio; Milani, Raquel Fernanda

    2017-09-01

    The objective of this work was to determine levels of inorganic contaminants in 30 samples of five commercial brands of canned tuna, acquired on the local market in Campinas, São Paulo, Brazil, in the year of 2015. Total mercury and methylmercury (MeHg+) were determined by atomic absorption with thermal decomposition and amalgamation; and cadmium, lead, and tin were determined by inductively coupled plasma optical emission spectrometry. Results indicated that 20% of the tuna samples surpassed limits determined by the Brazilian and European Commission legislation for cadmium; for lead, the maximum value found was 59 µg kg -1 and tin was not detected in any samples. The maximum values found for total Hg and MeHg+ were 261 and 258 µg kg -1 , respectively. As from the results obtained, it was estimated that the consumption of four cans per week (540 g) of tuna canned in water could surpass the provisional tolerable monthly intake for MeHg + by 100%.

  2. Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: toxicity and metallothionein induction.

    PubMed

    Rodilla, V; Miles, A T; Jenner, W; Hawksworth, G M

    1998-08-14

    The kidney, in particular the proximal convoluted tubule, is a major target site for the toxic effects of various metals. However, little is known about the early effects of these metals after acute exposure in man. In the present study we have evaluated the toxicity of several inorganic metal compounds (CdCl2, HgCl2, ZnCl2, and Bi(NO3)3) and the induction of metallothionein by these compounds in cultured human proximal tubular (HPT) cells for up to 4 days. The results showed that bismuth was not toxic even at the highest dose (100 microM) used, while zinc, cadmium and mercury exhibited varying degrees of toxicity, zinc being the least toxic and mercury the most potent. A significant degree of interindividual variation between the different isolates used in these experiments was also observed. All metals used in the present study induced MT, as revealed by immunocytochemistry. All metals showed maximal induction between 1 and 3 days after treatment. Although a certain amount of constitutive MT was present in the cultures, the intensity of the staining varied with time in culture and between the different isolates studied. No correlation could be made between the intensity of the staining in control cultures (indicating total amount of constitutive MT) and the susceptibility of a given isolate to metal toxicity. Furthermore, no correlation could be made between metal-induced MT and the susceptibility of a given isolate to that particular metal.

  3. 40 CFR Table 1 to Subpart Gggggg... - Applicability of General Provisions to Primary Zinc Production Area Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Primary Zinc Production Area Sources 1 Table 1 to Subpart GGGGGG of Part 63 Protection of Environment... Pollutants for Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Pt. 63, Subpt. GGGGGG, Table 1 Table 1 to Subpart GGGGGG of Part 63—Applicability of General Provisions to Primary Zinc...

  4. 40 CFR Table 1 to Subpart Gggggg... - Applicability of General Provisions to Primary Zinc Production Area Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Primary Zinc Production Area Sources 1 Table 1 to Subpart GGGGGG of Part 63 Protection of Environment... Pollutants for Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Pt. 63, Subpt. GGGGGG, Table 1 Table 1 to Subpart GGGGGG of Part 63—Applicability of General Provisions to Primary Zinc...

  5. Mississippi Valley-Type Lead-Zinc Deposit Model

    USGS Publications Warehouse

    Leach, David L.; Taylor, Ryan D.

    2009-01-01

    Mississippi Valley-type (MVT) lead-zinc (Pb+Zn) deposits are found throughout the world, and these deposits are characteristically distributed over hundreds of square kilometers that define individual ore districts. The median size of individual MVT deposits is 7.0 million tonnes with grades of about 7.9 percent Pb+Zn metal. However, MVT deposits usually occur in extensive districts consisting of several to as many as 400 deposits. Nearly one-quarter of the world's sedimentary and volcanic rock-hosted Pb+Zn resources are found in these deposits, with by-product commodities including silver (Ag), copper (Cu), and indium (In) for some deposits. Environmentally, MVT deposits are less of a concern than other types of mineral deposits since the carbonate-host rocks mitigate many environmental concerns.

  6. Effects of cadmium and zinc on solar-simulated light-irradiated cells: potential role of zinc-metallothionein in zinc-induced genoprotection.

    PubMed

    Jourdan, Eric; Emonet-Piccardi, Nathalie; Didier, Christine; Beani, Jean-Claude; Favier, Alain; Richard, Marie-Jeanne

    2002-09-15

    Zinc is an essential oligoelement for cell growth and cell survival and has been demonstrated to protect cells from oxidative stress induced by UVA or from genotoxic stress due to UVB. In a recent work we demonstrated that the antioxidant role of zinc could be related to its ability to induce metallothioneins (MTs). In this study we identified the mechanism of zinc protection against solar-simulated light (SSL) injury. Cultured human keratinocytes (HaCaT) were used to examine MTs expression and localization in response to solar-simulated radiation. We found translocation to the nucleus, with overexpression of MTs in irradiated cells, a novel observation. The genoprotective effect of zinc was dependent on time and protein synthesis. DNA damage was significantly decreased after 48 h of ZnCl(2) (100 microM) treatment and is inhibited by actinomycin D. ZnCl(2) treatment (100 microM) led to an intense induction, redistribution, and accumulation of MT in the nucleus of irradiated cells. MT expression correlated with the time period of ZnCl(2) treatment. CdCl(2), a potent MT inducer, did not show any genoprotection, although the MTs were expressed in the nucleus. Overall our findings demonstrate that MTs could be a good candidate for explaining the genoprotection mediated by zinc on irradiated cells.

  7. Organ distribution and food safety aspects of cadmium and lead in great scallops, Pecten maximus L., and Horse Mussels, Modiolus modiolus L., from Norwegian waters.

    PubMed

    Julshamn, Kaare; Duinker, Arne; Frantzen, Sylvia; Torkildsen, Lise; Maage, Amund

    2008-04-01

    The purpose of the study was to determine the levels and organ distribution of the potentially harmful inorganic elements cadmium and lead in great scallops and horse mussels from unpolluted Norwegian waters. The scallops far exceeded the EU-limit for cadmium in bivalves when all soft tissues were analysed. When only muscle and gonad were included, however, the level of cadmium was acceptable, because cadmium accumulated in the digestive gland with a mean of 52 mg/kg ww (wet weight). In horse mussel, lead was the most problematic element and the concentration varied from 1.4 to 6.6 mg/kg ww with a mean of 3.7 mg/kg ww, exceeding the EU limit of 1.5 mg Pb/kg. The highest concentration of lead was found in the kidney with an average of 120 mg/kg ww and with a maximum value of 240 mg/kg ww. The kidney tissue accounted for approximately 94% of the lead burden in the horse mussel. In order to consume these bivalves, only muscle and gonad of great scallops should be used for consumption and the kidney of horse mussel should be removed prior to consumption.

  8. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.

    PubMed

    Jin, Fei; Al-Tabbaa, Abir

    2014-12-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Remediation of lead and cadmium from simulated groundwater in loess region in northwestern China using permeable reactive barrier filled with environmentally friendly mixed adsorbents.

    PubMed

    Fan, Chunhui; Gao, Yalin; Zhang, Yingchao; Dong, Wanqing; Lai, Miao

    2018-01-01

    Permeable reactive barrier (PRB) is potentially effective for groundwater remediation, especially using environmentally friendly mixed fillers in representative areas, such as semi-arid loess region in northwestern China. The mixed materials, including corn straw (agricultural wastes), fly ash (industrial wastes), zeolite synthesized from fly ash (reutilized products), and iron-manganese nodule derived from loess (materials with regional characteristics) in northwestern China, were chosen as PRB media to reduce the contents of lead and cadmium in simulated groundwater. A series of lab-scale column experiments were investigated, and the response surface methodology (RSM) was used to optimize the working process; Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were applied to further reveal the reaction mechanism. It shows that the purification efficiencies are more acceptable when the concentrations of lead and cadmium are approximately 7 and 0.7 mg/L, respectively, at 25 °C in weakly acidic solution, and functional groups of -OH and C=C play an important role for contaminants removal. The mixed adsorbents used are effective to remove lead and cadmium in groundwater. This is the first report on the removal of lead and cadmium from groundwater in loess region in northwestern China using PRB filled with environmentally friendly mixed adsorbents.

  10. Recycling of Zinc- and Lead-Bearing Residues with Pyrolysis Gas

    NASA Astrophysics Data System (ADS)

    Pichler, C.; Antrekowitsch, J.

    2015-09-01

    Efforts in the metallurgical industry for an approximation to the zero waste concept has led to many different investigations. Together with the greenhouse effect, CO2 emissions have caused additional costs for different process steps in the industry. For this reason, alternative carbon carriers have been sought, and charcoal was found to be an ideal substitute, due to its CO2 neutrality. In order to use it in the metallurgical industry, an optimization of the charcoal production through a carbonization process must be carried out. Beside the charcoal, pyrolysis gas also occurs during the heating of wood or agricultural wastes under the exclusion of air. Because of combustible compounds in this gas, it is possible to use it as a reduction agent instead of fossil carbon carriers. Together with the idea of preventing landfilling of metallurgical by-products, an investigation was carried out to treat zinc- and lead-containing materials. For this issue a special process concept was designed and developed. The main aspect was to recycle the zinc- and lead-containing Waelz slag, which results from the processing of steel mill dusts, in a vertical retort. Two different sizes of facilities were constructed to perform the reaction system of the solid Waelz slag with the gaseous reduction agent of pyrolysis gas.

  11. The Novel Helicobacter pylori CznABC Metal Efflux Pump Is Required for Cadmium, Zinc, and Nickel Resistance, Urease Modulation, and Gastric Colonization

    PubMed Central

    Stähler, Frank Nils; Odenbreit, Stefan; Haas, Rainer; Wilrich, Julia; Vliet, Arnoud H. M. Van; Kusters, Johannes G.; Kist, Manfred; Bereswill, Stefan

    2006-01-01

    Maintaining metal homeostasis is crucial for the adaptation of Helicobacter pylori to the gastric environment. Iron, copper, and nickel homeostasis has recently been demonstrated to be required for the establishment of H. pylori infection in animal models. Here we demonstrate that the HP0969-0971 gene cluster encoding the Czc-type metal export pump homologs HP0969, HP0970, and the H. pylori-specific protein HP0971 forms part of a novel H. pylori metal resistance determinant, which is required for gastric colonization and for the modulation of urease activity. Insertional mutagenesis of the HP0971, HP0970, or HP0969 genes in H. pylori reference strain 26695 resulted in increased sensitivity to cadmium, zinc, and nickel (czn), suggesting that the encoded proteins constitute a metal-specific export pump. Accordingly, the genes were designated cznC (HP0971), cznB (HP0970), and cznA (HP0969). The CznC and CznA proteins play a predominant role in nickel homeostasis, since only the cznC and cznA mutants but not the cznB mutant displayed an 8- to 10-fold increase in urease activity. Nickel-specific affinity chromatography demonstrated that recombinant versions of CznC and CznB can bind to nickel and that the purified CznB protein interacted with cadmium and zinc, since both metals competitively inhibited nickel binding. Finally, single cznA, cznB, and cznC mutants did not colonize the stomach in a Mongolian gerbil-based animal model. This demonstrates that the metal export functions of H. pylori cznABC are essential for gastric colonization and underlines the extraordinary importance of metal ion homeostasis for the survival of H. pylori in the gastric environment. PMID:16790756

  12. Thermo-optical characterization of cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots embedded in biocompatible materials.

    PubMed

    Pilla, Viviane; Alves, Leandro P; Iwazaki, Adalberto N; Andrade, Acácio A; Antunes, Andrea; Munin, Egberto

    2013-09-01

    Cadmium selenide/zinc sulfide (CdSe/ZnS) core-shell quantum dots (QDs) embedded in biocompatible materials were thermally and optically characterized with a thermal lens (TL) technique. Transient TL measurements were performed with a mode-mismatched, dual-beam (excitation and probe) configuration. A thermo-optical study of the CdSe/ZnS QDs was performed for different core diameters (3.5, 4.0, 5.2, and 6.6 nm) in aqueous solution and synthetic saliva, and three different core diameters (2.4, 2.9, and 4.1 nm) embedded in restorative dental resin (0.025% by mass). The thermal diffusivity results are characteristic of the biocompatible matrices. The radiative quantum efficiencies for aqueous solution and biofluid materials are dependent on the core size of the CdSe/ZnS core-shell QDs. The results obtained from the fluorescence spectral measurements for the biocompatible materials support the TL results.

  13. Post-synthetic modifications of cadmium-based knots and links.

    PubMed

    Prakasam, Thirumurugan; Bilbeisi, Rana A; Lusi, Matteo; Olsen, John-Carl; Platas-Iglesias, Carlos; Trabolsi, Ali

    2016-05-31

    Three topologically non-trivial cadmium(ii)-based complexes-Cd-[2]C, Cd-TK and Cd-SL-were simultaneously self-assembled in a dynamic library, individually isolated and fully characterized using solid-state, gas-phase and solution-phase techniques. Post-synthetic modifications, including reduction and transmetalation, were subsequently achieved. Imine bond reduction followed by demetallation led to the isolation of the corresponding organic molecules [2]C, TK and SL. Transmetalation of Cd-TK and Cd-SL with the zinc(ii) cation resulted in isolation of the corresponding zinc(ii)-containing complexes Zn-TK and Zn-SL.

  14. Prenatal lead, cadmium and mercury exposure and associations with motor skills at age 7 years in a UK observational birth cohort.

    PubMed

    Taylor, Caroline M; Emond, Alan M; Lingam, Raghu; Golding, Jean

    2018-08-01

    Lead and mercury are freely transferred across the placenta, while cadmium tends to accumulate in the placenta. Each contributes to adverse neurological outcomes for the child. Although prenatal heavy metal exposure has been linked with an array of neurodevelopmental outcomes in childhood, its association with the development of motor skills in children has not been robustly studied. The aim of the present study was to investigate the association between prenatal exposure to lead, cadmium and mercury, measured as maternal blood concentrations during pregnancy, and motor skills, measured as subtests of the Movement Assessment Battery for Children (Movement ABC) at age 7 years in a large sample of mother-child pairs enrolled in a UK observational birth cohort study (Avon Longitudinal Study of Parents and Children, ALSPAC). Whole blood samples from pregnant women enrolled in ALSPAC were analysed for lead, cadmium and mercury. In a complete case analysis (n = 1558), associations between prenatal blood concentrations and child motor skills assessed by Movement ABC subtests of manual dexterity, ball skills and balance at 7 years were examined in adjusted regression models. Associations with probable developmental coordination disorder (DCD) were also investigated. The mean prenatal blood levels were: lead 3.66 ± 1.55 μg/dl; cadmium 0.45 ± 0.54 μg/l; mercury 2.23 ± 1.14 μg/l. There was no evidence for any adverse associations of prenatal lead, cadmium or mercury exposure with motor skills measured at age 7 years with Movement ABC subtests in adjusted regression models. Further, there were no associations with probable DCD. There was no evidence to support a role of prenatal exposure to heavy metals at these levels on motor skills in the child at age 7 years measured using the Movement ABC. Early identification of symptoms of motor skills impairment is important, however, to enable investigation, assessment and treatment. Copyright

  15. Blood Metal Concentrations of Manganese, Lead, and Cadmium in Relation to Serum Ferritin Levels in Ohio Residents

    EPA Science Inventory

    The objectives of this study were to assess fcrritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents....

  16. Levels of cadmium and zinc in soil and plants following the toxic spill from a pyrite mine, Aznalcollar, Spain.

    PubMed

    Pain, Deborah J; Meharg, Andrew; Sinclair, Gillian; Powell, Nicola; Finnie, Jill; Williams, Robert; Hilton, Geoff

    2003-02-01

    On 25 April 1998, a breach of the tailings dam of the Los Frailes pyrite mine in southwestern Spain resulted in the release of 6 million m3 of acidic water and toxic sludge high in heavy metals. Contaminated material extended 40 km downstream, affecting agricultural land and parts of the wildlife-rich Doñana Natural and National Parks, including the Entremuros, a very important area for birds. We report on the concentrations, distributions and bioavailability of zinc and cadmium in soil and vegetation from the Entremuros in November 1998 and October 1999, following 2 'cleanup' operations. Levels of Zn and Cd in soil increased significantly over this period, although this was not reflected consistently in metal concentrations in emergent macrophytes. We recommend monitoring of further cleanup attempts in order to develop means of minimizing potential impacts to wildlife in the area.

  17. Cadmium, lead, and mercury levels in feathers of small passerine birds: noninvasive sampling strategy.

    PubMed

    Bianchi, Nicola; Ancora, Stefania; di Fazio, Noemi; Leonzio, Claudio

    2008-10-01

    Bird feathers have been widely used as a nondestructive biological material for monitoring heavy metals. Sources of metals taken up by feathers include diet (metals are incorporated during feather formation), preening, and direct contact with metals in water, air, dust, and plants. In the literature, data regarding the origin of trace elements in feathers are not univocal. Only in the vast literature concerning mercury (as methyl mercury) has endogenous origin been determined. In the present study, we investigate cadmium, lead, and mercury levels in feathers of prey of Falco eleonorae in relation to the ecological characteristics (molt, habitat, and contamination by soil) of the different species. Cluster analysis identified two main groups of species. Differences and correlations within and between groups identified by cluster analysis were then checked by nonparametric statistical analysis. The results showed that mercury levels had a pattern significantly different from those of cadmium and lead, which in turn showed a significant positive correlation, suggesting different origins. Nests of F. eleonorae proved to be a good source for feathers of small trans-Saharan passerines collected by a noninvasive method. They provided abundant feathers of the various species in a relatively small area--in this case, the falcon colony on the Isle of San Pietro, Sardinia, Italy.

  18. Association between secondhand smoke exposure and blood lead and cadmium concentration in community dwelling women: the fifth Korea National Health and Nutrition Examination Survey (2010-2012).

    PubMed

    Jung, Se Young; Kim, Suyeon; Lee, Kiheon; Kim, Ju Young; Bae, Woo Kyung; Lee, Keehyuck; Han, Jong-Soo; Kim, Sarah

    2015-07-16

    To assess the association between secondhand smoke exposure and blood lead and cadmium concentration in women in South Korea. Population-based cross-sectional study. South Korea (Korea National Health and Nutrition Examination Survey V). 1490 non-smoking women who took part in the fifth Korea National Health and Nutrition Examination Survey (2010-2012), in which blood levels of lead and cadmium were measured. The primary outcome was blood levels of lead and cadmium in accordance with the duration of secondhand smoke exposure. The adjusted mean level of blood cadmium in women who were never exposed to secondhand smoke was 1.21 (0.02) µg/L. Among women who were exposed less than 1 h/day, the mean cadmium level was 1.13 (0.03) µg/L, and for those exposed for more than 1 h, the mean level was 1.46 (0.06) µg/L. In particular, there was a significant association between duration of secondhand smoke exposure at the workplace and blood cadmium concentration. The adjusted mean level of blood cadmium concentration in the never exposed women's group was less than that in the 1 h and more exposed group, and the 1 h and more at workplace exposed group: 1.20, 1.24 and 1.50 µg/L, respectively. We could not find any association between lead concentration in the blood and secondhand smoke exposure status. This study showed that exposure to secondhand smoke and blood cadmium levels are associated. Especially, there was a significant association at the workplace. Therefore, social and political efforts for reducing the exposure to secondhand smoke at the workplace are needed in order to promote a healthier working environment for women. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Comparison of lead and cadmium contents in cruciferous vegetables grown under diversified ecological conditions: Cracow region of Poland.

    PubMed

    Kapusta-Duch, Joanna; Leszczyńska, Teresa; Florkiewicz, Adam; Filipiak-Florkiewicz, Agnieszka

    2011-01-01

    The aim of the present study was to compare lead and cadmium contents in cruciferous vegetables grown under diversified ecological conditions for three consecutive years, independently of the climatic and agrotechnical conditions. The research was conducted in the Cracow region of Poland and tests vegetables near the Steelworks, from ecological farms, and from local markets. The heavy metal contents were determined using the validated Atomic Absorption Spectrometry method, including electrothermal atomization, with an ET-AAS graphite cuvette (Varian AA240Z, made by Varian). Cruciferous vegetables cultivated in the areas surrounding the steelworks were characterized by alarmingly high lead content versus ecological and commercially available vegetables, while the contents of this metal in vegetables from the two latter locations did not differ. It cannot be definitively stated that the origin of vegetables influenced their cadmium content.

  20. Biomonitoring of Lead, Cadmium, Total Mercury, and Methylmercury Levels in Maternal Blood and in Umbilical Cord Blood at Birth in South Korea

    PubMed Central

    Kim, Yu-Mi; Chung, Jin-Young; An, Hyun Sook; Park, Sung Yong; Kim, Byoung-Gwon; Bae, Jong Woon; Han, Myoungseok; Cho, Yeon Jean; Hong, Young-Seoub

    2015-01-01

    With rising concerns of heavy metal exposure in pregnancy and early childhood, this study was conducted to assess the relationship between the lead, cadmium, mercury, and methylmercury blood levels in pregnancy and neonatal period. The study population included 104 mothers and their children pairs who completed both baseline maternal blood sampling at the second trimester and umbilical cord blood sampling at birth. The geometric mean maternal blood levels of lead, cadmium, total mercury, and methylmercury at the second trimester were 1.02 ± 1.39 µg/dL, 0.61 ± 1.51 µg/L, 2.97 ± 1.45 µg/L, and 2.39 ± 1.45 µg/L, respectively, and in the newborns, these levels at birth were 0.71 ± 1.42 µg/dL, 0.01 ± 5.31 µg/L, 4.44 ± 1.49 µg/L, and 3.67 ± 1.51 µg/L, respectively. The mean ratios of lead, cadmium, total mercury, and methylmercury levels in the newborns to those in the mothers were 0.72, 0.04, 1.76, and 1.81, respectively. The levels of most heavy metals in pregnant women and infants were higher in this study than in studies from industrialized western countries. The placenta appears to protect fetuses from cadmium; however, total mercury and methylmercury were able to cross the placenta and accumulate in fetuses. PMID:26516876

  1. Phosphorite-hosted zinc and lead mineralization in the Sekarna deposit (Central Tunisia)

    USGS Publications Warehouse

    Garnit, Hechmi; Bouhel, Salah; Barca, Donatella; Johnson, Craig A.; Chtara, Chaker

    2012-01-01

    The Sekarna Zn–Pb deposit is located in Central Tunisia at the northeastern edge of the Cenozoic Rohia graben. Mineralization comprises two major ore types: (1) disseminated Zn–Pb sulfides that occur as lenses in sedimentary phosphorite layers and (2) cavity-filling zinc oxides (calamine-type ores) that crosscut Late Cretaceous and Early Eocene limestone. We studied Zn sulfide mineralization in the Saint Pierre ore body, which is hosted in a 5-m-thick sedimentary phosphorite unit of Early Eocene age. The sulfide mineralization occurs as replacements of carbonate cement in phosphorite. The ores comprise stratiform lenses rich in sphalerite with minor galena, Fe sulfides, and earlier diagenetic barite. Laser ablation–inductively coupled plasma mass spectrometry analyses of sphalerite and galena show a wide range of minor element contents with significant enrichment of cadmium in both sphalerite (6,000–20,000 ppm) and galena (12–189 ppm). The minor element enrichments likely reflect the influence of the immediate organic-rich host rocks. Fluid inclusions in sphalerite give homogenization temperatures of 80–130°C. The final ice melting temperatures range from −22°C to −11°C, which correspond to salinities of 15–24 wt.% NaCl eq. and suggest a basinal brine origin for the fluids. Sulfur isotope analyses show uniformly negative values for sphalerite (−11.2‰ to −9.3‰) and galena (−16‰ to −12.3‰). The δ34S of barite, which averages 25.1‰, is 4‰ higher than the value for Eocene seawater sulfate. The sulfur isotopic compositions are inferred to reflect sulfur derivation through bacterial reduction of contemporaneous seawater sulfate, possibly in restricted basins where organic matter was abundant. The Pb isotopes suggest an upper crustal lead source.

  2. Phosphorite-hosted zinc and lead mineralization in the Sekarna deposit (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Garnit, Hechmi; Bouhlel, Salah; Barca, Donatella; Johnson, Craig A.; Chtara, Chaker

    2012-06-01

    The Sekarna Zn-Pb deposit is located in Central Tunisia at the northeastern edge of the Cenozoic Rohia graben. Mineralization comprises two major ore types: (1) disseminated Zn-Pb sulfides that occur as lenses in sedimentary phosphorite layers and (2) cavity-filling zinc oxides (calamine-type ores) that crosscut Late Cretaceous and Early Eocene limestone. We studied Zn sulfide mineralization in the Saint Pierre ore body, which is hosted in a 5-m-thick sedimentary phosphorite unit of Early Eocene age. The sulfide mineralization occurs as replacements of carbonate cement in phosphorite. The ores comprise stratiform lenses rich in sphalerite with minor galena, Fe sulfides, and earlier diagenetic barite. Laser ablation-inductively coupled plasma mass spectrometry analyses of sphalerite and galena show a wide range of minor element contents with significant enrichment of cadmium in both sphalerite (6,000-20,000 ppm) and galena (12-189 ppm). The minor element enrichments likely reflect the influence of the immediate organic-rich host rocks. Fluid inclusions in sphalerite give homogenization temperatures of 80-130°C. The final ice melting temperatures range from -22°C to -11°C, which correspond to salinities of 15-24 wt.% NaCl eq. and suggest a basinal brine origin for the fluids. Sulfur isotope analyses show uniformly negative values for sphalerite (-11.2‰ to -9.3‰) and galena (-16‰ to -12.3‰). The δ34S of barite, which averages 25.1‰, is 4‰ higher than the value for Eocene seawater sulfate. The sulfur isotopic compositions are inferred to reflect sulfur derivation through bacterial reduction of contemporaneous seawater sulfate, possibly in restricted basins where organic matter was abundant. The Pb isotopes suggest an upper crustal lead source.

  3. Cadmium and lead in chocolates commercialized in Brazil.

    PubMed

    Villa, Javier E L; Peixoto, Rafaella R A; Cadore, Solange

    2014-08-27

    Cadmium (Cd) and lead (Pb) concentrations and their relationship to the cocoa content of chocolates commercialized in Brazil were evaluated by graphite furnace atomic absorption spectrometry (GF AAS) after microwave-assisted acid digestion. Several chemical modifiers were tested during method development, and analytical parameters, including the limits of detection and quantification as well as the accuracy and precision of the overall procedure, were assessed. The study examined 30 chocolate samples, and the concentrations of Cd and Pb were in the range of <1.7-107.6 and <21-138.4 ng/g, respectively. The results indicated that dark chocolates have higher concentrations of Cd and Pb than milk and white chocolates. Furthermore, samples with five different cocoa contents (ranging from 34 to 85%) from the same brand were analyzed, and linear correlations between the cocoa content and the concentrations of Cd (R(2) = 0.907) and Pb (R(2) = 0.955) were observed. The results showed that chocolate might be a significant source of Cd and Pb ingestion, particularly for children.

  4. An interatomic pair potential for cadmium selenide

    NASA Astrophysics Data System (ADS)

    Rabani, Eran

    2002-01-01

    We have developed a set of interatomic pair potentials for cadmium selenide based on a form similar to the Born-Mayer model. We show that this simple form of the pair potential, which has been used to describe the properties of alkali halides in the sixfold-coordinate structure, provides a realistic description of the properties of cadmium selenide in all three crystal structures: wurtzite, zinc blende, and rocksalt. Using the new pair potential we have studied the pressure-induced phase transition from the fourfold-coordinate wurtzite structure to the sixfold-coordinate rocksalt structure. The pressure transformation and the equation of state are in good agreement with experimental observations. Using the dispersion term in our pair potential we have also calculated the Hamaker constant for cadmium selenide within the framework of the original microscopic approach due to Hamaker. The results indicate that for ionic materials many-body terms that are included in the Lifshitz theory are well captured by the simple pair potential.

  5. An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination.

    PubMed

    Suguihiro, Talita Mayumi; de Oliveira, Paulo Roberto; de Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2013-09-01

    This work describes for first time the use of electroanalytical techniques for evaluation of adsorptive proprieties of biochar using it as electrode modifier and its application for preconcentration and determination of Lead(II) and Cadmium(II) under differential pulse adsorptive voltammetric conditions (DPAdSV). Samples of biochars were obtained from castor oil cake using a predefined set of experimental conditions varying the heating rate (V), final temperature (T) and warm-up period (P) and subsequently used for carbon paste modified electrode (CPME) preparation. The proposed method was applied for Lead(II) and Cadmium(II) determination in spiked simulated industrial effluents and the limit of detection obtained for both metals were adequated for determination of these evaluated ions taking into account the limits established by Brazilian legislation. For all samples analyzed, recoveries ranged from 95% to 104% were obtained and no significative interferences were observed for common cations in water samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    PubMed

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  7. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    PubMed Central

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  8. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar.

    PubMed

    Puga, A P; Abreu, C A; Melo, L C A; Paz-Ferreiro, J; Beesley, L

    2015-11-01

    Accumulation of heavy metals in unconsolidated soils can prove toxic to proximal environments, if measures are not taken to stabilize soils. One way to minimize the toxicity of metals in soils is the use of materials capable of immobilizing these contaminants by sorption. Biochar (BC) can retain large amounts of heavy metals due to, among other characteristics, its large surface area. In the current experiment, sugarcane-straw-derived biochar, produced at 700 °C, was applied to a heavy-metal-contaminated mine soil at 1.5, 3.0, and 5.0% (w/w). Jack bean and Mucuna aterrima were grown in pots containing a mine contaminated soil and soil mixed with BC. Pore water was sampled to assess the effects of biochar on zinc solubility, while soils were analyzed by DTPA extraction to confirm available metal concentrations. The application of BC decreased the available concentrations of Cd, Pb, and Zn in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water. Amendment with BC reduced plant uptake of Cd, Pb, and Zn with the jack bean uptaking higher amounts of Cd and Pb than M. aterrima. This study indicates that biochar application during mine soil remediation could reduce plant concentrations of heavy metals. Coupled with this, symptoms of heavy metal toxicity were absent only in plants growing in pots amended with biochar. The reduction in metal bioavailability and other modifications to the substrate induced by the application of biochar may be beneficial to the establishment of a green cover on top of mine soil to aid remediation and reduce risks.

  9. Influence of lead ions on the macromorphology of electrodeposited zinc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuda, Tetsuaki; Tobias, Charles W.

    1981-09-01

    The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth ofmore » initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.« less

  10. Effects of cadmium ingestion and food restriction on energy metabolism and tissue metal concentrations in mallard ducks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Giulio, R.T.; Scanlon, P.F.

    1985-08-01

    The single and combined effects of cadmium ingestion and food restriction were examined in a 42-day experiment with male, juvenile mallard ducks. A 2 x 3 factorial design was employed consisting of two levels of food supply (ad libitum and 55% of ad libitum intake) and three levels of cadmium in the food (0, 5 or 50 ..mu..g Cd/g food). Cadmium ingestion alone had no effect on body or tissue weights, liver glycogen, plasma concentrations of glucose, urea, uric acid, nonesterified fatty acids (NEFA), triiodothyronine (T/sub 3/), thyroxine (T/sub 4/), or plasma or adrenal concentrations of corticosterone. The food restrictionmore » resulted in reduced body weights and reduced weights of livers, kidneys, and testes, increased adrenal weights, reduced liver glycogen, increased plasma NEFA concentrations, reduced plasma T/sub 3/ and T/sub 4/ concentrations, and increased adrenal corticosterone concentrations. In combination with the food restrictions, cadmium ingestion further reduced plasma T/sub 3/ concentrations and a similar trend was noted for T/sub 4/. Additionally, the highest plasma NEFA concentrations and highest plasma and adrenal concentrations of corticosterone were observed in food-restricted ducks receiving the highest level of dietary cadmium. These results suggest that ability of cadmium ingestion to enhanced food restriction-induced alterations in energy metabolism at levels of dietary cadmium that are by themselves without apparent effect. Also, cadmium ingestion resulted in increased kidney concentrations of copper and zinc: this effect on kidney zinc concentrations was increased in food-restricted ducks.« less

  11. Larval aquatic insect responses to cadmium and zinc in experimental streams

    USGS Publications Warehouse

    Mebane, Christopher A.; Schmidt, Travis S.; Balistrieri, Laurie S.

    2017-01-01

    To evaluate the risks of metal mixture effects to natural stream communities under ecologically relevant conditions, the authors conducted 30-d tests with benthic macroinvertebrates exposed to cadmium (Cd) and zinc (Zn) in experimental streams. The simultaneous exposures were with Cd and Zn singly and with Cd+Zn mixtures at environmentally relevant ratios. The tests produced concentration–response patterns that for individual taxa were interpreted in the same manner as classic single-species toxicity tests and for community metrics such as taxa richness and mayfly (Ephemeroptera) abundance were interpreted in the same manner as with stream survey data. Effect concentrations from the experimental stream exposures were usually 2 to 3 orders of magnitude lower than those from classic single-species tests. Relative to a response addition model, which assumes that the joint toxicity of the mixtures can be predicted from the product of their responses to individual toxicants, the Cd+Zn mixtures generally showed slightly less than additive toxicity. The authors applied a modeling approach called Tox to explore the mixture toxicity results and to relate the experimental stream results to field data. The approach predicts the accumulation of toxicants (hydrogen, Cd, and Zn) on organisms using a 2-pKa bidentate model that defines interactions between dissolved cations and biological receptors (biotic ligands) and relates that accumulation through a logistic equation to biological response. The Tox modeling was able to predict Cd+Zn mixture responses from the single-metal exposures as well as responses from field data. The similarity of response patterns between the 30-d experimental stream tests and field data supports the environmental relevance of testing aquatic insects in experimental streams.

  12. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk.

    PubMed

    Al-Saleh, Iman; Abduljabbar, Mai

    2017-10-01

    The levels of heavy metals (lead, cadmium, methylmercury and arsenic) were determined in 37 brands of imported rice commonly consumed in Saudi Arabia after soaking and rinsing with water, and their potential health risks to residents were estimated by three indices: hazard quotient (HQ), hazard index (HI) and cancer risk (CR). The mean levels of lead, cadmium, methylmercury and total arsenic in soaked (rinsed) rice grains were 0.034 (0.057), 0.015 (0.027), 0.004 (0.007) and 0.202 (0.183) μg/g dry weight, respectively. Soaking or rinsing rice grains with water decreased lead and cadmium levels in all brands to safe levels. All brands had total arsenic above the acceptable regulatory limits, irrespective of soaking or rinsing, and eight soaked and 12 rinsed brands contained methylmercury. The levels of all heavy metals except cadmium were above the acceptable regulatory limits when the rice was neither rinsed nor soaked. Weekly intakes of lead, cadmium, methylmercury and total arsenic from soaked (rinsed) grains were 0.638 (1.068), 0.279 (0.503), 0.271 (0.309) and 3.769 (3.407) μg/kg body weight (bw). The weekly intakes of lead and methylmercury from the consumption of one rinsed and two soaked rice brands respectively, exceeded the Provisional Tolerance Weekly Intake set by the Food and Agriculture Organization and the World Health Organization. The weekly intake of total arsenic for all brands was above the lowest benchmark dose lower confidence limit (BMDL 01 ) level of 0.3μg/kg bw/d for an increased cancer risk set by European Food Safety Authority. Either soaking or rinsing grains before consumption can minimize the non-carcinogenic health risks to residents from cadmium and lead (HQ<1). Our local consumers, though, may experience health consequences from rice contaminated mainly with arsenic (HQ>1 all brands) and to a lesser extent with methylmercury (HQ>1 in 4 brands), even when soaked or rinsed with water before consumption. The combined non

  13. Phytoavailability, human risk assessment and transfer characteristics of cadmium and zinc contamination from urban gardens in Kano, Nigeria.

    PubMed

    Abdu, Nafiu; Agbenin, John O; Buerkert, Andreas

    2011-12-01

    Quantitative data about phytoavailability and transfer into consumed plant parts for heavy metals in intensively managed urban vegetable production areas of sub-Saharan Africa are scarce. We therefore studied the transfer of zinc (Zn) and cadmium (Cd) from soil to the root and subsequent translocation to edible portions of four vegetables in six urban gardens. While respective diethylenetriaminepentaacetic acid (DTPA)-available Zn and Cd concentrations ranged from 18 to 66 mg kg(-1) and from 0.19 to 0.35 mg kg(-1) , respectively, in soils, total Zn and Cd were 8.4-256 mg kg(-1) and 0.04-1.7 mg kg(-1) in shoot parts. Metal transfer factor (MTF) ratios were higher in Zn (0.2-0.9) than in Cd (0.1-0.6). Our data suggest that total Zn concentration in soil is a reliable indicator to assess its transfer from soil to crop in lettuce, carrot and parsley, while for Cd DTPA-extractable concentration may be used to estimate soil-crop transfer of Cd in amaranthus and carrot. Overall, Cd was more easily translocated to the aerial plant parts than Zn. Zinc and Cd accumulation by vegetables in our soils is mainly a metabolically controlled process. Such accumulation can contaminate the ecosystem but under our conditions intake and ingestion of these metals will likely have to occur over a prolonged period to experience health hazard. Copyright © 2011 Society of Chemical Industry.

  14. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    USGS Publications Warehouse

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  15. Inhibition of acetylcholinesterase activity in the central nervous system of the red swamp crayfish, Procambarus clarkii, by mercury, cadmium, and lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devi, M.; Fingerman, M.

    The toxicological, physiological and biochemical responses of aquatic crustaceans to heavy metals have been reported by several investigators. Levels of glucose, lactic acid, sodium, potassium, aspartate aminotransferase and alanine aminotransferase in the blood of the crab Scylla serrata increased, while glycogen levels in hepatopancreas and muscle decreased after a four-week exposure to mercuric chloride. In fiddler crab, Uca pugilator, enzyme activity was observed to decrease in the hepatopancreas but increased in abdominal muscle after 48 hr cadmium exposure. In the red swamp crayfish, Procambarus clarkii, exposed for 96 hr to cadmium, glutahione (GSH) level and GSH S-transferase activity deceased inmore » the midgut. In crayfish Astacus astacus exposed to sublethal concentrations of lead and cadmium, oxidative enzyme (succine dehydrogenase and NADPH-cytochrome P450 reductase) activities in gills and hepatopancrease decreased. Acetylcholinesterase (AChE) inhibition by organophosphates and organocarbamates in various crustaceans has bee reported. In vivo cadmium exposure caused increases in esterase activities, but mercury exposure decreases these activities in the hepatopancreas of the shrimp Callianassa tyrrhena. The freshwater crab, Barytelphusa guerini, exposed to 0.6 ppm cadmium showed reduced oxygen consumption throughout the experiment whereas AChE activity increased after 4 days but decreased after 15 days. The authors wanted to determine the effects of cadmium, lead and mercury on AChE activity in central nervous tissue of Procambarus clarkii. This enzyme has the potential for serving both as a biochemical indicator of toxic stress and a sensitive parameter for testing water for the presence of toxicants. These three biologically silent metals have, according to Schweinsberg and Karsa great toxicological significance to humans because their use is widespread. 14 refs., 4 figs.« less

  16. Cadmium analysis using field deployable nano-band electrode system and its removal using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Guttula, Mallikarjuna Murthy

    Cadmium (Cd) is an extremely toxic metal commonly found in industrial workplaces. Major industrial releases of Cd stem from waste streams, leaching of landfills, and from a variety of operations that involve cadmium or zinc. Particularly, cadmium can be released to drinking water from the corrosion of some galvanized plumbing and water main pipe materials. The United State Environmental Protection Agency (USEPA) has set the Maximum Contaminant Level (MCL) for cadmium at 5 ppb. Long term exposure of cadmium above the MCL results in kidney, liver, bone and blood damage. An accurate and rapid measurement of cadmium in the field remains a technical challenge. In this work, a relatively new method of a Nano-Band Electrode system using anodic stripping voltammetry was optimized by changing deposition potential, electrolyte, and plating time. We efficiently used Electrocoagulation remove cadmium from wastewater and obtained a removal efficiency of +/-99%. Removal mechanism of cadmium in electrocoagulation was also proposed with the help of X-ray Diffraction (XRD), Attenuated Total Reflection - Fourier Transform Infra Red Spectroscopy (ATR-FTIR), and Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS).

  17. Evaluation of some heavy metals residues in batteries and deep litter rearing systems in Japanese quail meat and offal in Egypt

    PubMed Central

    Ahmed, Ali M.; Hamed, Dalia M.; Elsharawy, Nagwa T.

    2017-01-01

    Aim: The main objectives of this study were for comparing the effect of batteries and deep litter rearing systems of domesticated Japanese quail, Coturnix coturnix japonica, on the concentration levels of cadmium, copper, lead, and zinc from the quail meat and offal in Ismailia, Egypt. Materials and Methods: A total of 40 quail meat and their offal samples were randomly collected from two main quail rearing systems: Battery (Group I) and deep litter system (Group II) for determination of concentration levels of cadmium, copper, lead, and zinc. In addition, 80 water and feed samples were randomly collected from water and feeders of both systems in the Food Hygiene Laboratory, Faculty of Veterinary Medicine, Suez Canal University for heavy metals determination. Results: The mean concentration levels of cadmium, copper, lead, and zinc in Group I were 0.010, 0.027, 1.137, and 0.516 ppm and for Group II were 0.093, 0.832, 0.601, and 1.651 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail feed in Group I were 1.114, 1.606, 5.822, and 35.11 ppm and for Group II were 3.010, 2.576, 5.852, and 23.616 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail meat for Group I were 0.058, 5.902, 10.244, and 290 ppm and for Group II were 0.086, 6.092, 0.136, and 1.280 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc for liver samples in Group I were 0.15, 8.32, 1.05, and 3.41 ppm and for Group II were 0.13, 8.88, 0.95, and 4.21 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in kidney samples for the Group I were 0.24, 4.21, 1.96, and 4.03 ppm and for Group II were 0.20, 5.00, 1.56, and 3.78 ppm, respectively. Kidney had the highest concentration levels of heavy metals followed by liver then muscles. The highest concentration levels of copper were observed in liver samples. The order of the levels of these trace elements obtained

  18. Evaluation of some heavy metals residues in batteries and deep litter rearing systems in Japanese quail meat and offal in Egypt.

    PubMed

    Ahmed, Ali M; Hamed, Dalia M; Elsharawy, Nagwa T

    2017-02-01

    The main objectives of this study were for comparing the effect of batteries and deep litter rearing systems of domesticated Japanese quail, Coturnix coturnix japonica , on the concentration levels of cadmium, copper, lead, and zinc from the quail meat and offal in Ismailia, Egypt. A total of 40 quail meat and their offal samples were randomly collected from two main quail rearing systems: Battery (Group I) and deep litter system (Group II) for determination of concentration levels of cadmium, copper, lead, and zinc. In addition, 80 water and feed samples were randomly collected from water and feeders of both systems in the Food Hygiene Laboratory, Faculty of Veterinary Medicine, Suez Canal University for heavy metals determination. The mean concentration levels of cadmium, copper, lead, and zinc in Group I were 0.010, 0.027, 1.137, and 0.516 ppm and for Group II were 0.093, 0.832, 0.601, and 1.651 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail feed in Group I were 1.114, 1.606, 5.822, and 35.11 ppm and for Group II were 3.010, 2.576, 5.852, and 23.616 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail meat for Group I were 0.058, 5.902, 10.244, and 290 ppm and for Group II were 0.086, 6.092, 0.136, and 1.280 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc for liver samples in Group I were 0.15, 8.32, 1.05, and 3.41 ppm and for Group II were 0.13, 8.88, 0.95, and 4.21 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in kidney samples for the Group I were 0.24, 4.21, 1.96, and 4.03 ppm and for Group II were 0.20, 5.00, 1.56, and 3.78 ppm, respectively. Kidney had the highest concentration levels of heavy metals followed by liver then muscles. The highest concentration levels of copper were observed in liver samples. The order of the levels of these trace elements obtained from the four different quail organs

  19. Biomonitoring of lead-contaminated Missouri streams with an assay for erythrocyte δ-aminolevulinic acid dehydratase activity in fish blood

    USGS Publications Warehouse

    Schmitt, C.J.; Wildhaber, M.L.; Hunn, J.B.; Nash, T.; Tieger, M. N.; Steadman, B. L.

    1993-01-01

    The activity of the enzyme δ-aminolevulinic acid dehydratase (ALA-D) in erythrocytes has long been used as a biomarker of lead exposure in humans and waterfowl and, more recently, in fishes. The assay was tested for ALA-D activity in fishes from streams affected by lead in combination with other metals from lead-zinc mining and related activities. Fishes (mostly catostomids) were collected from sites affected by historic and current mining activities, and from sites considered to be unaffected by mining (reference sites). A group of potentially toxic elements was measured in blood and carcass samples of individual fish, as were ALA-D activity, total protein (TP), and hemoglobin (Hb) in blood. Concentrations of mining-related metals (lead, zinc, and cadmium) were significantly greater (P<0.05) in fish blood and carcass at sites affected by historic mining activities than at reference and active mining sites. When analyzed by multiple regression, ALA-D activity, Hb, and TP accounted for 66% of blood-lead and 69% of carcass-lead variability. Differences among species were small. ALA-D activity as a biomarker adequately distinguished sites affected by bioavailable environmental lead. Zinc was the only other metal that affected ALA-D activity; it appeared to ameliorate the inactivation of ALA-D by lead.

  20. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  1. Spatial clustering of toxic trace elements in adolescents around the Torreón, Mexico lead–zinc smelter

    PubMed Central

    Garcia-Vargas, Gonzalo G.; Rothenberg, Stephen J.; Silbergeld, Ellen K.; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.; Navas-Acién, Ana; Guallar, Eliseo

    2016-01-01

    High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world’s fourth largest lead–zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12–15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6–14.7 µg/dl) and urine cadmium (0.18–1.14 µg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28–0.93 µg/g creatinine) and uranium (0.07–0.13 µg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods. PMID:24549228

  2. Accumulation and effects of lead and cadmium on wood ducks near a mining and smelting complex in Idaho

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.; Hoffman, D.J.; Grove, R.A.

    1993-01-01

    A study of wood ducks (Aix sponsa) was conducted along the Coeur d'Alene River system in northern Idaho in 1986 and 1987. Most of this area has been subjected to severe contamination from lead and other metals from mining and smelting since the 1880s. In 1986, a preliminary study of wood duck nesting was conducted in the contaminated area; incubating hens captured in nest boxes were bled and weighed. Blood samples were used to determine lead and cadmium concentrations and physiological characteristics. In 1987, an intensive study of wood ducks involved trapping and monitoring nest boxes in the contaminated area. Blood and tissue samples were also taken from wood ducks from a reference area without known contamination from metals. Lead levels in blood and tissues of most wood ducks from the contaminated area frequently exceeded those considered hazardous to birds; maximum levels (wet weight) of lead were 8 :g g?1 in blood and 14 :g g?1 in liver. Changes in physiological characteristics constituted the only evidence of potentially adverse effects from lead. In the contaminated area, nesting success (55% unadjusted, 35% Mayfield estimate) was less than in other areas where predation was low and nest boxes were used; but lead concentrations and physiological characteristics of blood were similar in successful and unsuccessful hens. Values of ALAD, hemoglobin, and body mass were negatively correlated with blood concentrations of lead, whereas protoporphyrin was positively correlated with lead levels in the blood. Some of the protoporphyrin values (1,091 :g dl?1 in a male and 756 :g dl?1 in a female) equalled those associated with lead toxicosis in experimental birds. ALAD activity was low in most birds from the contaminated area; values of 0 were obtained from 11 birds. Lead levels in blood, ALAD, protoporphyrin, and hemoglobin were significantly different between birds from the contaminated and reference areas. Concentrations of lead in ingesta of wood ducks ranged

  3. Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column.

    PubMed

    Stylianou, Marinos A; Hadjiconstantinou, Michalis P; Inglezakis, Vasilis J; Moustakas, Konstantinos G; Loizidou, Maria D

    2007-05-08

    This work deals with the removal of lead, copper and zinc from aqueous solutions by using natural zeolite (clinoptilolite). Fixed bed experiments were performed, using three different volumetric flow rates of 5, 7 and 10bed volume/h, under a total normality of 0.01N, at initial pH of 4 and ambient temperature (25 degrees C). The removal efficiency increased when decreasing the flow rate and the following selectivity series was found: Pb(2+)>Zn(2+)> or =Cu(2+). Conductivity measurements showed that lead removal follows mainly ion exchange mechanism, while copper and zinc removal follows ion exchange and sorption mechanism as well.

  4. Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Groundwater Quality and Remediation Progress at DoD Sites

    DTIC Science & Technology

    2007-02-01

    years if kept refrigerated in its preservative solution of ethanol, sodium benzoate , and ethylene diamine tetra-acetic acid (EDTA). Alternatively... sodium bicarbonate solution, EDTA, and sodium azide solution to remove residual gylcerol, sulfide, cadmium, chromium, copper, iron, nickel, zinc, and lead...Magnesium Cadmium Nickel Potassium Chromium Selenium Sodium Copper Vanadium Aluminum Iron Zinc Arsenic Lead Antimony Manganese Anions (1-3 days

  5. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.

    PubMed

    Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan

    2015-04-01

    Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Speciation and distribution of cadmium and lead in salinized horizons of antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.; Astefanei, D.

    2009-04-01

    The utilization of intensive technologies for the vegetable cultivation in glass houses by the administration of high doses of organic fertilizes, the supra-dimensional irrigation and the maintaining of soil at high humidity state, in special in case of vicious drainage have as result the rapid degradation of morphological, chemical and physical characteristics of soils, concretized by: (i) decrease of structural aggregates stability; (ii) more dense packing of soil; (iii) accumulation of easy soluble salts (in special at superior horizons level); (iv) limitation of organic compounds and micro-elements biodisponibility. All these determined a significant reduction of productivity and of exploitation duration of soils from glass houses. These phenomena modified continuously the dynamic of speciation processes and inter-phases distribution, of heavy metals in soils from glass houses, and can determined a non-controlled accumulation of heavy metals, in special as mobile forms with high biodisponibility. Ours studied have been performed using soil profiles drawing from Copou-glass house, Iasi (Romania). Has been followed the modification of distribution for speciation forms of cadmium and lead (two heavy metals with high toxicity degree), between hortic antrosol horizons, and between chemical-mineralogical components of this, with the progressive salinization of superior horizons, in 2007-2008 period. The separation, differentiation and determination of cadmium and lead speciation forms was done by combined solid-liquid sequential extraction (SPE) and extraction in aqueous polymer-inorganic salt two-phase systems (ABS) procedure, presented in some of ours previous studies. After extraction, the total contents of the two heavy metals and fractions from these differential bonded by mineral and organic components of hortic antrosol have been determined by atomic absorption spectrometry. The specific interaction mechanisms of Cd and Pb with organic-mineral components of

  7. Pancreatitis in wild zinc-poisoned waterfowl

    USGS Publications Warehouse

    Sileo, Louis; Beyer, W. Nelson; Mateo, Rafael

    2003-01-01

    Four waterfowl were collected in the TriState Mining District (Oklahoma, Kansas and Missouri, USA), an area known to be contaminated with lead, cadmium and zinc (Zn). They were part of a larger group of 20 waterfowl collected to determine the exposure of birds to metal contamination at the site. The four waterfowl (three Branta canadensis, one Anas platyrhynchos) had mild to severe degenerative abnormalities of the exocrine pancreas, as well as tissue (pancreas, liver) concentrations of Zn that were considered toxic. The mildest condition was characterized by generalized atrophy of exocrine cells that exhibited cytoplasmic vacuoles and a relative lack of zymogen. The most severe condition was characterized by acini with distended lumens and hyperplastic exocrine tissue that completely lacked zymogen; these acini were widely separated by immature fibrous tissue. Because the lesions were nearly identical to the lesions reported in chickens and captive waterfowl that had been poisoned with ingested Zn, and because the concentrations of Zn in the pancreas and liver of the four birds were consistent with the concentrations measured in Zn-poisoned birds, we concluded that these waterfowl were poisoned by Zn. This may be the first reported case of zinc poisoning in free-ranging wild birds poisoned by environmental Zn.

  8. Organic and inorganic amendments affect soil concentration and accumulation of cadmium and lead in wheat in calcareous alkaline soils

    USDA-ARS?s Scientific Manuscript database

    Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop w...

  9. Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics

    PubMed Central

    Konlechner, Cornelia; Türktaş, Mine; Langer, Ingrid; Vaculík, Marek; Wenzel, Walter W.; Puschenreiter, Markus; Hauser, Marie-Theres

    2013-01-01

    Salix caprea is well suited for phytoextraction strategies. In a previous survey we showed that genetically distinct S. caprea plants isolated from metal-polluted and unpolluted sites differed in their zinc (Zn) and cadmium (Cd) tolerance and accumulation abilities. To determine the molecular basis of this difference we examined putative homologues of genes involved in heavy metal responses and identified over 200 new candidates with a suppression subtractive hybridization (SSH) screen. Quantitative expression analyses of 20 genes in leaves revealed that some metallothioneins and cell wall modifying genes were induced irrespective of the genotype's origin and metal uptake capacity while a cysteine biosynthesis gene was expressed constitutively higher in the metallicolous genotype. The third and largest group of genes was only induced in the metallicolous genotype. These data demonstrate that naturally adapted woody non-model species can help to discover potential novel molecular mechanisms for metal accumulation and tolerance. PMID:23562959

  10. Dietary strategies for the treatment of cadmium and lead toxicity.

    PubMed

    Zhai, Qixiao; Narbad, Arjan; Chen, Wei

    2015-01-14

    Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause adverse health effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown that dietary supplements play important roles in protecting against Cd and Pb toxicity. This paper reviews the evidence for protective effects of essential metals, vitamins, edible plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity and describes the proposed possible mechanisms. Based on these findings, dietary strategies are recommended for people at risk of Cd and Pb exposure. The application of these strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity, as such supplements can be added easily and affordably to the daily diet and are expected to have very few side effects compared to the chelation therapy.

  11. Dietary Strategies for the Treatment of Cadmium and Lead Toxicity

    PubMed Central

    Zhai, Qixiao; Narbad, Arjan; Chen, Wei

    2014-01-01

    Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause adverse health effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown that dietary supplements play important roles in protecting against Cd and Pb toxicity. This paper reviews the evidence for protective effects of essential metals, vitamins, edible plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity and describes the proposed possible mechanisms. Based on these findings, dietary strategies are recommended for people at risk of Cd and Pb exposure. The application of these strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity, as such supplements can be added easily and affordably to the daily diet and are expected to have very few side effects compared to the chelation therapy. PMID:25594439

  12. Bulk growth and surface characterization of epitaxy ready cadmium zinc telluride substrates for use in IR imaging applications

    NASA Astrophysics Data System (ADS)

    Flint, J. P.; Martinez, B.; Betz, T. E. M.; Mackenzie, J.; Kumar, F. J.; Burgess, L.

    2017-02-01

    Cadmium Zinc Telluride (Cd1-xZnxTe or CZT) is a compound semiconductor substrate material that has been used for infrared detector (IR) applications for many years. CZT is a perfect substrate for the epitaxial growth of Mercury Cadmium Telluride (Hg1-xCdxTe or MCT) epitaxial layers and remains the material of choice for many high performance IR detectors and focal plane arrays that are used to detect across wide IR spectral bands. Critical to the fabrication of high performance MCT IR detectors is a high quality starting CZT substrate, this being a key determinant of epitaxial layer crystallinity, defectivity and ultimately device electro-optical performance. In this work we report on a new source of substrates suitable for IR detector applications, grown using the Travelling Heater Method (THM). This proven method of crystal growth has been used to manufacture high quality IR specification CZT substrates where industry requirements for IR transmission, dislocations, tellurium precipitates and copper impurity levels have been met. Results will be presented for the chemo-mechanical (CMP) polishing of CZT substrates using production tool sets that are identical to those that are used to produce epitaxy-ready surface finishes on related IR compound semiconductor materials such as GaSb and InSb. We will also discuss the requirements to scale CZT substrate manufacture and how with a new III-V like approach to both CZT crystal growth and substrate polishing, we can move towards a more standardized product and one that can ultimately deliver a standard round CZT substrate, as is the case for competing IR materials such as GaSb, InSb and InP.

  13. Concentrations and bioaccessibility of metals in vegetation and dust near a mining haul road, Cape Krusenstern National Monument, Alaska

    USGS Publications Warehouse

    Brumbaugh, W.G.; Morman, S.A.; May, T.W.

    2011-01-01

    Vegetation, sub-surface peat, and road dust were sampled near the Delong Mountain Transportation System (DMTS) haul road in northwest Alaska in 2005-2006 to document aluminum, barium, cadmium, lead, and zinc concentrations, and to evaluate bioaccessibility of these metals. The DMTS haul road is the transport corridor between Red Dog Mine (a large-scale, lead-zinc mine and mill) and the coastal shipping port, and it traverses National Park Service lands. Compared to reference locations, total metal concentrations in four types of vegetation (birch, cranberry, and willow leaves, and cotton grass blades/stalks) collected 25 m from the haul road were enriched on average by factors of 3.5 for zinc, 8.0 for barium, 20 for cadmium, and 150 for lead. Triple rinsing of vegetation with a water/methanol mixture reduced metals concentrations by at most 50%, and cadmium and zinc concentrations were least affected by rinsing. Cadmium and zinc bioaccessibility was greater in vegetation (50% to 100%) than in dust (15% to 20%); whereas the opposite pattern was observed for lead bioaccessibility (<30% in vegetation; 50% in dust). Barium exhibited low-to-intermediate bioaccessibility in dust and vegetation (20% to 40%), whereas aluminum bioaccessibility was relatively low (<6%) in all sample types. Our reconnaissance-level study indicates that clean-up and improvements in lead/zinc concentrate transfer activities have been effective; however, as of 2006, metal dispersion from past and/or present releases of fugitive dusts along the DMTS road still may have been contributing to elevated metals in surface vegetation. Vegetation was most enriched in lead, but because bioaccessibility of cadmium was greater, any potential risks to animals that forage near the haul road might be equally important for both of these metals. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  14. Concentrations and bioaccessibility of metals in vegetation and dust near a mining haul road, Cape Krusenstern National Monument, Alaska

    USGS Publications Warehouse

    Brumbaugh, William G.; Morman, Suzette A.; May, Thomas W.

    2011-01-01

    Vegetation, sub-surface peat, and road dust were sampled near the Delong Mountain Transportation System (DMTS) haul road in northwest Alaska in 2005-2006 to document aluminum, barium, cadmium, lead, and zinc concentrations, and to evaluate bioaccessibility of these metals. The DMTS haul road is the transport corridor between Red Dog Mine (a large-scale, lead-zinc mine and mill) and the coastal shipping port, and it traverses National Park Service lands. Compared to reference locations, total metal concentrations in four types of vegetation (birch, cranberry, and willow leaves, and cotton grass blades/stalks) collected 25 m from the haul road were enriched on average by factors of 3.5 for zinc, 8.0 for barium, 20 for cadmium, and 150 for lead. Triple rinsing of vegetation with a water/methanol mixture reduced metals concentrations by at most 50%, and cadmium and zinc concentrations were least affected by rinsing. Cadmium and zinc bioaccessibility was greater in vegetation (50% to 100%) than in dust (15% to 20%); whereas the opposite pattern was observed for lead bioaccessibility (<30% in vegetation; 50% in dust). Barium exhibited low-to-intermediate bioaccessibility in dust and vegetation (20% to 40%), whereas aluminum bioaccessibility was relatively low (<6%) in all sample types. Our reconnaissance-level study indicates that clean-up and improvements in lead/zinc concentrate transfer activities have been effective; however, as of 2006, metal dispersion from past and/or present releases of fugitive dusts along the DMTS road still may have been contributing to elevated metals in surface vegetation. Vegetation was most enriched in lead, but because bioaccessibility of cadmium was greater, any potential risks to animals that forage near the haul road might be equally important for both of these metals.

  15. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.

    PubMed

    Ye, Maoyou; Li, Guojian; Yan, Pingfang; Ren, Jie; Zheng, Li; Han, Dajian; Sun, Shuiyu; Huang, Shaosong; Zhong, Yujian

    2017-10-01

    Mine tailings often contain significant amounts of metals and sulfide, many traditional operations used to minerals was not as good as those currently available. This study investigated metals removal from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Metals were dissolved from the tailings by the bacteria in a bioleaching reactor. During a 10% pulp density bioleaching experiment, approximately 0.82% Pb, 97.38% Zn, and 71.37% Fe were extracted after 50 days. With the pulp density of 10% and 20%, the dissolution of metals followed shrinking core kinetic model. Metals (Pb, Zn, and Fe) present in the pregnant bioleaching leachate. Metals were next precipitated as a sulfide phase using sodium sulfide (Na 2 S). Metal precipitations were selectively and quantitatively produced from the bioleaching leachate by adding Na 2 S. More than 99% of the zinc and 75% of the iron was precipitated using 25 g/L Na 2 S in the bioleaching leachate. The results in the study were to provide useful information for recovering or removing metals from lead-zinc mine tailings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sedimentation and Occurrence and Trends of Selected Chemical Constituents in Bottom Sediment, Empire Lake, Cherokee County, Kansas, 1905-2005

    USGS Publications Warehouse

    Juracek, Kyle E.

    2006-01-01

    For about 100 years (1850-1950), the Tri-State Mining District in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma was one of the primary sources of lead and zinc ore in the world. The mining activity in the Tri-State District has resulted in substantial historical and ongoing input of cadmium, lead, and zinc to the environment including Empire Lake in Cherokee County, southeast Kansas. The environmental contamination caused by the decades of mining activity resulted in southeast Cherokee County being listed on the U.S. Environmental Protection Agency's National Priority List as a superfund hazardous waste site in 1983. To provide some of the information needed to support efforts to restore the ecological health of Empire Lake, a 2-year study was begun by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service and the Kansas Department of Health and Environment. A combination of sediment-thickness mapping and bottom-sediment coring was used to investigate sediment deposition and the occurrence of cadmium, lead, zinc, and other selected constituents in the bottom sediment of Empire Lake. The total estimated volume and mass of bottom sediment in Empire Lake were 44 million cubic feet and 2,400 million pounds, respectively. Most of the bottom sediment was located in the main body and the Shoal Creek arm of the reservoir. Minimal sedimentation was evident in the Spring River arm of the reservoir. The total mass of cadmium, lead, and zinc in the bottom sediment of Empire Lake was estimated to be 78,000 pounds, 650,000 pounds, and 12 million pounds, respectively. In the bottom sediment of Empire Lake, cadmium concentrations ranged from 7.3 to 76 mg/kg (milligrams per kilogram) with an overall median concentration of 29 mg/kg. Compared to an estimated background concentration of 0.4 mg/kg, the historical mining activity increased the median cadmium concentration by about 7,200 percent. Lead concentrations ranged from 100 to

  17. Water Quality Conditions in the Missouri River Mainstem System: 2008 Report

    DTIC Science & Technology

    2009-09-01

    aluminum, arsenic, cadmium , chromium, copper, cyanide, lead, nickel, selenium, silver, and zinc . The acute and chronic water quality standards criteria for... adipose , etc.) tend to accumulate toxicants at different rates. Therefore, when used as an indicator, fish tissue analysis typically uses whole...for metals (i.e., cadmium , chromium, copper, lead, nickel, silver, and zinc ) are based on hardness. Criteria shown for those metals were calculated

  18. Dyslipdemia induced by chronic low dose co-exposure to lead, cadmium and manganese in rats: the role of oxidative stress.

    PubMed

    Oladipo, Olusola Olalekan; Ayo, Joseph Olusegun; Ambali, Suleiman Folorunsho; Mohammed, Bisalla; Aluwong, Tanang

    2017-07-01

    Lead (Pb), cadmium (Cd) and manganese (Mn) have many potential adverse health effects in vitro and in animal models of clinical toxicity. The current study investigated the dyslipidaemic and oxidative stress effects of chronic low-dose oral exposure to Pb, Cd and Mn and the combination (Pb+Cd+Mn) in rats for 15 weeks. Chronic exposure to the metals did not significantly (P>0.05) alter serum lipid profiles. However, the atherogenic index decreased by 32.2% in the Pb+Cd+Mn group, relative to the control. The triglyceride/high-density lipoprotein cholesterol ratio decreased by 39.4% in the Pb+Cd+Mn group, relative to the control, and elevated by 81.8, 94.8 and 20.8%, relative to the Pb, Cd and Mn groups, respectively. While the serum concentrations of malondialdehyde significantly increased in the Mn and Pb+Cd+Mn groups, that of glutathione peroxidase-1 decreased in the Pb+Cd+Mn group, and metallothionein-1 and zinc concentrations markedly decreased in all the metal treatment groups. The results suggest that long-term exposure of rats to Pb+Cd+Mn may result in hypolipidaemia, mediated via oxidative stress and metal interactions. Individuals who are constantly exposed to environmentally relevant levels of the metals may be at risk of hypolipidaemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.

    PubMed

    Ciarkowska, Krystyna; Sołek-Podwika, Katarzyna; Wieczorek, Jerzy

    2014-01-01

    The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 μg N-NH4(+) 2h(-1) g(-1))

  20. Application of X-Ray Fluorescence Analysis to Determine the Elemental Composition of Tissues from Different Ovarian Neoplasms

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Papko, N. M.; Glebovich, M. I.; Shulha, A. V.; Maskevich, S. A.

    2015-03-01

    We present the results of x-ray fluorescence analysis of tissues from healthy ovaries and from ovaries with different pathologies: benign and borderline tumors, mucinous and endometrioid cancers, serous carcinomas. We determine the average copper, zinc, calcium, selenium, cadmium, lead, and mercury levels. We observed that in the benign ovarian tumors, we see a significant decrease in the cadmium, mercury, and lead levels compared with healthy tissues. In the borderline neoplasms, the copper level is reduced relative to zinc (Cu/Zn), cadmium, mercury, and lead, and also the zinc concentration is increased. In the ovarian carcinomas, we observed changes in the ratio of the chemical elements in the tumor tissues, depending on the histologic type. The results obtained can be used for differentiation, diagnosis, and adjustment of treatment for different ovarian neoplasms.

  1. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  2. The physiological determinants of low-level urine cadmium: an assessment in a cross-sectional study among schoolchildren.

    PubMed

    Wang, Hongyu; Dumont, Xavier; Haufroid, Vincent; Bernard, Alfred

    2017-09-12

    Recent studies in children have reported associations of urinary cadmium (U-Cd), used as biomarker of Cd body burden, with renal dysfunction, retarded growth and impaired cognitive development in children. Little is known, however, about factors influencing U-Cd in children and likely to act as confounders. In a cross-sectional study involving 249 schoolchildren (mean age, 5.72 years; 138 boys), we measured the urine concentrations of cadmium, zinc, lead, albumin, alpha 1 -microglobulin (A1M), retinol-binding protein, β 2 -microglobulin and club cell protein (CC16). Determinants of U-Cd expressed per creatinine or adjusted to specific gravity were identified by multiple regression analyses. Girls and boys had similar median concentrations of U-Cd (0.22 and 0.24 μg/L, 0.33 and 0.35 μg/g creatinine, respectively). When models were run without including creatinine or specific gravity among independent variables, urinary zinc, urinary A1M and age emerged as the strongest predictors of U-Cd expressed per g creatinine or adjusted to SG. When adding creatinine among predictors, urinary creatinine emerged as an additional strong predictor correlating negatively with U-Cd per g creatinine. This strong residual influence of diuresis, not seen when adding specific gravity among predictors, linked U-Cd to U-A1M or U-CC16 through secondary associations mimicking those induced by Cd nephrotoxity. In young children U-Cd largely varies with diuresis, zinc metabolism and urinary A1M. These physiological determinants, unrelated to Cd body burden, may confound the child renal and developmental outcomes associated with low-level U-Cd.

  3. Pyridine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for the preconcentration of lead and cadmium ions in tree leaf as a bioindicator of urban traffic pollution.

    PubMed

    Sayar, Omid; Zhad, Hamid Reza Lotfi Zadeh; Sadeghi, Omid; Amani, Vahid; Najafi, Ezzatolla; Tavassoli, Najmeh

    2012-12-01

    We have developed a facile and highly sensitive sorbent for cadmium and lead ions. It is based on Fe₃O₄ nanoparticles functionalized with a derivative of picoline and was characterized by scanning electron microscopy, differential thermographic analysis, and elemental analysis. The material can be applied to the preconcentration of lead and cadmium ions. Factors such as the type, concentration and volume of eluent, the pH of the sample solution, the time for extraction, and the volume of the sample were studied. The effects of a variety of ions on preconcentration and recovery of these ions were also investigated. The ions were determined by FAAS, and the limits of detection are <0.8 and <0.061 μg L⁻¹ for lead and cadmium, respectively. Recoveries and precisions are >98.0 % and <1.3 %, respectively. The method was validated by analyzing several certified leaf reference materials.

  4. Breast composition measurement with a cadmium-zinc-telluride based spectral computed tomography system

    PubMed Central

    Ding, Huanjun; Ducote, Justin L.; Molloi, Sabee

    2012-01-01

    Purpose: To investigate the feasibility of breast tissue composition in terms of water, lipid, and protein with a cadmium-zinc-telluride (CZT) based computed tomography (CT) system to help better characterize suspicious lesions. Methods: Simulations and experimental studies were performed using a spectral CT system equipped with a CZT-based photon-counting detector with energy resolution. Simulations of the figure-of-merit (FOM), the signal-to-noise ratio (SNR) of the dual energy image with respect to the square root of mean glandular dose (MGD), were performed to find the optimal configuration of the experimental acquisition parameters. A calibration phantom 3.175 cm in diameter was constructed from polyoxymethylene plastic with cylindrical holes that were filled with water and oil. Similarly, sized samples of pure adipose and pure lean bovine tissues were used for the three-material decomposition. Tissue composition results computed from the images were compared to the chemical analysis data of the tissue samples. Results: The beam energy was selected to be 100 kVp with a splitting energy of 40 keV. The tissue samples were successfully decomposed into water, lipid, and protein contents. The RMS error of the volumetric percentage for the three-material decomposition, as compared to data from the chemical analysis, was estimated to be approximately 5.7%. Conclusions: The results of this study suggest that the CZT-based photon-counting detector may be employed in the CT system to quantify the water, lipid, and protein mass densities in tissue with a relatively good agreement. PMID:22380361

  5. Copper Doping Improves Hydroxyapatite Sorption for Arsenate in Simulated Groundwaters

    DTIC Science & Technology

    2010-02-15

    Sciences, Notre Dame, Indiana 46556; Department of Environmental and Civil Engineering, Dallas, Texas 75205; and U.S. Army Engineer Research and...widely used to immobilize a wide range of heavy metals in water and soils, including lead, cadmium , zinc, uranium, copper, and nickel (6-9). The...the copper doping technique also has the potential to promote the sorptions of heavy metals including cadmium , zinc, lead, and uranium, whose

  6. Acute sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to copper, cadmium, or zinc in water-only laboratory exposures

    PubMed Central

    Calfee, Robin D; Little, Edward E; Puglis, Holly J; Scott, Erinn; Brumbaugh, William G; Mebane, Christopher A

    2014-01-01

    The acute toxicity of cadmium, copper, and zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) were determined for 7 developmental life stages in flow-through water-only exposures. Metal toxicity varied by species and by life stage. Rainbow trout were more sensitive to cadmium than white sturgeon across all life stages, with median effect concentrations (hardness-normalized EC50s) ranging from 1.47 µg Cd/L to 2.62 µg Cd/L with sensitivity remaining consistent during later stages of development. Rainbow trout at 46 d posthatch (dph) ranked at the 2nd percentile of a compiled database for Cd species sensitivity distribution with an EC50 of 1.46 µg Cd/L and 72 dph sturgeon ranked at the 19th percentile (EC50 of 3.02 µg Cd/L). White sturgeon were more sensitive to copper than rainbow trout in 5 of the 7 life stages tested with biotic ligand model (BLM)-normalized EC50s ranging from 1.51 µg Cu/L to 21.9 µg Cu/L. In turn, rainbow trout at 74 dph and 95 dph were more sensitive to copper than white sturgeon at 72 dph and 89 dph, indicating sturgeon become more tolerant in older life stages, whereas older trout become more sensitive to copper exposure. White sturgeon at 2 dph, 16 dph, and 30 dph ranked in the lower percentiles of a compiled database for copper species sensitivity distribution, ranking at the 3rd (2 dph), 5th (16 dph), and 10th (30 dph) percentiles. White sturgeon were more sensitive to zinc than rainbow trout for 1 out of 7 life stages tested (2 dph with an biotic ligand model–normalized EC50 of 209 µg Zn/L) and ranked in the 1st percentile of a compiled database for zinc species sensitivity distribution. Environ Toxicol Chem 2014;33:2259–2272. © 2014. The Authors. This article is a US government work and, as such, is in the public domain in the United States of America. Environmental Toxicology and Chemistry published byWiley Periodicals, Inc. on behalf of SETAC. This is an open access article

  7. Incubating rainbow trout in soft water increased their later sensitivity to cadmium and zinc

    USGS Publications Warehouse

    Mebane, Christopher A.; Hennessy, Daniel P.; Dillon, Frank S.

    2010-01-01

    Water hardness is well known to affect the toxicity of some metals; however, reports on the influence of hardness during incubation or acclimation on later toxicity to metals have been conflicting. We incubated rainbow trout (Oncorhynchus mykiss) near the confluence of two streams, one with soft water and one with very-soft water (average incubation hardnesses of about 21 and 11 mg/L as CaCO3, respectively). After developing to the swim-up stage, the fish were exposed for 96-h to a mixture of cadmium (Cd) and zinc (Zn) in water with a hardness of 27 mg/L as CaCO3. The fish incubated in the higher hardness water were about two times more resistant than the fish incubated in the extremely soft water. This difference was similar or greater than the difference that would have been predicted by criteria hardness equations had the fish been tested in the different acclimation waters. We think it is plausible that the energy demands for fish to maintain homeostasis in the lower hardness water make the fish more sensitive to metals that inhibit ionoregulation such as Cd and Zn. We suggest that if important decisions were to be based upon test results, assumptions of adequate hardness acclimation should be carefully considered and short acclimation periods avoided. If practical, incubating rainbow trout in the control waters to be tested may reduce uncertainties in the possible influences of differing rearing water hardness on the test results.

  8. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    PubMed

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Zinc Chloride and Lead Acetate-Induced Passive Avoidance Memory Retention Deficits Reversed by Nicotine and Bucladesine in Mice.

    PubMed

    Tabrizian, Kaveh; Yazdani, Abdolmajid; Baheri, Behnam; Payandemehr, Borna; Sanati, Mehdi; Hashemzaei, Mahmoud; Miri, Abdolhossein; Zandkarimi, Majid; Belaran, Maryam; Fanoudi, Sahar; Sharifzadeh, Mohammad

    2016-01-01

    It is very important to investigate the neurotoxic effects of metals on learning and memory processes. In this study, we tried to investigate the effects and time course properties of oral administration of zinc chloride (25, 50, and 75 mg/kg, for 2 weeks), lead acetate (250, 750, 1,500, and 2,500 ppm for 4, 6 and 8 weeks), and their possible mechanisms on a model of memory function. For this matter, we examined the intra-peritoneal injections of nicotine (0.25, 0.5, 1, and 1.5 mg/kg) and bucladesine (50, 100, 300, and 600 nM/mouse) for 4 days alone and in combination with mentioned metals in the step-through passive avoidance task. Control animals received saline, drinking water, saline, and DMSO (dimethyl sulfoxide)/deionized water (1:9), respectively. At the end of each part of studies, animals were trained for 1 day in step-through task. The avoidance memory retention alterations were evaluated 24 and 48 h later in singular and combinational studies. Zinc chloride (75 mg/kg) oral gavage for 2 weeks decreased latency times compared to control animals. Also, lead acetate (750 ppm oral administrations for 8 weeks) caused significant lead blood levels and induced avoidance memory retention impairments. Four-days intra-peritoneal injection of nicotine (1 mg/kg) increased latency time compared to control animals. Finally, findings of this research showed that treatment with intra-peritoneal injections of nicotine (1 mg/kg) and/or bucladesine (600 nM/mouse) reversed zinc chloride- and lead acetate-induced avoidance memory retention impairments. Taken together, these results showed the probable role of cholinergic system and protein kinase A pathways in zinc chloride- and lead acetate-induced avoidance memory alterations.

  10. The effects of low environmental cadmium exposure on bone density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trzcinka-Ochocka, M., E-mail: ochocka@imp.lodz.pl; Jakubowski, M.; Szymczak, W.

    2010-04-15

    Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9;more » 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure

  11. Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece.

    PubMed

    Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E

    2007-10-01

    The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.

  12. Simultaneous determination of thorium, niobium, lead, and zinc by photon-induced x-ray fluorescence of lateritic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBrecque, J.J.; Adames, D.; Parker, W.C.

    1981-01-01

    A rapid method is presented for the simultaneous determinations of thorium, niobium, lead, and zinc in lateritic material from Cerro Impacto, Estado Bolivar, Venezuela. This technique uses a PDP - 11/05 processor - based photon induced x-ray fluorescence system. The total variations of approximately 5% for concentrations of approximately 1 and 10% for concentrations of approximately 0.1% were obtained with only 500 s of fluorescent time. The values obtained by this method were in agreement with values measured by conventional flame atomic absorption spectroscopy for lead and zinc. The values for thorium measured were in agreement with the reported valuesmore » for the reference materials supplied by NBL.« less

  13. Zinc and cadmium accumulation in single zebrafish ( Danio rerio) embryos — A total reflection X-ray fluorescence spectrometry application

    NASA Astrophysics Data System (ADS)

    Mages, Margarete; Bandow, Nicole; Küster, Eberhard; Brack, Werner; von Tümpling, Wolf

    2008-12-01

    Trace metals such as Cadmium (Cd) and Zinc (Zn) are known to exhibit adverse effects on many aquatic organisms including early life stages of fish. In contact with contaminated sediment, fish eggs and embryos may be exposed to metals via the water phase as well as via direct contact with contaminated particles. This may result in body burdens that are difficult to predict and may vary according to individual micro scale exposure conditions. The highly sensitive total reflection X-ray fluorescence spectrometry (TXRF) may provide a tool to analyse individual embryos for internal contaminant concentrations and thus helps to develop a better understanding of dose-response relationships. To test this hypothesis, embryos of Danio rerio were exposed to Cd and Zn spiked sediment in different treatments applying an ion exchange resin for modification of bioavailable concentrations. The TXRF analysis indicated individual embryos with dramatically enhanced exposure compared to other individuals despite uniform exposure conditions on a macro scale. Ion exchanger reduced embryo Zn concentrations to values close to control value with a comparably low standard deviation. Cadmium concentrations in embryos were in the range of 4000 to 7000 µg/g with a median of 5740 µg/g. A commercial ion exchanger reduced individual body burdens by a factor 50 to 100. Individual peak body burdens of up to 3160 µg/g were accompanied by reduced weight of the fish eggs due to early death i.e. coagulation. The investigation of exposure and effects on an individual-based scale may significantly help to reduce uncertainty and inconsistencies occurring in conventional analysis of pooled fish embryo samples.

  14. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments

    USGS Publications Warehouse

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.

    1996-01-01

    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  15. Foliar zinc biofortification effects in Lolium rigidum and Trifolium subterraneum grown in cadmium-contaminated soil

    PubMed Central

    Damon, Paul; Rengel, Zed

    2017-01-01

    Zinc (Zn) is an important micronutrient that can alleviate cadmium (Cd) toxicity to plants and limit Cd entry into the food chain. However, little is known about the Zn-Cd interactions in pasture plants. We characterized the effects of foliar Zn application and Cd uptake by ryegrass (Lolium rigidum L.) and clover (Trifolium subterraneum L.) grown on Cd-contaminated soils; all combinations of foliar Zn applications (0, 0.25 and 0.5% (w/v) ZnSO4·7H2O) and soil Cd concentrations (0, 2.5 and 5 mg Cd kg-1) were tested. For both plant species, soil concentrations of DTPA-extractable Cd and Zn increased with an increase in the Cd and Zn treatments, respectively. Compared with L. rigidum, T. subterraneum accumulated, respectively, 3.3- and 4.1-fold more Cd in the 2.5-Cd and 5-Cd treatments and about 1.3-, 2.3- and 2.8-fold more Zn in the No-Zn, 0.25-Zn and 0.5-Zn treatments. Also, DTPA-Zn concentration was higher in soil after T. subterraneum than L. rigidum growth regardless of Zn applications. Foliar application of 0.25% (w/v) Zn significantly decreased the total Cd concentration in shoots of both species grown in the Cd-contaminated soil and ameliorated the adverse effects of Cd exposure on root growth, particularly in T. subterraneum. PMID:28950025

  16. Distribution of cadmium, iron and zinc in millstreams of hard winter wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Hard winter wheat (Triticum aestivum L.) is a major crop in the Great Plains of the United 14 States, and our previous work demonstrated that wheat genotypes vary for grain cadmium 15 accumulation, with some exceeding the CODEX standard (0.2 mg kg-1). Previous reports of 16 cadmium distribution in ...

  17. Cadmium exposure induces hematuria in Korean adults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seung Seok; Kim, Myounghee, E-mail: dkkim73@gmail.com; Lee, Su Mi

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartilesmore » had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.« less

  18. Interactions of dietary calcium with toxic levels of lead and zinc in pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, F.A.; Krook, L.; Pond, W.G.

    1975-01-01

    Twenty-four weanling Yorkshire pigs were used in a 2 x 2 x 2 factorial arrangement of treatments to determine their response to high levels of dietary lead (Pb) (1000 ppm) and zinc (Zn) (4000 ppm) (as lead acetate and zinc oxide), to investigate the influence of high dietary calcium (Ca) (1.1%) on the biochemical and morphological manifestations of Pb and Zn toxicity, and to determine the effect of excess Zn on Pb toxicity. Clinical signs of Pb toxicity included behavioral changes, lameness, and anorexia. Pb content of blood, soft tissues, and bone was increased markedly by 1000 ppm Pb inmore » the diet during the 13-week experiment. Zn and Pb fed together, as compared with Pb alone, tended to increase Pb levels in blood, soft tissues, and bone and to enhance the toxic effects of Pb as shown by reduced weight gains, severe clinical signs, and pathological changes. High Ca reduced blood and bone Zn and Pb concentrations. The results indicate that high dietary Ca has a protective effect against the adverse effects of diet Pb and Zn, and that Zn aggravates Pb toxicity in growing pigs.« less

  19. Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiking, H.; Govers, H.; van 'T Riet, J.

    1985-11-01

    Klebsiella aerogenes NCTC 418 growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture exhibited sulfide formation and P/sub i/ accumulation as the only demonstrable detoxification mechanisms. In the presence of mercury under similar conditions only HgS formation could be confirmed, by an increased sensitivity to mercury under sulfate-limited conditions, among others. The fact that the cells were most sensitive to cadmium under conditions of phosphate limitation and most sensitive to mercury under conditions of sulfate limitation led to the hypothesis that these inorganic detoxification mechanisms generally depended on a kind of facilitated precipitation. Themore » process was coined thus because heavy metals were probably accumulated and precipitated near the cell perimeter due to the relatively high local concentrations of sulfide and phosphate there. Depending on the growth-limiting nutrient, mercury proved to be 25-fold (phosphate limitation), 75-fold (glycerol limitation), or 150-fold (sulfate limitation) more toxic than cadmium to this organism. In the presence of lead, PbS formation was suggested. since no other detoxification mechanisms were detected, for example, rendering heavy metal ions innocuous as metallo-organic compounds, it was concluded that formation of heavy metal precipitates is crucially important to this organism. In addition, it was observed that several components of a defined mineral medium were able to reduce mercuric ions to elemental mercury. This abiotic mercury volatilization was studied in detail, and its general and environmental implications are discussed.« less

  20. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  1. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    DOEpatents

    Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel

    1999-01-01

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  2. [Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.)].

    PubMed

    Sbartai, Hana; Djebar, Med Reda; Sbartai, Ibtissem; Berrabbah, Houria

    2012-09-01

    This work aims at evaluating the accumulation of cadmium (Cd) and zinc (Zn) (trace elements) in the organs of young tomato plants (Lycopersicon esculentum L. var. Rio Grande) and their effects on the rate of chlorophyll and enzyme activities involved in the antioxidant system: catalase (CAT), glutathion-S-transferase (GST) and peroxysase ascorbate (APX). Plants previously grown on a basic nutrient solution were undergoing treatment for 7 days, either by increasing concentrations of CdCl(2) or ZnSO(4) (0, 50, 100, 250, 500 μM) or by the combined concentrations of Cd and Zn (100/50, 100/100, 100/250, 100/500 μM). The results concerning the determination of metals in the various compartments of tomato plants as a function of increasing concentrations of Cd or Zn, suggest a greater accumulation of Cd and Zn in the roots compared to leaves. The combined treatment (Cd/Zn) interferes with the absorption of the two elements according to their concentrations in the culture medium. The presence of Zn at low concentrations (50 μM of Zn/100 μM Cd) has little influence on the accumulation of Cd in the roots and leaves, while the absorption of these two elements in the leaves increases and decreases in roots when their concentrations are equivalent (100/100 μM) compared to treatment alone. When the concentration of Zn is higher than that of Cd (500 μM of Zn/100 μM Cd) absorption of the latter is inhibited in the roots while increasing their translocation to the leaves. Meanwhile, the dosage of chlorophylls shows that they tend to decrease in a dose-dependent for both treatments (Cd or Cd/Zn), however, treatment with low concentrations of Zn (50 and 100 μM) stimulates chlorophyll synthesis. However, treatment with different concentrations of Cd seems to induce the activity of the enzymes studied (CAT, APX, GST). It is the same for treatment with different concentrations of Zn and this particularly for the highest concentrations. Finally, the combined treatment (Zn

  3. Structural and Thermodynamic Consequences of the Replacement of Zinc with Environmental Metals on ERα-DNA Interactions

    PubMed Central

    Deegan, Brian J.; Bona, Anna M.; Bhat, Vikas; Mikles, David C.; McDonald, Caleb B.; Seldeen, Kenneth L.; Farooq, Amjad

    2011-01-01

    Estrogen receptor α (ERα) acts as a transcription factor by virtue of the ability of its DNA-binding (DB) domain, comprised of a tandem pair of zinc fingers, to recognize the estrogen response element (ERE) within the promoters of target genes. Herein, using an array of biophysical methods, we probe structural consequences of the replacement of zinc within the DB domain of ERα with various environmental metals and their effects on the thermodynamics of binding to DNA. Our data reveal that while the DB domain reconstituted with divalent ions of zinc, cadmium, mercury and cobalt binds to DNA with affinities in the nanomolar range, divalent ions of barium, copper, iron, lead, manganese, nickel and tin are unable to regenerate DB domain with DNA-binding potential though they can compete with zinc for coordinating the cysteine ligands within the zinc fingers. We also show that the metal-free DB domain is a homodimer in solution and that the binding of various metals only results in subtle secondary and tertiary structural changes, implying that metal-coordination may only be essential for DNA-binding. Collectively, our findings provide mechanistic insights into how environmental metals may modulate the physiological function of a key nuclear receptor involved in mediating a plethora of cellular functions central to human health and disease. PMID:22038807

  4. Larval aquatic insect responses to cadmium and zinc in experimental streams.

    PubMed

    Mebane, Christopher A; Schmidt, Travis S; Balistrieri, Laurie S

    2017-03-01

    To evaluate the risks of metal mixture effects to natural stream communities under ecologically relevant conditions, the authors conducted 30-d tests with benthic macroinvertebrates exposed to cadmium (Cd) and zinc (Zn) in experimental streams. The simultaneous exposures were with Cd and Zn singly and with Cd+Zn mixtures at environmentally relevant ratios. The tests produced concentration-response patterns that for individual taxa were interpreted in the same manner as classic single-species toxicity tests and for community metrics such as taxa richness and mayfly (Ephemeroptera) abundance were interpreted in the same manner as with stream survey data. Effect concentrations from the experimental stream exposures were usually 2 to 3 orders of magnitude lower than those from classic single-species tests. Relative to a response addition model, which assumes that the joint toxicity of the mixtures can be predicted from the product of their responses to individual toxicants, the Cd+Zn mixtures generally showed slightly less than additive toxicity. The authors applied a modeling approach called Tox to explore the mixture toxicity results and to relate the experimental stream results to field data. The approach predicts the accumulation of toxicants (hydrogen, Cd, and Zn) on organisms using a 2-pK a bidentate model that defines interactions between dissolved cations and biological receptors (biotic ligands) and relates that accumulation through a logistic equation to biological response. The Tox modeling was able to predict Cd+Zn mixture responses from the single-metal exposures as well as responses from field data. The similarity of response patterns between the 30-d experimental stream tests and field data supports the environmental relevance of testing aquatic insects in experimental streams. Environ Toxicol Chem 2017;36:749-762. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the

  5. Heavy metals in soil at a waste electrical and electronic equipment processing area in China.

    PubMed

    Gu, Weihua; Bai, Jianfeng; Yao, Haiyan; Zhao, Jing; Zhuang, Xuning; Huang, Qing; Zhang, Chenglong; Wang, JingWei

    2017-11-01

    For the objective of evaluating the contamination degree of heavy metals and analysing its variation trend in soil at a waste electrical and electronic equipment processing area in Shanghai, China, evaluation methods, which include single factor index method, geo-accumulation index method, comprehensive pollution index method, and potential ecological risk index method, were adopted in this study. The results revealed that the soil at a waste electrical and electronic equipment processing area was polluted by arsenic, cadmium, copper, lead, zinc, and chromium. It also demonstrated that the concentrations of heavy metals were increased over time. Exceptionally, the average value of the metalloid (arsenic) was 73.31 mg kg -1 in 2014, while it was 58.31 mg kg -1 in the first half of 2015, and it was 2.93 times and 2.33 times higher than that of the Chinese Environmental Quality Standard for Soil in 2014 and the first half of 2015, respectively. The sequences of the contamination degree of heavy metals in 2014 and the first half of 2015 were cadmium > lead > copper > chromium > zinc and cadmium > lead > chromium > zinc > copper. From the analysis of the potential ecological risk index method, arsenic and cadmium had higher ecological risk than other heavy metals. The integrated ecological risk index of heavy metals (cadmium, copper, lead, zinc, and chromium) and metalloid (arsenic) was 394.10 in 2014, while it was 656.16 in the first half of 2015, thus documenting a strong ecological risk.

  6. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    PubMed

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant

  7. The Effect of Soil Properties on Metal Bioavailability: Field Scale Validation to Support Regulatory Acceptance

    DTIC Science & Technology

    2013-06-01

    Bioavailability, metals, soil, bioaccessibility, ecological risk, arsenic, cadmium , chromium, lead 16. SECURITY CLASSIFICATION OF:U 17. LIMITATION...located in Sacramento, CA. Soils from a former wastewater treatment lagoon are contaminated with high concentrations of lead , chromium, and cadmium ...in soil. Soil and Sediment Contamination, 2003. 12(1): p. 1-21. 23. Pierzynski, G.M. and A.P. Schwab, Bioavailability of Zinc, Cadmium , and Lead

  8. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator.

    PubMed

    Li, Zhu; Wu, Longhua; Luo, Yongming; Christie, Peter

    2018-03-01

    Phytoextraction is one of the most promising technologies for the decontamination of metal-polluted agricultural soils. Effects of repeated phytoextraction by the cadmium (Cd)/zinc (Zn) hyperaccumulator Sedum plumbizincicola on metal (Cd, Zn, copper (Cu) and lead (Pb)) mobility were investigated in three contaminated soils with contrasting properties. EDTA kinetic extraction and the two first-order reactions model showed advantages in the assessment of soil metal mobility and clearly discriminated changes in metal fractions induced by phytoextraction. Repeated phytoextraction led to large decreases in readily labile (Q 1 0 ) and less labile (Q 2 0 ) fractions of Cd and Zn in all three soils with the sole exception of an increase in the Q 2 0 of Zn in the highly polluted soil. However, Q 1 0 fractions of soil Cu and Pb showed apparent increases with the sole exception of Pb in the acid polluted soil but showed a higher desorption rate constant (k 1 ). Furthermore, S. plumbizincicola decreased the non-labile fraction (Q 3 0 ) of all metals tested, indicating that the hyperaccumulator can redistribute soil metals from non-labile to labile fractions. This suggests that phytoextraction decreased the mobility of the metals hyperaccumulated by the plant (Cd and Zn) but increased the mobility of the metals not hyperaccumulated (Cu and Pb). Thus, phytoextraction of soils contaminated with mixtures of metals must be performed carefully because of potential increases in the mobility of non-hyperaccumulated metals in the soil and the consequent environmental risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. What Do We Know of Childhood Exposures to Metals (Arsenic, Cadmium, Lead, and Mercury) in Emerging Market Countries?

    PubMed Central

    Horton, Lindsey M.; Mortensen, Mary E.; Iossifova, Yulia; Wald, Marlena M.; Burgess, Paula

    2013-01-01

    Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF) top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets. PMID:23365584

  10. What do we know of childhood exposures to metals (arsenic, cadmium, lead, and mercury) in emerging market countries?

    PubMed

    Horton, Lindsey M; Mortensen, Mary E; Iossifova, Yulia; Wald, Marlena M; Burgess, Paula

    2013-01-01

    Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF) top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets.

  11. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  12. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    PubMed Central

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  13. Investigation of the Internal Electric Field in Cadmium Zinc Telluride Detectors Using the Pockels Effect and the Analysis of Charge Transients

    NASA Technical Reports Server (NTRS)

    Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng; hide

    2010-01-01

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.

  14. Investigation of the internal electric field in cadmium zinc telluride detectors using the Pockels effect and the analysis of charge transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groza, Michael; Cui Yunlong; Buliga, Vladimir

    2010-01-15

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is ofmore » critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.« less

  15. Trace elements in seminal plasma of men from infertile couples.

    PubMed

    Guzikowski, Wojciech; Szynkowska, Małgorzata I; Motak-Pochrzęst, Hanna; Pawlaczyk, Aleksandra; Sypniewski, Stanisław

    2015-06-19

    An analysis of lead, zinc, cadmium and other trace elements in semen of men from infertile couples was performed to determine the association between abnormal semen parameters and enviromental or occupational exposure to some trace metals. Presence of manganese, cobalt, nickel, copper, zinc, molybdenum, cadmium, tin and lead was measured in seminal plasma of 34 men from infertile couples using spectrometry with time-of-flight analysis. Correlations among sperm parameters and trace metals were determined using cluster analysis and Pearson's correlation coefficient. Abnormally high concentrations of lead, cadmium, zinc and cobalt were found in 23 seminal plasma of men from infertile couples. The most consistent evidence was determined for an association between high cadmium concentration in seminal plasma and sperm count, motility and morphology below reference limits (p < 0.01). A correlation of significantly increased tin level and reduced sperm count in semen of men with limited fertility potential was observed (p = 0.04). In our study we observed a correlation of tin level with sperm count in semen of men with limited fertility potential.

  16. Modelling drivers and distribution of lead and zinc concentrations in soils of an urban catchment (Sydney estuary, Australia).

    PubMed

    Johnson, L E; Bishop, T F A; Birch, G F

    2017-11-15

    The human population is increasing globally and land use is changing to accommodate for this growth. Soils within urban areas require closer attention as the higher population density increases the chance of human exposure to urban contaminants. One such example of an urban area undergoing an increase in population density is Sydney, Australia. The city also possesses a notable history of intense industrial activity. By integrating multiple soil surveys and covariates into a linear mixed model, it was possible to determine the main drivers and map the distribution of lead and zinc concentrations within the Sydney estuary catchment. The main drivers as derived from the model included elevation, distance to main roads, main road type, soil landscape, population density (lead only) and land use (zinc only). Lead concentrations predicted using the model exceeded the established guideline value of 300mgkg -1 over a large portion of the study area with concentrations exceeding 1000mgkg -1 in the south of the catchment. Predicted zinc did not exceed the established guideline value of 7400mgkg -1 ; however concentrations were higher to the south and west of the study area. Unlike many other studies we considered the prediction uncertainty when assessing the contamination risk. Although the predictions indicate contamination over a large area, the broadness of the prediction intervals suggests that in many of these areas we cannot be sure that the site is contaminated. More samples are required to determine the contaminant distribution with greater precision, especially in residential areas where contamination was highest. Managing sources and addressing areas of elevated lead and zinc concentrations in urban areas has the potential to reduce the impact of past human activities and improve the urban environment of the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cadmium

    Cancer.gov

    Learn about cadmium, which may raise your risk of lung cancer. Cadmium is a natural element: all soils and rocks contain some cadmium. Exposure occurs mostly where cadmium products (such as batteries, pigments, metal coatings, and plastics) are made or recycled. Tobacco smoke also contains cadmium.

  18. Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils.

    PubMed

    Zhou, Tong; Wu, Longhua; Luo, Yongming; Christie, Peter

    2018-01-01

    Soil particulate organic matter (POM) has rapid turnover and metal enrichment, but the interactions between organic matter (OM) and metals have not been well studied. The present study aimed to investigate changes in the OM concentration and composition of the POM fraction and their corresponding effects on metal distribution and extractability in long-term polluted paddy soils. Soil 2000-53 μm POM size fractions had higher contents of C-H and C=O bonds, C-H/C=O ratios and concentrations of fulvic acid (FA), humic acid (HA), cadmium (Cd) and zinc (Zn) than the bulk soils. Cadmium and Zn stocks in soil POM fractions were 24.5-27.9% and 7.12-16.7%, respectively, and were more readily EDTA-extractable. Compared with the control soil, the 2000-250 μm POM size fractions had higher organic carbon concentrations and C/N ratios in the polluted soils. However, there were no significant differences in the contents in C-H and C=O bonds or C-H/C=O ratios of POM fractions among the control, slightly and highly polluted soils. In accordance with the lower contents of C=O bonds and FA and HA concentrations, the Cd and Zn concentrations in 250-53 μm POM size fractions were lower than those in 2000-250 μm POM size fractions. Enrichment of Cd in POM fractions increased with increasing soil pollution level. These results support the view that changes in the OM concentration and the size and composition of POM fractions play a key role in determining the distribution of Cd and Zn in paddy soils. Copyright © 2017. Published by Elsevier Ltd.

  19. Talitrid amphipods (Crustacea) as biomonitors for copper and zinc

    NASA Astrophysics Data System (ADS)

    Rainbow, P. S.; Moore, P. G.; Watson, D.

    1989-06-01

    Data are presented on the copper and zinc concentrations of four talitrid amphipod species (standard dry weight 10 mg), i.e. Orchestia gammarellus (Pallas), O. mediterranea Costa, Talitrus saltator Montagu and Talorchestia deshayesii (Audouin), from 31 sites in S.W. Scotland, N. Wales and S.W. England. More limited data are also presented for cadmium in O. gammarellus (three sites) and T. deshayesii (one site). In S.W. Scotland, copper concentrations were raised significantly in O. gammarellus from Whithorn and Auchencairn (Solway) and Loch Long and Holy Loch (Clyde). In S.W. England, copper concentrations were highest at Restronguet Creek, Torpoint and Gannel (Cornwall). Samples of O. gammarellus from Islay (inner Hebrides) taken adjacent to the effluent outfalls of local whisky distilleries fell into two groups based on copper concentrations (presumably derived from copper stills), the higher copper levels deriving from the more productive distilleries. High copper levels were found in T. saltator and Tal. deshayesii from Dulas Bay (Wales). Zinc levels in O. gammarellus were high in Holy Loch and Auchencairn (Scotland), Gannel and Torpoint (England) but extremely elevated (as was Zn in O. mediterranea) at Restronguet Creek. Zinc was also high in T. saltator from Dulas Bay (Wales), but not in Tal. deshayesii. Cadmium levels in O. gammarellus from Kilve (Bristol Channel) were much raised. These differences (a) conform with expectations of elevated bioavailability of these metals from well researched areas (S.W. England & N. Wales), and (b) identify hitherto unappreciated areas of enrichment in S.W. Scotland. Orchestia gammarellus is put forward as a suitable biomonitor for copper and zinc in British coastal waters.

  20. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  1. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice

    PubMed Central

    Yamaguchi, Noriko; Ishikawa, Satoru; Abe, Tadashi; Baba, Koji; Terada, Yasuko

    2012-01-01

    Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ‘Koshihikari’ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected. PMID:22291135

  2. Geochemistry of Mine Waste and Mill Tailings, Meadow Deposits, Streambed Sediment, and General Hydrology and Water Quality for the Frohner Meadows Area, Upper Lump Gulch, Jefferson County, Montana

    USGS Publications Warehouse

    Klein, Terry L.; Cannon, Michael R.; Fey, David L.

    2004-01-01

    Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and

  3. Lead, cadmium and mercury in the blood of the blue-footed booby (Sula nebouxii) from the coast of Sinaloa, Gulf of California, Mexico.

    PubMed

    Lerma, Miriam; Castillo-Guerrero, José Alfredo; Ruelas-Inzunza, Jorge; Fernández, Guillermo

    2016-09-15

    We used blood samples of the Blue-footed Booby, considering sex (female and male) and age-class (adult and chick) of individuals at different breeding stages during two breeding seasons (2010-2011 and 2011-2012) in Isla El Rancho, Sinaloa, to determine lead, cadmium, and mercury concentrations. Lead and cadmium concentrations were below our detection limit (0.05 and 0.36ppm, respectively). A higher concentration of mercury was found in early stages of breeding, likely related to changes in mercury environmental availability. Mercury concentrations in adults did not relate with their breeding output. Males and adults had higher mercury concentration than females and chicks. We provide information of temporal, sex and age-related variations in the concentrations of mercury in blood of the Blue-footed Booby. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barregard, Lars, E-mail: lars.barregard@amm.gu.se; Fabricius-Lagging, Elisabeth; Lundh, Thomas

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and coldmore » vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 {mu}g/g (wet weight) for cadmium, 0.21 {mu}g/g for mercury, and 0.08 {mu}g/g for lead. Kidney Cd increased by 3.9 {mu}g/g for a 10 year increase in age, and by 3.7 {mu}g/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 {mu}g/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.« less

  5. Review of Lead-Zinc Mining Impact on Landscape in the Tri-State Mining District using Small Unmanned Aerial Vehicles.

    NASA Astrophysics Data System (ADS)

    Bhakta, K. D.; Yeboah-Forson, A.

    2015-12-01

    The Tri-State lead and zinc mining district in SW Missouri, SE Kansas, and NE Oklahoma encompasses nearly 2,500 sq. miles of land and at its peak accounted for half of the US zinc (23,000,000 tons) production that surpassed one billion dollars in economic value. Once these lead and zinc rich ores were extracted, mining and milling sites were abandoned leaving behind a new landscape with numerous environmental challenges. Since 1970, most of the sites have been targeted for remediation and reclamation by federal and state agencies including the EPA. In order to capture the full extent of the impact of lead and zinc mining in the Tri-State area, numerous geoscientific approaches including data from small unmanned aerial vehicle (UAV) were employed to investigate the influence of mining in the study area. The study presented here is focused on observational assessment of the existing landscape using multiple commercial high-definitions data from UAVs to study different sites across areas of concern in the three states. Primary results (images) gathered and analyzed DEM and GIS data from abandoned mines showed the potential to provide a quick snapshot of successful or unsuccessful remediated areas. Although research and remediation of the Tri-State mining district are a continuous process, evidence from this geomorphic study suggest that UAVs can provide a quick overview of the remediated landscape or serve as a primary background tool for a more detail site-specific environmental study.

  6. Biosorption process for removing heavy metal ions using water milfoil (Myriophyllum Spicatum) in contaminated water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.C.; Weissman, J.C.; Varadarajan, R.

    1995-12-31

    A small scale biomass metal contacting experiment was performed to screen the optimal plant species for biosorption and bioaccumulation of cadmium, zinc, nickel, lead, and copper. Experiments were also conducted to test the ability of the biomass to lower the metal concentrations below the US Environmental Protection Agency surface water discharge criteria. The minimum residual concentration was 0.1 mg/L for zinc, 0.004 mg/L for lead, and about 0.01 mg/L for cadmium, nickel, and lead. Results indicate that water milfoil can be used for bioremoval of metals.

  7. Formation of Defected Cadmium Ferrite during Hydrothermal Storage of Cadmium-Iron Hydroxides

    NASA Astrophysics Data System (ADS)

    Wolski, W.; Wolska, E.; Kaczmarek, J.

    1994-05-01

    The storage of amorphous coprecipitated Cd(OH) 2 · 2Fe(OH) 3 gel in mother liquor at 150 ± 2°C for 20 hr leads to a crystalline species which, according to X-ray analysis, is composed of cadmium hydroxide nitrate, Cd 3(OH) 5NO 3, cadmium hydroxide, βCd(OH) 2, and a strongly ferrimagnetic spinel phase. The Curie point at 270-280°C was found by thermomagnetic analysis. At that temperature the decomposition of the spinel phase and of the accompanying nonmagnetic phases takes place. IR spectra indicate that during thermomagnetic recording the liberated cadmium oxide and iron oxide form antiferromagnetic cadmium ferrite, with frequencies somewhat displaced in comparison to CdFe 2O 4 annealed at 1000°C. The results indicate that the ferrimagnetic phase (having spinel structure, a unit-cell parameter a of about 8.37 ± 0.01 Å, and a Tc point differing by more than 300°C from that of pure maghemite, γFe 2O 3) is likely to be a defected solid solution of maghemite and cadmium ferrite, of the formula Cd 2+xFe 3+1- x [Fe 3+(5+ x)/3 □ (1- x)/3 ]O 4.

  8. Chemical analyses of stream sediment in the Tar Creek basin of the Picher mining area, northeast Oklahoma

    USGS Publications Warehouse

    Parkhurst, David L.; Doughten, Michael; Hearn,, Paul P.

    1988-01-01

    Chemical analyses are presented for 47 sediment samples from the Tar Creek drainage in the Picher mining area of northeast Oklahoma. The samples were taken in December 1983, June 1984, and June 1985. All of the samples were taken downstream from mine-water discharge points of abandoned lead and zinc mines. The 34 samples taken in December 1983 and June 1984 were analyzed semiquantitatively by emission spectrography for 64 elements and quantitatively for cadmium, copper, iron, manganese, nickel, lead, sulfur, zinc, and organic carbon. The 13 samples taken in June 1985 were analyzed quantitatively for aluminum, cadmium, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, phosphorus, lead, sulfur, silicon, titanium, vanadium, zinc, and organic carbon.

  9. From durum wheat to pasta: effect of technological processing on the levels of arsenic, cadmium, lead and nickel--a pilot study.

    PubMed

    Cubadda, F; Raggi, A; Zanasi, F; Carcea, M

    2003-04-01

    A study was undertaken to investigate the effect of technological processing in pasta-making on the content of arsenic, cadmium, lead and nickel. Milling of durum wheat as well as further processing were carried out in a pilot plant. Commercial pasta samples purchased from the local market were also included for comparison. Furthermore, the effect of cooking was investigated to gain information on the actual content of the selected elements in the final ready-to-eat product. Analyte concentrations in whole grain, semolina, pasta and cooked pasta were determined by inductively coupled plasma-mass spectrometry. Milling reduced the element content in the order nickel > arsenic > cadmium > lead. In the experimental conditions of this study, slight contamination by atmospheric lead in milling/pasta-making and release of nickel during pasta-making were observed. These issues have evidently been effectively dealt with in industrial processing given that remarkably lower levels of lead and nickel were found in commercial pastas compared with the experimental samples. On the whole, commercial pasta samples showed low average levels of all the elements included in this study. Cooking caused a significant decrease of the element content in all pasta samples, with average losses of 50-60% on a dry weight basis.

  10. Armeria maritima from a calamine heap--initial studies on physiologic-metabolic adaptations to metal-enriched soil.

    PubMed

    Olko, A; Abratowska, A; Zyłkowska, J; Wierzbicka, M; Tukiendorf, A

    2008-02-01

    Plants of Armeria maritima are found both on unpolluted sites and on soils strongly polluted with heavy metals. Seedlings of A. maritima from a zinc-lead calamine heap in ore-mining region (Bolesław population) and from unpolluted area (Manasterz population) were tested to determine the zinc, cadmium and lead tolerance. In hydroponic experiments Bolesław population was more tolerant to zinc, cadmium and lead. Localization of heavy metals in roots was determined using the histochemical method for detecting metal-complexes with dithizone. Their accumulation was found in root hairs, rhizoderma and at the surface of the central cylinder. Glutathione level in plants increased after metal treatment of both populations. However, its high level was not correlated with phytochelatin production. These metal-binding complexes were not detected in plants exposed to zinc, cadmium or lead. Changes of organic acids concentrations in Armeria treated with metals may suggest their role in metal translocation from roots to shoots. The content of organic acids, especially malate, decreased in the roots and increased in the leaves. These changes may be important in Pb-tolerance of Manasterz population and in Zn-, Cd-tolerance of calamine population from Bolesław.

  11. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    NASA Astrophysics Data System (ADS)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  12. Mississippi Valley-type lead-zinc deposits through geological time: Implications from recent age-dating research

    USGS Publications Warehouse

    Leach, D.L.; Bradley, D.; Lewchuk, Michael T.; Symons, David T. A.; De Marsily, G.; Brannon, J.

    2001-01-01

    Remarkable advances in age dating Mississippi Valley-type (MVT) lead-zinc deposits provide a new opportunity to understand how and where these deposits form in the Earth's crust. These dates are summarized and examined in a framework of global tectonics, paleogeography, fluid migration, and paleoclimate. Nineteen districts have been dated by paleomagnetic and/or radiometric methods. Of the districts that have both paleomagnetic and radiometric dates, only the Pine Point and East Tennessee districts have significant disagreements. This broad agreement between paleomagnetic and radiometric dates provides added confidence in the dating techniques used. The new dates confirm the direct connection between the genesis of MVT lead-zinc ores with global-scale tectonic events. The dates show that MVT deposits formed mainly during large contractional tectonic events at restricted times in the history of the Earth. Only the deposits in the Lennard Shelf of Australia and Nanisivik in Canada have dates that correspond to extensional tectonic events. The most important period for MVT genesis was the Devonian to Permian time, which corresponds to a series of intense tectonic events during the assimilation of Pangea. The second most important period for MVT genesis was Cretaceous to Tertiary time when microplate assimilation affected the western margin of North America and Africa-Eurasia. There is a notable paucity of MVT lead-zinc ore formation following the breakup of Rodinia and Pangea. Of the five MVT deposits hosted in Proterozoic rocks, only the Nanisivik deposit has been dated as Proterozoic. The contrast in abundance between SEDEX and MVT lead-zinc deposits in the Proterozoic questions the frequently suggested notion that the two types of ores share similar genetic paths. The ages of MVT deposits, when viewed with respect to the orogenic cycle in the adjacent orogen suggest that no single hydrologic model can be universally applied to the migration of the ore fluids

  13. THE USE OF INSITU TREATMENT TO REDUCE TOXICITY

    EPA Science Inventory

    Mining or smelting of lead and zinc ores generates mine tailing and smelter slags rich in lead, zinc, and cadmium. Old smelting operations have commonly caused severly contaminated sites and adverse effects in the terrestrial environment. Research has clarified the causes of s...

  14. Blood levels of lead, cadmium, and mercury in the Korean population: Results from the Second Korean National Human Exposure and Bio-monitoring Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Ji-Young; Lee, Jinheon; Paek, Domyung

    2009-08-15

    In Korea, there have been a number of efforts to measure levels of exposure to environmental pollutants among the population. This paper focuses on investigating the distribution of, extent of, and factors influencing the blood levels of lead, cadmium, and mercury in the Korean population, working from data obtained from the Second Korean National Human Exposure and Bio-monitoring Examination. To that end, blood metal concentrations were analyzed from a total of 2369 participants who were 18 years of age and older. The geometric mean concentrations and their 95% confidence intervals of metals in blood were found to be lead, 1.72more » {mu}g/dL (95% CI, 1.68-1.76); cadmium, 1.02 {mu}g/L (95% CI, 1.00-1.05); and mercury, 3.80 {mu}g/L (95% CI, 3.66-3.93). Regression analyses indicate that the levels of metals in the blood are mainly influenced by gender, age, and the education levels of the participants. Current smoking status is also found to be a significant factor for increasing both lead and cadmium levels. Although our study, as the first nationwide survey of exposure to environmental pollutants in Korea, has value on its own, it should be expanded and extended in order to provide information on environmental exposure pathways and to watch for changes in the level of exposure to environmental pollutants among the population.« less

  15. Effect of dietary cadmium and/or lead on histopathological changes in the kidneys and liver of bank voles Myodes glareolus kept in different group densities.

    PubMed

    Salińska, Aneta; Włostowski, Tadeusz; Zambrzycka, Elżbieta

    2012-11-01

    Bank voles free living in a contaminated environment are known to be more sensitive to cadmium (Cd) toxicity than the rodents exposed to Cd under laboratory conditions, but the reasons for this difference are poorly defined. The present work was designed to determine whether dietary lead (Pb), a common environmental co-contaminant, and/or animal density that affects various physiological processes, would influence susceptibility to Cd toxicity in the kidneys and liver of these animals. For 6 weeks, the female bank voles were kept individually or in a group of six and provided with diet containing environmentally relevant concentrations of Cd [<0.1 μg/g (control) and 60 μg/g dry wt] and Pb [<0.2 μg/g (control) and 300 μg/g dry wt] alone or in combination. At the end of exposure period, histopathology and analyses of metallothionein, glutathione and zinc that are linked to a protective effect against Cd toxicity, as well as Cd, Pb, copper, iron and lipid peroxidation were carried out. Histopathological changes in the kidneys (a focal glomerular swelling and proximal tubule degeneration) and liver (a focal hepatocyte swelling, vacuolation and inflammation) occurred exclusively in some bank voles kept in a group and exposed to Cd alone (2/6) or Cd + Pb (4/6). The observed toxicity in grouped bank voles appeared not to be based on altered (1) tissue disposition of Cd and/or Pb, (2) metallothionein, glutathione and zinc concentrations, or (3) tissue copper, iron and lipid peroxidation. The data indicate that high population density in combination with environmental Pb may be responsible for an increased susceptibility to Cd toxicity observed in bank voles free living in a contaminated environment; the mechanism by which animal density affects Cd toxicity deserves further study.

  16. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and preconcentraion of lead and cadmium in edible oils.

    PubMed

    Karimi, Mehdi; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Tamaddon, Fatemeh; Azadi, Davood

    2015-11-01

    Deep eutectic liquid organic salt was used as the solvent and a liquid phase microextraction (DES-LPME) combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for separation, preconcentration and determination of lead and cadmium in edible oils. A 4:1 mixture of deep eutectic solvent and 2% nitric acid (200 µL) was added to an oil sample. The mixture was vortexed and transferred into a water bath at 50 °C and stirred for 5 minutes. After the extraction was completed, the phases were separated by centrifugation, and the enriched analytes in the deep eutectic solvent phase were determined by ETAAS. Under optimized extraction conditions and for an oil sample of 28 g, enhancement factors of 198 and 195 and limits of detection (defined as 3 Sb/m) of 8 and 0. 2 ng kg(-1) were achieved for lead and cadmium respectively. The method was successfully applied to the determination of lead and cadmium in various edible oils. Copyright © 2015. Published by Elsevier B.V.

  17. Genetic variability in sublethal tolerance to mixtures of cadmium and zinc in clones of Daphnia magna Straus.

    PubMed

    Barata, Carlos; Markich, Scott J; Baird, Donald J; Taylor, Graeme; Soares, Amadeu M V M

    2002-10-02

    To date, studies on genetic variability in the tolerance of aquatic biota to chemicals have focused on exposure to single chemicals. In the field, metals occur as elemental mixtures, and thus it is essential to study whether the genetic consequences of exposure to such mixtures differs from response to single chemicals. This study determined the feeding responses of three Daphnia magna Straus clones exposed to Cd and Zn, both individually and as mixtures. Tolerance to mixtures of Cd and Zn was expressed as the proportional feeding depression of D. magna to Cd at increasing zinc concentrations. A quantitative genetic analysis revealed that genotype and genotype x environmental factors governed population responses to mixtures of both metals. More specifically, genetic variation in tolerance to sublethal levels of Cd decreased at those Zn concentrations where there were no effects on feeding, and increased again at Zn concentrations that affected feeding. The existence of genotype x environmental interactions indicated that the genetic consequences of exposing D. magna to mixtures of Cd and Zn cannot be predicted from the animals' response to single metals alone. Therefore, current ecological risk assessment methodologies for predicting the effects of chemical mixtures may wish to incorporate the concept of genetic variability. Furthermore, exposure to low and moderate concentrations of Zn increased the sublethal tolerance to Cd. This induction of tolerance to Cd by Zn was also observed for D. magna fed algae pre-loaded with both metals. Furthermore, in only one clone, physiological acclimatization to zinc also induced tolerance to cadmium. These results suggest that the feeding responses of D. magna may be related to gut poisoning induced by the release of metals from algae under low pH conditions. In particular, both induction of metallothionein synthesis by Zn and competition between Zn and Cd ions for uptake at target sites on the gut wall may be involved in

  18. Sources of lead and zinc associated with metal smelting activities in the Trail area, British Columbia, Canada.

    PubMed

    Goodarzi, Fariborz; Sanei, Hamed; Labonté, Marcel; Duncan, William F

    2002-06-01

    The spatial distribution and deposition of lead and zinc emitted from the Trail smelter, British Columbia, Canada, was studied by strategically locating moss bags in the area surrounding the smelter and monitoring the deposition of elements every three months. A combined diffusion/distribution model was applied to estimate the relative contribution of stack-emitted material and material emitted from the secondary sources (e.g., wind-blown dust from ore/slag storage piles, uncovered transportation/trucking of ore, and historical dust). The results indicate that secondary sources are the major contributor of lead and zinc deposited within a short distance from the smelter. Gradually, the stack emissions become the main source of Pb and Zn at greater distances from the smelter. Typical material originating from each source was characterized by SEM/EDX, which indicated a marked difference in their morphology and chemical composition.

  19. Zinc in Infection and Inflammation.

    PubMed

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  20. Differential toxicity of copper, zinc, and lead during the embryonic development of Chasmagnathus granulatus (Brachyura, Varunidae).

    PubMed

    Lavolpe, Mariano; Greco, Laura López; Kesselman, Daniela; Rodríguez, Enrique

    2004-04-01

    Ovigerous females of the estuarine crab Chasmagnathus granulatus were exposed to copper (0.01 and 1 mg/L), zinc (0.05, 1, and 10 mg/L), or lead (0.01 and 1 mg/L) during early, late, or whole embryonic development. None of the assayed heavy metals produced a significant mortality of females, neither a decrease in the number of hatched larvae nor a decrease in the egg incubation time, but several morphological abnormalities were detected in hatched larvae. The abnormalities were classified in three categories: eye, body pigmentary, and body morphological abnormalities. Those larvae with eye and body pigmentary abnormalities, particularly those involving retinal pigments and chromatophores, showed the highest incidence by exposure to the assayed metals. In addition, embryos were more susceptible to copper and zinc during the late period of development, whereas the effect of lead was greater during the early period of embryogenesis. Some teratogenic effects observed in C. granulatus embryos exposed to heavy metals, particularly the hypertrophy and hypopigmentation of eyes observed in the laboratory at a lead concentration as low as that reported for the natural environment, could be considered as sensitive biomarkers for this kind of pollutant.