Sample records for zinc freezing point

  1. Effect of Impurities on the Freezing Point of Zinc

    NASA Astrophysics Data System (ADS)

    Sun, Jianping; Rudtsch, Steffen; Niu, Yalu; Zhang, Lin; Wang, Wei; Den, Xiaolong

    2017-03-01

    The knowledge of the liquidus slope of impurities in fixed-point metal defined by the International Temperature Scale of 1990 is important for the estimation of uncertainties and correction of fixed point with the sum of individual estimates method. Great attentions are paid to the effect of ultra-trace impurities on the freezing point of zinc in the National Institute of Metrology. In the present work, the liquidus slopes of Ga-Zn, Ge-Zn were measured with the slim fixed-point cell developed through the doping experiments, and the temperature characteristics of the phase diagram of Fe-Zn were furthermore investigated. A quasi-adiabatic Zn fixed-point cell was developed with the thermometer well surrounded by the crucible with the pure metal, and the temperature uniformity of less than 20 mK in the region where the metal is located was obtained. The previous doping experiment of Pb-Zn with slim fixed-point cell was checked with quasi-adiabatic Zn fixed-point cell, and the result supports the previous liquidus slope measured with the traditional fixed-point realization.

  2. A Determination of the Ratio of the Zinc Freezing Point to the Tin Freezing Point by Noise Thermometry

    NASA Astrophysics Data System (ADS)

    Labenski, J. R.; Tew, W. L.; Benz, S. P.; Nam, S. W.; Dresselhaus, P.

    2008-02-01

    A Johnson-noise thermometer (JNT) has been used with a quantized voltage noise source (QVNS), as a calculable reference to determine the ratio of temperatures near the Zn freezing point to those near the Sn freezing point. The temperatures are derived in a series of separate measurements comparing the synthesized noise power from the QVNS with that of Johnson noise from a known resistance. The synthesized noise power is digitally programed to match the thermal noise powers at both temperatures and provides the principle means of scaling the temperatures. This produces a relatively flat spectrum for the ratio of spectral noise densities, which is close to unity in the low-frequency limit. The data are analyzed as relative spectral ratios over the 4.8 to 450 kHz range averaged over a 3.2 kHz bandwidth. A three-parameter model is used to account for differences in time constants that are inherently temperature dependent. A drift effect of approximately -6 μK·K-1 per day is observed in the results, and an empirical correction is applied to yield a relative difference in temperature ratios of -11.5 ± 43 μK·K-1 with respect to the ratio of temperatures assigned on the International Temperature Scale of 1990 (ITS-90). When these noise thermometry results are combined with results from acoustic gas thermometry at temperatures near the Sn freezing point, a value of T - T 90 = 7 ± 30 mK for the Zn freezing point is derived.

  3. Realization of the Temperature Scale in the Range from 234.3 K (Hg Triple Point) to 1084.62°C (Cu Freezing Point) in Croatia

    NASA Astrophysics Data System (ADS)

    Zvizdic, Davor; Veliki, Tomislav; Grgec Bermanec, Lovorka

    2008-06-01

    This article describes the realization of the International Temperature Scale in the range from 234.3 K (mercury triple point) to 1084.62°C (copper freezing point) at the Laboratory for Process Measurement (LPM), Faculty of Mechanical Engineering and Naval Architecture (FSB), University of Zagreb. The system for the realization of the ITS-90 consists of the sealed fixed-point cells (mercury triple point, water triple point and gallium melting point) and the apparatus designed for the optimal realization of open fixed-point cells which include the gallium melting point, tin freezing point, zinc freezing point, aluminum freezing point, and copper freezing point. The maintenance of the open fixed-point cells is described, including the system for filling the cells with pure argon and for maintaining the pressure during the realization.

  4. Final report on COOMET.T-S1. Comparison of type S thermocouples at the freezing points of zinc, aluminium and copper 2014—2015

    NASA Astrophysics Data System (ADS)

    Pokhodun, A. I.; Ivanova, A. G.; Duysebayeva, K. K.; Ivanova, K. P.

    2015-01-01

    Regional comparison of type S thermocouples at the freezing points of zinc, aluminium and copper was initiated by COOMET TC1.1-10 (the technical committee of COOMET `Thermometry and thermal physics'). Three NMI take part in COOMET regional comparison: D I Mendeleev Institute for Metrology (VNIIM) (Russian Federation), National Scientific Centre (Institute of Metrology) (NSC IM, Ukraine), Republic State Enterprise (Kazakhstan Institute of Metrology) (KazInMetr, Republic of Kazakhstan). VNIIM (Russia) was chosen as the coordinator-pilot of the regional comparison. A star type comparison was used. The participants: KazInMetr and NSC IM constructed the type S thermocouples and calibrated them in three fixed points: zinc, aluminum and copper points, using methods of ITS-90 fixed point realizations. The thermocouples have been sent to VNIIM together with the results of the calibration at three fixed points, with the values of the inhomogeneity at temperature 200 °C and the uncertainty evaluations of the results. For calibration of thermocouples the same VNIIM fixed points cells were used. Participating laboratories repeated the calibration of thermocouples after its returning in zinc, aluminum and copper points to determine the stability of its results. In result of the comparison was to evaluate the equivalence of the type S thermocouples calibration in fixed points by NMIs to confirm corresponding lines of international website for NMI's Calibration and Measurement Capabilities (CMC). This paper is the final report of the comparison including analysis of the uncertainty of measurement results. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT WG-KC, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Device and method for determining freezing points

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, Balakrishnan (Inventor)

    1986-01-01

    A freezing point method and device (10) are disclosed. The method and device pertain to an inflection point technique for determining the freezing points of mixtures. In both the method and device (10), the mixture is cooled to a point below its anticipated freezing point and then warmed at a substantially linear rate. During the warming process, the rate of increase of temperature of the mixture is monitored by, for example, thermocouple (28) with the thermocouple output signal being amplified and differentiated by a differentiator (42). The rate of increase of temperature data are analyzed and a peak rate of increase of temperature is identified. In the preferred device (10) a computer (22) is utilized to analyze the rate of increase of temperature data following the warming process. Once the maximum rate of increase of temperature is identified, the corresponding temperature of the mixture is located and earmarked as being substantially equal to the freezing point of the mixture. In a preferred device (10), the computer (22), in addition to collecting the temperature and rate of change of temperature data, controls a programmable power supply (14) to provide a predetermined amount of cooling and warming current to thermoelectric modules (56).

  6. Structurally Caused Freezing Point Depression of Biological Tissues

    PubMed Central

    Bloch, Rene; Walters, D. H.; Kuhn, Werner

    1963-01-01

    When investigating the freezing behaviour (by thermal analysis) of the glycerol-extracted adductor muscle of Mytilus edulis it was observed that the temperature of ice formation in the muscular tissue was up to 1.5°C lower than the freezing point of the embedding liquid, a 0.25 N KCl solution with pH = 4.9 with which the tissue had been equilibrated prior to the freezing experiment. A smaller freezing point depression was observed if the pH values of the embedding 0.25 N KCl solution were above or below pH = 4.9. Reasoning from results obtained previously in analogous experiments with artificial gels, the anomalous freezing depression is explained by the impossibility of growing at the normal freezing temperature regular macroscopic crystals inside the gel, due to the presence of the gel network. The freezing temperature is here determined by the size of the microprisms penetrating the meshes of the network at the lowered freezing temperature. This process leads finally to an ice block of more or less regular structure in which the filaments are embedded. Prerequisite for this hindrance of ideal ice growth is a sufficient tensile strength of the filamental network. The existence of structurally caused freezing point depression in biological tissue is likely to invalidate many conclusions reported in the literature, in which hypertonicity was deduced from cryoscopic data. PMID:13971682

  7. Fuel freeze-point investigations. Final report, September 1982-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desmarais, L.A.; Tolle, F.F.

    1984-07-01

    The objective of this program was to conduct a detailed assessment of the low-temperature environment to which USAF aircraft are exposed for the purpose of defining a maximum acceptable fuel freeze-point and also to define any operational changes required with the use of a high freeze-point fuel. A previous study of B-52, C-141, and KC-135 operational missions indicated that the -58 C freeze point specification was too conservative. Based on recommendations resulting from the previous program, several improvements in the method of analysis were made, such as: expansion of the atmospheric temperature data base, the addition of ground temperature analysis,more » the addition of fuel-freezing analysis to the one-dimensional fuel-temperature computer program, and the examination of heat transfer in external fuel tanks, such as pylon or tip tanks. The B-52, C-141, and KC-135 mission were analyzed again, along with the operational missions of two tactical airplanes, the A-10 and F-15; -50C was determined to be the maximum allowable freeze point for a general-purpose USAF aviation turbine fuel. Higher freeze points can be tolerated if the probability of operational interference is acceptably low or if operational changes can be made. Study of atmospheric temperatures encountered for the missions of the five-study aircraft indicates that a maximum freeze point of -48 C would not likely create any operational difficulties in Northern Europe.« less

  8. Freezing point depression in model Lennard-Jones solutions

    NASA Astrophysics Data System (ADS)

    Koschke, Konstantin; Jörg Limbach, Hans; Kremer, Kurt; Donadio, Davide

    2015-09-01

    Crystallisation of liquid solutions is of uttermost importance in a wide variety of processes in materials, atmospheric and food science. Depending on the type and concentration of solutes the freezing point shifts, thus allowing control on the thermodynamics of complex fluids. Here we investigate the basic principles of solute-induced freezing point depression by computing the melting temperature of a Lennard-Jones fluid with low concentrations of solutes, by means of equilibrium molecular dynamics simulations. The effect of solvophilic and weakly solvophobic solutes at low concentrations is analysed, scanning systematically the size and the concentration. We identify the range of parameters that produce deviations from the linear dependence of the freezing point on the molal concentration of solutes, expected for ideal solutions. Our simulations allow us also to link the shifts in coexistence temperature to the microscopic structure of the solutions.

  9. Plant moisture stress: a portable freezing-point meter compared with the psychrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, J.W.; Fisher, H.D.

    A small portable instrument for measuring the freezing-point depression of plant tissue has been developed for field use. The instrument is easy to operate and can be constructed from materials costing less than $100. Moisture stress measurements made with the freezing-point meter on a variety of plants were compared with vapor pressure psychrometer measurements. Variation between duplicates in the freezing point averaged 1.2 bars, but differences between stress measurements made with the psychrometer and freezing-point instrument averaged 2.6 bars. 11 references, 5 figures, 2 tables.

  10. Report to the CCT on COOMET comparison COOMET.T-K3.1 (previously COOMET.T-S1): Key regional comparison of the national standards of temperature in the range from the triple point of water to the freezing point of zinc

    NASA Astrophysics Data System (ADS)

    Pokhodun, A. I.

    2010-01-01

    In the framework of the CIPM MRA, a first COOMET comparison "Comparison of the ITS-90 realizations in the range from 0.01 °C to 429.7485 °C (from the triple point of water to the freezing point of zinc)", registered in the KCDB under the identifier "COOMET.T-K3", was carried out in 2005-2007. Four national metrology institutes took part in this comparison: VNIIM (Russian Federation), SMU (Slovakia), BelGIM (Republic of Belarus) and NSC IM (Ukraine), and two of them (VNIIM and SMU) ensured the linkage with key comparisons CCT-K3 and CCT-K4, in order to disseminate the metrological equivalence to the measurement standards of NSC IM and BelGIM. NSC IM, however, had to withdraw its results, and at the meeting of Technical Committee T-10 of COOMET it was decided to carry out a supplementary bilateral comparison between VNIIM and the NSC IM for realization of the ITS-90 in the same range of temperature. This was registered in the KCDB under the identifier COOMET.T-S1 and measurements were performed in 2008-2009. From the results presented in this report, it is possible to draw the conclusion that the COOMET supplementary comparison COOMET.T-S1 demonstrates the CMC uncertainties claimed by the NSC IM for the melting point of gallium 0.236 mK (k = 2), and the freezing points of indium 1.040 mK (k = 2), tin 0.858 mK (k = 2) and zinc 0.944 mK (k = 2). In September 2012 the Working Group on key Comparisons (WG 7) of the CCT upgraded this comparison to a COOMET key comparison of the 'CCT-K3' type. It is now identified as COOMET.T-K3.1. In April 2013 this report was superseded by item 03006 in the Technical Supplement of 2013. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  11. Freezing Point of Milk: A Natural Way to Understand Colligative Properties

    ERIC Educational Resources Information Center

    Novo, Mercedes; Reija, Belen; Al-Soufi, Wajih

    2007-01-01

    A laboratory experiment is presented in which the freezing point depression is analyzed using milk as solution. The nature of milk as a mixture of different solutes makes it a suitable probe to learn about colligative properties. The first part of the experiment illustrates the analytical use of freezing point measurements to control milk quality,…

  12. High-freezing-point fuels used for aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. The higher-freezing-point fuels can be substituted in the majority of present commercial flights, since temperature data indicate that in-flight fuel temperatures are relatively mild. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple system design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating. Both systems offer advantages that outweigh the obvious penalties.

  13. Experimental results for the rapid determination of the freezing point of fuels

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, B.

    1984-01-01

    Two methods for the rapid determination of the freezing point of fuels were investigated: an optical method, which detected the change in light transmission from the disappearance of solid particles in the melted fuel; and a differential thermal analysis (DTA) method, which sensed the latent heat of fusion. A laboratory apparatus was fabricated to test the two methods. Cooling was done by thermoelectric modules using an ice-water bath as a heat sink. The DTA method was later modified to eliminate the reference fuel. The data from the sample were digitized and a point of inflection, which corresponds to the ASTM D-2386 freezing point (final melting point), was identified from the derivative. The apparatus was modifified to cool the fuel to -60 C and controls were added for maintaining constant cooling rate, rewarming rate, and hold time at minimum temperature. A parametric series of tests were run for twelve fuels with freezing points from -10 C to -50 C, varying cooling rate, rewarming rate, and hold time. Based on the results, an optimum test procedure was established. The results showed good agreement with ASTM D-2386 freezing point and differential scanning calorimetry results.

  14. An Equipment to Measure the Freezing Point of Soils under Higher Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Dayan; Guan, Hui; Wen, Zhi; Ma, Wei

    2014-05-01

    Soil freezing point is the highest temperature at which ice can be presented in the system and soil can be referred to as frozen. The freezing temperature of soil is an important parameter for solving many practical problems in civil engineering, such as evaluation of soil freezing depth, prediction of soil heaving, force of soil suction, etc. However, as the freezing temperature is always affected by many factors like soil particle size, mineral composition, water content and the external pressure endured by soils, to measure soil freezing point is a rather difficult task until now, not to mention the soil suffering higher pressure. But recently, with the artificial freezing technology widely used in the excavation of deep underground space, the frozen wall thickness is a key factor to impact the security and stability of deep frozen wall. To determine the freeze wall thickness, the location of the freezing front must be determined firstly, which will deal with the determination of the soil freezing temperature. So how to measure the freezing temperature of soil suffering higher pressure is an important problem to be solved. This paper will introduce an equipment which was developed lately by State Key Laboratory of Frozen Soil Engineering to measure the freezing-point of soils under higher pressure. The equipment is consisted of cooling and keeping temperature system, temperature sensor and data collection system. By cooling and keeping temperature system, not only can we make the higher pressure soil sample's temperature drop to a discretionary minus temperature, but also keep it and reduce the heat exchange of soil sample with the outside. The temperature sensor is the key part to our measurement, which is featured by high precision and high sensitivity, what is more important is that the temperature sensor can work in a higher pressure condition. Moreover, the major benefit of this equipment is that the soil specimen's loads can be loaded by any microcomputer

  15. Evaluation of methods for rapid determination of freezing point of aviation fuels

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, B.

    1982-01-01

    Methods for identification of the more promising concepts for the development of a portable instrument to rapidly determine the freezing point of aviation fuels are described. The evaluation process consisted of: (1) collection of information on techniques previously used for the determination of the freezing point, (2) screening and selection of these techniques for further evaluation of their suitability in a portable unit for rapid measurement, and (3) an extensive experimental evaluation of the selected techniques and a final selection of the most promising technique. Test apparatuses employing differential thermal analysis and the change in optical transparency during phase change were evaluated and tested. A technique similar to differential thermal analysis using no reference fuel was investigated. In this method, the freezing point was obtained by digitizing the data and locating the point of inflection. Results obtained using this technique compare well with those obtained elsewhere using different techniques. A conceptual design of a portable instrument incorporating this technique is presented.

  16. Production of Low-Freezing-Point Highly Branched Alkanes through Michael Addition.

    PubMed

    Jing, Yaxuan; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2017-12-22

    A new approach for the production of low-freezing-point, high-quality fuels from lignocellulose-derived molecules was developed with Michael addition as the key step. Among the investigated catalysts, CoCl 2 ⋅6 H 2 O was found most active for the Michael addition of 2,4-pentanedione with FA (single aldol adduct of furfural and acetone, 4-(2-furanyl)-3-butene-2-one). Over CoCl 2 ⋅6 H 2 O, a high carbon yield of C 13 oxygenates (about 75 %) can be achieved under mild conditions (353 K, 20 h). After hydrodeoxygenation, low-freezing-point (<223 K) branched alkanes with 13 carbons within jet fuel ranges were obtained over a Pd/NbOPO 4 catalyst. Furthermore, C 18,23 fuel precursors could be easily synthesized through Michael addition of 2,4-pentanedione with DFA (double-condensation product of furfural and acetone) under mild conditions and the molar ratio of C 18 /C 23 is dependent on the reaction conditions of Michael addition. After hydrodeoxygenation, high density (0.8415 g mL -1 ) and low-freezing-point (<223 K) branched alkanes with 18, 23 carbons within lubricant range were also obtained over a Pd/NbOPO 4 catalyst. These highly branched alkanes can be directly used as transportation fuels or additives. This work opens a new strategy for the synthesis of highly branched alkanes with low freezing point from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  18. High freezing point fuels used for aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.

  19. Effects of In Vitro Zinc Sulphate Additive to The Semen Extender on Water Buffalo (Bubalusbubalis) Spermatozoa before and after Freezing

    PubMed Central

    Dorostkar, Kamran; Alavi Shoushtari, Sayed Mortaza; Khaki, Amir

    2014-01-01

    Background The objective of the study was to investigate the effects of in vitro zinc sulphate additive to semen extender on sperm parameters (progressive motility, viability, membrane integrity and DNA stability) after cryopreservation. Materials and Methods In this Prospective longitudinal laboratory study, semen samples of 5 buffalo bulls of 3-5 years old were collected at 5 different occasions from Iran, Urmia during summer and autumn 2011, 25 samples were used in each treatment. Sperm progressive motility, viability and abnormal morphology were measured before and at 0.5 (T0), 1(T1) and 2(T2) hours after diluting semen(1:10 v/v) in Tris-citric acid based extender (without egg yolk and glycerol) at 37˚C containing none (control group), 0.072, 0.144, 0.288, 0.576 and 1.152 mg/L zinc sulphate to investigate dose and time effects. Next, a Tris-citric acid-egg yolk-glycerol extender (20% egg yolk and 7% glycerol) containing the same amount of zinc sulphate was prepared, diluted semen (1:10 v/v) was cooled and kept into a refrigerated chamber (4˚C) for 4 hours to equilibrate. Sperm progressive motility, viability, abnormal morphology, membrane integrity and DNA damage were estimated.The equilibrated semen was loaded in 0.5 ml French straws and frozen in liquid nitrogen. Later, the frozen semen was thawed and the same parameters as well as total antioxidant capacity (TAC) of the frozen-thawed semen were determined. Results The results showed that zinc sulphate additive at the rate of 0.288 mg/L gave a higher protection of sperm progressive motility (53.7 ± 1.8% vs. 40.5 ± 1.7%), viability (70.8 ± 1.8% vs. 60.1 ± 1.5%), membrane integrity (67.3 ± 1.6% vs. 56.6 ± 1.7%), DNA stability (10.1 ± 0.47% vs. 11.8 ± 0.33% damaged DNA) through the process of dilution, equilibration and freeze-thawing and caused a higher TAC level (81 ± 3.3% vs. 63 ± 3.2 µmol/L) after freez-thawing compared to the control group. Adding 0.576 and 1.152 mg/L zinc sulphate, however

  20. Improvements in the realization of the ITS-90 over the temperature range from the melting point of gallium to the freezing point of silver at NIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J.; Zhang, J. T.; Ping, Q.

    2013-09-11

    The temperature primary standard over the range from the melting point of gallium to the freezing point of silver in National institute of Metrology (NIM), China, was established in the early 1990s. The performance of all of fixed-point furnaces degraded and needs to be updated due to many years of use. Nowadays, the satisfactory fixed point materials can be available with the development of the modern purification techniques. NIM plans to use a group of three cells for each defining fixed point temperature. In this way the eventual drift of individual cells can be evidenced by periodic intercomparison and thismore » will increase the reliability in disseminating the ITS-90 in China. This article describes the recent improvements in realization of ITS-90 over temperature range from the melting point of gallium to the freezing point of silver at NIM. Taking advantages of the technological advances in the design and manufacture of furnaces, the new three-zone furnaces and the open-type fixed points were developed from the freezing point of indium to the freezing point of silver, and a furnace with the three-zone semiconductor cooling was designed to automatically realize the melting point of gallium. The reproducibility of the new melting point of gallium and the new open-type freezing points of In, Sn, Zn. Al and Ag is improved, especially the freezing points of Al and Ag with the reproducibility of 0.2mK and 0.5mK respectively. The expanded uncertainty in the realization of these defining fixed point temperatures is 0.34mK, 0.44mK, 0.54mK, 0.60mK, 1.30mK and 1.88mK respectively.« less

  1. Critical viewpoints on the methods of realizing the metal freezing points of the ITS-90

    NASA Astrophysics Data System (ADS)

    Ma, C. K.

    1995-08-01

    The time-honored method for realizing the freezing point tf of a metal (in practice necessarily a dilute alloy) is that of continuous, slow freezing where the plateau temperature (which is the result of solidifying material's being so pure that its phase-transition temperature is observably constant) is measured. The freezing point being an equilibrium temperature, Ancsin considers this method to be inappropriate in principle: equilibrium between the solid and liquid phases cannot be achieved while the solid is being cooled to dispose of the releasing latent heat and while it is accreting at the expense of the liquid. In place of the continuous freezing method he has employed the pulse-heating method (in which the sample is allowed to approach equilibrium after each heat pulse) in his study of Ag; his measurements suggest that freezing can produce non-negligible errors. Here we examine both methods and conclude that the freezing method, employing an inside solid-liquid interface thermally isolated by an outside interface, can provide realizations of the highest accuracy; in either method, perturbation, by inducing solid-liquid phase transition continuously or intermittently, is essential for detecting equilibrium thermally. The respective merits and disadvantages of these two methods and also of the inner-melt method are discussed. We conclude that in a freezing-point measurement what is being measured is in effect the however minutely varying phase transition, and nonconstitutional equilibrium, temperature ti at the solid-liquid interface. The objective is then to measure the ti that is the best measure of tf, which is, normally, the plateau temperature.

  2. The initial freezing point temperature of beef rises with the rise in pH: a short communication.

    PubMed

    Farouk, M M; Kemp, R M; Cartwright, S; North, M

    2013-05-01

    This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. THE FREEZING POINT DEPRESSION OF MAMMALIAN TISSUES AFTER SUDDEN HEATING IN BOILING DISTILLED WATER

    PubMed Central

    Appelboom, Johannes W. Th.; Brodsky, William A.; Tuttle, William S.; Diamond, Israel

    1958-01-01

    The calculated freezing point depression of freshly excised boiled mammalian tissue is approximately the same as that of plasma. The boiling procedure was chosen to eliminate the influence of metabolism on the level of the freezing point depression. Problems created by the boiling, such as equilibrium between tissue and diluent, change in activity coefficient by dilution, and loss of CO2 content, are discussed. A frozen crushed tissue homogenate is hypertonic to plasma. Boiling and dilution of such hypertonic homogenate exposed to room temperature for 5 to 15 minutes did not produce significant or unexplicable decreases in its osmotic activity. Moreover, freezing and crushing of a boiled diluted tissue did not produce any increase of the isoosmotic level of freezing point depression. It is possible to explain these data either with the hypothesis of hypertonic cell fluid or with that of isotonic cell fluid. In the case of an assumed isotonic cell fluid, data can be explained with one assumption, experimentally backed. In the case of an assumed hypertonic theory data can be explained only with the help of at least three ad hoc postulates. The data support the validity of the classical concept which holds that cell fluid is isotonic to extracellular fluid. PMID:13563805

  4. Novel method of realizing metal freezing points by induced solidification

    NASA Astrophysics Data System (ADS)

    Ma, C. K.

    1997-07-01

    The freezing point of a pure metal, tf, is the temperature at which the solid and liquid phases are in equilibrium. The purest metal available is actually a dilute alloy. Normally, the liquidus point of a sample, tl, at which the amount of the solid phase in equilibrium with the liquid phase is minute, provides the closest approximation to tf. Thus the experimental realization of tf is a matter of realizing tl. The common method is to cool a molten sample continuously so that it supercools and recalesces. The highest temperature after recalescence is normally the best experimental value of tl. In the realization, supercooling of the sample at the sample container and the thermometer well is desirable for the formation of dual solid-liquid interfaces to thermally isolate the sample and the thermometer. However, the subsequent recalescence of the supercooled sample requires the formation of a certain amount of solid, which is not minute. Obviously, the plateau temperature is not the liquidus point. In this article we describe a method that minimizes supercooling. The condition that provides tl is closely approached so that the latter may be measured. As the temperature of the molten sample approaches the anticipated value of tl, a small solid of the same alloy is introduced into the sample to induce solidification. In general, solidification does not occur as long as the temperature is above or at tl, and occurs as soon as the sample supercools minutely. Thus tl can be obtained, in principle, by observing the temperature at which induced solidification begins. In case the solid is introduced after the sample has supercooled slightly, a slight recalescence results and the subsequent maximum temperature is a close approximation to tl. We demonstrate that the principle of induced solidification is indeed applicable to freezing point measurements by applying it to the design of a copper-freezing-point cell for industrial applications, in which a supercooled sample is

  5. Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa.

    PubMed

    Isaac, Ann V; Kumari, Sandhya; Nair, Ramya; Urs, Deepak Raj; Salian, Sujith Raj; Kalthur, Guruprasad; Adiga, Satish Kumar; Manikkath, Jyothsna; Mutalik, Srinivas; Sachdev, Divya; Pasricha, Renu

    2017-12-16

    The sperm DNA integrity post cryopreservation of human semen samples is one of the serious concerns in human infertility treatment. In the present study, the beneficial effects of zinc oxide nanoparticles in preserving the functional ability of spermatozoa was explored. Ejaculates of normozoospermic men cryopreserved along with Zinc oxide nanoparticles (ZnONPs) exhibited non-significantly higher percentage of total and progressive motility in frozen-thawed samples compared to control. The sperm chromatin damage and malondialdehyde (MDA) level was significantly lower in ZnONPs group (P < 0.01 and P < 0.05 respectively) and the spermatozoa's ability to undergo acrosome reaction was also unaltered. Fluorescence microscopy and High resolution transmission electron microscopy analysis demonstrated that the ZnONPs do not penetrate the membrane of spermatozoa but stay around the spermatozoa. In conclusion, the presence of ZnONPs during cryopreservation appears to be beneficial to the spermatozoa as they withstand freeze-thaw process competently better than control, without any adverse effect shown. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Determination of end point of primary drying in freeze-drying process control.

    PubMed

    Patel, Sajal M; Doen, Takayuki; Pikal, Michael J

    2010-03-01

    Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.

  7. Adapting and Modifying the Apparatus for Students to Accurately Determine the Freezing Point of a Solvent and Solution

    ERIC Educational Resources Information Center

    Li, Shirong; Guo, Jianzhong; Wang, Kewang; Chen, Lin; Hu, Daodao; Bai, Yunshan

    2017-01-01

    An improved apparatus for measuring freezing points has been developed. Compared to the traditional Beckmann freezing point instrument, the improved one overcame prior difficulties with solidification of liquid and made the solid-liquid equilibrium reversible with heat compensation from a heating tube. The reliability and accuracy were carefully…

  8. Note: equation of state and the freezing point in the hard-sphere model.

    PubMed

    Robles, Miguel; López de Haro, Mariano; Santos, Andrés

    2014-04-07

    The merits of different analytical equations of state for the hard-sphere system with respect to the recently computed high-accuracy value of the freezing-point packing fraction are assessed. It is found that the Carnahan-Starling-Kolafa and the branch-point approximant equations of state yield the best performance.

  9. Experimental study and numerical simulation of the salinity effect on water-freezing point and ice-melting rate

    NASA Astrophysics Data System (ADS)

    Qin, N.; Wu, Y.; Wang, H. W.; Wang, Y. Y.

    2017-12-01

    In this paper, based on the background of snowmelt de-icing tools, we studied the effect of salt on freezing point and melting rate of ice through laboratory test and FLUENT numerical simulation analysis. It was confirmed that the freezing point is inversely proportional to the salt solid content, and with the salt solid content increasing, the freezing process of salt water gradually accepts the curing rule of non-crystal solids. At the same temperature, an increase in the salt solid content, the ice melting rate increase by the empirical formula linking the melting time with temperature and salt content. The theoretical aspects of solid/fluid transformation are discussed in detail.

  10. Ultra-high temperature isothermal furnace liners (IFLS) for copper freeze point cells

    NASA Astrophysics Data System (ADS)

    Dussinger, P. M.; Tavener, J. P.

    2013-09-01

    Primary Laboratories use large fixed-point cells in deep calibration furnaces utilizing heat pipes to achieve temperature uniformity. This combination of furnace, heat pipe, and cell gives the smallest of uncertainties. The heat pipe, also known as an isothermal furnace liner (IFL), has typically been manufactured with Alloy 600/601 as the envelope material since the introduction of high temperature IFLs over 40 years ago. Alloy 600/601 is a widely available high temperature material, which is compatible with Cesium, Potassium, and Sodium and has adequate oxidation resistance and reasonable high temperature strength. Advanced Cooling Technologies, Inc. (ACT) Alloy 600/Sodium IFLs are rated to 1100°C for approximately 1000 hours of operation (based on creep strength). Laboratories interested in performing calibrations and studies around the copper freezing point (1084.62°C) were frustrated by the 1000 hours at 1100°C limitation and the fact that expensive freeze-point cells were getting stuck and/or crushed inside the IFL. Because of this growing frustration/need, ACT developed an Ultra High Temperature IFL to take advantage of the exceptional high temperature strength properties of Haynes 230.

  11. Freezing temperature of finger skin.

    PubMed

    Wilson, O; Goldman, R F; Molnar, G W

    1976-10-01

    In 45 subjects, 154 frostnips of the finger were induced by cooling in air at -15 degrees C with various wind speeds. The mean supercooled skin temperature at which frostnip appeared was -9.4 degrees C. The mean skin temperature rise due to heat of fusion at ice crystallization was 5.3 degrees C. The skin temperature rose to what was termed the apparent freezing point. The relation of this point to the supercooled skin temperature was analyzed for the three wind speeds used. An apparent freezing point for a condition of no supercooling was calculated, estimating the highest temperature at which skin freezes at a given wind speed. The validity of the obtained differences in apparent freezing point was tested by an analysis of covariance. Although not statistically significant, the data suggest that the apparent freezing point with no supercooling decreases with increasing wind velocity. The highest calculated apparent freezing point at -15 degrees C and 6.8 m/s was 1.2 degrees C lower than the true freezing point for skin previously determined in brine, which is a statistically significant difference.

  12. Zinc finger point mutations within the WT1 gene in Wilms tumor patients.

    PubMed Central

    Little, M H; Prosser, J; Condie, A; Smith, P J; Van Heyningen, V; Hastie, N D

    1992-01-01

    A proposed Wilms tumor gene, WT1, which encodes a zinc finger protein, has previously been isolated from human chromosome 11p13. Chemical mismatch cleavage analysis was used to identify point mutations in the zinc finger region of this gene in a series of 32 Wilms tumors. Two exonic single base changes were detected. In zinc finger 3 of a bilateral Wilms tumor patient, a constitutional de novo C----T base change was found changing an arginine to a stop codon. One tumor from this patient showed allele loss leading to 11p hemizygosity of the abnormal allele. In zinc finger 2 of a sporadic Wilms tumor patient, a C----T base change resulted in an arginine to cysteine amino acid change. To our knowledge, a WT1 gene missense mutation has not been detected previously in a Wilms tumor. By comparison with a recent NMR and x-ray crystallographic analysis of an analogous zinc finger gene, early growth response gene 1 (EGR1), this amino acid change in WT1 occurs at a residue predicted to be critical for DNA binding capacity and site specificity. The detection of one nonsense point mutation and one missense WT1 gene point mutation adds to the accumulating evidence implicating this gene in a proportion of Wilms tumor patients. Images PMID:1317572

  13. THE FREEZING POINT DEPRESSION OF MAMMALIAN TISSUES IN RELATION TO THE QUESTION OF OSMOTIC ACTIVITY OF CELL FLUID

    PubMed Central

    Brodsky, William A.; Appelboom, Johannes W.; Dennis, Warren H.; Rehm, Warren S.; Miley, John F.; Diamond, Israel

    1956-01-01

    The freezing point depression of freshly excised frozen tissues, pulverized in a hydraulic press or in a mortar, is greater than that of plasma. Even at 0°C. the freezing point depression of such homogenates increases significantly with time. Dilution data indicate that such freezing point data are valid. The presence of intact cells has been shown in smears of tissues pulverized in a mortar, but not in smears of those crushed in a hydraulic press. The osmolarity of various diluent solutions affects the calculated osmotic activity of tissue homogenates presumably because of delayed diffusion between the diluent and cell fluid. With a hypertonic NaCl diluent, spuriously low values of tissue osmotic activity are found from calculations assuming instantaneous mixing between homogenates and diluents. The limitations of data from cryoscopic experiments and from tissue-swelling experiments are discussed in relation to the basic question of whether or not cell fluid is isotonic to extracellular fluid. PMID:13385447

  14. Close-packed floating clusters: granular hydrodynamics beyond the freezing point?

    PubMed

    Meerson, Baruch; Pöschel, Thorsten; Bromberg, Yaron

    2003-07-11

    Monodisperse granular flows often develop regions with hexagonal close packing of particles. We investigate this effect in a system of inelastic hard spheres driven from below by a "thermal" plate. Molecular dynamics simulations show, in a wide range of parameters, a close-packed cluster supported by a low-density region. Surprisingly, the steady-state density profile, including the close-packed cluster part, is well described by a variant of Navier-Stokes granular hydrodynamics (NSGH). We suggest a simple explanation for the success of NSGH beyond the freezing point.

  15. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    USGS Publications Warehouse

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  16. Analysis of the accelerated crucible rotation technique applied to the gradient freeze growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-06-01

    We employ finite-element modeling to assess the effects of the accelerated crucible rotation technique (ACRT) on cadmium zinc telluride (CZT) crystals grown from a gradient freeze system. Via consideration of tellurium segregation and transport, we show, for the first time, that steady growth from a tellurium-rich melt produces persistent undercooling in front of the growth interface, likely leading to morphological instability. The application of ACRT rearranges melt flows and tellurium transport but, in contrast to conventional wisdom, does not altogether eliminate undercooling of the melt. Rather, a much more complicated picture arises, where spatio-temporal realignment of undercooled melt may act to locally suppress instability. A better understanding of these mechanisms and quantification of their overall effects will allow for future growth optimization.

  17. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    ERIC Educational Resources Information Center

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimeter was used to study homogeneous nucleation of ice from micron-sized aqueous ammonium sulfate aerosol particles. It is important to understand the conditions at which these particles nucleate ice because of their connection to cirrus cloud formation. Additionally, the concept of freezing point depression, a topic…

  18. Freezing points and small-scale deicing tests for salts of levulinic acid made from grain sorghum.

    PubMed

    Ganjyal, G; Fang, Q; Hanna, M A

    2007-11-01

    Deicers from renewable resources are needed to overcome the disadvantages of using traditional deicers. Salts made from levulinic acid produced using grain sorghum as raw material were tested as road deicing agents. Freezing points of these salts viz., sodium levulinate, magnesium levulinate and calcium levulinate along with rock salt (sodium chloride) were determined according to American Society for Testing and Materials (ASTM) D 1177-94 standard at concentrations of 10, 20, 30 and 40 % w/w. There were significant differences among the freezing points of the salts. Freezing points for rock salt, sodium levulinate, calcium levulinate and magnesium levulinate, for different concentrations, were in the ranges of -6.6 to -20.5, -2.9 to -15.0, -2.1 to -7.8 and -1.5 to -6.5 degrees C, respectively. Deicing effectiveness of the salts of levulinic acid were investigated by conducting small-scale deicing tests with aqueous solutions of various salt concentrations (2%, 5% and 10%) in a laboratory freezer and by spraying the deicer on a graveled surface covered by ice and snow with the average temperature during the testing at -2.7 degrees C. Deicing capabilities of the three salts of levulinic acid differed. At -2.7 degrees C, all three salts caused melting of the ice. Among the different levulinates studied sodium levulinate was the most effective deicing agent. These salts of levulinates could be a viable replacement for traditional deicers and could help in reducing the disadvantages of traditional deicers.

  19. Freezing induces a loss of freeze tolerance in an overwintering insect.

    PubMed

    Brown, C L; Bale, J S; Walters, K F A

    2004-07-22

    Cold-hardy insects overwinter by one of two main strategies: freeze tolerance and freeze avoidance by supercooling. As a general model, many freeze-tolerant species overwinter in extreme climates, freeze above -10 degrees C via induction by ice-nucleating agents, and once frozen, can survive at temperatures of up to 40 degrees C or more below the initial freezing temperature or supercooling point (SCP). It has been assumed that the SCP of freeze-tolerant insects is unaffected by the freezing process and that the freeze-tolerant state is therefore retained in winter though successive freeze-thaw cycles of the body tissues and fluids. Studies on the freeze-tolerant larva of the hoverfly Syrphus ribesii reveal this assumption to be untrue. When a sample with a mean 'first freeze' SCP of -7.6 degrees C (range of -5 degrees C to -9.5 degrees C) were cooled, either to -10 degrees C or to their individual SCP, on five occasions, the mean SCP was significantly depressed, with some larvae subsequently freezing as low as -28 degrees C. Only larvae that froze at the same consistently high temperature above -10 degrees C were alive after being frozen five times. The wider occurrence of this phenomenon would require a fundamental reassessment of the dynamics and distinctions of the freeze-tolerant and freeze-avoiding strategies of insect overwintering. Copyright 2004 The Royal Society

  20. Locating the QCD critical end point through peaked baryon number susceptibilities along the freeze-out line

    NASA Astrophysics Data System (ADS)

    Li, Zhibin; Chen, Yidian; Li, Danning; Huang, Mei

    2018-01-01

    We investigate the baryon number susceptibilities up to fourth order along different freeze-out lines in a holographic QCD model with a critical end point (CEP), and we propose that the peaked baryon number susceptibilities along the freeze-out line can be used as a clean signature to locate the CEP in the QCD phase diagram. On the temperature and baryon chemical potential plane, the cumulant ratio of the baryon number susceptibilities (up to fourth order) forms a ridge along the phase boundary, and develops a sword-shaped “mountain” standing upright around the CEP in a narrow and oblate region. The measurement of baryon number susceptibilities from heavy-ion collision experiments is along the freeze-out line. If the freeze-out line crosses the foot of the CEP mountain, then one can observe the peaked baryon number susceptibilities along the freeze-out line, and the kurtosis of the baryon number distributions has the highest magnitude. The data from the first phase of the beam energy scan program at the Relativistic Heavy Ion Collider indicates that there should be a peak of the kurtosis of the baryon number distribution at a collision energy of around 5 GeV, which suggests that the freeze-out line crosses the foot of the CEP mountain and the summit of the CEP should be located nearby, around a collision energy of 3-7 GeV. Supported by NSFC (11275213, and 11261130311) (CRC 110 by DFG and NSFC), CAS key project KJCX2-EW-N01, and Youth Innovation Promotion Association of CAS

  1. Decrease of non-point zinc runoff using porous concrete.

    PubMed

    Harada, Shigeki; Komuro, Yoshinori

    2010-01-01

    The use of porous concrete columns to decrease the amount of zinc in stormwater runoff is examined. The concentration of zinc in a simulated stormwater fluid (zinc acetate solution), fed through concrete columns (slashed circle10x10cm) decreased by 50-81%, suggesting physical adsorption of zinc by the porous concrete. We propose the use of porous concrete columns (slashed circle50x10cm) as the base of sewage traps. Longer-term, high-zinc concentration monitoring revealed that porous concrete blocks adsorb 38.6mgcm(-3) of zinc. A period of no significant zinc runoff (with an acceptable concentration of zinc in runoff of 0.03mgL(-1), a zinc concentration equal to the Japanese Environmental Standard) is estimated for 41years using a 1-ha catchment area with 20 porous concrete sewage traps. Scanning electron microscopy of the porous concrete used in this study indicates that the needle-like particles formed by hydration action significantly increase zinc adsorption. Evidence suggests that the hydrant is ettringite and has an important role in zinc adsorption, the resulting immobilization of zinc and the subsequent effects on groundwater quality. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-09-01

    Melatonin (N-acetyl-5-methoxytryptamine) is not only a widely known animal hormone, but also an important regulator in plant development and multiple abiotic stress responses. Recently, it has been revealed that melatonin alleviated cold stress through mediating several cold-related genes, including C-REPEAT-BINDING FACTORs (CBFs)/Drought Response Element Binding factors (DREBs), COR15a, and three transcription factors (CAMTA1, ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10), and ZAT12). In this study, we quantified the endogenous melatonin level in Arabidopsis plant leaves and found the endogenous melatonin levels were significantly induced by cold stress (4 °C) treatment. In addition, we found one cysteine2/histidine2-type zinc finger transcription factor, ZAT6, was involved in melatonin-mediated freezing stress response in Arabidopsis. Interestingly, exogenous melatonin enhanced freezing stress resistance was largely alleviated in AtZAT6 knockdown plants, but was enhanced in AtZAT6 overexpressing plants. Moreover, the expression levels of AtZAT6 and AtCBFs were commonly upregulated by cold stress (4 °C) and exogenous melatonin treatments, and modulation of AtZAT6 expression significantly affected the induction AtCBFs transcripts by cold stress (4 °C) and exogenous melatonin treatments. Taken together, AtZAT6-activated CBF pathway might be essential for melatonin-mediated freezing stress response in Arabidopsis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Increases in extracellular zinc in the amygdala in acquisition and recall of fear experience and their roles in response to fear.

    PubMed

    Takeda, A; Tamano, H; Imano, S; Oku, N

    2010-07-14

    The amygdala is enriched with histochemically reactive zinc, which is dynamically coupled with neuronal activity and co-released with glutamate. The dynamics of the zinc in the amygdala was analyzed in rats, which were subjected to inescapable stress, to understand the role of the zinc in emotional behavior. In the communication box, two rats were subjected to foot shock stress and anxiety stress experiencing emotional responses of foot-shocked rat under amygdalar perfusion. Extracellular zinc was increased by foot shock stress, while decreased by anxiety stress, suggesting that the differential changes in extracellular zinc are associated with emotional behavior. In rats conditioned with foot shock, furthermore, extracellular zinc was increased again in the recall of fear (foot shock) in the same box without foot shock. When this recall was performed under perfusion with CaEDTA, a membrane-impermeable zinc chelator, to examine the role of the increase in extracellular zinc, the time of freezing behavior was more increased, suggesting that zinc released in the lateral amygdala during the recall of fear participates in freezing behavior. To examine the role of the increase in extracellular zinc during fear conditioning, fear conditioning was also performed under perfusion with CaEDTA. The time of freezing behavior was more increased in the contextual recall, suggesting that zinc released in the lateral nucleus during fear conditioning also participates in freezing behavior in the recall. In brain slice experiment, CaEDTA enhanced presynaptic activity (exocytosis) in the lateral nucleus after activation of the entorhinal cortex. The present paper demonstrates that zinc released in the lateral amygdala may participate in emotional behavior in response to fear. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.

    PubMed

    Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J

    2005-04-01

    To develop a procedure based on manometric temperature measurement (MTM) and an expert system for good practices in freeze drying that will allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment. Freeze drying was performed with a FTS Dura-Stop/Dura-Top freeze dryer with the manometric temperature measurement software installed. Five percent solutions of glycine, sucrose, or mannitol with 2 ml to 4 ml fill in 5 ml vials were used, with all vials loaded on one shelf. Details of freezing, optimization of chamber pressure, target product temperature, and some aspects of secondary drying are determined by the expert system algorithms. MTM measurements were used to select the optimum shelf temperature, to determine drying end points, and to evaluate residual moisture content in real-time. MTM measurements were made at 1 hour or half-hour intervals during primary drying and secondary drying, with a data collection frequency of 4 points per second. The improved MTM equations were fit to pressure-time data generated by the MTM procedure using Microcal Origin software to obtain product temperature and dry layer resistance. Using heat and mass transfer theory, the MTM results were used to evaluate mass and heat transfer rates and to estimate the shelf temperature required to maintain the target product temperature. MTM product dry layer resistance is accurate until about two-thirds of total primary drying time is over, and the MTM product temperature is normally accurate almost to the end of primary drying provided that effective thermal shielding is used in the freeze-drying process. The primary drying times can be accurately estimated from mass transfer rates calculated very early in the run, and we find the target product temperature can be achieved and maintained with only a few adjustments of shelf temperature. The freeze-dryer overload conditions can be estimated by calculation of heat/mass flow at the target product

  5. Surface freezing of water.

    PubMed

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  6. Fish antifreeze protein and the freezing and recrystallization of ice.

    PubMed

    Knight, C A; DeVries, A L; Oolman, L D

    Antifreeze glycopeptide and peptides from the blood of polar fishes prevent the growth of ice crystals in water at temperatures down to approximately 1 degree C below freezing point, but do not appreciably influence the equilibrium freezing point. This freezing point hysteresis must be a disequilibrium effect, or it would violate Gibbs' phase rule, but the separate freezing and melting points are experimentally very definite: ice neither melts nor freezes perceptibly within the 'hysteresis gap', for periods of hours or days. We report here unusual crystal faces on ice crystals grown from solutions of very low concentrations of the anti-freeze glycopeptides and peptides. This is a clue to the mechanism of freezing inhibition, and it may be the basis of a simple, very sensitive test for antifreeze material. Very low concentrations of the antifreeze protein are also remarkably effective in preventing the recrystallization of ice.

  7. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage.

    PubMed

    Hemilä, Harri

    2017-05-01

    To compare the efficacy of zinc acetate lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of zinc acetate found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as zinc acetate lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further.

  8. Freeze-dried plasma at the point of injury: from concept to doctrine.

    PubMed

    Glassberg, Elon; Nadler, Roy; Gendler, Sami; Abramovich, Amir; Spinella, Philip C; Gerhardt, Robert T; Holcomb, John B; Kreiss, Yitshak

    2013-12-01

    While early plasma transfusion for the treatment of patients with ongoing major hemorrhage is widely accepted as part of the standard of care in the hospital setting, logistic constraints have limited its use in the out-of-hospital setting. Freeze-dried plasma (FDP), which can be stored at ambient temperatures, enables early treatment in the out-of-hospital setting. Point-of-injury plasma transfusion entails several significant advantages over currently used resuscitation fluids, including the avoidance of dilutional coagulopathy, by minimizing the need for crystalloid infusion, beneficial effects on endothelial function, physiological pH level, and better maintenance of intravascular volume compared with crystalloid-based solutions. The Israel Defense Forces Medical Corps policy is that plasma is the resuscitation fluid of choice for selected, severely wounded patients and has thus included FDP as part of its armamentarium for use at the point of injury by advanced life savers, across the entire military. We describe the clinical rationale behind the use of FDP at the point-of-injury, the drafting of the administration protocol now being used by Israel Defense Forces advanced life support providers, the process of procurement and distribution, and preliminary data describing the first casualties treated with FDP at the point of injury. It is our hope that others will be able to learn from our experience, thus improving trauma casualty care around the world.

  9. Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids

    NASA Technical Reports Server (NTRS)

    Cutbirth, J. Michael

    2012-01-01

    A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.

  10. Preservation of flavor in freeze dried green beans

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Davis, D.

    1973-01-01

    Before freeze drying, green beans are heated to point at which their cell structure is altered. Beans freeze dried with altered cell structure have improved rehydration properties and retain color, flavor, and texture.

  11. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  12. Alterations in fear response and spatial memory in pre- and post-natal zinc supplemented rats: remediation by copper.

    PubMed

    Railey, Angela M; Micheli, Teresa L; Wanschura, Patricia B; Flinn, Jane M

    2010-05-11

    The role of zinc in the nervous system is receiving increased attention. At a time when dietary fortification and supplementation have increased the amount of zinc being consumed, little work has been done on the effects of enhanced zinc on behavior. Both zinc and copper are essential trace minerals that are acquired from the diet; under normal conditions the body protects against zinc overload, but at excessive dosages, copper deficiency has been seen. In order to examine the effect of enhanced metal administration on learning and memory, Sprague Dawley rats were given water supplemented with 10ppm Zn, 10ppm Zn+0.25ppm Cu, or normal lab water, during pre- and post-natal development. Fear conditioning tests at 4months showed significantly higher freezing rates during contextual retention and extinction and cued extinction for rats drinking water supplemented with zinc, suggesting increased anxiety compared to controls raised on lab water. During the MWM task at 9months, zinc-enhanced rats had significantly longer latencies to reach the platform compared to controls. The addition of copper to the zinc supplemented water brought freezing and latency levels closer to that of controls. These data demonstrate the importance of maintaining appropriate intake of both metals simultaneously, and show that long-term supplementation with zinc may cause alterations in memory. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Freezing curve-based monitoring to quickly evaluate the viability of biological materials subject to freezing or thermal injury.

    PubMed

    Liu, Jing; Zhou, Yi-Xin

    2003-09-01

    This paper is aimed at investigating the roles of freezing dynamics of a liquid droplet to characterize the properties of the material. In particular, freezing curve-based monitoring was proposed to quickly evaluate the viability of biological materials subject to freezing, re-warming, or other kinds of injury, which is an extremely important issue in practices such as cryobiology, hyperthermia, or freshness evaluation of bio-samples. An integrated micro analysis device was fabricated which is simple in structure and cheap to make. Preliminary freezing results demonstrated that minor changes in a biological material due to freezing or warming injury might result in a significant deviation of its freezing curve from that of the intact biomaterials. Several potential thermal indexes to quantify the material features were pointed out. Further, experiments were performed on some freezing and thawing processes of small amount of water on a cooling surface to test the effects of droplet sizes, measurement sites, cooling strength, and cooling geometry, etc., on the freezing responses of a water droplet. Their implementation in developing a new micro analysis system were suggested. This freezing curve-based monitoring method may open a new strategy for the evaluation of biomaterials subject to destruction in diverse fields.

  14. Effects of freezing conditions on quality changes in blueberries.

    PubMed

    Cao, Xuehui; Zhang, Fangfang; Zhao, Dongyu; Zhu, Danshi; Li, Jianrong

    2018-03-12

    Freezing preservation is one of the most effective methods used to maintain the flavour and nutritional value of fruit. This research studied the effects of different freezing conditions, -20 °C, -40 °C, -80 °C, and immersion in liquid nitrogen, on quality changes of freeze-thawed blueberries. The water distribution estimates of blueberries were measured based on low-field nuclear magnetic resonance (LF-NMR) analysis. The pectin content, drip loss, and fruit texture were also detected to evaluate quality changes in samples. The freezing curves of blueberry showed super-cooling points at -20 °C and - 40 °C, whereas super-cooling points were not observed at -80 °C or in liquid nitrogen. After freeze-thaw treatment, the relaxation time of the cell wall water (T 21 ), cytoplasm water and extracellular space (T 22 ), and vacuole water (T 23 ) were significantly shortened compared to fresh samples, which suggested a lower liquidity. Although the freezing speed for samples immersed in liquid nitrogen was faster than other treatments, samples treated at -80 °C showed better quality regarding vacuole water holding, drip loss, and original pectin content retention. This study contributed to understanding how freezing temperature affects the qualities of blueberries. The super-fast freezing rate might injure fruit, and an appropriate freezing rate could better preserve blueberries. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Development of modulated optical transmission system to determinate the cloud and freezing points in biofuels.

    PubMed

    Jaramillo-Ochoa, Liliana; Ramirez-Gutierrez, Cristian F; Sánchez-Moguel, Alonso; Acosta-Osorio, Andrés; Rodriguez-Garcia, Mario E

    2015-01-01

    This work is focused in the development of a modulated optical transmission system with temperature control to determine the thermal properties of biodiesels such as the cloud and freezing points. This system is able to determine these properties in real time without relying on the operator skills as indicated in the American Society for Testing Materials (ASTM) norms. Thanks to the modulation of the incident laser, the noise of the signal is reduced and two information channels are generated: amplitude and phase. Lasers with different wavelengths can be used in this system but the sample under study must have optical absorption at the wavelength of the laser.

  16. Two-dimensional freezing criteria for crystallizing colloidal monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Ziren; Han Yilong; Alsayed, Ahmed M.

    Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At themore » freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.« less

  17. Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat (Triticum aestivum L.).

    PubMed

    Han, Qiaoxia; Kang, Guozhang; Guo, Tiancai

    2013-02-01

    Following three-day exposure to -5 °C simulated spring freeze stress, wheat plants at the anther connective tissue formation phase of spike development displayed the drooping and wilting of leaves and markedly increased rates of relative electrolyte leakage. We analysed freeze-stress responsive proteins in wheat leaves at one and three days following freeze-stress exposure, using two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results indicate that out of 75 protein spots successfully identified under freeze-stress conditions 52 spots were upregulated and 18 were downregulated. These spring freeze-stress responsive proteins were involved in signal transduction, stress/defence/detoxification, protein metabolism (i.e. translation, processing, and degradation), photosynthesis, amino acid metabolism, carbohydrate metabolism, and energy pathways, and may therefore be functionally relevant for many biological processes. The enhanced accumulation of signal transduction proteins such as a C2H2 zinc finger protein, stress/defence/detoxification proteins including LEA-related COR protein, disease resistance protein, Cu/Zn superoxide dismutase, and two ascorbate peroxidases may play crucial roles in the mechanisms of response to spring freeze stress in wheat plants. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Point-of-injury Use of Reconstituted Freeze Dried Plasma as a Resuscitative Fluid: A Special Report for Prehospital Trauma Care

    DTIC Science & Technology

    2013-01-01

    Point-of-injury use of reconstituted freeze dried plasma as a resuscitative fluid: A special report for prehospital trauma care Elon Glassberg, MD...in- jury as part of the multidisciplinary efforts to improve trauma victims’ outcome. BACKGROUND Trauma is the leading cause of death among adults be...diabetes.1 Managing the burden of injuries from decades of wars has underscored the importance of trauma research aimed at reducing morbidity and

  19. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  20. Inactivation of Kudoa septempunctata in olive flounder meat by liquid freezing.

    PubMed

    Ohnishi, Takahiro; Akuzawa, Sayuri; Furusawa, Hiroko; Yoshinari, Tomoya; Kamata, Yoichi; Sugita-Konishi, Yoshiko

    2014-01-01

    Kudoa septempunctata in olive flounder meat was inactivated using 3 distinct freezing methods:liquid freezing for 5 min, air blast freezing at -30℃ for 5 h, and -80℃ for 1 h. The fracture curve of olive flounder meat subjected to liquid freezing resembled that of meat stored at 4℃, indicating that the structure of olive flounder muscle was well preserved. In contrast, air blast freezing induced the disappearance of the fracture point in the fracture curve, indicating that there was deterioration in the meat quality. Liquid freezing preserved the transparency of olive flounder meat to the same degree as that of meat stored at 4°C. However, air blast freezing induced meat cloudiness. These results indicate that liquid freezing can be used for K. septempunctata inactivation without affecting the meat quality.

  1. Hatchling turtles survive freezing during winter hibernation.

    PubMed Central

    Storey, K B; Storey, J M; Brooks, S P; Churchill, T A; Brooks, R J

    1988-01-01

    Hatchlings of the painted turtle (Chrysemys picta marginata) are unique as the only reptile and highest vertebrate life form known to tolerate the natural freezing of extracellular body fluids during winter hibernation. Turtles survived frequent exposures to temperatures as low as -6 degrees C to -8 degrees C in their shallow terrestrial nests over the 1987-1988 winter. Hatchlings collected in April 1988 had a mean supercooling point of -3.28 +/- 0.24 degrees C and survived 24 hr of freezing at -4 degrees C with 53.4% +/- 1.98% of total body water as ice. Recovery appeared complete after 20 hr of thawing at 3 degrees C. However, freezing at -10.9 degrees C, resulting in 67% ice, was lethal. A survey of possible cryoprotectants revealed a 2- to 3-fold increase in glucose content of liver and blood and a 3-fold increase in blood glycerol in response to freezing. Although quantitatively low, these responses by spring turtles strongly indicate that these may be the winter-active cryoprotectants. The total amino acid pool of blood also increased 2.25-fold in freezing-exposed turtles, and taurine accounted for 52% of the increase. Most organs accumulated high concentrations of lactate during freezing, a response to the ischemic state imposed by extracellular freezing. Changes in glycogen phosphorylase activity and levels of glucose 6-phosphate and fructose 2,6-bisphosphate were also consistent with a dependence on anaerobic glycolysis during freezing. Studies of the molecular mechanisms of natural freeze tolerance in these turtles may identify protective strategies that can be used in mammalian organ cryopreservation technology. PMID:3186730

  2. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  3. Theory of freezing in simple systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Bagchi, B.

    The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and eachmore » other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.« less

  4. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    --the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature

  5. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    PubMed

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  6. Numerical simulation of the effect of groundwater salinity on artificial freezing wall in coastal area

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Liu, Quan

    2017-04-01

    During the engineering projects with artificial ground freezing (AFG) techniques in coastal area, the freezing effect is affected by groundwater salinity. Based on the theories of artificially frozen soil and heat transfer in porous material, and with the assumption that only the variations of total dissolved solids (TDS) impact on freezing point and thermal conductivity, a numerical model of an AFG project in a saline aquifer was established and validated by comparing the simulated temperature field with the calculated temperature based on the analytic solution of rupak (reference) for single-pipe freezing temperature field T. The formation and development of freezing wall were simulated with various TDS. The results showed that the variety of TDS caused the larger temperature difference near the frozen front. With increasing TDS in the saline aquifer (1 35g/L), the average thickness of freezing wall decreased linearly and the total formation time of the freezing wall increased linearly. Compared with of the scenario of fresh-water (<1g/L), the average thickness of frozen wall decreased by 6% and the total formation time of the freezing wall increased by 8% with each increasing TDS of 7g/L. Key words: total dissolved solids, freezing point, thermal conductivity, freezing wall, numerical simulation Reference D.J.Pringel, H.Eicken, H.J.Trodahl, etc. Thermal conductivity of landfast Antarctic and Arctic sea ice[J]. Journal of Geophysical Research, 2007, 112: 1-13. Lukas U.Arenson, Dave C.Sego. The effect of salinity on the freezing of coarse- grained sand[J]. Canadian Geotechnical Journal, 2006, 43: 325-337. Hui Bing, Wei Ma. Laboratory investigation of the freezing point of saline soil[J]. Cold Regions Science and Technology, 2011, 67: 79-88.

  7. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

    PubMed Central

    Kim, Byeongsoo; Gil, Hyung Bae; Min, Sang-Gi; Lee, Si-Kyung; Choi, Mi-Jung

    2014-01-01

    This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from -20℃ to -50℃) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from -0.2℃ (10% gelatin) to -6.7℃ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above -40℃. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature (-50℃) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals. PMID:26760743

  8. Novel Real-Time Diagnosis of the Freezing Process Using an Ultrasonic Transducer

    PubMed Central

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from −100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  9. Freezing and thawing or freezing, thawing, and aging effects on beef tenderness.

    PubMed

    Grayson, A L; King, D A; Shackelford, S D; Koohmaraie, M; Wheeler, T L

    2014-06-01

    The objective of this study was to determine the effect of freezing and thawing or freezing and thawing with an additional aging period after frozen storage on the tenderness of longissimus lumborum (LL) and semitendinosus (ST) steaks relative to aged, fresh steaks. Left-side LL and ST (n = 35 each) were obtained from U.S. Select carcasses classified at the grading stand by the U.S. Meat Animal Research Center visible and near-infrared spectroscopy tenderness system to have predicted slice shear force greater than 16.5 kg at 14 d postmortem. At 2 d postmortem, 2.54 cm thick steaks were cut from each muscle and assigned to 1 of the following treatments: 2 d fresh (2FRESH), 2 d freeze + thaw (2FREEZE), 2 d freeze + thaw + 12 d age (2FREEZE+12AGE), 14 d fresh (14FRESH), 14 d freeze + thaw (14FREEZE), 14 d freeze + thaw + 14 d age (14FREEZE+14AGE), and 28 d fresh (28FRESH). Steaks assigned to a freezing treatment were frozen at -26°C for 30 d before thawing/cooking or thawing with an additional aging period at 2°C. Slice shear force for LL and ST was lower (P < 0.01) for 2FREEZE (27.4 and 24.5 kg) and 14FREEZE (22.4 and 22.4 kg) compared to 2FRESH (33.0 and 29.2 kg) and 14FRESH (25.3 and 25.5 kg), respectively. Slice shear force for LL and ST was lower (P < 0.01) for 2FREEZE+12AGE (17.8 and 20.8 kg) and 14FREEZE+14AGE (14.6 and 19.0 kg) compared to 14FRESH (25.3 and 25.5 kg) and 28FRESH (18.7 and 21.7 kg), respectively. Desmin degradation for LL was not different (P > 0.05) between 2FREEZE (21.0%) and 2FRESH (14.6%) or between 14FREEZE (40.4%) and 14FRESH (38.4%); however, desmin degradation was higher (P < 0.06) in 2FREEZE+12AGE (46.7%) and 14FREEZE+14AGE (71.1%) when compared to 14FRESH (38.4%) and 28FRESH (60.5%), respectively. Cooking loss for LL was higher (P < 0.01) in 2FREEZE+12AGE (15.2%) compared to 14FRESH (14.0%) but was not different (P > 0.05) between 14FREEZE+14AGE (15.0%) and 28FRESH (14.3%). Freezing and thawing or a combination of freezing, thawing

  10. Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor.

    PubMed

    Pedersen, Sindre A; Kristiansen, Erlend; Hansen, Bjørn H; Andersen, Rolf A; Zachariassen, Karl E

    2006-08-01

    The antifreeze proteins (AFPs) are a family of proteins characterised by their ability to inhibit the growth of ice. These proteins have evolved as a protection against lethal freezing in freeze avoiding species. Metal stress has been shown to reduce the cold hardening in invertebrates, but no study has investigated how this type of stress affects the production of AFPs. This study demonstrates that exposure to cadmium (Cd), copper (Cu) and zinc (Zn) reduces the normal developmental increase in AFP levels in Tenebrio molitor larvae reared under summer conditions. Exposure to winter conditions, however stimulated the production of AFPs in the metal exposed larvae, and raised the concentrations of AFPs to normal winter levels. The reduced level of AFPs in metal-stressed animals acclimated to summer conditions seems to arise from alterations in the normal gene expression of AFPs. The results indicate that metal exposure may cause freeze avoiding insects to become more susceptible to lethal freezing, as they enter the winter with lowered levels of AFPs. Such an effect cannot be revealed by ordinary toxicological tests, but may nevertheless be of considerable ecological importance.

  11. Microbial analysis and survey test of gamma-irradiated freeze-dried fruits for patient's food

    NASA Astrophysics Data System (ADS)

    Park, Jae-Nam; Sung, Nak-Yun; Byun, Eui-Hong; Byun, Eui-Baek; Song, Beom-Seok; Kim, Jae-Hun; Lee, Kyung-A.; Son, Eun-Joo; Lyu, Eun-Soon

    2015-06-01

    This study examined the microbiological and organoleptic qualities of gamma-irradiated freeze-dried apples, pears, strawberries, pineapples, and grapes, and evaluated the organoleptic acceptability of the sterilized freeze-dried fruits for hospitalized patients. The freeze-dried fruits were gamma-irradiated at 0, 1, 2, 3, 4, 5, 10, 12, and 15 kGy, and their quality was evaluated. Microorganisms were not detected in apples after 1 kGy, in strawberries and pears after 4 kGy, in pineapples after 5 kGy, and in grapes after 12 kGy of gamma irradiation. The overall acceptance score, of the irradiated freeze-dried fruits on a 7-point scale at the sterilization doses was 5.5, 4.2, 4.0, 4.1, and 5.1 points for apples, strawberries, pears, pineapples, and grapes, respectively. The sensory survey of the hospitalized cancer patients (N=102) resulted in scores of 3.8, 3.7, 3.9, 3.9, and 3.7 on a 5-point scale for the gamma-irradiated freeze-dried apples, strawberries, pears, pineapples, and grapes, respectively. The results suggest that freeze-dried fruits can be sterilized with a dose of 5 kGy, except for grapes, which require a dose of 12 kGy, and that the organoleptic quality of the fruits is acceptable to immuno-compromised patients. However, to clarify the microbiological quality and safety of freeze-dried fruits should be verified by plating for both aerobic and anaerobic microorganisms.

  12. Freezing Bubbles

    NASA Astrophysics Data System (ADS)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  13. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

  14. Hepatitis B vaccine freezing in the Indonesian cold chain: evidence and solutions.

    PubMed

    Nelson, Carib M; Wibisono, Hariadi; Purwanto, Hary; Mansyur, Isa; Moniaga, Vanda; Widjaya, Anton

    2004-02-01

    To document and characterize freezing temperatures in the Indonesian vaccine cold chain and to evaluate the feasibility of changes designed to reduce the occurrence of freezing. Data loggers were used to measure temperatures of shipments of hepatitis B vaccine from manufacturer to point of use. Baseline conditions and three intervention phases were monitored. During each of the intervention phases, vaccines were removed progressively from the standard 2-8 degrees C cold chain. Freezing temperatures were recorded in 75% of baseline shipments. The highest rates of freezing occurred during transport from province to district, storage in district-level ice-lined refrigerators, and storage in refrigerators in health centres. Interventions reduced freezing, without excessive heat exposure. Inadvertent freezing of freeze-sensitive vaccines is widespread in Indonesia. Simple strategies exist to reduce freezing - for example, selective transport and storage of vaccines at ambient temperatures. The use of vaccine vial monitors reduces the risk associated with heat-damaged vaccines in these scenarios. Policy changes that allow limited storage of freeze-sensitive vaccines at temperatures >2-8 degrees C would enable flexible vaccine distribution strategies that could reduce vaccine freezing, reduce costs, and increase capacity.

  15. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    NASA Astrophysics Data System (ADS)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  16. Synchrotron X-Ray Visualisation of Ice Formation in Insects during Lethal and Non-Lethal Freezing

    PubMed Central

    Sinclair, Brent J.; Gibbs, Allen G.; Lee, Wah-Keat; Rajamohan, Arun; Roberts, Stephen P.; Socha, John J.

    2009-01-01

    Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3rd instar larvae of Chymomyza amoena (Diptera: Drosophilidae), which survive freezing if it occurs above −14°C, and non-diapausing 3rd instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae), neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP), and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects. PMID:20011523

  17. Effect of Freezing on the Level of Contaminants in Uncontrolled Hazardous Waste Sites. Part 1. Literature Review.

    DTIC Science & Technology

    1986-07-01

    pure water. Dissolved ions in the soil solution lower the freezing point; this is called freezing point depression. Many of the early studies of...them in the remaining soil solution . The temperature and concentration of this solution affect the chemical reactions and the forms of ions in...in the soil solution freezes, more concentrated "% solutes will be present in soil solution . 3. Water will travel even in frozen soils and sediments

  18. Freeze for action: neurobiological mechanisms in animal and human freezing

    PubMed Central

    2017-01-01

    Upon increasing levels of threat, animals activate qualitatively different defensive modes, including freezing and active fight-or-flight reactions. Whereas freezing is a form of behavioural inhibition accompanied by parasympathetically dominated heart rate deceleration, fight-or-flight reactions are associated with sympathetically driven heart rate acceleration. Despite the potential relevance of freezing for human stress-coping, its phenomenology and neurobiological underpinnings remain largely unexplored in humans. Studies in rodents have shown that freezing depends on amygdala projections to the brainstem (periaqueductal grey). Recent neuroimaging studies in humans have indicated that similar brain regions may be involved in human freezing. In addition, flexibly shifting between freezing and active defensive modes is critical for adequate stress-coping and relies on fronto-amygdala connections. This review paper presents a model detailing these neural mechanisms involved in freezing and the shift to fight-or-flight action. Freezing is not a passive state but rather a parasympathetic brake on the motor system, relevant to perception and action preparation. Study of these defensive responses in humans may advance insights into human stress-related psychopathologies characterized by rigidity in behavioural stress reactions. The paper therefore concludes with a research agenda to stimulate translational animal–human research in this emerging field of human defensive stress responses. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’. PMID:28242739

  19. Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying.

    PubMed

    Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro

    2014-06-01

    Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast.

    PubMed

    Panadero, Joaquín; Hernández-López, Maria José; Prieto, José Antonio; Randez-Gil, Francisca

    2007-08-01

    Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys(2)/His(2)-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Deltacnb1 and Deltacrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.

  1. Colloid-facilitated mobilization of metals by freeze-thaw cycles.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2014-01-21

    The potential of freeze-thaw cycles to release colloids and colloid-associated contaminants into water is unknown. We examined the effect of freeze-thaw cycles on the mobilization of cesium and strontium in association with colloids in intact cores of a fractured soil, where preferential flow paths are prevalent. Two intact cores were contaminated with cesium and strontium. To mobilize colloids and metal cations sequestered in the soil cores, each core was subjected to 10 intermittent wetting events separated by 66 h pauses. During the first five pauses, the cores were dried at room temperature, and during last five pauses, the cores were subjected to 42 h of freezing followed by 24 h of thawing. In comparison to drying, freeze-thaw cycles created additional preferential flow paths through which colloids, cesium, and strontium were mobilized. The wetting events following freeze-thaw intervals mobilized about twice as many colloids as wetting events following drying at room temperature. Successive wetting events following 66 h of drying mobilized similar amounts of colloids; in contrast, successive wetting events after 66 h of freeze-thaw intervals mobilized greater amounts of colloids than the previous one. Drying and freeze-thaw treatments, respectively, increased and decreased the dissolved cesium and strontium, but both treatments increased the colloidal cesium and strontium. Overall, the freeze-thaw cycles increased the mobilization of metal contaminants primarily in association with colloids through preferential flow paths. These findings suggest that the mobilization of colloid and colloid-associated contaminants could increase when temperature variations occur around the freezing point of water. Thus, climate extremes have the potential to mobilize contaminants that have been sequestered in the vadose zone for decades.

  2. Zinc-The key to preventing corrosion

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  3. A comparison of freezing-damage during isochoric and isobaric freezing of the potato.

    PubMed

    Lyu, Chenang; Nastase, Gabriel; Ukpai, Gideon; Serban, Alexandru; Rubinsky, Boris

    2017-01-01

    Freezing is commonly used for food preservation. It is usually done under constant atmospheric pressure (isobaric). While extending the life of the produce, isobaric freezing has detrimental effects. It causes loss of food weight and changes in food quality. Using thermodynamic analysis, we have developed a theoretical model of the process of freezing in a constant volume system (isochoric). The mathematical model suggests that the detrimental effects associated with isobaric freezing may be reduced in an isochoric freezing system. To explore this hypothesis, we performed a preliminary study on the isochoric freezing of a produce with which our group has experience, the potato. Experiments were performed in an isochoric freezing device we designed. The device is robust and has no moving parts. For comparison, we used a geometrically identical isobaric freezing device. Following freezing and thawing, the samples were weighed, examined with colorimetry, and examined with microscopy. It was found that potatoes frozen to -5 °C in an isochoric system experienced no weight loss and limited enzymatic browning. In contrast the -5 °C isobaric frozen potato experienced substantial weight loss and substantial enzymatic browning. Microscopic analysis shows that the structural integrity of the potato is maintained after freezing in the isochoric system and impaired after freezing in the isobaric system. Tissue damage during isobaric freezing is caused by the increase in extracellular osmolality and the mechanical damage by ice crystals. Our thermodynamic analysis predicts that during isochoric freezing the intracellular osmolality remains comparable to the extracellular osmolality and that isochoric systems can be designed to eliminate the mechanical damage by ice. The results of this preliminary study seem to confirm the theoretical predictions. This is a preliminary exploratory study on isochoric freezing of food. We have shown that the quality of a food product preserved

  4. Kinetic freeze-out conditions for the production of resonances, hadronic molecules, and light nuclei

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae; Song, Taesoo; Lee, Su Houng

    2018-02-01

    We investigate the freeze-out conditions of a particle in an expanding system of interacting particles in order to understand the productions of resonances, hadronic molecules, and light nuclei in heavy-ion collisions. Applying the kinetic freeze-out condition with explicit hydrodynamic calculations for the expanding hadronic phase to the daughter particles of K* mesons, we find that the larger suppression of the yield ratio of K*/K at the Large Hadron Collider (LHC) than at the Relativisitic Heavy Ion Collider (RHIC) compared to the expectations from the statistical hadronization model based on chemical freeze-out parameters reflects the lower kinetic freeze-out temperature at LHC than at RHIC. Furthermore, we point out that for the light nuclei or hadronic molecules that are bound, the freeze-out condition should be applied to the respective particle in the hadronic matter. It is then shown through the rate equation that when the nucleon and pion numbers are kept constant at the chemical freeze-out value during the hadronic phase, the deuteron number quickly approaches an asymptotic value that is close to the statistical model prediction at the chemical freeze-out point. We argue that the reduction seen in K* numbers is a typical result for a particle that has a large natural decay width decaying into daughter particles, while that for deuteron is typical for a stable hadronic bound state.

  5. Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.

    PubMed

    Chen, Yu; Jiang, Jiafu; Song, Aiping; Chen, Sumei; Shan, Hong; Luo, Huolin; Gu, Chunsun; Sun, Jing; Zhu, Lu; Fang, Weimin; Chen, Fadi

    2013-12-19

    ICE (Inducer of CBF Expression) family genes play an important role in the regulation of cold tolerance pathways. In an earlier study, we isolated the gene CdICE1 from Chrysanthemum dichrum and demonstrated that freezing tolerance was enhanced by CdICE1 overexpression. Therefore, we sought to determine the mechanism by which ICE1 family genes participate in freezing tolerance. Using EMSA (Electrophoretic Mobility Shift Assay) and yeast one-hybrid assays, we confirmed that CdICE1 binds specifically to the MYC element in the CdDREBa promoter and activates transcription. In addition, overexpression of CdICE1 enhanced Arabidopsis freezing tolerance after transition from 23°C to 4°C or 16°C. We found that after acclimation to 4°C, CdICE1, like Arabidopsis AtICE1, promoted expression of CBFs (CRT/DRE Binding Factor) and their genes downstream involved in freezing tolerance, including COR15a (Cold-Regulated 15a), COR6.6, and RD29a (Responsive to Dessication 29a). Interestingly, we observed that CdICE1-overexpressing plants experienced significant reduction in miR398. In addition, its target genes CSD1 (Copper/zinc Superoxide Dismutase 1) and CSD2 showed inducible expression under acclimation at 16°C, indicating that the miR398-CSD pathway was involved in the induction of freezing tolerance. Our data indicate that CdICE1-mediated freezing tolerance occurs via different pathways, involving either CBF or miR398, under acclimation at two different temperatures.

  6. Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398

    PubMed Central

    2013-01-01

    Background ICE (Inducer of CBF Expression) family genes play an important role in the regulation of cold tolerance pathways. In an earlier study, we isolated the gene CdICE1 from Chrysanthemum dichrum and demonstrated that freezing tolerance was enhanced by CdICE1 overexpression. Therefore, we sought to determine the mechanism by which ICE1 family genes participate in freezing tolerance. Results Using EMSA (Electrophoretic Mobility Shift Assay) and yeast one-hybrid assays, we confirmed that CdICE1 binds specifically to the MYC element in the CdDREBa promoter and activates transcription. In addition, overexpression of CdICE1 enhanced Arabidopsis freezing tolerance after transition from 23°C to 4°C or 16°C. We found that after acclimation to 4°C, CdICE1, like Arabidopsis AtICE1, promoted expression of CBFs (CRT/DRE Binding Factor) and their genes downstream involved in freezing tolerance, including COR15a (Cold-Regulated 15a), COR6.6, and RD29a (Responsive to Dessication 29a). Interestingly, we observed that CdICE1-overexpressing plants experienced significant reduction in miR398. In addition, its target genes CSD1 (Copper/zinc Superoxide Dismutase 1) and CSD2 showed inducible expression under acclimation at 16°C, indicating that the miR398-CSD pathway was involved in the induction of freezing tolerance. Conclusions Our data indicate that CdICE1-mediated freezing tolerance occurs via different pathways, involving either CBF or miR398, under acclimation at two different temperatures. PMID:24350981

  7. A comparison of freezing-damage during isochoric and isobaric freezing of the potato

    PubMed Central

    Serban, Alexandru; Rubinsky, Boris

    2017-01-01

    Background Freezing is commonly used for food preservation. It is usually done under constant atmospheric pressure (isobaric). While extending the life of the produce, isobaric freezing has detrimental effects. It causes loss of food weight and changes in food quality. Using thermodynamic analysis, we have developed a theoretical model of the process of freezing in a constant volume system (isochoric). The mathematical model suggests that the detrimental effects associated with isobaric freezing may be reduced in an isochoric freezing system. To explore this hypothesis, we performed a preliminary study on the isochoric freezing of a produce with which our group has experience, the potato. Method Experiments were performed in an isochoric freezing device we designed. The device is robust and has no moving parts. For comparison, we used a geometrically identical isobaric freezing device. Following freezing and thawing, the samples were weighed, examined with colorimetry, and examined with microscopy. Results It was found that potatoes frozen to −5 °C in an isochoric system experienced no weight loss and limited enzymatic browning. In contrast the −5 °C isobaric frozen potato experienced substantial weight loss and substantial enzymatic browning. Microscopic analysis shows that the structural integrity of the potato is maintained after freezing in the isochoric system and impaired after freezing in the isobaric system. Discussion Tissue damage during isobaric freezing is caused by the increase in extracellular osmolality and the mechanical damage by ice crystals. Our thermodynamic analysis predicts that during isochoric freezing the intracellular osmolality remains comparable to the extracellular osmolality and that isochoric systems can be designed to eliminate the mechanical damage by ice. The results of this preliminary study seem to confirm the theoretical predictions. Conclusion This is a preliminary exploratory study on isochoric freezing of food. We have

  8. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  9. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  10. To freeze or not to freeze embryos: clarity, confusion and conflict.

    PubMed

    Goswami, Mohar; Murdoch, Alison P; Haimes, Erica

    2015-06-01

    Although embryo freezing is a routine clinical practice, there is little contemporary evidence on how couples make the decision to freeze their surplus embryos, or of their perceptions during that time. This article describes a qualitative study of 16 couples who have had in vitro fertilisation (IVF) treatment. The study question was 'What are the personal and social factors that patients consider when deciding whether to freeze embryos?' We show that while the desire for a baby is the dominant drive, couples' views revealed more nuanced and complex considerations in the decision-making process. It was clear that the desire to have a baby influenced couples' decision-making and that they saw freezing as 'part of the process'. However, there were confusions associated with the term 'freezing' related to concerns about the safety of the procedure. Despite being given written information, couples were confused about the practical aspects of embryo freezing, which suggests they were preoccupied with the immediate demands of IVF. Couples expressed ethical conflicts about freezing 'babies'. We hope the findings from this study will inform clinicians and assist them in providing support to couples confronted with this difficult decision-making.

  11. Satellite freeze forecast system

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    Provisions for back-up operations for the satellite freeze forecast system are discussed including software and hardware maintenance and DS/1000-1V linkage; troubleshooting; and digitized radar usage. The documentation developed; dissemination of data products via television and the IFAS computer network; data base management; predictive models; the installation of and progress towards the operational status of key stations; and digital data acquisition are also considered. The d addition of dew point temperature into the P-model is outlined.

  12. Multi-point estimation of total energy expenditure: a comparison between zinc-reduction and platinum-equilibration methodologies.

    PubMed

    Sonko, Bakary J; Miller, Leland V; Jones, Richard H; Donnelly, Joseph E; Jacobsen, Dennis J; Hill, James O; Fennessey, Paul V

    2003-12-15

    Reducing water to hydrogen gas by zinc or uranium metal for determining D/H ratio is both tedious and time consuming. This has forced most energy metabolism investigators to use the "two-point" technique instead of the "Multi-point" technique for estimating total energy expenditure (TEE). Recently, we purchased a new platinum (Pt)-equilibration system that significantly reduces both time and labor required for D/H ratio determination. In this study, we compared TEE obtained from nine overweight but healthy subjects, estimated using the traditional Zn-reduction method to that obtained from the new Pt-equilibration system. Rate constants, pool spaces, and CO2 production rates obtained from use of the two methodologies were not significantly different. Correlation analysis demonstrated that TEEs estimated using the two methods were significantly correlated (r=0.925, p=0.0001). Sample equilibration time was reduced by 66% compared to those of similar methods. The data demonstrated that the Zn-reduction method could be replaced by the Pt-equilibration method when TEE was estimated using the "Multi-Point" technique. Furthermore, D equilibration time was significantly reduced.

  13. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff.

    PubMed

    Harada, Shigeki; Yanbe, Miyu

    2018-04-01

    This report describes the use of porous concrete at the bottom of a sewage trap to prevent runoff of non-point heavy metals into receiving waters, and, secondarily, to reduce total runoff volume during heavy rains in urbanized areas while simultaneously increasing the recharge volume of heavy-metal-free water into underground aquifers. This idea has the advantage of preventing clogging, which is fundamentally very important when using pervious materials. During actual field experiments, two important parameters were identified: maximum adsorption weight of lead and zinc by the volume of porous concrete, and heavy metal recovery rate by artificial acidification after adsorption. To understand the effect of ambient heavy metal concentration, a simple mixing system was used to adjust the concentrations of lead and zinc solutions. The concrete blocks used had been prepared for a previous study by Harada & Komuro (2010). The results showed that maximum adsorption depended on the ambient concentration, expressed as the linear isothermal theory, and that recovery depended on the final pH value (0.5 or 0.0). The dependence on pH is very important for recycling the porous concrete. A pH of 0.5 is important for recycling both heavy metals, especially zinc, (8.0-22.1% of lead and 42-74% of zinc) and porous concrete because porous concrete has not been heavily damaged by acid. However, at a pH of 0.0, the heavy metals could be recovered: 30-60% of the lead and 75-125% of the zinc. At a higher pH, such as 2.0, no release of heavy metals occurred, indicating the safety to the environment of using porous concrete, because the lowest recorded pH of rainfall in Japan is. 4.0. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Neuropathy in non-freezing cold injury (trench foot).

    PubMed Central

    Irwin, M S; Sanders, R; Green, C J; Terenghi, G

    1997-01-01

    Non-freezing cold injury (trench foot) is characterized, in severe cases, by peripheral nerve damage and tissue necrosis. Controversy exists regarding the susceptibility of nerve fibre populations to injury as well as the mechanism of injury. Clinical and histological studies (n = 2) were conducted in a 40-year-old man with severe non-freezing cold injury in both feet. Clinical sensory tests, including two-point discrimination and pressure, vibration and thermal thresholds, indicated damage to large and small diameter nerves. On immunohistochemical assessment, terminal cutaneous nerve fibres within the plantar skin stained much less than in a normal control whereas staining to von Willebrand factor pointed to increased vascularity in all areas. The results indicate that all nerve populations (myelinated and unmyelinated) were damaged, possibly in a cycle of ischaemia and reperfusion. Images Figure 1 a Figure 1 b Figure 2 a Figure 2 b Figure 3 a Figure 3 b PMID:9306996

  15. Freezing during tapping tasks in patients with advanced Parkinson's disease and freezing of gait.

    PubMed

    Delval, Arnaud; Defebvre, Luc; Tard, Céline

    2017-01-01

    Parkinson's disease patients with freezing of gait also experience sudden motor blocks (freezing) during other repetitive motor tasks. We assessed the proportion of patients with advanced PD and freezing of gait who also displayed segmental "freezing" in tapping tasks. Fifteen Parkinson's disease patients with freezing of gait were assessed. Freezing of gait was evaluated using a standardized gait trajectory with the usual triggers. Patients performed repetitive tapping movements (as described in the MDS-UPDRS task) with the hands or the feet in the presence or absence of a metronome set to 4 Hz. Movements were recorded with a video motion system. The primary endpoint was the occurrence of segmental freezing in these tapping tasks. The secondary endpoints were (i) the relationship between segmental episodic phenomena and FoG severity, and (ii) the reliability of the measurements. For the upper limbs, freezing was observed more frequently with a metronome (21% of trials) than without a metronome (5%). For the lower limbs, the incidence of freezing was higher than for the upper limbs, and was again observed more frequently in the presence of an auditory cue (47%) than in its absence (14%). Although freezing of the lower limbs was easily assessed during an MDS-UPDRS task with a metronome, it was not correlated with the severity of freezing of gait (as evaluated during a standardized gait trajectory). Only this latter was a reliable measurement in patients with advanced Parkinson's disease.

  16. Freezing of Water Droplet due to Evaporation

    NASA Astrophysics Data System (ADS)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  17. Freezing in the Antarctic limpet, Nacella concinna.

    PubMed

    Hawes, T C; Worland, M R; Bale, J S

    2010-08-01

    The process of organismal freezing in the Antarctic limpet, Nacella concinna, is complicated by molluscan biology. Internal ice formation is, in particular, mediated by two factors: (a) the provision of an inoculative target for ice formation in the exposed mucus-secreting foot; and (b) osmoconformity to the marine environment. With regard to the first, direct observations of the independent freezing of pedal mucus support the hypothesis that internal ice formation is delayed by the mucal film. As to the second, ice nucleation parametrics of organismal tissue (head, midgut, gonad, foot) and mucus in both inter- and subtidal populations were characterized by high melting points (range=-4.61 to -6.29 degrees C), with only c.50% of a given sample osmotically active. At this stage it would be premature to ascribe a cryo-adaptive function to the mucus as the protective effects are more readily attributed to the physical properties of the secretion (i.e. viscosity) and their corresponding effects on the rate of heat transfer. As it is difficult to thermally distinguish between the freezing of mucus and the rest of the animal, the question as to whether it is tolerant of internal as well as external ice formation remains problematic, although it may be well suited to the osmotic stresses of organismal freezing. (c) 2010 Elsevier Inc. All rights reserved.

  18. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger with Bypass Setpoint Temperature Control

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Spacecraft radiators are sized for their maximum heat load in their warmest thermal environment, but must operate at reduced heat loads and in colder environments. For systems where the radiator environment can be colder than the working fluid freezing temperature, radiator freezing becomes an issue. Radiator freezing has not been a major issue for the Space Shuttle and the International Space Station (ISS) active thermal control systems (ATCSs) because they operate in environments that are warm relative to the freezing point of their external coolants (Freon-21 and ammonia, respectively). For a vehicle that lands at the Lunar South Pole, the design thermal environment is 215K, but the radiator working fluid must also be kept from freezing during the 0 K sink of transit. A radiator bypass flow control design such as those used on the Space Shuttle and ISS requires more than 30% of the design heat load to avoid radiator freezing during transit - even with a very low freezing point working fluid. By changing the traditional ATCS architecture to include a regenerating heat exchanger inboard of the radiator and by using a regenerator bypass flow control valve to maintain system setpoint, the required minimum heat load can be reduced by more than half. This gives the spacecraft much more flexibility in design and operation. The present work describes the regenerator bypass ATCS setpoint control methodology. It includes analytical results comparing the performance of this system to the traditional radiator bypass system. Finally, a summary of the advantages of the regenerator bypass system are presented.

  19. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the zinc...) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description of the zinc subcategory. This subpart applies to discharges to waters of the United...

  20. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the zinc...) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description of the zinc subcategory. This subpart applies to discharges to waters of the United...

  1. Molecular snapshot of an intracellular freezing event in an Antarctic nematode.

    PubMed

    Thorne, Michael A S; Seybold, Anna; Marshall, Craig; Wharton, David

    2017-04-01

    The Antarctic nematode, Panagrolaimus sp. DAW1 (formerly called Panagrolaimus davidi), is the best documented example of an organism able to survive intracellular ice formation in all of its compartments. Not only is it able to survive such extreme physiological disruption, but it is able to produce progeny once thawed from such a state. In addition, under slower rates, or less extreme degrees, of cooling, its body remains unfrozen and the vapour pressure difference between the supercooled body fluids and the surrounding ice leads to a process termed cryoprotective dehydration. In contrast to a fairly large body of work in building up our molecular understanding of cryoprotective dehydration, no comparable work has been undertaken on intracellular freezing. This paper describes an experiment subjecting cultures of Panagrolaimus sp. DAW1 to a range of temperatures including a rapid descent to -10 °C, in a medium just prior to, and after, freezing. Through deep sequencing of RNA libraries we have gained a snapshot of which genes are highly abundant when P. sp. DAW1 is undergoing an intracellular freezing event. The onset of freezing correlated with a high production of genes involved in cuticle formation and subsequently, after 24 h in a frozen state, protease production. In addition to the mapping of RNA sequencing, we have focused on a select set of genes arising both from the expression profiles, as well as implicated from other cold tolerance studies, to undertake qPCR. Among the most abundantly represented transcripts in the RNA mapping is the zinc-metalloenzyme, neprilysin, which also shows a particularly strong upregulated signal through qPCR once the nematodes have frozen. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Using Power Ultrasound to Accelerate Food Freezing Processes: Effects on Freezing Efficiency and Food Microstructure.

    PubMed

    Zhang, Peizhi; Zhu, Zhiwei; Sun, Da-Wen

    2018-05-31

    Freezing is an effective way of food preservation. However, traditional freezing methods have the disadvantages of low freezing efficiency and generation of large ice crystals, leading to possible damage of food quality. Power ultrasound assisted freezing as a novel technique can effectively reduce the adverse effects during freezing process. This paper gives an overview on recent researches of power ultrasound technique to accelerate the food freezing processes and illustrates the main principles of power ultrasound assisted freezing. The effects of power ultrasound on liquid food, model solid food as well as fruit and vegetables are discussed, respectively, from the aspects of increasing freezing rate and improving microstructure. It is shown that ultrasound assisted freezing can effectively improve the freezing efficiency and promote the formation of small and evenly distributed ice crystals, resulting in better food quality. Different inherent properties of food samples affect the effectiveness of ultrasound application and optimum ultrasound parameters depend on the nature of the samples. The application of ultrasound to the food industry is more likely on certain types of food products and more efforts are still needed to realize the industrial translation of laboratory results.

  3. Simulations of Polar Stratospheric Clouds and Denitrification Using Laboratory Freezing Rates

    NASA Technical Reports Server (NTRS)

    Drdla, Katja; Tabazadeh, Azadeh; Gore, Warren J. (Technical Monitor)

    2001-01-01

    During the 1999-2000 Arctic winter, the SAGE (Stratospheric Aerosol and Gas Experiment) III Ozone Loss and Validation Experiment (SOLVE) provided evidence of widespread solid-phase polar stratospheric clouds (PSCs) accompanied by severe nitrification. Previous simulations have shown that a freezing process occurring at temperatures above the ice frost point is necessary to explain these observations. In this work, the nitric acid freezing rates measured by Salcedo et al. and discussed by Tabazadeh et al. have been examined. These freezing rates have been tested in winter-long microphysical simulations of the 1999-2000 Arctic vortex evolution in order to determine whether they can explain the observations. A range of cases have been explored, including whether the PSC particles are composed of nitric acid dihydrate or trihydrate, whether the freezing process is a bulk process or occurs only on the particle surfaces, and uncertainties in the derived freezing rates. Finally, the possibility that meteoritic debris enhances the freezing rate has also been examined. The results of these simulations have been compared with key PSC and denitrification measurements made by the SOLVE campaign. The cases that best reproduce the measurements will he highlighted, with a discussion of the implications for our understanding of PSCs.

  4. A theoretical extension of the soil freezing curve paradigm

    NASA Astrophysics Data System (ADS)

    Amiri, Erfan A.; Craig, James R.; Kurylyk, Barret L.

    2018-01-01

    Numerical models of permafrost evolution in porous media typically rely upon a smooth continuous relation between pore ice saturation and sub-freezing temperature, rather than the abrupt phase change that occurs in pure media. Soil scientists have known for decades that this function, known as the soil freezing curve (SFC), is related to the soil water characteristic curve (SWCC) for unfrozen soils due to the analogous capillary and sorptive effects experienced during both soil freezing and drying. Herein we demonstrate that other factors beyond the SFC-SWCC relationship can influence the potential range over which pore water phase change occurs. In particular, we provide a theoretical extension for the functional form of the SFC based upon the presence of spatial heterogeneity in both soil thermal conductivity and the freezing point depression of water. We infer the functional form of the SFC from many abrupt-interface 1-D numerical simulations of heterogeneous systems with prescribed statistical distributions of water and soil properties. The proposed SFC paradigm extension has the appealing features that it (1) is determinable from measurable soil and water properties, (2) collapses into an abrupt phase transition for homogeneous media, (3) describes a wide range of heterogeneity within a single functional expression, and (4) replicates the observed hysteretic behavior of freeze-thaw cycles in soils.

  5. Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis.

    PubMed

    Romualdo, Guilherme Ribeiro; Goto, Renata Leme; Henrique Fernandes, Ana Angélica; Cogliati, Bruno; Barbisan, Luis Fernando

    2016-10-01

    Although there is a concomitance of zinc deficiency and high incidence/mortality for hepatocellular carcinoma in certain human populations, there are no experimental studies investigating the modifying effects of zinc on hepatocarcinogenesis. Thus, we evaluated whether dietary zinc deficiency or supplementation alter the development of hepatocellular preneoplastic lesions (PNL). Therefore, neonatal male Balb/C mice were submitted to a diethylnitrosamine/2-acetylaminefluorene-induced hepatocarcinogenesis model. Moreover, mice were fed adequate (35 mg/kg diet), deficient (3 mg/kg) or supplemented (180 mg/kg) zinc diets. Mice were euthanized at 12 (early time-point) or 24 weeks (late time-point) after introducing the diets. At the early time-point, zinc deficiency decreased Nrf2 protein expression and GSH levels while increased p65 and p53 protein expression and the number of PNL/area. At the late time-point, zinc deficiency also decreased GSH levels while increased liver genotoxicity, cell proliferation into PNL and PNL size. In contrast, zinc supplementation increased antioxidant defense at both time-points but not altered PNL development. Our findings are the first to suggest that zinc deficiency predisposes mice to the PNL development in chemically-induced hepatocarcinogenesis. The decrease of Nrf2/GSH pathway and increase of liver genotoxicity, as well as the increase of p65/cell proliferation, are potential mechanisms to this zinc deficiency-mediated effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Optimization of the secondary drying step in freeze drying using TDLAS technology.

    PubMed

    Schneid, Stefan C; Gieseler, Henning; Kessler, William J; Luthra, Suman A; Pikal, Michael J

    2011-03-01

    The secondary drying phase in freeze drying is mostly developed on a trial-and-error basis due to the lack of appropriate noninvasive process analyzers. This study describes for the first time the application of Tunable Diode Laser Absorption Spectroscopy, a spectroscopic and noninvasive sensor for monitoring secondary drying in laboratory-scale freeze drying with the overall purpose of targeting intermediate moisture contents in the product. Bovine serum albumin/sucrose mixtures were used as a model system to imitate high concentrated antibody formulations. First, the rate of water desorption during secondary drying at constant product temperatures (-22 °C, -10 °C, and 0 °C) was investigated for three different shelf temperatures. Residual moisture contents of sampled vials were determined by Karl Fischer titration. An equilibration step was implemented to ensure homogeneous distribution of moisture (within 1%) in all vials. The residual moisture revealed a linear relationship to the water desorption rate for different temperatures, allowing the evaluation of an anchor point from noninvasive flow rate measurements without removal of samples from the freeze dryer. The accuracy of mass flow integration from this anchor point was found to be about 0.5%. In a second step, the concept was successfully tested in a confirmation experiment. Here, good agreement was found for the initial moisture content (anchor point) and the subsequent monitoring and targeting of intermediate moisture contents. The present approach for monitoring secondary drying indicated great potential to find wider application in sterile operations on production scale in pharmaceutical freeze drying. © 2011 American Association of Pharmaceutical Scientists

  7. Role of glucose-6-phosphate dehydrogenase in freezing-induced freezing resistance of Populus suaveolens.

    PubMed

    Lin, Shan-Zhi; Zhang, Zhi-Yi; Liu, Wen-Feng; Lin, Yuan-Zhen; Zhang, Qian; Zhu, Bao-Qing

    2005-02-01

    To explore the role of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in the enhancement of freezing resistance induced by freezing acclimation, G6PDH was purified from the leaves of 8-week-old Populus suaveolens cuttings. The G6PDH activity in the absence or the presence of reduced dithiothreitol (DTT(red)) were determined, and the changes in superoxide dismutase (SOD), peroxides (POD) and cytosolic G6PDH activities, malondial-dehyde (MDA) content as well as freezing resistance (expressed as LT(50)) of P. suaveolens cuttings during freezing acclimation at -20 degrees C were investigated. The results showed that the purified G6PDH was probably located in the cytosol of P. suaveolens. Freezing acclimation increased the activities of SOD, POD and cytosolic G6PDH, and decreased the MDA content and LT(50) of cuttings, while 2 d of de-acclimation at 25 degrees C resulted in a decrease in SOD, POD and cytosolic G6PDH activities, and caused an increase in MDA content and LT(50). The change in cytosolic G6PDH activity was found to be closely correlated to the levels of SOD, POD and MDA, and to the degree of freezing resistance of cuttings during freezing acclimation. It is suggested that the enhancement of freezing resistance of cuttings induced by freezing acclimation is related to the distinct increase in cytosolic G6PDH activity, which may be involved in the activation of SOD and POD, and the induction of freezing resistance of cuttings.

  8. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains

    PubMed Central

    Pescador, David S.; Sierra-Almeida, Ángela; Torres, Pablo J.; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  9. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.

    PubMed

    De Meyer, L; Van Bockstal, P-J; Corver, J; Vervaet, C; Remon, J P; De Beer, T

    2015-12-30

    Spin-freezing as alternative freezing approach was evaluated as part of an innovative continuous pharmaceutical freeze-drying concept for unit doses. The aim of this paper was to compare the sublimation rate of spin-frozen vials versus traditionally frozen vials in a batch freeze-dryer, and its impact on total drying time. Five different formulations, each having a different dry cake resistance, were tested. After freezing, the traditionally frozen vials were placed on the shelves while the spin-frozen vials were placed in aluminum vial holders providing radial energy supply during drying. Different primary drying conditions and chamber pressures were evaluated. After 2h of primary drying, the amount of sublimed ice was determined in each vial. Each formulation was monitored in-line using NIR spectroscopy during drying to determine the sublimation endpoint and the influence of drying conditions upon total drying time. For all tested formulations and applied freeze-drying conditions, there was a significant higher sublimation rate in the spin-frozen vials. This can be explained by the larger product surface and the lower importance of product resistance because of the much thinner product layers in the spin frozen vials. The in-line NIR measurements allowed evaluating the influence of applied drying conditions on the drying trajectories. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.

    2017-01-01

    Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.

  11. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the zinc... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40 Applicability; description of the zinc casting subcategory. The provisions of this...

  12. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the zinc... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40 Applicability; description of the zinc casting subcategory. The provisions of this...

  13. Bioavailability of zinc from defatted soy flour, soy hulls and whole eggs as determined by intrinsic and extrinsic labeling techniques.

    PubMed

    Meyer, N R; Stuart, M A; Weaver, C M

    1983-06-01

    Bioavailability of zinc from diets prepared from intrinsically and extrinsically labeled autoclaved, defatted soy flour and scrambled, freeze-dried egg was investigated in male rats marginally depleted in zinc. In one study, retention of zinc from intrinsically labeled soybean flour (73%) was significantly less than from 65ZnCl2 extrinsically added to a soy flour-based diet (80%). Zinc from intrinsically labeled soybean hulls and from soy flour diets containing 10% soybean hulls extrinsically labeled with 65ZnCl2 was as available as the zinc from the extrinsically labeled soy flour diet. In a second study, extrinsic and intrinsic labeling techniques gave a similar assessment of bioavailability of zinc from egg- and soy flour-based diets when extrinsic labeling was accomplished by thoroughly mixing 65ZnCl2 with the protein source prior to incorporation into the diet. Absorption of 65Zn was greater from egg diets than from soy flour diets and of intermediate value from mixed soy flour and egg (50:50, wt/wt) diets regardless of which protein source was labeled, indicating that the zinc entered a common pool.

  14. Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S. M.; Xiao, X.; Faber, K. T.

    Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less

  15. When a water drop freezes before it solidifies

    NASA Astrophysics Data System (ADS)

    Kavehpour, Pirouz; Davis, Stephen; Tavakoli, Faryar

    2012-11-01

    When a drop of liquid is placed on a substrate which temperature is below the melting point of the liquid, one would expect the drop to solidify instantaneously. However, many liquids, such as water, must be subcooled to solidify below its melting temperature due to homogeneous nucleation's high activation energy. Most of the drop solidification research, particularly for water, phase change is assumed to occur at equilibrium freezing temperature; however, this is not the case. We found that after a certain degree of supercooling, a kinetic based nucleation begins and latent heat of fusion is suddenly liberated, causing an increase in liquid temperature. At the end of this stage, approximately 20% of the drop is crystallized. This phenomenon is known among metallurgists as recalescence. This is followed by a slow solidification process at the melting point. As a water droplet spreads on a cold substrate, its contact line stops just prior to freezing inception from the liquid-solid interface. In this study, we assert that recalescence prior to solidification may be the cause of water's sudden immobility, which results in a fixed contact angle and droplet diameter. In our experiments, the nucleation front initiates from the trijunction point and propagates to the drop volume.

  16. Comparison of proteome response to saline and zinc stress in lettuce

    PubMed Central

    Lucini, Luigi; Bernardo, Letizia

    2015-01-01

    Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress related effects, from those changes specifically related to zinc. The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances), revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I) as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation [through formation of glutamine synthetase (GS)] were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level), heat shock proteins, and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one. Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e., proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones, and terpenoids biosynthesis. Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case of

  17. Freeze drying for morphological control of inter-penetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Hansen, Marion G.; Pater, Ruth H.

    1990-01-01

    The intrinsic brittleness of BMI resins can be reduced through the creation of an interpenetrating network (IPN) of BMI with a reactive-encapped thermoplastic, such as the presently considered polyimidesulfone, PISO2. The PISO2 and BMI were dissolved in a common solvent, which was then removed from the constituents by freeze drying; in an alternative method, an IPN was formed through dissolution of the constituent in a common solvent with either high or low melting point, followed by evaporative removal of the solvent. The effectiveness of the freeze-drying approach for morphological control is evaluated.

  18. Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: a molecular dynamics simulation study.

    PubMed

    Wang, Jun; Apte, Pankaj A; Morris, James R; Zeng, Xiao Cheng

    2013-09-21

    Stockmayer fluids are a prototype model system for dipolar fluids. We have computed the freezing temperatures of Stockmayer fluids at zero pressure using three different molecular-dynamics simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature two-phase coexistence method, and the constant-pressure and constant-enthalpy two-phase coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with the dimensionless dipole moment μ*=1, √2, √3 is 0.656 ± 0.001, 0.726 ± 0.002, and 0.835 ± 0.005, respectively. The freezing temperature increases with the dipolar strength. Moreover, for the first time, the solid-liquid interfacial free energies γ of the fcc (111), (110), and (100) interfaces are computed using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, i.e., γ100 > γ110 > γ111.

  19. Progress in Noise Thermometry at 505 K and 693 K Using Quantized Voltage Noise Ratio Spectra

    NASA Astrophysics Data System (ADS)

    Tew, W. L.; Benz, S. P.; Dresselhaus, P. D.; Coakley, K. J.; Rogalla, H.; White, D. R.; Labenski, J. R.

    2010-09-01

    Technical advances and new results in noise thermometry at temperatures near the tin freezing point and the zinc freezing point using a quantized voltage noise source (QVNS) are reported. The temperatures are derived by comparing the power spectral density of QVNS synthesized noise with that of Johnson noise from a known resistance at both 505 K and 693 K. Reference noise is digitally synthesized so that the average power spectra of the QVNS match those of the thermal noise, resulting in ratios of power spectra close to unity in the low-frequency limit. Three-parameter models are used to account for differences in impedance-related time constants in the spectra. Direct comparison of noise temperatures to the International Temperature Scale of 1990 (ITS-90) is achieved in a comparison furnace with standard platinum resistance thermometers. The observed noise temperatures determined by operating the noise thermometer in both absolute and relative modes, and related statistics together with estimated uncertainties are reported. The relative noise thermometry results are combined with results from other thermodynamic determinations at temperatures near the tin freezing point to calculate a value of T - T 90 = +4(18) mK for temperatures near the zinc freezing point. These latest results achieve a lower uncertainty than that of our earlier efforts. The present value of T - T 90 is compared to other published determinations from noise thermometry and other methods.

  20. Zinc and the modulation of redox homeostasis

    PubMed Central

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  1. The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains

    PubMed Central

    Baglivo, Ilaria; Russo, Luigi; Esposito, Sabrina; Malgieri, Gaetano; Renda, Mario; Salluzzo, Antonio; Di Blasio, Benedetto; Isernia, Carla; Fattorusso, Roberto; Pedone, Paolo V.

    2009-01-01

    The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed. PMID:19369210

  2. Freeze Technology for Nuclear Applications - 13590

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostmark, Susanne C.; Knutsson, Sven; Lindberg, Maria

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwatermore » applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)« less

  3. SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato

    DOE PAGES

    Wang, Kun; Hersh, Hope Lynn; Benning, Christoph

    2016-09-06

    SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance ofmore » wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg 2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops.« less

  4. SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kun; Hersh, Hope Lynn; Benning, Christoph

    SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance ofmore » wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg 2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops.« less

  5. Influence of surface groups of proteins on water studied by freezing/thawing hysteresis and infrared spectroscopy.

    PubMed

    Zelent, Bogumil; Bryan, Michael A; Sharp, Kim A; Vanderkooi, Jane M

    2009-05-01

    The influence of proteins and solutes on hysteresis of freezing and melting of water was measured by infrared (IR) spectroscopy. Of the solutes examined, poly-L-arginine and flounder antifreeze protein produced the largest freezing point depression of water, with little effect on the melting temperature. Poly-L-lysine, poly-L-glutamate, cytochrome c and bovine serum albumin had less effect on the freezing of water. Small compounds used to mimic non-polar (trimethylamine N-oxide, methanol), positively charged (guanidinium chloride, NH(4)Cl, urea) and negatively charged (Na acetate) groups on protein surfaces were also examined. These molecules and ions depress water's freezing point and the melting profiles became broad. Since infrared absorption measures both bulk solvent and solvent bound to the solutes, this result is consistent with solutes interacting with liquid water. The amide I absorption bands of antifreeze protein and poly-L-arginine do not detectably change with the phase transition of water. An interpretation is that the antifreeze protein and poly-L-arginine order liquid water such that the water around the group is ice-like.

  6. Freezing Injury in Onion Bulb Cells

    PubMed Central

    Palta, Jiwan P.; Levitt, Jacob; Stadelmann, Eduard J.

    1977-01-01

    Onion (Allium cepa L.) bulbs were subjected for 12 days to either a moderate freeze (−4 C) or a severe freeze (−11 C). They were then thawed slowly over ice. During 7 to 12 days following the thaw, the injury progressed with time in the severely frozen bulbs, but appeared completely repaired in the moderately frozen bulbs. This was shown by the following post-thawing changes. Infiltration of the intercellular spaces increased from 80 to 90% to 100% after the severe freeze, and decreased from 30 to 50% to zero after the moderate freeze. All of the cells were alive immediately after thawing whether the freeze was moderate or severe. Corresponding to the infiltration results 7 to 12 days later, many to most were dead following the severe freeze, all were alive following the moderate freeze. The conductivity of the effusate from pieces of bulb tissue increased after the severe freezing, and decreased after the moderate freezing. The concentration of K+, total solutes, and sugars in the effusate paralleled the conductivity changes. Neither the pH of the effusate nor the permeability of the cells (as long as cells were living) to water was changed following either the severe or the moderate freezes. Some treatments of the thawed tissue following the severe freeze halted the progress of injury. The above results indicate that the semipermeable properties of the cell are uninjured but that the ion and sugar transport mechanism is damaged by freezing. Most likely the primary injury is to the active transport mechanism involved in their transport. It must be concluded that the final injury following freezing and thawing cannot be evaluated from the degree of infiltration or the conductivity of the effusate immediately after thawing, since injury may progress or recede following the thawing. PMID:16660101

  7. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inui, Ken; Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472; Sagane, Yoshimasa

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structuremore » classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.« less

  8. Development of Fixed-Point Cells at the SMU

    NASA Astrophysics Data System (ADS)

    Ďuriš, S.; Ranostaj, J.; Palenčár, R.

    2008-06-01

    One of the research programs realized at the thermometry laboratory of the Slovak Institute of Metrology (SMU) in recent years has focused on the development of fixed-point cells. In the frame of this research, several primary cells for realization of the International Temperature Scale of 1990 (ITS-90) and several secondary cells for industrial thermometer calibrations were built and studied. This article discusses primary cells for the gallium and mercury fixed points and miniature cells for the zinc point that were developed at the SMU. Information about the cell designs is provided, the materials that were used are specified, and the procedures for their manufacture are described. Briefly, the realization of the fixed points of mercury, gallium, and zinc by using these cells is also described. Many experiments were carried out to study the characteristics of these cells. One of the gallium cells was compared with the circulating transfer cell during the key comparison CCT-K3, and it and the mercury cell were used for the EUROMET Project No. 552. The results of the experiments together with the results of the comparisons show the high quality of these cells. Secondary zinc-point cells were compared against SMU primary zinc-point cells. The comparison shows agreement within 0.12 mK.

  9. The role of calcium and calmodulin in freezing-induced freezing resistance of Populus tomentosa cuttings.

    PubMed

    Lin, Shan-Zhi; Zhang, Zhi-Yi; Lin, Yuan-Zhen; Zhang, Qian; Guo, Huan

    2004-02-01

    To explore the role of calcium-calmodulin messenger system in the transduction of low temperature signal in woody plants, Populus tomentosa cuttings after being treated with CaCl(2) (10 mmol/L), Ca(2+) chelator EGTA (3 mmol/L), Ca(2+) channel inhibitor LaCl(3) (100 mmol/L) or CaM antagonist CPZ (50 mmol/L) were used for freezing acclimation at -3 degrees C. The changes in the calmodulin (CaM) and malonaldehyde (MDA) contents, the activities of superoxide dismutase (SOD), peroxidase (POD) and Ca(2+)-dependent adenosinetriphosphatase (Ca(2+)-ATPase) of mitochondrial membrane as well as freezing resistance (expressed as LT(50)) of cuttings were investigated to elucidate the physiological mechanisms by which trees adapt to freezing. The results showed that freezing acclimation increased the CaM content, the activities of SOD, POD and Ca(2+)-ATPase of mitochondrial membrane as well as freezing resistance of cuttings, and decreased the MDA content as compared with control cuttings. Treatment with CaCl(2) at the time of freezing acclimation enhanced the effect of freezing acclimation on the above-mentioned indexes, but this enhancement was abolished by Ca(2+)chelator EGTA, Ca(2+) channel inhibitor LaCl(3) or CaM antagonist CPZ, indicating that the calcium-calmodulin messenger system was involved in the course of freezing resistance development. The presence of CaCl(2) at the same time of freezing acclimation also reduced the degree of decline in CaM content, and in SOD, POD and Ca(2+)-ATPase activities caused by freezing stress at -14 degrees C, and enhanced the level of increase in CaM content, and in SOD, POD and Ca(2+)-ATPase activity in the recovery periods at 25 degrees C . The change in CaM content was found to be closely correlated to the levels of SOD, POD and Ca(2+)-ATPase, and to the degree of freezing resistance of cuttings during freezing acclimation either with or without CaCl(2) treatment. It was suggested that the increase of CaM content induced by CaCl(2

  10. Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle.

    PubMed

    Gieseler, Henning; Kramer, Tony; Pikal, Michael J

    2007-12-01

    This report provides, for the first time, a summary of experiments using SMART Freeze Dryer technology during a 9 month testing period. A minimum ice sublimation area of about 300 cm(2) for the laboratory freeze dryer, with a chamber volume 107.5 L, was found consistent with data obtained during previous experiments with a smaller freeze dryer (52 L). Good reproducibility was found for cycle design with different type of excipients, formulations, and vials used. SMART primary drying end point estimates were accurate in the majority of the experiments, but showed an over prediction of primary cycle time when the product did not fully achieve steady state conditions before the first MTM measurement was performed. Product resistance data for 5% sucrose mixtures at varying fill depths were very reproducible. Product temperature determined by SMART was typically in good agreement with thermocouple data through about 50% of primary drying time, with significant deviations occurring near the end of primary drying, as expected, but showing a bias much earlier in primary drying for high solid content formulations (16.6% Pfizer product) and polyvinylpyrrolidone (40 kDa) likely due to water "re-adsorption" by the amorphous product during the MTM test. (c) 2007 Wiley-Liss, Inc.

  11. Non-equilibrium freezing behaviour of aqueous systems.

    PubMed

    MacKenzie, A P

    1977-03-29

    The tendencies to non-equilibrium freezing behaviour commonly noted in representative aqueous systems derive from bulk and surface properties according to the circumstances. Supercooling and supersaturation are limited by heterogeneous nucleation in the presence of solid impurities. Homogeneous nucleation has been observed in aqueous systems freed from interfering solids. Once initiated, crystal growth is ofter slowed and, very frequently, terminated with increasing viscosity. Nor does ice first formed always succeed in assuming its most stable crystalline form. Many of the more significant measurements on a given systeatter permitting the simultaneous representation of thermodynamic and non-equilibrium properties. The diagram incorporated equilibrium melting points, heterogeneous nucleation temperatures, homogeneous nucleation temperatures, glass transition and devitrification temperatures, recrystallization temperatures, and, where appropriate, solute solubilities and eutectic temperatures. Taken together, the findings on modle systems aid the identification of the kinetic and thermodynamic factors responsible for the freezing-thawing survival of living cells.

  12. The Freezing Bomb

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    The extreme pressures that are generated when water freezes were traditionally demonstrated by sealing a small volume in a massive cast iron "bomb" and then surrounding it with a freezing mixture of ice and salt. This vessel would dramatically fail by brittle fracture, but no quantitative measurement of bursting pressure was available. Calculation…

  13. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    EPA Science Inventory

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  14. Fundamental technical elements of freeze-fracture/freeze-etch in biological electron microscopy.

    PubMed

    Carson, Johnny L

    2014-09-11

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to ultrarapid freezing rates, often in the presence of cryoprotective agents to limit ice crystal formation, with subsequent fracturing of the specimen at liquid nitrogen cooled temperatures under high vacuum. The resultant fractured surface is replicated and stabilized by evaporation of carbon and platinum from an angle that confers surface three-dimensional detail to the cast. This technique has proved particularly enlightening for the investigation of cell membranes and their specializations and has contributed considerably to the understanding of cellular form to related cell function. In this report, we survey the instrument requirements and technical protocol for performing freeze-fracture, the associated nomenclature and characteristics of fracture planes, variations on the conventional procedure, and criteria for interpretation of freeze-fracture images. This technique has been widely used for ultrastructural investigation in many areas of cell biology and holds promise as an emerging imaging technique for molecular, nanotechnology, and materials science studies.

  15. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  16. Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials.

    PubMed

    Chaturvedi, Archana; Bajpai, Anil K; Bajpai, Jaya; K Singh, Sunil

    2016-08-01

    In this investigation cryogels composed of poly (vinyl alcohol) (PVA) were prepared by repeated freeze thaw method followed by in situ precipitation of zinc oxide nanoparticles within the cryogel networks. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX) were used to characterize the nanocomposites. The morphologies of native PVA cryogels and PVA cryogel-ZnO nanocomposites were observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well-defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated zinc oxide nanoparticles with diameter<100nm. XRD results showed all relevant Bragg's reflections for crystal structure of zinc oxide nanoparticles. Thermo gravimetric-differential thermal analysis (TG-DTA) was conducted to evaluate thermal stability of the nanocomposites. Mechanical properties of nanocomposites were determined in terms of tensile strength and percent elongation. Biocompatible nature was ascertained by anti-haemolytic activity, bovine serum albumin (blood protein) adsorption and in vitro cytotoxicity tests. The prepared nanocomposites were also investigated for swelling and deswelling behaviours. The results revealed that both the swelling and deswelling process depend on the chemical composition of the nanocomposites, number of freeze-thaw cycles, pH and temperature of the swelling medium. The developed biocompatible PVA cryogel-ZnO nanocomposites were also tested for antibacterial activities against both Gram-negative and Gram-positive bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Influence of the freezing method on the changes that occur in grape samples after frozen storage.

    PubMed

    Santesteban, Luis G; Miranda, Carlos; Royo, José B

    2013-09-01

    Sample freezing is frequently used in oenological laboratories as a compromise solution to increase the number of samples that can be analysed, despite the fact that some grape characteristics are known to change after frozen storage. However, freezing is usually performed using standard freezers, which provide a slow freezing. The aim of this work was to evaluate whether blast freezing would decrease the impact of standard freezing on grape composition. Grape quality parameters were assessed in fresh and in frozen stored samples that had been frozen using three different procedures: standard freezing and blast freezing using either a blast freezer or an ultra-freezer. The implications of frozen storage in grape samples reported in earlier research were observed for the three freezing methods evaluated. Although blast freezing improved repeatability for the most problematic parameters (tartaric acidity, TarA; total phenolics, TP), the improvement was not important from a practical point of view. However, TarA and TP were relatively repeatable among the three freezing procedures, which suggests that freezing had an effect on these parameters independently of the method used . According to our results, the salification potential of the must is probably implied in the changes observed for TarA, whereas for TP the precipitation of protoanthocyanins after association with cell wall material is hypothesized to cause the lack of repeatability between fresh and frozen grapes. Blast freezing would not imply a great improvement if implemented in oenological laboratories, at least for the parameters included in this study. © 2013 Society of Chemical Industry.

  18. Metallic Zinc Exhibits Optimal Biocompatibility for Bioabsorbable Endovascular Stents

    PubMed Central

    Bowen, Patrick K.; Guillory, Roger J.; Shearier, Emily R.; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-01-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5 months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5 months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616

  19. New particle dependant parameterizations of heterogeneous freezing processes.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Mitra, Subir K.

    2014-05-01

    For detailed investigations of cloud microphysical processes an adiabatic air parcel model with entrainment is used. It represents a spectral bin model which explicitly solves the microphysical equations. The initiation of the ice phase is parameterized and describes the effects of different types of ice nuclei (mineral dust, soot, biological particles) in immersion, contact, and deposition modes. As part of the research group INUIT (Ice Nuclei research UnIT), existing parameterizations have been modified for the present studies and new parameterizations have been developed mainly on the basis of the outcome of INUIT experiments. Deposition freezing in the model is dependant on the presence of dry particles and on ice supersaturation. The description of contact freezing combines the collision kernel of dry particles with the fraction of frozen drops as function of temperature and particle size. A new parameterization of immersion freezing has been coupled to the mass of insoluble particles contained in the drops using measured numbers of ice active sites per unit mass. Sensitivity studies have been performed with a convective temperature and dew point profile and with two dry aerosol particle number size distributions. Single and coupled freezing processes are studied with different types of ice nuclei (e.g., bacteria, illite, kaolinite, feldspar). The strength of convection is varied so that the simulated cloud reaches different levels of temperature. As a parameter to evaluate the results the ice water fraction is selected which is defined as the relation of the ice water content to the total water content. Ice water fractions between 0.1 and 0.9 represent mixed-phase clouds, larger than 0.9 ice clouds. The results indicate the sensitive parameters for the formation of mixed-phase and ice clouds are: 1. broad particle number size distribution with high number of small particles, 2. temperatures below -25°C, 3. specific mineral dust particles as ice nuclei such

  20. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    PubMed

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    PubMed

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, A.; Villanueva, R.; Vie, D.

    2013-01-15

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and themore » nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.« less

  3. Care during freeze-drying of bovine pericardium tissue to be used as a biomaterial: a comparative study.

    PubMed

    Polak, Roberta; Pitombo, Ronaldo N M

    2011-10-01

    Bovine pericardium (BP) tissue is widely used in the manufacture of bioprosthetics. The effects of freeze-drying on the BP tissue have been studied by some researchers in order to decrease their cytotoxicity due to preservation in formaldehyde solution, and to increase the lifetime of the product in storage. This study was undertaken in order to study the effect of freeze-drying in the structure of BP. To perform this study BP samples were freeze-dried in two different types of freeze-dryers available in our laboratory: a laboratory freeze-dryer, in which it was not possible to control parameters and a pilot freeze-dryer, wherein all parameters during freezing and drying were controlled. After freeze-drying processes, samples were analyzed by SEM, Raman spectroscopy, tensile strength, water uptake tests and TEM. In summary, it has been demonstrated that damages occur in collagen fibers by the loss of bulk water of collagen structure implicating in a drastic decreasing of BP mechanical properties due to its structural alterations. Moreover, it was proven that the collagen fibrils suffered breakage at some points, which can be attributed to the uncontrolled parameters during drying. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the zinc subcategory. 461.70 Section 461.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description...

  5. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the zinc subcategory. 461.70 Section 461.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description...

  6. 40 CFR 461.70 - Applicability; description of the zinc subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the zinc subcategory. 461.70 Section 461.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory § 461.70 Applicability; description...

  7. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-02-01

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.

  8. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles.

    PubMed

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-02-13

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi 2 Ta 2 O 9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.

  9. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles

    PubMed Central

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-01-01

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction–relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes. PMID:28194017

  10. Representative Values of Icing-Related Variables Aloft in Freezing Rain and Freezing Drizzle

    DOT National Transportation Integrated Search

    1996-03-01

    Radiosonde and surface observations in freezing rain (ZR) and freezing drizzle (ZL), and a limited number of aircraft measurements in ZR, have been examined for information on the magnitude and altitude dependence of meteorological variables associat...

  11. Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water.

    PubMed

    Pastorczak, Marcin; Dominguez-Espinosa, Gustavo; Okrasa, Lidia; Pyda, Marek; Kozanecki, Marcin; Kadlubowski, Slawomir; Rosiak, Janusz M; Ulanski, Jacek

    2014-01-01

    Water interacting with a polymer reveals a number of properties very different to bulk water. These interactions lead to the redistribution of hydrogen bonds in water. It results in modification of thermodynamic properties of water and the molecular dynamics of water. That kind of water is particularly well observable at temperatures below the freezing point of water, when the bulk water crystallizes. In this work, we determine the amount of water bound to the polymer and of the so-called pre-melting water in poly(vinyl methyl ether) hydrogels with the use of Raman spectroscopy, dielectric spectroscopy, and calorimetry. This analysis allows us to compare various physical properties of the bulk and the pre-melting water. We also postulate the molecular mechanism responsible for the pre-melting of part of water in poly(vinyl methyl ether) hydrogels. We suggest that above -60 °C, the first segmental motions of the polymer chain are activated, which trigger the process of the pre-melting.

  12. Effects of high pressure freezing (HPF) on denaturation of natural actomyosin extracted from prawn (Metapenaeus ensis).

    PubMed

    Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zhihang

    2017-08-15

    Effects of protein denaturation caused by high pressure freezing, involving Pressure-Factors (pressure, time) and Freezing-Factors (temperature, phase transition, recrystallization, ice crystal types), are complicated. In the current study, the conformation and functional changes of natural actomyosin (NAM) under pressure assisted freezing (PAF, 100,150,300,400,500MPa P -20°C/25min ), pressure shift freezing (PSF, 200MPa P -20°C/25min ), and immersion freezing ( 0.1MPa P -20°C/5min ) after pressure was released to 0.1MPa, as compared to normal immersion freezing process (IF, 0.1MPa P -20°C/30min ). Results indicated that PSF ( 200MPa P -20°C/30min ) could reduce the denaturation of frozen NAM and a pressure of 300MPa was the critical point to induce such a denaturation. During the periods of B→D in PSF or B→C→D in PAF, the generation and growth of ice crystals played an important role on changing the secondary and tertiary structure of the treated NAM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato1[OPEN

    PubMed Central

    Hersh, Hope Lynn

    2016-01-01

    SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance of wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops. PMID:27600812

  14. Freezing: an underutilized food safety technology?

    PubMed

    Archer, Douglas L

    2004-01-15

    Freezing is an ancient technology for preserving foods. Freezing halts the activities of spoilage microorganisms in and on foods and can preserve some microorganisms for long periods of time. Frozen foods have an excellent overall safety record. The few outbreaks of food-borne illness associated with frozen foods indicate that some, but not all human pathogens are killed by commercial freezing processes. Freezing kills microorganisms by physical and chemical effects and possibly through induced genetic changes. Research is needed to better understand the physical and chemical interactions of various food matrices with the microbial cell during freezing and holding at frozen temperatures. The literature suggests that many pathogenic microorganisms may be sublethally injured by freezing, so research should be done to determine how to prevent injured cells from resuscitating and becoming infectious. Studies on the genetics of microbial stress suggest that the induction of resistance to specific stresses may be counteracted by, for example, simple chemicals. Research is needed to better understand how resistance to the lethal effect of freezing is induced in human pathogens and means by which it can be counteracted in specific foods. Through research, it seems possible that freezing may in the future be used to reliably reduce populations of food-borne pathogens as well as to preserve foods.

  15. Ice Nucleation of Soot Particles in the Cirrus Regime: Is Pore Condensation and Freezing Relevant for Soot?

    NASA Astrophysics Data System (ADS)

    Kanji, Z. A.; Mahrt, F.; David, R.; Marcolli, C.; Lohmann, U.; Fahrni, J.; Brühwiler, D.

    2017-12-01

    Heterogeneous ice nucleation (HIN) onto soot particles from previous studies have produced inconsistent results of temperature and relative humidity conditions required for freezing depending on the source of soot particle investigated. The ability of soot to act as HIN depended on the type of soot and size of particle. Often homogenous freezing conditions or water saturation conditions were required to freeze soot particles, rendering HIN irrelevant. Using synthesised mesoporous silica particles, we show pore condensation and freezing works with experiments performed in the Zurich Ice Nucleation Chamber (ZINC). By testing a variety of soot particles in parallel in the Horizontal Ice Nucleation Chamber (HINC), we suggest that previously observed HIN on soot particles is not the responsible mechanism for ice formation. Laboratory generated CAST brown and black soot, commercially available soot and acid treated soot were investigated for their ice nucleation abilities in the mixed-phase and cirrus cloud temperature regimes. No heterogeneous ice nucleation activity is inferred at T > -38 °C (mixed-phase cloud regime), however depending on particle size and soot type, HIN was observed for T < -38 °C (cirrus could regime). Nevertheless, we question if this is caused by a heterogeneous phase change due the presence of a so called active site or due to pore-condensation of water as predicted by the inverse Kelvin effect followed by homogeneous nucleation of ice in the pores or cavities that are ubiquitous in soot particles between the primary spherules. The ability of some particles to freeze at lower relative humidity compared to others demonstrates why hydrophobicity plays a role in ice nucleation, i.e. controlling the conditions at which these cavities fill with water. Thus for more hydrophobic particles pore filling occurs at higher relative humidity, and therefore freezing of pore water and ice crystal growth. Future work focusses on testing the cloud processing

  16. Freezing and thawing or freezing, thawing, and aging effects on beef tenderness

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effect of freezing and thawing or freezing and thawing with an additional aging period after frozen storage on the tenderness of longissimus lumborum (LL) and semitendinosus (ST) steaks relative to aged, fresh steaks. Left-side LL and ST (n=35 each) ...

  17. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.

    PubMed

    De Beer, T R M; Allesø, M; Goethals, F; Coppens, A; Heyden, Y Vander; De Diego, H Lopez; Rantanen, J; Verpoort, F; Vervaet, C; Remon, J P; Baeyens, W R G

    2007-11-01

    The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us

  18. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  19. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Application of the Quality by Design Approach to the Freezing Step of Freeze-Drying: Building the Design Space.

    PubMed

    Arsiccio, Andrea; Pisano, Roberto

    2018-06-01

    The present work shows a rational method for the development of the freezing step of a freeze-drying cycle. The current approach to the selection of freezing conditions is still empirical and nonsystematic, thus resulting in poor robustness of control strategy. The final aim of this work is to fill this gap, describing a rational procedure, based on mathematical modeling, for properly choosing the freezing conditions. Mechanistic models are used for the prediction of temperature profiles during freezing and dimension of ice crystals being formed. Mathematical description of the drying phase of freeze-drying is also coupled with the results obtained by freezing models, thus providing a comprehensive characterization of the lyophilization process. In this framework, deep understanding of the phenomena involved is required, and according to the Quality by Design approach, this knowledge can be used to build the design space. The step-by-step procedure for building the design space for freezing is thus described, and examples of applications are provided. The calculated design space is validated upon experimental data, and we show that it allows easy control of the freezing process and fast selection of appropriate operating conditions. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Validity of a portable urine refractometer: the effects of sample freezing.

    PubMed

    Sparks, S Andy; Close, Graeme L

    2013-01-01

    The use of portable urine osmometers is widespread, but no studies have assessed the validity of this measurement technique. Furthermore, it is unclear what effect freezing has on osmolality. One-hundred participants of mean (±SD) age 25.1 ± 7.6 years, height 1.77 ± 0.1 m and weight 77.1 ± 10.8 kg provided single urine samples that were analysed using freeze point depression (FPD) and refractometry (RI). Samples were then frozen at -80°C (n = 81) and thawed prior to re-analysis. Differences between methods and freezing were determined using Wilcoxon's signed rank test. Relationships between measurements were assessed using intraclass correlation coefficients (ICC) and typical error of estimate (TE). Osmolality was lower (P = 0.001) using RI (634.2 ± 339.8 mOsm · kgH2O(-1)) compared with FPD (656.7 ± 334.1 mOsm · kgH2O(-1)) but the TE was trivial (0.17). Freezing significantly reduced mean osmolality using FPD (656.7 ± 341.1 to 606.5 ± 333.4 mOsm · kgH2O(-1); P < 0.001), but samples were still highly related following freezing (ICC, r = 0.979, P < 0.001, CI = 0.993-0.997; TE = 0.15; and r=0.995, P < 0.001, CI = 0.967-0.986; TE = 0.07 for RI and FPD respectively). Despite mean differences between methods and as a result of freezing, such differences are physiologically trivial. Therefore, the use of RI appears to be a valid measurement tool to determine urine osmolality.

  2. Contact Freezing of Water by Salts.

    PubMed

    Niehaus, Joseph; Cantrell, Will

    2015-09-03

    Water is unlikely to crystallize homogeneously at temperatures greater than -34 °C. Freezing at higher temperatures is heterogeneous-catalyzed by the presence of a second substance. If that substance is at an air-water interface, then the mode is called contact freezing, and it typically will trigger nucleation at a higher temperature than if the substance were wholly immersed within the liquid. We find that the impact of salt particles initiates freezing in experiments using water droplets at supercoolings of 9 to 16 °C. These results show that contact freezing nuclei need not be effective as immersion mode nuclei. We discuss our results in the context of proposed mechanisms of contact freezing. Finally, we use the time scales for diffusion of heat and of ions and the propagation of a sound wave through the droplet to estimate that contact freezing occurs within 10 ns of impact.

  3. Cognitive Factors Affecting Freeze-like Behavior in Humans.

    PubMed

    Alban, Michael W; Pocknell, Victoria

    2017-01-01

    Contemporary research on survival-related defensive behaviors has identified physiological markers of freeze/flight/fight. Our research focused on cognitive factors associated with freeze-like behavior in humans. Study 1 tested if an explicit decision to freeze is associated with the psychophysiological state of freezing. Heart rate deceleration occurred when participants chose to freeze. Study 2 varied the efficacy of freezing relative to other defense options and found "freeze" was responsive to variations in the perceived effectiveness of alternative actions. Study 3 tested if individual differences in motivational orientation affect preference for a "freeze" option when the efficacy of options is held constant. A trend in the predicted direction suggested that naturally occurring cognitions led loss-avoiders to select "freeze" more often than reward-seekers. In combination, our attention to the cognitive factors affecting freeze-like behavior in humans represents a preliminary step in addressing an important but neglected research area.

  4. Inner ear tissue preservation by rapid freezing: Improving fixation by high-pressure freezing and hybrid methods

    PubMed Central

    Bullen, A.; Taylor, R.R.; Kachar, B.; Moores, C.; Fleck, R.A.; Forge, A.

    2014-01-01

    In the preservation of tissues in as ‘close to life’ state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40 μm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues. PMID:25016142

  5. Freeze-dried spermatozoa: A future tool?

    PubMed

    Olaciregui, M; Gil, L

    2017-04-01

    Cryopreservation has been routinely used to preserve sperm of human and different animal species. However, frozen sperm storage for a long time brings many inconveniences because of liquid nitrogen. Many attempts have been made to overcome the disadvantages of the current cryopreservation method. Freeze-drying has been proposed as alternative method for sperm preservation to achieve the ability to store sperm doses indefinitely at ambient temperature or in ordinary refrigerators. At present, it has been reported successfully sperm freeze-drying on many animal species including canine and feline. It is well known that during freeze-drying process, sperm DNA could be damaged, but if suitable protection is provided, the sperm nucleus could preserve the ability to activate the oocyte and embryos could be generated by intracytoplasmic sperm injection (ICSI). Many factors influence the freeze-drying efficacy, so current researches have been conducted to find strategies to control these factors to maintain the sperm DNA integrity. This review describes the latest method of sperm freeze-drying for practical application in preserving and transporting genetic resources. In addition, the approaches to improve the efficiency of the technique were studied. We demonstrated that the DNA integrity of freeze-dried dog sperm is affected by the composition of the freeze-drying solution as well as the temperature and period of storage. Further studies are necessary to refine freeze-drying protocol in order to protect the DNA and maintain the sperm functionality and obtain offspring from freeze-dried sperm. © 2016 Blackwell Verlag GmbH.

  6. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  7. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  8. Freeze Tolerance of Nine Zoysiagrass Cultivars Using Natural Cold Acclimation and Freeze Chambers

    USDA-ARS?s Scientific Manuscript database

    Winter hardiness of zoysiagrass (Zoysia spp.) cultivars is an important attribute throughout the biogeographical transition zone, thus the inability to withstand freezing temperatures may limit the use of these cultivars. The objective of this research was to determine the freeze tolerance (LT50) of...

  9. Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Ettner-Mahl, Matthias; Hannemann, Anke; Mitra, Subir K.

    2009-10-01

    The freezing temperatures of single supercooled drops of binary and ternary sulfuric and nitric acid solutions were measured while varying the acid concentration. An acoustic levitator was used which allows to freely suspend single solution drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. The drops of typically 500 µm in radius were monitored by a video camera during cooling cycles down to - 85 °C to simulate the upper tropospheric and stratospheric temperature range. The present data confirm that liquid solution droplets can be supercooled far below the equilibrium melting point by approximately 35 °C. They follow the general trend of the expected freezing temperatures for homogeneous ice nucleation.

  10. Tandem High-pressure Freezing and Quick Freeze Substitution of Plant Tissues for Transmission Electron Microscopy

    PubMed Central

    Bobik, Krzysztof; Dunlap, John R.; Burch-Smith, Tessa M.

    2014-01-01

    Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but

  11. Effects of egg yolk, glycerol and the freezing rate on the viability and acrosomal structures of frozen ram spermatozoa.

    PubMed

    Watson, P F; Martin, I C

    1975-04-01

    The influence of egg yolk, glycerol and the freezing rate on the survival of ram spermatozoa and on the structure of their acrosomes after freezing was investigated. Egg yolk was shown to be beneficial not only during chilling but also during freezing; of the levels examined, 1-5% gave the greatest protection. Although the presence of glycerol in the diluent improved the survival of spermatozoa, increasing concentrations produced significant deterioration of the acrosomes. With closely controlled linear cooling rates, no overall difference was detected in the survival of spermatozoa frozen at rates between 6 and 24 degrees C per min. However, a significant interaction between freezing rate and the inclusion of glycerol in the diluent showed that glycerol was less important at the highest freezing rate. A sudden cooling phase near to the freezing point following the release of the latent heat of fusion was not detrimental to spermatozoa.

  12. Microphysical Modelling of the 1999-2000 Arctic Winter. 3; Impact of Homogeneous Freezing on PSCs

    NASA Technical Reports Server (NTRS)

    Drdla, K.

    2003-01-01

    Simulations of the 1999-2000 winter have tested the effect on polar stratospheric clouds (PSCs) of the homogeneous freezing of liquid ternary solutions into nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD). Proposed laboratory-derived volume-based and surface-based homogeneous freezing rates have both been examined, including different assumptions about the extrapolation of laboratory measurements to atmospheric conditions. Widespread PSC formation and denitrification are possible in several of the scenarios examined. However, the simulations are all unable to explain the solid-phase PSCs observed early in the 1999-2000 winter, and are unable to reproduce the measured extent of vortex denitrification. These problems can both be attributed to the relatively cold temperatures, more than 5 K below the NAT condensation point, necessary for effective homogeneous freezing. Therefore synoptic-scale homogeneous freezing appears unlikely to be the primary mechanism responsible for solid-phase PSC formation.

  13. Zinc

    MedlinePlus

    ... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...

  14. 9 CFR 590.534 - Freezing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing facilities. 590.534 Section 590.534 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the...

  15. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing operations. 590.536 Section 590.536 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and...

  16. 3 CFR - Pay Freeze

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Pay Freeze Presidential Documents Other Presidential Documents Memorandum of January 21, 2009 Pay Freeze Memorandum for the Assistant to the President and Chief... the White House staff forgo pay increases until further notice. Accordingly, as a signal of our shared...

  17. Inner ear tissue preservation by rapid freezing: improving fixation by high-pressure freezing and hybrid methods.

    PubMed

    Bullen, A; Taylor, R R; Kachar, B; Moores, C; Fleck, R A; Forge, A

    2014-09-01

    In the preservation of tissues in as 'close to life' state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40 μm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. FIMP dark matter freeze-in gauge mediation and hidden sector

    NASA Astrophysics Data System (ADS)

    Tsao, Kuo-Hsing

    2018-07-01

    We explore the dark matter freeze-in mechanism within the gauge mediation framework, which involves a hidden feebly interacting massive particle (FIMP) coupling feebly with the messenger fields while the messengers are still in the thermal bath. The FIMP is the fermionic component of the pseudo-moduli in a generic metastable supersymmetry (SUSY) breaking model and resides in the hidden sector. The relic abundance and the mass of the FIMP are determined by the SUSY breaking scale and the feeble coupling. The gravitino, which is the canonical dark matter candidate in the gauge mediation framework, contributes to the dark matter relic abundance along with the freeze-in of the FIMP. The hidden sector thus becomes two-component with both the FIMP and gravitino lodging in the SUSY breaking hidden sector. We point out that the ratio between the FIMP and the gravitino is determined by how SUSY breaking is communicated to the messengers. In particular when the FIMP dominates the hidden sector, the gravitino becomes the minor contributor in the hidden sector. Meanwhile, the neutralino is assumed to be both the weakly interacting massive particle dark matter candidate in the freeze-out mechanism and the lightest observable SUSY particle. We further find out the neutralino has the sub-leading contribution to the current dark matter relic density in the parameter space of our freeze-in gauge mediation model. Our result links the SUSY breaking scale in the gauge mediation framework with the FIMP freeze-in production rate leading to a natural and predicting scenario for the studies of the dark matter in the hidden sector.

  19. 40 CFR 471.80 - Applicability; description of the zinc forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the zinc forming subcategory. 471.80 Section 471.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Zinc Forming Subcategor...

  20. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the zinc casting subcategory. 464.40 Section 464.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40...

  1. 40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability: Description of the primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Zinc Subcategory § 421.80 Applicability...

  2. 40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability: Description of the primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Zinc Subcategory § 421.80 Applicability:...

  3. 40 CFR 471.80 - Applicability; description of the zinc forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the zinc forming subcategory. 471.80 Section 471.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Zinc Forming Subcategor...

  4. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the zinc casting subcategory. 464.40 Section 464.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40...

  5. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the zinc casting subcategory. 464.40 Section 464.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40...

  6. 40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability: Description of the primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Zinc Subcategory § 421.80 Applicability:...

  7. 40 CFR 471.80 - Applicability; description of the zinc forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the zinc forming subcategory. 471.80 Section 471.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Zinc Forming Subcategor...

  8. The influence of inflammation on plasma zinc concentration in apparently healthy, HIV+ Kenyan adults and zinc responses after a multi-micronutrient supplement.

    PubMed

    Mburu, A S W; Thurnham, D I; Mwaniki, D L; Muniu, E M; Alumasa, F M

    2010-05-01

    Plasma zinc is an important biomarker of zinc status, but the concentration is depressed by inflammation. Apparently healthy adults, who tested positive twice for human immunodeficiency virus (HIV) but who had not reached stage IV or clinical AIDS, were randomly allocated to receive a food supplement (n=17 and 21) or the food plus a micronutrient capsule (MN; n=10 men and n=33 women) containing 15 mg zinc/day. We used the inflammation biomarkers, C-reactive protein (CRP) and alpha1-acid glycoprotein (AGP), to identify subjects with and without inflammation and determine the effect of inflammation on the response of plasma zinc concentrations to the MN and food supplements. There were no differences between men and women either in plasma zinc or in the responses to the supplements and their data were combined. Plasma zinc was lower in those with inflammation than without. Repeated measures analysis of variance (ANOVA) showed that inflammation blocked increases in plasma zinc, and there was an approximate 10% increase in plasma zinc concentration in response to the MN supplement (P=0.023) in those without inflammation. Subgroup analysis showed mean changes in plasma zinc of 0.95 and -0.83 micromol/l (P=0.031) in response to the MN and food treatments, respectively, in those without inflammation at both time points. Inflammation seems to block any increase in plasma zinc after MN supplement and it is important to identify those without inflammation to determine the effectiveness of a zinc supplementation program.

  9. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution.

    PubMed

    Beirowski, Jakob; Inghelbrecht, Sabine; Arien, Albertina; Gieseler, Henning

    2011-05-01

    It has been recently reported in the literature that using a fast freezing rate during freeze-drying of drug nanosuspensions is beneficial to preserve the original particle size distribution. All freezing rates studied were obtained by utilizing a custom-made apparatus and were then indirectly related to conventional vial freeze-drying. However, a standard freeze-dryer is only capable of achieving moderate freezing rates in the shelf fluid circulation system. Therefore, it was the purpose of the present study to evaluate the possibility to establish a typical freezing protocol applicable to a standard freeze-drying unit in combination with an adequate choice of cryoprotective excipients and steric stabilizers to preserve the original particle size distribution. Six different drug nanosuspensions containing itraconazole as a drug model were studied using freeze-thaw experiments and a full factorial design to reveal major factors for the stabilization of drug nanosuspensions and the corresponding interactions. In contrast to previous reports, the freezing regime showed no significant influence on preserving the original particle size distribution, suggesting that the concentrations of both the steric stabilizer and the cryoprotective agent are optimized. Moreover, it could be pinpointed that the combined effect of steric stabilizer and cryoprotectant clearly contribute to nanoparticle stability. Copyright © 2010 Wiley-Liss, Inc.

  10. Pharmaceutical patent applications in freeze-drying.

    PubMed

    Ekenlebie, Edmond; Einfalt, Tomaž; Karytinos, Arianna Irò; Ingham, Andrew

    2016-09-01

    Injectable products are often the formulation of choice for new therapeutics; however, formulation in liquids often enhances degradation through hydrolysis. Thus, freeze-drying (lyophilization) is regularly used in pharmaceutical manufacture to reduce water activity. Here we examine its contribution to 'state of the art' and look at its future potential uses. A comprehensive search of patent databases was conducted to characterize the international patent landscape and trends in the use of freeze-drying. A total of 914 disclosures related to freeze-drying, lyophilization or drying of solid systems in pressures and temperatures equivalent to those of freeze-drying were considered over the period of 1992-2014. Current applications of sublimation technology were contrasted across two periods those with patents due to expire (1992-1993) and those currently filed. The number of freeze-drying technology patents has stabilized after initial activity across the biotechnology sector in 2011 and 2012. Alongside an increasing trend for patent submissions, freeze-drying submissions have slowed since 2002 and is indicative of a level of maturity.

  11. Antepartum/postpartum depressive symptoms and serum zinc and magnesium levels.

    PubMed

    Wójcik, Jacek; Dudek, Dominika; Schlegel-Zawadzka, Małgorzata; Grabowska, Mariola; Marcinek, Antoni; Florek, Ewa; Piekoszewski, Wojciech; Nowak, Rafał J; Opoka, Włodzimierz; Nowak, Gabriel

    2006-01-01

    In the present study, we investigated the relationship between depressive symptoms and serum zinc and magnesium level in antepartum and postpartum women. All women received standard vitamin, zinc and magnesium supplementation. Sixty-six pregnant women in the Czerwiakowski Hospital in Kraków were assessed for prepartum depressive symptoms using the Beck Depression Inventory (BDI). Sixty-two and fifty-eight women were also assessed for postpartum depressive symptoms (using Edinburgh Postnatal Depression Rating Scale, EPDRS) at 3 and 30 days after delivery, respectively. Serum zinc and magnesium levels were also determined at these time points, however, the number of examined subjects were diminished. A significantly higher EPDRS score (by 45%), indicating severity of depressive symptoms, was found on the 3rd day after childbirth compared with the 30th postpartum day. Moreover, the early post-delivery period (3rd day) was characterized by a 24% lower serum zinc concentration than that found on the 30th day after childbirth. BDI scores assessed a month before childbirth revealed mild depressive symptoms, which was accompanied by a serum zinc concentration similar to that found on the 3rd day after delivery. No significant alterations were found in the magnesium levels between these time points. The present results demonstrated a relationship between severity of depressive symptoms and decreased serum zinc (but not magnesium) concentration in a very specific type of affective disorder, the postpartum depression.

  12. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos.

    PubMed

    Mazur, P

    1990-08-01

    The first successful freezing of early embryos to -196 degrees C in 1972 required that they be cooled slowly at approximately 1 degree C/min to about -70 degrees C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to -70 degrees C, the results is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.

  13. Effects of various freezing containers for vitrification freezing on mouse oogenesis.

    PubMed

    Kim, Ji Chul; Kim, Jae Myeoung; Seo, Byoung Boo

    2016-01-01

    In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p < 0.05). Embryonic development rate, two cell embryos to blastocyst, as well as hatching rate were higher in the control group compared to the EM-grid group and OPS group (p < 0.05), yet no difference was noted between the control group and cryo-loop group. Development rate and hatching rate of eight cell morulae and blastocysts were all lower in the treatment groups than the control group whilst hatching rate of blastocysts was higher in the control group compared to the groups of EM-grid and OPS (p < 0.05); although the cryo-loop group was shown to be slightly higher than other groups, it was not statistically significant. In the study, we investigate effects of freezing containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

  14. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  15. Trace elements in a commercial freeze-dried human urine reference material.

    PubMed

    Veillon, C; Patterson, K Y

    1996-07-01

    A large batch of freeze-dried human urine reference material, Seronorm Trace Elements Urine, Lot 101021, was prepared commercially (Nycomed Pharma AS, Oslo, Norway) for quality control purposes in trace element analysis. Analytes are being determined by a voluntary, international co-operative effort so that the material will be available to the scientific community at modest cost. The material is in stoppered glass vials and is to be reconstituted with 5.00 ml of water prior to use. We have evaluated the trace element content for several elements, including chromium and zinc, elements for which we have two independent methods available for the determinations, namely isotope dilution mass spectrometry (IDMS) and atomic absorption spectrometry (AAS). We also report on other trace elements measured by IDMS alone, such as Se, for which we have enriched stable isotopes available. Results for chromium indicate a mean +/- standard deviation (n = 10) of 1.2 +/- 0.3 (by IDMS) and 1.4 +/- 0.3 (by AAS) ng Cr per ml of reconstituted urine, indicating possible inhomogeneity and/or contamination (21-25% relative standard deviation, RSD). Approximately half of the observed chromium originates from the sample container. The values observed for zinc were 590 +/- 90 ng ml-1 (15% RSD) for freshly reconstituted material, 760 +/- 60 ng ml-1 (8% RSD) for material reconstituted 4 d earlier, and 940 +/- 60 ng ml-1 (6% RSD) 2 months after reconstitution. Selenium values by IDMS were very reproducible, with a mean concentration of 16 +/- 0.15 ng g-1 (0.9% RSD), suggesting little or no contamination and a high degree of sample homogeneity for this element. The source of potential contaminants has been evaluated by multielement determinations of leachates of the vials and stoppers. Elements noted in significant amounts include B, Ba, Sr, Mo, Cu and Zn, with most of the zinc coming from the rubber stopper.

  16. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the zinc chloride production subcategory. 415.670 Section 415.670 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Zinc Chloride Production...

  17. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the zinc chloride production subcategory. 415.670 Section 415.670 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Zinc Chloride Production...

  18. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the zinc chloride production subcategory. 415.670 Section 415.670 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Zinc Chloride Production...

  19. High-pressure freezing and freeze substitution of Arabidopsis for electron microscopy.

    PubMed

    Austin, Jotham R

    2014-01-01

    The objectives of electron microscopy ultrastructural studies are to examine cellular architecture and relate the cell's structural machinery to dynamic functional roles. This aspiration is difficult to achieve if specimens have not been adequately preserved in a "living state"; hence specimen preparation is of the utmost importance for the success of any electron micrographic study. High-pressure freezing (HPF)/freeze substitution (FS) has long been recognized as the primer technique for the preservation of ultrastructure in biological samples. In most cases a basic HPF/freeze substitution protocol is sufficient to obtain superior ultrastructural preservation and structural contrast, which allows one to use more advanced microscopy techniques such as 3D electron tomography. However, for plant tissues, which have a thick cell wall, large water-filled vacuoles, and air spaces (all of which are detrimental to cryopreservation), these basic HPF/FS protocols often yield undesirable results. In particular, ice crystal artifacts and the staining of membrane systems are often poorly or negatively stained, which make 3D segmentation of a tomogram difficult. To overcome these problems, various aspects of the HPF/FS protocol can be altered, including the cryo-filler(s) used, freeze substitution cocktail, and the resin infiltration process. This chapter will describe these modifications for the preparation of plant tissues for routine electron microscopic studies, immunocytochemistry, and 3D tomographic electron imaging.

  20. Moments of the Particle Phase-Space Density at Freeze-out and Coincidence Probabilities

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyż, W.; Zalewski, K.

    2005-10-01

    It is pointed out that the moments of phase-space particle density at freeze-out can be determined from the coincidence probabilities of the events observed in multiparticle production. A method to measure the coincidence probabilities is described and its validity examined.

  1. Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine 'giant rosette' plants.

    PubMed

    Beck, E; Schulze, E D; Senser, M; Scheibe, R

    1984-09-01

    The water potentials of frozen leaves of Afroalpine plants were measured psychrometrically in the field. Comparison of these potentials with the osmotic potentials of an expressed cellular sap and the water potentials of ice indicated almost ideal freezing behaviour and suggested equilibrium freezing. On the basis of the osmotic potentials of expressed cellular sap, the fractions of frozen cellular water which correspond to the measured water potentials of the frozen leaves could be determined (e.g. 74% at -3.0° C). The freezing points of leaves were found to be in the range between 0° C and -0.5° C, rendering evidence for freezing of almost pure water and thus confirming the conclusions drawn from the water-potential measurements. The leaves proved to be frost resistant down to temperatures between -5° C and -15° C, as depending on the species. They tolerated short supercooling periods which were necessary in order to start ice nucleation. Extracellular ice caps and ice crystals in the intercellular space were observed when cross sections of frozen leaves were investigated microscopically at subfreezing temperatures.

  2. Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets.

    PubMed

    Cai, Congxi; Miao, Huiying; Qian, Hongmei; Yao, Leishuan; Wang, Bingliang; Wang, Qiaomei

    2016-11-01

    The effects of industrial pre-freezing processing and freezing handling on the contents of glucosinolates and antioxidants (vitamin C, polyphenols, carotenoid and chlorophyll), as well as the antioxidant capacity in broccoli (Brassica oleracea L. var. italica) florets were investigated in the present study. Our results showed that the glucosinolate accumulations were significantly decreased after pre-freezing processing, whereas elevated levels of phenols, carotenoids, chlorophyll, and also antioxidant capacity were observed in frozen broccoli florets. The contents of vitamin C remained constant during above mentioned processing. In conclusion, the current industrial freezing processing method is a good practice for the preservation of main antioxidant nutrients in broccoli florets, although some improvements in pre-freezing processing, such as steam blanching and ice-water cooling, are needed to attenuate the decrease in glucosinolate content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results.

    PubMed

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-07-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union.

  4. Biomimetic Materials by Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.

    2013-06-01

    Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.

  5. Effects of surface hydroxylation on adhesion at zinc/silica interfaces.

    PubMed

    Le, Ha-Linh Thi; Goniakowski, Jacek; Noguera, Claudine; Koltsov, Alexey; Mataigne, Jean-Michel

    2018-06-06

    The weak interaction between zinc and silica is responsible for the poor performance of anti-corrosive galvanic zinc coatings on modern advanced high-strength steels, which are fundamental in the automotive industry, and important for rail transport, shipbuilding, and aerospace. With the goal of identifying possible methods for its improvement, we report an ab initio study of the effect of surface hydroxylation on the adhesion characteristics of model zinc/β-cristobalite interfaces, representative of various surface hydroxylation/hydrogenation conditions. We show that surface silanols resulting from dissociative water adsorption at the most stable stoichiometric (001) and (111) surfaces prevent strong zinc-silica interactions. However, dehydrogenation of such interfaces produces oxygen-rich zinc/silica contacts with excellent adhesion characteristics. These are due to partial zinc oxidation and the formation of strong iono-covalent Zn-O bonds between zinc atoms and the under-coordinated excess anions, remnant of the hydroxylation layer. Interestingly, these interfaces appear as the most thermodynamically stable in a wide range of realistic oxygen-rich and hydrogen-lean environments. We also point out that the partial oxidation of zinc atoms in direct contact with the oxide substrate may somewhat weaken the cohesion in the zinc deposit itself. This fundamental analysis of the microscopic mechanisms responsible for the improved zinc wetting on pre-hydroxylated silica substrates provides useful guidelines towards practical attempts to improve adhesion.

  6. Freeze injury to southern pine seedlings

    Treesearch

    David B. South

    2006-01-01

    Freeze injury to roots and shoots of pines is affected by genotype and nursery practices. Local sources of shortleaf pine and Virginia pine that are grown in nurseries in USDA hardiness Zones 6 and 7a are relatively freeze tolerant. However, loblolly pine, slash pine, and longleaf pine seedlings have been injured by a number of freeze events (0 to 24 °F) in hardiness...

  7. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology formore » air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.« less

  8. The effect of undissolved air on isochoric freezing.

    PubMed

    Perez, Pedro A; Preciado, Jessica; Carlson, Gary; DeLonzor, Russ; Rubinsky, Boris

    2016-06-01

    This study evaluates the effect of undissolved air on isochoric freezing of aqueous solutions. Isochoric freezing is concerned with freezing in a constant volume thermodynamic system. A possible advantage of the process is that it substantially reduces the percentage of ice in the system at every subzero temperature, relative to atmospheric freezing. At the pressures generated by isochoric freezing, or high pressure isobaric freezing, air cannot be considered an incompressible substance and the presence of undissolved air substantially increases the amount of ice that forms at any subfreezing temperature. This effect is measurable at air volumes as low as 1%. Therefore eliminating the undissolved air, or any separate gaseous phase, from the system is essential for retaining the properties of isochoric freezing. Copyright © 2016. Published by Elsevier Inc.

  9. Dysregulation of hepatic zinc transporters in a mouse model of alcoholic liver disease

    PubMed Central

    Sun, Qian; Li, Qiong; Zhong, Wei; Zhang, Jiayang; Sun, Xiuhua; Tan, Xiaobing; Yin, Xinmin; Sun, Xinguo; Zhang, Xiang

    2014-01-01

    Zinc deficiency is a consistent phenomenon observed in patients with alcoholic liver disease, but the mechanisms have not been well defined. The objective of this study was to determine if alcohol alters hepatic zinc transporters in association with reduction of hepatic zinc levels and if oxidative stress mediates the alterations of zinc transporters. C57BL/6 mice were pair-fed with the Lieber-DeCarli control or ethanol diets for 2, 4, or 8 wk. Chronic alcohol exposure reduced hepatic zinc levels, but increased plasma and urine zinc levels, at all time points. Hepatic zinc finger proteins, peroxisome proliferator-activated receptor-α (PPAR-α) and hepatocyte nuclear factor 4α (HNF-4α), were downregulated in ethanol-fed mice. Four hepatic zinc transporter proteins showed significant alterations in ethanol-fed mice compared with the controls. ZIP5 and ZIP14 proteins were downregulated, while ZIP7 and ZnT7 proteins were upregulated, by ethanol exposure at all time points. Immunohistochemical staining demonstrated that chronic ethanol exposure upregulated cytochrome P-450 2E1 and caused 4-hydroxynonenal accumulation in the liver. For the in vitro study, murine FL-83B hepatocytes were treated with 5 μM 4-hydroxynonenal or 100 μM hydrogen peroxide for 72 h. The results from in vitro studies demonstrated that 4-hydroxynonenal treatment altered ZIP5 and ZIP7 protein abundance, and hydrogen peroxide treatment changed ZIP7, ZIP14, and ZnT7 protein abundance. These results suggest that chronic ethanol exposure alters hepatic zinc transporters via oxidative stress, which might account for ethanol-induced hepatic zinc deficiency. PMID:24924749

  10. Randomized trial of the effect of zinc supplementation on the mental health of school-age children in Guatemala123

    PubMed Central

    DiGirolamo, Ann M; Ramirez-Zea, Manuel; Wang, Meng; Flores-Ayala, Rafael; Martorell, Reynaldo; Neufeld, Lynnette M; Ramakrishnan, Usha; Sellen, Daniel; Black, Maureen M; Stein, Aryeh D

    2010-01-01

    Background: Rates of mental illness in children are increasing throughout the world. Observational studies of depression, anxiety, and attention-deficit hyperactivity disorder suggest that zinc is an alternative treatment. Objective: We examined the effect of zinc supplementation on the mental health of school-age children in Guatemala. Design: From January to October 2006, we conducted a 6-mo randomized, double-blind, controlled trial comparing zinc supplementation (10 mg ZnO/d for 5 d/wk) with a placebo (10 mg glucose) in 674 Guatemalan children in grades 1–4. Outcome measures included internalizing (ie, depression and anxiety) and externalizing (ie, hyperactivity and conduct disorder) problem behaviors, positive behaviors (ie, socialization and leadership), and serum zinc concentrations. Results: Zinc and placebo groups did not differ significantly in any behavioral measures at baseline or at follow-up. At baseline, 21.4% of children had serum zinc concentrations <65 μg/dL. At follow-up, both groups improved significantly, and zinc concentrations were higher in the zinc group. Increases in serum zinc concentrations were inversely associated with decreases in depressive symptoms (estimate: −0.01 points per μg Zn/dL; P = 0.01), anxiety (estimate: −0.012 points per μg Zn/dL; P = 0.02), internalizing symptoms (estimate: −0.021 points per μg Zn/dL; P = 0.02), and social skills (estimate: −0.019 points per μg Zn/dL; P = 0.01) in adjusted models that were controlled for child age, sex, socioeconomic status, household, and treatment group. Conclusions: Six months of zinc supplementation did not induce differences in mental health outcomes between zinc and placebo groups. However, increases in serum zinc concentrations were associated with decreases in internalizing symptoms (ie, depression and anxiety) in a community-based sample of children at risk of zinc deficiency. This trial was registered at clinicaltrials.gov as NCT00283660. PMID:20881069

  11. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  12. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  13. Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing

    PubMed Central

    Mazur, Peter

    1963-01-01

    The survival of various cells subjected to low temperature exposure is higher when they are cooled slowly. This increase is consistent with the view that slow cooling decreases the probability of intracellular freezing by permitting water to leave the cell rapidly enough to keep the protoplasm at its freezing point. The present study derives a quantitative relation between the amount of water in a cell and temperature. The relation is a differential equation involving cooling rate, surface-volume ratio, membrane permeability to water, and the temperature coefficient of the permeability constant. Numerical solutions to this equation give calculated water contents which permit predictions as to the likelihood of intracellular ice formation. Both the calculated water contents and the predictions on internal freezing are consistent with the experimental observations of several investigators. PMID:14085017

  14. Freeze-thaw durability of air-entrained concrete.

    PubMed

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  15. Coincidence probability as a measure of the average phase-space density at freeze-out

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Zalewski, K.

    2006-02-01

    It is pointed out that the average semi-inclusive particle phase-space density at freeze-out can be determined from the coincidence probability of the events observed in multiparticle production. The method of measurement is described and its accuracy examined.

  16. Comparison of Cryopreserved Human Sperm between Ultra Rapid Freezing and Slow Programmable Freezing: Effect on Motility, Morphology and DNA Integrity.

    PubMed

    Tongdee, Pattama; Sukprasert, Matchuporn; Satirapod, Chonticha; Wongkularb, Anna; Choktanasiri, Wicham

    2015-05-01

    Cryopreservation of sperm is common methods to preserve male fertility. Sperm freezing, suggest slow programmable freezing caused lower change of sperm morphology than sperm freezing in vapor of liquid nitrogen. Ultra rapid freezing is easy to be worked on, less time, low cost and does not need high experience. To compare the effect on sperm motility, morphology and DNA integrity of post-thawed sperm after ultra rapid freezing and slow programmable freezing methods. Experimental study at laboratory of infertility unit, Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital. Thirty-seven semen samples with normal semen analysis according to World Health Organization (WHO) 1999 [normal sperm volume ( 2 ml) and normal sperm concentration (≥ 20 x10(6)/ml) and sperm motility (≥ 50%)]. Semen samples were washed. Then each semen sample was divided into six cryovials. Two cryovials, 0.5 ml each, were cryopreserved by slow programmable freezing. Four 0.25 ml containing cryovials, were cryopreserved by ultra rapidfreezing method. After cryopreservationfor 1 month, thawedprocess was carried out at room temperature. Main outcomes are sperm motility was determined by Computer-Assisted Semen Analysis (CASA), sperm morphology was determined by eosin-methylene blue staining and sperm DNA integrity was assessed by TUNEL assay. Sperm motility was reduced significantly by both methods, from 70.4 (9.0)% to 29.1 (12.3)% in slowprogrammable freezing and to 19.7 (9.8)% in ultra rapid freezing (p < 0.05). Sperm motility decreased significantly more by ultra rapid freezing (p < 0.001). The percentage of normal sperm morphology and DNA integrity were also reduced significantly by both methods. However, no significant difference between the two methods was found (p > 0.05). Cryopreservation of human sperm for 1 month significantly decreased sperm motility, morphology and DNA integrity in both methods. However sperm motility was decreased more by ultra rapid

  17. Freezing tolerance of winter wheat as influenced by extended growth at low temperature and exposure to freeze-thaw cycles

    USDA-ARS?s Scientific Manuscript database

    As the seasons progress, autumn-planted winter wheat plants (Triticum aestivum L.) first gain, then progressively lose freezing tolerance. Exposing the plants to freeze-thaw cycles of -3/3°C results in increased ability to tolerate subsequent freezing to potentially damaging temperatures. This stu...

  18. Mechanisms of deterioration of nutrients. [of freeze dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  19. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Triple point determinations of monomethylhydrazine and nitrogen tetroxide, 2.2 percent by weight nitric oxide

    NASA Technical Reports Server (NTRS)

    Smith, Irwin D.; Dhooge, Patrick M.

    1977-01-01

    A series of tests was performed to ascertain the triple points of monomethylhydrazine and nitrogen tetroxide. A laboratory method indicated a triple point for monomethylhydrazine, but tests in a large vacuum chamber indicated that a triple point does not occur in spacelike conditions because the mono-methylhydrazine tends to supercool. Instead, an effective freezing point (with agitation) was obtained. New experimental values for liquid monomethylhydrazine vapor pressure were determined for temperatures from 275.2 to 207.6 K. The values were used to derive vapor pressure equations. Tentative values were obtained for the effective freezing point of nitrogen tetroxide spacelike conditions.

  1. Analytical validation and reference intervals for freezing point depression osmometer measurements of urine osmolality in dogs.

    PubMed

    Guerrero, Samantha; Pastor, Josep; Tvarijonaviciute, Asta; Cerón, José Joaquín; Balestra, Graziano; Caldin, Marco

    2017-11-01

    Urine osmolality (UOsm) is considered the most accurate measure of urine concentration and is used to assess body fluid homeostasis and renal function. We performed analytical validation of freezing point depression measurement of canine UOsm, to establish reference intervals (RIs) and to determine the effect of age, sex, and reproductive status on UOsm in dogs. Clinically healthy dogs ( n = 1,991) were retrospectively selected and stratified in groups by age (young [0-12 mo], adults [13-84 mo], and seniors [>84 mo]), sex (females and males), and reproductive status (intact and neutered). RIs were calculated for each age group. Intra- and inter-assay coefficients of variation were <1% in all cases. Good linearity ( r 2 = 1, p < 0.001) and recovery (89-98%) were observed. The limit of detection and limit of quantification were zero. Urine specific gravity and UOsm had a highly significant positive correlation ( r = 0.96, p < 0.001) but had inconsistent agreement. The 95% RI for canine UOsm was 369-2,416 mOsm/kg in young and adult dogs, and 366-2,178 mOsm/kg in seniors. Senior dogs had a significantly lower UOsm than young and adult dogs ( p < 0.000). Neutered females had a significantly lower UOsm than intact female dogs ( p < 0.002). These results indicate that the method evaluated is adequate for UOsm measurement and that RIs based on age and reproductive status should be used in dogs.

  2. Freezing-induced deformation of biomaterials in cryomedicine

    NASA Astrophysics Data System (ADS)

    Ozcelikkale, Altug

    Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water

  3. Method of capturing or trapping zinc using zinc getter materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  4. Molecular biology of freezing tolerance.

    PubMed

    Storey, Kenneth B; Storey, Janet M

    2013-07-01

    Winter survival for many kinds of animals involves freeze tolerance, the ability to endure the conversion of about 65% of total body water into extracellular ice and the consequences that freezing imposes including interruption of vital processes (e.g., heartbeat and breathing), cell shrinkage, elevated osmolality, anoxia/ischemia, and potential physical damage from ice. Freeze-tolerant animals include various terrestrially hibernating amphibians and reptiles, many species of insects, and numerous other invertebrates inhabiting both terrestrial and intertidal environments. Well-known strategies of freezing survival include accumulation of low molecular mass carbohydrate cryoprotectants (e.g., glycerol), use of ice nucleating agents/proteins for controlled triggering of ice growth and of antifreeze proteins that inhibit ice recrystallization, and good tolerance of anoxia and dehydration. The present article focuses on more recent advances in our knowledge of the genes and proteins that support freeze tolerance and the metabolic regulatory mechanisms involved. Important roles have been identified for aquaporins and transmembrane channels that move cryoprotectants, heat shock proteins and other chaperones, antioxidant defenses, and metabolic rate depression. Genome and proteome screening has revealed many new potential targets that respond to freezing, in particular implicating cytoskeleton remodeling as a necessary facet of low temperature and/or cell volume adaptation. Key regulatory mechanisms include reversible phosphorylation control of metabolic enzymes and microRNA control of gene transcript expression. These help to remodel metabolism to preserve core functions while suppressing energy expensive metabolic activities such as the cell cycle. All of these advances are providing a much more complete picture of life in the frozen state. © 2013 American Physiological Society.

  5. Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results

    PubMed Central

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-01-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839

  6. In-line multipoint near-infrared spectroscopy for moisture content quantification during freeze-drying.

    PubMed

    Kauppinen, Ari; Toiviainen, Maunu; Korhonen, Ossi; Aaltonen, Jaakko; Järvinen, Kristiina; Paaso, Janne; Juuti, Mikko; Ketolainen, Jarkko

    2013-02-19

    During the past decade, near-infrared (NIR) spectroscopy has been applied for in-line moisture content quantification during a freeze-drying process. However, NIR has been used as a single-vial technique and thus is not representative of the entire batch. This has been considered as one of the main barriers for NIR spectroscopy becoming widely used in process analytical technology (PAT) for freeze-drying. Clearly it would be essential to monitor samples that reliably represent the whole batch. The present study evaluated multipoint NIR spectroscopy for in-line moisture content quantification during a freeze-drying process. Aqueous sucrose solutions were used as model formulations. NIR data was calibrated to predict the moisture content using partial least-squares (PLS) regression with Karl Fischer titration being used as a reference method. PLS calibrations resulted in root-mean-square error of prediction (RMSEP) values lower than 0.13%. Three noncontact, diffuse reflectance NIR probe heads were positioned on the freeze-dryer shelf to measure the moisture content in a noninvasive manner, through the side of the glass vials. The results showed that the detection of unequal sublimation rates within a freeze-dryer shelf was possible with the multipoint NIR system in use. Furthermore, in-line moisture content quantification was reliable especially toward the end of the process. These findings indicate that the use of multipoint NIR spectroscopy can achieve representative quantification of moisture content and hence a drying end point determination to a desired residual moisture level.

  7. Freeze-Thaw Durability of Air-Entrained Concrete

    PubMed Central

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results. PMID:23576906

  8. Bulk water freezing dynamics on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm < Lc < 6 mm) using carefully designed freezing experiments in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of surface wettability, we investigated the total time for room temperature water to completely freeze into ice on superhydrophilic ( θaapp→ 0°), hydrophilic (0° < θa < 90°), hydrophobic (90° < θa < 125°), and superhydrophobic ( θaapp→ 180°) surfaces. Our results show that at macroscopic length scales, heat conduction through the bulk water/ice layer dominates the freezing process when compared to heat conduction through the functional coatings or nanoscale gaps at the superhydrophobic substrate-water/ice interface. In order to verify our findings, and to determine when the surface structure thermal resistance approaches the water/ice resistance, we fabricated and tested the additional substrates coated with commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  9. A Theory of Immersion Freezing

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan

    2017-01-01

    Immersion freezing is likely involved in the initiation of precipitation and determines to large extent the phase partitioning in convective clouds. Theoretical models commonly used to describe immersion freezing in atmospheric models are based on the classical nucleation theory which however neglects important interactions near the immersed particle that may affect nucleation rates. This work introduces a new theory of immersion freezing based on two premises. First, immersion ice nucleation is mediated by the modification of the properties of water near the particle-liquid interface, rather than by the geometry of the ice germ. Second, the same mechanism that leads to the decrease in the work of germ formation also decreases the mobility of water molecules near the immersed particle. These two premises allow establishing general thermodynamic constraints to the ice nucleation rate. Analysis of the new theory shows that active sites likely trigger ice nucleation, but they do not control the overall nucleation rate nor the probability of freezing. It also suggests that materials with different ice nucleation efficiency may exhibit similar freezing temperatures under similar conditions but differ in their sensitivity to particle surface area and cooling rate. Predicted nucleation rates show good agreement with observations for a diverse set of materials including dust, black carbon and bacterial ice nucleating particles. The application of the new theory within the NASA Global Earth System Model (GEOS-5) is also discussed.

  10. Physical properties of NaCl-free cucumber fermentation cover brine containing calcium chloride and glycerin and apparent freezing injury of the brined fruits

    USDA-ARS?s Scientific Manuscript database

    Use of glycerin and calcium chloride to reduce the freezing point and improve quality of bulk stored fermented cucumbers brined without NaCl, was explored. The incidence of pre-freezing injury on the fruits, caused by deposition in tanks containing cushion brine prepared with 2.5% calcium chloride, ...

  11. Evaluation and Validation of the Messinger Freezing Fraction

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Tsao, Jen-Ching

    2005-01-01

    One of the most important non-dimensional parameters used in ice-accretion modeling and scaling studies is the freezing fraction defined by the heat-balance analysis of Messinger. For fifty years this parameter has been used to indicate how rapidly freezing takes place when super-cooled water strikes a solid body. The value ranges from 0 (no freezing) to 1 (water freezes immediately on impact), and the magnitude has been shown to play a major role in determining the physical appearance of the accreted ice. Because of its importance to ice shape, this parameter and the physics underlying the expressions used to calculate it have been questioned from time to time. Until now, there has been no strong evidence either validating or casting doubt on the current expressions. This paper presents experimental measurements of the leading-edge thickness of a number of ice shapes for a variety of test conditions with nominal freezing fractions from 0.3 to 1.0. From these thickness measurements, experimental freezing fractions were calculated and compared with values found from the Messinger analysis as applied by Ruff. Within the experimental uncertainty of measuring the leading-edge thickness, agreement of the experimental and analytical freezing fraction was very good. It is also shown that values of analytical freezing fraction were entirely consistent with observed ice shapes at and near rime conditions: At an analytical freezing fraction of unity, experimental ice shapes displayed the classic rime shape, while for conditions producing analytical freezing fractions slightly lower than unity, glaze features started to appear.

  12. Rapid freezing without cooling equilibration in canine sperm.

    PubMed

    Kim, Suhee; Lee, Yongcheol; Yang, Honghyun; Kim, Yong-Jun

    2012-01-01

    The aim of this study was to develop a rapid method of canine semen freezing without cooling equilibration using treatment with different cryoprotectant agents (CPAs) and freezing in liquid nitrogen (LN(2)) vapor in a 0.5-mL straw via modifying vitrification. Ejaculates from eight beagle dogs were frozen with different CPAs (CPA-free, 5% glycerol, 5% ethylene glycol, and 10% ethylene glycol) and freezing times (direct plunging into LN(2) or freezing for 1, 2, 3, or 10 min in LN(2) vapor before plunging into LN(2)). Frozen-thawed sperm were evaluated for motility, viability, normal morphology, and plasma- and acrosome-membrane integrities. The 5% glycerol treatment resulted in improved sperm motility, plasma-membrane integrity and acrosome-membrane integrity (P<0.05). Freezing in LN(2) vapor showed improved sperm motility, viability, and plasma membrane integrity (P<0.05), and freezing for more than 2 min in LN(2) vapor increased acrosome-membrane integrity compared with direct plunging into LN(2) (P<0.05). The direct plunging into LN(2) showed no motile sperm. However, freezing for more than 2 min in LN(2) vapor increased the total abnormalities compared to direct plunging into LN(2) (P<0.05). In conclusion, use of 5% glycerol and freezing in LN(2) vapor were essential for the rapid freezing of canine sperm without cooling equilibration. In particular, holding for 2 min in LN(2) vapor was sufficient to yield successful rapid freezing. This rapid freezing method is simple and effective in canine sperm and would be helpful to offer information for trial of vitrification in large volumes of canine sperm. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF

  14. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and... outside of liquid egg containers shall be clean and free from evidence of liquid egg. (e) Frozen egg...

  15. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and... outside of liquid egg containers shall be clean and free from evidence of liquid egg. (e) Frozen egg...

  16. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and... outside of liquid egg containers shall be clean and free from evidence of liquid egg. (e) Frozen egg...

  17. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and... outside of liquid egg containers shall be clean and free from evidence of liquid egg. (e) Frozen egg...

  18. Accuracy of two osmometers on standard samples: electrical impedance technique and freezing point depression technique

    NASA Astrophysics Data System (ADS)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Miñones, Mercedes; Gilino, Jorge; Giraldez, Maria J.; Yebra-Pimentel, Eva

    2013-11-01

    High tear fluid osmolarity is a feature common to all types of dry eye. This study was designed to establish the accuracy of two osmometers, a freezing point depression osmometer (Fiske 110) and an electrical impedance osmometer (TearLab™) by using standard samples. To assess the accuracy of the measurements provided by the two instruments we used 5 solutions of known osmolarity/osmolality; 50, 290 and 850 mOsm/kg and 292 and 338 mOsm/L. Fiske 110 is designed to be used in samples of 20 μl, so measurements were made on 1:9, 1:4, 1:1 and 1:0 dilutions of the standards. Tear Lab is addressed to be used in tear film and only a sample of 0.05 μl is required, so no dilutions were employed. Due to the smaller measurement range of the TearLab, the 50 and 850 mOsm/kg standards were not included. 20 measurements per standard sample were used and differences with the reference value was analysed by one sample t-test. Fiske 110 showed that osmolarity measurements differed statistically from standard values except those recorded for 290 mOsm/kg standard diluted 1:1 (p = 0.309), the 292 mOsm/L H2O sample (1:1) and 338 mOsm/L H2O standard (1:4). The more diluted the sample, the higher the error rate. For the TearLab measurements, one-sample t-test indicated that all determinations differed from the theoretical values (p = 0.001), though differences were always small. For undiluted solutions, Fiske 110 shows similar performance than TearLab. However, for the diluted standards, Fiske 110 worsens.

  19. Freeze-in through portals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Fernandez-Martínez, Enrique; Zaldívar, Bryan, E-mail: emb@kth.se, E-mail: enrique.fernandez-martinez@uam.es, E-mail: b.zaldivar.m@csic.es

    2014-01-01

    The popular freeze-out paradigm for Dark Matter (DM) production, relies on DM-baryon couplings of the order of the weak interactions. However, different search strategies for DM have failed to provide a conclusive evidence of such (non-gravitational) interactions, while greatly reducing the parameter space of many representative models. This motivates the study of alternative mechanisms for DM genesis. In the freeze-in framework, the DM is slowly populated from the thermal bath while never reaching equilibrium. In this work, we analyse in detail the possibility of producing a frozen-in DM via a mediator particle which acts as a portal. We give analyticalmore » estimates of different freeze-in regimes and support them with full numerical analyses, taking into account the proper distribution functions of bath particles. Finally, we constrain the parameter space of generic models by requiring agreement with DM relic abundance observations.« less

  20. Medication and trial duration influence postural and pointing parameters during a standing repetitive pointing task in individuals with Parkinson's disease.

    PubMed

    Jehu, Deborah A; Cantù, Hiram; Hill, Allen; Paquette, Caroline; Côté, Julie N; Nantel, Julie

    2018-01-01

    We aimed to determine the effects of levodopa medication on the performance of a repetitive pointing task while standing, and to investigate the optimal trial duration in individuals with Parkinson's disease, and older adults. Seventeen individuals with Parkinson's disease (5 freezers) and 9 older adults stood on force platforms for 30 s and 120 s while performing a bilateral repetitive pointing task, tracked by motion capture. Participants with Parkinson's disease were assessed on and off medication and older adults were also assessed on separate days. The main findings were that: 1) on medication, participants with Parkinson's exhibited greater center of pressure root mean square in the medial-lateral direction, greater velocity in the medial-lateral and anterior-posterior directions, and greater range in the medial-lateral direction than off medication; 2) longer trial durations resulted in greater center of pressure range in the medial-lateral and anterior-posterior directions and greater coefficient of variation in finger pointing on the least affected side; 3) Parkinson's participants exhibited larger range in the medial-lateral direction compared to older adults; 4) off medication, freezers presented with less range and root mean square in the anterior-posterior direction than non-freezers; and 5) a correlation emerged between the freezing of gait questionnaire and pointing asymmetry and the coefficient of variation of pointing on the most affected side. Therefore, Parkinson's medication may increase instability during a repetitive pointing task. Longer trials may provide a better depiction of sway by discriminating between those with and without neurological impairment. Individuals with Parkinson's were less stable than older adults, supporting that they are at a greater risk for falls. The greater restrictive postural strategy in freezers compared to non-freezers is likely a factor that augments fall-risk. Lastly, the link between freezing of gait and

  1. Freezing tolerance of conifer seeds and germinants.

    PubMed

    Hawkins, B J; Guest, H J; Kolotelo, D

    2003-12-01

    Survival after freezing was measured for seeds and germinants of four seedlots each of interior spruce (Picea glauca x engelmannii complex), lodgepole pine (Pinus contorta Dougl. ex Loud.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata Donn ex D. Donn). Effects of eight seed treatments on post-freezing survival of seeds and germinants were tested: dry, imbibed and stratified seed, and seed placed in a growth chamber for 2, 5, 10, 15, 20 or 30 days in a 16-h photoperiod and a 22/17 degrees C thermoperiod. Survival was related to the water content of seeds and germinants, germination rate and seedlot origin. After freezing for 3 h at -196 degrees C, dry seed of most seedlots of interior spruce, Douglas-fir and western red cedar had 84-96% germination, whereas lodgepole pine seedlots had 53-82% germination. Freezing tolerance declined significantly after imbibition in lodgepole pine, Douglas-fir and interior spruce seed (western red cedar was not tested), and mean LT50 of imbibed seed of these species was -30, -24.5 and -20 degrees C, respectively. Freezing tolerance continued to decline to a minimum LT50 of -4 to -7 degrees C after 10 days in a growth chamber for interior spruce, Douglas-fir and lodgepole pine, or after 15 days for western red cedar. Minimum freezing tolerance was reached at the stage of rapid hypocotyl elongation. In all species, a slight increase in freezing tolerance of germinants was observed once cotyledons emerged from the seed coat. The decrease in freezing tolerance during the transition from dry to germinating seed correlated with increases in seed water content. Changes in freezing tolerance between 10 and 30 days in the growth chamber were not correlated with seedling water content. Within a species, seedlots differed significantly in freezing tolerance after 2 or 5 days in the growth chamber. Because all seedlots of interior spruce and lodgepole pine germinated quickly, there was no correlation

  2. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    PubMed Central

    Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.

    2013-01-01

    Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081

  3. Effect of Thawing Time, Cooling Rate and Boron Nutrition on Freezing Point of the Primordial Shoot in Norway Spruce Buds

    PubMed Central

    RÄISÄNEN, MIKKO; REPO, TAPANI; LEHTO, TARJA

    2006-01-01

    • Background Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter. • Methods The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage. • Key Results In 2003, the freezing point of primordial shoots of buds (Tf), i.e. the low-temperature exotherm (LTE), was, on average, −39 °C when buds were thawed for less than 3 h and the Tf increased to −21 °C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 °C h−1. In 2005, buds dehardened linearly from −39 °C to −35 °C at a rate of 0·7 °C h−1. In 2003, different cooling rates of 1–5 °C h−1 had a minor effect on Tf but in 2005 with slow cooling rates Tf decreased. In both samplings, at cooling rates of 2 and 1 °C h−1, Tf was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, Tf was somewhat lower in B-fertilized trees. • Conclusions There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness. PMID:16464880

  4. The equilibrated state of freezing as a basis for distinguishing lethal stresses of freezing in plants

    USDA-ARS?s Scientific Manuscript database

    A model for coordination of stresses that limit winterhardiness in plants based on the thermodynamic equilibrated state of freezing and melting provides a rational basis for distinction of freeze-induced energies which can stress and injure living organisms in various ways. The departure from equili...

  5. Zinc supplementation for tinnitus.

    PubMed

    Person, Osmar C; Puga, Maria Es; da Silva, Edina Mk; Torloni, Maria R

    2016-11-23

    , precluding a meta-analysis. The participants were all adults over 18 years with subjective tinnitus, but one study conducted in 2013 (n = 109) included only elderly patients. Improvement in tinnitus severity and disabilityOnly the study in elderly patients used a validated instrument (Tinnitus Handicap Questionnaire) for this primary outcome. The authors of this cross-over study did not report the results of the two phases separately and found no significant differences in the proportion of patients reporting tinnitus improvement at four months of follow-up: 5% (5/93) versus 2% (2/94) in the zinc and placebo groups, respectively (risk ratio (RR) 2.53, 95% confidence interval (CI) 0.50 to 12.70; very low-quality evidence).None of the included studies reported any significant adverse effects. Secondary outcomesFor the secondary outcome change in tinnitus loudness, one study reported no significant difference between the zinc and placebo groups after eight weeks: mean difference in tinnitus loudness -9.71 dB (95% CI -25.53 to 6.11; very low-quality evidence). Another study also measured tinnitus loudness but used a 0- to 100-point scale. The authors of this second study reported no significant difference between the zinc and placebo groups after four months: mean difference in tinnitus loudness rating scores 0.50 (95% CI -5.08 to 6.08; very low-quality evidence).Two studies used unvalidated instruments to assess tinnitus severity. One (with 50 participants) reported the severity of tinnitus using a non-validated scale (0 to 7 points) and found no significant difference in subjective tinnitus scores between the zinc and placebo groups at the end of eight weeks of follow-up (mean difference (MD) -1.41, 95% CI -2.97 to 0.15; very low-quality evidence). A third trial (n = 50) also evaluated the improvement of tinnitus using a non-validated instrument (a 0 to 10 scale: 10 = severe and unbearable tinnitus). In this study, after eight weeks there was no difference in the proportion of

  6. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  7. The succinonitrile triple-point standard: a fixed point to improve the accuracy of temperature measurements in the clinical laboratory.

    PubMed

    Mangum, B W

    1983-07-01

    In an investigation of the melting and freezing behavior of succinonitrile, the triple-point temperature was determined to be 58.0805 degrees C, with an estimated uncertainty of +/- 0.0015 degrees C relative to the International Practical Temperature Scale of 1968 (IPTS-68). The triple-point temperature of this material is evaluated as a temperature-fixed point, and some clinical laboratory applications of this fixed point are proposed. In conjunction with the gallium and ice points, the availability of succinonitrile permits thermistor thermometers to be calibrated accurately and easily on the IPTS-68.

  8. Thermodynamics of freezing and melting

    PubMed Central

    Pedersen, Ulf R.; Costigliola, Lorenzo; Bailey, Nicholas P.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  9. Classification of polytype structures of zinc sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laptev, V.I.

    1994-12-31

    It is suggested that the existing classification of polytype structures of zinc sulfide be supplemented with an additional criterion: the characteristic of regular point systems (Wyckoff positions) including their type, number, and multiplicity. The consideration of the Wyckoff positions allowed the establishment of construction principles of known polytype series of different symmetries and the systematization (for the first time) of the polytypes with the same number of differently packed layers. the classification suggested for polytype structures of zinc sulfide is compact and provides a basis for creating search systems. The classification table obtained can also be used for numerous siliconmore » carbide polytypes. 8 refs., 4 tabs.« less

  10. Zinc pharmacokinetic parameters in the determination of body zinc status in children.

    PubMed

    Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J

    2014-02-01

    Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.

  11. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kai; Li, Ruixin; Jiang, Wenxue, E-mail: jiangortholivea@sina.cn

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher thanmore » those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.« less

  12. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  13. A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.

    PubMed

    Wastney, Meryl E; McDonald, Christine M; King, Janet C

    2018-05-01

    Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.

  14. Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies.

    PubMed

    Nock, Charles A; Lecigne, Bastien; Taugourdeau, Olivier; Greene, David F; Dauzat, Jean; Delagrange, Sylvain; Messier, Christian

    2016-06-01

    Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: 'IceCube', which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and 'IceTree', a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R(2) = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage. © The Author 2016. Published by Oxford University Press on behalf of the Annals of

  15. Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies

    PubMed Central

    Nock, Charles A.; Lecigne, Bastien; Taugourdeau, Olivier; Greene, David F.; Dauzat, Jean; Delagrange, Sylvain; Messier, Christian

    2016-01-01

    Background and Aims Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. Methods Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: ‘IceCube’, which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and ‘IceTree’, a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. Key Results Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R2 = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. Conclusions Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage. PMID:27107412

  16. Modification of physical properties of freeze-dried rice

    NASA Technical Reports Server (NTRS)

    Huber, C. S.

    1971-01-01

    Freeze cycling process consists of alternately freezing and thawing precooked rice for two cycles, rice is then frozen and freeze-dehydrated in vacuum sufficient to remove water from rice by sublimitation. Process modifies rice grain structure and porosity, enabling complete rehydration in one minute in hot water.

  17. Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution.

    PubMed

    Ameye, L; Hermann, R; Dubois, P

    2000-08-01

    The improvements brought by high-pressure freezing/freeze substitution fixation methods to the ultrastructural preservation of echinoderm mineralized tissues are investigated in developing pedicellariae and teeth of the echinoid Paracentrotus lividus. Three freeze substitution (FS) protocols were tested: one in the presence of osmium tetroxide, one in the presence of uranyl acetate, and the last in the presence of gallic acid. FS in the presence of osmium tetroxide significantly improved cell ultrastructure preservation and should especially be used for ultrastructural studies involving vesicles and the Golgi apparatus. With all protocols, multivesicular bodies, suggested to contain Ca(2+), were evident for the first time in skeleton-forming cells. FS in the presence of gallic acid allowed us to confirm the structured and insoluble character of a part of the organic matrix of mineralization in the calcification sites of the tooth, an observation which modifies the current understanding of biomineralization control in echinoderms. Copyright 2000 Academic Press.

  18. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  19. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  20. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  1. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  2. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    PubMed

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  3. Optimum Parameters for Freeze-Drying Decellularized Arterial Scaffolds

    PubMed Central

    Sheridan, William S.; Duffy, Garry P.

    2013-01-01

    Decellularized arterial scaffolds have achieved success in advancing toward clinical use as vascular grafts. However, concerns remain regarding long-term preservation and sterilization of these scaffolds. Freeze drying offers a means of overcoming these concerns. In this study, we investigated the effects of various freeze-drying protocols on decellularized porcine carotid arteries and consequently, determined the optimum parameters to fabricate a stable, preserved scaffold with unaltered mechanical properties. Freeze drying by constant slow cooling to two final temperatures ((Tf), −10°C and −40°C) versus instant freezing was investigated by histological examination and mechanical testing. Slow cooling to Tf= −10°C produced a stiffer and less distensible response than the non freeze-dried scaffolds and resulted in disruption to the collagen fibers. The mechanical response of Tf= −40°C scaffolds demonstrated disruption to the elastin network, which was confirmed with histology. Snap freezing scaffolds in liquid nitrogen and freeze drying to Tf= −40°C with a precooled shelf at −60°C produced scaffolds with unaltered mechanical properties and a histology resembling non-freeze-dried scaffolds. The results of this study demonstrate the importance of optimizing the nucleation and ice crystal growth/size to ensure homogenous drying, preventing extracellular matrix disruption and subsequent inferior mechanical properties. This new manufacturing protocol creates the means for the preservation and sterilization of decellularized arterial scaffolds while simultaneously maintaining the mechanical properties of the tissue. PMID:23614758

  4. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications.

    PubMed

    Kogan, Samuel; Sood, Aditya; Garnick, Mark S

    2017-04-01

    Our understanding of the role of zinc in normal human physiology is constantly expanding, yet there are major gaps in our knowledge with regard to the function of zinc in wound healing. This review aims to provide the clinician with sufficient understanding of zinc biology and an up-to-date perspective on the role of zinc in wound healing. Zinc is an essential ion that is crucial for maintenance of normal physiology, and zinc deficiency has many manifestations ranging from delayed wound healing to immune dysfunction and impairment of multiple sensory systems. While consensus has been reached regarding the detrimental effects of zinc deficiency on wound healing, there is considerable discord in the literature on the optimal methods and true benefits of zinc supplementation.

  5. Zinc

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of zinc: U.S. Department of Agriculture's (USDA’s) National Nutrient Database Nutrient List for zinc ( ...

  6. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC)

    PubMed Central

    Jang, Seok-Joon; Rokugo, Keitetsu; Park, Wan-Shin; Yun, Hyun-Do

    2014-01-01

    This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC) for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA) fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET) fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior. PMID:28788522

  7. 7 CFR 58.620 - Freezing and packaging rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Freezing and packaging rooms. 58.620 Section 58.620... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58.620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall be...

  8. 7 CFR 58.620 - Freezing and packaging rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Freezing and packaging rooms. 58.620 Section 58.620... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58.620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall be...

  9. 7 CFR 58.620 - Freezing and packaging rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Freezing and packaging rooms. 58.620 Section 58.620... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58.620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall be...

  10. 7 CFR 305.18 - Quick freeze treatment schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Quick freeze treatment schedule. 305.18 Section 305.18... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Quick Freeze Treatments § 305.18 Quick freeze treatment schedule. (a) T110. (1) Initially, lower the commodity's temperature to 0 °F or below. (2) Hold...

  11. Potential ecological risk assessment and predicting zinc accumulation in soils.

    PubMed

    Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka

    2018-02-01

    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil-zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg -1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining-metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg -1 d.m. (0.01 mol dm -3 CaCl 2 ), and between 0.03 and 71.54 mg kg -1 d.m. (1 mol dm -3 NH 4 NO 3 ). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90

  12. References on Compression of Freeze-Dried Foods

    DTIC Science & Technology

    1978-08-01

    ready-to-eat, freeze-dried scrambled egg . Swift and Co., Contract No. DA 19- 129-AMC-121. 67-49-FD (FD-54). January 1967 (AD 650637). In the design...significantly poorer in organoleptic properties than from grades A and B eggs. Freeze- dried scrambled egg packed in cans kept better in storage than when...scrambled, cooked, freeze-dried whole egg product was developed which possessed the appearance, aroma, flavor and texture similar to pan- fried scrambled

  13. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  14. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells.

    PubMed

    Cortese-Krott, Miriam M; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D; Suschek, Christoph V

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  15. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    PubMed Central

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  16. Protective effect of sugars on storage stability of microwave freeze-dried and freeze-dried Lactobacillus paracasei F19.

    PubMed

    Ambros, S; Hofer, F; Kulozik, U

    2018-05-31

    Microwave freeze drying in comparison to conventional freeze drying allows for intensification of the preservation process of lactic acid bacteria without imposing additional processing stress. Viability as a function of storage time of microwave freeze-dried Lactobacillus paracasei ssp. paracasei F19 was investigated in comparison to conventionally lyophilized bacteria of the same strain. Further, the impact of the protectants, sorbitol, trehalose and maltodextrin, on shelf life was analyzed. The highest inactivation rates of 0.035 and 0.045 d -1 , respectively, were found for cultures without protectants. Thus, all additives were found to exhibit a protective effect during storage with inactivation rates between 0.015 and 0.040 d -1 . Although trehalose and maltodextrin samples were in the glassy state during storage, in contrast to samples containing sorbitol as protectant, the best protective effect could be found for sorbitol with the lowest inactivation rate of 0.015 d -1 . Due to its low molecular weight, it might protect cells owing to better adsorption to the cytoplasma membrane. Sorbitol additionally shows antioxidative properties. Storage behavior of microwave freeze-dried cultures follows the typical behavior of a product dried by conventional lyophilization. No significant influence of the drying technique on storage behavior was detected. General findings concerning storage behavior in freeze drying are likely to be applicable in microwave freeze drying with only slight adjustments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Update on zinc biology.

    PubMed

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  18. Zinc at glutamatergic synapses.

    PubMed

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  19. Towards optimization of ACRT schedules applied to the gradient freeze growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-12-01

    Historically, the melt growth of II-VI crystals has benefitted from the application of the accelerated crucible rotation technique (ACRT). Here, we employ a comprehensive numerical model to assess the impact of two ACRT schedules designed for a cadmium zinc telluride growth system per the classical recommendations of Capper and co-workers. The ;flow maximizing; ACRT schedule, with higher rotation, effectively mixes the solutal field in the melt but does not reduce supercooling adjacent to the growth interface. The ACRT schedule derived for stable Ekman flow, with lower rotation, proves more effective in reducing supercooling and promoting stable growth. These counterintuitive results highlight the need for more comprehensive studies on the optimization of ACRT schedules for specific growth systems and for desired growth outcomes.

  20. Recent developments in smart freezing technology applied to fresh foods.

    PubMed

    Xu, Ji-Cheng; Zhang, Min; Mujumdar, Arun S; Adhikari, Benu

    2017-09-02

    Due to the increased awareness of consumers in sensorial and nutritional quality of frozen foods, the freezing technology has to seek new and innovative technologies for better retaining the fresh like quality of foods. In this article, we review the recent developments in smart freezing technology applied to fresh foods. The application of these intelligent technologies and the associated underpinning concepts have greatly improved the quality of frozen foods and the freezing efficiency. These technologies are able to automatically collect the information in-line during freezing and help control the freezing process better. Smart freezing technology includes new and intelligent technologies and concepts applied to the pretreatment of the frozen product, freezing processes, cold chain logistics as well as warehouse management. These technologies enable real-time monitoring of quality during the freezing process and help improve product quality and freezing efficiency. We also provide a brief overview of several sensing technologies used to achieve automatic control of individual steps of freezing process. These sensing technologies include computer vision, electronic nose, electronic tongue, digital simulation, confocal laser, near infrared spectroscopy, nuclear magnetic resonance technology and ultrasound. Understanding of the mechanism of these new technologies will be helpful for applying them to improve the quality of frozen foods.

  1. Observations on the Freezing of Supercooled Pollen Washing Water by a New Electrodynamic Balance

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Pope, Francis D.; Kalberer, Markus

    2014-05-01

    Primary biological particles can act as efficient ice nuclei (IN) by initiating freezing events at temperatures warmer than the homogenous freezing temperature [1, 2]. For example, pollen grain particles can trigger freezing events at temperatures as warm as -5 °C in the contact freezing mode [3]. More recently pollen residues, which are released by washing pollen grains in water, were also observed to act as efficient IN in the immersion mode [4, 5]. In this study we developed a new cold electrodynamic balance (CEDB) system and investigated the freezing properties of single particles of supercooled pollen washing water (SPWW). The EDB technique allows for a contact free measurement of freezing events. The phase of the particle (liquid or frozen solid) can be distinguished via measuring the Mie scattering signal from the particle. Furthermore the size of liquid (spherical) particles can be determined. The freezing events are characterized through the loss of the regular Mie scattering signal from the levitated droplet as it changes state from liquid to a frozen solid. The statistical freezing probabilities of SPWW were obtained in the temperature range: -15 to -40 °C. Each temperature measurement point consists of the analysis of 30-100 droplets. Preliminary conclusions are that SPWW is IN active in the immersion mode. Further discussion will focus on the temperature range of the IN activity, the important variables (other than temperature) for IN activity, other likely modes of IN activity, and the implications of these results in terms of the atmospheric relevance of SPWW. This study was supported by the NERC. We acknowledge Professor Jonathan Reid and James Davis from the University of Bristol for providing information of the design of the warm EDB system. References: [1] Möhler, O., et al. (2007) Biogeosciences, 4, 1059-1071. [2] Prenni, A. J., et al. (2009) Nat. Geosci., 2, 401-404. [3] Diehl, K., et al. (2002) Atmos. Res., 61, 125-133. [4] Pummer, B. G

  2. New High-Performance Droplet Freezing Assay (HP-DFA) for the Analysis of Ice Nuclei with Complex Composition

    NASA Astrophysics Data System (ADS)

    Kunert, Anna Theresa; Scheel, Jan Frederik; Helleis, Frank; Klimach, Thomas; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water above homogeneous freezing is catalyzed by ice nucleation active (INA) particles called ice nuclei (IN), which can be of various inorganic or biological origin. The freezing temperatures reach up to -1 °C for some biological samples and are dependent on the chemical composition of the IN. The standard method to analyze IN in solution is the droplet freezing assay (DFA) established by Gabor Vali in 1970. Several modifications and improvements were already made within the last decades, but they are still limited by either small droplet numbers, large droplet volumes or inadequate separation of the single droplets resulting in mutual interferences and therefore improper measurements. The probability that miscellaneous IN are concentrated together in one droplet increases with the volume of the droplet, which can be described by the Poisson distribution. At a given concentration, the partition of a droplet into several smaller droplets leads to finely dispersed IN resulting in better statistics and therefore in a better resolution of the nucleation spectrum. We designed a new customized high-performance droplet freezing assay (HP-DFA), which represents an upgrade of the previously existing DFAs in terms of temperature range and statistics. The necessity of observing freezing events at temperatures lower than homogeneous freezing due to freezing point depression, requires high-performance thermostats combined with an optimal insulation. Furthermore, we developed a cooling setup, which allows both huge and tiny temperature changes within a very short period of time. Besides that, the new DFA provides the analysis of more than 750 droplets per run with a small droplet volume of 5 μL. This enables a fast and more precise analysis of biological samples with complex IN composition as well as better statistics for every sample at the same time.

  3. Freeze-drying of yeast cultures.

    PubMed

    Bond, Chris

    2007-01-01

    A method is described that allows yeast species to be stored using a variation on the standard freeze-drying method, which employs evaporative cooling in a two-stage process. Yeast cultures are placed in glass ampoules after having been mixed with a lyoprotectant. Primary drying is carried out using a centrifuge head connected to a standard freeze-dryer. Once the centrifuge head is running, air is removed and evaporated liquid is captured in the freeze-dryer. Centrifugation continues for 15 min and primary drying for a further 3 h. The ampoules are constricted using a glass blowing torch. They are then placed on the freeze-dryer manifold for secondary drying under vacuum overnight, using phosphorus pentoxide as a desiccant. The ampoules are sealed and removed from the manifold by melting the constricted section. Although the process causes an initial large drop in viability, further losses after storage are minimal. Yeast strains have remained viable for more than 30 yr when stored using this method and sufficient cells are recovered to produce new working stocks. Although survival rates are strain specific, nearly all National Collection of Yeast Cultures strains covering most yeast genera, have been successfully stored with little or no detectable change in strain characteristics.

  4. Freeze-all cycle for all normal responders?

    PubMed

    Roque, Matheus; Valle, Marcello; Guimarães, Fernando; Sampaio, Marcos; Geber, Selmo

    2017-02-01

    The purpose of this study is to evaluate the freeze-all strategy in subgroups of normal responders, to assess whether this strategy is beneficial regardless of ovarian response, and to evaluate the possibility of implementing an individualized embryo transfer (iET) based on ovarian response. This was an observational, cohort study performed in a private IVF center. A total of 938 IVF cycles were included in this study. The patients were submitted to controlled ovarian stimulation (COS) with a gonadotropin-releasing hormone (GnRH) antagonist protocol and a cleavage-stage day 3 embryo transfer. We performed a comparison of outcomes between the fresh embryo transfer (n = 523) and the freeze-all cycles (n = 415). The analysis was performed in two subgroups of patients based on the number of retrieved oocytes: Group 1 (4-9 oocytes) and Group 2 (10-15 oocytes). In Group 1 (4-9 retrieved oocytes), the implantation rates (IR) were 17.9 and 20.5% (P = 0.259) in the fresh and freeze-all group, respectively; the ongoing pregnancy rates (OPR) were 31 and 33% (P = 0.577) in the fresh and freeze-all group, respectively. In Group 2 (10-15 oocytes), the IR were 22.1 and 30.1% (P = 0.028) and the OPR were 34 and 47% (P = 0.021) in the fresh and freeze-all groups, respectively. Although the freeze-all policy may be related to better in vitro fertilization (IVF) outcomes in normal responders, these potential advantages decrease with worsening ovarian response. Patients with poorer ovarian response do not benefit from the freeze-all strategy.

  5. Freeze-dried, mucoadhesive system for vaginal delivery of the HIV microbicide, dapivirine: optimisation by an artificial neural network.

    PubMed

    Woolfson, A David; Umrethia, Manish L; Kett, Victoria L; Malcolm, R Karl

    2010-03-30

    Dapivirine mucoadhesive gels and freeze-dried tablets were prepared using a 3x3x2 factorial design. An artificial neural network (ANN) with multi-layer perception was used to investigate the effect of hydroxypropyl-methylcellulose (HPMC): polyvinylpyrrolidone (PVP) ratio (X1), mucoadhesive concentration (X2) and delivery system (gel or freeze-dried mucoadhesive tablet, X3) on response variables; cumulative release of dapivirine at 24h (Q(24)), mucoadhesive force (F(max)) and zero-rate viscosity. Optimisation was performed by minimising the error between the experimental and predicted values of responses by ANN. The method was validated using check point analysis by preparing six formulations of gels and their corresponding freeze-dried tablets randomly selected from within the design space of contour plots. Experimental and predicted values of response variables were not significantly different (p>0.05, two-sided paired t-test). For gels, Q(24) values were higher than their corresponding freeze-dried tablets. F(max) values for freeze-dried tablets were significantly different (2-4 times greater, p>0.05, two-sided paired t-test) compared to equivalent gels. Freeze-dried tablets having lower values for X1 and higher values for X2 components offered the best compromise between effective dapivirine release, mucoadhesion and viscosity such that increased vaginal residence time was likely to be achieved. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Response of seasonal soil freeze depth to climate change across China

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui

    2017-05-01

    The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.

  7. Effect of chlorine, blanching, freezing, and microwave heating on Cryptosporidium parvum viability inoculated on green peppers.

    PubMed

    Duhain, G L M C; Minnaar, A; Buys, E M

    2012-05-01

    Cryptosporidium parvum oocysts have been found on the surface of vegetables in both developed and developing countries. C. parvum can contaminate vegetables via various routes, including irrigation water. This study investigated the effect of individual treatments of chlorine, blanching, blast freezing, and microwave heating, as well as combined treatments of chlorine and freezing, and chlorine and microwave heating on the viability of C. parvum oocysts inoculated on green peppers. The viability of the oocysts after the treatments was assessed using propidium iodide and a flow cytometer. Based on the propidium iodide staining, the chlorine treatments did not affect the viability of the oocysts. Blast freezing significantly inactivated 20% of the oocysts. Microwave heating and blanching significantly inactivated 93% of oocysts. Treatment with chlorine followed by blast freezing did not affect the viability of the oocysts significantly. Treatment with chlorine and microwave heating was significantly more effective than microwave heating alone and inactivated 98% of the oocysts. The study indicates that C. parvum oocysts are sensitive to heat and, to some extent, to blast freezing, but are resistant to chlorine. Therefore, the use of chlorine during vegetable processing is not a critical control point for C. parvum oocysts, and the consumption of raw or minimally processed vegetables may constitute a health risk as C. parvum oocysts can still be found viable on ready-to-eat, minimally processed vegetables.

  8. Effect of freezing conditions on β-Tricalcium Phosphate /Camphene scaffold with micro sized particles fabricated by freeze casting.

    PubMed

    Singh, Gurdev; Soundarapandian, S

    2018-03-01

    The long standing need of the implant manufacturing industries is to fabricate multi-matrix, customized porous scaffold as cost-effectively. In recent years, freeze casting has shown greater opportunity in the fabrication of porous scaffolds (tricalcium phosphate, hydroxyapatite, bioglass, alumina, etc.) such as at ease and good control over pore size, porosity, a range of materials and economic feasibility. In particular, tricalcium phosphate (TCP) has proved as it possesses good biocompatible (osteoinduction, osteoconduction, etc.) and biodegradability hence beta-tricalcium phosphate (β-TCP, particle size of 10µm) was used as base material and camphene was used as a freezing vehicle in this study. Both freezing conditions such as constant freezing temperature (CFT) and constant freezing rate (CFR) were used for six different conditional samples (CFT: 30, 35 and 40vol% solid loading; similarly CFR: 30, 35 and 40vol% solid loading) to study and understand the effect of various properties (pore size, porosity and compressive strength) of the freeze-cast porous scaffold. It was observed that the average size of the pore was varying linearly as from lower to higher when the solid loading was varying higher to lower. With the help of scanning electron micrographs (SEM), it was observed that the average size of pore during CFR (9.7/ 6.5/ 4.9µm) was comparatively higher than the process of CFT (6.0/ 4.8/ 2.6µm) with respect to the same solid loading (30/ 35/ 40vol%) conditions. From the Gas pycnometer analysis, it was found that the porosity in both freezing conditions (CFT, CFR) were almost near values such as 32.8% and 28.5%. Further to be observed that with the increase in solid loading, the total porosity value has decreased due to the reduction in the concentration of the freezing vehicle. Hence, the freezing vehicle was found as responsible for the formation of appropriate size and orientation of pores during freeze casting. The compressive strength (CS

  9. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.

    PubMed

    Lin, Wen; Li, Deqiang

    2018-06-01

    Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

  10. Identification of a New Zinc Binding Chemotype by Fragment Screening.

    PubMed

    Chrysanthopoulos, Panagiotis K; Mujumdar, Prashant; Woods, Lucy A; Dolezal, Olan; Ren, Bin; Peat, Thomas S; Poulsen, Sally-Ann

    2017-09-14

    The discovery of a new zinc binding chemotype from screening a nonbiased fragment library is reported. Using the orthogonal fragment screening methods of native state mass spectrometry and surface plasmon resonance a 3-unsubstituted 2,4-oxazolidinedione fragment was found to have low micromolar binding affinity to the zinc metalloenzyme carbonic anhydrase II (CA II). This affinity approached that of fragment sized primary benzenesulfonamides, the classical zinc binding group found in most CA II inhibitors. Protein X-ray crystallography established that 3-unsubstituted 2,4-oxazolidinediones bound to CA II via an interaction of the acidic ring nitrogen with the CA II active site zinc, as well as two hydrogen bonds between the oxazolidinedione ring oxygen and the CA II protein backbone. Furthermore, 3-unsubstituted 2,4-oxazolidinediones appear to be a viable starting point for the development of an alternative class of CA inhibitor, wherein the medicinal chemistry pedigree of primary sulfonamides has dominated for several decades.

  11. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    PubMed

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-09

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  12. Experimental realization of self-guided quantum coherence freezing

    NASA Astrophysics Data System (ADS)

    Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2017-12-01

    Quantum coherence is the most essential characteristic of quantum physics, specifcially, when it is subject to the resource-theoretical framework, it is considered as the most fundamental resource for quantum techniques. Other quantum resources, e.g., entanglement, are all based on coherence. Therefore, it becomes urgently important to learn how to preserve coherence in quantum channels. The best preservation is coherence freezing, which has been studied recently. However, in these studies, the freezing condition is theoretically calculated, and there still lacks a practical way to achieve this freezing; in addition the channels are usually fixed, but actually, there are also degrees of freedom that can be used to adapt the channels to quantum states. Here we develop a self-guided quantum coherence freezing method, which can guide either the quantum channels (tunable-channel scheme with upgraded channels) or the initial state (fixed-channel scheme) to the coherence-freezing zone from any starting estimate. Specifically, in the fixed-channel scheme, the final-iterative quantum states all satisfy the previously calculated freezing condition. This coincidence demonstrates the validity of our method. Our work will be helpful for the better protection of quantum coherence.

  13. Identification of Arabidopsis mutants with altered freezing tolerance.

    PubMed

    Perea-Resa, Carlos; Salinas, Julio

    2014-01-01

    Low temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis, have evolved sophisticated adaptive mechanisms to tolerate low and freezing temperatures. Central to this adaptation is the process of cold acclimation. By means of this process, many plants from temperate regions are able to develop or increase their freezing tolerance in response to low, nonfreezing temperatures. The identification and characterization of factors involved in freezing tolerance are crucial to understand the molecular mechanisms underlying the cold acclimation response and have a potential interest to improve crop tolerance to freezing temperatures. Many genes implicated in cold acclimation have been identified in numerous plant species by using molecular approaches followed by reverse genetic analysis. Remarkably, however, direct genetic analyses have not been conveniently exploited in their capacity for identifying genes with pivotal roles in that adaptive response. In this chapter, we describe a protocol for evaluating the freezing tolerance of both non-acclimated and cold-acclimated Arabidopsis plants. This protocol allows the accurate and simple screening of mutant collections for the identification of novel factors involved in freezing tolerance and cold acclimation.

  14. Increased spring freezing vulnerability for alpine shrubs under early snowmelt.

    PubMed

    Wheeler, J A; Hoch, G; Cortés, A J; Sedlacek, J; Wipf, S; Rixen, C

    2014-05-01

    Alpine dwarf shrub communities are phenologically linked with snowmelt timing, so early spring exposure may increase risk of freezing damage during early development, and consequently reduce seasonal growth. We examined whether environmental factors (duration of snow cover, elevation) influenced size and the vulnerability of shrubs to spring freezing along elevational gradients and snow microhabitats by modelling the past frequency of spring freezing events. We sampled biomass and measured the size of Salix herbacea, Vaccinium myrtillus, Vaccinium uliginosum and Loiseleuria procumbens in late spring. Leaves were exposed to freezing temperatures to determine the temperature at which 50% of specimens are killed for each species and sampling site. By linking site snowmelt and temperatures to long-term climate measurements, we extrapolated the frequency of spring freezing events at each elevation, snow microhabitat and per species over 37 years. Snowmelt timing was significantly driven by microhabitat effects, but was independent of elevation. Shrub growth was neither enhanced nor reduced by earlier snowmelt, but decreased with elevation. Freezing resistance was strongly species dependent, and did not differ along the elevation or snowmelt gradient. Microclimate extrapolation suggested that potentially lethal freezing events (in May and June) occurred for three of the four species examined. Freezing events never occurred on late snow beds, and increased in frequency with earlier snowmelt and higher elevation. Extrapolated freezing events showed a slight, non-significant increase over the 37-year record. We suggest that earlier snowmelt does not enhance growth in four dominant alpine shrubs, but increases the risk of lethal spring freezing exposure for less freezing-resistant species.

  15. Morphology of supercooled droplets freezing on solid surfaces

    NASA Astrophysics Data System (ADS)

    La, Shiren; Huang, Zhiting; Liu, Cong; Zhang, Xingyi

    2018-05-01

    Supercooled droplets freezing on solid surfaces are ubiquitous in nature. This letter investigates the influences of droplet viscosity on freezing velocity and frosting formation. Several experiments were conducted for three kinds of sessile droplets (water, silicone oil and oil) on two types of substrates (copper and iron) with different surface roughness at various temperatures. The results show that the water droplets exhibit obvious phase transition lines and their freezing speeds increase when the temperature of substrates decreases. It is found that the freezing speed is independent of the thermal conductivities of the substrates. Notably, the water droplets develop prominent bulges after freezing and subsequently nucleate to frost. In contrast, the high viscosity oil and silicone oil do not manifest an obvious phase transition line. Besides, no bulges are observed in these two kinds of droplets, suggesting that these frosting forms are of different mechanisms compared with water droplets.

  16. Isochoric and isobaric freezing of fish muscle.

    PubMed

    Năstase, Gabriel; Lyu, Chenang; Ukpai, Gideon; Şerban, Alexandru; Rubinsky, Boris

    2017-04-01

    We have recently shown that, a living organism, which succumbs to freezing to -4 °C in an isobaric thermodynamic system (constant atmospheric pressure), can survive freezing to -4 °C in an isochoric thermodynamic system (constant volume). It is known that the mechanism of cell damage in an isobaric system is the freezing caused increase in extracellular osmolality, and, the consequent cell dehydration. An explanation for the observed survival during isochoric freezing is the thermodynamic modeling supported hypothesis that, in the isochoric frozen solution the extracellular osmolality is comparable to the cell intracellular osmolality. Therefore, cells in the isochoric frozen organism do not dehydrate, and the tissue maintains its morphological integrity. Comparing the histology of: a) fresh fish white muscle, b) fresh muscle frozen to -5 °C in an isobaric system and c) fresh muscle frozen to -5 °C I in an isochoric system, we find convincing evidence of the mechanism of cell dehydration during isobaric freezing. In contrast, the muscle tissue frozen to -5 °C in an isochoric system appears morphologically identical to fresh tissue, with no evidence of dehydration. This is the first experimental evidence in support of the hypothesis that in isochoric freezing there is no cellular dehydration and therefore the morphology of the frozen tissue remains intact. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  18. Towards Optimization of ACRT Schedules Applied to the Gradient Freeze Growth of Cadmium Zinc Telluride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divecha, Mia S.; Derby, Jeffrey J.

    Historically, the melt growth of II-VI crystals has benefitted by the application of the accelerated crucible rotation technique (ACRT). Here, we employ a comprehensive numerical model to assess the impact of two ACRT schedules designed for a cadmium zinc telluride growth system per the classical recommendations of Capper and co-workers. The “flow maximizing” ACRT schedule, with higher rotation, effectively mixes the solutal field in the melt but does not reduce supercooling adjacent to the growth interface. The ACRT schedule derived for stable Ekman flow, with lower rotation, proves more effective in reducing supercooling and promoting stable growth. Furthermore, these counterintuitivemore » results highlight the need for more comprehensive studies on the optimization of ACRT schedules for specific growth systems and for desired growth outcomes.« less

  19. Towards Optimization of ACRT Schedules Applied to the Gradient Freeze Growth of Cadmium Zinc Telluride

    DOE PAGES

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-10-03

    Historically, the melt growth of II-VI crystals has benefitted by the application of the accelerated crucible rotation technique (ACRT). Here, we employ a comprehensive numerical model to assess the impact of two ACRT schedules designed for a cadmium zinc telluride growth system per the classical recommendations of Capper and co-workers. The “flow maximizing” ACRT schedule, with higher rotation, effectively mixes the solutal field in the melt but does not reduce supercooling adjacent to the growth interface. The ACRT schedule derived for stable Ekman flow, with lower rotation, proves more effective in reducing supercooling and promoting stable growth. Furthermore, these counterintuitivemore » results highlight the need for more comprehensive studies on the optimization of ACRT schedules for specific growth systems and for desired growth outcomes.« less

  20. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    PubMed

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  1. Freeze-dried dog sperm: Dynamics of DNA integrity.

    PubMed

    Olaciregui, M; Luño, V; Gonzalez, N; De Blas, I; Gil, L

    2015-10-01

    Freeze-drying (FD) has been proposed as an alternative method to preserve spermatozoa. During the FD procedure, sperm DNA might become damaged by both freezing and drying stresses caused by the endonucleases, the oxidative stress and the storage conditions. We examined the DNA integrity of dog sperm freeze-dried with two kinds of chelating agents in FD buffers and storage at two different temperatures. Ejaculated sperm from four dogs were suspended in basic medium (10 mM Tris-HCl buffer+50 mM NaCl) supplemented with 50 mM EGTA or with 50 mM EDTA and then freeze-dried. Sperm samples were stored at 4°C as room temperature, and the analysis of DNA damage was performed after a month and 5 months of storage using a Sperm Chromatin Dispersion test. We found four different sperm populations according to the size of the halos around the sperm head: (1) absent halo, (2) <6 μm, (3) 6-10 μm, (4) >10 μm. All of them coexisted in each freeze-dried dog semen samples and differed significantly among different treatments. The highest percentage of spermatozoa with halo >10 μm was obtained when the semen samples were freeze-dried in EDTA medium and stored at room temperature for five months. Results suggested that both, the kind of chelating agent as well as storage temperature and period, influenced DNA integrity of freeze-dried dog sperm. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Optimization of protectant, salinity and freezing condition for freeze-drying preservation of Edwardsiella tarda

    NASA Astrophysics Data System (ADS)

    Yu, Yongxiang; Zhang, Zheng; Wang, Yingeng; Liao, Meijie; Li, Bin; Xue, Liangyi

    2017-10-01

    Novel preservation condition without ultra-low temperature is needed for the study of pathogen in marine fishes. Freeze-drying is such a method usually used for preservation of terrigenous bacteria. However, studies using freeze-drying method to preserving marine microorganisms remain very limited. In this study, we optimized the composition of protectants during the freeze-drying of Edwardsiella tarda, a fish pathogen that causes systemic infection in marine fishes. We found that the optimal composition of protectant mixture contained trehalose (8.0%), skim milk (12.0%), sodium citrate (2.0%), serum (12.0%) and PVP (2.0%). Orthogonal and interaction analyses demonstrated the interaction between serum and skim milk or sodium citrate. The highest survival rate of E. tarda was observed when the concentration of NaCl was 10.0, 30.0 and between 5.0 and 10.0 g L-1 for preparing TSB medium, E. tarda suspension and protectant mixture, respectively. When E. tarda was frozen at -80°C or -40°C for 6 h, its survival rate was higher than that under other tested conditions. Under the optimized conditions, when the protectant mixture was used during freeze-drying process, the survival rate (79.63%-82.30%) of E. tarda was significantly higher than that obtained using single protectant. Scanning electron microscopy (SEM) image indicated that E. tarda was embedded in thick matrix with detectable aggregation. In sum, the protectant mixture may be used as a novel cryoprotective additive for E. tarda.

  3. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp; Tsuruta, Osamu; Akao, Naoya

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}-more » or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.« less

  4. NIM Realization of the Gallium Triple Point

    NASA Astrophysics Data System (ADS)

    Xiaoke, Yan; Ping, Qiu; Yuning, Duan; Yongmei, Qu

    2003-09-01

    In the last three years (1999 to 2001), the gallium triple-point cell has been successfully developed, and much corresponding research has been carried out at the National Institute of Metrology (NIM), Beijing, China. This paper presents the cell design, apparatus and procedure for realizing the gallium triple point, and presents studies on the different freezing methods. The reproducibility is 0.03 mK, and the expanded uncertainty of realization of the gallium triple point is evaluated to be 0.17 mK (p=0.99, k=2.9). Also, the reproducibility of the gallium triple point was compared with that of the triple point of water.

  5. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat.

    PubMed

    Kamran, Sana; Shahid, Izzah; Baig, Deeba N; Rizwan, Muhammad; Malik, Kauser A; Mehnaz, Samina

    2017-01-01

    Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 ( Pseudomonas fragi) , EPS 6 ( Pantoea dispersa) , EPS 13 ( Pantoea agglomerans) , PBS 2 ( E. cloacae) and LHRW1 ( Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO 3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS

  6. Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae.

    PubMed

    Stoycheva, T; Venkov, P; Tsvetkov, Ts

    2007-06-01

    Although suggested in some studies, the mutagenic effect of freezing has not been proved by induction and isolation of mutants. Using a well-defined genetic model, we supply in this communication evidence for the mutagenic effect of freezing on mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae. The cooling for 2 h at +4 degrees C, followed by freezing for 1 h at -10 degrees C and 16 h at -20 degrees C resulted in induction of respiratory mutations. The immediate freezing in liquid nitrogen was without mutagenic effect. The study of the stepwise procedure showed that the induction of respiratory mutants takes place during the freezing at -10 and -20 degrees C of cells pre-cooled at +4 degrees C. The genetic crosses of freeze-induced mutants evidenced their mitochondrial rho- origin. The freeze-induced rho- mutants are most likely free of simultaneous nuclear mutations. The extracellular presence of cryoprotectants did not prevent the mutagenic effect of freezing while accumulation of cryoprotectors inside cells completely escaped mtDNA from cryodamage. Although the results obtained favor the notion that the mutagenic effect of freezing on yeast mtDNA is due to formation and growth of intracellular ice crystals, other reasons, such as impairment of mtDNA replication or elevated levels of ROS production are discussed as possible explanations of the mutagenic effect of freezing. It is concluded that: (i) freezing can be used as a method for isolation of mitochondrial mutants in S. cerevisiae and (ii) given the substantial development in cryopreservation of cells and tissues, special precautions should be made to avoid mtDNA damage during the cryopreservation procedures.

  7. Natural genetic variation of freezing tolerance in Arabidopsis.

    PubMed

    Hannah, Matthew A; Wiese, Dana; Freund, Susanne; Fiehn, Oliver; Heyer, Arnd G; Hincha, Dirk K

    2006-09-01

    Low temperature is a primary determinant of plant growth and survival. Using accessions of Arabidopsis (Arabidopsis thaliana) originating from Scandinavia to the Cape Verde Islands, we show that freezing tolerance of natural accessions correlates with habitat winter temperatures, identifying low temperature as an important selective pressure for Arabidopsis. Combined metabolite and transcript profiling show that during cold exposure, global changes of transcripts, but not of metabolites, correlate with the ability of Arabidopsis to cold acclimate. There are, however, metabolites and transcripts, including several transcription factors, that correlate with freezing tolerance, indicating regulatory pathways that may be of primary importance for this trait. These data identify that enhanced freezing tolerance is associated with the down-regulation of photosynthesis and hormonal responses and the induction of flavonoid metabolism, provide evidence for naturally increased nonacclimated freezing tolerance due to the constitutive activation of the C-repeat binding factors pathway, and identify candidate transcriptional regulators that correlate with freezing tolerance.

  8. Zinc

    USDA-ARS?s Scientific Manuscript database

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  9. The Impact of Freeze-Thaw Cycles on Epinephrine.

    PubMed

    Beasley, Heather; Ng, Pearlly; Wheeler, Albert; Smith, William R; McIntosh, Scott E

    2015-12-01

    Epinephrine is the first-line medical treatment for anaphylaxis, a life-threatening allergic syndrome. To treat anaphylaxis, backcountry recreationalists and guides commonly carry epinephrine autoinjectors. Epinephrine may be exposed to cold temperatures and freezing during expeditions. An epinephrine solution must contain 90% to 115% of the labeled epinephrine amount to meet United States Pharmacopeia standards. The purpose of this study was to determine whether freeze-thaw cycles alter epinephrine concentrations in autoinjectors labeled to contain 1.0 mg/mL epinephrine. A further objective was to determine whether samples continued to meet United States Pharmacopeia concentration standards after freeze-thaw cycles. Epinephrine from 6 autoinjectors was extracted and divided into experimental and control samples. The experimental samples underwent 7 consecutive 12-hour freeze cycles followed by 7 12-hour thaw cycles. The control samples remained at an average temperature of 23.1°C for the duration of the study. After the seventh thaw cycle, epinephrine concentrations were measured using a high-performance liquid chromatography assay with mass spectrometry detection. The mean epinephrine concentration of the freeze-thaw samples demonstrated a statistically significant increase compared with the control samples: 1.07 mg/mL (SD ± 8.78; 95% CI, 1.04 to 1.11) versus 0.96 mg/mL (SD ± 6.81; 95% CI, 0.94 to 0.99), respectively. The maximal mean epinephrine concentration in the experimental freeze-thaw group was 1.12 mg/mL, which still fell within the range of United States Pharmacopeia standards for injectables (0.90 to 1.15 mg/mL). Although every attempt should be made to prevent freezing of autoinjectors, this preliminary study demonstrates that epinephrine concentrations remain within 90% to 115% of 1.0 mg/mL after multiple freeze-thaw cycles. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  10. Zinc and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less

  11. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    PubMed Central

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  12. Freezing WISE Hydrogen

    NASA Image and Video Library

    2009-11-12

    A scaffolding structure built around NASA Wide-field Infrared Survey Explorer allows engineers to freeze its hydrogen coolant. The WISE infrared instrument is kept extremely cold by a bottle-like tank filled with frozen hydrogen, called the cryostat.

  13. Freeze-thaw durability of concrete: Ice formation process in pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, H.; Liu, X.

    1998-09-01

    Freeze-thaw durability of concrete is of great importance to hydraulic structures in cold areas. Study of ice formation process in concrete pores is necessary to evaluate the damages in concrete caused by freezing. In this paper, freezing of pore solution in concrete exposed to a freeze-thaw cycle is studied by following the change of concrete electrical conductivity with freezing temperatures. Concretes were subjected to freeze-thaw cycles with temperature varying between {minus}0 C and {minus}20 C. In the freezing process, the changing rate of concrete electrical conductivity obviously decreases at about {minus}10 C, indicating that more pore solution in concrete freezesmore » above {minus}10 C than below {minus}10C. According to Powers` static hydraulic pressure hypothesis, it is thought that frost damage mainly occurs between 0 C and {minus}100 C. To ordinary concrete, frost damages below {minus}10 C are negligible.« less

  14. Mechanisms of deterioration of nutrients. [improved quality of freeze-dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1978-01-01

    Methods for improving the quality of freeze-dried foods were investigated. Areas discussed include: (1) microstructure of freeze-dried systems, (2) structural changes in freeze-dried systems, (3) artificial food matrices, and (4) osmotic preconcentration to yield improved freeze-dried products.

  15. Water freezing and ice melting

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, T S(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubicmore » ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  16. Design of freeze-drying processes for pharmaceuticals: practical advice.

    PubMed

    Tang, Xiaolin; Pikal, Michael J

    2004-02-01

    Design of freeze-drying processes is often approached with a "trial and error" experimental plan or, worse yet, the protocol used in the first laboratory run is adopted without further attempts at optimization. Consequently, commercial freeze-drying processes are often neither robust nor efficient. It is our thesis that design of an "optimized" freeze-drying process is not particularly difficult for most products, as long as some simple rules based on well-accepted scientific principles are followed. It is the purpose of this review to discuss the scientific foundations of the freeze-drying process design and then to consolidate these principles into a set of guidelines for rational process design and optimization. General advice is given concerning common stability issues with proteins, but unusual and difficult stability issues are beyond the scope of this review. Control of ice nucleation and crystallization during the freezing step is discussed, and the impact of freezing on the rest of the process and final product quality is reviewed. Representative freezing protocols are presented. The significance of the collapse temperature and the thermal transition, denoted Tg', are discussed, and procedures for the selection of the "target product temperature" for primary drying are presented. Furthermore, guidelines are given for selection of the optimal shelf temperature and chamber pressure settings required to achieve the target product temperature without thermal and/or mass transfer overload of the freeze dryer. Finally, guidelines and "rules" for optimization of secondary drying and representative secondary drying protocols are presented.

  17. Cost-Effectiveness of the Freeze-All Policy.

    PubMed

    Roque, Matheus; Valle, Marcello; Guimarães, Fernando; Sampaio, Marcos; Geber, Selmo

    2015-08-01

    To evaluate the cost-effectiveness of freeze-all cycles when compared to fresh embryo transfer. This was an observational study with a cost-effectiveness analysis. The analysis consisted of 530 intracytoplasmic sperm injection (ICSI) cycles in a private center in Brazil between January 2012 and December 2013. A total of 530 intracytoplasmic sperm injection (ICSI) cycles - 351 fresh embryo transfers and 179 freeze-all cycles - with a gonadotropin-releasing hormone (GnRH) antagonist protocol and day 3 embryo transfers. The pregnancy rate was 31.1% in the fresh group and 39.7% in the freeze-all group. We performed two scenario analyses for costs. In scenario 1, we included those costs associated with the ICSI cycle (monitoring during controlled ovarian stimulation [COS], oocyte retrieval, embryo transfer, IVF laboratory, and medical costs), embryo cryopreservation of supernumerary embryos, hormone measurements during COS and endometrial priming, medication use (during COS, endometrial priming, and luteal phase support), ultrasound scan for frozen- thawed embryo transfer (FET), obstetric ultrasounds, and miscarriage. The total cost (in USD) per pregnancy was statistically lower in the freeze-all cycles (19,156.73 ± 1,732.99) when compared to the fresh cycles (23,059.72 ± 2,347.02). Even in Scenario 2, when charging all of the patients in the freeze-all group for cryopreservation (regardless of supernumerary embryos) and for FET, the fresh cycles had a statistically significant increase in treatment costs per ongoing pregnancy. The results presented in this study suggest that the freeze-all policy is a cost-effective strategy when compared to fresh embryo transfer.

  18. Thermalization, Freeze-out, and Noise: Deciphering Experimental Quantum Annealers

    NASA Astrophysics Data System (ADS)

    Marshall, Jeffrey; Rieffel, Eleanor G.; Hen, Itay

    2017-12-01

    By contrasting the performance of two quantum annealers operating at different temperatures, we address recent questions related to the role of temperature in these devices and their function as "Boltzmann samplers." Using a method to reliably calculate the degeneracies of the energy levels of large-scale spin-glass instances, we are able to estimate the instance-dependent effective temperature from the output of annealing runs. Our results corroborate the "freeze-out" picture which posits two regimes, one in which the final state corresponds to a Boltzmann distribution of the final Hamiltonian with a well-defined "effective temperature" determined at a freeze-out point late in the annealing schedule, and another regime in which such a distribution is not necessarily expected. We find that the output distributions of the annealers do not, in general, correspond to a classical Boltzmann distribution for the final Hamiltonian. We also find that the effective temperatures at different programing cycles fluctuate greatly, with the effect worsening with problem size. We discuss the implications of our results for the design of future quantum annealers to act as more-effective Boltzmann samplers and for the programing of such annealers.

  19. Metabolic Changes in Avena sativa Crowns Recovering from Freezing

    PubMed Central

    Henson, Cynthia A.; Duke, Stanley H.; Livingston, David P.

    2014-01-01

    Extensive research has been conducted on cold acclimation and freezing tolerance of fall-sown cereal plants due to their economic importance; however, little has been reported on the biochemical changes occurring over time after the freezing conditions are replaced by conditions favorable for recovery and growth such as would occur during spring. In this study, GC-MS was used to detect metabolic changes in the overwintering crown tissue of oat (Avena sativa L.) during a fourteen day time-course after freezing. Metabolomic analysis revealed increases in most amino acids, particularly proline, 5-oxoproline and arginine, which increased greatly in crowns that were frozen compared to controls and correlated very significantly with days after freezing. In contrast, sugar and sugar related metabolites were little changed by freezing, except sucrose and fructose which decreased dramatically. In frozen tissue all TCA cycle metabolites, especially citrate and malate, decreased in relation to unfrozen tissue. Alterations in some amino acid pools after freezing were similar to those observed in cold acclimation whereas most changes in sugar pools after freezing were not. These similarities and differences suggest that there are common as well as unique genetic mechanisms between these two environmental conditions that are crucial to the winter survival of plants. PMID:24675792

  20. Applications of Simulator Freeze to Carrier Glideslope Tracking Instruction.

    DTIC Science & Technology

    1982-07-01

    Showing Datum Bars and Meatball . .. .. .. ... .. ... .... 19 4 Freezes Per Trial Averaged Across Freeze Conditions and Across 4-Trial Blocks of Training...algorithm linearly increased the criterion in meatball units from 1.0 at 6000 feet from the ramp to 1.5 at the ramp. "Freezes" did not occur beyond 6000

  1. Silicon-based Porous Ceramics via Freeze Casting of Preceramic Polymers

    NASA Astrophysics Data System (ADS)

    Naviroj, Maninpat

    Freeze casting is a technique for processing porous materials that has drawn significant attention for its effectiveness in producing a variety of tailorable pore structures for ceramics, metals, and polymers. With freeze casting, pores are generated based on a solidification process where ice crystals act as a sacrificial template which can eventually be sublimated to create pores. While the majority of freeze-casting studies have been performed using conventional ceramic suspensions, this work explores an alternative processing route by freeze casting with preceramic polymer solutions. Significant differences exist between freeze casting of a particulate suspension and a polymeric solution. These changes affect the processing method, solidification behavior, and pore structure, thereby introducing new challenges and possibilities for the freeze-casting technique. The first part of this study explored the processing requirements involved with freeze casting of preceramic polymers, along with methods to control the resulting pore structure. Solvent choice, freezing front velocity, and polymer concentration were used as processing variables to manipulate the pore structures. A total of seven organic solvents were freeze cast with a polymethylsiloxane preceramic polymer to produce ceramics with isotropic, dendritic, prismatic, and lamellar pore morphologies. Changes in freezing front velocity and polymer concentration were shown to influence pore size, shape, and connectivity. Differences between suspension- and solution-based samples freeze cast under equivalent conditions were also investigated. Certain solidification microstructures were strongly affected by the presence of suspended particles, creating differences between pore structures generated from the same solvents. Additionally, processing of solution-based samples were found to be the more facile technique. Compressive strength and water permeability of dendritic and lamellar structures were analyzed to

  2. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  3. Freezing, melting and structure of ice in a hydrophilic nanopore.

    PubMed

    Moore, Emily B; de la Llave, Ezequiel; Welke, Kai; Scherlis, Damian A; Molinero, Valeria

    2010-04-28

    The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was T(m)(pore) = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, T(f)(pore) = 195 K, to two monolayers a few degrees below T(m)(pore). Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains approximately 75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach approximately 150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice.

  4. Freeze-In dark matter with displaced signatures at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Co, Raymond T.; D’Eramo, Francesco; Hall, Lawrence J.

    2015-12-11

    Dark matter, X, may be generated by new physics at the TeV scale during an early matter-dominated (MD) era that ends at temperature T{sub R}≪ TeV. Compared to the conventional radiation-dominated (RD) results, yields from both Freeze-Out and Freeze-In processes are greatly suppressed by dilution from entropy production, making Freeze-Out less plausible while allowing successful Freeze-In with a much larger coupling strength. Freeze-In is typically dominated by the decay of a particle B of the thermal bath, B→X. For a large fraction of the relevant cosmological parameter space, the decay rate required to produce the observed dark matter abundance leadsmore » to displaced signals at LHC and future colliders, for any m{sub X} in the range keV« less

  5. Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: Dielectric spectroscopy and molecular simulation

    NASA Astrophysics Data System (ADS)

    Sliwinska-Bartkowiak, Malgorzata; Dudziak, Grazyna; Sikorski, Roman; Gras, Roman; Radhakrishnan, Ravi; Gubbins, Keith E.

    2001-01-01

    We report both experimental measurements and molecular simulations of the melting and freezing behavior of fluids in nanoporous media. The experimental studies are for nitrobenzene in the silica-based pores of controlled pore glass, Vycor, and MCM-41. Dielectric relaxation spectroscopy is used to determine melting points and the orientational relaxation times of the nitrobenzene molecules in the bulk and the confined phase. Monte Carlo simulations, together with a bond orientational order parameter method, are used to determine the melting point and fluid structure inside cylindrical pores modeled on silica. Qualitative comparison between experiment and simulation are made for the shift in the freezing temperatures and the structure of confined phases. From both the experiments and the simulations, it is found that the confined fluid freezes into a single crystalline structure for average pore diameters greater than 20σ, where σ is the diameter of the fluid molecule. For average pore sizes between 20σ and 15σ, part of the confined fluid freezes into a frustrated crystal structure with the rest forming an amorphous region. For pore sizes smaller than 15σ, even the partial crystallization did not occur. Our measurements and calculations show clear evidence of a novel intermediate "contact layer" phase lying between liquid and crystal; the contact layer is the confined molecular layer adjacent to the pore wall and experiences a deeper fluid-wall potential energy compared to the inner layers. We also find evidence of a liquid to "hexatic" transition in the quasi-two-dimensional contact layer at high temperatures.

  6. Antifreeze glycoproteins from antarctic notothenioid fishes fail to protect the rat cardiac explant during hypothermic and freezing preservation.

    PubMed

    Wang, T; Zhu, Q; Yang, X; Layne, J R; Devries, A L

    1994-04-01

    The antarctic notothenioid fishes avoid freezing through the action of circulating antifreeze glycoproteins (AFGPs). This study investigated whether AFGPs could serve as cryoprotectants for the isolated rat heart under three different storage conditions. (1) Hearts were flushed with 15 mg AFGP/ml cardioplegic solution (CP) and stored for 9 h at 0 degrees C. This AFGP concentration has been reported to protect pig oocytes during hypothermic storage. (2) Hearts were flushed with 10 mg AFGP/ml CP-14 and stored frozen at -1.4 degrees C for 3 h. At this concentration the AFGPs significantly reduce the solution freezing point and also change the crystal morphology from dendritic to spicular. (3) Hearts were flushed with 10 micrograms AFGP/ml CP-15 and stored frozen at -1.4 degrees C for 5 h. At this low concentration the AFGPs have a strong inhibitory effect on ice recrystallization, but have little effect on the freezing point and less apparent effect on the crystal habit. After hypothermic or freezing storage, the functional viability was assessed by determining cardiac output (CO) during working reperfusion. No difference in CO was found between AFGP-treated and untreated hearts after 9 h of 0 degree C storage. CO in hearts frozen in CP-14 without AFGPs recovered to 50% of the freshly perfused control hearts. Hearts frozen in the presence of high concentrations of AFGPs (10 mg/ml CP-14) failed to beat upon thawing and reperfusion, although their tissue ice content was less than that found in hearts without AFGP treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  8. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knopf, Daniel A.; Alpert, Peter A.

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humiditymore » (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log 10(J het) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Finally, we demonstrate that ABIFM can

  9. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    PubMed

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  10. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets

    DOE PAGES

    Knopf, Daniel A.; Alpert, Peter A.

    2013-04-24

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humiditymore » (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log 10(J het) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Finally, we demonstrate that ABIFM can

  11. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false To can, freeze, or dehydrate. 929.11 Section 929.11... LONG ISLAND IN THE STATE OF NEW YORK Order Regulating Handling Definitions § 929.11 To can, freeze, or dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated...

  12. Immersion freezing of ambient dust using WISDOM setup

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Reicher, N.

    2017-12-01

    A small subset of the atmospheric particles has the ability to induce ice formation. Among them are mineral dust particles that originate from arid regions. Mineral dust particles are internally mixed with various types of minerals such as kaolinite and illite from the clay minerals, quartz and feldspar. The mineral composition of the dust particles determine their freezing efficiency. Much attention was given to the clay group, as they are the most common minerals transported in the atmosphere. Recently, much focus has been directed to the feldspars, since its ice efficiency is higher at warmer temperatures, and as such is may dominate freezing in mixed phase clouds. Moreover, it was found that samples that contained higher content of feldspar had higher nucleation activity. In this study, we examine the immersion freezing of ambient dust particles that were collected in Rehovot, Israel (31.9N, 34.8E about 80m AMSL), during dust storms from the Sahara and the Syrian deserts. The size-segregated dust particles were collected on cyclopore polycarbonate filters using a Micro-orifice Uniform deposit Impactor (MOUDI). Freezing experiments were done using the WeIzmann Supercooled Droplets Observation on Microarray set (WISDOM). The particles were extracted from the filters by sonication and subsequently immersed in 100μm droplets that were cooled in a rate of 1°CPM to -37°C (homogenous freezing threshold). Investigation of the particles mineralogy was also performed. We observed freezing onset at 253K for particles of different diameters (0.3, 1.0, 1.8 and 3.2 μm). Most of the droplets were completely frozen by 243K. The number of active sites ranged from 108 to 1012 per m-2. Droplets that contained larger particles (higher surface area) froze at slightly warmer temperatures and contained slightly higher number of active sites. The freezing behavior fits well with measurements of K-feldspar particles and this may suggest that the feldspar dominated the dust freezing

  13. Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa

    PubMed Central

    Chen, Jing; Han, Guiqing; Shang, Chen; Li, Jikai; Zhang, Hailing; Liu, Fengqi; Wang, Jianli; Liu, Huiying; Zhang, Yuexue

    2015-01-01

    Cold acclimation in alfalfa (Medicago sativa L.) plays a crucial role in cold tolerance to harsh winters. To examine the cold acclimation mechanisms in freezing-tolerant alfalfa (ZD) and freezing-sensitive alfalfa (W5), holoproteins, and low-abundance proteins (after the removal of RuBisCO) from leaves were extracted to analyze differences at the protein level. A total of 84 spots were selected, and 67 spots were identified. Of these, the abundance of 49 spots and 24 spots in ZD and W5, respectively, were altered during adaptation to chilling stress. Proteomic results revealed that proteins involved in photosynthesis, protein metabolism, energy metabolism, stress and redox and other proteins were mobilized in adaptation to chilling stress. In ZD, a greater number of changes were observed in proteins, and autologous metabolism and biosynthesis were slowed in response to chilling stress, thereby reducing consumption, allowing for homeostasis. The capability for protein folding and protein biosynthesis in W5 was enhanced, which allows protection against chilling stress. The ability to perceive low temperatures was more sensitive in freezing-tolerant alfalfa compared to freezing-sensitive alfalfa. This proteomics study provides new insights into the cold acclimation mechanism in alfalfa. PMID:25774161

  14. Deposition Nucleation or Pore Condensation and Freezing?

    NASA Astrophysics Data System (ADS)

    David, Robert O.; Mahrt, Fabian; Marcolli, Claudia; Fahrni, Jonas; Brühwiler, Dominik; Lohmann, Ulrike; Kanji, Zamin A.

    2017-04-01

    Ice nucleation plays an important role in moderating Earth's climate and precipitation formation. Over the last century of research, several mechanisms for the nucleation of ice have been identified. Of the known mechanisms for ice nucleation, only deposition nucleation occurs below water saturation. Deposition nucleation is defined as the formation of ice from supersaturated water vapor on an insoluble particle without the prior formation of liquid. However, recent work has found that the efficiency of so-called deposition nucleation shows a dependence on the homogeneous freezing temperature of water even though no liquid phase is presumed to be present. Additionally, the ability of certain particles to nucleate ice more efficiently after being pre-cooled (pre-activation) raises questions on the true mechanism when ice nucleation occurs below water saturation. In an attempt to explain the dependence of the efficiency of so-called deposition nucleation on the onset of homogeneous freezing of liquid water, pore condensation and freezing has been proposed. Pore condensation and freezing suggests that the liquid phase can exist under sub-saturated conditions with respect to liquid in narrow confinements or pores due to the inverse Kelvin effect. Once the liquid-phase condenses, it is capable of nucleating ice either homogeneously or heterogeneously. The role of pore condensation and freezing is assessed in the Zurich Ice Nucleation Chamber, a continuous flow diffusion chamber, using spherical nonporous and mesoporous silica particles. The mesoporous silica particles have a well-defined particle size range of 400 to 600nm with discreet pore sizes of 2.5, 2.8, 3.5 and 3.8nm. Experiments conducted between 218K and 238K show that so-called deposition nucleation only occurs below the homogenous freezing temperature of water and is highly dependent on the presence of pores and their size. The results strongly support pore condensation and freezing, questioning the role of

  15. Origin of melting point depression for rare gas solids confined in carbon pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishige, Kunimitsu, E-mail: morishi@chem.ous.ac.jp; Kataoka, Takaaki

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests thatmore » the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.« less

  16. Predictive modeling of freezing and thawing of frost-susceptible soils.

    DOT National Transportation Integrated Search

    2015-09-01

    Frost depth is an essential factor in design of various transportation infrastructures. In frost : susceptible soils, as soils freezes, water migrates through the soil voids below the freezing line : towards the freezing front and causes excessive he...

  17. Multiple Glass Transitions and Freezing Events of Aqueous Citric Acid

    PubMed Central

    2014-01-01

    Calorimetric and optical cryo-microscope measurements of 10–64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid–glass transitions upon cooling and from one to six liquid–glass and reverse glass–liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role. PMID:25482069

  18. Zinc triggers microglial activation.

    PubMed

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  19. Application of freeze-drying technology in manufacturing orally disintegrating films.

    PubMed

    Liew, Kai Bin; Odeniyi, Michael Ayodele; Peh, Kok-Khiang

    2016-01-01

    Freeze drying technology has not been maximized and reported in manufacturing orally disintegrating films. The aim of this study was to explore the freeze drying technology in the formulation of sildenafil orally disintegrating films and compare the physical properties with heat-dried orally disintegrating film. Central composite design was used to investigate the effects of three factors, namely concentration of carbopol, wheat starch and polyethylene glycol 400 on the tensile strength and disintegration time of the film. Heat-dried films had higher tensile strength than films prepared using freeze-dried method. For folding endurance, freeze-dried films showed improved endurance than heat-dried films. Moreover, films prepared using freeze-dried methods were thicker and had faster disintegration time. Formulations with higher amount of carbopol and starch showed higher tensile strength and thickness whereas formulations with higher PEG 400 content showed better flexibility. Scanning electron microscopy showed that the freeze-dried films had more porous structure compared to the heat-dried film as a result of the release of water molecule from the frozen structure when it was subjected to freeze drying process. The sildenafil film was palatable. The dissolution profiles of freeze-dried and heat-dried films were similar to Viagra® with f2 of 51.04 and 65.98, respectively.

  20. Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing

    NASA Astrophysics Data System (ADS)

    Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi

    Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.

  1. Involvement of two specific causes of cell mortality in freeze-thaw cycles with freezing to -196 degrees C.

    PubMed

    Dumont, Frédéric; Marechal, Pierre-André; Gervais, Patrick

    2006-02-01

    The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to -196 degrees C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than -70 degrees C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate.

  2. Design of a blood-freezing system for leukemia research

    NASA Technical Reports Server (NTRS)

    Williams, T. E.; Cygnarowicz, T. A.

    1978-01-01

    Leukemia research involves the use of cryogenic freezing and storage equipment. In a program being carried out at the National Cancer Institute (NCI), bone marrow (white blood cells) was frozen using a standard cryogenic biological freezer. With this system, it is difficult to maintain the desired rate of freezing and repeatability from sample to sample. A freezing system was developed that satisfies the requirements for a repeatable, constant freezing rate. The system was delivered to NIC and is now operational. This report describes the design of the major subsystems, the analyses, the operating procedure, and final system test results.

  3. An RNA-Cleaving Catalytic DNA Accelerated by Freezing.

    PubMed

    Yu, Tianmeng; Zhou, Wenhu; Liu, Juewen

    2018-05-18

    The EtNa DNAzyme was isolated during the isopropanol precipitation step of an in vitro selection effort. Although inactive with the intended cofactor, its RNA cleavage activity was observed under a few conditions. With Na + , EtNa was highly active in ∼50 % ethanol, whereas in water, it was highly active with Ca 2+ . In this work, we showed that the EtNa DNAzyme was accelerated by freezing in water in the presence of Na + . The apparent K d value reached 6.2 mm Na + under the frozen condition, over 20 times tighter than that in water at room temperature. With 10 mm Na + , EtNa had a cleavage rate of 0.12 h -1 after freezing at -20 °C. This effect was unique to EtNa, as all other tested DNAzymes were inhibited by freezing except for the Na + -specific NaA43. Freezing also inhibited EtNa if Ca 2+ was used. We attributed this to the concentrations of EtNa and Na + in the micropockets between ice crystals, but divalent metals might misfold DNA. Overall, we have systematically studied the effect of freezing on the RNA-cleavage activity of DNAzymes. The DNAzyme sequence and the metal ion species are both crucial to determine the effect of freezing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    PubMed Central

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  5. Zinc Information

    MedlinePlus

    ... for Eye Conditions Clinical Digest: Hepatitis C and Dietary Supplements Related Resources From Other Agencies Age-Related Eye Disease Study 2 (AREDS2) ( NEI ) Can Zinc Be Harmful? ( ODS ) Zinc ( ODS ) Follow NCCIH: Read our disclaimer ...

  6. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  7. Freezing of gait: Promising avenues for future treatment.

    PubMed

    Gilat, Moran; Lígia Silva de Lima, Ana; Bloem, Bastiaan R; Shine, James M; Nonnekes, Jorik; Lewis, Simon J G

    2018-03-12

    Freezing of gait is a devastating symptom of Parkinson's disease and other forms of parkinsonism. It poses a major burden on both patients and their families, as freezing often leads to falls, fall-related injuries and a loss of independence. Treating freezing of gait is difficult for a variety of reasons: it has a paroxysmal and unpredictable nature; a multifaceted pathophysiology, with an interplay between motor elements (disturbed stepping mechanisms) and non-motor elements (cognitive decline, anxiety); and a complex (and likely heterogeneous) underlying neural substrate, involving multiple failing neural networks. In recent years, advances in translational neuroscience have offered new insights into the pathophysiology underlying freezing. Furthermore, the mechanisms behind the effectiveness of available treatments (or lack thereof) are better understood. Driven by these concepts, researchers and clinicians have begun to improve currently available treatment options, and develop new and better treatment methods. Here, we evaluate the range of pharmacological (i.e. closed-looped approaches), surgical (i.e. multi-target and adaptive deep brain and spinal cord stimulation) and behavioural (i.e. biofeedback and cueing on demand) treatment options that are under development, and propose novel avenues that are likely to play a crucial role in the clinical management of freezing of gait in the near future. The outcomes of this review suggest that the successful future management of freezing of gait will require individualized treatments that can be implemented in an on-demand manner in response to imminent freezing. With this review we hope to guide much-needed advances in treating this devastating symptom of Parkinson's disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. [Effect of freezing and cooking on the texture and electrophoretic pattern of the proteins of octopus arms (Octopus vulgaris)].

    PubMed

    Reyes, Genara; Nirchio, Mauro; Bello, Rafael; Borderías, Javier

    2014-09-01

    Texture is the most valuable feature in cephalopods. Factors that mainly affect the texture of octopus are: freezing, scalding and cooking. The aim of this study was to assess the effect of freezing, scalding and length of cooking time on the texture and electrophoretic pattern of proteins of octopus arms. Octopuses were trapped near Margarita Island and carried with ice to the laboratory where they were packed and subjected to: a) freezing at -27 degrees C or at -20 degrees C b) scalding c) cooking for 25 min, 35 min or 45 min. Shear force was determined by Kramer cell on strips of octopus arms. SDS-PAGE was done according to the Laemmli method with 12% polyacrilamide gels. A sensory evaluation of the preference of texture was carried out using a hedonic scale of 7-points and a non-trained panel. Octopus texture was not affected by freezing temperature or scalding. Frozen octopus was softer after cooking than fresh. The longer the cooking time was, the softer the octopus was. Myosin heavy chain (MHC) was not significantly affected by scalding or cooking; however large aggregates heavier than MHC, new bands and loss of resolution of the bands appeared. Myosin and paramyosin bands were more affected by freezing prior to cooking.

  9. 7 CFR 58.638 - Freezing the mix.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Freezing the mix. 58.638 Section 58.638 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.638 Freezing the mix. After the mix enters the freezer, it shall be frozen as rapidly as...

  10. 7 CFR 58.638 - Freezing the mix.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Freezing the mix. 58.638 Section 58.638 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.638 Freezing the mix. After the mix enters the freezer, it shall be frozen as rapidly as...

  11. 7 CFR 58.638 - Freezing the mix.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Freezing the mix. 58.638 Section 58.638 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.638 Freezing the mix. After the mix enters the freezer, it shall be frozen as rapidly as...

  12. Optimisation of the zinc sulphate turbidity test for the determination of immune status.

    PubMed

    Hogan, I; Doherty, M; Fagan, J; Kennedy, E; Conneely, M; Crowe, B; Lorenz, I

    2016-02-13

    Failure of passive transfer of maternal immunity occurs in calves that fail to absorb sufficient immunoglobulins from ingested colostrum. The zinc sulphate turbidity test has been developed to test bovine neonates for this failure. The specificity of this test has been shown to be less than ideal. The objective was to examine how parameters of the zinc sulphate turbidity test may be manipulated in order to improve its diagnostic accuracy. One hundred and five blood samples were taken from calves of dairy cows receiving various rates of colostrum feeding. The zinc sulphate turbidity test was carried out multiple times on each sample, varying the solution strength, time of reaction and wavelength of light used and the results compared with those of a radial immunodiffusion test, which is the reference method for measuring immunoglobulin concentration in serum. Reducing the time over which the reaction occurs, or increasing the wavelength of light used to read the turbidity, resulted in decreased specificity without improving sensitivity. Increasing the concentration of the zinc sulphate solution used in the test was shown to improve the specificity without decreasing sensitivity. Examination of the cut-off points suggested that a lower cut-off point would improve the performance. British Veterinary Association.

  13. 23 CFR 658.23 - LCV freeze; cargo-carrying unit freeze.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... safety purposes and road construction, a State may make minor adjustments of a temporary and emergency... decision is reached that minor adjustments made by a State are not legitimately attributable to road or bridge construction or safety, the FHWA will inform the State, and the original conditions of the freeze...

  14. Embolism Formation during Freezing in the Wood of Picea abies1

    PubMed Central

    Mayr, Stefan; Cochard, Hervé; Améglio, Thierry; Kikuta, Silvia B.

    2007-01-01

    Freeze-thaw events can cause embolism in plant xylem. According to classical theory, gas bubbles are formed during freezing and expand during thawing. Conifers have proved to be very resistant to freeze-thaw induced embolism, because bubbles in tracheids are small and redissolve during thawing. In contrast, increasing embolism rates upon consecutive freeze-thaw events were observed that cannot be explained by the classical mechanism. In this study, embolism formation during freeze-thaw events was analyzed via ultrasonic and Cryo-scanning electron microscope techniques. Twigs of Picea abies L. Karst. were subjected to up to 120 freeze-thaw cycles during which ultrasonic acoustic emissions, xylem temperature, and diameter variations were registered. In addition, the extent and cross-sectional pattern of embolism were analyzed with staining experiments and Cryo-scanning electron microscope observations. Embolism increased with the number of freeze-thaw events in twigs previously dehydrated to a water potential of −2.8 MPa. In these twigs, acoustic emissions were registered, while saturated twigs showed low, and totally dehydrated twigs showed no, acoustic activity. Acoustic emissions were detected only during the freezing process. This means that embolism was formed during freezing, which is in contradiction to the classical theory of freeze-thaw induced embolism. The clustered pattern of embolized tracheids in cross sections indicates that air spread from a dysfunctional tracheid to adjacent functional ones. We hypothesize that the low water potential of the growing ice front led to a decrease of the potential in nearby tracheids. This may result in freezing-induced air seeding. PMID:17041033

  15. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  16. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  17. Zinc triggers microglial activation

    PubMed Central

    Kauppinen, Tiina M.; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A.

    2009-01-01

    Microglia are resident immune cells of the central nervous system. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, “amoeboid” morphology and release matrix metalloproteinases, reactive oxygen species, and other pro-inflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here we show that zinc directly triggers microglial activation. Microglia transfected with an NF-kB reporter gene showed a several-fold increase in NF-kB activity in response to 30 μM zinc. Cultured mouse microglia exposed to 15 – 30 μM zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-κB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-κB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders. PMID:18509044

  18. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Experimental analysis and modeling of ultrasound assisted freezing of potato spheres.

    PubMed

    Kiani, Hossein; Zhang, Zhihang; Sun, Da-Wen

    2015-09-01

    In recent years, innovative methods such as ultrasound assisted freezing have been developed in order to improve the freezing process. During freezing of foods, accurate prediction of the temperature distribution, phase ratios, and process time is very important. In the present study, ultrasound assisted immersion freezing process (in 1:1 ethylene glycol-water solution at 253.15K) of potato spheres (0.02 m diameter) was evaluated using experimental, numerical and analytical approaches. Ultrasound (25 kHz, 890 W m(-2)) was irradiated for different duty cycles (DCs=0-100%). A finite volume based enthalpy method was used in the numerical model, based on which temperature and liquid fraction profiles were simulated by a program developed using OpenFOAM® CFD software. An analytical technique was also employed to calculate freezing times. The results showed that ultrasound irradiation could decrease the characteristic freezing time of potatoes. Since ultrasound irradiation increased the heat transfer coefficient but simultaneously generated heat at the surface of the samples, an optimum DC was needed for the shortest freezing time which occurred in the range of 30-70% DC. DCs higher than 70% increased the freezing time. DCs lower than 30% did not provide significant effects on the freezing time compared to the control sample. The numerical model predicted the characteristic freezing time in accordance with the experimental results. In addition, analytical calculation of characteristic freezing time exhibited qualitative agreement with the experimental results. As the numerical simulations provided profiles of temperature and water fraction within potatoes frozen with or without ultrasound, the models can be used to study and control different operation situations, and to improve the understanding of the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Heterogeneous freezing of super cooled water droplets in micrometre range- freezing on a chip

    NASA Astrophysics Data System (ADS)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    A new setup to analyse the freezing behaviour of ice nucleation particles (INPs) dispersed in aqueous droplets has been developed with the aim to analyse ensembles of droplets with sizes in the micrometre range, in which INPs are immersed. Major disadvantages of conventional drop-freezing experiments like varying drop sizes or interactions between the water- oil mixture and the INP, were solved by introducing a unique freezing- chip consisting of an etched and sputtered 15x15x1 mm gold-plated silicon or pure gold film (Pummer et al., 2012; Zolles et al., 2015). Using this chip, isolated micrometre-sized droplets can be generated with sizes similar to droplets in real world clouds. The experimental set-up for drop-freezing experiments was revised and improved by establishing automated process control and image evaluation. We were able to show the efficiency and accuracy of our setup by comparing measured freezing temperatures of different INPs (Snomax®, K- feldspar, birch pollen (Betula pendula) washing water, juniper pollen suspension (Juniperus communis) and ultrapure water) with already published results (Atkinson et al., 2013; Augustin et al., 2013; Pruppacher and Klett, 1997; Pummer et al., 2012; Wex et al., 2015; Zolles et al., 2015). Comparison of our measurements with literature data show the important impact of droplet size, INP concentration and number of active sites on the T50 values. Here, the new set-up exhibits its strength in reproducibility and accuracy which is due to the defined and isolated droplets. Finally, it opens a temperature window down to -37˚ C for freezing experiments which was not accessible with former traditional approaches .Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds (vol 498, pg 355, 2013), Nature, 500, 491-491, 2013. Augustin, S., Wex, H

  1. Preparation of freezing quantum state for quantum coherence

    NASA Astrophysics Data System (ADS)

    Yang, Lian-Wu; Man, Zhong-Xiao; Zhang, Ying-Jie; Han, Feng; Du, Shao-jiang; Xia, Yun-Jie

    2018-06-01

    We provide a method to prepare the freezing quantum state for quantum coherence via unitary operations. The initial product state consists of the control qubit and target qubit; when it satisfies certain conditions, the initial product state converts into the particular Bell diagonal state under the unitary operations, which have the property of freezing of quantum coherence under quantum channels. We calculate the frozen quantum coherence and corresponding quantum correlations, and find that the quantities are determined by the control qubit only when the freezing phenomena occur.

  2. Supplemental levels of iron and calcium interfere with repletion of zinc status in zinc-deficient animals.

    PubMed

    Jayalakshmi, S; Platel, Kalpana

    2016-05-18

    Negative interactions between minerals interfering with each other's absorption are of concern when iron and calcium supplements are given to pregnant women and children. We have previously reported that supplemental levels of iron and calcium inhibit the bioaccessibility of zinc, and compromise zinc status in rats fed diets with high levels of these two minerals. The present study examined the effect of supplemental levels of iron and calcium on the recovery of zinc status during a zinc repletion period in rats rendered zinc-deficient. Iron and calcium, both individually and in combination, significantly interfered with the recovery of zinc status in zinc deficient rats during repletion with normal levels of zinc in the diet. Rats maintained on diets containing supplemental levels of these two minerals had significantly lower body weight, and the concentration of zinc in serum and organs was significantly lower than in zinc-deficient rats not receiving the supplements. Iron and calcium supplementation also significantly inhibited the activity of zinc-containing enzymes in the serum as well as liver. Both iron and calcium independently exerted this negative effect on zinc status, while their combination seemed to have a more prominent effect, especially on the activities of zinc containing enzymes. This investigation is probably the first systematic study on the effect of these two minerals on the zinc status of zinc deficient animals and their recovery during repletion with normal amounts of zinc.

  3. Preservation of EDTA-expanded grid-mounted chromosomes and nuclei for electron microscopy using a specially designed freeze-dryer.

    PubMed

    Woods, P S; Ledbetter, M C; Tempel, N

    1991-06-01

    We describe methods for freezing and drying EDTA-expanded, fixed metaphase chromosomes and nuclei, attached to grids as whole-mounts, for transmission electron microscopy. These methods use a special apparatus that is simple to construct. While separate freezers and dryers are commercially available, one for freezing blocks of tissue by slamming them against a cold metal surface, and the other for vacuum drying the frozen tissue, our apparatus is designed for gentler, cryogenic liquid plunge freezing and drying, sequentially, in the same apparatus, thus avoiding any compression or damage to the specimen. Use of a cryoprotectant is not essential; however, good results are obtained more often when 20% ethanol is used. Freezing is accomplished by rapid propulsion of the grid, with specimens attached, into slushy N2 (-210 degrees C) within the drying chamber; drying is automatic, by either sublimation under vacuum or by solvent substitution using absolute ethanol followed by acetone, which, in turn, is removed with a critical-point dryer. The apparatus offers a means of drying chromosomes and nuclei in an expanded state, and avoids the shrinkage of these structures that occurs during stepwise passage through increasing concentrations of ethanol or acetone.

  4. Isochoric and isobaric freezing of fish muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Năstase, Gabriel; Department of Building Services, University of Transilvania, Braşov, Braşov, 500152; Lyu, Chenang

    We have recently shown that, a living organism, which succumbs to freezing to −4 °C in an isobaric thermodynamic system (constant atmospheric pressure), can survive freezing to −4 °C in an isochoric thermodynamic system (constant volume). It is known that the mechanism of cell damage in an isobaric system is the freezing caused increase in extracellular osmolality, and, the consequent cell dehydration. An explanation for the observed survival during isochoric freezing is the thermodynamic modeling supported hypothesis that, in the isochoric frozen solution the extracellular osmolality is comparable to the cell intracellular osmolality. Therefore, cells in the isochoric frozen organism do not dehydrate, andmore » the tissue maintains its morphological integrity. Comparing the histology of: a) fresh fish white muscle, b) fresh muscle frozen to −5 °C in an isobaric system and c) fresh muscle frozen to −5 °C I in an isochoric system, we find convincing evidence of the mechanism of cell dehydration during isobaric freezing. In contrast, the muscle tissue frozen to −5 °C in an isochoric system appears morphologically identical to fresh tissue, with no evidence of dehydration. This is the first experimental evidence in support of the hypothesis that in isochoric freezing there is no cellular dehydration and therefore the morphology of the frozen tissue remains intact. - Highlights: • Preservation of fish muscle at, subfreezing temperatures, in an isochoric system, is demonstrated. • Experiments were performed to an average pressure of 41.3 MPa and temperatures of −5 °C. • Isochoric subfreezing temperature is a new preservation method that does not require the.use of cryoprotectants. • No cellular dehydration and therefore the morphology of the frozen tissue remains intact.« less

  5. A new approach for freezing of aqueous solutions under active control of the nucleation temperature.

    PubMed

    Petersen, Ansgar; Schneider, Hendrik; Rau, Guenter; Glasmacher, Birgit

    2006-10-01

    An experimental setup for controlled freezing of aqueous solutions is introduced. The special feature is a mechanism to actively control the nucleation temperature via electrofreezing: an ice nucleus generated at a platinum electrode by the application of an electric high voltage pulse initiates the crystallization of the sample. Using electrofreezing, the nucleation temperature in pure water can be precisely adjusted to a desired value over the whole temperature range between a maximum temperature Tn(max) close to the melting point and the temperature of spontaneous nucleation. However, the presence of additives can inhibit the nucleus formation. The influence of hydroxyethylstarch (HES), glucose, glycerol, additives commonly used in cryobiology, and NaCl on Tn(max) were investigated. While the decrease showed to be moderate for the non-ionic additives, the hindrance of nucleation by ionic NaCl makes the direct application of electrofreezing in solutions with physiological salt concentrations impossible. Therefore, in the multi-sample freezing device presented in this paper, the ice nucleus is produced in a separate volume of pure water inside an electrode cap. This way, the nucleus formation becomes independent of the sample composition. Using electrofreezing rather than conventional seeding methods allows automated freezing of many samples under equal conditions. Experiments performed with model solutions show the reliability and repeatability of this method to start crystallization in the test samples at different specified temperatures. The setup was designed to freeze samples of small volume for basic investigations in the field of cryopreservation and freeze-drying, but the mode of operation might be interesting for many other applications where a controlled nucleation of aqueous solutions is of importance.

  6. Freezing temperature protection admixture for Portland cement concrete

    DOT National Transportation Integrated Search

    1996-10-01

    A number of experimental admixtures were compared to Pozzutec 20 admixture for their ability to protect fresh concrete from freezing and for increasing the rate of cement hydration at below-freezing temperatures. The commercial accelerator and low-te...

  7. [Zinc and chronic enteropathies].

    PubMed

    Giorgi, P L; Catassi, C; Guerrieri, A

    1984-01-01

    In recent years the nutritional importance of zinc has been well established; its deficiency and its symptoms have also been recognized in humans. Furthermore, Acrodermatitis Enteropathica has been isolated, a rare but severe disease, of which skin lesions, chronic diarrhoea and recurring infections are the main symptoms. The disease is related to the malfunctioning of intestinal absorption of zinc and can be treated by administering pharmacological doses of zinc orally. Good dietary sources of zinc are meat, fish and, to a less extent, human milk. The amount of zinc absorbed in the small intestine is influenced by other nutrients: some compounds inhibit this process (dietary fiber, phytate) while others (picolinic acid, citric acid), referred to as Zn-binding ligands (ZnBL) facilitate it. Citric acid is thought to be the ligand which accounts for the high level of bioavailability of zinc in human milk. zinc absorption occurs throughout the small intestine, not only in the prossimal tract (duodenum and jejunum) but also in the distal tract (ileum). Diarrhoea is one of the clinical manifestations of zinc deficiency, thus many illnesses distinguished by chronic diarrhoea entail a bad absorption of zinc. In fact, in some cases of chronic enteropathies in infants, like coeliac disease and seldom cystic fibrosis, a deficiency of zinc has been isolated. Some of the symptoms of Crohn's disease, like retarded growth and hypogonadism, have been related to hypozinchemia which is present in this illness. Finally, it is possible that some of the dietary treatments frequently used for persistent post-enteritis diarrhoea (i.e. cow's milk exclusion, abuse and misuse of dietary fiber like carrot and carub powder, use of soy formula) can constitute a scarce supply of zinc and therefore could promote the persistency of diarrhoea itself.

  8. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  9. Development of freeze dried vegetables

    NASA Technical Reports Server (NTRS)

    Larson, R. W.

    1970-01-01

    The development of freeze dried vegetables to be used in the Apollo food system is discussed. After the initial selection and screening of vegetables, several types of freeze dried vegetables were prepared in small batches. From these small batches, two vegetables were judged satisfactory for further testing and evaluation. These vegetables, mashed potatoes and asparagus, were subjected to storage at 100 deg plus or minus 5 F. for two weeks and then taste tested. The vegetables were also tested to determine if they complied with the microbiological requirements for Apollo food. The space food prototype production guide for the vegetables is submitted.

  10. Research on strength attenuation law of concrete in freezing - thawing environment

    NASA Astrophysics Data System (ADS)

    Xiao, qianhui; Cao, zhiyuan; Li, qiang

    2018-03-01

    By rapid freezing and thawing method, the experiments of concrete have been 300 freeze-thaw cycles specimens in the water. The cubic compression strength value under different freeze-thaw cycles was measured. By analyzing the test results, the water-binder ratio of the concrete under freeze-thaw environments, fly ash and air entraining agent is selected dosage recommendations. The exponential attenuation prediction model and life prediction model of compression strength of concrete under freezing-thawing cycles considering the factors of water-binder ratio, fly ash content and air-entraining agent dosage were established. The model provides the basis for predicting the durability life of concrete under freezing-thawing environment. It also provides experimental basis and references for further research on concrete structures with antifreeze requirements.

  11. Universal pion freeze-out in heavy-ion collisions.

    PubMed

    Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2003-01-17

    Based on an evaluation of data on pion interferometry and on particle yields at midrapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda(f) reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from the Alternating Gradient Synchrotron to the Relativistic Heavy Ion Collider.

  12. Standard Materials. A Descriptive List with Prices.

    DTIC Science & Technology

    1962-03-12

    steels (spec- 3.2.4. Freezing-point standards ------- 9 troscopic standards) ---------------- 24 3.2.5. Thermometric standards ------- 9 Ingot irons...metallo-organic materials soluble in lubri- the material is intended) wvith every other sample eating oils, thermometric cells, magnesium-treated...6.00 43g Zinc --------------------------------- 419.50 C ----------------------------- 350 6.00 3.2.5. Thermometric Cells These cells are primarily

  13. Water vapor movement in freezing aggregate base materials.

    DOT National Transportation Integrated Search

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  14. St. Lawrence River Freeze-Up Forecast Procedure.

    ERIC Educational Resources Information Center

    Assel, R. A.

    A standard operating procedure (SOP) is presented for calculating the date of freeze-up on the St. Lawrence River at Massena, N.Y. The SOP is based on two empirical temperature decline equations developed for Kingston, Ontario, and Massena, N.Y., respectively. Input data needed to forecast freeze-up consist of the forecast December flow rate and…

  15. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  16. A freeze-stable formulation for DTwP and DTaP vaccines.

    PubMed

    Xue, Honggang; Yang, Bangling; Kristensen, Debra D; Chen, Dexiang

    2014-01-01

    Inadvertent vaccine freezing often occurs in the cold chain and may cause damage to freeze‑sensitive vaccines. Liquid vaccines that contain aluminum salt adjuvants are particularly vulnerable. Polyol cryoprotective excipients have been shown to prevent freeze damage to hepatitis B vaccine. In this study, we examined the freeze-protective effect of propylene glycol on diphtheria-tetanus-pertussis-whole-cell (DTwP) and acellular (DTaP) vaccines. Pilot lots of DTwP and DTaP formulated with 7.5% propylene glycol underwent 3 freeze-thaw treatments. The addition of propylene glycol had no impact on pH, particle size distribution, or potency of the vaccines prior to freeze-thaw treatment; the only change noted was an increase in osmolality. The potencies and the physical properties of the vaccines containing cryoprotectant were maintained after freeze-thawing and for 3 months in accelerated stability studies. The results from this study indicate that formulating vaccines with propylene glycol can protect diphtheria-tetanus-pertussis vaccines against freeze damages.

  17. The tolerance of the field slug Deroceras reticulatum to freezing temperatures.

    PubMed

    Cook, R T

    2004-01-01

    Cold hardiness of ectotherms has been widely studied in arthropods, but there is a more limited literature on the survival of molluscs at low temperatures. A number of intertidal species have been examined in detail, but terrestrial molluscs have largely been overlooked until recently. This paper reports results of laboratory experiments to evaluate the cold hardiness of the terrestrial slug, Deroceras reticulatum. The mean supercooling point (SCP) rose from -4.2 degree C in summer to -3.6 degree C in winter. The SCP that caused 50 percent mortality (LSCP50) remained constant at -4.7 to -4.8 degree C in both seasons, but slugs were able to survive the frozen state for longer in winter (LD50 of 31.8 minutes compared with 17.0 minutes in summer). Slug survival at freezing temperatures was prolonged to at least five hours when placed on a moist, absorbent substrate. D. reticulatum exhibits partial freeze tolerance, with an increased survival in winter. The results are discussed in relation to the natural environment of slugs.

  18. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening

    PubMed Central

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-01-01

    Room temperature Ionic liquids (RTIL) are new materials with fundamental importance for energy storage and active lubrication. They are unsual liquids, which challenge the classical frameworks of electrolytes, whose behavior at electrified interfaces remains elusive with exotic responses relevant to their electrochemical activity. By means of tuning fork based AFM nanorheological measurements, we explore here the properties of confined RTIL, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This is interpreted in terms of the shift of freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures and suggests applications to tune nanoscale lubrication with phase-changing RTIL, by varying the nature and patterning of the substrate, and application of active polarisation. PMID:28346432

  19. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening

    NASA Astrophysics Data System (ADS)

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-06-01

    Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.

  20. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening.

    PubMed

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-06-01

    Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.

  1. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  2. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994

  3. Involvement of Two Specific Causes of Cell Mortality in Freeze-Thaw Cycles with Freezing to −196°C

    PubMed Central

    Dumont, Frédéric; Marechal, Pierre-André; Gervais, Patrick

    2006-01-01

    The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to −196°C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than −70°C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate. PMID:16461684

  4. Perspective: Surface freezing in water: A nexus of experiments and simulations

    NASA Astrophysics Data System (ADS)

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2017-08-01

    Surface freezing is a phenomenon in which crystallization is enhanced at a vapor-liquid interface. In some systems, such as n-alkanes, this enhancement is dramatic and results in the formation of a crystalline layer at the free interface even at temperatures slightly above the equilibrium bulk freezing temperature. There are, however, systems in which the enhancement is purely kinetic and only involves faster nucleation at or near the interface. The first, thermodynamic, type of surface freezing is easier to confirm in experiments, requiring only the verification of the existence of crystalline order at the interface. The second, kinetic, type of surface freezing is far more difficult to prove experimentally. One material that is suspected of undergoing the second type of surface freezing is liquid water. Despite strong indications that the freezing of liquid water is kinetically enhanced at vapor-liquid interfaces, the findings are far from conclusive, and the topic remains controversial. In this perspective, we present a simple thermodynamic framework to understand conceptually and distinguish these two types of surface freezing. We then briefly survey fifteen years of experimental and computational work aimed at elucidating the surface freezing conundrum in water.

  5. New aspects of boar semen freezing strategies.

    PubMed

    Grossfeld, R; Sieg, B; Struckmann, C; Frenzel, A; Maxwell, W M C; Rath, D

    2008-11-01

    Although cryopreserved boar semen has been available since 1975, a major breakthrough in commercial application has not yet occurred. There is ongoing research to improve sperm survival after thawing, to limit the damage occurring to spermatozoa during freezing, and to further minimize the number of spermatozoa needed to establish a pregnancy. Boar spermatozoa are exposed to lipid peroxidation during freezing and thawing, which causes damage to the sperm membranes and impairs energy metabolism. The addition of antioxidants or chelating agents (e.g. catalase, vitamin E, glutathione, butylated hydroxytoluene or superoxide dismutase) to the still standard egg-yolk based cooling and freezing media for boar semen, effectively prevented this damage. In general, final glycerol concentrations of 2-3% in the freezing media, cooling rates of -30 to -50 degrees C/min, and thawing rates of 1200-1800 degrees C/min resulted in the best sperm survival. However, cooling and thawing rates individually optimized for sub-standard freezing boars have substantially improved their sperm quality after cryopreservation. With deep intrauterine insemination, the sperm dose has been decreased from 6 to 1x10(9) spermatozoa without compromising farrowing rate or litter size. Minimizing insemination-to-ovulation intervals, based either on estimated or determined ovulation, have also improved the fertility after AI with cryopreserved boar semen. With this combination of different approaches, acceptable fertility with cryopreserved boar semen can be achieved, facilitating the use of cryopreserved boar semen in routine AI programs.

  6. Freeze-Tolerant Condensers

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  7. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    PubMed

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.

  8. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  9. Freeze-drying process monitoring using a cold plasma ionization device.

    PubMed

    Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C

    2007-01-01

    A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.

  10. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  11. A molecular dynamics study of freezing in a confined geometry

    NASA Technical Reports Server (NTRS)

    Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.

  12. New Processes for Freeze-Drying in Dual-Chamber Systems.

    PubMed

    Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M

    2016-01-01

    Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this

  13. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals.

    PubMed

    Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-12-12

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson's ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson's ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson's ratios at planes (100) and (111) are isotropic, while the Poisson's ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol -1 K -1 , respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band

  14. Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    PubMed Central

    Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi

    2017-01-01

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson’s ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson’s ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson’s ratios at planes (100) and (111) are isotropic, while the Poisson’s ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol−1 K−1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a

  15. Brown bear sperm double freezing: Effect of elapsed time and use of PureSperm(®) gradient between freeze-thaw cycles.

    PubMed

    Alvarez-Rodríguez, Manuel; Alvarez, Mercedes; López-Urueña, Elena; Martínez-Rodriguez, Carmen; Borragan, Santiago; Anel-López, Luis; de Paz, Paulino; Anel, Luis

    2013-12-01

    The use of sexed spermatozoa has great potential to captive population management in endangered wildlife. The problem is that the sex-sorting facility is a long distance from the semen collection place and to overcome this difficulty two freeze-thaw cycles may be necessary. In this study, effects of refreezing on brown bear electroejaculated spermatozoa were analyzed. We carried out two experiments: (1) to assess the effects of the two freezing-thawing cycles on sperm quality and to analyze three different elapsed times between freezing-thawing cycles (30, 90 and 180 min), and (2) to analyze the use of PureSperm between freezing-thawing cycles to select a more motile and viable sperm subpopulation which better survived first freezing. The motility, viability and undamaged acrosomes were significantly reduced after the second thawing respect to first thawing into each elapsed time group, but the elapsed times did not significantly affect the viability and acrosome status although motility was damaged. Our results with the PureSperm gradient showed higher values of viability in freezability of select sample (pellet) respect to the rest of the groups and it also showed a significant decrease in the number of acrosome damaged. In summary, the double freezing of bear semen selected by gradient centrifugation is qualitatively efficient, and thus could be useful to carry out a sex-sorting of frozen-thawed bear spermatozoa before to send the cryopreserved sample to a biobank. Given the low recovery of spermatozoa after applying a selection gradient, further studies will be needed to increase the recovery rate without damaging of the cell quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    USGS Publications Warehouse

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  17. Physicochemical characterization of commercial freeze-dried snake antivenoms.

    PubMed

    Herrera, María; Solano, Daniela; Gómez, Aarón; Villalta, Mauren; Vargas, Mariángela; Sánchez, Andrés; Gutiérrez, José María; León, Guillermo

    2017-02-01

    Freeze-drying is a process used to improve the stability of pharmaceutical proteins, including snake antivenoms. This additional step confers these with a higher stability in comparison to liquid formulations, especially in tropical regions where high temperatures could affect the activity of immunoglobulins. Currently, the knowledge about freeze-drying process conditions for snake antivenoms is very limited. Some of the scarce scientific works on this subject reported reconstitution times up to 90 min for these preparations, which could imply a delay in the beginning of the antivenom therapy at the clinical setting. Therefore there is a reasonable concern about whether freeze-dried antivenoms exhibit the desired attributes for solid pharmaceutical proteins. In this work, a physicochemical characterization of seven commercial freeze-dried snake antivenoms was performed based on tests recommended by the World Health Organization (WHO). No significant differences were observed between the products regarding macroscopic appearance of the solid cakes, reconstitution times, residual humidity and monomers content. On the other hand, total protein concentration, turbidity and electrophoretic profile were different among samples. Microscopic analysis by scanning electron microscopy showed no collapsed structure and, instead, most of the samples showed a characteristic protein morphology composed of smooth plates and channels. All the parameters tested in this study were according to literature recommendations and evidenced that, in spite of slight variations found for some products, formulation and freeze-drying conditions chosen by manufacturers are adequate to prevent aggregation and generate, in physicochemical terms, freeze-dried antivenoms of acceptable quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    PubMed

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  19. Mutagenic effect of freezing on nuclear DNA of Saccharomyces cerevisiae.

    PubMed

    Todorova, T; Pesheva, M; Stamenova, R; Dimitrov, M; Venkov, P

    2012-05-01

    Although fragmentation of DNA has been observed in cells undergoing freezing procedures, a mutagenic effect of sub-zero temperature treatment has not been proved by induction and isolation of mutants in nuclear DNA (nDNA). In this communication we supply evidence for mutagenicity of freezing on nDNA of Saccharomyces cerevisiae cells. In the absence of cryoprotectors, cooling for 2 h at +4°C and freezing for 1 h at -10°C and 16 h at -20°C, with a cooling rate of 3°C/min, resulted in induction of frame-shift and reverse mutations in microsatellite and coding regions of nDNA. The sub-zero temperature exposure also has a strong recombinogenic effect, evidenced by induction of gene-conversion and crossing-over events. Freezing induces mutations and enhances recombination with a frequency equal to or higher than that of methylmethanesulphonate at comparable survival rates. The signals for the appearance of nDNA lesions induced by freezing are detected and transduced by the DNA damage pathway. Extracellular cryoprotectors did not prevent the mutagenic effect of freezing, while accumulation of trehalose inside cells reduced nDNA cryodamage. Freezing of cells is accompanied by generation of high ROS levels, and the oxidative stress raised during the freeze-thaw process is the most likely reason for the DNA damaging effect. Experiments with mitochondrial rho⁻ mutants or scavengers of ROS indicated that mutagenic and recombinogenic effects of sub-zero temperatures can be decreased but not eliminated by reduction of ROS level. The complete protection against cryodamage in nDNA required simultaneous usage of intracellular cryoprotector and ROS scavenger during the freeze-thaw process. Copyright © 2012 John Wiley & Sons, Ltd.

  20. 7 CFR 305.7 - Quick freeze treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Quick freeze treatment requirements. 305.7 Section 305.7 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.7 Quick freeze treatment...

  1. Potential of Near-Infrared Chemical Imaging as Process Analytical Technology Tool for Continuous Freeze-Drying.

    PubMed

    Brouckaert, Davinia; De Meyer, Laurens; Vanbillemont, Brecht; Van Bockstal, Pieter-Jan; Lammens, Joris; Mortier, Séverine; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2018-04-03

    Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.

  2. Dynamic freeze-in: impact of thermal masses and cosmological phase transitions on dark matter production

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Breitbach, Moritz; Kopp, Joachim; Mittnacht, Lukas

    2018-03-01

    The cosmological abundance of dark matter can be significantly influenced by the temperature dependence of particle masses and vacuum expectation values. We illustrate this point in three simple freeze-in models. The first one, which we call kinematically induced freeze-in, is based on the observation that the effective mass of a scalar temporarily becomes very small as the scalar potential undergoes a second order phase transition. This opens dark matter production channels that are otherwise forbidden. The second model we consider, dubbed vev-induced freeze-in, is a fermionic Higgs portal scenario. Its scalar sector is augmented compared to the Standard Model by an additional scalar singlet, S, which couples to dark matter and temporarily acquires a vacuum expectation value (a two-step phase transition or "vev flip-flop"). While < S> ≠ 0, the modified coupling structure in the scalar sector implies that dark matter production is significantly enhanced compared to the < S> = 0 phases realised at very early times and again today. The third model, which we call mixing-induced freeze-in, is similar in spirit, but here it is the mixing of dark sector fermions, induced by non-zero < S>, that temporarily boosts the dark matter production rate. For all three scenarios, we carefully dissect the evolution of the dark sector in the early Universe. We compute the DM relic abundance as a function of the model parameters, emphasising the importance of thermal corrections and the proper treatment of phase transitions in the calculation.

  3. Effects of different freezing methods on calcium enriched papaya (Carica papaya L.).

    PubMed

    Lovera, Nancy N; Ramallo, Laura; Salvadori, Viviana O

    2018-06-01

    The effect of calcium impregnation on drip loss, colour, mechanical properties, sensory perception and freezing time on frozen-thawed papaya was studied, evaluating different freezing methods: cryogenic, tunnel and household freezer freezing. Osmotic dehydration as pre-treatment was also evaluated. Freezing in liquid nitrogen was considered an inappropriate method for papaya preservation due to cracking. Calcium impregnation and osmotic dehydration increased tissue firmness and decreased freezing time (freezing time for fresh, calcium impregnated and osmo-dehydrated fruit was 23, 17 and 5 min in a tunnel and 118, 83 and 60 min in a household freezer, respectively). Calcium lactate was the most effective way to protect tissue's firmness before and after a freeze-thaw cycle (maximum stress values approx. 300-400% of the raw tissue for tunnel freezing and 260% for household freezer). Microstructure analysis showed better tissue integrity retention in papaya samples impregnated with calcium lactate than in those with calcium gluconate, after a freezing-thawing cycle, in agreement with the drip loss results. In spite of these results, consumers preferred frozen papaya without pre-treatment or impregnated with calcium gluconate.

  4. A tissue snap-freezing apparatus without sacrificial cryogens

    NASA Astrophysics Data System (ADS)

    Vanapalli, Srinivas; Jagga, Sahil; Holland, Harry; ter Brake, Marcel

    2017-12-01

    Molecular technologies in cancer diagnosis require a fresh and frozen tissue, which is obtained by means of snap-freezing. Currently, coolants such as solid carbon dioxide and liquid nitrogen are used to preserve good morphology of the tissue. Using these coolants, snap freezing of tissues for diagnostic and research purposes is often time consuming, laborious, even hazardous and not user friendly. For that reason snap-freezing is not routinely applied at the location of biopsy acquisition. Furthermore, the influence of optimal cooling rate and cold sink temperature on the viability of the cells is not well known. In this paper, a snap-freezing apparatus powered by a small cryocooler is presented that will allow bio-medical research of tissue freezing methods and is safe to use in a hospital. To benchmark this apparatus, cooldown of a standard aluminum cryo-vial in liquid nitrogen is measured and the cooling rate is about -25 K/s between 295 K and 120 K. Sufficient cooling rate is obtained by a forced convective helium gas flow through a gap formed between the cryo-vial and a cold surface and is therefore chosen as the preferred cooling method. A conceptual design of the snap-apparatus with forced flow is discussed in this paper.

  5. Wheeled and standard walkers in Parkinson's disease patients with gait freezing.

    PubMed

    Cubo, Esther; Moore, Charity G; Leurgans, Sue; Goetz, Christopher G

    2003-10-01

    Compare the efficacy of two walking assistance devices (wheeled walker and standard walker) to unassisted walking for patients with PD and gait freezing. Although numerous walking devices are used clinically, their relative effects on freezing and walking speed have never been systematically tested. Nineteen PD patients (14 non-demented) walked under three conditions in randomized order: unassisted walking, standard walker, and wheeled walker. Patients walked up to three times in each condition through a standard course that included rising from a chair, walking through a doorway, straightway walking, pivoting, and return. Total walking time, freezing time and number of freezes were compared for the three conditions using mixed models (walking time) and Friedman's test (freezing). The wheeled walker was further studied by comparing the effect of an attached laser that projected a bar of light on the floor as a visual walking cue. Use of either type of device significantly slowed walking compared to unassisted walking. Neither walker reduced any index of freezing, nor the laser attachment offered any advantage to the wheeled walker. The standard walker increased freezing, and the wheeled walker had no effect on freezing. Among the non-demented subjects (n=14), the same patterns occurred, although the walking speed was less impaired by the wheeled walker than the standard walker in this group. Though walkers may stabilize patients and increase confidence, PD patients walk more slowly when using them, without reducing freezing. Because the wheeled walker was intermediate for walking time and does not aggravate freezing, if walkers are used for these subjects, this type of walker should be favored.

  6. Repeated vitrification/warming of human sperm gives better results than repeated slow programmable freezing

    PubMed Central

    Vutyavanich, Teraporn; Lattiwongsakorn, Worashorn; Piromlertamorn, Waraporn; Samchimchom, Sudarat

    2012-01-01

    In this study, we compared the effects of repeated freezing/thawing of human sperm by our in-house method of rapid freezing with slow programmable freezing. Sperm samples from 11 normozoospermic subjects were processed through density gradients and divided into three aliquots: non-frozen, rapid freezing and slow programmable freezing. Sperm in the rapid freezing group had better motility and viability than those in the slow freezing group (P<0.01) after the first, second and third cycles of freezing/thawing, but there was no difference in morphology. In the second experiment, rapid freezing was repeated three times in 20 subjects. The samples from each thawing cycle were evaluated for DNA fragmentation using the alkaline comet assay. DNA fragmentation began to increase considerably after the second cycle of freezing/thawing, but to a level that was not clinically important. In the third experiment, rapid freezing was done repeatedly in 10 subjects, until no motile sperm were observed after thawing. The median number of repeated freezing/thawing that yielded no motile sperm was seven (range: 5–8, mean: 6.8). In conclusion, we demonstrated that repeated freezing/thawing of processed semen using our rapid freezing method gave better results than standard slow programmable freezing. This method can help maximize the usage of precious cryopreserved sperm samples in assisted reproduction technology. PMID:23064685

  7. Cold tolerance and freeze-induced glucose accumulation in three terrestrial slugs.

    PubMed

    Slotsbo, Stine; Hansen, Lars Monrad; Jordaens, Kurt; Backeljau, Thierry; Malmendal, Anders; Nielsen, Niels Chr; Holmstrup, Martin

    2012-04-01

    Cold tolerance and metabolic responses to freezing of three slug species common in Scandinavia (Arion ater, Arion rufus and Arion lusitanicus) are reported. Autumn collected slugs were cold acclimated in the laboratory and subjected to freezing conditions simulating likely winter temperatures in their habitat. Slugs spontaneously froze at about -4 °C when cooled under dry conditions, but freezing of body fluids was readily induced at -1 °C when in contact with external ice crystals. All three species survived freezing for 2 days at -1 °C, and some A. rufus and A. lusitanicus also survived freezing at -2 °C. (1)H NMR spectroscopy revealed that freezing of body fluids resulted in accumulation of lactate, succinate and glucose. Accumulation of lactate and succinate indicates that ATP production occurred via fermentative pathways, which is likely a result of oxygen depletion in frozen tissues. Glucose increased from about 6 to 22 μg/mg dry tissue upon freezing in A. rufus, but less so in A. ater and A. lusitanicus. Glucose may thus act as a cryoprotectant in these slugs, although the concentrations are not as high as reported for other freeze tolerant invertebrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Water-cooled probe technique for the study of freeze lining formation

    NASA Astrophysics Data System (ADS)

    Verscheure, Karel; Campforts, Mieke; Verhaeghe, Frederik; Boydens, Eddy; Blanpain, Bart; Wollants, Patrick; van Camp, Maurits

    2006-12-01

    Furnace protection by water-cooled freeze linings becomes increasingly important as the metal producing industry attempts to achieve higher process intensities. Systematic investigations of the growth and the resulting microstructure and compositional profile of freeze linings are necessary to understand the behavior of freeze linings, their relation with the industrial process, and their interaction with the wall cooling system. We have developed a technique based on the submergence of a water-cooled probe into a liquid slag bath. Freeze linings of two industrial nonferrous slags have been produced using this technique and their growth, microstructural, and compositional profiles as a function of submergence time were determined. Thermodynamic equilibrium for the investigated slag systems was calculated and compared with the observed microstructures. The freeze linings form in approximately 15 minutes. Close to the water cooling, the freeze linings are predominantly amorphous in structure. With increasing distance from the water cooling, the proportion of crystalline phases increases and bath material is entrapped in the microstructure. Cellular crystals are observed close to the bath. The freeze linings exhibit an approximate homogeneous composition. The results demonstrate that the technique is a successful tool in obtaining information on the growth, microstructure, and composition of freeze linings in industrial water-cooled furnaces.

  9. 99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, LOOKING NORTH. NOTE ONE STYLE OF DENVER AGITATOR IN LOWER RIGHT CELL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  10. Emerging freeze-drying process development and scale-up issues.

    PubMed

    Patel, Sajal Manubhai; Pikal, Michael J

    2011-03-01

    Although several guidelines do exist for freeze-drying process development and scale-up, there are still a number of issues that require additional attention. The objective of this review article is to discuss some emerging process development and scale-up issue with emphasis on effect of load condition and freeze-drying in novel container systems such as syringes, Lyoguard trays, ampoules, and 96-well plates. Understanding the heat and mass transfer under different load conditions and for freeze-drying in these novel container systems will help in developing a robust freeze-drying process which is also easier to scale-up. Further research and development needs in these emerging areas have also been addressed. © 2011 American Association of Pharmaceutical Scientists

  11. Serum thymulin in human zinc deficiency.

    PubMed Central

    Prasad, A S; Meftah, S; Abdallah, J; Kaplan, J; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no overt clinical manifestations of zinc deficiency. The diagnosis of mild zinc deficiency was based on the assay of zinc in lymphocytes, granulocytes, and platelets. Serum thymulin activity was decreased as a result of mild zinc deficiency and was corrected by in vivo and in vitro zinc supplementation, suggesting that this parameter was a sensitive indicator of zinc deficiency in humans. An increase in T101-, sIg-cells, decrease in T4+/T8+ ratio, and decreased IL 2 activity were observed in the experimental human model during the zinc depletion phase, all of which were corrected after repletion with zinc. Similar changes in lymphocyte subpopulation, correctable with zinc supplementation, were also observed in mildly ZD SCA subjects. Inasmuch as thymulin is known to induce intra- and extrathymic T cell differentiation, our studies provide a possible mechanism for the role of zinc on T cell functions. Images PMID:3262625

  12. Zinc supplementation in public health.

    PubMed

    Penny, Mary Edith

    2013-01-01

    Zinc is necessary for physiological processes including defense against infections. Zinc deficiency is responsible for 4% of global child morbidity and mortality. Zinc supplements given for 10-14 days together with low-osmolarity oral rehydration solution (Lo-ORS) are recommended for the treatment of childhood diarrhea. In children aged ≥ 6 months, daily zinc supplements reduce the duration of acute diarrhea episodes by 12 h and persistent diarrhea by 17 h. Zinc supplements could reduce diarrhea mortality in children aged 12-59 months by an estimated 23%; they are very safe but are associated with an increase in vomiting especially with the first dose. Heterogeneity between the results of trials is not understood but may be related to dose and the etiology of the diarrhea infection. Integration of zinc and Lo-ORS into national programs is underway but slowly, procurement problems are being overcome and the greatest challenge is changing health provider and caregiver attitudes to diarrhea management. Fewer trials have been conducted of zinc adjunct therapy in severe respiratory tract infections and there is as yet insufficient evidence to recommend addition of zinc to antibiotic therapy. Daily zinc supplements for all children >12 months of age in zinc deficient populations are estimated to reduce diarrhea incidence by 11-23%. The greatest impact is in reducing multiple episodes of diarrhea. The effect on duration of diarrheal episodes is less clear, but there may be up to 9% reduction. Zinc is also efficacious in reducing dysentery and persistent diarrhea. Zinc supplements may also prevent pneumonia by about 19%, but heterogeneity across studies has not yet been explained. When analyses are restricted to better quality studies using CHERG (Child Health Epidemiology Reference Group) methodology, zinc supplements are estimated to reduce diarrheal deaths by 13% and pneumonia deaths by 20%. National-level programs to combat childhood zinc deficiency should be

  13. Visualizing multiattribute Web transactions using a freeze technique

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Cotting, Daniel; Dayal, Umeshwar; Machiraju, Vijay; Garg, Pankaj

    2003-05-01

    Web transactions are multidimensional and have a number of attributes: client, URL, response times, and numbers of messages. One of the key questions is how to simultaneously lay out in a graph the multiple relationships, such as the relationships between the web client response times and URLs in a web access application. In this paper, we describe a freeze technique to enhance a physics-based visualization system for web transactions. The idea is to freeze one set of objects before laying out the next set of objects during the construction of the graph. As a result, we substantially reduce the force computation time. This technique consists of three steps: automated classification, a freeze operation, and a graph layout. These three steps are iterated until the final graph is generated. This iterated-freeze technique has been prototyped in several e-service applications at Hewlett Packard Laboratories. It has been used to visually analyze large volumes of service and sales transactions at online web sites.

  14. The role of zinc plus octenidine in the regulation of gene expression: an in vitro study.

    PubMed

    Lauritano, D; Candotto, V; Bignozzi, C A; Pazzi, D; Carinci, F; Cura, F; Tagliabue, A; Tettamanti, L

    2018-01-01

    Zinc was known in ancient times, and is diffused in the environment. The potential benefits offered by zinc supplementary therapy have been demonstrated in numerous clinical trials using oral or topical zinc products. The benefit of zinc can be in principle increased through association with other actives. The aim of this study is to evaluate the effect on primary human gingival fibroblast cell of a new formulation containing zinc and octenidine cations. Human gingival fibroblast cells were obtained from three healthy patients (14-year-old man, 15-year-old woman and 20-year-old man) during extraction of teeth. The gene expression of 14 genes (ELANE, FN1, FBN, ITGA1, HAS1, ELN, DSP, ITGB1, HYAL1,TGFB1, TGFB2, TGFB3, TGFBR1 and TGFBR2) was investigated in HGF cell culture treated with 80μm of Octenidine, 1000μm of Zinc, 80μm Octenidine + Zinc solution and the medium alone at 30 min. Prestoblue™ data showed that as the active concentration increases (Octenidine, Zinc and Octenidine + Zinc) the percentage of cell vitality compared to that of untreated cells decrease. In this study, no statistically significant gene expression was observed between cells, treated with difference substances, and control cells. Our results points out that zinc plus octenidine shows a positive potential in periodontal disease treatment.

  15. History of Zinc in Agriculture12

    PubMed Central

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  16. Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Hacker, P. T.

    1950-01-01

    A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface.

  17. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  18. Accurate prediction of collapse temperature using optical coherence tomography-based freeze-drying microscopy.

    PubMed

    Greco, Kristyn; Mujat, Mircea; Galbally-Kinney, Kristin L; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Mulhall, Phillip; Sharma, Puneet; Kessler, William J; Pikal, Michael J

    2013-06-01

    The objective of this study was to assess the feasibility of developing and applying a laboratory tool that can provide three-dimensional product structural information during freeze-drying and which can accurately characterize the collapse temperature (Tc ) of pharmaceutical formulations designed for freeze-drying. A single-vial freeze dryer coupled with optical coherence tomography freeze-drying microscopy (OCT-FDM) was developed to investigate the structure and Tc of formulations in pharmaceutically relevant products containers (i.e., freeze-drying in vials). OCT-FDM was used to measure the Tc and eutectic melt of three formulations in freeze-drying vials. The Tc as measured by OCT-FDM was found to be predictive of freeze-drying with a batch of vials in a conventional laboratory freeze dryer. The freeze-drying cycles developed using OCT-FDM data, as compared with traditional light transmission freeze-drying microscopy (LT-FDM), resulted in a significant reduction in primary drying time, which could result in a substantial reduction of manufacturing costs while maintaining product quality. OCT-FDM provides quantitative data to justify freeze-drying at temperatures higher than the Tc measured by LT-FDM and provides a reliable upper limit to setting a product temperature in primary drying. Copyright © 2013 Wiley Periodicals, Inc.

  19. Freezing of gait in PD: prospective assessment in the DATATOP cohort.

    PubMed

    Giladi, N; McDermott, M P; Fahn, S; Przedborski, S; Jankovic, J; Stern, M; Tanner, C

    2001-06-26

    To study the development of freezing of gait in PD. Freezing of gait is a common, disabling, and poorly understood symptom in PD. The authors analyzed data from 800 patients with early PD from the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) clinical trial who were assigned either placebo, deprenyl, tocopherol, or the combination of deprenyl and tocopherol. The primary outcome measure was the time from randomization until the freezing of gait score on the Unified Parkinson's Disease Rating Scale (UPDRS) became positive. Fifty-seven patients (7.1%) had freezing of gait at study entry and 193 (26%) of the remaining patients experienced the symptom by the end of the follow-up period. Those with freezing of gait at baseline had significantly more advanced disease than those without the symptom, as measured by total UPDRS and Hoehn and Yahr stage. High baseline risk factors for developing freezing of gait during the follow-up period were the onset of PD with a gait disorder; higher scores of rigidity, postural instability, bradykinesia and speech; and longer disease duration. In contrast, tremor was strongly associated with a decreased risk for freezing of gait. At the end of follow-up, the signs most strongly associated with the freezing phenomenon were gait, balance, and speech disorders, not rigidity or bradykinesia. Deprenyl treatment was strongly associated with a decreased risk for developing freezing of gait; tocopherol had no effect. Freezing of gait is directly related to duration of PD. Risk factors at onset of disease are the absence of tremor and PD beginning as a gait disorder. The development of freezing of gait in the course of the illness is strongly associated with the development of balance and speech problems, less so with the worsening of bradykinesia, and is not associated with the progression of rigidity. These results support the concept that the freezing phenomenon is distinct from bradykinesia. Deprenyl, in the absence

  20. Measurements of zinc absorption: application and interpretation in research designed to improve human zinc nutriture.

    PubMed

    Hambidge, K Michael; Miller, Leland V; Tran, Cuong D; Krebs, Nancy F

    2005-11-01

    The focus of this paper is on the application of measurements of zinc absorption in human research, especially studies designed to assess the efficacy of intervention strategies to prevent and manage zinc deficiency in populations. Emphasis is given to the measurement of quantities of zinc absorbed rather than restricting investigations to measurements of fractional absorption of zinc. This is especially important when determining absorption of zinc from the diet, whether it be the habitual diet or an intervention diet under evaluation. Moreover, measurements should encompass all meals for a minimum of one day with the exception of some pilot studies. Zinc absorption is primarily via an active saturable transport process into the enterocytes of the proximal small intestine. The relationship between quantity of zinc absorbed and the quantity ingested is best characterized by saturable binding models. When applied to human studies that have sufficient data to examine dose-response relationships, efficiency of absorption is high until approximately 50-60% maximal absorption is achieved, even with moderate phytate intakes. This also coincides approximately with the quantity of absorbed zinc necessary to meet physiologic requirements. Efficiency of absorption with intakes that exceed this level is low or very low. These observations have important practical implications for the design and interpretation of intervention studies to prevent zinc deficiency. They also suggest the potential utility of measurements of the quantity of zinc absorbed when evaluating the zinc status of populations.

  1. "On" freezing in Parkinson's disease: resistance to visual cue walking devices.

    PubMed

    Kompoliti, K; Goetz, C G; Leurgans, S; Morrissey, M; Siegel, I M

    2000-03-01

    To measure "on" freezing during unassisted walking (UW) and test if two devices, a modified inverted stick (MIS) and a visual laser beam stick (LBS) improved walking speed and number of "on" freezing episodes in patients with Parkinson's disease (PD). Multiple visual cues can overcome "off' freezing episodes and can be useful in improving gait function in parkinsonian patients. These devices have not been specifically tested in "on" freezing, which is unresponsive to pharmacologic manipulations. Patients with PD, motor fluctuations and freezing while "on," attempted walking on a 60-ft track with each of three walking conditions in a randomized order: UW, MIS, and LBS. Total time to complete a trial, number of freezes, and the ratio of walking time to the number of freezes were compared using Friedman's test. Twenty-eight patients with PD, mean age 67.81 years (standard deviation [SD] 7.54), mean disease duration 13.04 years (SD 7.49), and mean motor Unified Parkinson's Disease Rating Scale score "on" 32.59 (SD 10.93), participated in the study. There was a statistically significant correlation of time needed to complete a trial and number of freezes for all three conditions (Spearman correlations: UW 0.973, LBS 0.0.930, and MIS 0.842). The median number of freezes, median time to walk in each condition, and median walking time per freeze were not significantly different in pairwise comparisons of the three conditions (Friedman's test). Of the 28 subjects, six showed improvement with the MIS and six with the LBS in at least one outcome measure. Assisting devices, specifically based on visual cues, are not consistently beneficial in overcoming "on" freezing in most patients with PD. Because this is an otherwise untreatable clinical problem and because occasional subjects do respond, cautious trials of such devices under the supervision of a health professional should be conducted to identify those patients who might benefit from their long-term use.

  2. Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait

    PubMed Central

    Fling, Brett W.; Cohen, Rajal G.; Mancini, Martina; Nutt, John G.; Fair, Damian A.

    2013-01-01

    Freezing of gait is one of the most debilitating symptoms in Parkinson’s disease as it causes falls and reduces mobility and quality of life. The pedunculopontine nucleus is one of the major nuclei of the mesencephalic locomotor region and has neurons related to anticipatory postural adjustments preceding step initiation as well as to the step itself, thus it may be critical for coupling posture and gait to avoid freezing. Because freezing of gait and postural impairments have been related to frontal lesions and frontal dysfunction such as executive function, we hypothesized that freezing is associated with disrupted connectivity between midbrain locomotor regions and medial frontal cortex. We used diffusion tensor imaging to quantify structural connectivity of the pedunculopontine nucleus in patients with Parkinson’s disease with freezing of gait, without freezing, and healthy age-matched controls. We also included behavioural tasks to gauge severity of freezing of gait, quantify gait metrics, and assess executive cognitive functions to determine whether between-group differences in executive dysfunction were related to pedunculopontine nucleus structural network connectivity. Using seed regions from the pedunculopontine nucleus, we were able to delineate white matter connections between the spinal cord, cerebellum, pedunculopontine nucleus, subcortical and frontal/prefrontal cortical regions. The current study is the first to demonstrate differences in structural connectivity of the identified locomotor pathway in patients with freezing of gait. We report reduced connectivity of the pedunculopontine nucleus with the cerebellum, thalamus and multiple regions of the frontal cortex. Moreover, these structural differences were observed solely in the right hemisphere of patients with freezing of gait. Finally, we show that the more left hemisphere-lateralized the pedunculopontine nucleus tract volume, the poorer the performance on cognitive tasks requiring the

  3. Interaction of zinc with dental mineral.

    PubMed

    Ingram, G S; Horay, C P; Stead, W J

    1992-01-01

    As some currently available toothpastes contain zinc compounds, the reaction of zinc with dental mineral and its effect on crystal growth rates were studied using three synthetic calcium-deficient hydroxyapatites (HAP) as being representative of dental mineral. Zinc was readily acquired by all HAP samples in the absence of added calcium, the amount adsorbed being proportional to the HAP surface area; about 9 mumol Zn/m2 was adsorbed at high zinc concentrations. As zinc was acquired, calcium was released, consistent with 1:1 Ca:Zn exchange. Soluble calcium reduced zinc uptake and similarly, calcium post-treatment released zinc. Pretreatment of HAP with 0.5 mM zinc reduced its subsequent ability to undergo seeded crystal growth, as did extracts of a toothpaste containing 0.5% zinc citrate, even in the presence of saliva. The reverse reaction, i.e. displacement of adsorbed zinc by salivary levels of calcium, however, indicates the mechanism by which zinc can reduce calculus formation in vivo by inhibiting plaque mineralisation without adversely affecting the anti-caries effects of fluoride.

  4. Frost heave susceptibility of saturated soil under constant rate of freezing

    NASA Astrophysics Data System (ADS)

    Ryokai, K.; Iguro, M.; Yoneyama, K.

    Introduced are the results of experiments carried out to quantitatively obtain the frost heave pressure and displacement of soil subjected to artificial freezing or freezing around in-ground liquefied natural gas storage tanks. This experiment is conducted to evaluate the frost heave susceptibility of saturated soil under overconsolidation. In other words, this experiment was carried out to obtain the relation of the over-burden pressure and freezing rate to the frost heave ratio by observing the frost heave displacement and freezing time of specimens by freezing the specimens at a constant freezing rate under a constant overburden pressure, while letting water freely flow in and out of the system. Introduced are the procedures for frost heave test required to quantitatively obtain the frost heave displacement and pressure of soil. Furthermore, the relation between the frost heave susceptibility and physical properties of soil obtained by this test is reported.

  5. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, T.C.; McLarnon, F.R.; Cairns, E.J.

    1994-04-12

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K[sub 2]CO[sub 3] salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics. 8 figures.

  6. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1994-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  7. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  8. Freezing of gait in Parkinson's disease: the paradoxical interplay between gait and cognition.

    PubMed

    Ricciardi, Lucia; Bloem, Bastiaan R; Snijders, Anke H; Daniele, Antonio; Quaranta, Davide; Bentivoglio, Anna Rita; Fasano, Alfonso

    2014-08-01

    Freezing of gait is a disabling episodic gait disturbance common in patients with Parkinson's disease. Recent evidences suggest a complex interplay between gait impairment and executive functions. Aim of our study was to evaluate whether specific motor conditions (sitting or walking) influence cognitive performance in patients with or without different types of freezing. Eight healthy controls, eight patients without freezing, nine patients with levodopa-responsive and nine patients with levodopa-resistant freezing received a clinical and neuropsychological assessment during two randomly performed conditions: at rest and during walking. At rest, patients with levodopa-resistant freezing performed worse than patients without freezing on tests of phonological fluency (p = 0.01). No differences among the four groups were detected during walking. When cognitive performances during walking were compared to the performance at rest, there was a significant decline of verbal episodic memory task (Rey Auditory Verbal Learning Test) in patients without freezing and with levodopa-responsive freezing. Interestingly, walking improved performance on the phonological fluency task in patients with levodopa-resistant freezing (p = 0.04). Compared to patients without freezing, patients with levodopa-resistant freezing perform worse when tested while seated in tasks of phonological verbal fluency. Surprisingly, gait was associated with a paradoxical improvement of phonological verbal fluency in the patients with levodopa-resistant freezing whilst walking determined a worsening of episodic memory in the other patient groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Zinc stable isotope fractionation upon accelerated oxidative weathering of sulfidic mine waste.

    PubMed

    Matthies, R; Krahé, L; Blowes, D W

    2014-07-15

    Accelerated oxidative weathering in a reaction cell (ASTM D 5744 standard protocol) was performed over a 33 week period on well characterized, sulfidic mine waste from the Kidd Creek Cu-Zn volcanogenic massive sulfide deposit, Canada. The cell leachate was monitored for physicochemical parameters, ion concentrations and stable isotope ratios of zinc. Filtered zinc concentrations (<0.45 μm) in the leachate ranged between 4.5 mg L(-1) and 1.9 g L(-1)-potentially controlled by pH, mineral solubility kinetics and (de)sorption processes. The zinc stable isotope ratios varied mass-dependently within +0.1 and +0.52‰ relative to IRMM 3702, and were strongly dependent on the pH (rpH-d66Zn=0.65, p<0.005, n=31). At a pH below 5, zinc mobilization was governed by sphalerite oxidation and hydroxide dissolution-pointing to the isotope signature of sphalerite (+0.1 to +0.16‰). Desorption processes resulted in enrichment of (66)Zn in the leachate reaching a maximum offset of +0.32‰ compared to the proposed sphalerite isotope signature. Over a period characterized by pH=6.1 ± 0.6, isotope ratios were significantly more enriched in (66)Zn with an offset of ≈ 0.23‰ compared to sphalerite, suggesting that zinc release may have been derived from a second zinc source, such as carbonate minerals, which compose 8 wt.% of the tailings. This preliminary study confirms the benefit of applying zinc isotopes alongside standard monitoring parameters to track principal zinc sources and weathering processes in complex multi-phase matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Fabrication of a mini multi-fixed-point cell for the calibration of industrial platinum resistance thermometers

    NASA Astrophysics Data System (ADS)

    Ragay-Enot, Monalisa; Lee, Young Hee; Kim, Yong-Gyoo

    2017-07-01

    A mini multi-fixed-point cell (length 118 mm, diameter 33 mm) containing three materials (In-Zn eutectic (mass fraction 3.8% Zn), Sn and Pb) in a single crucible was designed and fabricated for the easy and economical fixed-point calibration of industrial platinum resistance thermometers (IPRTs) for use in industrial temperature measurements. The melting and freezing behaviors of the metals were investigated and the phase transition temperatures were determined using a commercial dry-block calibrator. Results showed that the melting plateaus are generally easy to realize and are reproducible, flatter and of longer duration. On the other hand, the freezing process is generally difficult, especially for Sn, due to the high supercooling required to initiate freezing. The observed melting temperatures at optimum set conditions were 143.11 °C (In-Zn), 231.70 °C (Sn) and 327.15 °C (Pb) with expanded uncertainties (k  = 2) of 0.12 °C, 0.10 °C and 0.13 °C, respectively. This multi-fixed-point cell can be treated as a sole reference temperature-generating system. Based on the results, the realization of melting points of the mini multi-fixed-point cell can be recommended for the direct calibration of IPRTs in industrial applications without the need for a reference thermometer.

  11. Freeze Tape Casting of Functionally Graded Porous Ceramics

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.

    2007-01-01

    Freeze tape casting is a means of making preforms of ceramic sheets that, upon subsequent completion of fabrication processing, can have anisotropic and/or functionally graded properties that notably include aligned and graded porosity. Freeze tape casting was developed to enable optimization of the microstructures of porous ceramic components for use as solid oxide electrodes in fuel cells: Through alignment and grading of pores, one can tailor surface areas and diffusion channels for flows of gas and liquid species involved in fuel-cell reactions. Freeze tape casting offers similar benefits for fabrication of optimally porous ceramics for use as catalysts, gas sensors, and filters.

  12. Use of freeze-casting in advanced burner reactor fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R.

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by thatmore » fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  13. Three keys to the radiation of angiosperms into freezing environments.

    PubMed

    Zanne, Amy E; Tank, David C; Cornwell, William K; Eastman, Jonathan M; Smith, Stephen A; FitzJohn, Richard G; McGlinn, Daniel J; O'Meara, Brian C; Moles, Angela T; Reich, Peter B; Royer, Dana L; Soltis, Douglas E; Stevens, Peter F; Westoby, Mark; Wright, Ian J; Aarssen, Lonnie; Bertin, Robert I; Calaminus, Andre; Govaerts, Rafaël; Hemmings, Frank; Leishman, Michelle R; Oleksyn, Jacek; Soltis, Pamela S; Swenson, Nathan G; Warman, Laura; Beaulieu, Jeremy M

    2014-02-06

    Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.

  14. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  15. Uptake and partitioning of zinc in Lemnaceae.

    PubMed

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  16. Zinc: an essential but elusive nutrient123

    PubMed Central

    King, Janet C

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515

  17. Stratospheric Polar Freezing Belt Causes Denitrification

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Jensen, E. J.; Toon, O. B.; Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Trajectory cloud model calculations are presented to show that homogeneous freezing of nitric acid hydrates can produce a polar freezing belt in both hemispheres that can cause denitrification. While hydrate cloud microphysical properties are similar over both poles, the shorter persistence of clouds in the Arctic prevents the depth of the denitrified layers from growing beyond a few kilometers. The 1999-2000 Arctic winter is unique in showing a distinct denitrification profile with a depth of approx. 4.5 km that is nearly half as deep as that computed for a typical Antarctic winter.

  18. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  19. Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG.

    PubMed

    Ten Have, R; Reubsaet, K; van Herpen, P; Kersten, G; Amorij, J-P

    2016-01-01

    Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG.

  20. Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles

    NASA Astrophysics Data System (ADS)

    Cheng, Yanqiu; Shang, Xiaoyu; Zhang, Youjia

    2017-07-01

    The freeze-thaw durability of recycled aggregate concrete has significance for the concrete buildings in the cold region. In this paper, the rapid freezing and thawing cycles experience on recycle aggregate concrete was conducted to study on the effects of recycle aggregate amount, water-binder ratio and fly ash on freeze-thaw durability of recycle aggregate concrete. The results indicates that recycle aggregate amount makes the significant influence on the freeze-thaw durability. With the increase of recycled aggregates amount, the freeze-thaw resistance for recycled aggregate concrete decreases. Recycled aggregate concrete with lower water cement ratio demonstrates better performance of freeze-thaw durability. It is advised that the amount of fly ash is less than 30% for admixture of recycled aggregates in the cold region.

  1. Recent developments in novel freezing and thawing technologies applied to foods.

    PubMed

    Wu, Xiao-Fei; Zhang, Min; Adhikari, Benu; Sun, Jincai

    2017-11-22

    This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.

  2. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  3. Effect of freezing temperature on the color of frozen salmon.

    PubMed

    Ottestad, Silje; Enersen, Grethe; Wold, Jens Petter

    2011-09-01

    New freezing methods developed with the purpose of improved product quality after thawing can sometimes be difficult to get accepted in the market. The reason for this is the formation of ice crystals that can give the product a temporary color loss and make it less appealing. We have here used microscopy to study ice crystal size as a function of freezing temperature by investigating the voids in the cell tissue left by the ice crystals. We have also investigated how freezing temperature affects the color and the visible absorption spectra of frozen salmon. Freezing temperatures previously determined to be the best for quality after thawing (-40 to -60 °C) were found to cause a substantial loss in perceived color intensity during frozen state. This illustrated the conflict between optimal freezing temperatures with respect to quality after thawing against visual appearance during frozen state. Low freezing temperatures gave many small ice crystals, increased light scattering and an increased absorption level for all wavelengths in the visible region. Increased astaxanthin concentration on the other hand would give higher absorption at 490 nm. The results showed a clear potential of using visible interactance spectroscopy to differentiate between poor product coloration due to lack of pigmentation and temporary color loss due to light scattering by ice crystal. This type of measurements could be a useful tool in the development of new freezing methods and to monitor ice crystal growth during frozen storage. It could also potentially be used by the industry to prove good product quality. In this article we have shown that freezing food products at intermediate to low temperatures (-40 to -80 °C) can result in paler color during frozen state, which could affect consumer acceptance. We have also presented a spectroscopic method that can separate between poor product color and temporary color loss due to freezing. © 2011 Institute of Food Technologists®

  4. Indirect contact freeze water desalination for an ice maker machine - CFD simulation

    NASA Astrophysics Data System (ADS)

    Jayakody, Harith; Al-Dadah, Raya; Mahmoud, Saad

    2017-11-01

    To offer for potable water shortages, sea water desalination is a potential solution for the global rising demand for fresh water. The latent heat of fusion is about one-seventh the latent heat of vaporisation, thus indicating the benefit of lower energy consumption for the freeze desalination process. Limited literature is reported on computational fluid dynamics (CFD) on freeze desalination. Therefore, analysing and investigating thermodynamic processes are easily conducted by the powerful tool of CFD. A single unit of ice formation in an ice maker machine was modelled using ANSYS Fluent software three-dimensionally. Energy, species transport and solidification/melting modules were used in building the CFD model. Parametric analysis was conducted using the established CFD model to predict the effects of freezing temperature and the geometry of the ice maker machine; on ice production and the freezing time. Lower freezing temperatures allowed more ice production and faster freezing. Increasing the diameter and the length of the freezing tube enabled more ice to be produced.

  5. Does Platelet-Rich Plasma Freeze-Thawing Influence Growth Factor Release and Their Effects on Chondrocytes and Synoviocytes?

    PubMed Central

    Cavallo, Carola; Cenacchi, Annarita; Facchini, Andrea; Grigolo, Brunella; Kon, Elizaveta; Mariani, Erminia; Pratelli, Loredana; Marcacci, Maurilio

    2014-01-01

    PRP cryopreservation remains a controversial point. Our purpose was to investigate the effect of freezing/thawing on PRP molecule release, and its effects on the metabolism of chondrocytes and synoviocytes. PRP was prepared from 10 volunteers, and a half volume underwent one freezing/thawing cycle. IL-1β, HGF, PDGF AB/BB, TGF-β1, and VEGF were assayed 1 hour and 7 days after activation. Culture media of chondrocytes and synoviocytes were supplemented with fresh or frozen PRP, and, at 7 days, proliferation, gene expression, and secreted proteins levels were evaluated. Results showed that in the freeze-thawed PRP the immediate and delayed molecule releases were similar or slightly lower than those in fresh PRP. TGF-β1 and PDGF AB/BB concentrations were significantly reduced after freezing both at 1 hour and at 7 days, whereas HGF concentration was significantly lower in frozen PRP at 7 days. In fresh PRP IL-1β and HGF concentrations underwent a significant further increase after 7 days. Similar gene expression was found in chondrocytes cultured with both PRPs, whereas in synoviocytes HGF gene expression was higher in frozen PRP. PRP cryopreservation is a safe procedure, which sufficiently preserves PRP quality and its ability to induce proliferation and the production of ECM components in chondrocytes and synoviocytes. PMID:25136613

  6. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    PubMed Central

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  7. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  8. Does Anxiety Cause Freezing of Gait in Parkinson's Disease?

    PubMed Central

    Ehgoetz Martens, Kaylena A.; Ellard, Colin G.; Almeida, Quincy J.

    2014-01-01

    Individuals with Parkinson's disease (PD) commonly experience freezing of gait under time constraints, in narrow spaces, and in the dark. One commonality between these different situations is that they may all provoke anxiety, yet anxiety has never been directly examined as a cause of FOG. In this study, virtual reality was used to induce anxiety and evaluate whether it directly causes FOG. Fourteen patients with PD and freezing of gait (Freezers) and 17 PD without freezing of gait (Non-Freezers) were instructed to walk in two virtual environments: (i) across a plank that was located on the ground (LOW), (ii) across a plank above a deep pit (HIGH). Multiple synchronized motion capture cameras updated participants' movement through the virtual environment in real-time, while their gait was recorded. Anxiety levels were evaluated after each trial using self-assessment manikins. Freezers performed the experiment on two separate occasions (in their ON and OFF state). Freezers reported higher levels of anxiety compared to Non-Freezers (p<0.001) and all patients reported greater levels of anxiety when walking across the HIGH plank compared to the LOW (p<0.001). Freezers experienced significantly more freezing of gait episodes (p = 0.013) and spent a significantly greater percentage of each trial frozen (p = 0.005) when crossing the HIGH plank. This finding was even more pronounced when comparing Freezers in their OFF state. Freezers also had greater step length variability in the HIGH compared to the LOW condition, while the step length variability in Non-Freezers did not change. In conclusion, this was the first study to directly compare freezing of gait in anxious and non-anxious situations. These results present strong evidence that anxiety is an important mechanism underlying freezing of gait and supports the notion that the limbic system may have a profound contribution to freezing in PD. PMID:25250691

  9. Does anxiety cause freezing of gait in Parkinson's disease?

    PubMed

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2014-01-01

    Individuals with Parkinson's disease (PD) commonly experience freezing of gait under time constraints, in narrow spaces, and in the dark. One commonality between these different situations is that they may all provoke anxiety, yet anxiety has never been directly examined as a cause of FOG. In this study, virtual reality was used to induce anxiety and evaluate whether it directly causes FOG. Fourteen patients with PD and freezing of gait (Freezers) and 17 PD without freezing of gait (Non-Freezers) were instructed to walk in two virtual environments: (i) across a plank that was located on the ground (LOW), (ii) across a plank above a deep pit (HIGH). Multiple synchronized motion capture cameras updated participants' movement through the virtual environment in real-time, while their gait was recorded. Anxiety levels were evaluated after each trial using self-assessment manikins. Freezers performed the experiment on two separate occasions (in their ON and OFF state). Freezers reported higher levels of anxiety compared to Non-Freezers (p < 0.001) and all patients reported greater levels of anxiety when walking across the HIGH plank compared to the LOW (p < 0.001). Freezers experienced significantly more freezing of gait episodes (p = 0.013) and spent a significantly greater percentage of each trial frozen (p = 0.005) when crossing the HIGH plank. This finding was even more pronounced when comparing Freezers in their OFF state. Freezers also had greater step length variability in the HIGH compared to the LOW condition, while the step length variability in Non-Freezers did not change. In conclusion, this was the first study to directly compare freezing of gait in anxious and non-anxious situations. These results present strong evidence that anxiety is an important mechanism underlying freezing of gait and supports the notion that the limbic system may have a profound contribution to freezing in PD.

  10. Intact preservation of environmental samples by freezing under an alternating magnetic field.

    PubMed

    Morono, Yuki; Terada, Takeshi; Yamamoto, Yuhji; Xiao, Nan; Hirose, Takehiro; Sugeno, Masaya; Ohwada, Norio; Inagaki, Fumio

    2015-04-01

    The study of environmental samples requires a preservation system that stabilizes the sample structure, including cells and biomolecules. To address this fundamental issue, we tested the cell alive system (CAS)-freezing technique for subseafloor sediment core samples. In the CAS-freezing technique, an alternating magnetic field is applied during the freezing process to produce vibration of water molecules and achieve a stable, super-cooled liquid phase. Upon further cooling, the temperature decreases further, achieving a uniform freezing of sample with minimal ice crystal formation. In this study, samples were preserved using the CAS and conventional freezing techniques at 4, -20, -80 and -196 (liquid nitrogen) °C. After 6 months of storage, microbial cell counts by conventional freezing significantly decreased (down to 10.7% of initial), whereas that by CAS-freezing resulted in minimal. When Escherichia coli cells were tested under the same freezing conditions and storage for 2.5 months, CAS-frozen E. coli cells showed higher viability than the other conditions. In addition, an alternating magnetic field does not impact on the direction of remanent magnetization in sediment core samples, although slight partial demagnetization in intensity due to freezing was observed. Consequently, our data indicate that the CAS technique is highly useful for the preservation of environmental samples. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Heat pump with freeze-up prevention

    DOEpatents

    Ecker, Amir L.

    1981-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  12. Heat transfer coefficient of cryotop during freezing.

    PubMed

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  13. 'Banking time': egg freezing and the negotiation of future fertility.

    PubMed

    Waldby, Catherine

    2015-01-01

    This paper examines the relatively recent practice of non-medical egg freezing, in which women bank their eggs for later use in conceiving a child. Non-medical egg freezing has only been available for about the last five years, as new vitrification techniques have made the success rates for actual conception more reliable than the earlier method of slow freezing. I draw on interviews with both clinicians and women who have banked their eggs to consider how this novel practice articulates with broader issues about the relationship between sexuality, reproduction and the political economy of household formation. Non-medical egg-freezing provides a technical solution to a number of different problems women face with regard to the elongation of the life course, the extension of education, the cost of household establishment and the iterative nature of relationship formation, thematised by the ubiquity of internet dating among the interviewees. I focus on the ways women used egg freezing to manage and reconcile different forms of time.

  14. Impact behaviour of freeze-dried and fresh pomelo (Citrus maxima) peel: influence of the hydration state

    PubMed Central

    Thielen, Marc; Speck, Thomas; Seidel, Robin

    2015-01-01

    Pomelos (Citrus maxima) are known for their thick peel which—inter alia—serves as energy dissipator when fruits impact on the ground after being shed. It protects the fruit from splitting open and thus enables the contained seeds to stay germinable and to potentially be dispersed by animal vectors. The main part of the peel consists of a parenchymatous tissue that can be interpreted from a materials point of view as open pored foam whose struts are pressurized and filled with liquid. In order to investigate the influence of the water content on the energy dissipation capacity, drop weight tests were conducted with fresh and with freeze-dried peel samples. Based on the coefficient of restitution it was found that freeze-drying markedly reduces the relative energy dissipation capacity of the peel. Measuring the transmitted force during impact furthermore indicated a transition from a uniform collapse of the foam-like tissue to a progressive collapse due to water extraction. Representing the peel by a Maxwell model illustrates that freeze-drying not only drastically reduces the damping function of the dashpots but also stiffens the springs of the model. PMID:26543566

  15. Immunoelectron Microscopy of Cryofixed and Freeze-Substituted Plant Tissues.

    PubMed

    Takeuchi, Miyuki; Takabe, Keiji; Mineyuki, Yoshinobu

    2016-01-01

    Cryofixation and freeze-substitution techniques provide excellent preservation of plant ultrastructure. The advantage of cryofixation is not only in structural preservation, as seen in the smooth plasma membrane, but also in the speed in arresting cell activity. Immunoelectron microscopy reveals the subcellular localization of molecules within cells. Immunolabeling in combination with cryofixation and freeze-substitution techniques provides more detailed information on the immunoelectron-microscopic localization of molecules in the plant cell than can be obtained from chemically fixed tissues. Here, we introduce methods for immunoelectron microscopy of cryofixed and freeze-substituted plant tissues.

  16. Transmembrane ion distribution during recovery from freezing in the woolly bear caterpillar Pyrrharctia isabella (Lepidoptera: Arctiidae).

    PubMed

    Boardman, Leigh; Terblanche, John S; Sinclair, Brent J

    2011-08-01

    During extracellular freezing, solutes in the haemolymph are concentrated, resulting in osmotic dehydration of the cells, which must be reversed upon thawing. Here, we used freeze tolerant Pyrrharctia isabella (Lepidoptera: Arctiidae) larvae to examine the processes of ion redistribution after thawing. To investigate the effect of the intensity of cold exposure on ion redistribution after thawing, we exposed caterpillars to -14°C, -20°C or -30°C for 35h. To investigate the effect of duration of cold exposure on ion redistribution after thawing, we exposed the caterpillars to -14°C for up to 6 weeks while sampling several time points. The concentrations of Na(+), K(+), Mg(2+) and Ca(2+) were measured after thawing in the haemolymph, fat body, muscle, midgut tissue and hindgut tissue. Being frozen for long durations (>3 weeks) or at low temperatures (-30°C) both result in 100% mortality, although different ions and tissues appear to be affected by each treatment. Both water distribution and ion content changes were detected after thawing, with the largest effects seen in the fat body and midgut tissue. Magnesium homeostasis appears to be vital for post-freeze survival in these larvae. The movement of ions during thawing lagged behind the movement of water, and ion homeostasis was not restored within the same time frame as water homeostasis. Failure to regain ion homeostasis after thawing is therefore implicated in mortality of freeze tolerant insects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Freeze-thaw performance testing of whole concrete railroad ties.

    DOT National Transportation Integrated Search

    2013-10-01

    Freezing and thawing durability tests of prestressed concrete ties are normally performed according to ASTM C666 specifications. Small specimens are cut from the shoulders of concrete ties and tested through 300 cycles of freezing and thawing. Saw-cu...

  18. Disaggregating meteorites by automated freeze thaw

    NASA Astrophysics Data System (ADS)

    Charles, Christopher R. J.

    2011-06-01

    An automated freeze-thaw (AFT) instrument for disaggregating meteorites is described. Meteorite samples are immersed in 18.2 MΩ water and hermetically sealed in a clean 30 ml Teflon vial. This vial and its contents are dipped between baths of liquid nitrogen and hot water over a number of cycles by a dual-stepper motor system controlled by LabView. Uniform and periodic intervals of freezing and thawing induce multiple expansions and contractions, such that cracks propagate along natural flaws in the meteorite for a sufficient number of AFT cycles. For the CR2 chondrite NWA801, the boundaries between different phases (i.e., silicates, metal, matrix) became progressively weaker and allowed for an efficient recovery of 500 individual chondrules and chondrule fragments spanning 0.2-4.7 mm diameters after 243 AFT cycles over 103.3 h. Further FT experiments on a basalt analog showed that the time required for freezing and thawing the same number of cycles can be reduced by a factor of ˜4.

  19. Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG

    PubMed Central

    ten Have, R.; Reubsaet, K.; van Herpen, P.; Kersten, G.; Amorij, J.-P.

    2016-01-01

    Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG. PMID:26981867

  20. Freeze shoe sampler for the collection of hyporheic zone sediments and porewater.

    PubMed

    Bianchin, M; Smith, L; Beckie, R

    2015-01-01

    The Starr and Ingleton (1992) drive point piston sampler (DPPS) design was modified by fitting it with a Murphy and Herkelrath (1996) type sample-freezing drive shoe (SFDS), which uses liquid carbon dioxide as a cryogen. Liquid carbon dioxide was used to freeze sediments in the lower 0.1 m of the core and the drive-point piston sealed the core at the top preserving the reductive-oxidation (redox) sensitive sediments from the atmosphere and maintaining natural stratigraphy. The use of nitrogen gas to provide positive pressure on the gas system blocked the ingress of water which froze on contact with the cryogen thus blocking the gas lines with ice. With this adaptation to the gas system cores could be collected at greater depths beneath the static water level. This tool was used to collect intact saturated sediment cores from the hyporheic zone of the tidally influenced Fraser River in Vancouver, British Columbia, Canada where steep geochemical and microbial gradients develop within the interface between discharging anaerobic groundwater and recharging aerobic river water. In total, 25 cores driven through a 1.5 m sampling interval were collected from the river bed with a mean core recovery of 75%. The ability to deploy this method from a fishing vessel makes the tool more cost effective than traditional marine-based drilling operations which often use barges, tug boats, and drilling rigs. © 2014, National Ground Water Association.

  1. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    PubMed

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer

    PubMed Central

    Franklin, Renty B; Feng, Pei; Milon, B; Desouki, Mohamed M; Singh, Keshav K; Kajdacsy-Balla, André; Bagasra, Omar; Costello, Leslie C

    2005-01-01

    Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands). In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN). These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down-regulation in adenocarcinomatous

  3. The Structural Properties and Stability of Monoclonal Antibodies at Freezing Conditions

    NASA Astrophysics Data System (ADS)

    Perevozchikova, Tatiana; Zarraga, Isidro; Scherer, Thomas; Wagner, Norman; Liu, Yun

    2013-03-01

    Monoclonal Antibodies (MAb) have become a crucial therapeutic agent in a number of anti-cancer treatments. Due to the inherent unstable nature of proteins in an aqueous formulation, a freeze-drying method has been developed to maintain long-term stability of biotherapeutics. The microstructural changes in Mabs during freezing, however, remain not fully described, and it was proposed that the formed morphology of freeze drying samples could affect the final product quality after reconstitution. Furthermore, it is well known that proteins tend to aggregate during the freezing process if a careful processing procedure is not formulated. Small Angle Neutron Scattering (SANS) is a powerful tool to investigate the structural properties and interactions of Mabs during various stages of lyophilization in situ. Here we present the SANS results of freeze-thaw studies on two MAbs at several different freezing temperatures. While the chosen proteins share a significant sequence homology, their freezing properties are found to be strikingly distinctive. We also show the effect of excipients, concentration and quenching speed on the final morphology of the frozen samples. These findings provide critical information for more effective lyophilization schemes for therapeutic proteins, as well as increase our understanding on structural properties of proteins under cryogenic conditions.

  4. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  5. Defensive freezing links Hypothalamic-Pituitary-Adrenal-axis activity and internalizing symptoms in humans.

    PubMed

    Niermann, Hannah C M; Figner, Bernd; Tyborowska, Anna; van Peer, Jacobien M; Cillessen, Antonius H N; Roelofs, Karin

    2017-08-01

    The Hypothalamic-Pituitary-Adrenal (HPA)-axis plays an important role in the expression of defensive freezing. Adaptive freezing reactivity, characterized by an immediate increase in acute stress and timely termination upon threat offset or need to act, is essential for adequate stress coping. Blunted HPA-axis activity in animals is associated with blunted freezing reactivity and internalizing symptoms. Despite their potential relevance, it remains unknown whether these mechanisms apply to humans and human psychopathology. Using a well-established method combining electrocardiography and posturography, we assessed freezing before, immediately after, and one hour after a stress induction in 92 human adolescents. In line with animal models, human adolescents showed stress-induced freezing, as quantified by relative reductions in heart rate and body sway after, as compared to before, stress. Moreover, relatively lower basal cortisol was associated with reduced stress-induced freezing reactivity (i.e., less immediate freezing and less recovery). Path analyses showed that decreased freezing recovery in individuals with reduced cortisol levels was associated with increased levels of internalizing symptoms. These findings suggest that reduced freezing recovery may be a promising marker for the etiology of internalizing symptoms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses.

    PubMed

    Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zi

    2017-03-04

    Freezing plays an important role in food preservation and the emergence of rapid freezing technologies can be highly beneficial to the food industry. This paper reviews some novel food freezing technologies, including high-pressure freezing (HPF), ultrasound-assisted freezing (UAF), electrically disturbed freezing (EF) and magnetically disturbed freezing (MF), microwave-assisted freezing (MWF), and osmo-dehydro-freezing (ODF). HPF and UAF can initiate ice nucleation rapidly, leading to uniform distribution of ice crystals and the control of their size and shape. Specifically, the former is focused on increasing the degree of supercooling, whereas the latter aims to decrease it. Direct current electric freezing (DC-EF) and alternating current electric freezing (AC-EF) exhibit different effects on ice nucleation. DC-EF can promote ice nucleation and AC-EF has the opposite effect. Furthermore, ODF has been successfully used for freezing various vegetables and fruit. MWF cannot control the nucleation temperature, but can decrease supercooling degree, thus decreasing the size of ice crystals. The heat and mass transfer processes during ODF have been investigated experimentally and modeled mathematically. More studies should be carried out to understand the effects of these technologies on food freezing process.

  7. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle.

    PubMed

    Straller, Georg; Lee, Geoffrey

    2017-10-30

    Spray-freeze-drying was used to produce shrivelled, partially-collapsed microparticles of pure proteins that may be suitable for use in a ballistic injector. Various modifications of the freeze drying cycle were examined for their effects on collapse of the pure protein microparticles. The use of annealing at a shelf temperature of up to +10°C resulted in no visible particle shrinkage. This was because of the high T g ' of the pure protein. Inclusion of trehalose or sucrose led to particle shrinkage because of the plasticizing effects of the disaccharides on the protein. Only by extending the duration of primary drying from 240 to 2745min at shelf temperatures in the range -12 to -8°C were shrivelled, wrinkled particles of bSA and bCA of reduced porosity obtained. Manipulation of the freeze-drying cycle used for SFD can therefore be used to modify particle morphology and increase particle density. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each ofmore » which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes« less

  9. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks.

    PubMed

    Que, Emily L; Bleher, Reiner; Duncan, Francesca E; Kong, Betty Y; Gleber, Sophie C; Vogt, Stefan; Chen, Si; Garwin, Seth A; Bayer, Amanda R; Dravid, Vinayak P; Woodruff, Teresa K; O'Halloran, Thomas V

    2015-02-01

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.

  10. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE PAGES

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; ...

    2014-12-15

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. Here we show that the zinc spark arises from a system of thousands ofmore » zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. We conclude that the discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.« less

  11. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    PubMed Central

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak; Woodruff, Teresa K.; O’Halloran, Thomas V.

    2015-01-01

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes. PMID:25615666

  12. Freeze-Thaw Cycles and Soil Biogeochemistry: Implications for Greenhouse Gas emission

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Milojevic, T.; Oh, D. H.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2016-12-01

    Freeze-thaw cycles represent a major natural climate forcing acting on soils at middle and high latitudes. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles regulate carbon and nitrogen cycling and how these transformations influence greenhouse gas (GHG) fluxes. We present a novel approach, which combines the acquisition of physical and chemical data in a newly developed experimental soil column system. This system simulates realistic soil temperature profiles during freeze-thaw cycles. A high-resolution, Multi-Fiber Optode (MuFO) microsensor technique was used to detect oxygen (O2) continuously in the column at multiple depths. Surface and subsurface changes to gas and aqueous phase chemistry were measured to delineate the pathways and quantify soil respiration rates during freeze-thaw cycles. The results indicate that the time-dependent release of GHG from the soil surface is influenced by a combination of two key factors. Firstly, fluctuations in temperature and O2 availability affect soil biogeochemical activity and GHG production. Secondly, the recurrent development of a physical ice barrier prevents exchange of gaseous compounds between the soil and atmosphere during freezing conditions; removal of this barrier during thaw conditions increases GHG fluxes. During freezing, O2 levels in the unsaturated zone decreased due to restricted gas exchange with the atmosphere. As the soil thawed, O2 penetrated deeper into the soil enhancing the aerobic mineralization of organic carbon and nitrogen. Additionally, with the onset of thawing a pulse of gas flux occurred, which is attributed to the build-up of respiratory gases in the pore space during freezing. The latter implies enhanced anaerobic respiration as O2 supply ceases when the upper soil layer freezes.

  13. DETAIL OF CONNECTION TO SWITCH POINTS OF TURNOUT 29, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CONNECTION TO SWITCH POINTS OF TURNOUT 29, LOOKING EAST. SILVER BOX HOUSES ELECTRICAL CONTACTS FOR POSITION FEEDBACK TO SIGNAL CIRCUITS. SHEET METAL COVERS GAS-FIRED SWITCH HEATER FOR FREEZE PROTECTION IN WINTER. - Baltimore & Ohio Railroad, Z Tower, State Route 46, Keyser, Mineral County, WV

  14. Alcohol Brine Freezing of Japanese Horse Mackerel (Trachurus japonicus) for Raw Consumption

    NASA Astrophysics Data System (ADS)

    Maeda, Toshimichi; Yuki, Atsuhiko; Sakurai, Hiroshi; Watanabe, Koichiro; Itoh, Nobuo; Inui, Etsuro; Seike, Kazunori; Mizukami, Yoichi; Fukuda, Yutaka; Harada, Kazuki

    In order to test the possible application of alcohol brine freezing to Japanese horse mackerel (Trachurus japonicus) for raw consumption, the quality and taste of fish frozen by direct immersion in 60% ethanol brine at -20, -25 and -30°C was compared with those by air freezing and fresh fish without freezing. Cracks were not found during the freezing. Smell of ethanol did not remain. K value, an indicator of freshness, of fish frozen in alcohol brine was less than 8.3%, which was at the same level as those by air freezing and fresh fish. Oxidation of lipid was at the same level as air freezing does, and lower than that of fresh fish. The pH of fish frozen in alcohol brine at -25 and -30°C was 6.5 and 6.6, respectively, which were higher than that by air freezing and that of fresh fish. Fish frozen in alcohol brine was better than that by air and at the same level as fresh fish in total evaluation of sensory tests. These results show that the alcohol brine freezing is superior to air freezing, and fish frozen in alcohol brine can be a material for raw consumption. The methods of thawing in tap water, cold water, refrigerator, and at room temperature were compared. Thawing in tap water is considered to be convenient due to the short thaw time and the quality of thawed fish that was best among the methods.

  15. Effect of moisture content on the invertase activity of freeze-dried S. cerevisiae.

    PubMed

    Pitombo, R N; Spring, C; Passos, R F; Tonato, M; Vitolo, M

    1994-08-01

    The invertase activity of intact Saccharomyces cerevisiae submitted to freezing-thawing was affected by pH, the chemical nature of the buffer, and the freezing cooling rate (CR), leading in some cases to a complete invertase inactivation (acetate buffer, pH 4.0, CR = 0.5 degree C/min). Once established under adequate freezing conditions the invertase activity remained unchanged after freeze-drying. Nevertheless, in some cases the cell-growing capability after freeze-drying diminished around 70%, mainly if the frozen cell suspension was attained through freezing carried out at CR = 0.5 degree C/min. Water sorption isotherms of freeze-dried samples (freeze-dryer Edwards L-4KR; 30 degrees C and 0.1 mB) were determined at 10 and 25 degrees C. The monolayer moisture content (MMC) at each temperature (12.7 and 3.71 for 10 and 25 degrees C, respectively) was calculated from isotherms by applying BET and GAB models. Freeze-dried yeast with water activity (Aw) between 0 and 0.33 (about the MMC value) maintained at 25 degrees C for 235 days and at 89 degrees C for 15 min retained at least 85% of its original invertase activity (IA), whereas samples with Aw > MMC lost at least 60% of its IA. X ray diffraction showed that the freeze-dried cake before and after storage presented an amorphous structure.

  16. Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation.

    PubMed

    Zhang, Miao; Oldenhof, Harriëtte; Sieme, Harald; Wolkers, Willem F

    2016-06-01

    The aim of this study was to investigate if membrane-impermeable molecules are taken up by fibroblasts when exposing the cells to membrane phase transitions and/or freezing-induced osmotic forces. The membrane-impermeable fluorescent dye lucifer yellow (LY) was used to visualize and quantify uptake during endocytosis, and after freezing-thawing. In addition, trehalose uptake after freezing and thawing was studied. Fourier transform infrared spectroscopic studies showed that fibroblasts display a minor non-cooperative phase transition during cooling at suprazero temperatures, whereas cells display strong highly cooperative fluid-to-gel membrane phase transitions during freezing, both in the absence and presence of protectants. Cells do not show uptake of LY upon passing the suprazero membrane phase transition at 30-10°C, whereas after freezing and thawing cells show intracellular LY equally distributed within the cell. Both, LY and trehalose are taken up by fibroblasts after freezing and thawing with loading efficiencies approaching 50%. When using 250 mM extracellular trehalose during cryopreservation, intracellular concentrations greater than 100 mM were determined after thawing. A plot of cryosurvival versus the cooling rate showed a narrow inverted-'U'-shaped curve with an optimal cooling rate of 40°C min(-1). Diluting cells cryopreserved with trehalose in isotonic cell culture medium resulted in a loss of cell viability, which was attributed to intracellular trehalose causing an osmotic imbalance. Taken together, mammalian cells can be loaded with membrane-impermeable compounds, including the protective agent trehalose, by subjecting the cells to freezing-induced osmotic stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A systematic evaluation of contemporary impurity correction methods in ITS-90 aluminium fixed point cells

    NASA Astrophysics Data System (ADS)

    da Silva, Rodrigo; Pearce, Jonathan V.; Machin, Graham

    2017-06-01

    The fixed points of the International Temperature Scale of 1990 (ITS-90) are the basis of the calibration of standard platinum resistance thermometers (SPRTs). Impurities in the fixed point material at the level of parts per million can give rise to an elevation or depression of the fixed point temperature of order of millikelvins, which often represents the most significant contribution to the uncertainty of SPRT calibrations. A number of methods for correcting for the effect of impurities have been advocated, but it is becoming increasingly evident that no single method can be used in isolation. In this investigation, a suite of five aluminium fixed point cells (defined ITS-90 freezing temperature 660.323 °C) have been constructed, each cell using metal sourced from a different supplier. The five cells have very different levels and types of impurities. For each cell, chemical assays based on the glow discharge mass spectroscopy (GDMS) technique have been obtained from three separate laboratories. In addition a series of high quality, long duration freezing curves have been obtained for each cell, using three different high quality SPRTs, all measured under nominally identical conditions. The set of GDMS analyses and freezing curves were then used to compare the different proposed impurity correction methods. It was found that the most consistent corrections were obtained with a hybrid correction method based on the sum of individual estimates (SIE) and overall maximum estimate (OME), namely the SIE/Modified-OME method. Also highly consistent was the correction technique based on fitting a Scheil solidification model to the measured freezing curves, provided certain well defined constraints are applied. Importantly, the most consistent methods are those which do not depend significantly on the chemical assay.

  18. Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications.

    PubMed

    Picco, Agustin S; Ferreira, Larissa F; Liberato, Michelle S; Mondo, Gabriela B; Cardoso, Mateus B

    2018-01-01

    To study freeze-drying of silica nanoparticles (SiO 2 NPs) in order to find suitable conditions to produce lyophilized powders with no aggregation after resuspension and storage. SiO 2 NPs were synthesized using a Stöber-based procedure, and characterized by scanning electron microscopy, dynamic light scattering and nitrogen adsorption/desorption isotherms. SiO 2 NPs hydrodynamic diameters were compared prior and after freeze-drying in the presence/absence of carbohydrate protectants. Glucose was found to be the most suitable protectant against the detrimental effects of lyophilization. The minimum concentration of carbohydrate required to effectively protect SiO 2 NPs from aggregation during freeze-drying is influenced by the nanoparticle's size and texture. Negligible aggregation was observed during storage. Carbohydrates can be used during SiO 2 NPs freeze-drying process to obtain redispersable solids that maintain original sizes without residual aggregation.

  19. Investigation of TiC C Eutectic and WC C Peritectic High-Temperature Fixed Points

    NASA Astrophysics Data System (ADS)

    Sasajima, Naohiko; Yamada, Yoshiro

    2008-06-01

    TiC C eutectic (2,761°C) and WC C peritectic (2,749°C) fixed points were investigated to compare their potential as high-temperature thermometric reference points. Two TiC C and three WC C fixed-point cells were constructed, and the melting and freezing plateaux were evaluated by means of radiation thermometry. The repeatability of the TiC C eutectic within a day was 60 mK with a melting range roughly 200 mK. The repeatability of the melting temperature of the WC C peritectic within 1 day was 17 mK with a melting range of ˜70 mK. The repeatability of the freezing temperature of the WC C peritectic was 21 mK with a freezing range less than 20 mK. One of the TiC C cells was constructed from a TiC and graphite powder mixture. The filling showed the reaction with the graphite crucible was suppressed and the ingot contained less voids, although the lack of high-purity TiC powder poses a problem. The WC C cells were easily constructed, like metal carbon eutectic cells, without any evident reaction with the crucible. From these results, it is concluded that the WC C peritectic has more potential than the TiC C eutectic as a high-temperature reference point. The investigation of the purification of the TiC C cell during filling and the plateau observation are also reported.

  20. The origins and evolution of freeze-etch electron microscopy

    PubMed Central

    Heuser, John E.

    2011-01-01

    The introduction of the Balzers freeze-fracture machine by Moor in 1961 had a much greater impact on the advancement of electron microscopy than he could have imagined. Devised originally to circumvent the dangers of classical thin-section techniques, as well as to provide unique en face views of cell membranes, freeze-fracturing proved to be crucial for developing modern concepts of how biological membranes are organized and proved that membranes are bilayers of lipids within which proteins float and self-assemble. Later, when freeze-fracturing was combined with methods for freezing cells that avoided the fixation and cryoprotection steps that Moor still had to use to prepare the samples for his original invention, it became a means for capturing membrane dynamics on the millisecond time-scale, thus allowing a deeper understanding of the functions of biological membranes in living cells as well as their static ultrastructure. Finally, the realization that unfixed, non-cryoprotected samples could be deeply vacuum-etched or even freeze-dried after freeze-fracturing opened up a whole new way to image all the other molecular components of cells besides their membranes and also provided a powerful means to image the interactions of all the cytoplasmic components with the various membranes of the cell. The purpose of this review is to outline the history of these technical developments, to describe how they are being used in electron microscopy today and to suggest how they can be improved in order to further their utility for biological electron microscopy in the future. PMID:21844598

  1. Method of freezing living cells and tissues with improved subsequent survival

    DOEpatents

    Senkan, Selim M.; Hirsch, Gerald P.

    1980-01-01

    This invention relates to an improved method for freezing red blood cells, ther living cells, or tissues with improved subsequent survival, wherein constant-volume freezing is utilized that results in significantly improved survival compared with constant-pressure freezing; optimization is attainable through the use of different vessel geometries, cooling baths and warming baths, and sample concentrations.

  2. Model for heat and mass transfer in freeze-drying of pellets.

    PubMed

    Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda

    2009-07-01

    Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.

  3. Zinc deficiency in children with environmental enteropathy—development of new strategies: report from an expert workshop1234

    PubMed Central

    Young, Graeme P; Mortimer, Elissa K; Gopalsamy, Geetha L; Alpers, David H; Binder, Henry J; Manary, Mark J; Ramakrishna, Balakrishnan S; Brown, Ian L; Brewer, Thomas G

    2014-01-01

    Zinc deficiency is a major cause of childhood morbidity and mortality. The WHO/UNICEF strategy for zinc supplementation as adjunctive therapy for diarrhea is poorly implemented. A conference of experts in zinc nutrition and gastrointestinal disorders was convened to consider approaches that might complement the current recommendation and what research was needed to develop these approaches. Several key points were identified. The design of novel zinc interventions would be facilitated by a better understanding of how disturbed gut function, such as environmental (or tropical) enteropathy, affects zinc absorption, losses, and homeostasis. Because only 10% of zinc stores are able to be rapidly turned over, and appear to be rapidly depleted by acute intestinal illness, they are probably best maintained by complementary regular supplementation in a primary prevention strategy rather than secondary prevention triggered by acute diarrhea. The assessment of zinc status is challenging and complex without simple, validated measures to facilitate field testing of novel interventions. Zinc bioavailability may be a crucial factor in the success of primary prevention strategies, and a range of options, all still inadequately explored, might be valuable in improving zinc nutrition. Some therapeutic actions of zinc on diarrhea seem attributable to pharmacologic effects, whereas others are related to the reversal of deficiency (ie, nutritional). The distinction between these 2 mechanisms cannot be clarified given the insensitivity of serum zinc to identify subclinical deficiency states. Why zinc seems to be less effective than expected at all ages, and ineffective for secondary prevention of diarrhea in children <12 mo of age, remains unclear. It was concluded that a reframing of the current recommendation is warranted with consideration of how to better optimize and deliver zinc and whether to provide a complementary public health primary prevention zinc strategy. This requires

  4. Zinc in Infection and Inflammation.

    PubMed

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  5. The zinc paradigm for metalloneurochemistry.

    PubMed

    Barr, Chelsea A; Burdette, Shawn C

    2017-05-09

    Neurotransmission and sensory perception are shaped through metal ion-protein interactions in various brain regions. The term "metalloneurochemistry" defines the unique field of bioinorganic chemistry focusing on these processes, and zinc has been the leading target of metalloneurochemists in the almost 15 years since the definition was introduced. Zinc in the hippocampus interacts with receptors that dictate ion flow and neurotransmitter release. Understanding the intricacies of these interactions is crucial to uncovering the role that zinc plays in learning and memory. Based on receptor similarities and zinc-enriched neurons (ZENs) in areas of the brain responsible for sensory perception, such as the olfactory bulb (OB), and dorsal cochlear nucleus (DCN), zinc participates in odor and sound perception. Development and improvement of methods which allow for precise detection and immediate manipulation of zinc ions in neuronal cells and in brain slices will be critical in uncovering the synaptic action of zinc and, more broadly, the bioinorganic chemistry of cognition. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Analytical solution and numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe

    NASA Astrophysics Data System (ADS)

    Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi

    2018-05-01

    Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.

  7. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying.

    PubMed

    Kuu, Wei Y; Nail, Steven L; Sacha, Gregory

    2009-03-01

    The purpose of this study was to perform a rapid determination of vial heat transfer parameters, that is, the contact parameter K(cs) and the separation distance l(v), using the sublimation rate profiles measured by tunable diode laser absorption spectroscopy (TDLAS). In this study, each size of vial was filled with pure water followed by a freeze-drying cycle using a LyoStar II dryer (FTS Systems) with step-changes of the chamber pressure set-point at to 25, 50, 100, 200, 300, and 400 mTorr. K(cs) was independently determined by nonlinear parameter estimation using the sublimation rates measured at the pressure set-point of 25 mTorr. After obtaining K(cs), the l(v) value for each vial size was determined by nonlinear parameter estimation using the pooled sublimation rate profiles obtained at 25 to 400 mTorr. The vial heat transfer coefficient K(v), as a function of the chamber pressure, was readily calculated, using the obtained K(cs) and l(v) values. It is interesting to note the significant difference in K(v) of two similar types of 10 mL Schott tubing vials, primary due to the geometry of the vial-bottom, as demonstrated by the images of the contact areas of the vial-bottom. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  8. Immersion freezing in concentrated solution droplets for a variety of ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Kohn, Monika; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, Andre; Lohmann, Ulrike; Kanji, Zamin; Stratmann, Frank

    2016-04-01

    The measurement campaign LINC (Leipzig Ice Nucleation counter Comparison) was conducted in September 2015, during which ice nucleation measurements as obtained with the following instruments were compared: - LACIS (Leipzig Aerosol Cloud Interaction Simulator, see e.g. Wex et al., 2014) - PIMCA-PINC (Portable Immersion Mode Cooling Chamber together with PINC) - PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) - SPIN (SPectrometer for Ice Nuclei, Droplet Measurement Technologies) While LACIS and PIMCA-PINC measured immersion freezing, PINC and SPIN varied the super-saturation during the measurements and collected data also for relative humidities below 100% RHw. A suite of different types of ice nucleating particles were examined, where particles were generated from suspensions, subsequently dried and size selected. For the following samples, data for all four instruments are available: K-feldspar, K-feldspar treated with nitric acid, Fluka-kaolinite and birch pollen. Immersion freezing measurements by LACIS and PIMCA-PINC were in excellent agreement. Respective parameterizations from these measurement were used to model the ice nucleation behavior below water vapor saturation, assuming that the process can be described as immersion freezing in concentrated solutions. This is equivalent to simply including a concentration dependent freezing point depression in the immersion freezing parameterization, as introduced for coated kaolinite particles in Wex et al. (2014). Overall, measurements performed below water vapor saturation were reproduced by the model, and it will be discussed in detail, why deviations were observed in some cases. Acknowledgement: Part of this work was funded by the DFG Research Unit FOR 1525 INUIT, grant WE 4722/1-2. Literature: Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11(10), 4725

  9. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet

    NASA Astrophysics Data System (ADS)

    Bogorodsky, Petr; Marchenko, Aleksey

    2014-05-01

    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10º C and then once again during 60 hours at -20º C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of

  10. Cognitive Contributions to Freezing of Gait in Parkinson Disease: Implications for Physical Rehabilitation

    PubMed Central

    King, Laurie A.; Cohen, Rajal G.; Horak, Fay B.

    2016-01-01

    People with Parkinson disease (PD) who show freezing of gait also have dysfunction in cognitive domains that interact with mobility. Specifically, freezing of gait is associated with executive dysfunction involving response inhibition, divided attention or switching attention, and visuospatial function. The neural control impairments leading to freezing of gait have recently been attributed to higher-level, executive and attentional cortical processes involved in coordinating posture and gait rather than to lower-level, sensorimotor impairments. To date, rehabilitation for freezing of gait primarily has focused on compensatory mobility training to overcome freezing events, such as sensory cueing and voluntary step planning. Recently, a few interventions have focused on restitutive, rather than compensatory, therapy. Given the documented impairments in executive function specific to patients with PD who freeze and increasing evidence of overlap between cognitive and motor function, incorporating cognitive challenges with mobility training may have important benefits for patients with freezing of gait. Thus, a novel theoretical framework is proposed for exercise interventions that jointly address both the specific cognitive and mobility challenges of people with PD who freeze. PMID:26381808

  11. Folic acid content in thermostabilized and freeze-dried space shuttle foods

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Nillen, J. L.; Kloeris, V. L.

    1995-01-01

    This study was designed to determine whether freeze-dried and thermostabilized foods on a space shuttle contain adequate folate and to investigate any effects of freeze-drying on folacin. Frozen vegetables were analyzed after three states of processing: thawed; cooked; and rehydrated. Thermostabilized items were analyzed as supplied with no further processing. Measurable folate decreased in some freeze-dried vegetables and increased in others. Folacin content of thermostabilized food items was comparable with published values. We concluded that although the folacin content of some freeze-dried foods was low, adequate folate is available from the shuttle menu to meet RDA guidelines.

  12. Mineral resource of the month: zinc

    USGS Publications Warehouse

    Tolcin, Amy C.

    2009-01-01

    The article provides information on zinc, the fourth most-widely consumed metal. It traces the first use of zinc with the Romans' production of brass. It describes the presence of zinc in Earth's crust and the importance of sphalerite as a source of zinc and other some minor metal production. The production and consumption of zinc as well as the commercial and industrial uses of this metal are also discussed.

  13. Freeze-fracture of infected plant leaves in ethanol for scanning electron microscopic study of fungal pathogens.

    PubMed

    Moore, Jayma A; Payne, Scott A

    2012-01-01

    Fungi often are found within plant tissues where they cannot be visualized with the scanning electron microscope (SEM). We present a simple way to reveal cell interiors while avoiding many common causes of artifact. Freeze-fracture of leaf tissue using liquid nitrogen during the 100% ethanol step of the dehydration process just before critical point drying is useful in exposing intracellular fungi to the SEM.

  14. Zinc Therapy in Dermatology: A Review

    PubMed Central

    Mahajan, Vikram K.; Mehta, Karaninder S.; Chauhan, Pushpinder S.

    2014-01-01

    Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts), inflammatory dermatoses (acne vulgaris, rosacea), pigmentary disorders (melasma), and neoplasias (basal cell carcinoma). Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc. PMID:25120566

  15. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    PubMed

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  16. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine).

    PubMed

    Mayr, Stefan; Gruber, Andreas; Bauer, Helmut

    2003-07-01

    Freezing and thawing lead to xylem embolism when gas bubbles caused by ice formation expand during the thaw process. However, previous experimental studies indicated that conifers are resistant to freezing-induced embolism, unless xylem pressure becomes very negative during the freezing. In this study, we show that conifers experienced freezing-induced embolism when exposed to repeated freeze-thaw cycles and simultaneously to drought. Simulating conditions at the alpine timberline (128 days with freeze-thaw events and thawing rates of up to 9.5 K h(-1) in the xylem of exposed twigs during winter), young trees of Norway spruce [Picea abies (L.) Karst.] and stone pine (Pinus cembra L.) were exposed to 50 and 100 freeze-thaw cycles. This treatment caused a significant increase in embolism rates in drought-stressed samples. Upon 100 freeze-thaw cycles, vulnerability thresholds (50% loss of conductivity) were shifted 1.8 MPa (Norway spruce) and 0.8 MPa (stone pine) towards less negative water potentials. The results demonstrate that freeze-thaw cycles are a possible reason for winter-embolism in conifers observed in several field studies. Freezing-induced embolism may contribute to the altitudinal limits of conifers.

  17. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration.

    PubMed

    Rosenkranz, Eva; Maywald, Martina; Hilgers, Ralf-Dieter; Brieger, Anne; Clarner, Tim; Kipp, Markus; Plümäkers, Birgit; Meyer, Sören; Schwerdtle, Tanja; Rink, Lothar

    2016-03-01

    The essential trace element zinc is indispensable for proper immune function as zinc deficiency accompanies immune defects and dysregulations like allergies, autoimmunity and an increased presence of transplant rejection. This point to the importance of the physiological and dietary control of zinc levels for a functioning immune system. This study investigates the capacity of zinc to induce immune tolerance. The beneficial impact of physiological zinc supplementation of 6 μg/day (0.3mg/kg body weight) or 30 μg/day (1.5mg/kg body weight) on murine experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis with a Th1/Th17 (Th, T helper) cell-dominated immunopathogenesis, was analyzed. Zinc administration diminished EAE scores in C57BL/6 mice in vivo (P<.05), reduced Th17 RORγT(+) cells (P<.05) and significantly increased inducible iTreg cells (P<.05). While Th17 cells decreased systemically, iTreg cells accumulated in the central nervous system. Cumulatively, zinc supplementation seems to be capable to induce tolerance in unwanted immune reactions by increasing iTreg cells. This makes zinc a promising future tool for treating autoimmune diseases without suppressing the immune system. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Rubber closures for freeze-dried products.

    PubMed

    Hopkins, G H

    1976-10-01

    Once a biological product has been developed to perform its required medical or pharmaceutical function, it is essential that a container-closure system by chosen which will preserve the efficacy of the product up to the point of administration. The general requirements applicable to proper closure function will be reviewed and the suitability of natural and synthetic elastomers to perform these functions will be discussed. The specialized application of elastomeric materials as closures for freeze-dried products presents additional requirements which are superimposed upon those previously discussed. The first of these unique considerations relates to the proper physical design which will permit the outgassing of water vapor during the sublimation step in the lyophilizing chamber. During this outgassing the design must also permit the closure to remain affixed in the neck while only partially inserted. Since these preparations are lyophilized because they are unstable in aqueous solutions, the elastomer used must constitute an effective barrier to the transmission of moisture vapor through the closure. The MVT and gas transmission properties of elastomers will be discussed. Special consideration will be given to the extremely low temperatures used in the sublimation, stoppering, and storage before use of lyophilized products. The phenomenon of glass transition points with different elastomers will be explained as its relation to satisfactory performance of the closure function at low temperatures.

  19. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern.

    PubMed

    Wani, Ab Latif; Ahmad, Ajaz; Shadab, G G H A; Usmani, Jawed Ahmad

    2017-03-01

    Lead and zinc are mostly present at the same occupational source and usually found as co-contaminants. Lead is known to associate with detrimental effects to humans. Zinc however is an essential nutrient and its deficiency causes debilitating effects on growth and development. Besides, it acts as core ion of important enzymes and proteins. The purpose of this study was to examine if zinc concentrations are associated with blood lead levels and if zinc may prevent lead-induced DNA damage. Blood samples were collected from 92 workers as participants occupationally exposed to lead or lead and zinc and 38 comparison participants having no history of such exposure. Lead and zinc levels were determined from blood by atomic absorption spectrophotometry and genetic damage was assessed by comet assay. Correlation was calculated by Spearman's rho. Lead concentrations were observed to increase among workers with increase in years of exposure. There was a significant difference (p < 0.001) in blood lead levels between workers and controls. In addition, significant difference (p < 0.001) in the genetic damage was observed among workers and controls. A clear effect of increased occupational exposure was visible among workers. Multiple regression analysis further reveals the positive effect of lead, while as the inverse effect of zinc on DNA damage. The results suggest that zinc may influence body lead absorption and may have a role in preventing the genetic damage caused by lead.

  20. Effect of freeze/thaw cycles on several biomarkers in urine from patients with kidney disease.

    PubMed

    Zhang, Yinan; Luo, Yi; Lu, Huijuan; Wang, Niansong; Shen, Yixie; Chen, Ruihua; Fang, Pingyan; Yu, Hong; Wang, Congrong; Jia, Weiping

    2015-04-01

    Urine samples were collected from eleven randomly selected patients with kidney disease, including diabetic nephropathy, chronic nephritis, and nephritic syndrome. Urine samples were treated with one of four protocols for freezing and thawing: freeze directly and thaw directly; freeze directly and thaw by temperature gradient; freeze by temperature gradient and thaw directly; and freeze by temperature gradient and thaw by temperature gradient. After one to six freeze/thaw cycles at -20°C or -80°C, different biomarkers showed differential stabilities. The concentrations of total protein, calcium, and potassium did not change significantly after five freeze/thaw cycles at either -20°C or -80°C. Albumin could only sustain three freeze/thaw cycles at -20°C before it started to degrade. We recommend that urine be stored at -80°C as albumin and the organic ions could sustain five and six freeze/thaw cycles, respectively, using the simple "direct freeze and direct thaw" protocol. Furthermore, in most cases, gradient freeze/thaw cycles are not necessary for urine sample storage.