Sample records for zinc ions play

  1. The biological inorganic chemistry of zinc ions.

    PubMed

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn 2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn 2+ differs from s-block cations such as Ca 2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  2. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    PubMed Central

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  3. A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, C.; Jeong, S.

    2018-01-01

    In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.

  4. Excess zinc ions are a competitive inhibitor for carboxypeptidase A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, J.; Ando, S.; Kidani, Y.

    The mechanism for inhibition of enzyme activity by excess zinc ions has been studied by kinetic and equilibrium dialysis methods at pH 8.2, I = 0.5 M. With carboxypeptidase A (bovine pancreas), peptide (carbobenzoxyglycyl-L-phenylalanine and hippuryl-L-phenylalanine) and ester (hippuryl-L-phenyl lactate) substrates were inhibited competitively by excess zinc ions. The K/sub i/ values for excess zinc ions with carboxypeptidase A at pH 8.2 are all similar. The apparent constant for dissociation of excess zinc ions from carboxypeptidase A was also obtained by equilibrium dialysis at pH 8.2 and was 2.4 x 10/sup -5/ M, very close to the K/sub i/ valuesmore » above. With arsanilazotyrosine-248 carboxypeptidase A ((Azo-CPD)Zn)), hippuryl-L-phenylalanine, carbobenzoxyglycyl-L-phenylalanine, and hippuryl-L-phenyl lactate were also inhibited with a competitive pattern by excess zinc ions, and the K/sub i/ values were (3.0-3.5) x 10/sup -5/ M. The apparent constant for dissociation of excess zinc ions from arsanilazotyrosine-248 carboxypeptidase A, which was obtained from absorption changes at 510 nm, was 3.2 x 10/sup -5/ M and is similar to the K/sub i/ values for ((Azo-CPD)Zn). The apparent dissociation and inhibition constants, which were obtained by inhibition of enzyme activity and spectrophotometric and equilibrium dialysis methods with native carboxypeptidase A and arsanilazotyrosine-248 carboxypeptidase A, were almost the same. This agreement between the apparent dissociation and inhibition constants indicates that the zinc binding to the enzymes directly relates to the inhibition of enzyme activity by excess zinc ions. Excess zinc ions were competitive inhibitors for both peptide and ester substrates. This behavior is believed to arise by the excess zinc ions fixing the enzyme in a conformation to which the substrates cannot bind.« less

  5. Zinc ion-induced domain organization in metallo-beta-lactamases: a flexible "zinc arm" for rapid metal ion transfer?

    PubMed

    Selevsek, Nathalie; Rival, Sandrine; Tholey, Andreas; Heinzle, Elmar; Heinz, Uwe; Hemmingsen, Lars; Adolph, Hans W

    2009-06-12

    The reversible unfolding of metallo-beta-lactamase from Chryseobacterium meningosepticum (BlaB) by guanidinium hydrochloride is best described by a three-state model including folded, intermediate, and unfolded states. The transformation of the folded apoenzyme into the intermediate state requires only very low denaturant concentrations, in contrast to the Zn2-enzyme. Similarly, circular dichroism spectra of both BlaB and metallo-beta-lactamase from Bacillus cereus 569/H/9 (BcII) display distinct differences between metal-free and Zn2-enzymes, indicating that the zinc ions affect the folding of the proteins, giving a larger alpha-helix content. To identify the regions of the protein involved in this zinc ion-induced change, a hydrogen deuterium exchange study with matrix-assisted laser desorption ionization tandem time of flight mass spectrometry on metal-free and Zn1- and Zn2-BcII was carried out. The region spanning the metal binding metallo-beta-lactamases (MBL) superfamily consensus sequence His-X-His-X-Asp motif and the loop connecting the N- and C-terminal domains of the protein undergoes a zinc ion-dependent structural change between intrinsically disordered and ordered states. The inherent flexibility even appears to allow for the formation of metal ion-bridged protein-protein complexes which may account for both electrospray ionization-mass spectroscopy results obtained upon variation of the zinc/protein ratio and stoichiometry-dependent variations of 199mHg-perturbed angular correlation of gamma-rays spectroscopic data. We suggest that this flexible "zinc arm" motif, present in all the MBL subclasses, is disordered in metal-free MBLs and may be involved in metal ion acquisition from zinc-carrying molecules different from MBL in an "activation on demand" regulation of enzyme activity.

  6. Two mechanisms of oral malodor inhibition by zinc ions.

    PubMed

    Suzuki, Nao; Nakano, Yoshio; Watanabe, Takeshi; Yoneda, Masahiro; Hirofuji, Takao; Hanioka, Takashi

    2018-01-18

    The aim of this study was to reveal the mechanisms by which zinc ions inhibit oral malodor. The direct binding of zinc ions to gaseous hydrogen sulfide (H2S) was assessed in comparison with other metal ions. Nine metal chlorides and six metal acetates were examined. To understand the strength of H2S volatilization inhibition, the minimum concentration needed to inhibit H2S volatilization was determined using serial dilution methods. Subsequently, the inhibitory activities of zinc ions on the growth of six oral bacterial strains related to volatile sulfur compound (VSC) production and three strains not related to VSC production were evaluated. Aqueous solutions of ZnCl2, CdCl2, CuCl2, (CH3COO)2Zn, (CH3COO)2Cd, (CH3COO)2Cu, and CH3COOAg inhibited H2S volatilization almost entirely. The strengths of H2S volatilization inhibition were in the order Ag+ > Cd2+ > Cu2+ > Zn2+. The effect of zinc ions on the growth of oral bacteria was strain-dependent. Fusobacterium nucleatum ATCC 25586 was the most sensitive, as it was suppressed by medium containing 0.001% zinc ions. Zinc ions have an inhibitory effect on oral malodor involving the two mechanisms of direct binding with gaseous H2S and suppressing the growth of VSC-producing oral bacteria.

  7. Two mechanisms of oral malodor inhibition by zinc ions

    PubMed Central

    Suzuki, Nao; Nakano, Yoshio; Watanabe, Takeshi; Yoneda, Masahiro; Hirofuji, Takao; Hanioka, Takashi

    2018-01-01

    Abstract Objectives The aim of this study was to reveal the mechanisms by which zinc ions inhibit oral malodor. Material and Methods The direct binding of zinc ions to gaseous hydrogen sulfide (H2S) was assessed in comparison with other metal ions. Nine metal chlorides and six metal acetates were examined. To understand the strength of H2S volatilization inhibition, the minimum concentration needed to inhibit H2S volatilization was determined using serial dilution methods. Subsequently, the inhibitory activities of zinc ions on the growth of six oral bacterial strains related to volatile sulfur compound (VSC) production and three strains not related to VSC production were evaluated. Results Aqueous solutions of ZnCl2, CdCl2, CuCl2, (CH3COO)2Zn, (CH3COO)2Cd, (CH3COO)2Cu, and CH3COOAg inhibited H2S volatilization almost entirely. The strengths of H2S volatilization inhibition were in the order Ag+ > Cd2+ > Cu2+ > Zn2+. The effect of zinc ions on the growth of oral bacteria was strain-dependent. Fusobacterium nucleatum ATCC 25586 was the most sensitive, as it was suppressed by medium containing 0.001% zinc ions. Conclusions Zinc ions have an inhibitory effect on oral malodor involving the two mechanisms of direct binding with gaseous H2S and suppressing the growth of VSC-producing oral bacteria. PMID:29364345

  8. Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W.; Fu, D.; Chai, J.

    2010-12-10

    All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstratedmore » that ZIPB is selective for two group 12 transition metal ions, Zn{sup 2+} and Cd{sup 2+}, whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.« less

  9. Ferritin: a zinc detoxicant and a zinc ion donor.

    PubMed Central

    Price, D; Joshi, J G

    1982-01-01

    Rats were injected with 1 mg of Zn2+ as zinc sulfate or 2 mg of Cd2+ as cadmium sulfate per kg of body weight on a daily basis. After seven injections, ferritin and metallothionein were isolated from the livers of the rats. Significant amounts of zinc were associated with ferritin. Incubation of such ferritin with apoenzymes of calf intestinal alkaline phosphatase, yeast phosphoglucomutase, and yeast aldolase restored their enzymic activity. The amount of zinc injected was insufficient to stimulate significant synthesis of metallothionein, but similar experiments with injection of cadmium did stimulate the synthesis of metallothionein. The amount of Zn2+ in ferritin of Cd-injected rats was greater than that in ferritin in Zn-injected rats, which was greater than that in ferritin of normal rats. Thus at comparable protein concentration ferritin from Cd-injected rats was a better Zn2+ donor than was ferritin from Zn-injected or normal animals. Ferritin is a normal constituent of several tissues, whereas metallothionein is synthesized under metabolic stress. Thus ferritin may function as a "metal storage and transferring agent" for iron and for zinc. It is suggested that ferritin probably serves as the initial chelator for Zn2+ and perhaps other metal ions as well and that under very high toxic levels of metal ions the synthesis of metallothionein is initiated as the second line of defense. PMID:6212927

  10. Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Luo, Langli; Zhong, Li

    We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.

  11. The study of zinc ions binding to casein.

    PubMed

    Pomastowski, P; Sprynskyy, M; Buszewski, B

    2014-08-01

    The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Zinc stress induces copper depletion in Acinetobacter baumannii.

    PubMed

    Hassan, Karl A; Pederick, Victoria G; Elbourne, Liam D H; Paulsen, Ian T; Paton, James C; McDevitt, Christopher A; Eijkelkamp, Bart A

    2017-03-11

    The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.

  13. The zinc paradigm for metalloneurochemistry.

    PubMed

    Barr, Chelsea A; Burdette, Shawn C

    2017-05-09

    Neurotransmission and sensory perception are shaped through metal ion-protein interactions in various brain regions. The term "metalloneurochemistry" defines the unique field of bioinorganic chemistry focusing on these processes, and zinc has been the leading target of metalloneurochemists in the almost 15 years since the definition was introduced. Zinc in the hippocampus interacts with receptors that dictate ion flow and neurotransmitter release. Understanding the intricacies of these interactions is crucial to uncovering the role that zinc plays in learning and memory. Based on receptor similarities and zinc-enriched neurons (ZENs) in areas of the brain responsible for sensory perception, such as the olfactory bulb (OB), and dorsal cochlear nucleus (DCN), zinc participates in odor and sound perception. Development and improvement of methods which allow for precise detection and immediate manipulation of zinc ions in neuronal cells and in brain slices will be critical in uncovering the synaptic action of zinc and, more broadly, the bioinorganic chemistry of cognition. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein; Sahraei, Reza

    2015-04-15

    A new Zinc (II) ion-imprinted polymer (IIPs) nanoparticles was synthesised for the separation and recovery of trace Zn (II) ion from food and water sample. Zn (II) IIP was prepared by copolymerisation of methyl methacrylate (monomer) and ethylene glycol dimethacrylate (cross-linker) in the presence of Zn (II)-N,N'-o-phenylene bis (salicylideneimine) ternary complex wherein Zn (II) ion is the imprint ion and is used to form the imprinted polymer. Moreover, control polymer (NIP) particles were similarly prepared without the zinc (II) ions. The unleached and leached IIP particles were characterised by X-ray diffraction, Fourier transform infra-red spectroscopy and scanning electron microscopy. The preconcentration of Zn(2+) from aqueous solution was studied during rebinding with the leached IIP particles as a function of pH, the weight of the polymer material, the uptake and desorption times, the aqueous phase and the desorption volumes. Flame atomic absorption spectrometry was employed for determination of zinc in aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Equilibrium and thermodynamic analysis of zinc ions adsorption by olive oil mill solid residues.

    PubMed

    Hawari, A; Rawajfih, Z; Nsour, N

    2009-09-15

    This work investigated the equilibrium batch dynamics of using olive oil mill solid residues as an adsorbent for zinc removal from aqueous solutions. It was found that a sorbent concentration of 4 g L(-1) achieved the best removal percentage and the best sorbent capacity. Adsorption equilibrium was reached in 60 min for an initial zinc concentration of 0.25 mmol/L and 180 min for an initial zinc concentration of 1-3 mmol/L. A particle size of olive mill residue ranging from 0.85 to 1.18 mm was used in the study. It was found that the maximum adsorption capacity of zinc was at a pH value of 5.0. It was found that q(max) for zinc ions, was 5.63, 6.46, and 7.11 mg g(-1) at temperature values of 298, 308, and 328 K, respectively. The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmuir isotherm model. The second-order kinetic model provided the best correlation of the data. The change in entropy (DeltaS degrees ) and heat of adsorption (DeltaH degrees ) for zinc ions adsorption on olive mill solid residues were estimated as -1419 kJ kg(-1)K(-1) and 4.7 kJ kg(-1), respectively. The examined low-cost adsorbent could offer an effective way to decrease zinc ions concentration in wastewater.

  16. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  17. Anti-cancer activity of ZnO chips by sustained zinc ion release.

    PubMed

    Moon, Seong-Hee; Choi, Won Jin; Choi, Sik-Won; Kim, Eun Hye; Kim, Jiyeon; Lee, Jeong-O; Kim, Seong Hwan

    2016-01-01

    We report anti-cancer activity of ZnO thin-film-coated chips by sustained release of zinc ions. ZnO chips were fabricated by precisely tuning ZnO thickness using atomic layer deposition, and their potential to release zinc ions relative to the number of deposition cycles was evaluated. ZnO chips exhibited selective cytotoxicity in human B lymphocyte Raji cells while having no effect on human peripheral blood mononuclear cells. Of importance, the half-maximal inhibitory concentration of the ZnO chip on the viability of Raji cells was 121.5 cycles, which was comparable to 65.7 nM of daunorubicin, an anti-cancer drug for leukemia. Molecular analysis of cells treated with ZnO chips revealed that zinc ions released from the chips increased cellular levels of reactive oxygen species, including hydrogen peroxide, which led to the down-regulation of anti-apoptotic molecules (such as HIF-1α, survivin, cIAP-2, claspin, p-53, and XIAP) and caspase-dependent apoptosis. Because the anti-cancer activity of ZnO chips and the mode of action were comparable to those of daunorubicin, the development and optimization of ZnO chips that gradually release zinc ions might have clinical anti-cancer potential. A further understanding of the biological action of ZnO-related products is crucial for designing safe biomaterials with applications in disease treatment.

  18. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper

    PubMed Central

    Stafford, Sian L.; Bokil, Nilesh J.; Achard, Maud E. S.; Kapetanovic, Ronan; Schembri, Mark A.; McEwan, Alastair G.; Sweet, Matthew J.

    2013-01-01

    The immunomodulatory and antimicrobial properties of zinc and copper have long been appreciated. In addition, these metal ions are also essential for microbial growth and survival. This presents opportunities for the host to either harness their antimicrobial properties or limit their availability as defence strategies. Recent studies have shed some light on mechanisms by which copper and zinc regulation contribute to host defence, but there remain many unanswered questions at the cellular and molecular levels. Here we review the roles of these two metal ions in providing protection against infectious diseases in vivo, and in regulating innate immune responses. In particular, we focus on studies implicating zinc and copper in macrophage antimicrobial pathways, as well as the specific host genes encoding zinc transporters (SLC30A, SLC39A family members) and CTRs (copper transporters, ATP7 family members) that may contribute to pathogen control by these cells. PMID:23738776

  19. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    PubMed

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  20. Molecular Characterization of a Chromosomal Determinant Conferring Resistance to Zinc and Cobalt Ions in Staphylococcus aureus

    PubMed Central

    Xiong, Anming; Jayaswal, Radheshyam K.

    1998-01-01

    A DNA fragment conferring resistance to zinc and cobalt ions was isolated from a genomic DNA library of Staphylococcus aureus RN450. The DNA sequence analysis revealed two consecutive open reading frames, designated zntR and zntA. The predicted ZntR and ZntA showed significant homology to members of ArsR and cation diffusion families, respectively. A mutant strain containing the null allele of zntA was more sensitive to zinc and cobalt ions than was the parent strain. The metal-sensitive phenotype of the mutant was complemented by a 2.9-kb DNA fragment containing zntR and zntA. An S. aureus strain harboring multiple copies of zntR and zntA showed an increased resistance to zinc. The resistance to zinc in the wild-type strain was inducible. Transcriptional analysis indicated that zntR and zntA genes were cotranscribed. The zinc uptake studies suggested that the zntA product was involved in the export of zinc ions out of cells. PMID:9696746

  1. The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains

    PubMed Central

    Baglivo, Ilaria; Russo, Luigi; Esposito, Sabrina; Malgieri, Gaetano; Renda, Mario; Salluzzo, Antonio; Di Blasio, Benedetto; Isernia, Carla; Fattorusso, Roberto; Pedone, Paolo V.

    2009-01-01

    The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed. PMID:19369210

  2. Effect of Magnesium Ion on the Zinc Electrodeposition from Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Tian, Lin; Xie, Gang; Yu, Xiao-Hua; Li, Rong-Xing; Zeng, Gui-Sheng

    2012-02-01

    The effects of Mg2+ ion on the zinc electrodeposition were systematically investigated in sulfuric acid solution through the characterizations of current efficiency (CE), power consumption (PC), deposit morphology, cathodic polarization, and cyclic voltammetry. The results demonstrate that there is no significant influence on CE and PC in the Mg2+ concentration range of 1 to 10 g L-1, but with a drastic decrease of the CE and rapid increase of PC at Mg2+ ion concentration above 15 g L-1. Based on the morphology observation and polarization curves, the presence of Mg2+ ions could also induce the coarse surface on the electrodeposited zinc accompanying the enhancement of the cathodic polarization, which becomes more distinct at a high concentration above 15 g L-1. Furthermore, hydrogen evolution could be promoted with the existence of Mg2+ ions according to cyclic voltammograms.

  3. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    PubMed

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-07-02

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  4. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    PubMed Central

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  5. Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells.

    PubMed

    Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy

    2017-04-15

    The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Suppressive effect of zinc ion on iNOS expression induced by interferon-gamma or tumor necrosis factor-alpha in murine keratinocytes.

    PubMed

    Yamaoka, J; Kume, T; Akaike, A; Miyachi, Y

    2000-05-01

    Zinc, an essential metal, is a critical component of zinc binding proteins such as zinc fingers, zinc enzymes and metallothioneins. Recently, evidence for its anti-inflammatory property in skin has been accumulating, as shown in the treatment of acne, alopecia and zinc deficiency. In cutaneous inflammations, a large amount of nitric oxide (NO) is produced through induction of inducible nitric oxide synthase (iNOS) under the influence of proinflammatory cytokines, resulting in tissue damages in skin, as clarified in other organs. Therefore, we asked if the effect of zinc on NO production and/or on iNOS expression in keratinocytes may explain the anti-inflammatory property of zinc in skin. Accordingly, we sought to determine in this study whether zinc ion may have effect on IFN-gamma or TNF-alpha induced NO production and iNOS expression in cultured murine keratinocytes. Ten microM of zinc ion remarkably suppressed cytokine-induced NO production in keratinocytes. Furthermore, zinc ion also suppressed cytokine-induced iNOS expression in the protein level as well as in the messenger RNA level. These results suggest the possibility that the suppressive effect of zinc ion on cytokine-induced NO production in keratinocytes may be in part implicated in the anti-inflammatory property of zinc in some of skin disorders.

  7. Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices

    NASA Astrophysics Data System (ADS)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza; Pourmortazavi, Seied Mahdi; Roushani, Mahmoud

    2014-01-01

    Preparation of Zn2+ ion-imprinted polymer (Zn-IIP) nanoparticles is presented in this report. The Zn-IIP nanoparticles are prepared by dissolving stoichiometric amounts of zinc nitrate and selected chelating ligand, 3,5,7,20,40-pentahydroxyflavone, in 15 mL ethanol-acetonitrile (2:1; v/v) mixture as a porogen solvent in the presence of ethylene glycol-dimethacrylate (EGDMA) as cross-linking, methacrylic acid (MAA) as functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as initiator. After polymerization, Cavities in the polymer particles corresponding to the Zn2+ ions were created by leaching the polymer in HCl aqueous solution. The synthesized IIPs were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal analysis techniques. Also, the pH range for rebinding of Zn2+ ion on the IIP and equilibrium binding time were optimized, using flame atomic absorption spectrometry. In selectivity study, it was found that imprinting results increased affinity of the material toward Zn2+ ion over other competitor metal ions with the same charge and close ionic radius. The prepared IIPs were repeatedly used and regenerated for six times without any significant decrease in polymer binding affinities. Finally, the prepared sorbent was successfully applied to the selective recognition and determination of zinc ion in different real samples.

  8. Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material

    NASA Astrophysics Data System (ADS)

    Chae, Munseok S.; Heo, Jongwook W.; Kwak, Hunho H.; Lee, Hochun; Hong, Seung-Tae

    2017-01-01

    This study demonstrates an organic electrolyte-based rechargeable zinc-ion battery (ZIB) using Prussian blue (PB) analogue potassium nickel hexacyanoferrate K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-086) as the cathode material. KNF-086 is prepared via electrochemical extraction of potassium ions from K1.51Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-151). The cell is composed of a KNF-086 cathode, a zinc metal anode, and a 0.5 M Zn(ClO4)2 acetonitrile electrolyte. This cell shows a reversible discharge capacity of 55.6 mAh g-1 at 0.2 C rate with the discharge voltage at 1.19 V (vs. Zn2+/Zn). As evidenced by Fourier electron density analysis with powder XRD data, the zinc-inserted phase is confirmed as Zn0.32K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (ZKNF-086), and the position of the zinc ion in ZKNF-086 is revealed as the center of the large interstitial cavities of the cubic PB. Compared to KNF-086, ZKNF-086 exhibits a decreased unit cell parameter (0.9%) and volume (2.8%) while the interatomic distance of d(Fe-C) increased (from 1.84 to 1.98 Å), and the oxidation state of iron decreases from 3 to 2.23. The organic electrolyte system provides higher zinc cycling efficiency (>99.9%) than the aqueous system (ca. 80%). This result demonstrates an organic electrolyte-based ZIB, and offers a crucial basis for understanding the electrochemical intercalation chemistry of zinc ions in organic electrolytes.

  9. Modulation of neuronal signal transduction and memory formation by synaptic zinc.

    PubMed

    Sindreu, Carlos; Storm, Daniel R

    2011-01-01

    The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.

  10. Modulation of Neuronal Signal Transduction and Memory Formation by Synaptic Zinc

    PubMed Central

    Sindreu, Carlos; Storm, Daniel R.

    2011-01-01

    The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling. PMID:22084630

  11. Phosphatidate Phosphatase Plays Role in Zinc-mediated Regulation of Phospholipid Synthesis in Yeast*

    PubMed Central

    Soto-Cardalda, Aníbal; Fakas, Stylianos; Pascual, Florencia; Choi, Hyeon-Son; Carman, George M.

    2012-01-01

    In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids is coordinately regulated by mechanisms that control the homeostasis of the essential mineral zinc (Carman, G.M., and Han, G. S. (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322–330; Eide, D. J. (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 284, 18565–18569). The synthesis of phosphatidylcholine is balanced by the repression of CDP-diacylglycerol pathway enzymes and the induction of Kennedy pathway enzymes. PAH1-encoded phosphatidate phosphatase catalyzes the penultimate step in triacylglycerol synthesis, and the diacylglycerol generated in the reaction may also be used for phosphatidylcholine synthesis via the Kennedy pathway. In this work, we showed that the expression of PAH1-encoded phosphatidate phosphatase was induced by zinc deficiency through a mechanism that involved interaction of the Zap1p zinc-responsive transcription factor with putative upstream activating sequence zinc-responsive elements in the PAH1 promoter. The pah1Δ mutation resulted in the derepression of the CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol pathway enzyme) and loss of the zinc-mediated regulation of the enzyme. Loss of phosphatidate phosphatase also resulted in the derepression of the CKI1-encoded choline kinase (Kennedy pathway enzyme) but decreased the synthesis of phosphatidylcholine when cells were deficient of zinc. This result confirmed the role phosphatidate phosphatase plays in phosphatidylcholine synthesis via the Kennedy pathway. PMID:22128164

  12. Study of silicon doped with zinc ions and annealed in oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Privezentsev, V. V., E-mail: v.privezentsev@mail.ru; Kirilenko, E. P.; Goryachev, A. N.

    2017-02-15

    The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with {sup 64}Zn{sup +} ions with an energy of 50 keV and a dose of 5 × 10{sup 16} cm{sup –2} at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-raymore » photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn{sub 2}SiO{sub 4} and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.« less

  13. Effect of pulse electric fields (PEF) on accumulation of magnesium and zinc ions in Saccharomyces cerevisiae cells.

    PubMed

    Pankiewicz, Urszula; Sujka, Monika; Włodarczyk-Stasiak, Marzena; Mazurek, Artur; Jamroz, Jerzy

    2014-08-15

    Cultures of Saccharomyces cerevisiae were treated with PEF to improve simultaneous accumulation of magnesium and zinc ions in the biomass. The results showed that the ions concentration in the medium and their mutual interactions affect accumulation in cells. Increasing the concentration of one ion in the medium reduced the accumulation of the second one, in the control as well as in the cells treated with PEF. Under optimized conditions, that is, on 15 min exposure of the 20 h grown culture to PEF of 5.0 kV/cm and 20 μs pulse width, accumulation of magnesium and zinc in yeast biomass reached maximum levels of 2.85 and 11.41 mg/gd.m., respectively, To summarize, optimization of ion pair concentration and PEF parameters caused a 1.5 or 2-fold increase of magnesium and zinc accumulation, respectively, in S. cerevisiae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  15. Ion beam modification of zinc white pigment characterized by ex situ and in situ μ-Raman and XPS

    NASA Astrophysics Data System (ADS)

    Beck, L.; Gutiérrez, P. C.; Miro, S.; Miserque, F.

    2017-10-01

    Zinc oxide, known as zinc white, is one of the principal white pigments developed in the 18th century and was used by the Impressionist painters. ZnO as artists' pigment has occasionally been characterized by X-ray and ion beam techniques, but these studies are limited by the potential for visible radiation effect. Ion beam modifications of zinc oxide have extensively been investigated, but mainly for electronic and industrial applications. In this paper, we focus our investigation on ion beam modification of ZnO used as pigment. Two irradiation conditions have been used: an external 3 MeV proton micro-beam representative of PIXE analysis and 2 MeV H+ and 1.2 MeV Au + beams in vacuum to investigate irradiation modifications in electronic and nuclear energy loss regimes. Ion beam modification was characterized by ex situ and in situ micro-Raman spectrometry and XPS. The results shows that IBA of zinc white can be carried out safely in historical paintings with low current and dose.

  16. Relation of morphology of electrodeposited zinc to ion concentration profile

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.; Sabo, B. B.

    1977-01-01

    The morphology of electrodeposited zinc was studied with special attention to the ion concentration profile. The initial concentrations were 9M hydroxide ion and 1.21M zincate. Current densities were 6.4 to 64 mA/sq cm. Experiments were run with a horizontal cathode which was observed in situ using a microscope. The morphology of the zinc deposit was found to be a function of time as well as current density; roughly, the log of the transition time from mossy to large crystalline type deposit is inversely proportional to current density. Probe electrodes indicated that the electrolyte in the cathode chamber was mixed by self inducted convection. However, relatively large concentration gradients of the involved species existed across the boundary layer of the cathode. Analysis of the data suggests that the morphology converts from mossy to large crystalline when the hydroxide activity on the cathode surface exceeds about 12 M. Other experiments show that the pulse discharge technique had no effect on the morphology in the system where the bulk concentration of the electrolyte was kept homogeneous via self induced convection.

  17. Determination of model parameters for zinc (II) ion biosorption onto powdered waste sludge (PWS) in a fed-batch system.

    PubMed

    Kargi, Fikret; Cikla, Sinem

    2007-12-01

    Biosorption of zinc (II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a completely mixed tank operating in fed-batch mode instead of an adsorption column. Experiments with variable feed flow rate (0.05-0.5 L h(-1)), feed Zn(II) ion concentrations (37.5-275 mg L(-1)) and amount of adsorbent (1-6 g PWS) were performed using fed-batch operation at pH 5 and room temperature (20-25 degrees C). Break-through curves describing variations of aqueous (effluent) zinc ion concentrations with time were determined for different operating conditions. Percent zinc removal from the aqueous phase decreased, but the biosorbed (solid phase) zinc ion concentration increased with increasing feed flow rate and zinc concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS (q'(s)) and the rate constant (K) for zinc ion biosorption. Biosorption capacity (q'(s)=57.7 g Zn kg(-1) PWS) of PWS in fed-batch operation was found to be comparable with powdered activated carbon (PAC) in column operations. However, the adsorption rate constant (K=9.17 m(3) kg(-1) h(-1)) in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations. Therefore, a completely mixed tank operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.

  18. Preferential uptake of ammonium ions by zinc ferrocyanide

    NASA Technical Reports Server (NTRS)

    Braterman, P. S.; Arrhenius, G.; Hui, S.; Paplawsky, W.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The concentration of ammonia from dilute aqueous solution could have facilitated many prebiotic reactions. This may be especially true if this concentration involves incorporation into an organized medium. We have shown that (unlike iron(III) ferrocyanide) zinc ferrocyanide,Zn2Fe(CN)6 xH2O, preferentially takes up ammonium ions from 0.01 M NH4Cl to give the known material Zn3(NH4)2[Fe(CN)6]2 xH2O, even in the presence of 0.01 M KCl. KCl alone gave Zn3K2[Fe(CN)6]2 xH2O. Products were characterized by elemental (CHN) analysis and powder X-ray diffraction (XRD). We attribute the remarkable specificity for the ammonium ion to the open framework of the product, which offers enough space for hydrogen-bonded ammonium ions, and infer that other inorganic materials with internal spaces rich in water may show a similar preference.

  19. Removal of lead and zinc ions from water by low cost adsorbents.

    PubMed

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  20. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion.

    PubMed

    Parker, Joseph F; Chervin, Christopher N; Pala, Irina R; Machler, Meinrad; Burz, Michael F; Long, Jeffrey W; Rolison, Debra R

    2017-04-28

    The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel-zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel-zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DOD Zn ) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DOD Zn at lithium-ion-commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles. Copyright © 2017, American Association for the Advancement of Science.

  1. Playing tricks to ions

    NASA Astrophysics Data System (ADS)

    Leibfried, Dietrich

    2017-01-01

    Ted Hänsch's career is defined by breaking new ground in experimental physics. Curiosity, vivid imagination, deep understanding, patience and tenacity are part of the winning formula, but perhaps an equally important ingredient may be Ted's favorite past-time of exploring new tricks in his "Spiellabor" (play-lab), that often resurfaced as key ingredients in rather serious experiments later. On the occasion of Ted's 75th birthday, a few past and potential future experiments with trapped ions are playfully surveyed here. Some of these tricks are already part of the trade, some are currently emerging and a few are mostly speculation today. Maybe some of the latter will be realized and even prove useful in the future.

  2. Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2017-09-19

    Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.

  3. Zinc transporters and dysregulated channels in cancers

    PubMed Central

    Pan, Zui; Choi, Sangyong; Ouadid-Ahidouch, Halima; Yang, Jin-Ming; Beattie, John H.; Korichneva, Irina

    2016-01-01

    As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field. PMID:27814637

  4. CaSO4 Scale Inhibition by a Trace Amount of Zinc Ion in Piping System

    NASA Astrophysics Data System (ADS)

    Mangestiyono, W.; Sutrisno

    2017-05-01

    Usually, a small steam generator is not complemented by equipment such as demineralization and chlorination process apparatus since the economic aspect was a precedence. Such phenomenon was uncovered in a case study of green tea industrial process in which the boiler capacity was not more than 1 ton/hour. The operation of the small boiler affected the scaling process in its piping system. In a year operation, there was already a large scale of calcium attached to the inner surface of the pipe. Such large scale formed a layer and decreased the overall heat transfer coefficient, prolonged the process time and decreased the production. The aim of the current research was to solve the problem through a laboratory research to inhibit the CaSO4 scale formation by the addition of trace amounts of zinc ion. This research was conducted through a built in-house experimental rig which consisted of a dosing pump for controlling the flow rate and a thermocouple to control the temperature. Synthesis solution was prepared with 3,500 ppm concentration of CaCl2 and Na2SO4. The concentration of zinc was set at 0.00; 5.00 and 10.00 ppm. The data found were characterized by scanning electron microscopy (SEM) to analyze crystal polymorph as the influence of zinc ion addition. The induction time was also investigated to analyze the nucleation time, and it was found on the 9th, 13th, and 19th minute of the zinc ion addition of 0.00, 5.00 and 10.00 ppm. After running for a four-hour duration, the scale grow-rate was found to be 5.799; 5.501 and 4.950 × 10-3 gr/min for 0.00; 5.00 and 10.00 ppm of zinc addition at 50 °C.

  5. Impact of Manganese, Copper and Zinc Ions on the Transcriptome of the Nosocomial Pathogen Enterococcus faecalis V583

    PubMed Central

    Coelho Abrantes, Marta; Lopes, Maria de Fátima; Kok, Jan

    2011-01-01

    Mechanisms that enable Enterococcus to cope with different environmental stresses and their contribution to the switch from commensalism to pathogenicity of this organism are still poorly understood. Maintenance of intracellular homeostasis of metal ions is crucial for survival of these bacteria. In particular Zn2+, Mn2+ and Cu2+ are very important metal ions as they are co-factors of many enzymes, are involved in oxidative stress defense and have a role in the immune system of the host. Their concentrations inside the human body vary hugely, which makes it imperative for Enterococcus to fine-tune metal ion homeostasis in order to survive inside the host and colonize it. Little is known about metal regulation in Enterococcus faecalis. Here we present the first genome-wide description of gene expression of E. faecalis V583 growing in the presence of high concentrations of zinc, manganese or copper ions. The DNA microarray experiments revealed that mostly transporters are involved in the responses of E. faecalis to prolonged exposure to high metal concentrations although genes involved in cellular processes, in energy and amino acid metabolisms and genes related to the cell envelope also seem to play important roles. PMID:22053193

  6. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  7. Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita.

    PubMed

    Saravanan, V S; Kalaiarasan, P; Madhaiyan, M; Thangaraju, M

    2007-03-01

    To examine the zinc (Zn) solubilization potential and nematicidal properties of Gluconacetobacter diazotrophicus. Atomic Absorption Spectrophotometer, Differential Pulse Polarography and Gas Chromatography Coupled Mass Spectrometry were used to estimate the total Zn and Zn(2+) ions and identify the organic acids present in the culture supernatants. The effect of culture filtrate of Zn-amended G. diazotrophicus PAl5 on Meloidogyne incognita in tomato was examined under gnotobiotic conditions. Gluconacetobacter diazotrophicus PAl5 effectively solubilized the Zn compounds tested and 5-ketogluconic acid was identified as the major organic acid aiding the solubilization of zinc oxide. The presence of Zn compounds in the culture filtrates of G. diazotrophicus enhanced the mortality and reduced the root penetration of M. incognita under in vitro conditions. 5-ketogluconic acid produced by G. diazotrophicus mediated the solubilization process and the available Zn(2+) ions enhanced the nematicidal activity of G. diazotrophicus against M. incognita. Zn solubilization and enhanced nematicidal activity of Zn-amended G. diazotrophicus provides the possibility of exploiting it as a plant growth promoting bacteria.

  8. Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily*

    PubMed Central

    Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha; Jeya, Marimuthu; Zhao, Huimin; Lee, Jung-Kul

    2012-01-01

    The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. PMID:22500022

  9. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    PubMed

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  11. Zinc binding groups for histone deacetylase inhibitors.

    PubMed

    Zhang, Lei; Zhang, Jian; Jiang, Qixiao; Zhang, Li; Song, Weiguo

    2018-12-01

    Zinc binding groups (ZBGs) play a crucial role in targeting histone deacetylase inhibitors (HDACIs) to the active site of histone deacetylases (HDACs), thus determining the potency of HDACIs. Due to the high affinity to the zinc ion, hydroxamic acid is the most commonly used ZBG in the structure of HDACs. An alternative ZBG is benzamide group, which features excellent inhibitory selectivity for class I HDACs. Various ZBGs have been designed and tested to improve the activity and selectivity of HDACIs, and to overcome the pharmacokinetic limitations of current HDACIs. Herein, different kinds of ZBGs are reviewed and their features have been discussed for further design of HDACIs.

  12. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    NASA Astrophysics Data System (ADS)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  13. Free zinc ion and dissolved orthophosphate effects on phytoplankton from Coeur d'Alene Lake, Idaho

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Woods, P.F.; Carter, J.L.

    2007-01-01

    Coeur d'Alene Lake in northern Idaho is fed by two major rivers: the Coeur d'Alene River from the east and the St. Joe River from the south, with the Spokane River as its outlet to the north. This phosphorus-limited lake has been subjected to decades of mining (primarily for zinc and silver) and other anthropogenic inputs. A 32 full-factorial experimental design was used to examine the interactive effects of free (uncomplexed) zinc ion and dissolved-orthophosphate concentrations on phytoplankton that were isolated from two sites along a longitudinal zinc-concentration gradient in Coeur d'Alene Lake. The two sites displayed different dominant taxa. Chlorella minutissima, a dominant species near the southern St. Joe River inlet, exhibited greater sensitivity to free Zn ions than Asterionella formosa, collected nearer the Coeur d'Alene River mouth with elevated dissolved-zinc concentrations. Empirical phytoplankton-response models were generated to describe phytoplankton growth in response to remediation strategies in the surrounding watershed. If dissolved Zn can be reduced in the water column from >500 nM (i.e., current concentrations near and down stream of the Coeur d'Alene River plume) to <3 nM (i.e., concentrations near the southern St. Joe River inlet) such that the lake is truly phosphorus limited, management of phosphorus inputs by surrounding communities will ultimately determine the limnologic state of the lake.

  14. A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity.

    PubMed

    Richards, Christopher D; Warr, Coral G; Burke, Richard

    2017-01-01

    Zinc absorption in animals is thought to be regulated in a local, cell autonomous manner with intestinal cells responding to dietary zinc content. The Drosophila zinc transporter Zip88E shows strong sequence similarity to Zips 42C.1, 42C.2 and 89B as well as mammalian Zips 1, 2 and 3, suggesting that it may act in concert with the apically-localised Drosophila zinc uptake transporters to facilitate dietary zinc absorption by importing ions into the midgut enterocytes. However, the functional characterisation of Zip88E presented here indicates that Zip88E may instead play a role in detecting and responding to zinc toxicity. Larvae homozygous for a null Zip88E allele are viable yet display heightened sensitivity to elevated levels of dietary zinc. This decreased zinc tolerance is accompanied by an overall decrease in Metallothionein B transcription throughout the larval midgut. A Zip88E reporter gene is expressed only in the salivary glands, a handful of enteroendocrine cells at the boundary between the anterior and middle midgut regions, and in two parallel strips of sensory cell projections connecting to the larval ventral ganglion. Zip88E expression solely in this restricted subset of cells is sufficient to rescue the Zip88E mutant phenotype. Together, our data suggest that Zip88E may be functioning in a small subset of cells to detect excessive zinc levels and induce a systemic response to reduce dietary zinc absorption and hence protect against toxicity.

  15. Structure of Urtica dioica agglutinin isolectin I: dimer formation mediated by two zinc ions bound at the sugar-binding site.

    PubMed

    Harata, K; Schubert, W D; Muraki, M

    2001-11-01

    Ultica dioica agglutinin, a plant lectin from the stinging nettle, consists of a total of seven individual isolectins. One of these structures, isolectin I, was determined at 1.9 A resolution by the X-ray method. The crystals belong to the space group P2(1) and the asymmetric unit contains two molecules related by local twofold symmetry. The molecule consists of two hevein-like chitin-binding domains lacking distinct secondary structure, but four disulfide bonds in each domain maintain the tertiary structure. The backbone structure of the two independent molecules is essentially identical and this is similarly true of the sugar-binding sites. In the crystal, the C-terminal domains bind Zn(2+) ions at the sugar-binding site. Owing to their location near a pseudo-twofold axis, the two zinc ions link the two independent molecules in a tail-to-tail arrangement: thus, His47 of molecule 1 and His67 of molecule 2 coordinate the first zinc ion, while the second zinc ion links Asp75 of molecule 1 and His47 of molecule 2.

  16. Influence of lead ions on the macromorphology of electrodeposited zinc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuda, Tetsuaki; Tobias, Charles W.

    1981-09-01

    The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth ofmore » initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.« less

  17. Highly Durable Na2V6O16·1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery.

    PubMed

    Hu, Ping; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Yan, Mengyu; Li, Jiantao; Luo, Wen; Yang, Wei; Zhang, Wencui; Zhou, Liang; Zhou, Zhiqiang; Mai, Liqiang

    2018-03-14

    Rechargeable aqueous zinc-ion batteries are highly desirable for grid-scale applications due to their low cost and high safety; however, the poor cycling stability hinders their widespread application. Herein, a highly durable zinc-ion battery system with a Na 2 V 6 O 16 ·1.63H 2 O nanowire cathode and an aqueous Zn(CF 3 SO 3 ) 2 electrolyte has been developed. The Na 2 V 6 O 16 ·1.63H 2 O nanowires deliver a high specific capacity of 352 mAh g -1 at 50 mA g -1 and exhibit a capacity retention of 90% over 6000 cycles at 5000 mA g -1 , which represents the best cycling performance compared with all previous reports. In contrast, the NaV 3 O 8 nanowires maintain only 17% of the initial capacity after 4000 cycles at 5000 mA g -1 . A single-nanowire-based zinc-ion battery is assembled, which reveals the intrinsic Zn 2+ storage mechanism at nanoscale. The remarkable electrochemical performance especially the long-term cycling stability makes Na 2 V 6 O 16 ·1.63H 2 O a promising cathode for a low-cost and safe aqueous zinc-ion battery.

  18. Spectroscopic investigation of zinc tellurite glasses doped with Yb(3+) and Er(3+) ions.

    PubMed

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-05

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80-x-y) TeO2+(0.20) ZnO+xEr2O3+yYb2O3 (x=0, y=0; x=0.004, y=0; x=0, y=0.05 and x=0.004, y=0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er(3+) glasses as erbium doped fiber amplifiers at 1.55μm in infrared emission region. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Three-dimensional structure of porcine pancreatic carboxypeptidase B with an acetate ion and two zinc atoms in the active site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akparov, V. Kh., E-mail: valery@akparov.ru; Timofeev, V. I., E-mail: tostars@mail.ru; Maghsoudi, N. N., E-mail: maghsudi@yahoo.com

    2017-03-15

    Crystals of porcine pancreatic carboxypeptidase B (CPB) were grown by the capillary counter-diffusion method in the presence of polyethylene glycol and zinc acetate. The three-dimensional structure of CPB was determined at 1.40 Å resolution using the X-ray diffraction data set collected from the crystals of the enzyme at the SPring 8 synchrotron facility and was refined to R{sub fact} = 17.19%, R{sub free} = 19.78%. The structure contains five zinc atoms, two of which are present in the active site of the enzyme, and an acetate ion. The arrangement of an additional zinc atom in the active site and themore » acetate ion is different from that reported by Yoshimoto et al.« less

  20. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.

    2012-12-01

    Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.

  1. Zinc activates damage-sensing TRPA1 ion channels.

    PubMed

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J; Zhu, Michael X; Patapoutian, Ardem

    2009-03-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.

  2. Modification of optical and electrical properties of zinc oxide-coated porous silicon nanostructures induced by swift heavy ion

    PubMed Central

    2012-01-01

    Morphological and optical characteristics of radio frequency-sputtered zinc aluminum oxide over porous silicon (PS) substrates were studied before and after irradiating composite films with 130 MeV of nickel ions at different fluences varying from 1 × 1012 to 3 × 1013 ions/cm2. The effect of irradiation on the composite structure was investigated by scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence spectroscopy. Current–voltage characteristics of ZnO-PS heterojunctions were also measured. As compared to the granular crystallites of zinc oxide layer, Al-doped zinc oxide (ZnO) layer showed a flaky structure. The PL spectrum of the pristine composite structure consists of the emission from the ZnO layer as well as the near-infrared emission from the PS substrate. Due to an increase in the number of deep-level defects, possibly oxygen vacancies after swift ion irradiation, PS-Al-doped ZnO nanocomposites formed with high-porosity PS are shown to demonstrate a broadening in the PL emission band, leading to the white light emission. The broadening effect is found to increase with an increase in the ion fluence and porosity. XRD study revealed the relative resistance of the film against the irradiation, i.e., the irradiation of the structure failed to completely amorphize the structure, suggesting its possible application in optoelectronics and sensing applications under harsh radiation conditions. PMID:22748164

  3. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  4. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications.

    PubMed

    Kogan, Samuel; Sood, Aditya; Garnick, Mark S

    2017-04-01

    Our understanding of the role of zinc in normal human physiology is constantly expanding, yet there are major gaps in our knowledge with regard to the function of zinc in wound healing. This review aims to provide the clinician with sufficient understanding of zinc biology and an up-to-date perspective on the role of zinc in wound healing. Zinc is an essential ion that is crucial for maintenance of normal physiology, and zinc deficiency has many manifestations ranging from delayed wound healing to immune dysfunction and impairment of multiple sensory systems. While consensus has been reached regarding the detrimental effects of zinc deficiency on wound healing, there is considerable discord in the literature on the optimal methods and true benefits of zinc supplementation.

  5. The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling

    PubMed Central

    Lee, Sung Ryul; Noh, Su Jin; Pronto, Julius Ryan; Jeong, Yu Jeong; Kim, Hyoung Kyu; Song, In Sung; Xu, Zhelong; Kwon, Hyog Young; Kang, Se Chan; Sohn, Eun-Hwa; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari

    2015-01-01

    Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn2+) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn2+ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn2+ levels are largely regulated by metallothioneins (MTs), Zn2+ importers (ZIPs), and Zn2+ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn2+. However, these regulatory actions of Zn2+ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn2+ levels, Zn2+-mediated signal transduction, impacts of Zn2+ on ion channels and mitochondrial metabolism, and finally, the implications of Zn2+ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn2+. PMID:26330751

  6. Iron, zinc, and copper in retinal physiology and disease.

    PubMed

    Ugarte, Marta; Osborne, Neville N; Brown, Laurence A; Bishop, Paul N

    2013-01-01

    The essential trace metals iron, zinc, and copper play important roles both in retinal physiology and disease. They are involved in various retinal functions such as phototransduction, the visual cycle, and the process of neurotransmission, being tightly bound to proteins and other molecules to regulate their structure and/or function or as unbound free metal ions. Elevated levels of "free" or loosely bound metal ions can exert toxic effects, and in order to maintain homeostatic levels to protect retinal cells from their toxicity, appropriate mechanisms exist such as metal transporters, chaperones, and the presence of certain storage molecules that tightly bind metals to form nontoxic products. The pathways to maintain homeostatic levels of metals are closely interlinked, with various metabolic pathways directly and/or indirectly affecting their concentrations, compartmentalization, and oxidation/reduction states. Retinal deficiency or excess of these metals can result from systemic depletion and/or overload or from mutations in genes involved in maintaining retinal metal homeostasis, and this is associated with retinal dysfunction and pathology. Iron accumulation in the retina, a characteristic of aging, may be involved in the pathogenesis of retinal diseases such as age-related macular degeneration (AMD). Zinc deficiency is associated with poor dark adaptation. Zinc levels in the human retina and RPE decrease with age in AMD. Copper deficiency is associated with optic neuropathy, but retinal function is maintained. The changes in iron and zinc homeostasis in AMD have led to the speculation that iron chelation and/or zinc supplements may help in its treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The significance of the source of zinc and its anti-VSC effect.

    PubMed

    Rölla, G; Jonski, G; Young, A

    2002-06-01

    The anti-VSC (volatile sulphur compounds) effect of zinc is known to be associated with free zinc ions. To examine whether zinc salts with low stability constants were more suitable as sources of zinc in zinc lozenges than zinc salts with high stability constants. The former provide free zinc ions upon dissolution in water, whereas the latter provide few such ions. Identical lozenges were produced which contained either zinc acetate, zinc gluconate (low stability constants), zinc citrate or amino-acid chelated zinc (extremely high stability constants). All the lozenges contained 0.1 per cent of zinc. A test panel of 10 volunteers used the different lozenges randomly. VSC were measured by GC. The lozenge with the highest stability constant was as effective as those with very low stability constants. The anti-VSC effect was thus not related to this constant. These findings may be explained by the possibility that alternative ligands with stronger affinity for zinc than the original ligands in the lozenges may be present in the oral cavity. An in vitro experiment indicated that the sulphide ion (S2-) may be such a ligand.

  8. Eluted zinc ions stimulate osteoblast differentiation and mineralization in human dental pulp stem cells for bone tissue engineering.

    PubMed

    Yusa, Kazuyuki; Yamamoto, Osamu; Iino, Mitsuyoshi; Takano, Hiroshi; Fukuda, Masayuki; Qiao, Zhiwei; Sugiyama, Toshihiro

    2016-11-01

    Zinc is an essential element for proliferation, differentiation and survival in various cell types. In a previous study, we found that zinc ions released from zinc-modified titanium surfaces (eluted zinc ions; EZ) stimulate cell viability, osteoblast marker gene expression and calcium deposition in human bone marrow-derived mesenchymal cells (hBMCs). The aim of the present study was to investigate the effects of EZ on osteoblast differentiation among dental pulp stem cells (DPSCs) in vitro. In this study, we evaluated the effects of EZ on osteogenesis in DPSCs. Osteoblast and osteoclast marker gene expression was evaluated by real-time PCR. We also evaluated alkaline phosphatase (ALP) staining and calcium deposition. We found that EZ stimulated osteoblast marker gene (type I collagen, alkaline phosphatase (ALP), osteocalcin (OCN) and Runx2) expression, vascular endothelial growth factor A (VEGF-A), and TGF-beta signaling pathway-related gene expression after 7days of incubation. Osteoclastogenesis occurs in a receptor for activated nuclear-factor kappa B ligand (RANKL)/osteoprotegerin (OPG)-independent manner. Real-time PCR analysis revealed that EZ did not affect RANKL or OPG mRNA expression. It was also revealed that EZ induced alkaline phosphatase (ALP) staining and calcium deposition in DPSCs. Collectively, these results demonstrate the potential for clinical application to prospective treatment of bone diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor.

    PubMed

    Li, Wei; Bottrill, Andrew R; Bibb, Maureen J; Buttner, Mark J; Paget, Mark S B; Kleanthous, Colin

    2003-10-17

    The regulation of disulphide stress in actinomycetes such as Streptomyces coelicolor is known to involve the zinc-containing anti-sigma factor RsrA that binds and inactivates the redox-regulated sigma factor sigmaR. However, it is not known how RsrA senses disulphide stress nor what role the metal ion plays. Using in vitro assays, we show that while zinc is not required for sigmaR binding it is required for functional anti-sigma factor activity, and that it plays a critical role in modulating the reactivity of RsrA cysteine thiol groups towards oxidation. Apo-RsrA is easily oxidised and, while the Zn-bound form is relatively resistant, the metal ion is readily expelled when the protein is treated with strong oxidants such as diamide. We also show, using a combination of proteolysis and mass spectrometry, that the first critical disulphide to form in RsrA involves Cys11 and one of either Cys41 or Cys44, all previously implicated in metal binding. Circular dichroism spectroscopy was used to follow structural changes during oxidation of RsrA, which indicated that concomitant with formation of this critical disulphide bond is a major restructuring of the protein where its alpha-helical content increases. Our data demonstrate that RsrA can only bind sigmaR in the reduced state and that this state is stabilised by zinc. Redox stress induces disulphide bond formation amongst zinc-ligating residues, expelling the metal ion and stabilising a structure incapable of binding the sigma factor.

  10. Photochemically stable fluorescent heteroditopic ligands for zinc ion.

    PubMed

    Zhang, Lu; Zhu, Lei

    2008-11-07

    Photochemically stable fluorescent heteroditopic ligands (9 and 10) for zinc ion were prepared and studied. Two independent metal coordination-driven photophysical processes, chelation-enhanced fluorescence (CHEF) and internal (or intramolecular) charge transfer (ICT), were designed into our heteroditopic ligand framework. This strategy successfully relates three coordination states of a ligand, non-, mono-, and dicoordinated, to three fluorescence states, fluorescence OFF, ON at one wavelength, and ON at another wavelength. This ligand platform has provided chemical foundation for applications such as the quantification of zinc concentration over broad ranges (Zhang, L.; Clark, R. J.; Zhu, L. Chem.-Eur. J. 2008, 14, 2894-2903) and molecular logic functions (Zhang, L.; Whitfield, W. A.; Zhu, L. Chem. Commun. 2008, 1880-1882). The binding stoichiometries of dipicolylamino and 2,2'-bipyridyl, the two binding sites featured in heteroditopic ligands 7-10, were studied in acetonitrile using both Job's method of continuous variation and isothermal titration calorimetry (ITC). The fluorescence enhancement of 7-10 upon the formation of monozinc complexes (defined as the fluorescence quantum yield ratio of monozinc complex and free ligand) is qualitatively related to the highest occupied molecular orbital (HOMO) energy levels of their fluorophores. This is consistent with our hypothesis on the thermodynamics of the coordination-driven photophysical processes embodied in the designed heteroditopic system, which was supported by cyclic voltammetry studies. In conclusion, compounds 9 and 10 not only possess better photochemical stability but also display a higher degree of fluorescence turn-on upon formation of monozinc complexes than their vinyl counterparts 7 and 8.

  11. A Photoluminescence Study of the Changes Induced in the Zinc White Pigment by Formation of Zinc Complexes

    PubMed Central

    Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela

    2017-01-01

    It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700

  12. Influence of zinc on the calcium carbonate biomineralization of Halomonas halophila

    PubMed Central

    2012-01-01

    Background The salt tolerance of halophilic bacteria make them promising candidates for technical applications, like isolation of salt tolerant enzymes or remediation of contaminated saline soils and waters. Furthermore, some halophilic bacteria synthesize inorganic solids resulting in organic–inorganic hybrids. This process is known as biomineralization, which is induced and/or controlled by the organism. The adaption of the soft and eco-friendly reaction conditions of this formation process to technical syntheses of inorganic nano materials is desirable. In addition, environmental contaminations can be entrapped in biomineralization products which facilitate the subsequent removal from waste waters. The moderately halophilic bacteria Halomonas halophila mineralize calcium carbonate in the calcite polymorph. The biomineralization process was investigated in the presence of zinc ions as a toxic model contaminant. In particular, the time course of the mineralization process and the influence of zinc on the mineralized inorganic materials have been focused in this study. Results H. halophila can adapt to zinc contaminated medium, maintaining the ability for biomineralization of calcium carbonate. Adapted cultures show only a low influence of zinc on the growth rate. In the time course of cultivation, zinc ions accumulated on the bacterial surface while the medium depleted in the zinc contamination. Intracellular zinc concentrations were below the detection limit, suggesting that zinc was mainly bound extracellular. Zinc ions influence the biomineralization process. In the presence of zinc, the polymorphs monohydrocalcite and vaterite were mineralized, instead of calcite which is synthesized in zinc-free medium. Conclusions We have demonstrated that the bacterial mineralization process can be influenced by zinc ions resulting in the modification of the synthesized calcium carbonate polymorph. In addition, the shape of the mineralized inorganic material is chancing

  13. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    PubMed Central

    Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.

    2013-01-01

    Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081

  14. Conformational Analysis on structural perturbations of the zinc finger NEMO

    NASA Astrophysics Data System (ADS)

    Godwin, Ryan; Salsbury, Freddie; Salsbury Group Team

    2014-03-01

    The NEMO (NF-kB Essential Modulator) Zinc Finger protein (2jvx) is a functional Ubiquitin-binding domain, and plays a role in signaling pathways for immune/inflammatory responses, apoptosis, and oncogenesis [Cordier et al., 2008]. Characterized by 3 cysteines and 1 histidine residue at the active site, the biologically occurring, bound zinc configuration is a stable structural motif. Perturbations of the zinc binding residues suggest conformational changes in the 423-atom protein characterized via analysis of all-atom molecular dynamics simulations. Structural perturbations include simulations with and without a zinc ion and with and without de-protonated cysteines, resulting in four distinct configurations. Simulations of various time scales show consistent results, yet the longest, GPU driven, microsecond runs show more drastic structural and dynamic fluctuations when compared to shorter duration time-scales. The last cysteine residue (26 of 28) and the helix on which it resides exhibit a secondary, locally unfolded conformation in addition to its normal bound conformation. Combined analytics elucidate how the presence of zinc and/or protonated cysteines impact the dynamics and energetic fluctuations of NEMO. Comprehensive Cancer Center of Wake Forest University Computational Biosciences shared resource supported by NCI CCSG P30CA012197.

  15. Mercury removal from aqueous solutions by zinc cementation.

    PubMed

    Ku, Young; Wu, Ming-Huan; Shen, Yung-Shen

    2002-01-01

    The main purpose of this research is to study the addition effect of the surfactant and other operating factors on the treatment of wastewater containing mercury ions in aqueous solution by cementation with sacrificing metal, zinc. The removal of mercury ions from aqueous solutions by cementation of zinc powder was found to be a function of solution pH and temperature, amount of zinc, concentration of mercury ion, contact time and the addition of several organic surfactants. Cementation of mercury was shown to be a feasible process to achieve a very high degree of mercury removal over a broad operational range within a fairly reasonable contact time. The reaction rate is approximately first order with respect to the concentration of mercury ion in aqueous solution. Among the surfactants used in this study, only the presence of SDS, an anionic surfactant, slightly enhanced the cementation rate of mercury. The presence of CTAB and Triton-X100 retarded the cementation of mercury by zinc.

  16. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  17. Effects of antioxidant components of AREDS vitamins and zinc ions on endothelial cell activation: implications for macular degeneration.

    PubMed

    Zeng, Shemin; Hernández, Jasmine; Mullins, Robert F

    2012-02-01

    To investigate whether the benefit of Age-Related Eye Disease Study (AREDS) formula multivitamins and zinc in the progression of age-related macular degeneration (AMD) may occur through inhibiting inflammatory events in the choroid. Mouse C166 endothelial cells (ECs) and, for some experiments, human retinal pigment epithelium (RPE)-choroid organ cultures were treated with AREDS multivitamin solution (MVS) or ZnCl(2). The cytotoxicity of MVS was evaluated using a lactate dehydrogenase colorimetric assay. Cell motility was assessed using a scratch assay. Macrophage adhesion to EC monolayers or ICAM-1 protein was determined after MVS and zinc treatment and with or without lipopolysaccharide (LPS). Quantitative reverse transcription PCR and Western blot analysis were used to determine the effects of MVS on the expression of proinflammatory molecules in treated and untreated cells. AREDS MVS and zinc did not affect C166 EC viability until the 56th hour after treatment. Scratch assays showed partial inhibition of MVS and zinc on EC migration. In cell adhesion assays, MVS and zinc decreased the number of macrophages bound to EC and to ICAM-1 protein. Quantitative PCR showed that LPS increased the expression of ICAM-1 in both C166 and human RPE-choroid cultures, which was partially offset by MVS and zinc. MVS and zinc also mitigated LPS-induced ICAM-1 protein expression on Western blot analysis. Treatment with AREDS MVS and zinc may affect both angiogenesis and endothelial-macrophage interactions. These results suggest that AREDS vitamins and zinc ions may slow the progression of AMD, in part through the attenuation of EC activation.

  18. Zinc naphthalenedicarboxylate coordination complex: A promising anode material for lithium and sodium-ion batteries with good cycling stability.

    PubMed

    Fei, Hailong; Feng, Wenjing; Xu, Tan

    2017-02-15

    It is important to discover new, cheap and environmental friendly electrode materials with high capacity and good cycling stability for lithium and sodium-ion batteries. Zinc 1,4-naphthalenedicarboxylate was firstly found to be stable anode materials for lithium and sodium-ion batteries. The discharge capacity can be up to 468.9mAhg -1 after 100 cycles at a current density of 100mAg -1 for lithium-ion batteries, while the second discharge capacity of 320.7mAhg -1 was achieved as anode materials for sodium-ion batteries. A possible electrochemical reaction mechanism was discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994

  20. 5-Arylvinyl-2,2′-bipyridyls: Bright “push–pull” dyes as components in fluorescent indicators for zinc ions

    PubMed Central

    Zhu, Lei; Younes, Ali H.; Yuan, Zhao; Clark, Ronald J.

    2015-01-01

    This article reviews the zinc(II)-dependent photophysical properties of arylvinylbipyridines (AVBs), a class of fluoroionophores in which 2,2′-bipyridyl and an aryl moiety are electronically conjugated. Zinc(II) binding of an AVB may lead to an emission bathochromic shift of the fluoroionophore without diminishing its fluorescence quantum yield. This observation can be explained using the excited state model of electron donor–π bridge–electron acceptor “push–pull” fluorophores, in which the bipy moiety acts as an electron acceptor, and zinc(II)-coordination strengthens its electron affinity. The spectral sensitivity of bipy-containing fluoroionophores, such as AVBs, to zinc(II) can be exploited to prepare fluorescent indicators for this ion. In several cases, AVB moieties are incorporated in fluorescent heteroditopic ligands, so that the variation of zinc(II) concentration over a relatively large range can be correlated to fluorescence changes in either intensity or color. AVB fluoroionophores are also used to introduce an intramolecular Förster resonance energy transfer (FRET) strategy for creating zinc(II) indicators with high photostability and a narrow emission band, two desired characteristics of dyes used in fluorescence microscopy. PMID:26190906

  1. Expression of zinc transporter ZnT7 in mouse superior cervical ganglion

    USDA-ARS?s Scientific Manuscript database

    The superior cervical ganglion (SCG) neurons contain a considerable amount of zinc ions, but little is known about zinc homeostasis in the SCG. It is known that zinc transporter 7 (ZnT7, Slc30a7), a member of the Slc30 ZnT family, is involved in mobilizing zinc ions from the cytoplasm into the Golgi...

  2. Effects of Antioxidant Components of AREDS Vitamins and Zinc Ions on Endothelial Cell Activation: Implications for Macular Degeneration

    PubMed Central

    Zeng, Shemin; Hernández, Jasmine

    2012-01-01

    Purpose. To investigate whether the benefit of Age-Related Eye Disease Study (AREDS) formula multivitamins and zinc in the progression of age-related macular degeneration (AMD) may occur through inhibiting inflammatory events in the choroid. Methods. Mouse C166 endothelial cells (ECs) and, for some experiments, human retinal pigment epithelium (RPE)–choroid organ cultures were treated with AREDS multivitamin solution (MVS) or ZnCl2. The cytotoxicity of MVS was evaluated using a lactate dehydrogenase colorimetric assay. Cell motility was assessed using a scratch assay. Macrophage adhesion to EC monolayers or ICAM-1 protein was determined after MVS and zinc treatment and with or without lipopolysaccharide (LPS). Quantitative reverse transcription PCR and Western blot analysis were used to determine the effects of MVS on the expression of proinflammatory molecules in treated and untreated cells. Results. AREDS MVS and zinc did not affect C166 EC viability until the 56th hour after treatment. Scratch assays showed partial inhibition of MVS and zinc on EC migration. In cell adhesion assays, MVS and zinc decreased the number of macrophages bound to EC and to ICAM-1 protein. Quantitative PCR showed that LPS increased the expression of ICAM-1 in both C166 and human RPE-choroid cultures, which was partially offset by MVS and zinc. MVS and zinc also mitigated LPS-induced ICAM-1 protein expression on Western blot analysis. Conclusions. Treatment with AREDS MVS and zinc may affect both angiogenesis and endothelial-macrophage interactions. These results suggest that AREDS vitamins and zinc ions may slow the progression of AMD, in part through the attenuation of EC activation. PMID:22247465

  3. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  4. Using fluorescence measurement of zinc ions liberated from ZnS nanoparticle labels in bioassay for Escherichia coli O157:H7

    NASA Astrophysics Data System (ADS)

    Cowles, Chad L.; Zhu, Xiaoshan; Pai, Chi-Yun

    2011-10-01

    In this study, an alternative approach using ZnS nanoparticle biolabels as fluorescence signal transducers is reported for the immunoassay of E. coli O157:H7 in tap water samples. Instead of measuring the fluorescence of ZnS nanoparticles in the assay, the fluorescence signal is generated through the binding of zinc ions released from nanoparticle labels with zinc-ion sensitive fluorescence indicator Fluozin-3. In the assay, ZnS nanoparticles around 50 nm in diameter were synthesized, bioconjugated, and applied for the detection of E. coli O157:H7. The assay shows a detection range over two orders of magnitude and a detection limit around 1000 colony-forming units (cfu) of E. coli O157:H7.

  5. Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics

    NASA Astrophysics Data System (ADS)

    Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi

    2012-06-01

    Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.

  6. Revisiting the open-framework zinc hexacyanoferrate: The role of ternary electrolyte and sodium-ion intercalation mechanism

    NASA Astrophysics Data System (ADS)

    Niu, Lei; Chen, Liang; Zhang, Jun; Jiang, Ping; Liu, Zhaoping

    2018-03-01

    Non-flammable rechargeable aqueous sodium-ion batteries (RASB) made from natural abundant resources offer promising opportunities in large-scale energy storage, yet the low energy density as well as low voltage output and the limited cycle life hinder their practical applications. Here, we develop a high-voltage RASB based on rhombohedral zinc hexacyanoferrate as cathode materials, carbon-coated NaTi2(PO4)3 as anode materials and ternary NaClO4-H2O-polyethylene glycol (Na-H2O-PEG) as electrolyte to overcome these drawbacks. Such an RASB can deliver a high voltage output of 1.6 V with a specific energy density of 59 Wh kg-1 based on the total mass of active electrode materials. In addition, it possesses an excellent rate capability as an ultra-capacitor (2.7 kW kg-1). The capacity retention more than 91% is obtained after 100 cycles. Finally, a reversible phase transformation between rhombohedral Zn3[Fe(CN)6]2 and rhombohedral Na2Zn3[Fe(CN)6]2 that are accompanied by the insertion/extraction of sodium ion in zinc hexacyanoferrate is unveiled.

  7. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  8. Polyacrylamide Gel-Contained Zinc Finger Peptide as the "Lock" and Zinc Ions as the "Key" for Construction of Ultrasensitive Prostate-Specific Antigen SERS Immunosensor.

    PubMed

    Xie, Linglin; Yang, Xia; He, Yi; Yuan, Ruo; Chai, Yaqin

    2018-05-02

    In this work, we adopted polyacrylamide gel-contained zinc finger peptide (PZF) as a "lock" of Raman signal and zinc ions (Zn 2+ ) as a sensitive "key", which was converted from target-captured ZnO NPs, to achieve the measurement of prostate-specific antigen (PSA). Owing to the lock effect from PZF, the surface-enhanced Raman scattering (SERS) tag toluidine blue (TB) connected on Ag NP-coating silica wafer was sheltered leading to low Raman response. Meanwhile, target PSA can specifically connect with antibody 2-coupled ZnO nanocomplexes (ZnO@Au@Ab 2 ) and antibody 1-coupled magnetic (CoFe 2 O 4 @Au@Ab 1 ) nanocomposite through sandwich immunoassay. In the presence of HCl, the ZnO NPs would convert into Zn 2+ to open the PZF because Zn 2+ can specifically react with zinc finger peptide to destroy the PZF structure forming abundant pores. In this way, Zn 2+ could act as the key of Raman signal to open the PZF structure obtaining a strong Raman signal of TB. The proposed SERS sensor can have a quantitative detection of PSA within the range of 1 pg mL -1 to 10 ng mL -1 with a detection limit of 0.65 pg mL -1 . The interaction between zinc finger peptide and Zn 2+ was firstly applied in SERS sensor for the sensitive detection of PSA. These results demonstrated that the new designed SERS biosensor could be a promising tool in biomarker diagnosis.

  9. Elaboration and characterization of solid materials of types zeolite NaA and faujasite NaY exchanged by zinc metallic ions Zn2+

    NASA Astrophysics Data System (ADS)

    Nibou, D.; Amokrane, S.; Mekatel, H.; Lebaili, N.

    2009-11-01

    The present work deals with the elaborated of NaA and faujasite NaY solid materials according to a hydrothermal crystallization of amorphous gels composed of solutions of silicon, aluminum and sodium. The process elaboration has been achieved in autoclaves made of steel lined in Teflon under different operating conditions of temperature of heating, time of contact and stirring. After crystallization, the samples were characterized by different techniques such as X ray diffraction, scanning electronic microscopy, infrared spectroscopy, thermal analysis, and chemical analysis. Pure solid materials NaA and NaY zeolites were obtained and were impregnated by (Zn2+) ions by ion exchange process. The effects of various parameters such as initial metal concentration, pH, solid-liquid ratio (R) and temperature on the exchange percentage are studied. The equilibrium isotherms of zinc ions sorption are also evaluated using Langmuir and Freundlich models. Thermodynamic parameters, i.e. enthalpy of adsorption ΔHads∘, entropy change ΔSads∘ and Gibbs free energy ΔGads∘ for the sorption of zinc ions on NaA and NaY zeolites were examined.

  10. Zinc-Permeable Ion Channels: Effects on Intracellular Zinc Dynamics and Potential Physiological/Pathophysiological Significance

    PubMed Central

    Inoue, Koichi; O'Bryant, Zaven; Xiong, Zhi-Gang

    2015-01-01

    Zinc (Zn2+) is one of the most important trace metals in the body. It is necessary for the normal function of a large number of proteins including enzymes and transcription factors. While extracellular fluid may contain up to micromolar Zn2+, intracellular Zn2+ concentration is generally maintained at a subnanomolar level; this steep gradient across the cell membrane is primarily attributable to Zn2+ extrusion by Zn2+ transporting systems. Interestingly, systematic investigation has revealed that activities, previously believed to be dependent on calcium (Ca2+), may be partially mediated by Zn2+. This is also supported by new findings that some Ca2+-permeable channels such as voltage-dependent calcium channels (VDCCs), N-methyl-D-aspartate receptors (NMDA), and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPA-Rs) are also permeable to Zn2+. Thus, the importance of Zn2+ in physiological and pathophysiological processes is now more widely appreciated. In this review, we describe Zn2+-permeable membrane molecules, especially Zn2+-permeable ion channels, in intracellular Zn2+dynamics and Zn2+ mediated physiology/pathophysiology. PMID:25666796

  11. Effect of doping with nickel ions on the structural state of a zinc oxide crystal

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Maksimov, V. I.; Gruzdev, N. B.

    2009-10-01

    The fine structure of a hexagonal zinc oxide crystal doped with nickel ions of the composition Zn1 - x Ni x O has been studied using neutron diffraction and magnetic measurements. It is established that even at very low doping levels ( x = 0.0004), the crystal undergoes local distortions in basal planes of the initial hexagonal lattice. The local distortions are assumed to be sources of the formation of ferromagnetism in compounds of this class.

  12. Incorporation of zinc into the coccoliths of the microalga Emiliania huxleyi.

    PubMed

    Santomauro, Giulia; Sun, Wei-Lin; Brümmer, Franz; Bill, Joachim

    2016-04-01

    The coccolithophore Emiliania huxleyi is covered with elaborated calcite plates, the so-called coccoliths, which are produced inside the cells. We investigated the incorporation of zinc into the coccoliths of E. huxleyi by applying different zinc and calcium amounts via the culture media and subsequently analyzing the zinc content in the cells and the Zn/Ca ratio of the coccoliths. To investigate the Zn/Ca ratio of coccoliths built in the manipulated media, the algae have first to be decalcified, i.e. coccolith free. We used a newly developed decalcification method to obtain 'naked' cells for cultivation. E. huxleyi proliferated and produced new coccoliths in all media with manipulated Zn/Ca ratios. The cells and the newly built coccoliths were investigated regarding their zinc content and their Zn/Ca ratio, respectively. High zinc amounts were taken up by the algae. The Zn/Ca ratio of the coccoliths was positively correlated to the Zn/Ca ratio of the applied media. The unique feature of the coccoliths was maintained also at high Zn/Ca ratios. We suggest the following pathway of the zinc ions into the coccoliths: first, the zinc ions are bound to the cell surface, followed by their transportation into the cytoplasm. Obviously, the zinc ions are removed afterwards into the coccolith vesicle, where the zinc is incorporated into the calcite coccoliths which are then extruded. The incorporation of toxic zinc ions into the coccoliths possibly due to a new function of the coccoliths as detoxification sites is discussed.

  13. HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    We have previously shown that exposure to zinc ions can activate epidermal growth factor (EGF) receptor (EGFR) signaling in murine fibroblasts and A431 cells through a mechanism involving Src kinase. While studying the effects of zinc ions in normal human bronchial epithelial cel...

  14. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers.

    PubMed

    Wan, Fang; Zhang, Linlin; Dai, Xi; Wang, Xinyu; Niu, Zhiqiang; Chen, Jun

    2018-04-25

    Rechargeable aqueous zinc-ion batteries are promising energy storage devices due to their high safety and low cost. However, they remain in their infancy because of the limited choice of positive electrodes with high capacity and satisfactory cycling performance. Furthermore, their energy storage mechanisms are not well established yet. Here we report a highly reversible zinc/sodium vanadate system, where sodium vanadate hydrate nanobelts serve as positive electrode and zinc sulfate aqueous solution with sodium sulfate additive is used as electrolyte. Different from conventional energy release/storage in zinc-ion batteries with only zinc-ion insertion/extraction, zinc/sodium vanadate hydrate batteries possess a simultaneous proton, and zinc-ion insertion/extraction process that is mainly responsible for their excellent performance, such as a high reversible capacity of 380 mAh g -1 and capacity retention of 82% over 1000 cycles. Moreover, the quasi-solid-state zinc/sodium vanadate hydrate battery is also a good candidate for flexible energy storage device.

  15. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells.

    PubMed

    Fernández, Dolores; García-Gómez, Concepción; Babín, Mar

    2013-05-01

    Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.

  16. Zinc in Infection and Inflammation.

    PubMed

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  17. LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites

    PubMed Central

    Carvalho, Sandra; da Silva, Rosa Barreira; Shawki, Ali; Castro, Helena; Lamy, Márcia; Eide, David; Costa, Vítor; Mackenzie, Bryan; Tomás, Ana M.

    2016-01-01

    Summary Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn2+ was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 μM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis. PMID:25644708

  18. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-05

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. S-Mercuration of rat sorbitol dehydrogenase by methylmercury causes its aggregation and the release of the zinc ion from the active site.

    PubMed

    Kanda, Hironori; Toyama, Takashi; Shinohara-Kanda, Azusa; Iwamatsu, Akihiro; Shinkai, Yasuhiro; Kaji, Toshiyuki; Kikushima, Makoto; Kumagai, Yoshito

    2012-11-01

    We previously developed a screening method to identify proteins that undergo aggregation through S-mercuration by methylmercury (MeHg) and found that rat arginase I is a target protein for MeHg (Kanda et al. in Arch Toxicol 82:803-808, 2008). In the present study, we characterized another S-mercurated protein from a rat hepatic preparation that has a subunit mass of 42 kDa, thereby facilitating its aggregation. Two-dimensional SDS-polyacrylamide gel electrophoresis and subsequent peptide mass fingerprinting using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry revealed that the 42 kDa protein was NAD-dependent sorbitol dehydrogenase (SDH). With recombinant rat SDH, we found that MeHg is covalently bound to SDH through Cys44, Cys119, Cys129 and Cys164, resulting in the inhibition of its catalytic activity, release of zinc ions and facilitates protein aggregation. Mutation analysis indicated that Cys44, which ligates the active site zinc atom, and Cys129 play a crucial role in the MeHg-mediated aggregation of SDH. Pretreatment with the cofactor NAD, but not NADP or FAD, markedly prevented aggregation of SDH. Such a protective effect of NAD on the aggregation of SDH caused by MeHg is discussed.

  20. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.

    PubMed

    Krężel, Artur; Maret, Wolfgang

    2017-06-09

    Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn 2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn 2+ , the loading of exocytotic vesicles with zinc species, and the control of Zn 2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn 2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn 2+ and Cu⁺ match the biological requirements for controlling-binding and delivering-these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn 2+ and Cu⁺. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  1. Combined copper/zinc attachment to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  2. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less

  3. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    NASA Astrophysics Data System (ADS)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  4. Applications of Nanomaterials Based on Magnetite and Mesoporous Silica on the Selective Detection of Zinc Ion in Live Cell Imaging.

    PubMed

    Erami, Roghayeh Sadeghi; Ovejero, Karina; Meghdadi, Soraia; Filice, Marco; Amirnasr, Mehdi; Rodríguez-Diéguez, Antonio; De La Orden, María Ulagares; Gómez-Ruiz, Santiago

    2018-06-14

    Functionalized magnetite nanoparticles (FMNPs) and functionalized mesoporous silica nanoparticles (FMSNs) were synthesized by the conjugation of magnetite and mesoporous silica with the small and fluorogenic benzothiazole ligand, that is, 2(2-hydroxyphenyl)benzothiazole ( hpbtz ). The synthesized fluorescent nanoparticles were characterized by FTIR, XRD, XRF, 13 C CP MAS NMR, BET, and TEM. The photophysical behavior of FMNPs and FMSNs in ethanol was studied using fluorescence spectroscopy. The modification of magnetite and silica scaffolds with the highly fluorescent benzothiazole ligand enabled the nanoparticles to be used as selective and sensitive optical probes for zinc ion detection. Moreover, the presence of hpbtz in FMNPs and FMSNs induced efficient cell viability and zinc ion uptake, with desirable signaling in the normal human kidney epithelial (Hek293) cell line. The significant viability of FMNPs and FMSNs (80% and 92%, respectively) indicates a potential applicability of these nanoparticles as in vitro imaging agents. The calculated limit of detections (LODs) were found to be 2.53 × 10 −6 and 2.55 × 10 −6 M for Fe₃O₄-H@hpbtz and MSN-Et₃N-IPTMS-hpbtz-f1, respectively. FMSNs showed more pronounced zinc signaling relative to FMNPs, as a result of the more efficient penetration into the cells.

  5. Promotive Effect of Zinc Ions on the Vitality, Migration, and Osteogenic Differentiation of Human Dental Pulp Cells.

    PubMed

    An, Shaofeng; Gong, Qimei; Huang, Yihua

    2017-01-01

    Zinc is an essential trace element for proper cellular function and bone formation. However, its exact role in the osteogenic differentiation of human dental pulp cells (hDPCs) has not been fully clarified before. Here, we speculated that zinc may be effective to regulate their growth and osteogenic differentiation properties. To test this hypothesis, different concentrations (1 × 10 -5 , 4 × 10 -5 , and 8 × 10 -5  M) of zinc ions (Zn 2+ ) were added to the basic growth culture medium and osteogenic inductive medium. Cell viability and migration were measured by cell counting kit-8 (CCK-8) and transwell migration assay in the basic growth culture medium, respectively. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expression levels of selective osteogenic differentiation markers and zinc transporters. Alkaline phosphatase (ALP) activity analysis and alizarin red S staining were used to investigate the mineralization of hDPCs. Exposure of hDPCs to Zn 2+ stimulated their viability and migration capacity in a dose- and time-dependent manner. RT-qPCR assay revealed elevated expression levels of osteogenic differentiation-related genes and zinc transporters genes in various degrees. ALP activity was also increased with elevated Zn 2+ concentrations and extended culture periods, but enhanced matrix nodules formation were observed only in 4 × 10 -5 and 8 × 10 -5  M Zn 2+ groups. These findings suggest that specific concentrations of Zn 2+ could potentiate the vitality, migration, and osteogenic differentiation of hDPCs. We may combine optimum zinc element into pulp capping materials to improve their biological performance.

  6. Zinc in Infection and Inflammation

    PubMed Central

    Gammoh, Nour Zahi; Rink, Lothar

    2017-01-01

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136

  7. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    NASA Astrophysics Data System (ADS)

    Oboh, I.; Aluyor, E.; Audu, T.

    2015-03-01

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R2), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  8. Unprecedented chemosensing behavior of novel tetra-substituted benzimidazole zinc(II) phthalocynine for selective detection of Bi3 + ion: Synthesis, characterization and ROS generation

    NASA Astrophysics Data System (ADS)

    Ullah, Azeem; Shah, Faheem; Khan, Imran; Anwar, Muhammad; Shah, Kiramat; Muhammad, Munira Taj; Ahmad, Farid

    2018-03-01

    In this work, synthesis of novel symmetrical 4-(2-bromo-4-(5-bromo-1H-benzo[d] imidazol-2-yl) phenoxy) tetra substituted zinc phthalocyanine has been reported. The novel benzimidazole zinc phthlocynine compound (3) has been characterized by MALDI-TOF MS, FT-IR, UV-vis, and 1H NMR spectroscopy. This new compound 3 displayed excellent selectivity towards Bi3 + ion in the presence of other competitive ions including Ca2 +, Cd2 +, Co2 + Cu2 +, Fe3 +, Hg2 +, Sn2 +, Mg2 +, Na+, Ni2 + and Pb2 + respectively. Upon addition of Bi3 + into the solution of compound 3 in DMSO, dramatic change was observed in the Q- and the B-bands in UV-visible spectra as a result of donor acceptor interactions. Reactive oxygen species (ROS) were also studied using 2,7-dichlorofluorescin diacetate (DCFH-DA) a fluorescent probe which is converted to highly fluorescent dichlorofluorescein (DCF) in the presence of ROS. This property of non-aggregating zinc phthalocyanine is promising as a photosensitizer in photodynamic therapy of cancer.

  9. Binding of iron, zinc, and lead ions from aqueous solution by shea butter (Butyrospermun Parkii) seed husks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eromosele, I.C.; Otitolaye, O.O.

    1994-08-01

    Several workers have reported on the potential use of agricultural products as substrates for the removal of metal ions from aqueous solutions. These studies demonstrated that considerable amounts of metal ions can be removed from aqueous solutions by cellulosic materials. The merit in the use of the latter is their relative abundance and cheapness compared to conventional materials for the removal of toxic metal ions from waste-waters. In some of the studies, chemical modification of cellulosic materials significantly enhanced their ion-binding properties, providing greater flexibility in their applications to a wide range of heavy metal ions. Shea butter plant (Butyrospermunmore » Parkii) normally grows in the wild within the guinea-savana zone of Nigeria. The seeds are a rich source of edible oils and the husks are usually discarded. The husk is thus available in abundance and, hence, there is reason to examine its ion-binding properties for its possible application in the removal of toxic metal ions from industrial waste-waters. This paper reports on preliminary studies of the sorption of iron, zinc and lead ions from aqueous solution by modified and unmodified shea butter seed husks. 8 refs., 5 figs., 1 tab.« less

  10. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity.

    PubMed

    Zhang, Ziran; Zhou, Feibai; Liu, Xiaoling; Zhao, Mouming

    2018-08-30

    An oyster protein hydrolysates-zinc complex (OPH-Zn) was prepared and investigated to improve zinc bioaccessibility. Zinc ions chelating with oyster protein hydrolysates (OPH) cause intramolecular and intermolecular folding and aggregation, homogeneously forming the OPH-Zn complex as nanoclusters with a Z-average at 89.28 nm (PDI: 0.16 ± 0.02). The primary sites of zinc-binding in OPH were carboxyl groups, carbonyl groups, and amino groups, and they were related to the high number of charged amino acid residues. Furthermore, formation of the OPH-Zn complex could significantly enhance zinc solubility both under specific pH conditions as well as during simulated gastrointestinal digestion, compared to the commonly used ZnSO 4 . Additionally, after digestion, either preserved or enhanced antioxidant activity of OPH was found when chelated with zinc. These results indicated that the OPH-Zn complex could be a potential functional ingredient with improved antioxidant bioactivity and zinc bioaccessibility. Copyright © 2018. Published by Elsevier Ltd.

  11. Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells.

    PubMed

    Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A

    2013-07-01

    The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. Copyright © 2013 Wiley Periodicals, Inc.

  12. [Influence of trematode invasion and zinc ions on the histometric peculiarities of haemocytes and some hematological indices of Planorbarius purpura (Gastropoda: Pulmonata: Bulinidae)].

    PubMed

    Kirichuk, G E; Stadnichenko, A P

    2010-01-01

    Cellular components of the Planorbarius purpura hemolymph are represented by three phyla of haemocytes (prohemocytes, eosinophilis microgranulocytes, and basophilis granulocytes) and vesicular cells. As a result of the invasions of P. purpura with the trematode Echinoparyphium aconiatum, changes of the linear dimensions of granular hemocytes and their nuclei took place. Moreover, an increase of the hemocytes' number per l mm3 of hemolymph and change of the percentages of different hemocyte types were recorded. Under the influence of zinc ions, linear dimensions of prohemocytes and their nuclei (at 10 MPCns of the toxicant) were changed. In granular hemocytes and abnormalities of all histometrical and hematological parameters were observed. All cytometrical, karyometrical, and hematological alterations were expressed more clearly in infested mollusks than in non-infested ones, and occurred usually under lower concentrations of zinc ions.

  13. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oboh, I., E-mail: innocentoboh@uniuyo.edu.ng; Aluyor, E.; Audu, T.

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used tomore » predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.« less

  14. Temperature effect on the structure and conformational fluctuations in two zinc knuckles from the mouse mammary tumor virus.

    PubMed

    Nedjoua, Drici; Krallafa, Abdelghani Mohamed

    2018-06-01

    Zinc fingers are small protein domains in which zinc plays a structural role, contributing to the stability of the zinc-peptide complex. Zinc fingers are structurally diverse and are present in proteins that perform a broad range of functions in various cellular processes, such as replication and repair, transcription and translation, metabolism and signaling, cell proliferation, and apoptosis. Zinc fingers typically function as interaction modules and bind to a wide variety of compounds, such as nucleic acids, proteins, and small molecules. In this study, we investigated the structural properties, in solution, of the proximal and distal zinc knuckles of the nucleocapsid (NC) protein from the mouse mammary tumor virus (MMTV) (MMTV NC). For this purpose, we performed a series of molecular dynamics simulations in aqueous solution at 300 K, 333 K, and 348 K. The temperature effect was evaluated in terms of root mean square deviation of the backbone atoms and root mean square fluctuation of the coordinating residue atoms. The stability of the zinc coordination sphere was analyzed based upon the time profile of the interatomic distances between the zinc ions and the chelator atoms. The results indicate that the hydrophobic character of the proximal zinc finger is dominant at 333 K. The low mobility of the coordinating residues suggests that the strong electrostatic effect exerted by the zinc ion on its coordinating residues is not influenced by the increase in temperature. The evolution of the structural parameters of the coordination sphere of the distal zinc finger at 300 K gives us a reasonable picture of the unfolding pathway, as proposed by Bombarda and coworkers (Bombarda et al., 2005), which can predict the binding order of the four conserved ligand-binding residues. Our results support the conclusion that the structural features can vary significantly between the two zinc knuckles of MMTV NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  16. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    PubMed

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  17. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    NASA Astrophysics Data System (ADS)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  18. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  19. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  20. Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes

    PubMed Central

    Maret, Wolfgang

    2017-01-01

    About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic β- and α-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the patho-biochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of β-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions. PMID:28401081

  1. Motif discovery with data mining in 3D protein structure databases: discovery, validation and prediction of the U-shape zinc binding ("Huf-Zinc") motif.

    PubMed

    Maurer-Stroh, Sebastian; Gao, He; Han, Hao; Baeten, Lies; Schymkowitz, Joost; Rousseau, Frederic; Zhang, Louxin; Eisenhaber, Frank

    2013-02-01

    Data mining in protein databases, derivatives from more fundamental protein 3D structure and sequence databases, has considerable unearthed potential for the discovery of sequence motif--structural motif--function relationships as the finding of the U-shape (Huf-Zinc) motif, originally a small student's project, exemplifies. The metal ion zinc is critically involved in universal biological processes, ranging from protein-DNA complexes and transcription regulation to enzymatic catalysis and metabolic pathways. Proteins have evolved a series of motifs to specifically recognize and bind zinc ions. Many of these, so called zinc fingers, are structurally independent globular domains with discontinuous binding motifs made up of residues mostly far apart in sequence. Through a systematic approach starting from the BRIX structure fragment database, we discovered that there exists another predictable subset of zinc-binding motifs that not only have a conserved continuous sequence pattern but also share a characteristic local conformation, despite being included in totally different overall folds. While this does not allow general prediction of all Zn binding motifs, a HMM-based web server, Huf-Zinc, is available for prediction of these novel, as well as conventional, zinc finger motifs in protein sequences. The Huf-Zinc webserver can be freely accessed through this URL (http://mendel.bii.a-star.edu.sg/METHODS/hufzinc/).

  2. Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes

    DOE PAGES

    Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui; ...

    2016-01-14

    Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI) 2, acetonitrile Zn(CF 3SO 3) 2, and propylene carbonate Zn(TFSI) 2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates thatmore » the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less

  3. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    NASA Astrophysics Data System (ADS)

    Xu, Juan; Ding, Gang; Li, Jinlu; Yang, Shenhui; Fang, Bisong; Sun, Hongchen; Zhou, Yanmin

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased ( p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  4. Combined experimental and theoretical studies on selective sensing of zinc and pyrophosphate ions by rational design of compartmental chemosensor probe: Dual sensing behaviour via secondary recognition approach and cell imaging studies.

    PubMed

    Mawai, Kiran; Nathani, Sandip; Roy, Partha; Singh, U P; Ghosh, Kaushik

    2018-05-08

    A compartmental chemosensor probe HL has been designed and synthesized for the selective recognition of zinc ions over other transition metal ions via fluorescence "ON" strategy. The chemosensing behaviour of HL was demonstrated through fluorescence, absorption and NMR spectroscopic techniques. The molecular structure of the zinc complex derived from HL was determined by X-ray crystallography. A probable mechanism of this selective sensing behavior was described on the basis of spectroscopic results and theoretical studies by density functional theory (DFT). The biological applicability of the chemosensor HL was examined via cell imaging on HeLa cells. The HL-zinc complex served as a secondary fluorescent probe responding to the pyrophosphate anion specifically over other anions. The fluorescence enhancement of HL in association with Zn2+ ions was quenched in the presence of pyrophosphate (PPi). Thus, a dual response was established based on "OFF-ON-OFF" strategy for detection of both cation and anion. This phenomenon was utilized in the construction of a "INHIBIT" logic gate.

  5. Growth and characterization of divalent transition metal ions doped zinc hydrogen phosphate single crystals

    NASA Astrophysics Data System (ADS)

    D'Souza, Delma; Jagannatha, N.; Nagaraja, K. P.; Rohith, P. S.; Pradeepkumar, K. V.

    2018-05-01

    Zinc hydrogen phosphate (ZnHP) single crystal co-doped with divalent transition metal ions Cobalt (Co2+) and Cadmium (Cd2+) is grown by gel technique in silica hydro gel media. The presence of Co2+ and Cd2+ dopants in the ZnHP crystal was confirmed by Energy Dispersive X-ray Analysis (EDAX).FTIR spectra of the grown crystal depict the stretching and bending vibration of PO4 units, water of crystallization and metal-oxygen bonds. Powder XRD analysis reveals that the grown crystal belongs to monoclinic system with spacegroup P 21. The thermal stability of the grown crystal is rectified from TG-DSC studies.

  6. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  7. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  8. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  9. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model.

    PubMed

    Yang, Hongtao; Wang, Cong; Liu, Chaoqiang; Chen, Houwen; Wu, Yifan; Han, Jintao; Jia, Zichang; Lin, Wenjiao; Zhang, Deyuan; Li, Wenting; Yuan, Wei; Guo, Hui; Li, Huafang; Yang, Guangxin; Kong, Deling; Zhu, Donghui; Takashima, Kazuki; Ruan, Liqun; Nie, Jianfeng; Li, Xuan; Zheng, Yufeng

    2017-11-01

    In the present study, pure zinc stents were implanted into the abdominal aorta of rabbits for 12 months. Multiscale analysis including micro-CT, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and histological stainings was performed to reveal the fundamental degradation mechanism of the pure zinc stent and its biocompatibility. The pure zinc stent was able to maintain mechanical integrity for 6 months and degraded 41.75 ± 29.72% of stent volume after 12 months implantation. No severe inflammation, platelet aggregation, thrombosis formation or obvious intimal hyperplasia was observed at all time points after implantation. The degradation of the zinc stent played a beneficial role in the artery remodeling and healing process. The evolution of the degradation mechanism of pure zinc stents with time was revealed as follows: Before endothelialization, dynamic blood flow dominated the degradation of pure zinc stent, creating a uniform corrosion mode; After endothelialization, the degradation of pure zinc stent depended on the diffusion of water molecules, hydrophilic solutes and ions which led to localized corrosion. Zinc phosphate generated in blood flow transformed into zinc oxide and small amounts of calcium phosphate during the conversion of degradation microenvironment. The favorable physiological degradation behavior makes zinc a promising candidate for future stent applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of phytate and zinc ions on fluoride toothpaste efficacy using an in situ caries model.

    PubMed

    Parkinson, Charles R; Burnett, Gary R; Creeth, Jonathan E; Lynch, Richard J M; Budhawant, Chandrashekhar; Lippert, Frank; Hara, Anderson T; Zero, Domenick T

    2018-06-01

    To compare and explore the dose-response of phytate-containing 1150 ppm fluoride toothpastes on model caries lesions and to determine the impact of zinc ions. This was a single-centre, randomised, blinded (examiner/laboratory analyst), six-treatment, four-period crossover, in situ study in adults with a removable bilateral maxillary partial denture. Study treatments were toothpastes containing: 0.425% phytate/F; 0.85% phytate/F; 0.85% phytate/Zn/F; F-only; Zn/F and a 0% F placebo. Where present, F was 1150 ppm as NaF; Zn was 0.3% as ZnCl 2 . Human enamel specimens containing early-stage, surface-softened (A-lesions) or more advanced, subsurface (B-lesions) caries lesions were placed into the buccal flanges of participants' modified partial denture (one of each lesion type per side). A-lesions were removed after 14 days of twice-daily treatment use; B-lesions were removed after a further 14 days. A-lesions were analysed for surface microhardness recovery. Both lesion types were analysed by transverse microradiography and for enamel fluoride uptake, with B-lesions additionally analysed by quantitative light-induced fluorescence. Comparison was carried out using an analysis of covariance model. Statistically significant differences between 1150 ppm F and the placebo toothpastes (p < 0.05) were shown for all measures, validating the model. No differences between fluoride toothpastes were observed for any measure with little evidence of a dose-response for phytate. Study treatments were generally well-tolerated. Results suggest phytate has little impact on fluoride's ability to promote early-stage lesion remineralisation or prevent more advanced lesion demineralisation in this in situ caries model. Similarly, results suggest zinc ions do not impair fluoride efficacy. Toothpastes may contain therapeutic or cosmetic agents that could interfere with fluoride's caries prevention efficacy. The present in situ caries study has demonstrated that phytate, added to

  11. X-ray-induced fluorescent centers formation in zinc- phosphate glasses doped with Ag and Cu ions

    NASA Astrophysics Data System (ADS)

    Klyukin, D. A.; Pshenova, A. S.; Sidorov, A. I.; Stolyarchuk, M. V.

    2016-08-01

    Fluorescent properties of silver and copper doped zinc-phosphate glasses were studied. By X-ray irradiation of silver and copper co-doped glasses we could create and identify new emission centers which do not exist in single-doped samples. Doping of the glass with both silver and copper ions leads to the increase of quantum yield by 2.7 times. The study was complemented by quantum chemical calculations using the time-dependent density functional theory. It was shown that fluorescence may be attributed to the formation of mixed Ag-Cu molecular clusters.

  12. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria.

    PubMed

    Ravikumar, Sambandam; Yoo, Ik-keun; Lee, Sang Yup; Hong, Soon Ho

    2011-11-01

    Zinc ion plays essential roles in biological chemistry. Bacteria acquire Zn(2+) from the environment, and cellular concentration levels are controlled by zinc homeostasis systems. In comparison with other homeostatic systems, the ZraSR two-component system was found to be more efficient in responding to exogenous zinc concentrations. To understand the dynamic response of the bacterium ZraSR two-component system with respect to exogenous zinc concentrations, the genetic circuit of the ZraSR system was integrated with a reporter protein. This study was helpful in the construction of an E. coli system that can display selective metal binding peptides on the surface of the cell in response to exogenous zinc. The engineered bacterial system for monitoring exogenous zinc was successfully employed to detect levels of zinc as low as 0.001 mM, which directly activates the expression of chimeric ompC(t)--zinc binding peptide gene to remove zinc by adsorbing a maximum of 163.6 μmol of zinc per gram of dry cell weight. These results indicate that the engineered bacterial strain developed in the present study can sense the specific heavy metal and activates a cell surface display system that acts to remove the metal.

  14. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    NASA Astrophysics Data System (ADS)

    de Oliveira, Henrique Bortolaz; Wypych, Fernando

    2016-11-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.

  15. Calcium ions rescue human lung epithelial cells from the toxicity of zinc oxide nanoparticles.

    PubMed

    Hanagata, Nobutaka; Morita, Hiromi

    2015-01-01

    Contradictory results have been reported for in vitro evaluations of whether zinc oxide nanoparticles (ZnO NPs) are cytotoxic. Though there have been reports of ZnO NPs cytotoxicity due to Zn ions released from the nanoparticles, there have also been reports concluding that Zn ions are not cytotoxic. This inconsistency is mostly attributed to the types of cells used. In this research, we investigated the difference in the level of ZnO NPs cytotoxicity due to culturing conditions. The sensitivity of human lung epithelial cells to ZnO NPs cytotoxicity differed depending on the dispersing medium, physiological state of the cells resulting from their growth stage, and composition of the medium. Further, with regard to the toxicity of ZnO NPs, NPs internalized into cells had a greater cytotoxic effect than Zn ions released from ZnO NPs. Instead of inducing cell death, ZnO NPs internalized into cells slowed the rate of cell proliferation. Furthermore, the cytotoxicity of ZnO NPs depended greatly on the concentration of calcium ions (Ca2+) in the medium. When the concentration of Ca2+ was low, the cytotoxicity of ZnO NPs increased markedly. However, the toxicity of ZnO NPs was mitigated by the addition of CaCl2 to the medium. Global gene expression analysis revealed that Ca2+ -induced upregulation of cell cycle functions could be attributable to the mitigation of ZnO NP toxicity by Ca2+.

  16. EPR study of copper(II) ions in zinc 1-malate trihydrate

    NASA Astrophysics Data System (ADS)

    Bonomo, Raffaele P.; Di Bilio, Angel J.; Riggi, Francesco

    1988-10-01

    The EPR spectrum of Cu 2+ ions in zinc 1-malate trihydrate has been measured at 150 K for a large number of orientations of the applied magnetic field. Analysis yields the following spin Hamiltonian parameters: g x=2.0894±0.0009, A x=-12.0±1.5, g y=2.0879±0.0005, A y=-8.7±1.0, R=-0.7±1.5, g z=2.4249±0.0005, A z=-120.1±0.9, P=9.9±0.5, where the units of A and P are 10 4 cm -1. The Zeeman and hyperfine coupling tensors are coincident within 2°. The spectrum shows forbidden transitions with abnormal intensity due to a large quadrupolar interaction. The direction of g z points towards the hydroxyl oxygen while the g x and g y directions lie approximately along the metal-carboxylate oxygen bond.

  17. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method

    NASA Astrophysics Data System (ADS)

    Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem

    2015-11-01

    Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.

  18. Long Life, High Energy Silver-Zinc Batteries

    NASA Technical Reports Server (NTRS)

    Kainthla, Ramesh; Coffey, Brendan

    2003-01-01

    This viewgraph presentation includes: 1) an introduction to RBC Technologies; 2) Rechargeable Zinc Alkaline (RZA(tm)) Systems which include MnO2/Zn, Ni/Zn, Ag/Zn, and Zn/Air; and 3) RZA Silver/Zinc Battery Developments. Conclusions include the following: 1)Issues with long term wet life and cycle life of the silver/zinc battery system are being overcome through the use of new anode formulations and separator designs; 2) Performance may exceed 200 cycles to 80% of initial capacity and ultimate wet-life of > 36 months; and 3) Rechargeable silver/zinc batteries available in prismatic and cylindrical formats may provide a high energy, high power alternative to lithium-ion in military/aerospace applications.

  19. Inhibition of vaccinia virus maturation by zinc chloride.

    PubMed Central

    Katz, E; Margalith, E

    1981-01-01

    Zinc chloride (0.1 mM) inhibited by 96.4% the growth of vaccinia virus in HeLa cells. Approximately 50% inhibition in formation of particles that sedimented in sucrose gradients similarly to vaccinia virions occurred in the presence of zinc ions. Whereas the synthesis of the viral deoxyribonucleic acid was not affected by zinc chloride, a decrease in the overall synthesis of viral polypeptides and inhibition of the cleavage of precursors to the core polypeptides were observed. Images PMID:7347557

  20. New Insights into the Role of Zinc Acquisition and Zinc Tolerance in Group A Streptococcal Infection.

    PubMed

    Ong, Cheryl-Lynn Y; Berking, Olga; Walker, Mark J; McEwan, Alastair G

    2018-06-01

    Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus ; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (Δ adcA Δ adcAII ) and export (Δ czcD ) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens. Copyright © 2018 American Society for Microbiology.

  1. Study of zinc-induced changes in lymphocyte membranes using atomic force microscopy, luminescence, and light scattering methods

    NASA Astrophysics Data System (ADS)

    Filimonenko, D. S.; Khairullina, A. Ya.; Yasinskii, V. M.; Kozlova, N. M.; Zubritskaja, G. P.; Slobozhanina, E. I.

    2011-07-01

    Changes in the surface structure of lymphocyte membranes exposed to various concentrations of zinc ions are studied. It is found by atomic force microscopy that increasing the concentration of zinc ions leads to a reduction in the correlation length of the autocorrelation function of the roughness profile of a lymphocyte compared to control samples; this may indicate the existence of fine structure in the membrane surface. Fluorescence markers are used to observe a reduction in the microviscosity of the lipids in the outer monolayer of the lipid bilayer after lymphocytes are exposed to Zn ions, as well as the exposure of phosphatidylserine on the surface membrane, and the oxidation of HS-groups of membrane proteins. Calculations of the absorption coefficients of lymphocytes modified with zinc reveal the existence of absorption bands owing to the formation of metal-protein complexes and zinc oxide nanoparticles. These results indicate significant changes in the structural and functional state of lymphocyte membranes exposed to zinc ions.

  2. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern.

    PubMed

    Wani, Ab Latif; Ahmad, Ajaz; Shadab, G G H A; Usmani, Jawed Ahmad

    2017-03-01

    Lead and zinc are mostly present at the same occupational source and usually found as co-contaminants. Lead is known to associate with detrimental effects to humans. Zinc however is an essential nutrient and its deficiency causes debilitating effects on growth and development. Besides, it acts as core ion of important enzymes and proteins. The purpose of this study was to examine if zinc concentrations are associated with blood lead levels and if zinc may prevent lead-induced DNA damage. Blood samples were collected from 92 workers as participants occupationally exposed to lead or lead and zinc and 38 comparison participants having no history of such exposure. Lead and zinc levels were determined from blood by atomic absorption spectrophotometry and genetic damage was assessed by comet assay. Correlation was calculated by Spearman's rho. Lead concentrations were observed to increase among workers with increase in years of exposure. There was a significant difference (p < 0.001) in blood lead levels between workers and controls. In addition, significant difference (p < 0.001) in the genetic damage was observed among workers and controls. A clear effect of increased occupational exposure was visible among workers. Multiple regression analysis further reveals the positive effect of lead, while as the inverse effect of zinc on DNA damage. The results suggest that zinc may influence body lead absorption and may have a role in preventing the genetic damage caused by lead.

  3. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame.

    PubMed

    Mahnam, Karim; Raisi, Fatame

    2017-03-01

    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe 2+ , Ca 2+ , Cd 2+ , and Zn 2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  4. Moessbauer studies in zinc-manganese ferrites for use in measuring small velocities and accelerations with great precision

    NASA Technical Reports Server (NTRS)

    Escue, W. T.; Gupta, R. G.; Mendiratta, R. G.

    1975-01-01

    Mossbauer spectroscopy was used for a systematic study of the magnetic behavior of manganese and zinc in mixed ferrites. It was observed that Zn2+ has preference to substitute Mn2+ at interstitial sites where the metal ions are tetrahedrally coordinated with four oxygen neighbors. The internal magnetic hyperfine field at the tetrahedral iron site is larger than that at the octahedral site. The relaxation effects were observed to play an important role as the zinc contents were increased, while the spin-correlation time and the magnetic field were observed to decrease in strength. It is concluded that Mossbauer effect data on complex materials, when used in conjunction with other data, can provide useful insight into the origin of the microscopic properties of magnetic materials.

  5. Crystal structure of E. coli ZinT with one zinc-binding mode and complexed with citrate.

    PubMed

    Chen, Jinli; Wang, Lulu; Shang, Fei; Dong, Yuesheng; Ha, Nam-Chul; Nam, Ki Hyun; Quan, Chunshan; Xu, Yongbin

    2018-06-02

    The ZnuABC ATP-binding cassette transporter found in gram-negative bacteria has been implicated in ensuring adequate zinc import into Zn(II)-poor environments. ZinT is an essential component of ZnuABC and contributes to metal transport by transferring metals to ZnuA, which delivers them to ZnuB in periplasmic zinc recruitment. Although several structures of E. coli ZinT have been reported, its zinc-binding sites and oligomeric state have not been clearly identified. Here, we report the crystal structure of E. coli ZinT at 1.76 Å resolution. This structure contains one zinc ion in its calycin-like domain, and this ion is coordinated by three highly conserved histidine residues (His167, His176 and His178). Moreover, three oxygen atoms (O 1 , O 6 and O 7 ) from the citrate molecule interact with zinc, giving the zinc ion stable octahedral coordination. Our EcZinT structure shows the fewest zinc ions bound of all reported EcZinT structures. Crystallographic packing and size exclusion chromatography suggest that EcZinT prefers to form monomers in solution. Our results provide insights into the molecular function of ZinT. Copyright © 2018. Published by Elsevier Inc.

  6. Immobilization of mercury and zinc in an alkali-activated slag matrix.

    PubMed

    Qian, Guangren; Sun, Darren Delai; Tay, Joo Hwa

    2003-07-04

    The behavior of heavy metals mercury and zinc immobilized in an alkali-activated slag (AAS) matrix has been evaluated using physical property tests, pore structure analysis and XRD, TG-DTG, FTIR and TCLP analysis. Low concentrations (0.5%) of mercury and zinc ions had only a slight affect on compressive strength, pore structure and hydration of AAS matrixes. The addition of 2% Hg ions to the AAS matrix resulted in a reduction in early compressive strength but no negative effects were noticed after 28 days of hydration. Meanwhile, 2% Hg ions can be effectively immobilized in the AAS matrix with the leachate meeting the USEPA TCLP mercury limit. For a 2% Zn-doped AAS matrix, the hydration of the AAS paste was greatly retarded and the zinc concentration in the leachate from this matrix was higher than 5mg/l even at 28 days. Based on these results, we conclude that the physical encapsulation and chemical fixation mechanisms were likely to be responsible for the immobilization of Hg ions in the AAS matrix while only chemical fixation mechanisms were responsible for the immobilization of Zn ions in the AAS matrix.

  7. Preparation, characterization and bioactivities of Athelia rolfsii exopolysaccharide-zinc complex (AEPS-zinc).

    PubMed

    Dong, Jinman; Li, Hongmei; Min, Weihong

    2018-07-01

    A new Athelia rolfsii exopolysaccharides (AEPS) were purified by Sephacryl S-300 and S-200. The physicochemical characteristics of AEPS fractions were assayed by HPGPC and GC methods. The structures of AEPS and AEPS‑zinc complex were characterized by SEM, FTIR and NMR. Moreover, the bioactivities of complex were also evaluated by experiments in vitro and in vivo. AEPSI consisted of glucose, galacturonic acid, talose, galactose, mannose and xylose, the relative contents of them were 24.74, 19.60, 33.65, 8.77, 7.97 and 5.28%, respectively. AEPSII consisted of glucose, inositol, galacturonic acid, ribitol, gluconic acid, talose and xylose, whose relative contents were 36.06, 21.21, 12.78, 11.07, 6.58, 5.45 and 6.82%, respectively. The Mw and Mn of AEPSI were 6.1324×10 4 and 1.4218×10 4 Da, those of AEPSII were 517 and 248Da. SEM observations showed that microstructures of AEPS and AEPS‑zinc complex were obviously different both in size and shape. FTIR and NMR analysis indicated that AEPS might chelate with zinc ion through hydroxy and carboxy group. In vitro experiments showed that AEPS‑zinc complex had a good bioavailability, in vivo experiments showed that it had good effect on improving zinc deficiency and antioxidant activities, which suggested that it could be used as zinc supplementation with high antioxidant activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    PubMed

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.

  9. Transcriptome sequencing and analysis of zinc-uptake-related genes in Trichophyton mentagrophytes.

    PubMed

    Zhang, Xinke; Dai, Pengxiu; Gao, Yongping; Gong, Xiaowen; Cui, Hao; Jin, Yipeng; Zhang, Yihua

    2017-11-21

    Trichophyton mentagrophytes is an important zoonotic dermatophytic (ringworm) pathogen; causing severe skin infection in humans and other animals worldwide. Fortunately, commonly used fungal skin disease prevention and treatment measures are relatively simple. However, T. mentagrophytes is primarily studied at the epidemiology and drug efficacy research levels, yet current study has been unable to meet the needs of clinical medicine. Zinc is a crucial trace element for the growth and reproduction of fungi and other microorganisms. The metal ions coordinate within a variety of proteins to form zinc finger proteins, which perform many vital biological functions. Zinc transport regulatory networks have not been resolved in T. mentagrophytes. The T. mentagrophytes transcriptome will allow us to discover new genes, particularly those genes involved in zinc uptake. We found T. mentagrophytes growth to be restricted by zinc deficiency; natural T. mentagrophytes growth requires zinc ions. T. Mentagrophytes must acquire zinc ions for growth and development. The transcriptome of T. mentagrophytes was sequenced by using Illumina HiSeq™ 2000 technology and the de novo assembly of the transcriptome was performed by using the Trinity method, and functional annotation was analyzed. We got 10,751 unigenes. The growth of T. mentagrophytes is severely inhibited and there were many genes showing significant up regulation and down regulation respectively in T. mentagrophytes when zinc deficiency. Zinc deficiency can affect the expression of multiple genes of T. mentagrophytes. The effect of the zinc deficiency could be recovered in the normal medium. And we finally found the zinc-responsive activating factor (ZafA) and speculated that 4 unigenes are zinc transporters. We knocked ZafA gene by ATMT transformation in T. mentagrophytes, the result showed that ZafA gene is very important for the growth and the generation of conidia in T. mentagrophytes. The expression of 4 zinc

  10. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    PubMed

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  11. Spectroscopic studies of gel grown zinc doped calcium hydrogen phosphate dihydrate crystals

    NASA Astrophysics Data System (ADS)

    Suryawanshi, V. B.; Chaudhari, R. T.

    2018-05-01

    The influence of zinc doping on the gel grown calcium hydrogen phosphate dihydrate crystals was studied using the spectroscopic techniques, which included SEM, FTIR and EDAX. It was found that, zinc ions transform the morphology of brushite crystals from rectangular plate shaped crystals to branching microcrystal patterns. However in FT-IR spectroscopy, as compared to undoped brushite crystals few vibrations were shifted to higher value. The observed changes in the vibrations were due to the impact of zinc ions. EDAX techniques is use to determine the percentage composition of elements present in the doped crystals. It revealed that the sample was of a mixed composition.

  12. Sorption of copper, zinc and cobalt by oat and oat products.

    PubMed

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  13. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp; Tsuruta, Osamu; Akao, Naoya

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}-more » or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.« less

  14. Influence of europium (Eu3+) ions on the optical properties of lithium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shwetha, M.; Eraiah, B.

    2018-02-01

    Europium doped lithium zinc phosphate glasses with composition xEu2O3-(15-x) Li2O-45ZnO-40P2O5 (where x=0, 0.1, 0.3 and 0.5 mol %) named as EP0, EP1, EP3 and EP5 respectively, are prepared by melt-quenching method and the influence of Eu3+ ions on physical and optical properties of these glasses has been studied. Optical properties were studied using optical absorption spectra which was recorded at room temperature in the UV-Visible region. Optical direct band gap and indirect band gap energies were measured and their values range from 3.167 to 4.23eV and 2.08 to 3.02eV, respectively. Refractive indices have been measured with respect to different concentration of europium ions. Fluorescence spectroscopy measurements have been performed by excitation in the UV-Visible range, which resulted in the significant fluorescence peaks. The luminescence color of the glass system is characterized using Commission International de l’Eclairage de France 1931 standards.

  15. [Study on solid phase extraction spectrophotometric determination of zinc with 2-(2-quinolylazo)-5-dimthylaminophenol].

    PubMed

    Zhou, Shi-ping; Duan, Chang-qun; Liu, Hong-cheng; Hu, Qiu-fen

    2005-10-01

    A highly sensitive, selective and rapid method for the determination of zinc based on the rapid reaction of zinc(II) with 2-(2-quinolylazo)-5-dimthylaminophenol (QADMAP) and the solid phase extraction of zinc ion with anion exchange resin cartridge was developed. In the presence of pH 8.5 buffer solution and Triton X-100 medium, QADMAP can react with zinc(II) to form a stable 2 :1 complex (QADMAP:Zn(II)). The molar absorptivity is 1.22 x 10(5)L x moL(-1) x cm(-1) at 590 nm. Beer's law is obeyed in the range of 0-1.0 microg x mL(-1). The zinc ions in the samples can be enriched and separated by solid phase extraction with anion exchange resincartridge. Testing results show that recovery for zinc(II) was from 95% to 104%, and RSD was below 3%. This method was applied to the determination of zinc in water and food with good results.

  16. Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues.

    PubMed

    Li, Xia; Zhang, Dan; Sheng, Fei; Qing, Hui

    2018-01-01

    This study investigated the adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by immobilized Flammulina velutipes, Auricularia polytricha, Pleurotus eryngii and Pleurotus ostreatus residues. Lagergren model, elovich and intraparticle diffusion model were used to present the adsorption kinetics, and it was proved that Langmuir isotherm model and pseudo-second order kinetics are the best suitable model with high correlation coefficient to characterize the adsorption process of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ). The results showed that adsorption process finished in 120min at pH 6.0. The adsorption rate of Cu 2+ , Zn 2+ and Hg 2+ were reached to 53.8-84.1% of total in the initial 60min, and finished in 120min. Ion exchange and complexation of F. velutipes were the main mechanisms for adsorption of metal ions by characterizations of Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). In addition the functional group of cell walls such as hydroxyl, amide, carbonyl, phosphoric played a critical role in ions adsorption of edible mushroom residues. Cu 2+ , Zn 2+ and Hg 2+ in wastewater could be efficiently removed by F. velutipes residue with removal ratio of 73.11%, 66.67% and 69.35%, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes.

    PubMed

    Udechukwu, M Chinonye; Downey, Brianna; Udenigwe, Chibuike C

    2018-02-01

    Gastrointestinal stability of zinc-peptide complexes is essential for zinc delivery. As peptide surface charge can influence their metal complex stability, we evaluated the zinc-chelating capacity and stability of zinc complexes of whey protein hydrolysates (WPH), produced with Everlase (WPH-Ever; ζ-potential, -39mV) and papain (WPH-Pap; ζ-potential, -7mV), during simulated digestion. WPH-Ever had lower amount of zinc-binding amino acids but showed higher zinc-chelating capacity than WPH-Pap. This is attributable to the highly anionic surface charge of WPH-Ever for electrostatic interaction with zinc. Release of zinc during peptic digestion was lower for WPH-Ever-zinc, and over 50% of zinc remained bound in both peptide complexes after peptic-pancreatic digestion. Fourier transform infrared spectroscopy suggests the involvement of carboxylate ion, and sidechain carbon-oxygen of aspartate/glutamate and serine/threonine in zinc-peptide complexation. The findings indicate that strong zinc chelation can promote gastric stability and impede intestinal release, for peptides intended for use as dietary zinc carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.

    PubMed

    Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen

    2005-06-21

    The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.

  19. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    PubMed Central

    Donangelo, Carmen Marino; King, Janet C.

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide. PMID:22852063

  20. Selective adsorption of Pb (II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism.

    PubMed

    Wang, Lei; Zhao, Xinhua; Zhang, Jinmiao; Xiong, Zhenhu

    2017-06-01

    Two series of metal-organic frameworks (MOFs) with similar formula units but different central metal ions (M) or organic linkers (L), M-BDC (BDC = terephthalate, M = Zn, Zr, Cr, or Fe), or Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ), were prepared and employed as the receptors for adsorption lead ions. It was found that the Zn-BDC exhibited a much higher adsorption capacity than the other M-BDC series with various metal ions which have very closely low capacities at same conditions. Furthermore, the Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ) still have highly efficient adsorption capacity of lead ions, although the adsorption capacity varies with different ligand, as well as the adsorption rate and the equilibrium pH of the solution. This significant high adsorption over Zn-L, different from other M-BDC series with various metal ions (Zr, Cr, or Fe), can be explained by ion exchange between the central metal ions of Zn-L and lead ion in solution. Based on the analysis of FT-IR, X-ray diffraction pattern, the nitrogen adsorption isotherms, the zeta potentials, and the results, a plausible adsorption mechanism is proposed. When equivalent Zn-L were added to equal volume of aqueous solution with different concentration of lead ion, the content of zinc ion in the solution increases with the increase of the initial concentration of lead ions. The new findings could provide a potential way to fabricate new metal organic frameworks with high and selective capacities of the heavy metal ions.

  1. Effects of Different Zinc Species on Cellar Zinc Distribution, Cell Cycle, Apoptosis and Viability in MDAMB231 Cells.

    PubMed

    Wang, Yan-hong; Zhao, Wen-jie; Zheng, Wei-juan; Mao, Li; Lian, Hong-zhen; Hu, Xin; Hua, Zi-chun

    2016-03-01

    Intracellular metal elements exist in mammalian cells with the concentration range from picomoles per litre to micromoles per litre and play a considerable role in various biological procedures. Element provided by different species can influence the availability and distribution of the element in a cell and could lead to different biological effects on the cell's growth and function. Zinc as an abundant and widely distributed essential trace element, is involved in numerous and relevant physiological functions. Zinc homeostasis in cells, which is regulated by metallothioneins, zinc transporter/SLC30A, Zrt-/Irt-like proteins/SLC39A and metal-response element-binding transcription factor-1 (MTF-1), is crucial for normal cellular functioning. In this study, we investigated the influences of different zinc species, zinc sulphate, zinc gluconate and bacitracin zinc, which represented inorganic, organic and biological zinc species, respectively, on cell cycle, viability and apoptosis in MDAMB231 cells. It was found that the responses of cell cycle, apoptosis and death to different zinc species in MDAMB231 cells are different. Western blot analysis of the expression of several key proteins in regulating zinc-related transcription, cell cycle, apoptosis, including MTF-1, cyclin B1, cyclin D1, caspase-8 and caspase-9 in treated cells further confirmed the observed results on cell level.

  2. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    PubMed

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Systematic review of zinc fortification trials.

    PubMed

    Das, Jai K; Kumar, Rohail; Salam, Rehana A; Bhutta, Zulfiqar A

    2013-01-01

    Zinc is one of the essential trace elements required by the human body as it is present in more than a hundred specific enzymes and serves as an important structural ion in transcription factors. Around one third of the world population lives in countries with a high prevalence of zinc deficiency. Food fortification with zinc seems to be an attractive public health strategy and a number of programs have been initiated, especially in developing countries. We conducted a systematic review to assess the efficacy of zinc fortification. A total of 11 studies with 771 participants were included in our analysis. Zinc fortification was associated with significant improvements in plasma zinc concentrations [standard mean difference (SMD) 1.28, 95% CI 0.56, 2.01] which is a functional indicator of zinc status. Significant improvement was observed for height velocity (SMD 0.52, 95% CI 0.01, 1.04); however, this finding was weak and based on a restricted analysis. Further subgroup analysis showed significant improvement in height velocity among very-low-birth-weight infants (SMD 0.70, 95% CI 0.02, 1.37), while for healthy newborns, the impact was insignificant. Zinc fortification had insignificant impacts on serum alkaline levels, serum copper levels, hemoglobin and weight gain. Although the findings highlight that zinc fortification is associated with an increased serum concentration of the micronutrient, overall evidence of the effectiveness of this approach is limited. Data on pregnant and lactating women is scarce. Large-scale fortification programs with robust impact assessment should be initiated to cover larger populations in all age groups. Mass fortification of zinc may be a cost-effective strategy to overcome zinc deficiency. Copyright © 2013 S. Karger AG, Basel.

  4. The effectiveness of high dose zinc acetate lozenges on various common cold symptoms: a meta-analysis.

    PubMed

    Hemilä, Harri; Chalker, Elizabeth

    2015-02-25

    A previous meta-analysis found that high dose zinc acetate lozenges reduced the duration of common colds by 42%, whereas low zinc doses had no effect. Lozenges are dissolved in the pharyngeal region, thus there might be some difference in the effect of zinc lozenges on the duration of respiratory symptoms in the pharyngeal region compared with the nasal region. The objective of this study was to determine whether zinc acetate lozenges have different effects on the duration of common cold symptoms originating from different anatomical regions. We analyzed three randomized trials on zinc acetate lozenges for the common cold administering zinc in doses of 80-92 mg/day. All three trials reported the effect of zinc on seven respiratory symptoms, and three systemic symptoms. We pooled the effects of zinc lozenges for each symptom and calculated point estimates and 95% confidence intervals (95% CI). Zinc acetate lozenges shortened the duration of nasal discharge by 34% (95% CI: 17% to 51%), nasal congestion by 37% (15% to 58%), sneezing by 22% (-1% to 45%), scratchy throat by 33% (8% to 59%), sore throat by 18% (-10% to 46%), hoarseness by 43% (3% to 83%), and cough by 46% (28% to 64%). Zinc lozenges shortened the duration of muscle ache by 54% (18% to 89%), but there was no difference in the duration of headache and fever. The effect of zinc acetate lozenges on cold symptoms may be associated with the local availability of zinc from the lozenges, with the levels being highest in the pharyngeal region. However our findings indicate that the effects of zinc ions are not limited to the pharyngeal region. There is no indication that the effect of zinc lozenges on nasal symptoms is less than the effect on the symptoms of the pharyngeal region, which is more exposed to released zinc ions. Given that the adverse effects of zinc in the three trials were minor, zinc acetate lozenges releasing zinc ions at doses of about 80 mg/day may be a useful treatment for the common cold

  5. Cytoprotection by Endogenous Zinc in the Vertebrate Retina

    PubMed Central

    Anastassov, Ivan; Ripps, Harris; Chappell, Richard L.

    2014-01-01

    Our recent studies have shown that endogenous zinc, co-released with glutamate from the synaptic terminals of vertebrate retinal photoreceptors, provides a feedback mechanism that reduces calcium entry and the concomitant vesicular release of glutamate. We hypothesized that zinc feedback may serve to protect the retina from glutamate excitotoxicity, and conducted in vivo experiments on the retina of the skate (Raja erinacea) to determine the effects of removing endogenous zinc by chelation. These studies showed that removal of zinc by injecting the zinc chelator histidine results in inner retinal damage similar to that induced by the glutamate receptor agonist kainic acid. In contrast, when an equimolar quantity of zinc followed the injection of histidine, the retinal cells were unaffected. Our results are a good indication that zinc, co-released with glutamate by photoreceptors, provides an auto-feedback system that plays an important cytoprotective role in the retina. PMID:24286124

  6. Biogenesis of zinc storage granules in Drosophila melanogaster.

    PubMed

    Tejeda-Guzmán, Carlos; Rosas-Arellano, Abraham; Kroll, Thomas; Webb, Samuel M; Barajas-Aceves, Martha; Osorio, Beatriz; Missirlis, Fanis

    2018-03-19

    Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers. © 2018. Published by The Company of Biologists Ltd.

  7. Facile fabrication of dual emissive nanospheres via the self-assembling of CdSe@CdS and zinc phthalocyanine and their application for silver ion detection

    NASA Astrophysics Data System (ADS)

    Liu, Shuning; Liu, Chenchen; Luan, Xinying; Yao, Rui; Feng, Yakai

    2017-09-01

    The far-red/near infrared photoluminescence of zinc phthalocyanines would be strongly quenched once they are aggregated, which will obviously hinder their wide applications in environmental, energy related and biomedical fields. Herein, the ultra-small sized semiconductor quantum dots with core-shell structures (CdSe@CdS) have been firstly synthesized and then assembled with a dendritic zinc phthalocyanine (ZnPc) in the H2O/DMF mixed solvent to obtain monodispersed nanospheres. Finally, it was found that the resultant ethanolic colloids can be employed as a sensitive and specific fluorescent nanoprobe for silver ions discrimination with a limit of detection (LOD) approaching to 10-8 mol/L.

  8. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc.

    PubMed

    Cao, Kun; Li, Nan; Wang, Hongcui; Cao, Xin; He, Jiaojiao; Zhang, Bing; He, Qing-Yu; Zhang, Gong; Sun, Xuesong

    2018-04-20

    Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes , we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution.

    PubMed

    Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I

    2014-03-01

    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  10. DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure Function Study of the Zinc-Binding Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akabayov, B.; Lee, S; Akabayov, S

    2009-01-01

    Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged inmore » catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.« less

  11. Comparative studies on acid leaching of zinc waste materials

    NASA Astrophysics Data System (ADS)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  12. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  13. The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    PubMed Central

    2012-01-01

    Background The aim of the study was to investigate the effect of dietary supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein, on the effectiveness of chemically induced mammary cancer and the changes in the content of selected elements (Zn, Cu, Mg, Fe, Ca) in tumors as compared with normal tissue of the mammary gland. Methods Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet and DMBA (7,12-dimethyl-1,2- benz[a]anthracene), were treated with zinc ions (Zn) or zinc ions + resveratrol (Zn + resveratrol) or zinc ions + genistein (Zn + genistein) via gavage for a period from 40 days until 20 weeks of age. The ICP-OES (inductively coupled plasma optical emission spectrometry) technique was used to analyze the following elements: magnesium, iron, zinc and calcium. Copper content in samples was estimated in an atomic absorption spectrophotometer. Results Regardless of the diet (standard; Zn; Zn + resveratrol; Zn + genistein), DMBA-induced breast carcinogenesis was not inhibited. On the contrary, in the Zn + resveratrol supplemented group, tumorigenesis developed at a considerably faster rate. On the basis of quantitative analysis of selected elements we found - irrespectively of the diet applied - great accumulation of copper and iron, which are strongly prooxidative, with a simultaneous considerable decrease of the magnesium content in DMBA-induced mammary tumors. The combination of zinc supplementation with resveratrol resulted in particularly large differences in the amount of the investigated elements in tumors as compared with their content in normal tissue. Conclusions Diet supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein had no effect on the decreased copper level in tumor tissue and inhibited mammary carcinogenesis in the rat. Irrespectively of the applied diet, the development of the neoplastic process in rats resulted in changes of the iron and magnesium

  14. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins.

    PubMed

    Panina, Ekaterina M; Mironov, Andrey A; Gelfand, Mikhail S

    2003-08-19

    Zinc is an important component of many proteins, but in large concentrations it is poisonous to the cell. Thus its transport is regulated by zinc repressors ZUR of proteobacteria and Gram-positive bacteria from the Bacillus group and AdcR of bacteria from the Streptococcus group. Comparative computational analysis allowed us to identify binding signals of ZUR repressors GAAATGTTATANTATAACATTTC for gamma-proteobacteria, GTAATGTAATAACATTAC for the Agrobacterium group, GATATGTTATAACATATC for the Rhododoccus group, TAAATCGTAATNATTACGATTTA for Gram-positive bacteria, and TTAACYRGTTAA of the streptococcal AdcR repressor. In addition to known transporters and their paralogs, zinc regulons were predicted to contain a candidate component of the ATP binding cassette, zinT (b1995 in Escherichia coli and yrpE in Bacillus subtilis). Candidate AdcR-binding sites were identified upstream of genes encoding pneumococcal histidine triad (PHT) proteins from a number of pathogenic streptococci. Protein functional analysis of this family suggests that PHT proteins are involved in the invasion process. Finally, repression by zinc was predicted for genes encoding a variety of paralogs of ribosomal proteins. The original copies of all these proteins contain zinc-ribbon motifs and thus likely bind zinc, whereas these motifs are destroyed in zinc-regulated paralogs. We suggest that the induction of these paralogs in conditions of zinc starvation leads to their incorporation in a fraction of ribosomes instead of the original ribosomal proteins; the latter are then degraded with subsequent release of some zinc for the utilization by other proteins. Thus we predict a mechanism for maintaining zinc availability for essential enzymes.

  15. In-house zinc SAD phasing at Cu Kα edge.

    PubMed

    Kim, Min-Kyu; Lee, Sangmin; An, Young Jun; Jeong, Chang-Sook; Ji, Chang-Jun; Lee, Jin-Won; Cha, Sun-Shin

    2013-07-01

    De novo zinc single-wavelength anomalous dispersion (Zn-SAD) phasing has been demonstrated with the 1.9 Å resolution data of glucose isomerase and 2.6 Å resolution data of Staphylococcus aureus Fur (SaFur) collected using in-house Cu Kα X-ray source. The successful in-house Zn-SAD phasing of glucose isomerase, based on the anomalous signals of both zinc ions introduced to crystals by soaking and native sulfur atoms, drove us to determine the structure of SaFur, a zinc-containing transcription factor, by Zn-SAD phasing using in-house X-ray source. The abundance of zinc-containing proteins in nature, the easy zinc derivatization of the protein surface, no need of synchrotron access, and the successful experimental phasing with the modest 2.6 Å resolution SAD data indicate that inhouse Zn-SAD phasing can be widely applicable to structure determination.

  16. The PR/SET Domain Zinc Finger Protein Prdm4 Regulates Gene Expression in Embryonic Stem Cells but Plays a Nonessential Role in the Developing Mouse Embryo

    PubMed Central

    Bogani, Debora; Morgan, Marc A. J.; Nelson, Andrew C.; Costello, Ita; McGouran, Joanna F.; Kessler, Benedikt M.

    2013-01-01

    Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal. PMID:23918801

  17. Decay of the zincate concentration gradient at an alkaline zinc cathode after charging

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.; May, C. E.

    1979-01-01

    The study was carried out by observing the decay of the zincate concentration gradient at a horizontal zinc cathode after charging. This decay was found to approximate first order kinetics as expected from a proposed boundary layer model. The decay half life was shown to be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. The data also indicated a relatively sharp transition between the diffusion and convection transport regions. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali.

  18. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    PubMed

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  19. A New Approach for Sustainable Energy Systems due to the Excitation of Inner-core Electrons on Zinc Atoms Induced by Surface-ion-recombination

    NASA Astrophysics Data System (ADS)

    Hamasaki, Mitsugi; Obara, Masumi; Yamaguchi, Mitsuomi; Kuwayama, Masahiro; Obara, Kozo

    2011-12-01

    The crisis of Nuclear power plants due to the March 11, 2011 Tsunami in Japan suggests an increased need for sustainable science and technology in our society. The authors propose a new physical approach with surface-ion-recombination (SIR) due to the inner-core excitation of zinc atom [Ne]3s23p63d104s2 that brings no magnetic moment. Condensed material indicated the energy dependence of X-ray diffraction intensity, in which exists strong diffuse scattering intensities at 10 eV, 90 eV, 100 eV and 230 eV. These energies are strictly corresponding to zinc of electron systems (3s,3p,3d and these combination). Our approach may have the potential of techniques for future nanotechnology, especially for hydrogen storage systems.

  20. New biochemical insight of conserved water molecules at catalytic and structural Zn2+ ions in human matrix metalloproteinase-I: a study by MD-simulation.

    PubMed

    Chakrabarti, Bornali; Bairagya, Hridoy R; Mukhopadhyay, Bishnu P; Sekar, K

    2017-02-01

    Human matrix metalloproteinase (MMP)-1 or collagenase-1 plays a significant role in embryonic development, tissue remodeling, and is also involved in several diseases like arthritis, metastasis, etc. Molecular dynamics simulation studies on hMMP-1 X-ray structures (PDB Id. 1CGE, 1CGF, 1CGL, 1HFC, and 2TCL) suggest that the three conserved water molecules (W H/1 , W I , W S ) are coordinated with catalytic zinc (Zn C ), and one water molecule (W) is associated at structural zinc ion (Zn S ). Transition of the coordination geometry around Zn C from tetrahedral to octahedral and tetrahedral to trigonal bipyramidal at Zn S are also observed during the dynamics. Recognition of two zinc ions through water mediated bridges (Zn C - W H (W 1 )…W 2 ….H 183 - Zn S ) and stabilization of secondary coordination zone around the metal ions indicates the possibility of Zn C …Zn S coupled catalytic mechanism in hMMP-I. This study not only reveals a functionally important role of conserved water molecules in hMMP-I but also highlights the involvement of other non catalytic residues, such as S172 and D170 in the catalytic mechanism. The results obtained in this study could be relevant for importance of conserved water mediated recognition site of the sequence residue id. 202(RWTNNFREY)210, interaction of W(tryptophan)203 to zinc bound histidine, their influence on the water molecules that are involved in bridging between Zn C and Zn S , and structure-based design of specific hMMP inhibitors. Graphical abstract Water mediated recognition of structural and catalytic zinc ions of hMMP-1 structure (MD simulatated conformation).

  1. Combined effect of zinc ions and cationic antibacterial agents on intraoral volatile sulphur compounds (VSC).

    PubMed

    Young, A; Jonski, G; Rölla, G

    2003-08-01

    Volatile sulphur compounds (VSC) are major components of oral malodour. As both zinc ions and cationic antibacterial agents inhibit the formation of oral VSC, this study aimed to determine whether these agents combined have synergistic anti-VSC actions. Baseline oral VSC measurements of mouth air from 10 volunteers following cysteine rinsing (6mM, pH 7.2) were obtained using gas chromatography (GC). Subjects rinsed for 1 min with 10ml of the test solutions, 0.3% zinc acetate (Zn), 0.025% chlorhexidine (CHX), 0.025% cetyl pyridinium (CPC), and the combinations Zn+CHX and Zn+CPC. Cysteine rinses were repeated at 1h, 2h and 3h and VSC measurements recorded. Three subjects rinsed with the Zn+CHX combination and fasted for 9h, undergoing cysteine rinses and VSC measurements at 3h intervals. 10 microl of the test solutions were also added to 1ml aliquots of human whole saliva (n=8). Following incubation at 37 degrees C for 24h VSC levels in the saliva headspace were measured by GC. Inhibition of VSC formation and the fractional inhibitory index indicating synergy were calculated. Zn+CHX mouthrinse had a synergistic anti-VSC effect, and was effective for at least 9h. Zn+CPC mouthrinse was less effective. Both combinations showed a synergistic inhibiting effect in-vitro. Synergy between Zn and the antibacterial agents confirms different mechanisms of operation.

  2. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans.

    PubMed

    Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee

    2018-01-01

    Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.

  3. Zinc supplementation augments TGF-β1-dependent regulatory T cell induction.

    PubMed

    Maywald, Martina; Meurer, Steffen K; Weiskirchen, Ralf; Rink, Lothar

    2017-03-01

    Regulatory T cells (Treg) play a pivotal role in immune regulation. For proper immune function, also trace elements such as zinc, and anti-inflammatory cytokines, including transforming growth factor beta 1 (TGF-β1) and interleukin (IL)-10 are indispensable. Hence, in this study the influence of TGF-β1, IL-10, and zinc supplementation on Treg cells differentiation was investigated. A synergistic effect of a combined zinc and TGF-β1 treatment on Foxp3 expression in peripheral blood mononuclear cells and mixed lymphocyte cultures (MLC) was found by performing Western blot analysis. Additionally, combined treatment causes elevated Smad 2/3 phosphorylation, which plays an important role in Foxp3 expression. This is due to a TGF-β1-mediated increase of intracellular-free zinc measured by zinc probes Fluozin3-AM and ZinPyr-1. Moreover, zinc as well as TGF-β1 treatment caused significantly reduced interferon (IFN)-γ secretion in MLC. Combined zinc and TGF-β1 treatment provoked an increased Treg cell induction due to a triggered intracellular zinc signal, which in association with an increased Smad 2/3 activation leads to a boosted Foxp3 expression and resulting in an ameliorated allogeneic reaction in MLC. Thus, zinc can be used as a favorable additive to elevate the induction of Treg cells in adverse immune reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Determination of hydroxide and carbonate contents of alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.

    1975-01-01

    A method to prevent zinc interference with the titration of OH- and CO3-2 ions in alkaline electrolytes with standard acid is presented. The Ba-EDTA complex was tested and shown to prevent zinc interference with acid-base titrations without introducing other types of interference. Theoretical considerations indicate that this method can be used to prevent interference by other metals.

  5. The ZIP family zinc transporters support the virulence of Cryptococcus neoformans

    PubMed Central

    Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Kronstad, James W.; Jung, Won Hee

    2016-01-01

    Zinc is an essential element in living organisms and a cofactor for various metalloproteins. To disseminate and survive, a pathogenic microbe must obtain zinc from the host, which is an environment with extremely limited zinc availability. In this study, we investigated the roles of the ZIP family zinc transporters Zip1 and Zip2 in the human pathogenic fungus Cryptococcus neoformans. Zip1 and Zip2 are homologous to Zrt1 and Zrt2 of the model fungus, Saccharomyces cerevisiae, respectively. We found that the expression of ZIP1 was regulated by the zinc concentration in the environment. Furthermore, the mutant lacking ZIP1 displayed a severe growth defect under zinc-limited conditions, while the mutant lacking ZIP2 displayed normal growth. Inductively coupled plasma–atomic emission spectroscopy analysis showed that the absence of Zip1 expression significantly reduced total cellular zinc levels relative to that in the wild type, while overexpression of Zip1 was associated with increased cellular zinc levels. These findings suggested that Zip1 plays roles in zinc uptake in C. neoformans. We also constructed a Zip1-FLAG fusion protein and found, by immunofluorescence, not only that the protein was localized to the periphery implying it is a membrane transporter, but also that the protein was N-glycosylated. Furthermore, the mutant lacking ZIP1 showed attenuated virulence in a murine inhalation model of cryptococcosis and reduced survival within murine macrophages. Overall, our data suggest that Zip1 plays essential roles in zinc transport and the virulence of C. neoformans. PMID:27118799

  6. Decay of the zincate concentration gradient at an alkaline zinc cathode after charging

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.; May, C. E.

    1979-01-01

    The transport of the zincate ion to the alkaline zinc cathode was studied by observing the decay of the zincate concentration gradient at a horizontal zinc cathode after charging. This decay was found to approximate first order kinetics as expected from a proposed boundary layer model. The concentrations were calculated from polarization voltages. The decay half life was shown to be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. From the linear dependence of the half life on the thickness the boundary layer thickness was found to be about 0.010 cm when the cathode was at the bottom of the cell. No significant dependence of the boundary layer thickness on the viscosity of electrolyte was observed. The data also indicated a relatively sharp transition between the diffusion and convection transport regions. When the cathode was at the top of the cell, the boundary layer thickness was found to be roughly 0.080 cm. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali.

  7. Simultaneous determination of zinc and chromate in cooling water by differential pulse polarography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jindal, V.K.; Kham, M.A.; Bhatnagar, R.M.

    1985-01-01

    The use of differential pulse polarography (DPP) for the simultaneous determination of zinc and chromate in cooling water is reported where zinc (5 ppm), chromate (20 ppm), and polyphosphate (50 ppm) formulation is used as a corrosion inhibitor. This will help in effective control of cooling tower performance. The DPP method has been applied for the simultaneous determination of zinc and chromate ions in process and cooling water samples from fertilizer plants in India. The method is based on the reduction of Cr and Zn on SMDE in 1 M NH3-0.1 M NH/sub 4/Cl and 0.005% gelatine supporting electrolyte. Duemore » to interference it is essential to complex calcium ions by adding polyphosphate and to destroy NO/sub 2//sup -//NO/sub 3//sup -/ by adding sulfamic acid along with hydrochloric acid before the actual recording of DP polarograms. The present DP polarographic method for the simultaneous determination of zinc and chromate is comparable in its utility and applicability with spectrophotometric methods. The method has a better accuracy and higher sensitivity and is quick, as both of the ions can be determined in a single scan. 10 references, 4 figures, 5 tables.« less

  8. Zinc metal complex as a sensor for simultaneous detection of fluoride and HSO4(-) ions.

    PubMed

    Singh, Jasminder; Yadav, Manisha; Singh, Ajnesh; Singh, Narinder

    2015-07-28

    A Schiff base based tripodal receptor was synthesized and complexed with a zinc metal ion (n17) using a very easy single step process. The resulting complex was fully characterized by CHN and single crystal XRD. The real time application of the complex in aqueous media was devised by preparing its organic nanoparticles (ONPs) and their sensor activity was tested with various anions by observing changes in the fluorescence profile of n17. It was observed that ONPs of n17 responded excellently for fluoride and sulfate, producing two different signals, with detection limits of 4.84 × 10(-12) M and 5.67 × 10(-9) M respectively, without having any interference from each other. The real time application of the sensor was also tested using various samples collected from various daily utility items and found to respond exceptionally well.

  9. Biomarkers of Nutrition for Development (BOND)—Zinc Review12345

    PubMed Central

    King, Janet C; Brown, Kenneth H; Gibson, Rosalind S; Krebs, Nancy F; Lowe, Nicola M; Siekmann, Jonathan H; Raiten, Daniel J

    2016-01-01

    Zinc is required for multiple metabolic processes as a structural, regulatory, or catalytic ion. Cellular, tissue, and whole-body zinc homeostasis is tightly controlled to sustain metabolic functions over a wide range of zinc intakes, making it difficult to assess zinc insufficiency or excess. The BOND (Biomarkers of Nutrition for Development) Zinc Expert Panel recommends 3 measurements for estimating zinc status: dietary zinc intake, plasma zinc concentration (PZC), and height-for-age of growing infants and children. The amount of dietary zinc potentially available for absorption, which requires an estimate of dietary zinc and phytate, can be used to identify individuals and populations at risk of zinc deficiency. PZCs respond to severe dietary zinc restriction and to zinc supplementation; they also change with shifts in whole-body zinc balance and clinical signs of zinc deficiency. PZC cutoffs are available to identify individuals and populations at risk of zinc deficiency. However, there are limitations in using the PZC to assess zinc status. PZCs respond less to additional zinc provided in food than to a supplement administered between meals, there is considerable interindividual variability in PZCs with changes in dietary zinc, and PZCs are influenced by recent meal consumption, the time of day, inflammation, and certain drugs and hormones. Insufficient data are available on hair, urinary, nail, and blood cell zinc responses to changes in dietary zinc to recommend these biomarkers for assessing zinc status. Of the potential functional indicators of zinc, growth is the only one that is recommended. Because pharmacologic zinc doses are unlikely to enhance growth, a growth response to supplemental zinc is interpreted as indicating pre-existing zinc deficiency. Other functional indicators reviewed but not recommended for assessing zinc nutrition in clinical or field settings because of insufficient information are the activity or amounts of zinc-dependent enzymes

  10. Impact of glutathione metabolism on zinc homeostasis in Saccharomyces cerevisiae.

    PubMed

    Steiger, Matthias G; Patzschke, Anett; Holz, Caterina; Lang, Christine; Causon, Tim; Hann, Stephan; Mattanovich, Diethard; Sauer, Michael

    2017-06-01

    Zinc is a crucial mineral for all organisms as it is an essential cofactor for the proper function of a plethora of proteins and depletion of zinc causes oxidative stress. Glutathione is the major redox buffering agent in the cell and therefore important for mitigation of the adverse effects of oxidative stress. In mammalian cells, zinc deficiency is accompanied by a glutathione depletion. In the yeast Saccharomyces cerevisiae, the opposite effect is observed: under low zinc conditions, an elevated glutathione concentration is found. The main regulator to overcome zinc deficiency is Zap1p. However, we show that Zap1p is not involved in this glutathione accumulation phenotype. Furthermore, we found that in glutathione-accumulating strains also the metal ion-binding phytochelatin-2, which is an oligomer of glutathione, is accumulated. This increased phytochelatin concentration correlates with a lower free zinc level in the vacuole. These results suggest that phytochelatin is important for zinc buffering in S. cerevisiae and thus explains how zinc homeostasis is connected with glutathione metabolism. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Insight towards the conserved water mediated recognition of catalytic and structural Zn(+2) ions in human Matrix Metalloproteinase-8 enzyme: A study by MD-simulation methods.

    PubMed

    Chakrabarti, Bornali; Bairagya, Hridoy R; Mishra, Deepak Kr; Chatterjee, Pradip Kumar; Mukhopadhyay, Bishnu P

    2013-01-01

    Human matrix metalloproteinase-8 (hMMP-8) plays a important role in the progression of colorectal cancer, metastasis, multiple sclerosis and rheumetoid arthritis. Extensive MD-simulation of the PDB and solvated structures of hMMP-8 has revealed the presence of few conserved water molecules around the catalytic and structural zinc (ZnC and ZnS) ions. The coordination of two conserved water molecules (W and WS) to ZnS and the H-bonding interaction of WS to S151 have indicated the plausible involvement of that metal ion in the catalytic process. Beside this the coupling of ZnC and ZnS metal ions (ZnC - W(H) (W(1))…..W(2) ….H(162) - ZnS) through two conserved hydrophilic centers (occupied by water molecules) may also provide some rational on the recognition of two zinc ions which were separated by ~13 Å in their X-ray structures. This unique recognition of both the Zn(+2) ions in the enzyme through conserved water molecules may be implemented/ exploited for the design of antiproteolytic agent using water mimic drug design protocol.

  12. Zinc Modulates Nanosilver-Induced Toxicity in Primary Neuronal Cultures.

    PubMed

    Ziemińska, Elżbieta; Strużyńska, Lidia

    2016-02-01

    Silver nanoparticles (NAg) have recently become one of the most commonly used nanomaterials. Since the ability of nanosilver to enter the brain has been confirmed, there has been a need to investigate mechanisms of its neurotoxicity. We previously showed that primary neuronal cultures treated with nanosilver undergo destabilization of calcium homeostasis via a mechanism involving glutamatergic NMDA receptors. Considering the fact that zinc interacts with these receptors, the aim of the present study was to examine the role of zinc in mechanisms of neuronal cell death in primary cultures. In cells treated with nanosilver, we noted an imbalance between extracellular and intracellular zinc levels. Thus, the influence of zinc deficiency and supplementation on nanosilver-evoked cytotoxicity was investigated by treatment with TPEN (a chelator of zinc ions), or ZnCl(2), respectively. Elimination of zinc leads to complete death of nanosilver-treated CGCs. In contrast, supplementation with ZnCl(2) increases viability of CGCs in a dose-dependent manner. Addition of zinc provided protection against the extra/intracellular calcium imbalance in a manner similar to MK-801, an antagonist of NMDA receptors. Zinc chelation by TPEN decreases the mitochondrial potential and dramatically increases the rate of production of reactive oxygen species. Our results indicate that zinc supplementation positively influences nanosilver-evoked changes in CGCs. This is presumed to be due to an inhibitory effect on NMDA-sensitive calcium channels.

  13. Zinc Levels in Left Ventricular Hypertrophy.

    PubMed

    Huang, Lei; Teng, Tianming; Bian, Bo; Yao, Wei; Yu, Xuefang; Wang, Zhuoqun; Xu, Zhelong; Sun, Yuemin

    2017-03-01

    Zinc is one of the most important trace elements in the body and zinc homeostasis plays a critical role in maintaining cellular structure and function. Zinc dyshomeostasis can lead to many diseases, such as cardiovascular disease. Our aim was to investigate whether there is a relationship between zinc and left ventricular hypertrophy (LVH). A total of 519 patients was enrolled and their serum zinc levels were measured in this study. We performed analyses on the relationship between zinc levels and LVH and the four LV geometry pattern patients: normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH. We performed further linear and multiple regression analyses to confirm the relationship between zinc and left ventricular mass (LVM), left ventricular mass index (LVMI), and relative wall thickness (RWT). Our data showed that zinc levels were 710.2 ± 243.0 μg/L in the control group and were 641.9 ± 215.2 μg/L in LVH patients. We observed that zinc levels were 715 ± 243.5 μg/L, 694.2 ± 242.7 μg/L, 643.7 ± 225.0 μg/L, and 638.7 ± 197.0 μg/L in normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH patients, respectively. We further found that there was a significant inverse linear relationship between zinc and LVM (p = 0.001) and LVMI (p = 0.000) but did not show a significant relationship with RWT (p = 0.561). Multiple regression analyses confirmed that the linear relationship between zinc and LVM and LVMI remained inversely significant. The present study revealed that serum zinc levels were significantly decreased in the LVH patients, especially in the eccentric LVH and concentric LVH patients. Furthermore, zinc levels were significantly inversely correlated with LVM and LVMI.

  14. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    PubMed

    Craddock, Travis J A; Tuszynski, Jack A; Chopra, Deepak; Casey, Noel; Goldstein, Lee E; Hameroff, Stuart R; Tanzi, Rudolph E

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized

  15. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway

    PubMed Central

    Matsunaga, Mayu; Takeda, Taka-aki

    2017-01-01

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review. PMID:29048339

  16. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.

    PubMed

    Kambe, Taiho; Matsunaga, Mayu; Takeda, Taka-Aki

    2017-10-19

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.

  17. The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme.

    PubMed

    Hudek, L; Bräu, L; Michalczyk, A A; Neilan, B A; Meeks, J C; Ackland, M L

    2015-12-01

    Analysis of cellular response to zinc exposure provides insights into how organisms maintain homeostatic levels of zinc that are essential, while avoiding potentially toxic cytosolic levels. Using the cyanobacterium Nostoc punctiforme as a model, qRT-PCR analyses established a profile of the changes in relative mRNA levels of the ZntA-like zinc efflux transporter NpunR4017 in response to extracellular zinc. In cells treated with 18 μM of zinc for 1 h, NpunR4017 mRNA levels increased by up to 1300 % above basal levels. The accumulation and retention of radiolabelled (65)Zn by NpunR4107-deficient and overexpressing strains were compared to wild-type levels. Disruption of NpunR4017 resulted in a significant increase in zinc accumulation up to 24 % greater than the wild type, while cells overexpressing NpunR4107 accumulated 22 % less than the wild type. Accumulation of (65)Zn in ZntA(-) Escherichia coli overexpressing NpunR4017 was reduced by up to 21 %, indicating the capacity for NpunR4017 to compensate for the loss of ZntA. These findings establish the newly identified NpunR4017 as a zinc efflux transporter and a key transporter for maintaining zinc homeostasis in N. punctiforme.

  18. Transport of Zn(OH)4(-2) ions across a polyolefin microporous membrane

    NASA Astrophysics Data System (ADS)

    Krejci, Ivan; Vanysek, Peter; Trojanek, Antonin

    1993-04-01

    Transport of ZN(OH)4(2-) ions through modified microporous polypropylene membranes (Celgard 3401, 350140) was studied using polarography and conductometry. Soluble Nafion as an ion exchange modifying agent was applied to the membrane by several techniques. The influence of Nafion and a surfactant on transport of zinc ions through the membrane was studied. A relationship between membrane impedance and the rate of Zn(OH)4(2-) transport was found. The found correlation between conductivity, ion permeability and Nafion coverage suggests a suitable technique of membrane preparation to obtain desired zinc ion barrier properties.

  19. Electrochemical synthesis and characterization of zinc oxalate nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com; Roushani, Mahmoud; Department of Chemistry, Ilam University, Ilam

    2013-03-15

    Highlights: ► Synthesis of zinc oxalate nanoparticles via electrolysis of a zinc plate anode in sodium oxalate solutions. ► Design of a Taguchi orthogonal array to identify the optimal experimental conditions. ► Controlling the size and shape of particles via applied voltage and oxalate concentration. ► Characterization of zinc oxalate nanoparticles by SEM, UV–vis, FT-IR and TG–DTA. - Abstract: A rapid, clean and simple electrodeposition method was designed for the synthesis of zinc oxalate nanoparticles. Zinc oxalate nanoparticles in different size and shapes were electrodeposited by electrolysis of a zinc plate anode in sodium oxalate aqueous solutions. It was foundmore » that the size and shape of the product could be tuned by electrolysis voltage, oxalate ion concentration, and stirring rate of electrolyte solution. A Taguchi orthogonal array design was designed to identify the optimal experimental conditions. The morphological characterization of the product was carried out by scanning electron microscopy. UV–vis and FT-IR spectroscopies were also used to characterize the electrodeposited nanoparticles. The TG–DTA studies of the nanoparticles indicated that the main thermal degradation occurs in two steps over a temperature range of 350–430 °C. In contrast to the existing methods, the present study describes a process which can be easily scaled up for the production of nano-sized zinc oxalate powder.« less

  20. Role of zinc in chronic gastritis.

    PubMed

    Marjanović, Ksenija; Dovhanj, Jasna; Kljaić, Ksenija; Sakić, Katarina; Kondza, Goran; Tadzić, Refmir; Vcev, Aleksandar

    2010-06-01

    Oxidative stress occurs in inflammation of gastric mucosa. The role of zinc in modulating oxidative stress has recently been recognized. Zn deficiency results in an increased sensitivity to oxidative stress and have a higher risk of musoca damage in inflammation. The aim of this study was to determine wheather chronic inflammation affects on the concentration of Zn2+ ions in gastric mucosa of patients with chronic gastritis. Forthy-three patients with chronic gastitis were enrolled. Patients were endoscoped. Histology and scoring of gastritis was performed following the guidelines of the updated Sydney system. Endoscopic finding of mucosa were scored according to a Lanza scoring system. The diagnosis of Helicobacter pylori (H. pylori) infection, histopathologic changes, intensity of inflammation and zinc concentration were determined from biopsies of gastric mucosa. The atomic absorption spectrophotometer was used to determine tissue concentrations of zinc. Twenty of 43 patients with chronic gastritis were uninfected by H. pylori. There was no statistically significant difference in tissue concentrations of zinc between H. pylori-positive and H. pylori-negative patients. From those infected patients 53.3% had chronic active gastritis. There was no statistically significant difference in tissue concentrations of zinc between patients with chronic active gastritis and patients with chronic inactive gastritis (p = 0.966). Zn in antrum showed positive correlation with density of H. pylori in antrum (Spearman' rho = 0.481, p = 0.020), negative correlation with density of H. pylori in corpus (Spearman' rho = -0.492, p = 0.017) and with zinc in corpus (Spearman' rho = 0.631, p =0.001). Tissue concentration of zinc was not affected by chronic inflammation of gastric mucosa in patients with chronic gastritis.

  1. Investigations on the spectroscopic properties of Dy3 + ions doped Zinc calcium tellurofluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Arunkumar, S.; Annapoorani, K.; Marimuthu, K.

    2018-03-01

    A new series of Dy3 + doped (30-x)B2O3 + 30TeO2 + 20CaCO3 + 10ZnO + 10ZnF2 + xDy2O3 (x = 0.01, 0.1, 0.5, 1, 2 and 3 in wt%) Zinc calcium tellurofluoroborate glasses were prepared and their structural, luminescence and excited state dynamics have been studied and reported. The structural properties have been characterized through XRD and FTIR studies to confirm the amorphous nature and to explore the presence of fundamental stretching vibrations. The bonding parameters (δ and β), optical band gap, Urbach's energy, oscillator strengths and Judd-Ofelt (JO) intensity parameters were calculated from the absorption spectra. The JO intensity parameters and the Y/B intensity ratio values have been used to explore the nature of the bonding and asymmetry around the Dy-ligand field environment. The luminescence properties of the present Dy3 + doped glasses have been analyzed through luminescence excited state dynamics and radiative properties such as transition probability (A), stimulated emission cross-section (σPE) branching ratio (β) and radiative lifetime (τR) values. The combination of dominant blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emissions generates white light emission in the CIE chromaticity diagram thus suggests that the present Dy3 + doped glasses are suitable for white light applications. The lifetime of the 4F9/2 excited state is found to decrease with the increase in Dy3 + ion content and the concentration quenching of the Dy3 + ions emission could be ascribed due to the resonant energy transfer and cross-relaxation processes. The non-exponential behavior of the decay curves has been analyzed with Inokuti-Hirayama model and the interaction between the Dy3 + ions is of electric dipole-dipole in nature.

  2. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    PubMed

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  3. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines.

    PubMed

    Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen

    2018-01-01

    Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (p<0.01) and human (p<0.05) skeletal muscle cells when treated with zinc alone. Insulin, as expected, increased glucose oxidation in mouse (p<0.001) and human (0.001) skeletal muscle cells, however the combination of zinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.

  4. Judd-Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.

    2014-02-01

    Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.

  5. Differential regulation of ASICs and TRPV1 by zinc in rat bronchopulmonary sensory neurons.

    PubMed

    Vysotskaya, Zhanna V; Moss, Charles R; Gu, Qihai

    2014-12-01

    Zinc has been known to act as a signaling molecule that regulates a variety of neuronal functions. In this study, we aimed to study the effect of zinc on two populations of acid-sensitive ion channels, acid-sensing ion channels (ASICs), and transient receptor potential vanilloid receptor-1 (TRPV1), in vagal bronchopulmonary sensory neurons. Rat vagal sensory neurons innervating lungs and airways were retrogradely labeled with a fluorescent tracer. Whole-cell perforated patch-clamp recordings were carried out in primarily cultured bronchopulmonary sensory neurons. The acid-evoked ASIC and TRPV1 currents were measured and compared between before and after the zinc pretreatment. ASIC currents were induced by a pH drop from 7.4 to 6.8 or 6.5 in the presence of capsazepine (10 µM), a specific TRPV1 antagonist. Pretreatment with zinc (50 or 300 µM, 2 min) displayed different effects on the two distinct phenotypes of ASIC currents: a marked potentiation on ASIC channels with fast kinetics of activation and inactivation or no significant effect on ASIC currents with slow activation and inactivation. On the other hand, pretreatment with zinc significantly inhibited the acid (pH 5.5 or 5.3)-induced TRPV1 currents. The inhibition was abolished by intracellular chelation of zinc by TPEN (25 µM), indicating that intracellular accumulation of zinc was likely required for its inhibitory effect on TRPV1 channels. Our study showed that zinc differentially regulates the activities of ASICs and TRPV1 channels in rat vagal bronchopulmonary sensory neurons.

  6. Influence Of pH On The Transport Of Nanoscale Zinc Oxide In Saturated Porous Media

    EPA Science Inventory

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such e...

  7. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    PubMed

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  8. Zinc and its importance for human health: An integrative review

    PubMed Central

    Roohani, Nazanin; Hurrell, Richard; Kelishadi, Roya; Schulin, Rainer

    2013-01-01

    Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency. PMID:23914218

  9. Measuring zinc in biological nanovesicles by multiple analytical approaches.

    PubMed

    Piacenza, Francesco; Biesemeier, Antje; Farina, Marco; Piva, Francesco; Jin, Xin; Pavoni, Eleonora; Nisi, Lorenzo; Cardelli, Maurizio; Costarelli, Laura; Giacconi, Robertina; Basso, Andrea; Pierpaoli, Elisa; Provinciali, Mauro; Hwang, James C M; Morini, Antonio; di Donato, Andrea; Malavolta, Marco

    2018-07-01

    Exosomes are nanovesicles known to mediate intercellular communication. Although it is established that zinc ions can act as intracellular signaling factors, the measurement of zinc in circulating nanovesicles has not yet been attempted. Providing evidence of the existence of this zinc fraction and methods for its measurement might be important to advance our knowledge of zinc status and its relevance in diseases. Exosomes from 0.5 ml of either fresh or frozen human plasma were isolated by differential centrifugation. A morphological and dimensional evaluation at the nanoscale level was performed by atomic force microscopy (AFM) and Transmission Electron Microscopy (TEM). Energy Dispersive X-Ray Microanalysis (EDX) revealed the elemental composition of exosomes and their respective total Zinc content on a quantitative basis. The zinc mole fraction (in at%) was correlated to the phosphorous mole fraction, which is indicative for exosomal membrane material. Both fresh (Zn/P 0.09 ± 0.01) and frozen exosomes (Zn/P 0.08 ± 0.02) had a significant zinc content, which increased up to 1.09 ± 0.12 for frozen exosomes when treated with increasing amounts of zinc (100-500 μM; each p < 0.05). Interestingly, after zinc addition, the Calcium mole fractions decreased accordingly suggesting a possible exchange by zinc. In order to estimate the intra-exosomal labile zinc content, an Imaging Flow Cytometry approach was developed by using the specific membrane permeable zinc-probe Fluozin-3AM. A labile zinc content of 0.59 ± 0.27 nM was calculated but it is likely that the measurement may be affected by purification and isolation conditions. This study suggests that circulating nano-vesicular-zinc can represent a newly discovered zinc fraction in the blood plasma whose functional and biological properties will have to be further investigated in future studies. Copyright © 2018 Elsevier GmbH. All rights reserved.

  10. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis.

    PubMed

    Hara, Takafumi; Takeda, Taka-Aki; Takagishi, Teruhisa; Fukue, Kazuhisa; Kambe, Taiho; Fukada, Toshiyuki

    2017-03-01

    Zinc (Zn) is an essential trace mineral that regulates the expression and activation of biological molecules such as transcription factors, enzymes, adapters, channels, and growth factors, along with their receptors. Zn deficiency or excessive Zn absorption disrupts Zn homeostasis and affects growth, morphogenesis, and immune response, as well as neurosensory and endocrine functions. Zn levels must be adjusted properly to maintain the cellular processes and biological responses necessary for life. Zn transporters regulate Zn levels by controlling Zn influx and efflux between extracellular and intracellular compartments, thus, modulating the Zn concentration and distribution. Although the physiological functions of the Zn transporters remain to be clarified, there is growing evidence that Zn transporters are related to human diseases, and that Zn transporter-mediated Zn ion acts as a signaling factor, called "Zinc signal". Here we describe critical roles of Zn transporters in the body and their contribution at the molecular, biochemical, and genetic levels, and review recently reported disease-related mutations in the Zn transporter genes.

  11. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  12. The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration.

    PubMed

    Pivovarova, Natalia B; Stanika, Ruslan I; Kazanina, Galina; Villanueva, Idalis; Andrews, S Brian

    2014-02-01

    Zinc has been implicated in neurodegeneration following ischemia. In analogy with calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage remains unclear. Here, we report that under conditions mimicking ischemia in hippocampal neurons - normal (2 mM) calcium plus elevated (> 100 μM) exogenous zinc - mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization, and reactive oxygen species generation were only observed after toxic stimulation in calcium-containing media. This contrasts with the lack of any mitochondrial response in zinc-containing but calcium-free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore-induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium- and zinc-containing media, depolarization-induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  13. Removal of Zinc Form Carbonic Anhydrase: A Kinetics Experiment for Upper-Level Chemistry Laboratories

    ERIC Educational Resources Information Center

    Williams, Kathryn R.; Adhyaru, Bhavin

    2004-01-01

    An experiment on kinetics of deactivation of carbonic anhydrase by removal of zinc is demonstrated. Carbonic anhydrase, the enzyme that catalyzes the interconversion of carbon dioxide and bicarbonate, requires on Zn(II) ion in its active site, and removal of the zinc cofactor by complexion to another ligand leaves the apoenzyme, which is totally…

  14. Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires.

    PubMed

    Jacobs, B W; Ayres, V M; Crimp, M A; McElroy, K

    2008-10-08

    In this paper, the internal structure of novel multiphase gallium nitride nanowires in which multiple zinc-blende and wurtzite crystalline domains grow simultaneously along the entire length of the nanowire is investigated. Orientation relationships within the multiphase nanowires are identified using high-resolution transmission electron microscopy of nanowire cross-sections fabricated with a focused ion beam system. A coherent interface between the zinc-blende and wurtzite phases is identified. A mechanism for catalyst-free vapor-solid multiphase nanowire nucleation and growth is proposed.

  15. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus.

    PubMed

    Foster, Meika; Samman, Samir

    2010-11-15

    Cellular signal transduction pathways are influenced by the zinc and redox status of the cell. Numerous chronic diseases, including cardiovascular disease (CVD) and diabetes mellitus (DM), have been associated with impaired zinc utilization and increased oxidative stress. In humans, mutations in the MT-1A and ZnT8 genes, both of which are involved in the maintenance of zinc homeostasis, have been linked with DM development. Changes in levels of intracellular free zinc may exacerbate oxidative stress in CVD and DM by impacting glutathione homeostasis, nitric oxide signaling, and nuclear factor-kappa B-dependent cellular processes. Zinc ions have been shown to influence insulin and leptin signaling via the phosphoinositide 3′-kinase/Akt pathway, potentially linking an imbalance of zinc at the cellular level to insulin resistance and dyslipidemia. The oxidative modification of cysteine residues in zinc coordination sites in proteins has been implicated in cellular signaling and regulatory pathways. Despite the many interactions between zinc and cellular stress responses, studies investigating the potential therapeutic benefit of zinc supplementation in the prevention and treatment of oxidative stress-related chronic disease in humans are few and inconsistent. Further well-designed randomized controlled trials are needed to determine the effects of zinc supplementation in populations at various stages of CVD and DM progression.

  16. Zinc ion enhances GABA tea-mediated oxidative DNA damage.

    PubMed

    Chuang, Show-Mei; Wang, Hsueh-Fang; Hsiao, Ching-Chuan; Cherng, Shur-Hueih

    2012-02-15

    GABA tea is a tea product that contains a high level of γ-aminobutyric acid (GABA). Previous study has demonstrated a synergistic effect of GABA tea and copper ions on DNA breakage. This study further explored whether zinc (Zn), a nonredox metal, modulated DNA cleavage induced by GABA tea extract. In a cell-free system, Zn(2+) significantly enhanced GABA tea extract and (-)-epigallocatechin-3-gallate (EGCG)- or H(2)O(2)-induced DNA damage at 24 h of incubation. Additionally, low dosages of GABA tea extract (1-10 μg/mL) possessed pro-oxidant activity to increase H(2)O(2)/Zn(2+)-induced DNA cleavage in a dose-dependent profile. By use of various reactive oxygen scavengers, it was observed that glutathione, catalase, and potassium iodide effectively inhibited DNA degradation caused by the GABA tea extract/H(2)O(2)/Zn(2+) system. Moreover, the data showed that the GABA tea extract itself (0.5-5 mg/mL) could induce DNA cleavage in a long-term exposure (48 h). EGCG, but not the GABA tea extract, enhanced H(2)O(2)-induced DNA cleavage. In contrast, GABA decreased H(2)O(2)- and EGCG-induced DNA cleavage, suggesting that GABA might contribute the major effect on the antioxidant activity of GABA tea extract. Furthermore, a comet assay revealed that GABA tea extract (0.25 mg/mL) and GABA had antioxidant activity on H(2)O(2)-induced DNA breakage in human peripheral lymphocytes. Taken together, these findings indicate that GABA tea has the potential of both pro-oxidant and antioxidant. It is proposed that a balance between EGCG-induced pro-oxidation and GABA-mediated antioxidation may occur in a complex mixture of GABA tea extract.

  17. Serum zinc, senile plaques, and neurofibrillary tangles: findings from the Nun Study.

    PubMed

    Tully, C L; Snowdon, D A; Markesbery, W R

    1995-11-13

    Zinc appears to have a role in binding amyloid precursor protein in vitro, but it is not known whether zinc plays a role in senile plaque formation in vivo in humans. Serum zinc concentrations were available from 12 sisters who died in the Nun Study, a longitudinal study of aging and Alzheimer's disease. Fasting serum zinc concentrations, determined approximately 1 year before death, showed moderate to strong negative correlations with senile plaque counts in seven brain regions. In all brain regions combined, the age-adjusted negative correlations with serum zinc were statistically significant for total senile plaques and diffuse plaques, and suggestive for neuritic plaques. Thus serum zinc in the normal range may be associated with low senile plaque counts in the elderly.

  18. The Antimicrobial Properties of Zinc-Releasing Bioceramics

    NASA Astrophysics Data System (ADS)

    He, Xin

    Up to 80% of nosocomial infections are caused by biofilm-producing bacteria such as Staphylococci and Pseudomonas aeruginosa. These types of microorganisms can become resistant to antibiotics and are difficult to eliminate. As such, there is tremendous interest in developing bioactive implant materials that can help to minimize these post- operative infections. Using water-based chemistry, we developed an economical, biodegradable and biocompatible orthopedic implant material consisting of zinc- doped hydroxyapatite (HA), which mimics the main inorganic component of the bone. Because the crystallinity of HA is typically too compact for efficient drug release, we substituted calcium ions in HA with zinc during the synthesis step to perturb the crystal structure. An added benefit is that zinc itself is a microelement of the human body with anti-inflammatory property, and we hypothesized that Zn-doped HA is an inherently antibacterial material. All HA samples were synthesized by a co-precipitation method using aqueous solutions of Zinc nitrate, Calcium Nitrate, and Ammonium Phosphate. XRD data showed that Zn was successfully incorporated into the HA. The effectiveness of Zn-doped HA against a model biofilm-forming bacterium is currently being evaluated using a wild-type strain and a streptomycin- resistant strain of Pseudomonas syringae pv. papulans (Psp) which is a plant pathogen isolated from diseased apples. Key words: Hydroxyapatite, Zinc, Citrate, Pseudomonas, Antibacterial.

  19. Dynamic HypA zinc site is essential for acid viability and proper urease maturation in Helicobacter pylori.

    PubMed

    Johnson, Ryan C; Hu, Heidi Q; Merrell, D Scott; Maroney, Michael J

    2015-04-01

    Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(ii) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation.

  20. Further aspects of ochratoxin A-cation interactions: complex formation with zinc ions and a novel analytical application of ochratoxin A-magnesium interaction in the HPLC-FLD system.

    PubMed

    Poór, Miklós; Kuzma, Mónika; Matisz, Gergely; Li, Yin; Perjési, Pál; Kunsági-Máté, Sándor; Kőszegi, Tamás

    2014-04-10

    Ochratoxin A (OTA) is a mycotoxin produced by different Aspergillus and Penicillium species. Since its mechanism of action is not fully understood yet, it is important to gain further insight into different interactions of OTA at the molecular level. OTA is found worldwide in many foods and drinks. Moreover, it can also be detected in human and animal tissues and body fluids, as well. Therefore, the development of highly sensitive quantitative methods for the determination of OTA is of utmost importance. OTA most likely forms complexes with divalent cations, both in cells and body fluids. In the present study, the OTA-zinc interaction was investigated and compared to OTA-magnesium complex formation using fluorescence spectroscopy and molecular modeling. Our results show that zinc(II) ion forms a two-fold higher stable complex with OTA than magnesium(II) ion. In addition, based on the enhanced fluorescence emission of OTA in its magnesium-bound form, a novel RP-HPLC-fluorescence detector (FLD) method was also established. Our results highlight that the application of magnesium chloride in alkaline eluents results in an approximately two-fold increase in sensitivity using the HPLC-FLD technique.

  1. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression.

    PubMed

    Kratochvilova, Monika; Raudenska, Martina; Heger, Zbynek; Richtera, Lukas; Cernei, Natalia; Adam, Vojtech; Babula, Petr; Novakova, Marie; Masarik, Michal; Gumulec, Jaromir

    2017-05-01

    Failure in intracellular zinc accumulation is a key process in prostate carcinogenesis. Nevertheless, epidemiological studies of zinc administration have provided contradicting results. In order to examine the impact of the artificial intracellular increase of zinc(II) ions on prostate cancer metabolism, PNT1A, 22Rv1, and PC-3 prostatic cell lines-depicting different stages of cancer progression-and their zinc-resistant counterparts were used. To determine "benign" and "malignant" metabolic profiles, amino acid patterns, gene expression, and antioxidant capacity of these cell lines were assessed. Amino acid profiles were examined using an ion-exchange liquid chromatography. Intracellular zinc content was measured by atomic absorption spectrometry. Metallothionein was quantified using differential pulse voltammetry. The content of reduced glutathione was determined using high performance liquid chromatography coupled with an electrochemical detector. Cellular antioxidant capacity was determined by the ABTS test and gene expression analysis was performed by qRT-PCR. Long-term zinc treatment was shown to reroute cell metabolism from benign to more malignant type. Long-term application of high concentration of zinc(II) significantly enhanced cisplatin resistance, invasiveness, cellular antioxidant capacity, synthesis of glutathione, and expression of treatment resistance- and stemness-associated genes (SOX2, POU5F1, BIRC5). Tumorous cell lines universally displayed high accumulation of aspartate and sarcosine and depletion of essential amino acids. Increased aspartate/threonine, aspartate/methionine, and sarcosine/serine ratios were associated with cancer phenotype with high levels of sensitivity and specificity. Prostate 77: 604-616, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten Tellurite glasses for visible photonic device applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ritu; Rao, A. S.; Deopa, Nisha; Venkateswarlu, M.; Jayasimhadri, M.; Haranath, D.; Prakash, G. Vijaya

    2018-04-01

    Zinc Lead Tungsten Tellurite (ZnPbWTe) glasses doped with different Pr3+ ion concentrations having the composition 5ZnO + 15PbO + 20WO3 + (60-x)TeO2 + xPr6O11 (where x = 0.5, 1, 1.5, 2.0 and 2.5 mol%) were prepared by using sudden quenching technique and characterized to understand their visible emission characteristic features using spectroscopic techniques such as absorption, excitation and emission. The Judd-Ofelt (J-O) theory has been applied to the absorption spectral features with an aim to evaluate various radiative properties for the prominent fluorescent levels of Pr3+ions in the as-prepared glasses. The emission spectra recorded for the as-prepared glasses under 468 nm excitation show three prominent emission transitions 3P0→3H6, 3P0→3F2 and 3P1→3F4, of which 3P0→3F2 observed in visible red region (648 nm), is relatively more intense. The intensity of 3P0→3F2 emission transition in the titled glasses increases up to 1mol% of Pr3+ ions and beyond concentration quenching is observed. Branching ratios (βR) and emission cross-sections (σse) were estimated for 3P0→3F2 transition to understand the luminescence efficiency in visible red region (648 nm). The CIE chromaticity coordinates were also evaluated in order to understand the suitability of these glasses for visible red luminescence devices. From the emission cross-sections, quantum efficiency and CIE coordinates, it was concluded that 1mol% of Pr3+ ions in ZnPbWTe glasses are quite suitable for preparing visible reddish orange luminescent devices.

  3. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  4. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage.

    PubMed

    Hemilä, Harri

    2017-05-01

    To compare the efficacy of zinc acetate lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of zinc acetate found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as zinc acetate lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further.

  5. An insight to conserved water molecular dynamics of catalytic and structural Zn(+2) ions in matrix metalloproteinase 13 of human.

    PubMed

    Chakrabarti, Bornali; Bairagya, Hridoy R; Mallik, Payel; Mukhopadhyay, Bishnu P; Bera, Asim K

    2011-02-01

    Matrix Metalloproteinase (MMP)--13 or Collagenase--3 plays a significant role in the formation and remodeling of bone, tumor invasion and causes osteoarthritis. Water molecular dynamic studies of the five (1XUC, 1XUD, 1XUR, 456C, 830C) PDB and solvated structures of MMP-13 in human have been carried out upto 5 ns on assigning the differential charges (+2, +1, +0.5 e) to both the Zinc ions. The MM and MD-studies have revealed the coordination of three water molecules (W(H), W(I) and W(S)) to Zn(c) and one water to Zn(s). The transition of geometry around the Znc from tetrahedral to octahedral via trigonal bipyramidal, and for Zn(s) from tetrahedral to trigonal bipyramidal are seem interesting. Recognition of two zinc ions through water molecular bridging (Zn(c) - W(H) (W(1))...W(2)....W(3)....H(187) Zn(s)) and the stabilization of variable coordination geometries around metal ions may indicate the possible involvement of Zn(c) ...Zn(s) coupled mechanism in the catalytic process. So the hydrophilic topology and stereochemistry of water mediated coupling between Zn-ions may provide some plausible hope towards the design of some bidentate/polydentate bridging ligands or inhibitors for MMP-13.

  6. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Zinc-rich oysters as well as zinc-yeast- and astaxanthin-enriched food improved sleep efficiency and sleep onset in a randomized controlled trial of healthy individuals.

    PubMed

    Saito, Hitomi; Cherasse, Yoan; Suzuki, Rina; Mitarai, Makoto; Ueda, Fumitaka; Urade, Yoshihiro

    2017-05-01

    Zinc is an essential mineral that plays an important role in the body. We previously reported that orally feeding zinc-enriched yeast to mice induces nonrapid-eye-movement sleep. In addition, astaxanthin, an antioxidant abundant in seafood such as salmon and krill, is able to chelate minerals and may promote zinc absorption, which in return may also improve sleep. The purpose of our study was to examine the effect of zinc-rich and astaxanthin-containing food on sleep in humans. We conducted a randomized, double-blinded, placebo-controlled parallel group trial of 120 healthy subjects and recorded their night activity by actigraphy for 12 weeks. These subjects were divided into four groups: placebo, zinc-rich food, zinc-, and astaxanthin-rich food, and placebo supplemented with zinc-enriched yeast and astaxanthin oil. Compared with the placebo group, the zinc-rich food group efficiently decreased the time necessary to fall asleep and improved sleep efficiency, whereas the group that ingested zinc-enriched yeast and astaxanthin oil significantly improved the sleep onset latency. Actigraphic sleep monitoring demonstrated that eating zinc-rich food improved sleep onset latency as well as improved the sleep efficiency in healthy individuals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  9. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  10. Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hadadian, Mahboubeh; Goharshadi, Elaheh K.; Fard, Mina Matin; Ahmadzadeh, Hossein

    2018-03-01

    The threat of toxic substances such as heavy metals to public health and wildlife has led to an increasing public awareness. Different techniques for neutralizing the toxic effects of heavy metals in wastewater have been used. Here, we prepared a new and efficient type of adsorbent, zinc oxide-graphene nanocomposite (ZnO-Gr), via a green method to remove Ni (II) ions from aqueous solutions. A facile microwave-assisted hydrothermal technique in the presence of an ionic liquid, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [C6mim] [NTf2], was used to prepare ZnO-Gr. The synergistic effect between graphene nanosheets and ZnO nanoparticles in this new adsorbent for Ni (II) ions caused a maximum adsorption capacity of 66.7 mg g-1 at room temperature which is much higher than that of graphene nanosheets (3.8 mg g-1) and other carbonaceous nanomaterials used as an adsorbent in the literature. The maximum desorption percentage (90.32%) was achieved at pH 3.6. By thermodynamic study, we found that the adsorption of this heavy metal ion on ZnO-Gr was spontaneous (Δ G° = -6.14 kJ mol-1) and endothermic (Δ H° = 53.31 kJ mol-1) with entropy change of Δ S° = 199.45 J K-1 mol- 1.

  11. Fluorescence and chemiluminescence behavior of distyrylbenzene bearing two arms of dipicolylaminomethyl groups: Interactions with zinc ion and ATP

    NASA Astrophysics Data System (ADS)

    Motoyoshiya, Jiro; Wada, Jun-ya; Itoh, Keiko; Wakabayashi, Kazuaki; Maruyama, Takayuki; Ono, Kazuki; Fukasawa, Kota; Fujimoto, Tetsuya; Akaiwa, Yuji; Nonaka, Eiji

    2018-04-01

    The absorption and fluorescence spectral study of the distyrylbenzene bearing two arms of the dipicolylaminomethyl groups, the effective ligands for Zn2+, was studied in the presence of Zn2+ and ATP. Upon complexation of the distyrylbenzene with zinc ions in acetonitrile, enhancement of the fluorescence intensity was observed due to inhibition of intramolecular PET (photo-induced electron transfer) quenching, but no effect was found in aqueous media because the equilibrium laid to the free form of the ligands. In contrast, the addition of ATP disodium salt was effective to enhance the fluorescence intensity of the combination of the distyrylbenzne and Zn2+ in aqueous media. This assembly was applied to the peroxyoxalate chemiluminescence system and a significant increase in the intensity was observed, which provides a potential detection for ATP by chemiluminescence.

  12. Sorption behavior of microamounts of zinc on titanium oxide from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasany, S.M.; Ghaffar, A.; Chughtai, F.A.

    1991-08-01

    To correlate soil response toward zinc, it is necessary to study its adsorption in detail on soils or on their constituents. The adsorption of microamounts of zinc on titanium oxide, prepared and characterized in this laboratory, has been studied in detail. Zinc adsorption has been found to be dependent on the pH of the aqueous solution, amount of oxide, and zinc concentration. Maximum adsorption is from pH 10 buffer. EDTA and cyanide ions inhibit adsorption significantly. The adsorption of other elements under optimal conditions has also been measured on this oxide. Sc(III) and Cs(I) show almost negligible adsorption. Zinc adsorptionmore » follows the linear form of the Freundlich adsorption isotherm: log C{sub Ads} = log A + (1/n) log C{sub Bulk} with A = 0.48 mol/g and n = 1. Except at a very low bulk concentration (3 {times} 10{sup {minus}5} mol/dm{sup 3}), Langmuir adsorption isotherm is also linear for the entire zinc concentration investigated. The limiting adsorbed concentration is estimated to be 0.18 mol/g.« less

  13. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications

    NASA Astrophysics Data System (ADS)

    Yuvakkumar, R.; Suresh, J.; Saravanakumar, B.; Joseph Nathanael, A.; Hong, Sun Ig; Rajendran, V.

    2015-02-01

    A naturally occurring rambutan peel waste was employed to synthesis bioinspired zinc oxide nanochains. Rambutan peels has the ability of ligating zinc ions as a natural ligation agent resulting in zinc oxide nanochains formation due to its extended polyphenolic system over incubation period. Successful formation of zinc oxide nanochains was confirmed employing transmission electron microscopy studies. About 60% and ∼40% cell viability was lost and 50% and 10% morphological change was observed in 7 and 4 days incubated ZnO treated cells compared with control. Moreover, 50% and 55% of cell death was observed at 24 and 48 h incubation with 7 days treated ZnO cells and hence alters and disturbs the growth of cancer cells and could be used for liver cancer cell treatment.

  14. Synthesis and characterization of two new zinc(II) coordination polymers with bidentate flexible ligands: Formation of a 2D structure with (44.62)-sql topology

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof

    2017-12-01

    Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.

  15. Zinc

    MedlinePlus

    ... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...

  16. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.

    PubMed

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.

  17. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    PubMed Central

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  18. Synthesis and Crystal Structure of Dibromido{2-[(4-tert-butylmethylphenyl) iminomethyl]pyridine-κ2 N, N'}Zinc

    NASA Astrophysics Data System (ADS)

    Khalaj, M.; Ghazanfarpour-Darjani, M.; Seftejani, F. B.; Lalegani, A.

    2017-12-01

    The title compound [Zn( dip)Br2] was synthesized using the Schiff base bidentate ligand (E)-4- tert-butyl- N-(pyridine-2-ylmethylene)benzeneamine ( dip) and zinc(II) bromide salts. It has been characterized by elemental analysis, X-ray diffraction, and optical spectroscopy. The X-ray diffraction analysis demonstrates that in this structure, the zinc(II) ion is located on an inversion center and exhibits a ZnN2Br2 tetrahedral geometry. In this structure the dip ligand is coordinated with zinc(II) ion in a cyclic-bidentate fashion forming a five-membered metallocyclic ring. The compound crystallizes in the monoclinic sp. gr. P21/ m with a = 9.2700(13) Å, b = 7.6128(11) Å, c = 12.3880(17) Å, and β = 97.021(3)°.

  19. Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses.

    PubMed

    Thulasiramudu, A; Buddhudu, S

    2007-02-01

    This paper reports on the spectral analysis of Eu3+ or Tb3+ ions (0.5 mol%) doped heavy metal oxide (HMO) based zinc lead borate glasses from the measurement of their absorption, emission spectra and also different physical properties. From the XRD, DSC profiles, the glass nature and glass thermal properties have been studied. The measured emission spectrum of Eu3+ glass has revealed five transitions (5D0-->7F0, 7F1, 7F2, 7F3 and 7F4) at 578, 591, 613, 654 and 702 nm, respectively, with lambdaexci=392 nm (7F0-->5L6). In the case of Tb3+:ZLB glass, four emission transitions such as (5D4-->7F6, 7F5, 7F4 and 7F3) that are located at 489, 542, 585 and 622 nm, respectively, have been measured with lambdaexci=374 nm. For all these emission bands decay curves have been plotted to evaluate their lifetimes and the emission processes that arise in the glasses have been explained in terms of energy level schemes.

  20. Analysis of zinc binding sites in protein crystal structures.

    PubMed

    Alberts, I L; Nadassy, K; Wodak, S J

    1998-08-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.

  1. Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations.

    PubMed

    Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel

    2018-04-05

    Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.

  2. The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence.

    PubMed

    Pavlíková, Daniela; Zemanová, Veronika; Procházková, Dagmar; Pavlík, Milan; Száková, Jiřina; Wilhelmová, Naďa

    2014-02-01

    Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The objective of this study is to determine amino acid changes associated with elevated CK production in ipt transgenic tobacco (Nicotiana tabacum L., cv. Wisconsin 38). Nontransformed (WT) and transformed tobacco plants with ipt gene controlled by senescence-activated promoter (SAG) were exposed to zinc soil contamination (tested levels Zn1=250, Zn2=500, Zn3=750 mg kg(-1) soil). The Zn effect on plant stress metabolism resulted in changes in levels of selected free amino acids playing an important role in adaptation to stress and plant senescence (alanine, leucine, proline, methionine and γ-aminobutyrate) and differed for transformed and nontransformed tobacco plants. Analyses of amino acids confirmed that SAG tobacco plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of proline, methionine and γ-aminobutyrate. The concentrations of leucine and alanine did not show significant differences between plant lines. © 2013 Published by Elsevier Inc.

  3. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A.

    2017-11-01

    This work presents a study of the effects on the photocatalytic capabilities of zinc oxide nanoparticles when prepared via green synthesis using different fruit peel extracts as reducing agents. Zinc nitrate was used as a source of the zinc ions, while Lycopersicon esculentum (tomato), Citrus sinensis (orange), Citrus paradisi (grapefruit) and Citrus aurantifolia (lemon) contributed their peels for extracts. The Synthesized Samples were studied and characterized through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and High Resolution Transmission Electron Microscopy (HRTEM). All samples presented a band at 618 cm-1, indicating the presence of the Znsbnd O bond. The different samples all presented the same hexagonal crystal growth in their structure, the Wurtzite phase. The surface morphology of the nanoparticles showed that, depending on the extract used, the samples vary in size and shape distribution due to the chemical composition of the extracts. The photocatalytic properties of the zinc oxide samples were tested through UV light aided degradation of methylene blue. Most samples exhibited degradation rates at 180 min of around 97%, a major improvement when compared to chemically synthesized commercially available zinc oxide nanoparticles.

  4. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    PubMed

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pH<7.5, removal rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-07-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.

  6. Two zinc(II) coordination complexes based on an asymmetric multidentate ligand: syntheses, structures, selective fluorescence sensing of iron(III) ions and thermal analyses.

    PubMed

    Liu, Yaru; Liu, Lan; Zhang, Xiao; Liang, Guorui; Gong, Xuebing

    2018-01-01

    The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel Zn II complexes, namely bis(acetato-κO)bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II) monohydrate, [Zn(C 13 H 15 N 5 ) 2 (C 2 H 3 O 2 ) 2 ]·H 2 O, (1), and bis(azido-κN 1 )bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II), [Zn(C 13 H 15 N 5 ) 2 (N 3 ) 2 ], (2), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction analysis. Both complexes exhibit a three-dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that (1) is a promising fluorescence sensor for detecting Fe 3+ ions and (2) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.

  7. Imaging free zinc levels in vivo - what can be learned?

    PubMed

    De Leon-Rodriguez, Luis; Lubag, Angelo Josue M; Sherry, A Dean

    2012-12-01

    Our ever-expanding knowledge about the role of zinc in biology includes its role in redox modulation, immune response, neurotransmission, reproduction, diabetes, cancer, and Alzheimers disease is galvanizing interest in detecting and monitoring the various forms of Zn(II) in biological systems. This paper reviews reported strategies for detecting and tracking of labile or "free" unchelated Zn(II) in tissues. While different bound structural forms of Zn(II) have been identified and studied in vitro by multiple techniques, very few molecular imaging methods have successfully tracked the ion in vivo. A number of MRI and optical strategies have now been reported for detection of free Zn(II) in cells and tissues but only a few have been applied successfully in vivo. A recent report of a MRI sensor for in vivo tracking of Zn(II) released from pancreatic β-cells during insulin secretion exemplifies the promise of rational design of new Zn(II) sensors for tracking this biologically important ion in vivo. Such studies promise to provide new insights into zinc trafficking in vivo and the critical role of this ion in many human diseases.

  8. Zinc and magnesium ions synergistically inhibit superoxide generation by cultured human neutrophils--a promising candidate formulation for amnioinfusion fluid.

    PubMed

    Uchida, Toshiyuki; Itoh, Hiroaki; Nakamura, Yuki; Kobayashi, Yukiko; Hirai, Kyuya; Suzuki, Kazunao; Sugihara, Kazuhiro; Kanayama, Naohiro; Hiramatsu, Mitsuo

    2010-06-01

    Oligohydramnios is often caused by the premature rupturing of membranes and subsequent intrauterine infections, such as chorioamnionitis, in which event oxidative stress is hypothesized to be closely associated with the damage to the fetal organs. The clinical efficiency of amnioinfusion using warmed saline in cases of premature rupture of membranes is still controversial, especially concerning the prognosis for the fetus. In the present study, we found that human amniotic fluid per se suppresses the release of superoxide from cultured human neutrophils, suggesting an acute or chronic shortage of amniotic fluid in cases of premature rupture of membranes can affect the shielding of intrauterine organs from oxidative stress. The aim of this study was to propose a formula of zinc and magnesium ions in saline for amnioinfusion, by assessing antioxidative activities. A combination of 5 microM zinc and 5mM magnesium in saline synergistically inhibited superoxide production by cultured human neutrophils, equivalent to human amniotic fluid. The intraperitoneal administration of this formula significantly improved the survival rate in a rat model of peritonitis compared to the saline control (46.7% vs. 10%). The combination of these metals with saline may thus be a promising formula for an amnioinfusion fluid with the capacity to protect fetal organs from oxidative stress. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  9. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  10. Ferrate(VI) oxidation of zinc-cyanide complex.

    PubMed

    Yngard, Ria; Damrongsiri, Seelawut; Osathaphan, Khemarath; Sharma, Virender K

    2007-10-01

    Zinc-cyanide complexes are found in gold mining effluents and in metal finishing rinse water. The effect of Zn(II) on the oxidation of cyanide by ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) was thus investigated by studying the kinetics of the reaction of Fe(VI) with cyanide present in a potassium salt of a zinc cyanide complex (K(2)Zn(CN)(4)) and in a mixture of Zn(II) and cyanide solutions as a function of pH (9.0-11.0). The rate-law for the oxidation of Zn(CN)(4)(2-) by Fe(VI) was found to be -d[Fe(VI)]/dt=k[Fe(VI)][Zn(CN)(4)(2-)](0.5). The rate constant, k, decreased with an increase in pH. The effect of temperature (15-45 degrees C) on the oxidation was studied at pH 9.0, which gave an activation energy of 45.7+/-1.5kJmol(-1). The cyanide oxidation rate decreased in the presence of the Zn(II) ions. However, Zn(II) ions had no effect on the cyanide removal efficiency by Fe(VI) and the stoichiometry of Fe(VI) to cyanide was approximately 1:1; similar to the stoichiometry in absence of Zn(II) ions. The destruction of cyanide by Fe(VI) resulted in cyanate. The experiments on removal of cyanide from rinse water using Fe(VI) demonstrated complete conversion of cyanide to cyanate.

  11. Physical chemical effects of zinc on in vitro enamel demineralization.

    PubMed

    Mohammed, N R; Mneimne, M; Hill, R G; Al-Jawad, M; Lynch, R J M; Anderson, P

    2014-09-01

    Zinc salts are formulated into oral health products as antibacterial agents, yet their interaction with enamel is not clearly understood. The aim was to investigate the effect of zinc concentration [Zn(2+)] on the in vitro demineralization of enamel during exposure to caries-simulating conditions. Furthermore, the possible mechanism of zinc's action for reducing demineralization was determined. Enamel blocks and synthetic hydroxyapatite (HAp) were demineralized in a range of zinc-containing acidic solutions (0-3565ppm [Zn(2+)]) at pH 4.0 and 37°C. Inductively coupled-plasma optical emission spectroscopy (ICP-OES) was used to measure ion release into solution. Enamel blocks were analysed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and HAp by X-ray diffraction (XRD) and neutron diffraction (ND). ICP-OES analysis of the acidic solutions showed a decrease in [Ca(2+)] and [PO4(3-)] release with increasing [Zn(2+)]. FTIR revealed a α-hopeite (α-Zn3(PO4)2.4H2O)-like phase on the enamel surfaces at >107ppm [Zn(2+)]. XRD and ND analysis confirmed a zinc-phosphate phase present alongside the HAp. This study confirms that zinc reduces enamel demineralization. Under the conditions studied, zinc acts predominantly on enamel surfaces at PO4(3-) sites in the HAp lattice to possibly form an α-hopeite-like phase. These results have a significant implication on the understanding of the fundamental chemistry of zinc in toothpastes and demonstrate its therapeutic potential in preventing tooth mineral loss. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Powell, R. E. L.; Staddon, C. R.; Kent, A. J.; Foxon, C. T.

    2014-10-01

    Currently there is high level of interest in developing of vertical device structures based on the group III nitrides. We have studied n- and p-doping of free-standing zinc-blende GaN grown by plasma-assisted molecular beam epitaxy (PA-MBE). Si was used as the n-dopant and Mg as the p-dopant for zinc-blende GaN. Controllable levels of doping with Si and Mg in free-standing zinc-blende GaN have been achieved by PA-MBE. The Si and Mg doping depth uniformity through the zinc-blende GaN layers have been confirmed by secondary ion mass spectrometry (SIMS). Controllable Si and Mg doping makes PA-MBE a promising method for the growth of conducting group III-nitrides bulk crystals.

  13. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianotti, A.J.; Clark, D.T.; Dash, J.

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  14. Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint.

    PubMed

    Hermans, Joen; Osmond, Gillian; van Loon, Annelies; Iedema, Piet; Chapman, Robyn; Drennan, John; Jack, Kevin; Rasch, Ronald; Morgan, Garry; Zhang, Zhi; Monteiro, Michael; Keune, Katrien

    2018-06-04

    Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

  15. Fluxes in ;Free; and Total Zinc Are Essential for Progression of Intraerythrocytic Stages of Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marvin, Rebecca G.; Wolford, Janet L.; Kidd, Matthew J.

    2012-10-23

    Dynamic fluxes in the concentration of ions and small molecules are fundamental features of cell signaling, differentiation, and development. Similar roles for fluxes in transition metal concentrations are less well established. Here, we show that massive zinc fluxes are essential in the infection cycle of an intracellular eukaryotic parasite. Using single-cell quantitative imaging, we show that growth of the blood-stage Plasmodium falciparum parasite requires acquisition of 30 million zinc atoms per erythrocyte before host cell rupture, corresponding to a 400% increase in total zinc concentration. Zinc accumulates in a freely available form in parasitophorous compartments outside the food vacuole, includingmore » mitochondria. Restriction of zinc availability via small molecule treatment causes a drop in mitochondrial membrane potential and severely inhibits parasite growth. Thus, extraordinary zinc acquisition and trafficking are essential for parasite development.« less

  16. Zinc attenuates forskolin-stimulated electrolyte secretion without involvement of the enteric nervous system in small intestinal epithelium from weaned piglets.

    PubMed

    Feng, Zike; Carlson, Dorthe; Poulsen, Hanne Damgaard

    2006-11-01

    In a previous study, we found that secretagogue-stimulated electrolyte secretion was attenuated by dietary and serosal zinc in piglet small intestinal epithelium in Ussing chambers. Several studies show that the enteric nervous system (ENS) is involved in regulation of electrolyte and/or fluid transport in intestinal epithelium from many species. The aim of the present study is to examine the mechanisms behind the attenuating effect of zinc on electrolyte secretion and to study whether the ENS is involved in this effect of zinc in vitro. Twenty-four piglets (six litters of four piglets) were allocated randomly to one of two dietary treatments consisting of a basic diet supplemented with 100 mg zinc/kg (Zn(100)) or 2500 mg zinc/kg (Zn(2500)), as ZnO. All the piglets were killed at 5-6 days after weaning and in vitro experiments with small intestinal epithelium in Ussing chambers were carried out. Furthermore, zinc, copper, alkaline phosphatase (AP) and metallothionein (MT) in mucosa, liver, and plasma were measured. These measurements showed that zinc status was increased in the Zn(2500) compared to the Zn(100) fed piglets. The in vitro studies did not confirm previous findings of attenuating effects of dietary zinc and zinc in vitro on the 5-HT induced secretion. But it showed that the addition of zinc at the serosal side attenuated the forskolin (FSK) (cAMP-dependent) induced ion secretion in epithelium from piglets fed with Zn(100) diet. Blocking the ENS with lidocaine or hexamethonium apparently slightly reduced this effect of zinc in vitro, but did not remove the effect of zinc. Consequently, it is suggested that zinc attenuates the cAMP dependent ion secretion mainly due to an effect on epithelial cells rather than affecting the mucosal neuronal pathway.

  17. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  18. Characterization of the zinc-induced Shank3 interactome of mouse synaptosome.

    PubMed

    Lee, Yeunkum; Ryu, Jae Ryun; Kang, Hyojin; Kim, Yoonhee; Kim, Shinhyun; Zhang, Yinhua; Jin, Chunmei; Cho, Hyo Min; Kim, Won-Ki; Sun, Woong; Han, Kihoon

    2017-12-16

    Variants of the SHANK3 gene, which encodes a core scaffold protein of the postsynaptic density of excitatory synapses, have been causally associated with numerous brain disorders. Shank3 proteins directly bind zinc ions through their C-terminal sterile α motif domain, which enhances the multimerization and synaptic localization of Shank3, to regulate excitatory synaptic strength. However, no studies have explored whether zinc affects the protein interactions of Shank3, which might contribute to the synaptic changes observed after zinc application. To examine this, we first purified Shank3 protein complexes from mouse brain synaptosomal lysates that were incubated with different concentrations of ZnCl 2 , and analyzed them with mass spectrometry. We used strict criteria to identify 71 proteins that specifically interacted with Shank3 when extra ZnCl 2 was added to the lysate. To characterize the zinc-induced Shank3 interactome, we performed various bioinformatic analyses that revealed significant associations of the interactome with subcellular compartments, including mitochondria, and brain disorders, such as bipolar disorder and schizophrenia. Together, our results showing that zinc affected the Shank3 protein interactions of in vitro mouse synaptosomes provided an additional link between zinc and core synaptic proteins that have been implicated in multiple brain disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Emily L.; Duncan, Francesca E.; Bayer, Amanda R.

    During fertilization or chemically-induced egg activation, the mouse egg releases billions of zinc atoms in brief bursts known as ‘zinc sparks.’ The zona pellucida (ZP), a glycoprotein matrix surrounding the egg, is the first structure zinc ions encounter as they diffuse away from the plasma membrane. Following fertilization, the ZP undergoes changes described as ‘hardening’, which prevent multiple sperm from fertilizing the egg and thereby establish a block to polyspermy. A major event in zona hardening is cleavage of ZP2 proteins by ovastacin; however, the overall physiochemical changes contributing to zona hardening are not well understood. Using x-ray fluorescence microscopy,more » transmission and scanning electron microscopy, and biological function assays, we tested the hypothesis that zinc release contributes to ZP hardening. We found that the zinc content in the ZP increases by 300% following activation and that zinc exposure modulates the architecture of the ZP matrix. Importantly, zinc-induced structural changes of the ZP have a direct biological consequence; namely, they reduce the ability of sperm to bind to the ZP. These results provide a paradigm-shifting model in which fertilization-induced zinc sparks contribute to the polyspermy block by altering conformations of the ZP matrix. Finally, this adds a previously unrecognized factor, namely zinc, to the process of ZP hardening.« less

  20. Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy

    DOE PAGES

    Que, Emily L.; Duncan, Francesca E.; Bayer, Amanda R.; ...

    2017-01-19

    During fertilization or chemically-induced egg activation, the mouse egg releases billions of zinc atoms in brief bursts known as ‘zinc sparks.’ The zona pellucida (ZP), a glycoprotein matrix surrounding the egg, is the first structure zinc ions encounter as they diffuse away from the plasma membrane. Following fertilization, the ZP undergoes changes described as ‘hardening’, which prevent multiple sperm from fertilizing the egg and thereby establish a block to polyspermy. A major event in zona hardening is cleavage of ZP2 proteins by ovastacin; however, the overall physiochemical changes contributing to zona hardening are not well understood. Using x-ray fluorescence microscopy,more » transmission and scanning electron microscopy, and biological function assays, we tested the hypothesis that zinc release contributes to ZP hardening. We found that the zinc content in the ZP increases by 300% following activation and that zinc exposure modulates the architecture of the ZP matrix. Importantly, zinc-induced structural changes of the ZP have a direct biological consequence; namely, they reduce the ability of sperm to bind to the ZP. These results provide a paradigm-shifting model in which fertilization-induced zinc sparks contribute to the polyspermy block by altering conformations of the ZP matrix. Finally, this adds a previously unrecognized factor, namely zinc, to the process of ZP hardening.« less

  1. Clioquinol-zinc chelate: a candidate causative agent of subacute myelo-optic neuropathy.

    PubMed Central

    Arbiser, J. L.; Kraeft, S. K.; van Leeuwen, R.; Hurwitz, S. J.; Selig, M.; Dickersin, G. R.; Flint, A.; Byers, H. R.; Chen, L. B.

    1998-01-01

    BACKGROUND: 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol) was used clinically three decades ago as an oral antiparasitic agent and to increase intestinal absorption of zinc in patients with acrodermatitis enteropathica, a genetic disorder of zinc absorption. Use of clioquinol was epidemiologically linked to subacute myelo-optic neuropathy (SMON), characterized by peripheral neuropathy and blindness, which affected 10,000 patients in Japan. Discontinuation of oral clioquinol use led to elimination of SMON, however, the mechanism of how clioquinol induces neurotoxicity is unclear. MATERIALS AND METHODS: We tested the effect of clioquinol-metal chelates on neural crest-derived melanoma cells. The effect of clioquinol chelates on cells was further studied by electron microscopy and by a mitochondrial potential-sensitive fluorescent dye. RESULTS: Of the ions tested, only clioquinol-zinc chelate demonstrated cytotoxicity. The cytotoxicity of clioquinol-zinc chelate was extremely rapid, suggesting that its primary effect was on the mitochondria. Electron microscopic analysis demonstrated that clioquinol-zinc chelate caused mitochondrial damage. This finding was further confirmed by the observation that clioquinol-zinc chelate caused a decrease in mitochondrial membrane potential. CONCLUSIONS: We demonstrate that clioquinol, in the presence of zinc, is converted to a potent mitochondrial toxin. The phenomenon of clioquinol mediated toxicity appears to be specific to zinc and is not seen with other metals tested. Since clioquinol has been shown to cause increased systemic absorption of zinc in humans, it is likely that clioquinol-zinc chelate was present in appreciable levels in patients with SMON and may be the ultimate causative toxin of SMON. Images Fig. 2 Fig. 3 PMID:9848083

  2. Barium and manganese-doped zinc silicate rods prepared by mesoporous template route and their luminescence property

    NASA Astrophysics Data System (ADS)

    Dang, Lingyan; Tian, Chen; Zhao, Shifeng; Lu, Qingshan

    2018-06-01

    Barium and manganese-doped zinc silicates was prepared under hydrothermal treatment by mesoporous template route employing mesoporous silica as an active template. The sample displays a rod-like morphology with a mean diameter of ∼40 nm and a mean length of ∼450 nm, which inherits the characteristics of mesoporous silica. The individual rods show single crystalline and assemble into bundle-like hierarchical structure along the channels of the mesoporous silica. When barium ions together with manganese ions are co-doped in zinc silicate, the green emission corresponding to manganese ions display a significant enhancement, especially for the sample with the barium doping concentration of 0.08, which indicates that an energy transfer from barium to manganese ions takes place. With further increasing barium concentration from 0.08 to 0.10, the recombination between the defects related to barium and the excitation states of the manganese dominates accompanying non-radiative transitions which can reduce the emission efficiency.

  3. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding*

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Sun, Xi; Liu, Ke J.; Hudson, Laurie G.

    2015-01-01

    Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation. PMID:26063799

  4. Zinc deficiency during growth: influence on renal function and morphology.

    PubMed

    Tomat, Analía Lorena; Costa, María Angeles; Girgulsky, Luciana Carolina; Veiras, Luciana; Weisstaub, Adriana Ruth; Inserra, Felipe; Balaszczuk, Ana María; Arranz, Cristina Teresa

    2007-03-13

    This study was designed to investigate the effects of moderate zinc deficiency during growth on renal morphology and function in adult life. Weaned male Wistar rats were divided into two groups and fed either a moderately zinc-deficient diet (zinc: 8 mg/kg, n=12) or a control diet (zinc: 30 mg/kg, n=12) for 60 days. We evaluated: renal parameters, NADPH-diaphorase and nitric oxide synthase activity in kidney, renal morphology and apoptotic cells in renal cortex. Zinc-deficient rats showed a decrease in glomerular filtration rate and no changes in sodium and potassium urinary excretion. Zinc deficiency decreased NADPH diaphorase activity in glomeruli and tubular segment of nephrons, and reduced activity of nitric oxide synthase in the renal medulla and cortex, showing that zinc plays an important role in preservation of the renal nitric oxide system. A reduction in nephron number, glomerular capillary area and number of glomerular nuclei in cortical and juxtamedullary areas was observed in zinc deficient kidneys. Sirius red staining and immunostaining for alpha-smooth muscle-actin and collagen III showed no signs of fibrosis in the renal cortex and medulla. An increase in the number of apoptotic cells in distal tubules and cortical collecting ducts neighboring glomeruli and, to a lesser extent, in the glomeruli was observed in zinc deficient rats. The major finding of our study is the emergence of moderate zinc deficiency during growth as a potential nutritional factor related to abnormalities in renal morphology and function that facilitates the development of cardiovascular and renal diseases in adult life.

  5. Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column.

    PubMed

    Stylianou, Marinos A; Hadjiconstantinou, Michalis P; Inglezakis, Vasilis J; Moustakas, Konstantinos G; Loizidou, Maria D

    2007-05-08

    This work deals with the removal of lead, copper and zinc from aqueous solutions by using natural zeolite (clinoptilolite). Fixed bed experiments were performed, using three different volumetric flow rates of 5, 7 and 10bed volume/h, under a total normality of 0.01N, at initial pH of 4 and ambient temperature (25 degrees C). The removal efficiency increased when decreasing the flow rate and the following selectivity series was found: Pb(2+)>Zn(2+)> or =Cu(2+). Conductivity measurements showed that lead removal follows mainly ion exchange mechanism, while copper and zinc removal follows ion exchange and sorption mechanism as well.

  6. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  7. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    DOE PAGES

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; ...

    2013-12-02

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn 2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn 2+, togethermore » with organelle-specific fluorescent proteins, we quantified Zn 2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn 2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn 2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn 2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn 2+. At the ALI, the majority of intracellular Zn 2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn 2+ following exposures to ZnSO 4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. In conclusion, together, our observations indicate that low but critical levels of intracellular Zn 2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.« less

  8. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    PubMed Central

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica A.; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2015-01-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air–liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs. PMID:24289294

  9. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface.

    PubMed

    Mihai, Cosmin; Chrisler, William B; Xie, Yumei; Hu, Dehong; Szymanski, Craig J; Tolic, Ana; Klein, Jessica A; Smith, Jordan N; Tarasevich, Barbara J; Orr, Galya

    2015-02-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn(2+)) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn(2+), together with organelle-specific fluorescent proteins, we quantified Zn(2+) in single cells and organelles over time. We found that at the ALI, intracellular Zn(2+) values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn(2+) values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn(2+) values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn(2+). At the ALI, the majority of intracellular Zn(2+) was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn(2+) following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn(2+) have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.

  10. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn 2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn 2+, togethermore » with organelle-specific fluorescent proteins, we quantified Zn 2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn 2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn 2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn 2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn 2+. At the ALI, the majority of intracellular Zn 2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn 2+ following exposures to ZnSO 4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. In conclusion, together, our observations indicate that low but critical levels of intracellular Zn 2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.« less

  11. [Effect of Cu2+ and Zn2+ ions in Ca-ATPase activity isolated from Pachymerus nucleorum (Fabricius) (Coleoptera: Chrysomelidae, Bruchinae) larvae].

    PubMed

    Dias, Decivaldo S; Coelho, Milton V

    2007-01-01

    ATPases, an important target of insecticides, are enzymes that hydrolyze ATP and use the energy released in that process to accomplish some type of cellular work. Pachymerus nucleorum (Fabricius) larvae possess an ATPase, that presents high Ca-ATPase activity, but no Mg-ATPase activity. In the present study, the effect of zinc and copper ions in the activity Ca-ATPase of that enzyme was tested. More than 90% of the Ca-ATPase activity was inhibited in 0.5 mM of copper ions or 0.25 mM of zinc ions. In the presence of EDTA, but not in the absence, the inhibition by zinc was reverted with the increase of calcium concentration. The inhibition by copper ions was not reverted in the presence or absence of EDTA. The Ca-ATPase was not inhibited by treatment of the ATPase fraction with copper, suggesting that the copper ion does not bind directly to the enzyme. The results suggest that zinc and copper ions form a complex with ATP and bind to the enzyme inhibiting its Ca-ATPase activity.

  12. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications.

    PubMed

    Yuvakkumar, R; Suresh, J; Saravanakumar, B; Joseph Nathanael, A; Hong, Sun Ig; Rajendran, V

    2015-02-25

    A naturally occurring rambutan peel waste was employed to synthesis bioinspired zinc oxide nanochains. Rambutan peels has the ability of ligating zinc ions as a natural ligation agent resulting in zinc oxide nanochains formation due to its extended polyphenolic system over incubation period. Successful formation of zinc oxide nanochains was confirmed employing transmission electron microscopy studies. About 60% and ∼40% cell viability was lost and 50% and 10% morphological change was observed in 7 and 4 days incubated ZnO treated cells compared with control. Moreover, 50% and 55% of cell death was observed at 24 and 48 h incubation with 7 days treated ZnO cells and hence alters and disturbs the growth of cancer cells and could be used for liver cancer cell treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of glycation on human serum albumin-zinc interaction: a biophysical study.

    PubMed

    Iqbal, Sarah; Qais, Faizan Abul; Alam, Md Maroof; Naseem, Imrana

    2018-05-01

    Zinc deficiency is common in diabetes. However, the cause of this phenomenon is largely unknown. 80% of the absorbed zinc is transported through the blood in association with human serum albumin (HSA). Under persistent hyperglycemia, HSA frequently undergoes non-enzymatic glycation which can affect its structure and metal-binding function. Hence, in this study, we have examined the interaction of zinc with native and glycated HSA. The protein samples were incubated either in the presence or in the absence of physiologically elevated glucose concentration for 21 days. The samples were then analyzed for structural changes and zinc-binding ability using various spectrometric and calorimetric approaches. The study reveals changes in the three-dimensional structure of the protein upon glycation that cause local unfolding of the molecule. Most such regions are localized in subdomain IIA of HSA which plays a key role in zinc binding. This affects zinc interaction with HSA and could in part explain the perturbed zinc distribution in patients with hyperglycemia. The varying degree of HSA glycation in blood could explain the observed heterogeneity pertaining to zinc deficiency among people suffering from diabetes.

  14. Zinc and homocysteine levels in polycystic ovarian syndrome patients with insulin resistance.

    PubMed

    Guler, Ismail; Himmetoglu, Ozdemir; Turp, Ahmet; Erdem, Ahmet; Erdem, Mehmet; Onan, M Anıl; Taskiran, Cagatay; Taslipinar, Mine Yavuz; Guner, Haldun

    2014-06-01

    In this study, our objective was to evaluating the value of serum zinc levels as an etiologic and prognostic marker in patients with polycystic ovarian syndrome. We conducted a prospective study, including 53 women with polycystic ovarian syndrome and 33 healthy controls. We compared serum zinc levels, as well as clinical and metabolic features, of the cases. We also compared serum zinc levels between patients with polycystic ovarian syndrome with insulin resistance. Mean zinc levels were found to be significantly lower in patients with polycystic ovarian syndrome than healthy controls. Multiple logistic regression analysis of significant metabolic variables between polycystic ovarian syndrome and control groups (serum zinc level, body mass index, the ratio of triglyceride/high-density lipoprotein cholesterol, and homocysteine) revealed that zinc level was the most significant variable to predict polycystic ovarian syndrome. Mean serum zinc levels tended to be lower in patients with polycystic ovarian syndrome with impaired glucose tolerance than patients with normal glucose tolerance, but the difference was not statistically significant. In conclusion, zinc deficiency may play a role in the pathogenesis of polycystic ovarian syndrome and may be related with its long-term metabolic complications.

  15. Association of Mood Disorders with Serum Zinc Concentrations in Adolescent Female Students.

    PubMed

    Tahmasebi, Kobra; Amani, Reza; Nazari, Zahra; Ahmadi, Kambiz; Moazzen, Sara; Mostafavi, Seyed-Ali

    2017-08-01

    Among various factors influencing mood disorders, the impact of micronutrient deficiencies has attracted a great attention. Zinc deficiency is considered to play a crucial role in the onset and progression of mood disorders in different stages of life. The main objective of this study was to assess the correlation between serum zinc levels and mood disorders in high school female students. This cross-sectional study was conducted on a random sample of 100 representative high school female students. The participants completed 24-h food recall questionnaires to assess the daily zinc intakes. Serum zinc status was assessed using flame atomic absorption spectrometry, and zinc deficiency was defined accordingly. Mood disorders were estimated by calculating the sum of two test scores including Beck's depression inventory (BDI) and hospital anxiety depression scale (HADS) tests. General linear model (GLM) and Pearson's regression test were applied to show the correlation of serum zinc levels and mood disorder scores and the correlation between zinc serum levels and BDI scores, respectively. Dietary zinc intake was higher in subjects with normal zinc concentrations than that of zinc-deficient group (p = 0.001). Serum zinc levels were inversely correlated with BDI and HADS scores (p < 0.05). Each 10 μg/dL increment in serum zinc levels led to 0.3 and 0.01 decrease in depression and anxiety scores, respectively (p < 0.05). Serum zinc levels were inversely correlated with mood disorders including depression and anxiety in adolescent female students. Increasing serum levels of zinc in female students could improve their mood disorders.

  16. The lack of effects of zinc and nitric oxide in initial state of pilocarpine-induced seizures.

    PubMed

    Noyan, Behzat; Jensen, Morten Skovgaard; Danscher, Gorm

    2007-07-01

    In this study we investigated whether intracerebroventricular (i.c.v.) injection of L-NAME (a nitric oxide synthase inhibitor) or CaEDTA (an extracellular zinc chelator) or the combination of the two could affect the initial phase of pilocarpine induced (2 h) seizures. Two groups of rats were used. Animals from both groups were given with i.c.v. injections of either saline (10 microl), L-NAME (150 microg/10 microl), CaEDTA (100 mM/10 microl) or L-NAME and CaEDTA. One group received pilocarpine HCl (380 mg/kg i.p.) the other served as control. Pilocarpine HCl was injected intraperitoneally 10 min later. The behavior of the animals was observed for 2h and the intensity of their seizures was scored. The rats were then sacrificed and their brains were removed and analyzed for zinc ions by using the immersion autometallography and the TSQ fluorescence staining. All the animals which received pilocarpine HCl developed seizures. Despite treatment with L-NAME and/or CaEDTA we found that the latency and the intensity of seizures were similar in both groups investigated. The distribution of stainable zinc ions and the intensity of staining in hippocampus were not affected by pilocarpine and found unchanged after L-NAME and/or CaEDTA injections in both the control animals and the pilocarpine treated animals. The data suggest that the nitric oxide system and zinc ions do not affect pilocarpine-induced seizures in their initial state.

  17. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation--the role of coagulation.

    PubMed

    Cao, Mingli; Liu, Qi

    2006-09-15

    Zinc sulfate is a well-known selective depressant for zinc sulfide minerals such as sphalerite during the flotation of complex Cu-Pb-Zn sulfide ores. It deactivates sphalerite flotation by substituting the activating metal ions, and depresses sphalerite flotation by forming hydrophilic coatings of zinc hydroxyl species on sphalerite surfaces. However, we recently observed that zinc sulfate could also induce coagulation of fine sphalerite particles and such coagulation significantly reduced the mechanical entrainment of the fine sphalerite. Therefore, it seems that the effectiveness of zinc sulfate as a selective sphalerite depressant is not only due to its ability to make mineral surface hydrophilic, which reduces genuine flotation, but also due to its ability to coagulate the mineral, which reduces mechanical entrainment. Zinc sulfate is a "dual function" selective flotation depressant.

  18. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Structural and Thermodynamic Consequences of the Replacement of Zinc with Environmental Metals on ERα-DNA Interactions

    PubMed Central

    Deegan, Brian J.; Bona, Anna M.; Bhat, Vikas; Mikles, David C.; McDonald, Caleb B.; Seldeen, Kenneth L.; Farooq, Amjad

    2011-01-01

    Estrogen receptor α (ERα) acts as a transcription factor by virtue of the ability of its DNA-binding (DB) domain, comprised of a tandem pair of zinc fingers, to recognize the estrogen response element (ERE) within the promoters of target genes. Herein, using an array of biophysical methods, we probe structural consequences of the replacement of zinc within the DB domain of ERα with various environmental metals and their effects on the thermodynamics of binding to DNA. Our data reveal that while the DB domain reconstituted with divalent ions of zinc, cadmium, mercury and cobalt binds to DNA with affinities in the nanomolar range, divalent ions of barium, copper, iron, lead, manganese, nickel and tin are unable to regenerate DB domain with DNA-binding potential though they can compete with zinc for coordinating the cysteine ligands within the zinc fingers. We also show that the metal-free DB domain is a homodimer in solution and that the binding of various metals only results in subtle secondary and tertiary structural changes, implying that metal-coordination may only be essential for DNA-binding. Collectively, our findings provide mechanistic insights into how environmental metals may modulate the physiological function of a key nuclear receptor involved in mediating a plethora of cellular functions central to human health and disease. PMID:22038807

  20. [Synergistic application of zinc and vitamin C to support memory, attention and the reduction of the risk of the neurological diseases].

    PubMed

    Gromova, O A; Torshin, I Yu; Pronin, A V; Kilchevsky, M A

    Zinc and vitamin C supplementation of the body is important for CNS functioning. Zinc ions are involved in the neurotransmission (signal transmission from acetylcholine, catecholamine, serotonin, prostaglandin receptors) and in ubiquitin-related protein degradation. Zinc deficits are associated with Alzheimer's disease and depression. Zinc supplementation (10-30 mg daily) improves neurologic recovery rate in patients with stroke and brain injury, has a positive impact on memory and reduces hyperactivity in children. Vitamin C, a zinc synergist, maintains antioxidant resources of the brain, synaptic activity and detoxification. Vitamin C in dose 130-500 mg daily should be used to prevent dementia and neurodegenerative pathology.

  1. Copper(II) and zinc(II) dinuclear enzymes model compounds: The nature of the metal ion in the biological function

    NASA Astrophysics Data System (ADS)

    Ferraresso, L. G.; de Arruda, E. G. R.; de Moraes, T. P. L.; Fazzi, R. B.; Da Costa Ferreira, A. M.; Abbehausen, C.

    2017-12-01

    First series transition metals are used abundantly by nature to perform catalytic transformations of several substrates. Furthermore, the cooperative activity of two proximal metal ions is common and represents a highly efficient catalytic system in living organisms. In this work three dinuclear μ-phenolate bridged metal complexes were prepared with copper(II) and zinc(II), resulting in a ZnZn, CuCu and CuZn with the ligand 2-ethylaminodimethylamino phenol (saldman) as model compounds of superoxide dismutase (CuCu and CuZn) and metallo-β-lactamases (ZnZn). Metals are coordinated in a μ-phenolate bridged symmetric system. Cu(II) presents a more distorted structure, while zinc is very symmetric. For this reason, [CuCu(saldman)] shows higher water solubility and also higher lability of the bridge. The antioxidant and hydrolytic beta-lactamase-like activity of the complexes were evaluated. The lability of the bridge seems to be important for the antioxidant activity and is suggested to because of [CuCu(saldman)] presents a lower antioxidant capacity than [CuZn(saldman)], which showed to present a more stable bridge in solution. The hydrolytic activity of the bimetallic complexes was assayed using nitrocefin as substrate and showed [ZnZn(saldman)] as a better catalyst than the Cu(II) analog. The series demonstrates the importance of the nature of the metal center for the biological function and how the reactivity of the model complex can be modulated by coordination chemistry.

  2. Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakas, E.; Simorowski, N; Furukawa, H

    2009-01-01

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-freemore » and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.« less

  3. Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation

    PubMed Central

    2013-01-01

    Cyanide is an extreme hazard and extensively found in the wastes of refinery, coke plant, and metal plating industries. A simple, fast, cost-effective, room-temperature wet chemical route, based on cyclohexylamine, for synthesizing zinc oxide nanoparticles in aqueous and enthanolic media was established and tested for the photodegradation of cyanide ions. Particles of polyhedra morphology were obtained for zinc oxide, prepared in ethanol (ZnOE), while spherical and some chunky particles were observed for zinc oxide, prepared in water (ZnOW). The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at an equivalent concentration of 0.02 wt.% ZnO. Increasing the concentration wt.% of ZnOE from 0.01 to 0.09 led to an increase in the photocatalytic degradation efficiency from 85% to almost 100% after 180 min and a doubling of the first-order rate constant (k). PMID:24314056

  4. Method of capturing or trapping zinc using zinc getter materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  5. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj

    2017-12-01

    The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.

  6. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    USGS Publications Warehouse

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  7. Evaluation of the Level of Zinc and Malondialdehyde in Basal Cell Carcinoma.

    PubMed

    Majidi, Ziba; Djalali, Mahmoud; Javanbakht, Mohammad Hasan; Fathi, Mojtaba; Zarei, Mahnaz; Foladsaz, Koorosh

    2017-08-01

    Basal Cell Carcinoma (BCC) is one of the most common skin cancers in the world and that use to lifestyle, increasing chemical pollutions, environmental factors and poor nutrition. The most important cause of this cancer is oxidative stress and free radicals so antioxidant activities for the body are so important. The aim of this study was to determine the variation of zinc and (Malondialdehyde) MDA in BCC patients. This study has been performed on case and control patients from 2013 to 2014. The samples were collected from cell carcinoma patients at Razi Hospital in Tehran, Iran. We evaluated the level of zinc with the use of Atomic Absorption Spectroscopy (AAS) method. Besides, we evaluated MDA with colorimetric assay. The concentration of MDA was significantly higher in case group in comparison to control group ( P =0.001). In addition, case group had lower concentration of zinc than the control group ( P =0.000). There was no correlation between MDA and body mass index (BMI) and between zinc and BMI. All the patients with BCC showed a significant MDA serum in comparison with control group. However, significant decrease in zinc serum of the patients was seen that is because of consuming zinc during oxidative stress process so topical use of zinc in the form of 2+ ions could be effective on antioxidant protection against the sun UV radiation.

  8. Impaired Calcium Entry into Cells Is Associated with Pathological Signs of Zinc Deficiency12

    PubMed Central

    O’Dell, Boyd L.; Browning, Jimmy D.

    2013-01-01

    Zinc is an essential trace element whose deficiency gives rise to specific pathological signs. These signs occur because an essential metabolic function is impaired as the result of failure to form or maintain a specific metal-ion protein complex. Although zinc is a component of many essential metalloenzymes and transcription factors, few of these have been identified with a specific sign of incipient zinc deficiency. Zinc also functions as a structural component of other essential proteins. Recent research with Swiss murine fibroblasts, 3T3 cells, has shown that zinc deficiency impairs calcium entry into cells, a process essential for many cell functions, including proliferation, maturation, contraction, and immunity. Impairment of calcium entry and the subsequent failure of cell proliferation could explain the growth failure associated with zinc deficiency. Defective calcium uptake is associated with impaired nerve transmission and pathology of the peripheral nervous system, as well as the failure of platelet aggregation and the bleeding tendency of zinc deficiency. There is a strong analogy between the pathology of genetic diseases that result in impaired calcium entry and other signs of zinc deficiency, such as decreased and cyclic food intake, taste abnormalities, abnormal water balance, skin lesions, impaired reproduction, depressed immunity, and teratogenesis. This analogy suggests that failure of calcium entry is involved in these signs of zinc deficiency as well. PMID:23674794

  9. Potentiated virucidal activity of pomegranate rind extract (PRE) and punicalagin against Herpes simplex virus (HSV) when co-administered with zinc (II) ions, and antiviral activity of PRE against HSV and aciclovir-resistant HSV

    PubMed Central

    Houston, David M. J.; Bugert, Joachim J.; Denyer, Stephen P.

    2017-01-01

    Background There is a clinical need for new therapeutic products against Herpes simplex virus (HSV). The pomegranate, fruit of the tree Punica granatum L, has since ancient times been linked to activity against infection. This work probed the activity of pomegranate rind extract (PRE) and co-administered zinc (II) ions. Materials and methods PRE was used in conjunction with zinc (II) salts to challenge HSV-1 and aciclovir-resistant HSV in terms of virucidal plaque assay reduction and antiviral activities in epithelial Vero host cells. Cytotoxicity was determined by the MTS assay using a commercial kit. Results Zinc sulphate, zinc citrate, zinc stearate and zinc gluconate demonstrated similar potentiated virucidal activity with PRE against HSV-1 by up to 4-fold. A generally parabolic relationship was observed when HSV-1 was challenged with PRE and varying concentrations of ZnSO4, with a maximum potentiation factor of 5.5. Punicalagin had 8-fold greater virucidal activity than an equivalent mass of PRE. However, antiviral data showed that punicalagin had significantly lower antiviral activity compared to the activity of PRE (EC50 = 0.56 μg mL-1) a value comparable to aciclovir (EC50 = 0.18 μg mL-1); however, PRE also demonstrated potency against aciclovir-resistant HSV (EC50 = 0.02 μg mL-1), whereas aciclovir showed no activity. Antiviral action of PRE was not influenced by ZnSO4. No cytotoxicity was detected with any test solution. Conclusions The potentiated virucidal activity of PRE by coadministered zinc (II) has potential as a multi-action novel topical therapeutic agent against HSV infections, such as coldsores. PMID:28665969

  10. Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*

    PubMed Central

    Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759

  11. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    PubMed

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  12. Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Zhu, Wencong

    Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because

  13. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF

  14. Effect of zinc intake on hepatic autophagy during acute alcohol intoxication.

    PubMed

    Liuzzi, Juan P; Narayanan, Vijaya; Doan, Huong; Yoo, Changwon

    2018-04-01

    Autophagy is a conserved mechanism that plays a housekeeping role by eliminating protein aggregates and damaged organelles. Recent studies have demonstrated that acute ethanol intoxication induces hepatic autophagy in mice. The effect of dietary zinc intake on hepatic autophagic flux during ethanol intoxication has not been evaluated using animal models. Herein, we investigated whether zinc deficiency and excess can affect autophagic flux in the liver in mice and in human hepatoma cells acutely exposed to ethanol. A mouse model of binge ethanol feeding was utilized to analyze the effect of low, adequate, and high zinc intake on hepatic autophagic flux during ethanol intoxication. Autophagic flux was inferred by analyzing LC3II/LC3I ratio, protein levels of p62/SQSTM1, Beclin1 and Atg7, and phosphorylation of 4EBP1. In addition, the degradation of the fusion protein LC3-GFP and the formation of autophagosomes and autolysosomes were evaluated in cells. Ethanol treatment stimulated autophagy in mice and cells. High zinc intake resulted in enhanced autophagy in mice exposed to ethanol. Conversely, zinc deficiency was consistently associated with impaired ethanol-induced autophagy in mice and cells. Zinc-deficient mice exhibited a high degree of ethanol-driven steatosis. Furthermore, zinc depletion increased apoptosis in cells exposed to ethanol. The results of this study suggest that adequate zinc intake is necessary for proper stimulation of autophagy by ethanol. Poor zinc status is commonly found among alcoholics and could likely contribute to faulty autophagy.

  15. Effect of Zinc Supplements on Preventing Upper Respiratory Infections in Air Force Academy Cadets in Basic Training

    DTIC Science & Technology

    2009-01-01

    and Nutrition Board (2001). Dietary Reference Intakes: A Report of the Panel on Micronutrients , Subcommittees on Upper Reference Levels of Nutrients...Respiratory Infections in Air Force Academy Cadets in Basic Training Summary Background: As a dietary essential, zinc plays a number of important roles...Introduction Zinc is considered one of the essential micronutrients used by the human body. Although zinc fulfills a number of metabolic and

  16. Bovine Leukemia Virus SU Protein Interacts with Zinc, and Mutations within Two Interacting Regions Differently Affect Viral Fusion and Infectivity In Vivo

    PubMed Central

    Gatot, Jean-Stéphane; Callebaut, Isabelle; Van Lint, Carine; Demonté, Dominique; Kerkhofs, Pierre; Portetelle, Daniel; Burny, Arsène; Willems, Luc; Kettmann, Richard

    2002-01-01

    Bovine leukemia virus (BLV) and human T-cell lymphotropic virus type 1 (HTLV-1) belong to the genus of deltaretroviruses. Their entry into the host cell is supposed to be mediated by interactions of the extracellular (SU) envelope glycoproteins with cellular receptors. To gain insight into the mechanisms governing this process, we investigated the ability of SU proteins to interact with specific ligands. In particular, by affinity chromatography, we have shown that BLV SU protein specifically interacted with zinc ions. To identify the protein domains involved in binding, 16 peptides distributed along the sequence were tested. Two of them appeared to be able to interact with zinc. To unravel the role of these SU regions in the biology of the virus, mutations were introduced into the env gene of a BLV molecular clone in order to modify residues potentially interacting with zinc. The fusogenic capacity of envelope mutated within the first zinc-binding region (104 to 123) was completely abolished. Furthermore, the integrity of this domain was also required for in vivo infectivity. In contrast, mutations within the second zinc-binding region (218 to 237) did not hamper the fusogenic capacity; indeed, the syncytia were even larger. In sheep, mutations in region 218 to 237 did not alter infectivity or viral spread. Finally, we demonstrated that the envelope of the related HTLV-1 was also able to bind zinc. Interestingly, zinc ions were found to be associated with the receptor-binding domain (RBD) of Friend murine leukemia virus (Fr-MLV) SU glycoprotein, further supporting their relevance in SU structure. Based on the sequence similarities shared with the Fr-MLV RBD, whose three-dimensional structure has been experimentally determined, we located the BLV zinc-binding peptide 104-123 on the opposite side of the potential receptor-binding surface. This observation supports the hypothesis that zinc ions could mediate interactions of the SU RBD either with the C-terminal part

  17. Assessment of copper, cadmium and zinc remobilization in Mediterranean marine coastal sediments

    NASA Astrophysics Data System (ADS)

    Sakellari, Aikaterini; Plavšić, Marta; Karavoltsos, Sotiris; Dassenakis, Manos; Scoullos, Michael

    2011-01-01

    The remobilization of copper, cadmium and zinc in sediments of three selected coastal microenvironments of the Aegean Sea (Eastern Mediterranean) is assessed. Various analytical methods and techniques were employed providing concentrations, profiles and forms of metals and organic matter in sediments and pore waters. At Loutropyrgos, a non-industrial site located, however, within an intensively industrialized enclosed gulf, an intense resupply of zinc in pore water from sediment was recorded, correlating with the highest value of weakly bound fraction of zinc determined at this area. The comparatively high zinc concentrations measured in the pore waters (394 nM), exceed considerably those in the overlying seawater (12.5 nM determined by DGT; 13.5 nM total), resulting in the formation of a strong concentration gradient at the sediment-water interface. Potential zinc flux at the sediment-water interface at Loutropyrgos (based on 0.4 mm DGT profile) was calculated equal to 0.8 mmol.m -2.d -1. The half lives of trace metals at Loutropyrgos site, based on the aforementioned DGT profiles, amount to 0.1 y (Zn), 2.8 y (Cd), 4.5 y (Cu), 2.2 y (Mn) and 0.4 y (Fe) pointing out to the reactivity of these metals at the sediment-water interface. The concentration of dissolved organic carbon (DOC) in pore waters of the three selected sites (2.7-5.2 mg/L) was up to four times higher compared to that of the corresponding overlying seawater. Similarly, the concentrations of carbohydrates in pore waters (0.20-0.91 mg/L monosaccharides; 0.71-1.6 mg/L polysaccharides) are an order of magnitude higher than those of seawater, forming a concentration gradient at the sediment-water interface. Total carbohydrates contribute between 34 and 48% of the organic carbon of the pore waters, being significantly higher than those of seawater from the corresponding areas, which were in the range of 15-21%. The complexing capacity as for copper ions (CCu) determined in pore water ranges widely, from 0

  18. Cu2+ ions as a paramagnetic probe to study the surface chemical modification process of layered double hydroxides and hydroxide salts with nitrate and carboxylate anions.

    PubMed

    Arizaga, Gregorio Guadalupe Carbajal; Mangrich, Antonio Salvio; Wypych, Fernando

    2008-04-01

    A layered zinc hydroxide nitrate (Zn5(OH)8(NO3)2.2H2O) and a layered double hydroxide (Zn/Al-NO3) were synthesized by coprecipitation and doped with different amounts of Cu2+ (0.2, 1, and 10 mol%), as paramagnetic probe. Although the literature reports that the nitrate ion is free (with D3h symmetry) between the layers of these two structures, the FTIR spectra of two zinc hydroxide nitrate samples show the C2v symmetry for the nitrate ion, whereas the g ||/A || value in the EPR spectra of Cu2+ is high. This fact suggests bonding of some nitrate ions to the layers of the zinc hydroxide nitrate. The zinc hydroxide nitrate was used as matrix in the intercalation reaction with benzoate, o-chlorobenzoate, and o-iodobenzoate ions. FTIR spectra confirm the ionic exchange reaction and the EPR spectroscopy reveals bonding of the organic ions to the inorganic layers of the zinc hydroxide nitrate, while the layered double hydroxides show only exchange reactions.

  19. An X-ray absorption spectroscopy study of the inversion degree in zinc ferrite nanocrystals dispersed on a highly porous silica aerogel matrix.

    PubMed

    Carta, D; Marras, C; Loche, D; Mountjoy, G; Ahmed, S I; Corrias, A

    2013-02-07

    The structural properties of zinc ferrite nanoparticles with spinel structure dispersed in a highly porous SiO(2) aerogel matrix were compared with a bulk zinc ferrite sample. In particular, the details of the cation distribution between the octahedral (B) and tetrahedral (A) sites of the spinel structure were determined using X-ray absorption spectroscopy. The analysis of both the X-ray absorption near edge structure and the extended X-ray absorption fine structure indicates that the degree of inversion of the zinc ferrite spinel structures varies with particle size. In particular, in the bulk microcrystalline sample, Zn(2+) ions are at the tetrahedral sites and trivalent Fe(3+) ions occupy octahedral sites (normal spinel). When particle size decreases, Zn(2+) ions are transferred to octahedral sites and the degree of inversion is found to increase as the nanoparticle size decreases. This is the first time that a variation of the degree of inversion with particle size is observed in ferrite nanoparticles grown within an aerogel matrix.

  20. Solution NMR Refinement of a Metal Ion Bound Protein Using Metal Ion Inclusive Restrained Molecular Dynamics Methods

    PubMed Central

    Chakravorty, Dhruva K.; Wang, Bing; Lee, Chul Won; Guerra, Alfredo J.; Giedroc, David P.; Merz, Kenneth M.

    2013-01-01

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational dynamics in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies. PMID:23609042

  1. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2017-10-18

    Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.

  2. Effects of Zinc Gluconate and 2 Other Divalent Cationic Compounds on Olfactory Function in Mice

    PubMed Central

    Duncan-Lewis, Christopher A; Lukman, Roy L; Banks, Robert K

    2011-01-01

    Intranasal application of zinc gluconate has commonly been used to treat the common cold. The safety of this treatment, however, has come into question recently. In addition to a United States recall of a homeopathic product that contains zinc gluconate, abundant literature reports cytotoxic effects of zinc on the olfactory epithelium. Additional research suggests that divalent cations (such as zinc) can block ion channels that facilitate the transduction of odors into electrical signals on the olfactory epithelium. The purpose of the current study was 2-fold: to confirm whether zinc gluconate causes anosmia and to reveal whether any other divalent cationic compounds produce a similar effect. Groups of mice underwent a buried food-pellet test to gauge olfactory function and then were nasally irrigated with 1 of 3 divalent cationic compounds. When tested after treatment, mice irrigated with zinc gluconate and copper gluconate experienced a marked increase in food-finding time, indicating that they had lost their ability to smell a hidden food source. Control mice irrigated with saline had a significantly lower increase in times. These results confirm that zinc gluconate can cause anosmia and reveal that multiple divalent cations can negatively affect olfaction. PMID:22330252

  3. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    PubMed

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  4. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry

    PubMed Central

    Nolan, Elizabeth M.; Lippard, Stephen J.

    2008-01-01

    Conspectus Metal ions are involved in many neurobiological processes relevant to human health and disease. The metalloneurochemistry of Zn(II) is of substantial current interest. Zinc is the second most abundant d-block metal ion in the human brain and its distribution varies, with relatively high concentrations found in the hippocampus. Brain zinc is generally divided into two categories: protein-bound and loosely-bound. The latter pool is also referred to as histochemically observable, chelatable, labile, or mobile zinc. The neurophysiological and neuropathological significance of such mobile Zn(II) remains enigmatic. Studies of Zn(II) distribution, translocation, and function in vivo require tools for its detection. Because Zn(II) has a closed-shell d10 configuration and no convenient spectroscopic signature, fluorescence is a suitable method for monitoring Zn(II) in biological contexts. This Account summarizes work by our laboratory addressing the design, preparation, characterization, and use of small-molecule fluorescent sensors for imaging mobile Zn(II) in living cells and samples of brain tissue. These sensors provide “turn-on” or ratiometric Zn(II) detection in aqueous solution at neutral pH. By making alterations to the Zn(II)-binding unit and fluorophore platform, we have devised sensors with varied photophysical and metal-binding properties. We used several of these probes to image Zn(II) distribution, uptake, and mobilization in a variety of cell types, including neuronal cultures. Goals for the future include developing strategies for multi-color imaging, further defining the quenching and turn-on mechanisms of the sensors, and employing the probes to elucidate the functional significance of Zn(II) in neurobiology. PMID:18989940

  5. Zinc Interactions With Brain-Derived Neurotrophic Factor and Related Peptide Fragments.

    PubMed

    Travaglia, A; La Mendola, D

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal development and survival, synaptic plasticity, and cognitive function. Dysregulation of BDNF signaling is involved in several neurodegenerative disorders, including Alzheimer's disease. Alteration of metal ion homeostasis is observed both in normal aging and in many neurodegenerative diseases. Interestingly, there is a significant overlap between brain areas characterized by metal ion dyshomeostasis and those where BDNF exerts its biological activity. Therefore, it is reasonable to speculate that metal ions, especially zinc, can modulate the activity of BDNF. The synthesis of BDNF peptidomimetic can be helpful both to understand the molecular interaction of BDNF with metal ions and to develop new drugs for neurodegenerative diseases. © 2017 Elsevier Inc. All rights reserved.

  6. Effect of chloride ion concentration on the galvanic corrosion of α phase brass by eccrine sweat.

    PubMed

    Meekins, Andrew; Bond, John W; Chaloner, Penelope

    2012-07-01

    Inductively coupled plasma mass spectrometry measurement of the relative concentration of sodium, chloride, calcium, and potassium ions in eccrine sweat deposits from 40 donors revealed positive correlations between chloride and sodium (ρ = 0.684, p < 0.01) and chloride and calcium ions (ρ = 0.91, p < 0.01). Correlations between ion concentration and the corrosion of α phase brass by the donated sweat were investigated by visual grading of the degree of corrosion, by measuring the copper/zinc ratio using energy-dispersive X-ray spectroscopy, and from a measurement of the potential difference between corroded and uncorroded brass when a large potential was applied to the uncorroded brass. An increasing copper/zinc ratio (indicative of dezincification) was found to correlate positively to both chloride ion concentration and visual grading of corrosion, while visual grading gave correlations with potential difference measurements that were indicative of the preferential surface oxidation of zinc rather than copper. © 2012 American Academy of Forensic Sciences.

  7. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    PubMed Central

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from −20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  8. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    PubMed

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  9. Zinc pharmacokinetic parameters in the determination of body zinc status in children.

    PubMed

    Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J

    2014-02-01

    Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.

  10. Effects of zinc and cholesterol/choleate on serum lipoproteins and the liver in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.H.; Chen, S.M.; Ogle, C.W.

    1989-01-01

    The effects of short-term treatment with orally-administered zinc sulfate and/or a mixture of cholesterol/choleate on serum lipoprotein and hepatic enzyme levels were studied. Administration of graded doses of zinc sulfate for 5 days, dose-dependently increased serum and hepatic zinc levels but depressed the serum high-density lipoprotein-cholesterol (HDL-C) concentration and liver cytochrome P-450 activity. However, it did not affect hepatic concentrations of malondialdehyde and free {beta}-glucuronidase. Cholesterol/choleate treatment for 5 days markedly damaged the liver, as reflected by elevations of hepatic concentrations of malondialdehyde (both in the mitochondrial and microsomal fractions) and of free {beta}-glucuronidase; total cholesterol and low-density lipoprotein-cholesterol inmore » the blood were increased, whereas HDL-C was decreased significantly. Concomitant administration of zinc sulfate with cholesterol/choleate further lowered HDL-C levels, but reversed the high hepatic concentrations of both malondialdehyde and free {beta}-glucuronidase. The present study indicates that both zinc ions and cholesterol can decrease circulatory HDL-C levels and that zinc protects against cholesterol-induced hepatic damage by reducing lysosomal enzyme release and preventing lipid peroxidation in the liver.« less

  11. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  12. [Health hazards resulting from exposure to zinc and its inorganic compounds in industry].

    PubMed

    Pakulska, Daria; Czerczak, Sławomir

    2017-10-17

    This article deals with health risks resulting from exposure to zinc and its inorganic compounds in industry. The main source of zinc exposure are fumes generated during thermal and chemical processes, mainly zinc oxide fume formed by immediate oxidation of metallic zinc vapor formed during high-temperature processes, as well as dust generated during the mechanical processing of zinc-containing materials. It is recognized that zinc ions are responsible for health effects of exposure to dust/fumes of the majority of zinc compounds, and the final effect of exposure depends on the degree of dispersion of dusts/fumes suspended in the air. Since the effects of exposure depends on the particle size, occupational exposure limits have began to be established separately for respirable and inhalable fractions. A critical effect of acute exposure to respirable fraction is a "fume fever" which in chronic exposure occurs as an effect associated with recurrent symptoms of acute poisoning. Impaired lung function and asthma symptoms are considered to be the main effects of exposure to inhalable fraction. Due to the limited number of the available data it is not possible to assess carcinogenicity, reproductive toxicity and teratogenicity of zinc and its compounds. The aim of the study was to analyze the major health hazards resulting from occupational exposure to zinc and its inorganic compounds in the context of their physico-chemical properties, a wide range of applications and occupational exposure data. Med Pr 2017;68(6):779-794. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. BIOCHEMISTRY OF MOBILE ZINC AND NITRIC OXIDE REVEALED BY FLUORESCENT SENSORS

    PubMed Central

    Pluth, Michael D.; Tomat, Elisa; Lippard, Stephen J.

    2010-01-01

    Biologically mobile zinc and nitric oxide (NO) are two prominent examples of inorganic compounds involved in numerous signaling pathways in living systems. In the past decade, a synergy of regulation, signaling, and translocation of these two species has emerged in several areas of human physiology, providing additional incentive for developing adequate detection systems for Zn(II) ions and NO in biological specimens. Fluorescent probes for both of these bioinorganic analytes provide excellent tools for their detection, with high spatial and temporal resolution. We review the most widely used fluorescent sensors for biological zinc and nitric oxide, together with promising new developments and unmet needs of contemporary Zn(II) and NO biological imaging. The interplay between zinc and nitric oxide in the nervous, cardiovascular, and immune systems is highlighted to illustrate the contributions of selective fluorescent probes to the study of these two important bioinorganic analytes. PMID:21675918

  14. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  15. A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.

    PubMed

    Wastney, Meryl E; McDonald, Christine M; King, Janet C

    2018-05-01

    Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.

  16. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions.

    PubMed

    Brun, Nadja Rebecca; Lenz, Markus; Wehrli, Bernhard; Fent, Karl

    2014-04-01

    The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of nZnO are solely or partly due to dissolved Zn(II). Here we compare potential effects of 0.2, 1 and 5mg/L nZnO and corresponding concentrations of released Zn(II) by water soluble ZnCl2 to two development stages of zebrafish, embryos and eleuthero-embryos, by analysing expressional changes by RT-qPCR. Another objective was to assess uptake and tissue distribution of Zn(II). Laser ablation-ICP-MS analysis demonstrated that uptake and tissue distribution of Zn(II) were identical for nZnO and ZnCl2 in eleuthero-embryos. Zn(II) was found particularly in the retina/pigment layer of eyes and brain. Both nZnO and dissolved Zn(II) derived from ZnCl2 had similar inhibiting effects on hatching, and they induced similar expressional changes of target genes. At 72hours post fertilization (hpf), both nZnO and Zn(II) delayed hatching at all doses, and inhibited hatching at 1 and 5 mg/L at 96 hpf. Both nZnO and Zn(II) lead to induction of metallothionein (mt2) in both embryos and eleuthero-embryos at all concentrations. Transcripts of oxidative stress related genes cat and Cu/Zn sod were also altered. Moreover, we show for the first time that nZnO exposure results in transcriptional changes of pro-inflammatory cytokines IL-1β and TNFα. Overall, transcriptional alterations were higher in embryos than eleuthero-embryos. The similarities of the effects lead to the conclusion that effects of nZnO are mainly related to the release of Zn(II). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    PubMed

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  18. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper.

    PubMed

    Sandusky-Beltran, Leslie A; Manchester, Bryce L; McNay, Ewan C

    2017-08-30

    Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  20. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  1. Three-dimensional printed sample load/inject valves enabling online monitoring of extracellular calcium and zinc ions in living rat brains.

    PubMed

    Su, Cheng-Kuan; Hsia, Sheng-Chieh; Sun, Yuh-Chang

    2014-08-01

    We have developed a simple and low-cost flow injection system coupled to a quadruple ICP-MS for the direct and continuous determination of multi-element in microdialysates. To interface microdialysis sampling to an inductively coupled plasma mass spectrometer (ICP-MS), we employed 3D printing to manufacture an as-designed sample load/inject valve featuring an in-valve sample loop for precise handling of microliter samples with a dissolved solids content of 0.9% NaCl (w/v). To demonstrate the practicality of our developed on-line system, we applied the 3D printed valve equipped a 5-μL sample loop to minimize the occurrence of salt matrix effects and facilitate an online dynamic monitoring of extracellular calcium and zinc ions in living rat brains. Under the practical condition (temporal resolution: 10h(-1)), dynamic profiling of these two metal ions in living rat brain extracellular fluid after probe implantation (the basal values for Ca and Zn were 12.11±0.10mg L(-1) and 1.87±0.05μg L(-1), respectively) and real-time monitoring of the physiological response to excitotoxic stress elicited upon perfusing a solution of 2.5mM N-methyl-d-aspartate were performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Recognition of adenosine monophosphate and H2PO4- using zinc ensemble of new hexaphenylbenzene derivative: potential bioprobe and multichannel keypad system.

    PubMed

    Bhalla, Vandana; Vij, Varun; Kumar, Manoj; Sharma, Parduman Raj; Kaur, Tandeep

    2012-02-17

    Zinc ensemble of hexaphenylbenzene derivative 3 exhibits sensitive response toward adenosine monophosphate (AMP) and H(2)PO(4)(-) ions. Further, the application of derivative 3 as a multichannel molecular keypad could be realized in the presence of inputs of Zn(2+) ions, H(2)PO(4)(-) ions, and AMP.

  3. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  4. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  5. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.

    PubMed

    Vera-Estrella, Rosario; Gómez-Méndez, María F; Amezcua-Romero, Julio C; Barkla, Bronwyn J; Rosas-Santiago, Paul; Pantoja, Omar

    2017-09-01

    Tobacco germinated and grew in the presence of high concentrations of cadmium and zinc without toxic symptoms. Evidence suggests that these ions are sequestered into the vacuole by heavy metal/H + exchanger mechanisms. Heavy metal hyperaccumulation and hypertolerance are traits shared by a small set of plants which show specialized physiological and molecular adaptations allowing them to accumulate and sequester toxic metal ions. Nicotiana tabacum was used to test its potential as a metal-accumulator in a glass house experiment. Seed germination was not affected in the presence of increasing concentrations of zinc and cadmium. Juvenile and adult plants could concentrate CdCl 2 and ZnSO 4 to levels exceeding those in the hydroponic growth medium and maintained or increased their leaf dry weight when treated with 0.5- or 1-mM CdCl 2 or 1-mM ZnSO 4 for 5 days. Accumulation of heavy metals did not affect the chlorophyll and carotenoid levels, while variable effects were observed in cell sap osmolarity. Heavy metal-dependent H + transport across the vacuole membrane was monitored using quinacrine fluorescence quenching. Cadmium- or zinc-dependent fluorescence recovery revealed that increasing concentrations of heavy metals stimulated the activities of the tonoplast Cd 2+ or Zn 2+ /H + exchangers. Immunodetection of the V-ATPase subunits showed that the increased proton transport by zinc was not due to changes in protein amount. MTP1 and MTP4 immunodetection and semiquantitative RT-PCR of NtMTP1, NtNRAMP1, and NtZIP1 helped to identify the genes that are likely involved in sequestration of cadmium and zinc in the leaf and root tissue. Finally, we demonstrated that cadmium and zinc treatments induced an accumulation of zinc in leaf tissues. This study shows that N. tabacum possesses a hyperaccumulation response, and thus could be used for phytoremediation purposes.

  6. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    PubMed

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of subchronic zinc toxicity on rat salivary glands and serum composition.

    PubMed

    Mizari, Nazer; Hirbod-Mobarakeh, Armin; Shahinpour, Shervin; Ghalichi-Tabriz, Mostafa; Beigy, Maani; Yamini, Ali; Dehpour, Ahmad Reza

    2012-11-01

    Zinc plays an important role in a wide variety of metabolic processes in animal systems. The role of zinc in preservative treatment, fungicidal action and medicine, and addition of supplementary zinc have increased the probability of zinc toxicity, specially the chronic type. It is known that the composition and quantity of saliva influence the oral health. Regarding people's exposure to zinc in routine life and the importance of saliva, our purpose was to investigate the effects of oral zinc intoxication on secretory function in rat salivary glands and also on serum composition. In this study, there were five groups of female rats. Four groups received zinc acetate dehydrate through their drinking water. After 3 months of experiment, the chemical characteristics and flow rate of saliva and weight of salivary glands were determined. The effects of zinc on hematological and chemical factors of plasma were assessed too. Flow rate of submandibular glands was significantly lower in experimental groups and there were significant changes in Na(+), Ca(2+) and K(+) concentration both in saliva and in plasma. The serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, glucose levels in the plasma and urine creatinine levels were also altered in experimental groups in comparison with the control group. Our results show that zinc toxicity will affect the quantity and quality of saliva probably through changes in the various neurologic pathways to the salivary glands or effects on acinar cells of the salivary glands. Furthermore, our results showed that zinc toxicity will affect the liver and renal function.

  8. Extracellular zinc and ATP-gated P2X receptor calcium entry channels: New zinc receptors as physiological sensors and therapeutic targets.

    PubMed

    Schwiebert, Erik M; Liang, Lihua; Cheng, Nai-Lin; Williams, Clintoria Richards; Olteanu, Dragos; Welty, Elisabeth A; Zsembery, Akos

    2005-12-01

    In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.

  9. Removal of toxic zinc from water/wastewater using eucalyptus seeds activated carbon: non-linear regression analysis.

    PubMed

    Senthil Kumar, Ponnusamy; Saravanan, Anbalagan; Anish Kumar, Kodyingil; Yashwanth, Ramesh; Visvesh, Sridharan

    2016-08-01

    In the present study, a novel activated carbon was prepared from low-cost eucalyptus seeds, which was utilised for the effectively removal of toxic zinc from the water/wastewater. The prepared adsorbent was studied by Fourier transform infrared spectroscopy and scanning electron microscopic characterisation studies. Adsorption process was experimentally performed for optimising the influencing factors such as adsorbent dosage, solution pH, contact time, initial zinc concentration, and temperature for the maximum removal of zinc from aqueous solution. Adsorption isotherm of zinc removal was ensued Freundlich model, and the kinetic model ensued pseudo-second order model. Langmuir monolayer adsorption capacity of the adsorbent for zinc removal was evaluated as 80.37 mg/g. The results of the thermodynamic studies suggested that the adsorption process was exothermic, thermodynamically feasible and impulsive process. Finally, a batch adsorber was planned to remove zinc from known volume and known concentration of wastewater using best obeyed model such as Freundlich. The experimental details showed the newly prepared material can be effectively utilised as a cheap material for the adsorption of toxic metal ions from the contaminated water.

  10. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition.

    PubMed

    Si, Meiru; Wang, Yao; Zhang, Bing; Zhao, Chao; Kang, Yiwen; Bai, Haonan; Wei, Dawei; Zhu, Lingfang; Zhang, Lei; Dong, Tao G; Shen, Xihui

    2017-07-25

    The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Zinc

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of zinc: U.S. Department of Agriculture's (USDA’s) National Nutrient Database Nutrient List for zinc ( ...

  12. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    PubMed

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  13. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    PubMed Central

    2012-01-01

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area. PMID:23369182

  14. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    NASA Astrophysics Data System (ADS)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  15. Zinc stable isotope fractionation upon accelerated oxidative weathering of sulfidic mine waste.

    PubMed

    Matthies, R; Krahé, L; Blowes, D W

    2014-07-15

    Accelerated oxidative weathering in a reaction cell (ASTM D 5744 standard protocol) was performed over a 33 week period on well characterized, sulfidic mine waste from the Kidd Creek Cu-Zn volcanogenic massive sulfide deposit, Canada. The cell leachate was monitored for physicochemical parameters, ion concentrations and stable isotope ratios of zinc. Filtered zinc concentrations (<0.45 μm) in the leachate ranged between 4.5 mg L(-1) and 1.9 g L(-1)-potentially controlled by pH, mineral solubility kinetics and (de)sorption processes. The zinc stable isotope ratios varied mass-dependently within +0.1 and +0.52‰ relative to IRMM 3702, and were strongly dependent on the pH (rpH-d66Zn=0.65, p<0.005, n=31). At a pH below 5, zinc mobilization was governed by sphalerite oxidation and hydroxide dissolution-pointing to the isotope signature of sphalerite (+0.1 to +0.16‰). Desorption processes resulted in enrichment of (66)Zn in the leachate reaching a maximum offset of +0.32‰ compared to the proposed sphalerite isotope signature. Over a period characterized by pH=6.1 ± 0.6, isotope ratios were significantly more enriched in (66)Zn with an offset of ≈ 0.23‰ compared to sphalerite, suggesting that zinc release may have been derived from a second zinc source, such as carbonate minerals, which compose 8 wt.% of the tailings. This preliminary study confirms the benefit of applying zinc isotopes alongside standard monitoring parameters to track principal zinc sources and weathering processes in complex multi-phase matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  17. Update on zinc biology.

    PubMed

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  18. Zinc at glutamatergic synapses.

    PubMed

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  19. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant.

    PubMed

    Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko

    2013-01-01

    Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant.

  20. Compound Heterozygous Mutations in SLC30A2/ZnT2 Results in Low Milk Zinc Concentrations: A Novel Mechanism for Zinc Deficiency in a Breast-Fed Infant

    PubMed Central

    Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko

    2013-01-01

    Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant. PMID:23741301

  1. Removing Escherichia coli from water using zinc oxide-coated zeolite.

    PubMed

    Wang, Lingling; Wu, Wenlin; Xie, Xiaolan; Chen, Hongbin; Lin, Jianming; Dionysiou, Dionysios D

    2018-05-11

    The removal of Escherichia coli (E. coli) from water by zinc oxide-coated zeolite (ZOCZ) and ZOCZ's antibacterial properties were examined in laboratory experiments using plate counting method and tests of cell apoptosis. Batch experiments showed that ZOCZ has a maximum removal capacity for E. coli of about 4.34 × 10 6  CFU g -1  at 25 °C. Element mappings confirm that zinc ions accumulate in the E. coli cells causing cell death. Pseudo-second-order kinetics and Freundlich isotherms were found to best describe the removal of E. coli, suggesting that a multilayer of E. coli cells forms on the surface of ZOCZ particles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. An Improved Process for Precipitating Cyanide Ions from the Barren Solution at Different pHs

    NASA Astrophysics Data System (ADS)

    Figueroa, Gabriela V.; Parga, José R.; Valenzuela, Jesus L.; Vázquez, Victor; Valenzuela, Alejandro; Rodriguez, Mario

    2016-02-01

    In recent decades, the use of metal sulfides instead of hydroxide precipitation in hydrometallurgical processes has gained prominence. Some arguments for its preferential use are as follows: a high degree of metal removal at relatively low pH values, the sparingly soluble nature of sulfide precipitates, favorable dewatering characteristics, and the stability of the formed metal sulfides. The Merrill-Crowe zinc-precipitation process has been applied worldwide in a large number of operations for the recovery of gold and silver from cyanide solutions. However, in some larger plants, the quality of this precious precipitate is low because copper, zinc and especially lead are precipitated along with gold and silver. This results in higher consumption of zinc dust and flux during the smelting of the precipitate, the formation of the matte, and a shorter crucible life. The results show that pH has a significant effect on the removal efficiency of zinc and copper cyanide ions. The optimal pH range was determined to be 3-4, and the removal efficiency of zinc and copper cyanide ions was up to 99%.

  3. Zinc phthalocyanine nanowires based flexible sensor for room temperature Cl2 detection

    NASA Astrophysics Data System (ADS)

    Devi, Pooja; Saini, Rajan; Singh, Rajinder; Mahajan, A.; Bedi, R. K.; Aswal, D. K.; Debnath, A. K.

    2018-04-01

    We have fabricated highly sensitive and Cl2 selective flexible sensor by depositing solution processed zinc phthalocyanine nanowires onto the flexible PET substrate and studied its Cl2 sensing characteristics in Cl2 concentration range 5-1500 ppb. The flexible sensor has a minimum detection limit as low as 5 ppb of Cl2 and response as high as 550% within 10 seconds. Interestingly, the sensor exhibited enhanced and faster response kinetics under bending conditions. The gas sensing mechanism of sensor has been discussed on the basis of XPS and Raman spectroscopic studies which revealed that zinc ions were the preferred sites for Cl2 interactions.

  4. Binding Site Configurations Probe the Structure and Dynamics of the Zinc Finger of NEMO (NF-κB Essential Modulator).

    PubMed

    Godwin, Ryan C; Melvin, Ryan L; Gmeiner, William H; Salsbury, Freddie R

    2017-01-31

    Zinc-finger proteins are regulators of critical signaling pathways for various cellular functions, including apoptosis and oncogenesis. Here, we investigate how binding site protonation states and zinc coordination influence protein structure, dynamics, and ultimately function, as these pivotal regulatory proteins are increasingly important for protein engineering and therapeutic discovery. To better understand the thermodynamics and dynamics of the zinc finger of NEMO (NF-κB essential modulator), as well as the role of zinc, we present results of 20 μs molecular dynamics trajectories, 5 μs for each of four active site configurations. Consistent with experimental evidence, the zinc ion is essential for mechanical stabilization of the functional, folded conformation. Hydrogen bond motifs are unique for deprotonated configurations yet overlap in protonated cases. Correlated motions and principal component analysis corroborate the similarity of the protonated configurations and highlight unique relationships of the zinc-bound configuration. We hypothesize a potential mechanism for zinc binding from results of the thiol configurations. The deprotonated, zinc-bound configuration alone predominantly maintains its tertiary structure throughout all 5 μs and alludes rare conformations potentially important for (im)proper zinc-finger-related protein-protein or protein-DNA interactions.

  5. Bioaccumulation of the Selected Metal Ions in Saccharomyces cerevisiae Cells Under Treatment of the Culture with Pulsed Electric Field (PEF).

    PubMed

    Pankiewicz, Urszula; Sujka, Monika; Jamroz, Jerzy

    2015-12-01

    The obtained results demonstrated an influence of PEF on increase in accumulation of various ions in S. cerevisiae cells. Optimization of particular PEF parameters and ions concentrations in the medium caused twofold increase in accumulation of magnesium and zinc ions and 3.5-fold higher accumulation of calcium ions in the cells. In the case of ion couple, accumulation of magnesium and zinc was, respectively, 1.5-fold and twofold higher in comparison to the control cultures. Yeast cells biomass enriched with Mg(2+), Zn(2+), Ca(2+) as well as Mg(2+) and Zn(2+) (simultaneously) may be an alternative for pharmacological supplementation applied in deficiency of these cations.

  6. The components of the unique Zur regulon of Cupriavidus metallidurans mediate cytoplasmic zinc handling.

    PubMed

    Bütof, Lucy; Schmidt-Vogler, Christopher; Herzberg, Martin; Große, Cornelia; Nies, Dietrich H

    2017-08-14

    bacteria. In contrast, the heavy metal-resistant bacterium C. metallidurans achieves high tolerance to zinc due to sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by management of zinc through cytoplasmic zinc chaperones, whose syntheses are controlled by the Zur regulator. This demonstrates a new mechanism to organize zinc homeostasis through compartmentalization. Copyright © 2017 American Society for Microbiology.

  7. The Cysteine-rich Domain of the DHHC3 Palmitoyltransferase Is Palmitoylated and Contains Tightly Bound Zinc*

    PubMed Central

    Gottlieb, Colin D.; Zhang, Sheng; Linder, Maurine E.

    2015-01-01

    DHHC palmitoyltransferases catalyze the addition of the fatty acid palmitate to proteins on the cytoplasmic leaflet of cell membranes. There are 23 members of the highly diverse mammalian DHHC protein family, all of which contain a conserved catalytic domain called the cysteine-rich domain (CRD). DHHC proteins transfer palmitate via a two-step catalytic mechanism in which the enzyme first modifies itself with palmitate in a process termed autoacylation. The enzyme then transfers palmitate from itself onto substrate proteins. The number and location of palmitoylated cysteines in the autoacylated intermediate is unknown. In this study, we present evidence using mass spectrometry that DHHC3 is palmitoylated at the cysteine in the DHHC motif. Mutation of highly conserved CRD cysteines outside the DHHC motif resulted in activity deficits and a structural perturbation revealed by limited proteolysis. Treatment of DHHC3 with chelating agents in vitro replicated both the specific structural perturbations and activity deficits observed in conserved cysteine mutants, suggesting metal ion-binding in the CRD. Using the fluorescent indicator mag-fura-2, the metal released from DHHC3 was identified as zinc. The stoichiometry of zinc binding was measured as 2 mol of zinc/mol of DHHC3 protein. Taken together, our data demonstrate that coordination of zinc ions by cysteine residues within the CRD is required for the structural integrity of DHHC proteins. PMID:26487721

  8. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.

    PubMed

    Lin, Wen; Li, Deqiang

    2018-06-01

    Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

  9. A specific role for hippocampal mossy fiber's zinc in rapid storage of emotional memories

    PubMed Central

    Ceccom, Johnatan; Halley, Hélène; Daumas, Stéphanie; Lassalle, Jean Michel

    2014-01-01

    We investigated the specific role of zinc present in large amounts in the synaptic vesicles of mossy fibers and coreleased with glutamate in the CA3 region. In previous studies, we have shown that blockade of zinc after release has no effect on the consolidation of spatial learning, while zinc is required for the consolidation of contextual fear conditioning. Although both are hippocampo-dependent processes, fear conditioning to the context implies a strong emotional burden. To verify the hypothesis that zinc could play a specific role in enabling sustainable memorization of a single event with a strong emotional component, we used a neuropharmacological approach combining a glutamate receptor antagonist with different zinc chelators. Results show that zinc is mandatory to allow the consolidation of one-shot memory, thus being the key element allowing the hippocampus submitted to a strong emotional charge to switch from the cognitive mode to a flashbulb memory mode. Individual differences in learning abilities have been known for a long time to be totally or partially compensated by distributed learning practice. Here we show that contextual fear conditioning impairments due to zinc blockade can be efficiently reduced by distributed learning practice. PMID:24741109

  10. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    PubMed

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet

    PubMed Central

    Sakamoto, Ryota; Hoshiko, Ken; Liu, Qian; Yagi, Toshiki; Nagayama, Tatsuhiro; Kusaka, Shinpei; Tsuchiya, Mizuho; Kitagawa, Yasutaka; Wong, Wai-Yeung; Nishihara, Hiroshi

    2015-01-01

    Two-dimensional polymeric nanosheets have recently gained much attention, particularly top-down nanosheets such as graphene and metal chalcogenides originating from bulk-layered mother materials. Although molecule-based bottom-up nanosheets manufactured directly from molecular components can exhibit greater structural diversity than top-down nanosheets, the bottom-up nanosheets reported thus far lack useful functionalities. Here we show the design and synthesis of a bottom-up nanosheet featuring a photoactive bis(dipyrrinato)zinc(II) complex motif. A liquid/liquid interfacial synthesis between a three-way dipyrrin ligand and zinc(II) ions results in a multi-layer nanosheet, whereas an air/liquid interfacial reaction produces a single-layer or few-layer nanosheet with domain sizes of >10 μm on one side. The bis(dipyrrinato)zinc(II) metal complex nanosheet is easy to deposit on various substrates using the Langmuir–Schäfer process. The nanosheet deposited on a transparent SnO2 electrode functions as a photoanode in a photoelectric conversion system, and is thus the first photofunctional bottom-up nanosheet. PMID:25831973

  12. Multiple Mechanisms of Zinc-Mediated Inhibition for the Apoptotic Caspases-3, -6, -7, and -8.

    PubMed

    Eron, Scott J; MacPherson, Derek J; Dagbay, Kevin B; Hardy, Jeanne A

    2018-05-18

    Zinc is emerging as a widely used and important biological regulatory signal. Cellular zinc levels are tightly regulated by a complex array of zinc importers and exporters to control processes such as apoptotic cell death. While caspase inhibition by zinc has been reported previously, the reported inhibition constants were too weak to suggest a critical biological role for zinc-mediated inhibition. In this work, we have adopted a method of assessing available zinc. This allowed assessment of accurate inhibition constants for apoptotic caspases, caspase-3, -6, -7, and -8. Each of these caspases are inhibited by zinc at intracellular levels but with widely differing inhibition constants and different zinc binding stoichiometries. Caspase-3, -6, and -8 appear to be constitutively inhibited by typical zinc levels, and this inhibition must be lifted to allow activation. The inhibition constant for caspase-7 (76 nM) is much weaker than for the other apoptotic caspases (2.6-6.9 nM) suggesting that caspase-7 is not inactivated by normal zinc concentrations but can be inhibited under conditions of zinc stress. Caspase-3, -7, and -8 were found to bind three, one, and two zincs, respectively. In each of these caspases, zinc was present in the active site, in contrast to caspase-6, which binds one zinc allosterically. The most notable new mechanism to emerge from this work is for zinc-mediated inhibition of caspase-8. Zinc binds caspase-8 directly at the active site and at a second site. Zinc binding inhibits formation of the caspase-8 dimer, the activated form of the enzyme. Together these findings suggest that zinc plays a critical role in regulation of apoptosis by direct inactivation of caspases, in a manner that is unique for each caspase.

  13. Zinc Deficiency Is associated With Depressive Symptoms-Results From the Berlin Aging Study II.

    PubMed

    Jung, Alissa; Spira, Dominik; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja; Norman, Kristina

    2017-08-01

    Zinc plays an important role for behavioral and mental function, maintaining the correct functions of intracellular signal transduction, cellular and trans-membrane transport, protein synthesis, and antioxidant system. We investigated both dietary zinc intake and plasma zinc levels and the correlation with depressive symptoms in a large sample of community-dwelling old. One thousand five hundred fourteen older people (aged 60-84 years, 772 women) from the Berlin Aging Study II were included. Zinc intake was assessed by the EPIC Food Frequency Questionnaire. Plasma zinc levels were assessed with atomic-absorption spectrophotometry. Depressive symptoms were assessed with the "Center for Epidemiological Studies Depression Scale" and the "Geriatric Depression Scale." Zinc deficiency in blood plasma was found in 18.7% of participants, and depressive symptoms in 15.7%. Participants with depressive symptoms had lower energy-adjusted zinc intake (median 11.1 vs 11.6 µmol/L; p = .048) and lower plasma zinc levels (median 12.2 vs12.3 mg/dL; p = .037). Even after adjustment for known predictors of depression, plasma zinc deficiency remained significantly associated with depressive symptoms (odds ratio: 1.490, 95% confidence interval: 1.027-2.164; p = .036). In the multiple logistic regression model stratified by sex, we found that plasma zinc deficiency was strongly associated with a higher risk for depressive symptoms in women (odds ratio: 1.739, 95% confidence interval: 1.068-2.833; p = .026). Plasma zinc deficiency was common in our old study population. An increase in dietary zinc and higher plasma zinc levels may reduce the risk of depressive symptoms. A screening for reduced dietary zinc intake or plasma zinc deficiency might be beneficial in older people at risk of depressive symptoms. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The effect of zinc thickness on corrosion film breakdown of Colombian galvanized steel

    NASA Astrophysics Data System (ADS)

    Sandoval-Amador, A.; E Torres Ramirez, J.; Cabrales-Villamizar, P. A.; Laverde Cataño, D.; Y Peña-Ballesteros, D.

    2017-12-01

    This work studies the corrosion behaviour of Colombian galvanized steel in solutions of chloride and sulphate ions. The effect of the thickness and exposure time on the film’s breakdown susceptibility and protectiveness of the corrosion products were studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products were analysed using SEM-EDS and XRD. The samples with a higher thickness level in the zinc film (Z180) have the lowest corrosion rate. In this case, one of the products that was formed by the chemical reactions that occurred was Zinc hydroxide, which exhibits a passive behaviour as observed in the Pourbaix curves of the obtained potentials and in how the different Ph levels of the solutions worked. The sheets with the highest thickness (Z180) had the best performance, since at the end of the study they showed the least amount of damage on the surface of the zinc layer. This is because the thickness of the zinc layer favours the formation of simonkolleite, which is the corrosion product that protects the material under the conditions of the study.

  15. Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings.

    PubMed

    Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming

    2018-05-19

    To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.

  16. Efficient zinc uptake is critical for the ability of Pseudomonas aeruginosa to express virulence traits and colonize the human lung.

    PubMed

    Mastropasqua, Maria Chiara; Lamont, Iain; Martin, Lois W; Reid, David W; D'Orazio, Melania; Battistoni, Andrea

    2018-07-01

    We have recently shown that Pseudomonas aeruginosa, an opportunistic pathogen that chronically infects the lungs of patients with cystic fibrosis (CF) and other forms of lung disease, is extremely efficient in recruiting zinc from the environment and that this capability is required for its ability to cause acute lung infections in mice. To verify that P. aeruginosa faces zinc shortage when colonizing the lungs of human patients, we analyzed the expression of three genes that are highly induced under conditions of zinc deficiency (zrmA, dksA2 and rpmE2), in bacteria in the sputum of patients with inflammatory lung disease. All three genes were expressed in all the analyzed sputum samples to a level much higher than that of bacteria grown in zinc-containing laboratory medium, supporting the hypothesis that P. aeruginosa is under zinc starvation during lung infections. We also found that the expression of several virulence traits that play a central role in the ability of P. aeruginosa to colonize the lung is affected by disruption of the most important zinc importing systems. Virulence features dependent on zinc intake include swarming and swimming motility and the ability to form biofilms. Furthermore, alterations in zinc assimilation interfere with the synthesis of the siderophore pyoverdine, suggesting that zinc recruitment could modulate iron uptake and affect siderophore-mediated cell signaling. Our results reveal that zinc uptake is likely to play a key role in the ability of P. aeruginosa to cause chronic lung infections and strongly modulates critical virulence traits of the pathogen. Taking into account the recent discovery that zinc uptake in P. aeruginosa is promoted by the release of a small molecular weight molecule showing high affinity for zinc, our data suggest novel and effective possibilities to control lung infections by these bacteria. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Understanding Zinc Quantification with Existing and Advanced Ditopic Fluorescent Zinpyr Sensors

    PubMed Central

    Buccella, Daniela; Horowitz, Joshua A.; Lippard, Stephen J.

    2011-01-01

    Treatment of aqueous zinc solutions with incremental additions of a ditopic fluorescent sensor of the Zinpyr family, based on pyridine/pyrazine-containing metal recognition units, affords a fluorescence titration curve with a sharp maximum at a sensor:Zn2+ ratio of 0.5 (Zhang, X-a.; Hayes, D.; Smith, S. J.; Friedle, S.; Lippard, S. J. J. Am. Chem Soc. 2008, 130, 15788–15789). This fluorescence response enables the quantification of readily chelatable zinc in biological samples by a simple titration protocol. In the present work a new set of ditopic fluorescence zinc sensors functionalized with pyridine/pyrazine-containing metal chelating units is described, and through detailed studies the principles governing the characteristic “OFF-ON-OFF” fluorescence behavior and quantification capabilities of the family are delineated. Incorporation of carboxylate/ester groups in the 6 position of the fluorescein allows for control of the spatial distribution of the sensor for selective extra- or intracellular imaging of mobile zinc, without introducing significant changes in zinc-binding properties. A combination of spectrophotometric and potentiometric measurements provided a complete description of the H+ and Zn2+ binding properties of the compounds and their correlation with the observed fluorescence profile. The first zinc-binding event has an apparent affinity, K1′, of 1.9–3.1×109 M−1, whereas for coordination of the second Zn2+ ion, responsible for fluorescence turn on, the apparent formation constant K2′ is 5.5–6.9×107 M−1. A detailed chemical and mathematical analysis of the system demonstrated that the difference in emission efficiencies of the dimetalated (LZn2) vs. monometalated (LZn) and metal free (L) forms, a consequence of the combined quenching effects of the two metal-chelating units, significantly influences the shape of the titration curve. The scope of the titration method was investigated mathematically, and a lower boundary for the

  18. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    PubMed

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  19. Zinc Chromate Induces Chromosome Instability and DNA Double Strand Breaks in Human Lung Cells

    PubMed Central

    Xie, Hong; Holmes, Amie L.; Young, Jamie L.; Qin, Qin; Joyce, Kellie; Pelsue, Stephen C.; Peng, Cheng; Wise, Sandra S.; Jeevarajan, Antony S.; Wallace, William T.; Hammond, Dianne; Wise, John Pierce

    2014-01-01

    Hexavalent chromium Cr(VI) is a respiratory toxicant and carcinogen, with solubility playing an important role in its carcinogenic potential. Zinc chromate, a water insoluble or ‘particulate’ Cr(VI) compound, has been shown to be carcinogenic in epidemiology studies and to induce tumors in experimental animals, but its genotoxicity is poorly understood. Our study shows that zinc chromate induced concentration-dependent increases in cytotoxicity, chromosome damage and DNA double strand breaks in human lung cells. In response to zinc chromate-induced breaks, MRE11 expression was increased and ATM and ATR were phosphorylated, indicating that the DNA double strand break repair system was initiated in the cells. In addition, our data show that zinc chromate-induced double strand breaks were only observed in the G2/M phase population, with no significant amount of double strand breaks observed in G1 and S phase cells. These data will aid in understanding the mechanisms of zinc chromate toxicity and carcinogenesis. PMID:19027772

  20. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  1. Structural insights of ZIP4 extracellular domain critical for optimal zinc transport

    NASA Astrophysics Data System (ADS)

    Zhang, Tuo; Sui, Dexin; Hu, Jian

    2016-06-01

    The ZIP zinc transporter family is responsible for zinc uptake from the extracellular milieu or intracellular vesicles. The LIV-1 subfamily, containing nine out of the 14 human ZIP proteins, is featured with a large extracellular domain (ECD). The critical role of the ECD is manifested by disease-causing mutations on ZIP4, a representative LIV-1 protein. Here we report the first crystal structure of a mammalian ZIP4-ECD, which reveals two structurally independent subdomains and an unprecedented dimer centred at the signature PAL motif. Structure-guided mutagenesis, cell-based zinc uptake assays and mapping of the disease-causing mutations indicate that the two subdomains play pivotal but distinct roles and that the bridging region connecting them is particularly important for ZIP4 function. These findings lead to working hypotheses on how ZIP4-ECD exerts critical functions in zinc transport. The conserved dimeric architecture in ZIP4-ECD is also demonstrated to be a common structural feature among the LIV-1 proteins.

  2. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat.

    PubMed

    Kamran, Sana; Shahid, Izzah; Baig, Deeba N; Rizwan, Muhammad; Malik, Kauser A; Mehnaz, Samina

    2017-01-01

    Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 ( Pseudomonas fragi) , EPS 6 ( Pantoea dispersa) , EPS 13 ( Pantoea agglomerans) , PBS 2 ( E. cloacae) and LHRW1 ( Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO 3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS

  3. Zinc

    USDA-ARS?s Scientific Manuscript database

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  4. Preservation of Intestinal Structural Integrity by Zinc Is Independent of Metallothionein in Alcohol-Intoxicated Mice

    PubMed Central

    Lambert, Jason C.; Zhou, Zhanxiang; Wang, Lipeng; Song, Zhenyuan; McClain, Craig J.; Kang, Y. James

    2004-01-01

    Intestinal-derived endotoxins are importantly involved in alcohol-induced liver injury. Disruption of intestinal barrier function and endotoxemia are common features associated with liver inflammation and injury due to acute ethanol exposure. Zinc has been shown to inhibit acute alcohol-induced liver injury. This study was designed to determine the inhibitory effect of zinc on alcohol-induced endotoxemia and whether the inhibition is mediated by metallothionein (MT) or is independent of MT. MT knockout (MT-KO) mice were administered three oral doses of zinc sulfate (2.5 mg zinc ion/kg body weight) every 12 hours before being administered a single dose of ethanol (6 g/kg body weight) by gavage. Ethanol administration caused liver injury as determined by increased serum transaminases, parenchymal fat accumulation, necrotic foci, and an elevation of tumor necrosis factor (TNF-α). Increased plasma endotoxin levels were detected in ethanol-treated animals whose small intestinal structural integrity was compromised as determined by microscopic examination. Zinc supplementation significantly inhibited acute ethanol-induced liver injury and suppressed hepatic TNF-α production in association with decreased circulating endotoxin levels and a significant protection of small intestine structure. As expected, MT levels remained undetectable in the MT-KO mice under the zinc treatment. These results thus demonstrate that zinc preservation of intestinal structural integrity is associated with suppression of endotoxemia and liver injury induced by acute exposure to ethanol and the zinc protection is independent of MT. PMID:15161632

  5. Selective, quantitative measurement of releasable synaptic zinc in human autopsy hippocampal brain tissue from Alzheimer’s disease patients

    PubMed Central

    Bjorklund, Nicole L.; Sadagoparamanujam, V.M.; Taglialatela, Giulio

    2011-01-01

    Aberrant central nervous system zinc homeostasis has been reported in Alzheimer’s disease (AD). However, there are conflicting reports describing zinc concentration either increased or decreased in the brain of AD patients. Such discrepancies may be due to differences in the brain area examined, zinc detection method, and/or tissue composition. Furthermore, detection and measurement of the releasable zinc pool in autopsy tissue is difficult and usually unreliable. Obtaining an adequate assessment of this releasable zinc pool is of particular significance in AD research in that zinc can coordinate with and stabilize toxic amyloid beta oligomers, which are believed to play a key role in AD neuropathology. In addition, zinc released into the synaptic cleft can interact with the postsynaptic neurons causing altered signaling and synaptic dysfunction, which is a well established event in AD. The method presented here combines two approaches, biochemical fractionation and atomic absorption spectrophotometry, to allow, in addition to extracellular zinc concentration, the reliable and quantitative measurement of zinc specifically localized in synaptic vesicles, which contain the majority of the neuronal releasable zinc. Using this methodology, we found that synaptic vesicle zinc concentrations were increased in AD hippocampi compared to age-matched controls and that this increase in releasable zinc matched increased concentration of zinc in the extracellular space. PMID:21945000

  6. The Components of the Unique Zur Regulon of Cupriavidus metallidurans Mediate Cytoplasmic Zinc Handling

    PubMed Central

    Bütof, Lucy; Schmidt-Vogler, Christopher; Herzberg, Martin; Große, Cornelia

    2017-01-01

    low zinc concentrations via the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other bacteria. In contrast, the heavy-metal-resistant bacterium C. metallidurans achieves high tolerance to zinc through sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by the management of zinc by cytoplasmic zinc chaperones, whose synthesis is controlled by the Zur regulator. This demonstrates a new mechanism, involving compartmentalization, for organizing zinc homeostasis. PMID:28808127

  7. Zinc and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less

  8. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.

    2010-06-01

    Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.

  9. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    PubMed Central

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  10. ZINC PRODUCES A TRANSMURAL VOLTAGE GRADIENT AND DISRUPTION OF INTERCELLULAR COMMUNICATION IN THE HEART

    EPA Science Inventory

    Ambient air pollution particulate matter (PM) exposure contributes to serious arrhythmia in high-risk individuals. We previously showed that non-cytotoxic doses of zinc sulfate (Zn, 50uM), a metal common to PM from many sources, alters the gene expression of several cardiac ion c...

  11. Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro

    PubMed Central

    Shi, Xinchang

    2017-01-01

    Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178

  12. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  13. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  14. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets

    PubMed Central

    Karweina, Diana; Kreuzer-Redmer, Susanne; Müller, Uwe; Franken, Tobias; Pieper, Robert; Baron, Udo; Olek, Sven; Zentek, Jürgen; Brockmann, Gudrun A.

    2015-01-01

    High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn), 164 (NZn) or 2,425 (HZn) mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035); the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007). In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017). The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099). The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors. PMID:26599865

  15. Inhibition of orally produced volatile sulfur compounds by zinc, chlorhexidine or cetylpyridinium chloride--effect of concentration.

    PubMed

    Young, Alix; Jonski, Grazyna; Rölla, Gunnar

    2003-10-01

    Zinc ions, chlorhexidine (CHX) and cetylpyridinium chloride (CPC) are all known to inhibit production of volatile sulfur compounds (VSCs). The objective was to examine the anti-VSC dose-response effects of each of the above agents. Oral malodor was induced in 13 test subjects using the cysteine challenge method. The oral VSC response to rinses with 6 mm l-cysteine (pH 7.2) before and 1, 2 and 3 h after rinsing with zinc ions (Zn2+: 0.1, 0.3 and 1.0%), CHX and CPC (0.025 and 0.2%) was measured. Mouth air was analysed for VSC by gas chromatography (GC) according to current methodology. Zinc had a marked dose- and time-dependent anti-VSC effect. Zinc at 1% concentration had a somewhat unpleasant taste, whereas the lowest concentration was found acceptable. Chlorhexidine maintained a moderate anti-VSC effect over time. At 3 h, 0.2% CHX was the most effective agent but tasted relatively unpleasant. Cetylpyridinium at a concentration of 0.2% was only marginally more effective than 0.025% CHX over the 3 h, while 0.025% CPC had no better anti-VSC effect than water at both 2 h and 3 h. It was concluded that the three test agents demonstrated different anti-VSC kinetics. Although Zn had the best anti-VSC effect at 1 h, 0.2% CHX was at least as effective as 1% Zn at 3 h, most likely as a result of its unique substantivity.

  16. Mutation of a Zinc-Binding Residue in the Glycine Receptor α1 Subunit Changes Ethanol Sensitivity In Vitro and Alcohol Consumption In Vivo

    PubMed Central

    McCracken, Lindsay M.; Blednov, Yuri A.; Trudell, James R.; Benavidez, Jillian M.; Betz, Heinrich

    2013-01-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs. PMID:23230213

  17. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).

    PubMed

    Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista

    2017-07-01

    Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2  = 0.966 ∗∗∗ ), phenolic (R 2  = 0.741 ∗ ) and chlorophyll (R 2  = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2  = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Zinc induces long-term upregulation of T-type calcium current in hippocampal neurons in vivo.

    PubMed

    Ekstein, Dana; Benninger, Felix; Daninos, Moshe; Pitsch, Julika; van Loo, Karen M J; Becker, Albert J; Yaari, Yoel

    2012-11-15

    Extracellular zinc can induce numerous acute and persistent physiological and toxic effects in neurons by acting at their plasma membrane or intracellularly following permeation or uptake into them. Zinc acutely and reversibly blocks T-type voltage-gated calcium current (I(CaT)), but the long-term effect of zinc on this current has not been studied. Because chemically induced status epilepticus (SE) results in the release of zinc into the extracellular space, as well as in a long-lasting increase in I(CaT) in CA1 pyramidal cells, we hypothesized that zinc may play a causative role in I(CaT) upregulation. We tested this hypothesis by monitoring for 18 days the effects of zinc and ibotenic acid (a neurotoxic agent serving as control for zinc), injected into the right lateral ventricle, on I(CaT) in rat CA1 pyramidal cells. Both zinc and ibotenic acid caused marked hippocampal lesions on the side of injection, but only minor damage to contralateral hippocampi. Zinc, but not ibotenic acid, caused upregulation of a nickel-sensitive I(CaT) in a subset of contralateral CA1 pyramidal cells, appearing 2 days after injection and lasting for about 2 weeks thereafter. In contrast, acute application of zinc to CA1 pyramidal cells promptly blocked I(CaT). These data indicate that extracellular zinc has a dual effect on I(CaT), blocking it acutely while causing its long-term upregulation. Through the latter effect, zinc may regulate the intrinsic excitability of principal neurons, particularly in pathological conditions associated with enhanced release of zinc, such as SE.

  19. Zinc triggers microglial activation.

    PubMed

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  20. Synthesis of zinc-crosslinked thiolated alginic acid beads and their in vitro evaluation as potential enteric delivery system with folic acid as model drug.

    PubMed

    Taha, M O; Aiedeh, K M; Al-Hiari, Y; Al-Khatib, H

    2005-10-01

    The aim of this study is to explore the potential of synthetic modifications of alginic acid as a method to enhance the stability of its complexes with divalent cations under physiological conditions. A fraction of algin's carboxylic acid moieties was substituted with thiol groups to different substitution degrees through conjugating alginate to cysteine to produce alginate-cysteine (AC) conjugates. Infrared spectrophotometry and iodometry were used to characterize the resulting polymeric conjugates in terms of structure and degree of substitution. Moreover, zinc ions were used to crosslink the resulting AC polymers. Folic acid loaded beads were prepared from Zinc-crosslinked AC polymers (AC-Zn) of different cysteine substitution degrees. The generated beads were then investigated in vitro for their capacity to modify folic acid release. AC-Zn polymeric beads resisted drug release under acidic conditions (pH 1.0). However, upon transfer to a phosphate buffer solution (pH 7.0) they released most of their contents almost immediately. This change in drug release behavior is most probably due to the sequestering of zinc cations by phosphate ions within the buffer solution to form insoluble chelates and, to a lesser extent, the ionization of the carboxylic acid and thiol moieties. Removal of zinc ions from the polymeric matrix seems to promote polymeric disintegration and subsequent drug release. A similar behavior is expected in vivo due to the presence of natural zinc sequestering agents in the intestinal fluids. AC-Zn polymers provided a novel approach for enteric drug delivery as drug release from these matrices complied with the USP specifications for enteric dosage forms.

  1. Lifetime estimates for sterilizable silver-zinc battery separators

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Walmsley, D. E.; Moacanin, J.

    1972-01-01

    The lifetime of separator membranes currently employed in the electrolyte environment of silver-zinc batteries was estimated at 3 to 5 years. The separator membranes are crosslinked polyethylene film containing grafted poly (potassium acrylate)(PKA), the latter being the hydrophilic agent which promotes electrolyte ion transport. The lifetime was estimated by monitoring the rate of loss of PKA from the separators, caused by chemical attack of the electrolyte, and relating this loss rate to a known relationship between battery performance and PKA concentration in the separators.

  2. Zinc supplementation suppresses the progression of bile duct ligation-induced liver fibrosis in mice.

    PubMed

    Shi, Fang; Sheng, Qin; Xu, Xinhua; Huang, Wenli; Kang, Y James

    2015-09-01

    Metallothionein (MT) gene therapy leads to resolution of liver fibrosis in mouse model, in which the activation of collagenases is involved in the regression of liver fibrosis. MT plays a critical role in zinc sequestration in the liver suggesting its therapeutic effect would be mediated by zinc. The present study was undertaken to test the hypothesis that zinc supplementation suppresses liver fibrosis. Male Kunming mice subjected to bile duct ligation (BDL) resulted in liver fibrosis as assessed by increased α-smooth muscle actin (α-SMA) and collagen I production/deposition in the liver. Zinc supplementation was introduced 4 weeks after BDL surgery via intragastric administration once daily for 2 weeks resulting in a significant reduction in the collagen deposition in the liver and an increase in the survival rate. Furthermore, zinc suppressed gene expression of α-SMA and collagen I and enhanced the capacity of collagen degradation, as determined by the increased activity of total collagenases and elevated mRNA and protein levels of MMP13. Therefore, the results demonstrate that zinc supplementation suppresses BDL-induced liver fibrosis through both inhibiting collagen production and enhancing collagen degradation. © 2014 by the Society for Experimental Biology and Medicine.

  3. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    PubMed Central

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  4. Zinc Information

    MedlinePlus

    ... for Eye Conditions Clinical Digest: Hepatitis C and Dietary Supplements Related Resources From Other Agencies Age-Related Eye Disease Study 2 (AREDS2) ( NEI ) Can Zinc Be Harmful? ( ODS ) Zinc ( ODS ) Follow NCCIH: Read our disclaimer ...

  5. Crystal structure of human S100A8 in complex with zinc and calcium.

    PubMed

    Lin, Haili; Andersen, Gregers Rom; Yatime, Laure

    2016-06-01

    S100 proteins are a large family of calcium binding proteins present only in vertebrates. They function intra- and extracellularly both as regulators of homeostatic processes and as potent effectors during inflammation. Among these, S100A8 and S100A9 are two major constituents of neutrophils that can assemble into homodimers, heterodimers and higher oligomeric species, including fibrillary structures found in the ageing prostate. Each of these forms assumes specific functions and their formation is dependent on divalent cations, notably calcium and zinc. In particular, zinc appears as a major regulator of S100 protein function in a disease context. Despite this central role, no structural information on how zinc bind to S100A8/S100A9 and regulates their quaternary structure is yet available. Here we report two crystallographic structures of calcium and zinc-loaded human S100A8. S100A8 binds two zinc ions per homodimer, through two symmetrical, all-His tetracoordination sites, revealing a classical His-Zn binding mode for the protein. Furthermore, the presence of a (Zn)2-cacodylate complex in our second crystal form induces ligand swapping within the canonical His4 zinc binding motif, thereby creating two new Zn-sites, one of which involves residues from symmetry-related molecules. Finally, we describe the calcium-induced S100A8 tetramer and reveal how zinc stabilizes this tetramer by tightening the dimer-dimer interface. Our structures of Zn(2+)/Ca(2+)-bound hS100A8 demonstrate that S100A8 is a genuine His-Zn S100 protein. Furthermore, they show how zinc stabilizes S100A8 tetramerization and potentially mediates the formation of novel interdimer interactions. We propose that these zinc-mediated interactions may serve as a basis for the generation of larger oligomers in vivo.

  6. PML-RARα stabilized by zinc in human acute promyelocytic leukemia NB4 cells.

    PubMed

    Zhu, Bo; Wang, Jia-Yu; Zhou, Jun-Jie; Zhou, Feng; Cheng, Wei; Liu, Ying-Ting; Wang, Jie; Chen, Xiao; Chen, Dian-Hua; Luo, Lan; Hua, Zi-Chun

    2017-10-01

    Acute promyelocytic leukemia (APL) is characterized and driven by the promyelocytic leukemia protein-retinoic acid receptor alpha (PML-RARα) fusion gene. Previous studies have highlighted the importance of PML-RARα degradation in the treatment against APL. Considering the presence of two zinc fingers in the PML-RARα fusion protein, we explored the function of zinc homeostasis in maintaining PML-RARα stability. We demonstrated for the first time that zinc depletion by its chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) triggered PML-RARα degradation in NB4 APL cells via the proteasome pathway rather than the autophagy-lysosomal pathway. In contrast, autophagy protected TPEN-mediated PML-RARα degradation in NB4 APL cells. We further demonstrated that crosstalk between zinc homeostasis and nitric oxide pathway played a key role in maintaining PML-RARα stability in NB4 APL cells. These results demonstrate that zinc homeostasis is vital for maintaining PML-RARα stability, and zinc depletion by TPEN may be useful as a potential strategy to trigger PML-RARα degradation in APL cells. We also found that TPEN triggered apoptosis of NB4 APL cells in a time-dependent manner. The relationship between PML-RARα degradation and apoptosis triggered by TPEN deserves further study. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Oral zinc for treating diarrhoea in children

    PubMed Central

    Lazzerini, Marzia; Wanzira, Humphrey

    2016-01-01

    from dehydration. Giving fluids by mouth (using an oral rehydration solution (ORS)) has been shown to save children's lives, but it has no effect on the length of time the children suffer with diarrhoea. Zinc supplementation could help reduce the duration and the severity of diarrhoea, and therefore have an additional benefit over ORS in reducing children mortality. What is oral zinc and how may it shorten the duration and severity of diarrhoea Zinc is usually given as zinc sulphate, zinc acetate, or zinc gluconate, which are all water-soluble compounds. The World Health Organization (WHO) and the United Nations Children's Fund (UNICEF) recommend 10 mg to 20 mg of zinc per day for children with diarrhoea. There are several mechanism of action of zinc on acute diarrhoea, some of which are specific to the gastrointestinal system: zinc restores mucosal barrier integrity and enterocyte brush-border enzyme activity, it promotes the production of antibodies and circulating lymphocytes against intestinal pathogens, and has a direct effect on ion channels, acting as a potassium channel blocker of adenosine 3-5-cyclic monophosphate-mediated chlorine secretion. Cochrane researchers examined the evidence available up to 30 September 2016. What the evidence in the review suggests Thirty-three trials that included 10,841 children met the inclusion criteria of this review. Among children with acute diarrhoea, we don't know if treating children with zinc has an effect on death or number of children hospitalized (very low certainty evidence). In children older than six months, zinc supplementation may shorten the average duration of diarrhoea by around half a day (low certainty evidence), and probably reduces the number of children whose diarrhoea persists until day seven (moderate certainty evidence). In children with signs of malnutrition the effect appears greater, reducing the duration of diarrhoea by around a day (high certainty evidence). Conversely, in children younger than six

  8. Copper and Zinc Metallation Status of Copper Zinc Superoxide Dismutase form Amyotrophic Lateral Sclerosis Transgenic Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelie, H.L.; Miller, L.; Liba, A.

    2010-09-24

    Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS. Insoluble SOD1-rich fractions were not enriched in copper and zinc. However, the soluble mutantmore » and WT SOD1s were highly metallated except for the metal-binding-region mutant H46R/H48Q, which did not bind any copper. Due to the stability conferred by high metallation of G37R and G93A, it is unlikely that these soluble SOD1s are prone to aggregation in vivo, supporting the hypothesis that immature nascent SOD1 is the substrate for aggregation. We also investigated the effect of SOD1 overexpression and disease on metal homeostasis in spinal cord cross-sections of SOD1-ALS mice using synchrotron-based x-ray fluorescence microscopy. In each mouse genotype, except for the H46R/H48Q mouse, we found a redistribution of copper between gray and white matters correlated to areas of high SOD1. Interestingly, a disease-specific increase of zinc was observed in the white matter for all mutant SOD1 mice. Together these data provide a picture of copper and zinc in the cell as well as highlight the importance of these metals in understanding SOD1-ALS pathology.« less

  9. Involvement of the cytokine-IDO1-AhR loop in zinc oxide nanoparticle-induced acute pulmonary inflammation.

    PubMed

    Ho, Chia-Chi; Lee, Hui-Ling; Chen, Chao-Yu; Luo, Yueh-Hsia; Tsai, Ming-Hsien; Tsai, Hui-Ti; Lin, Pinpin

    2017-04-01

    Zinc oxide nanoparticles (ZnONPs) are widely used in our daily life, such as in sunscreens and electronic nanodevices. However, pulmonary exposure to ZnONPs causes acute pulmonary inflammation, which is considered as an initial event for various respiratory diseases. Thus, elucidation of the underlying cellular mechanisms of ZnONPs can help us in predicting their potential effects in respiratory diseases. In this study, we observed that ZnONPs increased proinflammatory cytokines, accompanied with an increased expression of aryl hydrocarbon receptor (AhR) and its downstream target cytochrome P450 1A1 (CYP1A1) in macrophages in vitro and in mouse lung epithelia in vivo. Moreover, zinc nitrate, but not silica or titanium dioxide nanoparticles (NPs), had similar effects on macrophages, indicating that the zinc element or ion released from ZnONPs is likely responsible for the activation of the AhR pathway. Cotreatment with an AhR antagonist or AhR knockout reduced ZnONPs-induced cytokine secretion in macrophages or mice, respectively. Furthermore, kynurenine (KYN), an endogenous AhR agonist and a tryptophan metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was increased in the serums of mice that aspirated ZnONPs. Consistently, ZnONPs increased IDO1 expression in lung cells in vitro and in vivo. Finally, AhR knockout reduced ZnONPs-induced pulmonary inflammation, cytokine secretion and KYN production in mice, suggesting that AhR activation is involved in ZnONPs-induced cytokine secretion and pulmonary inflammation. In summary, we demonstrated that the pulmonary exposure of ZnONPs stimulated the cytokine-IDO1-AhR loop in the lungs, which has been implied to play roles in immune dysfunctions.

  10. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  11. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  12. Copper and protons directly activate the zinc-activated channel.

    PubMed

    Trattnig, Sarah M; Gasiorek, Agnes; Deeb, Tarek Z; Ortiz, Eydith J Comenencia; Moss, Stephen J; Jensen, Anders A; Davies, Paul A

    2016-03-01

    The zinc-activated channel (ZAC) is a cationic ion channel belonging to the superfamily of Cys-loop receptors, which consists of pentameric ligand-gated ion channels. ZAC is the least understood member of this family so in the present study we sought to characterize the properties of this channel further. We demonstrate that not only zinc (Zn(2+)) but also copper (Cu(2+)) and protons (H(+)) are agonists of ZAC, displaying potencies and efficacies in the rank orders of H(+)>Cu(2+)>Zn(2+) and H(+)>Zn(2+)>Cu(2+), respectively. The responses elicited by Zn(2+), Cu(2+) and H(+) through ZAC are all characterized by low degrees of desensitization. In contrast, currents evoked by high concentrations of the three agonists comprise distinctly different activation and decay components, with transitions to and from an open state being significantly faster for H(+) than for the two metal ions. The permeabilities of ZAC for Na(+) and K(+) relative to Cs(+) are indistinguishable, whereas replacing all of extracellular Na(+) and K(+) with the divalent cations Ca(2+) or Mg(2+) results in complete elimination of Zn(2+)-activated currents at both negative and positive holding potentials. This indicates that ZAC is non-selectively permeable to monovalent cations, whereas Ca(2+) and Mg(2+) inhibit the channel. In conclusion, this is the first report of a Cys-loop receptor being gated by Zn(2+), Cu(2+) and H(+). ZAC could be an important mediator of some of the wide range of physiological functions regulated by or involving Zn(2+), Cu(2+) and H(+). Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Zinc triggers microglial activation

    PubMed Central

    Kauppinen, Tiina M.; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A.

    2009-01-01

    Microglia are resident immune cells of the central nervous system. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, “amoeboid” morphology and release matrix metalloproteinases, reactive oxygen species, and other pro-inflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here we show that zinc directly triggers microglial activation. Microglia transfected with an NF-kB reporter gene showed a several-fold increase in NF-kB activity in response to 30 μM zinc. Cultured mouse microglia exposed to 15 – 30 μM zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-κB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-κB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders. PMID:18509044

  14. Insights into the Role of the Unusual Disulfide Bond in Copper-Zinc Superoxide Dismutase*

    PubMed Central

    Sea, Kevin; Sohn, Se Hui; Durazo, Armando; Sheng, Yuewei; Shaw, Bryan F.; Cao, Xiaohang; Taylor, Alexander B.; Whitson, Lisa J.; Holloway, Stephen P.; Hart, P. John; Cabelli, Diane E.; Gralla, Edith Butler; Valentine, Joan Selverstone

    2015-01-01

    The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30–50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity. PMID:25433341

  15. Zinc Biosorption by Seaweed Illustrated by the Zincon Colorimetric Method and the Langmuir Isotherm

    ERIC Educational Resources Information Center

    Areco, Maria Mar; dos Santos Afonso, Maria; Valdman, Erika

    2007-01-01

    An experiment is conducted to promote biotechnology knowledge that is an emerging technology on cleaning treatment, showing the potential of seaweed to remove heavy-metal ions from solution. The rapid and accurate determination of zinc in aqueous solution by the zincon colorimetric method gives an interesting and simple experiment for any…

  16. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing

    PubMed Central

    Zhang, Xiao-an; Lovejoy, Katherine S.; Jasanoff, Alan; Lippard, Stephen J.

    2007-01-01

    We report a molecular platform for dual-function fluorescence/MRI sensing of mobile zinc. Zinc-selective binding units were strategically attached to a water-soluble porphyrin template. The synthetic strategy for achieving the designed target ligand is flexible and convenient, and the key intermediates can be applied as general building blocks for the construction of other metal sensors based on a similar mechanism. The metal-free form, (DPA-C2)2-TPPS3 (1), where DPA is dipicolylamine and TPPS3 is 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphine, is an excellent fluorescent sensor for zinc. It has certain superior physical properties compared with earlier-generation zinc sensors including emission in the red and near-IR regions [λem = 645 nm (s) and 715 nm (m)], with a large Stokes shift of >230 nm. The fluorescence intensity of 1 increases by >10-fold upon zinc binding. The fluorescence “turn-on” is highly selective for zinc versus other divalent metal ions and is relatively pH-insensitive within the biologically relevant pH window. The manganese derivative, [(DPA-C2)2-TPPS3Mn(III)] (2), switches the function of the molecule to generate an MRI contrast agent. In the presence of zinc, the relaxivity of 2 in aqueous solution is significantly altered, which makes it a promising zinc MRI sensor. Both metal-free and Mn(III)-inserted forms are efficiently taken up by live cells, and the intracellular zinc can be imaged by either fluorescence or MR, respectively. We anticipate that in vivo applications of the probes will facilitate a deeper understanding of the physiological roles of zinc and allow detection of abnormal zinc homeostasis for pathological diagnoses. PMID:17578918

  17. Chronic Exposure to Zinc Chromate Induces Centrosome Amplification and Spindle Assembly Checkpoint Bypass in Human Lung Fibroblasts

    PubMed Central

    Holmes, Amie L.; Wise, Sandra S.; Pelsue, Stephen C.; Aboueissa, AbouEl-Makarim; Lingle, Wilma; Salisbury, Jeffery; Gallagher, Jamie; Wise, John Pierce

    2010-01-01

    Hexavalent chromium (Cr(VI)) compounds are known human lung carcinogens. Solubility plays an important role in its carcinogenicity with the particulate or insoluble form being the most potent. Of the particulate Cr(VI) compounds, zinc chromate appears to be the most potent carcinogen, however, very few studies have investigated its carcinogenic mechanism. In this study, we investigated the ability of chronic exposure to zinc chromate to induce numerical chromosome instability. We found no increase in aneuploidy after a 24 hour exposure to zinc chromate, but with more chronic exposures, zinc chromate induced concentration- and time-dependent increases in aneuploidy in the form of hypodiploidy, hyperdiploidy and tetraploidy. Zinc chromate also induced centrosome amplification in a concentration- and time-dependent manner in both interphase and mitotic cells after chronic exposure, producing cells with centriolar defects. Further, chronic exposure to zinc chromate induced concentration- and time-dependent increases in spindle assembly checkpoint bypass with increases in centromere spreading, premature centromere division and premature anaphase. Lastly, we found that chronic exposure to zinc chromate induced a G2 arrest. All together, these data indicate that zinc chromate can induce chromosome instability after prolonged exposures. PMID:20030412

  18. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  19. Supplemental levels of iron and calcium interfere with repletion of zinc status in zinc-deficient animals.

    PubMed

    Jayalakshmi, S; Platel, Kalpana

    2016-05-18

    Negative interactions between minerals interfering with each other's absorption are of concern when iron and calcium supplements are given to pregnant women and children. We have previously reported that supplemental levels of iron and calcium inhibit the bioaccessibility of zinc, and compromise zinc status in rats fed diets with high levels of these two minerals. The present study examined the effect of supplemental levels of iron and calcium on the recovery of zinc status during a zinc repletion period in rats rendered zinc-deficient. Iron and calcium, both individually and in combination, significantly interfered with the recovery of zinc status in zinc deficient rats during repletion with normal levels of zinc in the diet. Rats maintained on diets containing supplemental levels of these two minerals had significantly lower body weight, and the concentration of zinc in serum and organs was significantly lower than in zinc-deficient rats not receiving the supplements. Iron and calcium supplementation also significantly inhibited the activity of zinc-containing enzymes in the serum as well as liver. Both iron and calcium independently exerted this negative effect on zinc status, while their combination seemed to have a more prominent effect, especially on the activities of zinc containing enzymes. This investigation is probably the first systematic study on the effect of these two minerals on the zinc status of zinc deficient animals and their recovery during repletion with normal amounts of zinc.

  20. ZNT7 binds to CD40 and influences CD154-triggered p38 MAPK activity in B lymphocytes-a possible regulatory mechanism for zinc in immune function

    USDA-ARS?s Scientific Manuscript database

    Zinc deficiency impairs immune system leading to frequent infections. Although it is known that zinc plays critical roles in maintaining healthy immune function, the underlying molecular targets are largely unknown. In this study, we showed that zinc is important for the CD154-CD40-mediated activati...

  1. Occupancy of a C2-C2 type 'zinc-finger' protein domain by copper. Direct observation by electrospray ionization mass spectrometry.

    PubMed

    Hutchens, T W; Allen, M H; Li, C M; Yip, T T

    1992-09-07

    The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.

  2. Acute toxicity and synergism of cadmium and zinc in white shrimp, Penaeus setiferus, Juveniles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanegas, C.; Espina, S.; Botello, A.V.

    1997-01-01

    Toxic effects of individual heavy metals on decapod crustaceans have been reported frequently, but little information exists concerning interactions. Among the non-essential heavy metals, cadmium is one of the most hazardous elements in the aquatic environment; on the other hand, zinc is an essential element, but toxic when present in greater than trace amounts. Biological effects of cadmium in aquatic organisms are complex due to the interactions with both environmental variables and other toxic agents. In decapod crustaceans, the toxicity of cadmium and zinc is modified by salinity, temperature, hypoxia, calcium ion concentrations and life-cycle stage. Heavy metal pollution hasmore » increased in the coastal waters of the Gulf of Mexico, particularly in shrimp habitat. This study examined the toxicity of cadmium and zinc to white shrimp juveniles and looked at the interaction of the metals. 16 refs., 2 tabs.« less

  3. Method and apparatus for maintaining the pH in zinc-bromine battery systems

    DOEpatents

    Grimes, Patrick G.

    1985-09-10

    A method and apparatus for maintaining the pH level in a zinc-bromine battery features reacting decomposition hydrogen with bromine in the presence of a catalyst. The catalyst encourages the formation of hydrogen and bromine ions. The decomposition hydrogen is therefore consumed, alloying the pH of the system to remain substantially at a given value.

  4. [Zinc and chronic enteropathies].

    PubMed

    Giorgi, P L; Catassi, C; Guerrieri, A

    1984-01-01

    In recent years the nutritional importance of zinc has been well established; its deficiency and its symptoms have also been recognized in humans. Furthermore, Acrodermatitis Enteropathica has been isolated, a rare but severe disease, of which skin lesions, chronic diarrhoea and recurring infections are the main symptoms. The disease is related to the malfunctioning of intestinal absorption of zinc and can be treated by administering pharmacological doses of zinc orally. Good dietary sources of zinc are meat, fish and, to a less extent, human milk. The amount of zinc absorbed in the small intestine is influenced by other nutrients: some compounds inhibit this process (dietary fiber, phytate) while others (picolinic acid, citric acid), referred to as Zn-binding ligands (ZnBL) facilitate it. Citric acid is thought to be the ligand which accounts for the high level of bioavailability of zinc in human milk. zinc absorption occurs throughout the small intestine, not only in the prossimal tract (duodenum and jejunum) but also in the distal tract (ileum). Diarrhoea is one of the clinical manifestations of zinc deficiency, thus many illnesses distinguished by chronic diarrhoea entail a bad absorption of zinc. In fact, in some cases of chronic enteropathies in infants, like coeliac disease and seldom cystic fibrosis, a deficiency of zinc has been isolated. Some of the symptoms of Crohn's disease, like retarded growth and hypogonadism, have been related to hypozinchemia which is present in this illness. Finally, it is possible that some of the dietary treatments frequently used for persistent post-enteritis diarrhoea (i.e. cow's milk exclusion, abuse and misuse of dietary fiber like carrot and carub powder, use of soy formula) can constitute a scarce supply of zinc and therefore could promote the persistency of diarrhoea itself.

  5. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  6. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  7. Binding of the Zn2+ ion to ferric uptake regulation protein from E. coli and the competition with Fe2+ binding: a molecular modeling study of the effect on DNA binding and conformational changes of Fur

    NASA Astrophysics Data System (ADS)

    Jabour, Salih; Hamed, Mazen Y.

    2009-04-01

    The three dimensional structure of Ferric uptake regulation protein dimer from E. coli, determined by molecular modeling, was docked on a DNA fragment (iron box) and Zn2+ ions were added in two steps. The first step involved the binding of one Zn2+ ion to what is known as the zinc site which consists of the residues Cys 92, Cys 95, Asp 137, Asp141, Arg139, Glu 140, His 145 and His 143 with an average metal-Nitrogen distance of 2.5 Å and metal-oxygen distance of 3.1-3.2 Å. The second Zn2+ ion is bound to the iron activating site formed from the residues Ile 50, His 71, Asn 72, Gly 97, Asp 105 and Ala 109. The binding of the second Zn2+ ion strengthened the binding of the first ion as indicated by the shortening of the zinc-residue distances. Fe2+, when added to the complex consisting of 2Zn2+/Fur dimer/DNA, replaced the Zn2+ ion in the zinc site and when a second Fe2+ was added, it replaced the second zinc ion in the iron activating site. The binding of both zinc and iron ions induced a similar change in Fur conformations, but shifted residues closer to DNA in a different manner. This is discussed along with a possible role for the Zn2+ ion in the Fur dimer binding of DNA in its repressor activity.

  8. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  9. The impact of gallium content on degradation, bioactivity, and antibacterial potency of zinc borate bioactive glass.

    PubMed

    Rahimnejad Yazdi, Alireza; Torkan, Lawrence; Stone, Wendy; Towler, Mark R

    2018-01-01

    Zinc borate glasses with increasing gallium content (0, 2.5, 5, 10, and 15 Wt % Ga) were synthesized and their degradation, bioactivity in simulated body fluid (SBF), and antibacterial properties were investigated. ICP measurements showed that increased gallium content in the glass resulted in increased gallium ion release and decreased release of other ions. Degradability declined with the addition of gallium, indicating the formation of more symmetric BO 3 units with three bridging oxygens and asymmetric BO 3 units with two bridging oxygens in the glass network as the gallium content in the series increased. The formation of amorphous CaP on the glass surface after 24 h of incubation in SBF was confirmed by SEM, XRD, and FTIR analyses. Finally, antibacterial evaluation of the glasses using the agar disc-diffusion method demonstrated that the addition of gallium increased the antibacterial potency of the glasses against P. aeruginosa (Gram-negative) while decreasing it against S. epidermidis (Gram-positive); considering the ion release trends, this indicates that the gallium ion is responsible for the glasses' antibacterial behavior against P. aeruginosa while the zinc ion controls the antibacterial activity against S. epidermidis. The statistical significance of the observed trends in the measurements were confirmed by applying the Kruskal-Wallis H Test. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 367-376, 2018. © 2017 Wiley Periodicals, Inc.

  10. The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Rajeev; Kumar, Ashavani, E-mail: ashavani@yahoo.com

    2015-08-28

    The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain sizemore » was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.« less

  11. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    PubMed

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.

  12. Zinc supplementation for the treatment of measles in children.

    PubMed

    Awotiwon, Ajibola A; Oduwole, Olabisi; Sinha, Anju; Okwundu, Charles I

    2017-06-20

    Measles is an important cause of childhood morbidity and mortality globally, despite increasing vaccine coverage. Zinc plays a significant role in the maintenance of normal immunological functions, therefore supplements given to zinc-deficient children will increase the availability of zinc and could reduce measles-related morbidity and mortality. This is an update of a review first published in 2015. To assess the effects of zinc supplementation in reducing morbidity and mortality in children with measles. We searched CENTRAL (03 February 2017, Issue 2), MEDLINE (1946 to 03 February 2017), Embase (1974 to 03 February 2017), CINAHL (1981 to 03 February 2017), LILACS (1982 to 03 February 2017), Web of Science (1985 to 03 February 2017), and BIOSIS Previews (1985 to 27 June 2014). We also searched ClinicalTrials.gov, the Australian New Zealand Clinical Trials Registry and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) on 03 February 2017 to identify unpublished and ongoing studies. Randomised controlled trials (RCTs) and quasi-RCTs evaluating the effects of zinc in reducing morbidity and mortality in children with measles. Two review authors independently assessed the studies for inclusion and extracted data on outcomes, details of the interventions, and other study characteristics using a standardised data extraction form. We used risk ratio (RR) and hazard ratio (HR) as measures of effect with 95% confidence intervals (CI). We included only one study, and did not conduct meta-analysis. We did not identify any new studies for inclusion in this update. One RCT met our inclusion criteria. The study was conducted in India and included 85 children diagnosed with measles and pneumonia. The trial showed no significant difference in mortality between children with measles and pneumonia who received zinc supplements and those who received placebo (RR 0.34, 95% CI 0.01 to 8.14). There was no significant difference in time to

  13. The protective role of zinc in the toxic action of coal dust upon mouse macrophages.

    PubMed Central

    Lai, Y R; Chen, J L; Jiang, X Y; Yang, G K; Yang, S Q; Gao, W X

    1991-01-01

    Macrophages from mice were cultured at 37 degrees C with 1640 medium containing 10% bovine serum. The macrophage suspension was made from 50 Swiss mice and was cultured in the following groups: control group; coal dust group (with added coal dust particles (10 micrograms/ml) smaller than 4 microns diameter); subdivided zinc-coal dust group (as coal dust group with zinc added in three different concentrations--namely, 10 ppm, 30 ppm, and 60 ppm). Cells were examined by light microscopy. Obvious differences were found in the rate of cell deaths between the coal dust group and the zinc-coal dust group after culture for 48 hours. The cell membranes were ruptured after culturing with coal dust, and the presence of zinc appeared in some degree to protect cell membranes from damage caused by the dust. Staining the cells with Gomori's modified method, showed that acid phosphatase particles in the zinc-coal dust group were more numerous than in the coal dust group. The results indicate that the trace element zinc may play an important part in protecting against the cytotoxic action of coal dust. PMID:1772798

  14. Different zinc(II) complex species and binding modes at Aβ N-terminus drive distinct long range cross-talks in the Aβ monomers.

    PubMed

    Pietropaolo, Adriana; Satriano, Cristina; Strano, Gaetano; La Mendola, Diego; Rizzarelli, Enrico

    2015-12-01

    The present study addresses the reconstruction of the free-energy landscapes of amyloid-beta1-42 (Aβ42) coordinated respectively with one and two zinc ions, to scrutinize whether different Aβ-zinc complex species, i.e., mononuclear and dinuclear metal complexes, induce different Aβ conformation features. We found a subtle switch of intramolecular interactions, depending both on the zinc coordination environment and on the peptide to zinc stoichiometric ratio. On the one side, hairpin-like structures are predominant in mononuclear complexes, where a salt-bridge that involves Lys28-Glu22 and Lys16-Asp23 is stabilized. On the other side, elongated conformations are instead stabilized in the dinuclear zinc complexes. Experimental studies of atomic force microscopy as well as of zinc-Aβ complex species distribution diagrams provide evidence that the theoretical calculations can be rationalized in terms of the correlation between the increased amount of amorphous aggregates and the Aβ/Zn(2+) ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Studies on Zinc and Copper Ion in Relation to Wound Healing in Male and Female West African Dwarf Goats.

    PubMed

    Olaifa, A K; Fadason, S T

    2017-03-06

    Wound healing remains a challenging clinical problem for which precise and efficient management is essential in order to curtail morbidity and mortality. Wound healing has been shown to depend upon the availability of appropriate trace elements like copper and zinc which serve as enzyme cofactors and structural components in tissue repair. This study aims at evaluating the distribution of zinc and copper found in the hair as well as skin during epidermal wound healing. Adult and healthy West African dwarf (WAD) goats of both sexes fed with concentrate, grass, cassava peel and water ad libitum were used. The animals were housed for three weeks before commencement of the experiments. Epidermal wounds were created on the trunks of all the goats using cardboard template of 1cm². Progressive changes in wound contraction were monitored grossly by placing clean and sterile venier calliper on the wound margin. Hair and skin elemental (copper and zinc) analyses were done using atomic absorption spectroscopy (AAS). Significant increases in Cu level were observed in the female hair compared with that of males. There were significant increases in the Zn levels of the females' hair compared with the males. The wound healed faster in female goat compared with the males. The ratio of copper to zinc is clinically more important than the concentration of either of these trace metals. The pattern of distribution between zinc and copper concentration in the skin and hair of the male and female goats observed in this study could be added factor responsible for early wound healing in female. Therefore, our findings suggest that the distribution in the Cu and Zinc level in skin and hair of both male and female goats could also be a factor for wound healing in the animals.

  16. The use of a rotating cylinder electrode to recover zinc from rinse water generated by the electroplating industry.

    PubMed

    Matlalcuatzi, Sairi; Nava, José L

    2012-01-01

    This work concerns the application of a laboratory scale rotating cylinder electrode (RCE) to recover zinc from rinse water generated by the electrolytic zinc process (initially 1,300, 4,400, 50, 20 mg L(-1) of Zn(II), Fe(III), Ag(I) and Cr(VI), respectively, at pH 2), although it is also applicable to other electroplating industries. Experimental results demonstrated the convenience of the removal of ferric ions, as (Fe(OH)(3(s))) by a pH adjustment to 4, before zinc electro recovery on the RCE. The generation of smooth zinc deposits on the RCE was obtained at Reynolds numbers within the range of 15,000 ≤ Re ≤ 124,000 and limiting current densities (J(L)) in the interval of -4.8 to -13 mA cm(-2). The zinc recovery reached a conversion of 67% in 90 min of electrolysis for Re = 124,000 and J = -13 mA cm(-2), 21% current efficiency, and energy consumption of 9.5 kWh m(-3). The treated solution can be recycled back through the same rinsing process.

  17. Iron Sulfide Attenuates the Methanogenic Toxicity of Elemental Copper and Zinc Oxide Nanoparticles and their Soluble Metal Ion Analogs

    PubMed Central

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A.

    2016-01-01

    Elemental copper (Cu0) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu0 and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25–75 µm) and coarse (500 to 1200 µm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu0 and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu0 NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excesses of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu0 and ZnO NPs and their soluble ion analogs to methanogens. PMID:26803736

  18. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    USGS Publications Warehouse

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  19. Synthesis and binding properties of arylethyne-linked porphyrin-zinc complexes for organic electronics applications.

    PubMed

    Reainthippayasakul, W; Paosawatyanyong, B; Bhanthumnavin, W

    2013-05-01

    Conjugated meso-alkynyl 5,15-dimesitylporphyrin metal complexes have been synthesized by Sonogashira coupling reaction in good yields. Alkynyl groups were chosen as a link at the meso positions in order to extend the pi-conjugated length of porphyrin rings. These synthesized porphyrin derivatives were characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry. Moreover, UV-visible spectroscopy and fluorescence spectroscopy were also used to investigate their photophysical properties. It has been demonstrated that central metal ions as well as meso substituents on porphyrin rings affected the electronic absorption and emission spectra of the compounds. Spectroscopic results revealed that alkyne-linked porphyrin metal complexes showed higher pi-conjugation compared with porphyrin building blocks resulting in red shifts in both absorption and emission spectra. Coordination properties of synthesized porphyrins were preliminarily investigated by UV-visible absorption and fluorescence emission spectroscopic titration with pyridine as axial ligand. The formation of porphyrin-pyridine complexes resulted in significant red shifts in absorption spectra and decrease of fluorescence intensity in emission spectra. Moreover, the 1H NMR titration experiments suggested that central metal ions play an important role to coordinate with pyridine and the coordination of porphyrin zinc(II) complex with pyridine occur in a 1:1 ratio. From these spectroscopic results, alkyne-linked porphyrin metal complexes offer potential applications as materials for optical organic nanosensors.

  20. HYPOTHESIS: ZINC CAN BE EFFECTIVE IN TREATMENT OF VITILIGO

    PubMed Central

    Bagherani, Nooshin; Yaghoobi, Reza; Omidian, Mohammad

    2011-01-01

    Vitiligo is a common depigmenting skin disorder (prevalence 0.1-2%), still represents a cause of stigmatization and quality of life impairment in a large population. Several theories on vitiligo etiopathogenesis have been suggested including in trauma, stress, and autoimmune and genetic predisposition, accumulation of toxic compounds, altered cellular environment, imbalance in the oxidant-antioxidant system, impaired melanocyte migration and/or proliferation, infection, and psychological factors. Zinc, as a trace element, has many vital functions in human. It is antiapoptotic factor and needed as a cofactor for antioxidant defense system. It plays an important role in the process of melanogenesis. It may be effective in prevention and treatment of vitiligo via some mechanism. Herein, we suggested some probable protective mechanism for zinc in association with vitiligo. PMID:22121258

  1. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inui, Ken; Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472; Sagane, Yoshimasa

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structuremore » classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.« less

  2. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  3. Zinc Removal from the Aqueous Solutions by the Chemically Modified Biosorbents.

    PubMed

    Rajczykowski, Krzysztof; Sałasińska, Oktawia; Loska, Krzysztof

    2018-01-01

    Biosorbents are the natural origin adsorbents, which popularity in environmental engineering is steadily increasing due to their low price, ease of acquisition, and lack of the toxic properties. Presented research aimed to analyze the possibility of chemical modification of the straw, which is a characteristic waste in the Polish agriculture, to improve its biosorption properties with respect to removal of selected metals from aquatic solutions. Biosorbents used during the tests was a barley straw that was shredded to a size in the range of 0.2-1.0 mm. The biosorption process was performed for aqueous solutions of zinc at a pH 5. Two different modifications of straw were analyzed: esterification with methanol and modification using the citric acid at elevated temperature. The results, obtained during the research, show a clear improvement in sorption capacity of the straw modified by the citric acid. In the case of straw modified with methanol, it has been shown that the effectiveness of zinc biosorption process was even a twice lower with respect to the unmodified straw. Moreover, it was concluded that the removal of analyzed metals was based mainly on the ion-exchange adsorption mechanism by releasing a calcium and magnesium ions from the straw surface to the solution. Graphical Abstractᅟ.

  4. Formulation and Evaluation of Antibacterial Creams and Gels Containing Metal Ions for Topical Application

    PubMed Central

    Chen, Mei X.; Alexander, Kenneth S.

    2016-01-01

    Background. Skin infections occur commonly and often present therapeutic challenges to practitioners due to the growing concerns regarding multidrug-resistant bacterial, viral, and fungal strains. The antimicrobial properties of zinc sulfate and copper sulfate are well known and have been investigated for many years. However, the synergistic activity between these two metal ions as antimicrobial ingredients has not been evaluated in topical formulations. Objective. The aims of the present study were to (1) formulate topical creams and gels containing zinc and copper alone or in combination and (2) evaluate the in vitro antibacterial activity of these metal ions in the formulations. Method. Formulation of the gels and creams was followed by evaluating their organoleptic characteristics, physicochemical properties, and in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. Results. Zinc sulfate and copper sulfate had a strong synergistic antibacterial activity in the creams and gels. The minimum effective concentration was found to be 3 w/w% for both active ingredients against the two tested microorganisms. Conclusions. This study evaluated and confirmed the synergistic in vitro antibacterial effect of copper sulfate and zinc sulfate in a cream and two gels. PMID:27885352

  5. 99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, LOOKING NORTH. NOTE ONE STYLE OF DENVER AGITATOR IN LOWER RIGHT CELL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  6. Serum thymulin in human zinc deficiency.

    PubMed Central

    Prasad, A S; Meftah, S; Abdallah, J; Kaplan, J; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no overt clinical manifestations of zinc deficiency. The diagnosis of mild zinc deficiency was based on the assay of zinc in lymphocytes, granulocytes, and platelets. Serum thymulin activity was decreased as a result of mild zinc deficiency and was corrected by in vivo and in vitro zinc supplementation, suggesting that this parameter was a sensitive indicator of zinc deficiency in humans. An increase in T101-, sIg-cells, decrease in T4+/T8+ ratio, and decreased IL 2 activity were observed in the experimental human model during the zinc depletion phase, all of which were corrected after repletion with zinc. Similar changes in lymphocyte subpopulation, correctable with zinc supplementation, were also observed in mildly ZD SCA subjects. Inasmuch as thymulin is known to induce intra- and extrathymic T cell differentiation, our studies provide a possible mechanism for the role of zinc on T cell functions. Images PMID:3262625

  7. Zinc supplementation in public health.

    PubMed

    Penny, Mary Edith

    2013-01-01

    Zinc is necessary for physiological processes including defense against infections. Zinc deficiency is responsible for 4% of global child morbidity and mortality. Zinc supplements given for 10-14 days together with low-osmolarity oral rehydration solution (Lo-ORS) are recommended for the treatment of childhood diarrhea. In children aged ≥ 6 months, daily zinc supplements reduce the duration of acute diarrhea episodes by 12 h and persistent diarrhea by 17 h. Zinc supplements could reduce diarrhea mortality in children aged 12-59 months by an estimated 23%; they are very safe but are associated with an increase in vomiting especially with the first dose. Heterogeneity between the results of trials is not understood but may be related to dose and the etiology of the diarrhea infection. Integration of zinc and Lo-ORS into national programs is underway but slowly, procurement problems are being overcome and the greatest challenge is changing health provider and caregiver attitudes to diarrhea management. Fewer trials have been conducted of zinc adjunct therapy in severe respiratory tract infections and there is as yet insufficient evidence to recommend addition of zinc to antibiotic therapy. Daily zinc supplements for all children >12 months of age in zinc deficient populations are estimated to reduce diarrhea incidence by 11-23%. The greatest impact is in reducing multiple episodes of diarrhea. The effect on duration of diarrheal episodes is less clear, but there may be up to 9% reduction. Zinc is also efficacious in reducing dysentery and persistent diarrhea. Zinc supplements may also prevent pneumonia by about 19%, but heterogeneity across studies has not yet been explained. When analyses are restricted to better quality studies using CHERG (Child Health Epidemiology Reference Group) methodology, zinc supplements are estimated to reduce diarrheal deaths by 13% and pneumonia deaths by 20%. National-level programs to combat childhood zinc deficiency should be

  8. Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase.

    PubMed

    Sea, Kevin; Sohn, Se Hui; Durazo, Armando; Sheng, Yuewei; Shaw, Bryan F; Cao, Xiaohang; Taylor, Alexander B; Whitson, Lisa J; Holloway, Stephen P; Hart, P John; Cabelli, Diane E; Gralla, Edith Butler; Valentine, Joan Selverstone

    2015-01-23

    The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30-50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. History of Zinc in Agriculture12

    PubMed Central

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  10. Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods.

    PubMed

    Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep

    2014-07-09

    Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential.

  11. Measurements of zinc absorption: application and interpretation in research designed to improve human zinc nutriture.

    PubMed

    Hambidge, K Michael; Miller, Leland V; Tran, Cuong D; Krebs, Nancy F

    2005-11-01

    The focus of this paper is on the application of measurements of zinc absorption in human research, especially studies designed to assess the efficacy of intervention strategies to prevent and manage zinc deficiency in populations. Emphasis is given to the measurement of quantities of zinc absorbed rather than restricting investigations to measurements of fractional absorption of zinc. This is especially important when determining absorption of zinc from the diet, whether it be the habitual diet or an intervention diet under evaluation. Moreover, measurements should encompass all meals for a minimum of one day with the exception of some pilot studies. Zinc absorption is primarily via an active saturable transport process into the enterocytes of the proximal small intestine. The relationship between quantity of zinc absorbed and the quantity ingested is best characterized by saturable binding models. When applied to human studies that have sufficient data to examine dose-response relationships, efficiency of absorption is high until approximately 50-60% maximal absorption is achieved, even with moderate phytate intakes. This also coincides approximately with the quantity of absorbed zinc necessary to meet physiologic requirements. Efficiency of absorption with intakes that exceed this level is low or very low. These observations have important practical implications for the design and interpretation of intervention studies to prevent zinc deficiency. They also suggest the potential utility of measurements of the quantity of zinc absorbed when evaluating the zinc status of populations.

  12. Interaction of zinc with dental mineral.

    PubMed

    Ingram, G S; Horay, C P; Stead, W J

    1992-01-01

    As some currently available toothpastes contain zinc compounds, the reaction of zinc with dental mineral and its effect on crystal growth rates were studied using three synthetic calcium-deficient hydroxyapatites (HAP) as being representative of dental mineral. Zinc was readily acquired by all HAP samples in the absence of added calcium, the amount adsorbed being proportional to the HAP surface area; about 9 mumol Zn/m2 was adsorbed at high zinc concentrations. As zinc was acquired, calcium was released, consistent with 1:1 Ca:Zn exchange. Soluble calcium reduced zinc uptake and similarly, calcium post-treatment released zinc. Pretreatment of HAP with 0.5 mM zinc reduced its subsequent ability to undergo seeded crystal growth, as did extracts of a toothpaste containing 0.5% zinc citrate, even in the presence of saliva. The reverse reaction, i.e. displacement of adsorbed zinc by salivary levels of calcium, however, indicates the mechanism by which zinc can reduce calculus formation in vivo by inhibiting plaque mineralisation without adversely affecting the anti-caries effects of fluoride.

  13. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries.

    PubMed

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming; Gong, Zhengliang; McDonald, Matthew J; Zheng, Shiyao; Fu, Riqiang; Chen, Zonghai; Amine, Khalil; Yang, Yong

    2016-08-31

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ X-ray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SS-NMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni(4+)/Ni(3+)/Ni(2+) redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.

  14. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, T.C.; McLarnon, F.R.; Cairns, E.J.

    1994-04-12

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K[sub 2]CO[sub 3] salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics. 8 figures.

  15. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1994-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  16. Analysis of Zinc Oxide Thin Films Synthesized by Sol-Gel via Spin Coating

    NASA Astrophysics Data System (ADS)

    Wolgamott, Jon Carl

    Transparent conductive oxides are gaining an increasingly important role in optoelectronic devices such as solar cells. Doped zinc oxide is a candidate as a low cost and nontoxic alternative to tin doped indium oxide. Lab results have shown that both n-type and p-type zinc oxide can be created on a small scale. This can allow zinc oxide to be used as either an electrode as well as a buffer layer to increase efficiency and protect the active layer in solar cells. Sol-gel synthesis is emerging as a low temperature, low cost, and resource efficient alternative to producing transparent conducting oxides such as zinc oxide. For sol-gel derived zinc oxide thin films to reach their potential, research in this topic must continue to optimize the known processing parameters and expand to new parameters to tighten control and create novel processing techniques that improve performance. The processing parameters of drying and annealing temperatures as well as cooling rate were analyzed to see their effect on the structure of the prepared zinc oxide thin films. There were also preliminary tests done to modify the sol-gel process to include silver as a dopant to produce a p-type thin film. The results from this work show that the pre- and post- heating temperatures as well as the cooling rate all play their own unique role in the crystallization of the film. Results from silver doping show that more work needs to be done to create a sol-gel derived p-type zinc oxide thin film.

  17. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  18. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  19. Uptake and partitioning of zinc in Lemnaceae.

    PubMed

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  20. Zinc: an essential but elusive nutrient123

    PubMed Central

    King, Janet C

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515

  1. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walle, J. van de; ISOLDE, CERN, Geneva; Aksouh, F.

    2009-01-15

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,2{sub 1}{sup +}{yields}0{sub 1}{sup +}) values in {sup 74-80}Zn, B(E2,4{sub 1}{sup +}{yields}2{sub 1}{sup +}) values in {sup 74,76}Zn and the determination of the energy of the first excited 2{sub 1}{sup +} states in {sup 78,80}Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of {sup 238}U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondarymore » target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.« less

  2. Resistance to zinc and cadmium in Staphylococcus aureus of human and animal origin.

    PubMed

    Nair, Rajeshwari; Thapaliya, Dipendra; Su, Yutao; Smith, Tara C

    2014-10-01

    Studies conducted in Europe have observed resistance to trace metals such as zinc chloride and copper sulfate in livestock-associated Staphylococcus aureus. This study was conducted to determine the prevalence of zinc and cadmium resistance in S. aureus isolated in the United States. Cross-sectional study of convenience sample of S. aureus isolates. Three hundred forty-nine S. aureus isolates, including methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) obtained from human, swine, and retail meat were included in the sample set. Polymerase chain reaction was used to test for the presence of genes for zinc and cadmium resistance (czrC), methicillin resistance (mecA), and staphylococcal complement inhibitor (scn). Antibiotic susceptibility of isolates was tested using the broth microdilution method. Data were analyzed using the multivariable logistic regression method. Twenty-nine percent (102/349) of S. aureus isolates were czrC positive. MRSA isolates were more likely to be czrC positive compared to MSSA (MRSA czrC positive: 12/61, 19.6%; MSSA czrC positive: 12/183, 6.6%). After adjustment for oxacillin and clindamycin susceptibility in analysis, multidrug-resistant S. aureus was observed to have low odds of being czrC positive (P = .03). The odds of being czrC positive were observed to be significantly high in tetracycline-resistant S. aureus isolated from noninfection samples (P = .009) and swine (P < .0001). Resistance to zinc and cadmium was observed to be associated with MRSA, a finding consistently observed in European studies. Prolonged exposure to zinc in livestock feeds and fertilizers could propagate resistance to the metal ion, thereby hindering use of zinc-based topical agents in treating S. aureus infections.

  3. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  4. Trace determination of zinc by substoichiometric isotope dilution analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhya, D.; Priya, S.; Subramanian, M.O.S.

    1996-09-01

    A radiometric method based on substoichiometric isotope dilution analysis using 1,10-phenanthroline and a substoichiometric amount of eosin was developed for determining trace amounts of zinc. Evaluation of various metal ion interferences shows that as little as 0.2 {mu}g Zn could be determined in an aqueous-phase volume of 60 mL. The method has been successfully applied to the determination of Zn in city waste incineration ash, cadmium metal, Fourts-B tablets, Boro-plus ointment, and magnesium alloy samples. 12 refs., 3 figs., 3 tabs.

  5. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  6. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    NASA Astrophysics Data System (ADS)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  7. Electron spectroscopy imaging and surface defect configuration of zinc oxide nanostructures under different annealing ambient

    NASA Astrophysics Data System (ADS)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd

    2013-01-01

    In this study, electron spectroscopy imaging was used to visualize the elemental distribution of zinc oxide nanopowder. Surface modification in zinc oxide was done through annealing treatment and type of surface defect was also inferred from the electron spectroscopy imaging investigation. The micrographs revealed the non-stoichiometric distribution of the elements in the unannealed samples. Annealing the samples in nitrogen and oxygen ambient at 700 °C would alter the density of the elements in the samples as a result of removal or absorption of oxygen. The electrical measurement showed that nitrogen annealing treatment improved surface electrical conductivity, whereas oxygen treatment showed an adverse effect. Observed change in the photoluminescence green emission suggested that oxygen vacancies play a significant role as surface defects. Structural investigation carried out through X-ray diffraction revealed the polycrystalline nature of both zinc oxide samples with hexagonal phase whereby annealing process increased the crystallinity of both zinc oxide specimens. Due to the different morphologies of the two types of zinc oxide nanopowders, X-ray diffraction results showed different stress levels in their structures and the annealing treatment give significant effect to the structural stress. Electron spectroscopy imaging was a useful technique to identify the elemental distribution as well as oxygen defect in zinc oxide nanopowder.

  8. Zinc supplementation for the treatment of measles in children.

    PubMed

    Awotiwon, Ajibola A; Oduwole, Olabisi; Sinha, Anju; Okwundu, Charles I

    2015-03-20

    Measles is still an important cause of childhood morbidity and mortality globally, despite increasing vaccine coverage. Zinc plays a significant role in the maintenance of normal immunological functions, therefore supplements given to zinc-deficient children will increase the availability of zinc and could reduce measles-related morbidity and mortality. To assess the effects of zinc supplementation in reducing morbidity and mortality in children with measles. We searched CENTRAL (2014, Issue 5), MEDLINE (1946 to June week 3, 2014), EMBASE (1974 to June 2014), CINAHL (1981 to June 2014), LILACS (1982 to June 2014), Web of Science (1985 to June 2014) and BIOSIS Previews (1985 to June 2014). We also searched ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) to identify unpublished and ongoing studies. Randomised controlled trials (RCTs) and quasi-RCTs evaluating the effects of zinc in reducing morbidity and mortality in children with measles. Two review authors independently assessed the studies for inclusion and extracted data on outcomes, details of the interventions and other study characteristics using a standardised data extraction form. We used the risk ratio (RR) and hazard ratio as measures of effect with 95% confidence intervals (CI). We included only one study and we did not conduct any meta-analysis. One RCT met our inclusion criteria. The study was conducted in India and included 85 children diagnosed with measles and pneumonia. The trial showed that there was no significant difference in mortality between the two groups (risk ratio (RR) 0.34, 95% confidence interval (CI) 0.01 to 8.14). Also, there was no significant difference in time to absence of fever between the two groups (hazard ratio (HR) 1.08, 95% CI 0.67 to 1.74). No treatment-related side effects were reported in either group. The overall quality of the evidence can be described as very low. We cannot draw any definite conclusions

  9. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    PubMed Central

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  10. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  11. Glucose deprivation stimulates Cu(2+) toxicity in cultured cerebellar granule neurons and Cu(2+)-dependent zinc release.

    PubMed

    Isaev, Nickolay K; Genrikhs, Elisaveta E; Aleksandrova, Olga P; Zelenova, Elena A; Stelmashook, Elena V

    2016-05-27

    Copper chloride (0.01mM, 2h) did not have significant influence on the survival of cerebellar granule neurons (CGNs) incubated in balanced salt solution. However, CuCl2 caused severe neuronal damage by glucose deprivation (GD). The glutamate NMDA-receptors blocker MK-801 partially and antioxidant N-acetyl-l-cysteine (NAC) or Zn(2+) chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) almost entirely protected CGNs from this toxic effect. Measurements of intracellular calcium ions using Fluo-4 AM, or zinc ions with FluoZin-3 AM demonstrated that 1 h-exposure to GD induced intensive increase of Fluo-4 but not FluoZin-3 fluorescence in neurons. The supplementation of solution with CuCl2 caused an increase of FluoZin-3, Fluo-4 and CellROX Green (reactive oxygen species probe) fluorescence by GD. The stimulation of Fluo-4 but not FluoZin-3 fluorescence by copper could be prevented partially by MK-801 and as well as CellROX Green fluorescence by NAC at GD. This data imply that during GD copper ions induce intense displacement zinc ions from intracellular stores, in addition free radical production, glutamate release and Ca(2+) overload of CGNs, that causes death of neurons as a result. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    PubMed

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-09

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  13. Differential Natural Selection of Human Zinc Transporter Genes between African and Non-African Populations

    PubMed Central

    Zhang, Chao; Li, Jing; Tian, Lei; Lu, Dongsheng; Yuan, Kai; Yuan, Yuan; Xu, Shuhua

    2015-01-01

    Zinc transporters play important roles in all eukaryotes by maintaining the rational zinc concentration in cells. However, the diversity of zinc transporter genes (ZTGs) remains poorly studied. Here, we investigated the genetic diversity of 24 human ZTGs based on the 1000 Genomes data. Some ZTGs show small population differences, such as SLC30A6 with a weighted-average FST (WA-FST = 0.015), while other ZTGs exhibit considerably large population differences, such as SLC30A9 (WA-FST = 0.284). Overall, ZTGs harbor many more highly population-differentiated variants compared with random genes. Intriguingly, we found that SLC30A9 was underlying natural selection in both East Asians (EAS) and Africans (AFR) but in different directions. Notably, a non-synonymous variant (rs1047626) in SLC30A9 is almost fixed with 96.4% A in EAS and 92% G in AFR, respectively. Consequently, there are two different functional haplotypes exhibiting dominant abundance in AFR and EAS, respectively. Furthermore, a strong correlation was observed between the haplotype frequencies of SLC30A9 and distributions of zinc contents in soils or crops. We speculate that the genetic differentiation of ZTGs could directly contribute to population heterogeneity in zinc transporting capabilities and local adaptations of human populations in regard to the local zinc state or diets, which have both evolutionary and medical implications. PMID:25927708

  14. How does binuclear zinc amidohydrolase FwdA work in the initial step of methanogenesis: From formate to formyl-methanofuran.

    PubMed

    Zhang, Xue-Wei; Chen, Shi-Lu

    2018-05-11

    The initial step of methanogenesis is the fixation of CO 2 to formyl-methanofuran (formyl-MFR) catalyzed by formyl-MFR dehydrogenase, which can be divided into two half reactions. Herein, the second half reaction catalyzed by FwdA (formyl-methanofuran dehydrogenase subunit A), i.e., from formate to formyl-methanofuran, has been investigated using density functional theory and a chemical model based on the X-ray crystal structure. The calculations indicate that, compared with other well-known di-zinc hydrolases, the FwdA reaction employs a reverse mechanism, including the nucleophilic attack of MFR amine on formate carbon leading to a tetrahedral gem-diolate intermediate, two steps of proton transfer from amine to formate moieties assisted by the Asp385, and the CO bond dissociation to form the formyl-MFR product. The second step of proton transfer from the amine moiety to the Asp385 is rate-limiting with an overall barrier of 21.2 kcal/mol. The two zinc ions play an important role in stabilizing the transition states and intermediates, in particular the negative charge at the formate moiety originated from the nucleophilic attack of the MFR amine. The work here appends a crucial piece in the methanogenic mechanistics and advances the understanding of the global carbon cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Profiling of zinc altered gene expression in human prostate normal versus cancer cells: a time course study

    PubMed Central

    Lin, Shu-fei; Wei, Hua; Maeder, Dennis; Franklin, Renty B.; Feng, Pei

    2010-01-01

    -induced apoptosis. The results indicate that zinc regulation of gene expression is cell-type specific, and MT genes play important roles in prostate malignancy. PMID:19071009

  16. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    PubMed

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer

    PubMed Central

    Franklin, Renty B; Feng, Pei; Milon, B; Desouki, Mohamed M; Singh, Keshav K; Kajdacsy-Balla, André; Bagasra, Omar; Costello, Leslie C

    2005-01-01

    Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands). In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN). These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down-regulation in adenocarcinomatous

  18. Adsorption of Zn(II) and Cd(II) ions in batch system by using the Eichhornia crassipes.

    PubMed

    Módenes, A N; Espinoza-Quiñones, F R; Borba, C E; Trigueros, D E G; Lavarda, F L; Abugderah, M M; Kroumov, A D

    2011-01-01

    In this work, the displacement effects on the sorption capacities of zinc and cadmium ions of the Eichornia crassipes-type biosorbent in batch binary system has been studied. Preliminary single metal sorption experiments were carried out. An improvement on the Zn(II) and Cd(II) ions removal was achieved by working at 30 °C temperature and with non-uniform biosorbent grain sizes. A 60 min equilibrium time was achieved for both Zn(II) and Cd(II) ions. Furthermore, it was found that the overall kinetic data were best described by the pseudo second-order kinetic model. Classical multi-component adsorption isotherms have been tested as well as a modified extended Langmuir isotherm model, showing good agreement with the equilibrium binary data. Around 0.65 mequiv./g maximum metal uptake associated with the E. crassipes biosorbent was attained and the E. crassipes biosorbent has shown higher adsorption affinity for the zinc ions than for the cadmium ones in the binary system.

  19. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  20. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    PubMed

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian

    2018-01-01

    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  1. Rv2358 and FurB: Two Transcriptional Regulators from Mycobacterium tuberculosis Which Respond to Zinc

    PubMed Central

    Canneva, Fabio; Branzoni, Manuela; Riccardi, Giovanna; Provvedi, Roberta; Milano, Anna

    2005-01-01

    In a previous work, we demonstrated that the Mycobacterium tuberculosis Rv2358-furB operon is induced by zinc. In this study, the orthologous genes from Mycobacterium smegmatis mc2155 were inactivated and mutants analyzed. Rv2358 protein was purified and found to bind upstream of the Rv2358 gene. Binding was inhibited by Zn2+ ions. PMID:16077132

  2. iTRAQ Analysis Reveals Mechanisms of Growth Defects Due to Excess Zinc in Arabidopsis1[W][OA

    PubMed Central

    Fukao, Yoichiro; Ferjani, Ali; Tomioka, Rie; Nagasaki, Nahoko; Kurata, Rie; Nishimori, Yuka; Fujiwara, Masayuki; Maeshima, Masayoshi

    2011-01-01

    The micronutrient zinc is essential for all living organisms, but it is toxic at high concentrations. Here, to understand the effects of excess zinc on plant cells, we performed an iTRAQ (for isobaric tags for relative and absolute quantification)-based quantitative proteomics approach to analyze microsomal proteins from Arabidopsis (Arabidopsis thaliana) roots. Our approach was sensitive enough to identify 521 proteins, including several membrane proteins. Among them, IRT1, an iron and zinc transporter, and FRO2, a ferric-chelate reductase, increased greatly in response to excess zinc. The expression of these two genes has been previously reported to increase under iron-deficient conditions. Indeed, the concentration of iron was significantly decreased in roots and shoots under excess zinc. Also, seven subunits of the vacuolar H+-ATPase (V-ATPase), a proton pump on the tonoplast and endosome, were identified, and three of them decreased significantly in response to excess zinc. In addition, excess zinc in the wild type decreased V-ATPase activity and length of roots and cells to levels comparable to those of the untreated de-etiolated3-1 mutant, which bears a mutation in V-ATPase subunit C. Interestingly, excess zinc led to the formation of branched and abnormally shaped root hairs, a phenotype that correlates with decreased levels of proteins of several root hair-defective mutants. Our results point out mechanisms of growth defects caused by excess zinc in which cross talk between iron and zinc homeostasis and V-ATPase activity might play a central role. PMID:21325567

  3. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules.

    PubMed

    Lee, Yong-Min; Bang, Suhee; Yoon, Heejung; Bae, Seong Hee; Hong, Seungwoo; Cho, Kyung-Bin; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-07-20

    Redox-inactive metal ions play important roles in tuning chemical properties of metal-oxygen intermediates. Herein we report the effect of water molecules on the redox properties of a nonheme iron(III)-peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn(2+) ion in (TMC)Fe(III) -(O2 )-Zn(CF3 SO3 )2 (1-Zn(2+) ) decreases the Lewis acidity of the Zn(2+) ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn(2+) . This further changes the reactivities of 1-Zn(2+) in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn(2+) , whereas 1-Zn(2+) coordinating two water molecules, (TMC)Fe(III) -(O2 )-Zn(CF3 SO3 )2 -(OH2 )2 [1-Zn(2+) -(OH2 )2 ], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1-Zn(2+) was converted to its corresponding iron(IV)-oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn(2+) -(OH2 )2 . The present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal-oxygen intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules

    DOE PAGES

    Lee, Yong-Min; Bang, Suhee; Yoon, Heejung; ...

    2015-06-19

    Here we report redox-inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. We describe the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn 2+ ion in (TMC)Fe III-(O 2)-Zn(CF 3SO 3) 2 (1-Zn 2+) decreases the Lewis acidity of the Zn 2+ ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn 2+. This further changes the reactivities of 1-Zn 2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidantmore » (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn 2+, whereas 1-Zn 2+ coordinating two water molecules, (TMC)Fe III-(O 2)-Zn(CF 3SO 3) 2-(OH 2) 2 [1-Zn 2+-(OH 2) 2], releases the O 2 unit in the oxidation reaction. In the reduction reactions, 1-Zn 2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn 2+-(OH 2) 2. Finally, the present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.« less

  5. Layered zinc hydroxide nanocones: synthesis, facile morphological and structural modification, and properties

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Liang, Jianbo; Wang, Chengxiang; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2014-10-01

    Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties.Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties. Electronic supplementary information (ESI) available: Typical SEM images, TGA curves and XRD patterns of

  6. Correlation between the distribution of lignin and pectin and distribution of sorbed metal ions (lead and zinc) on coir (Cocos nucifera L.).

    PubMed

    Conrad, Kathrine

    2008-11-01

    Plant fibres are capacious for sorption of metal ions, and can be used in water cleaning. Knowledge about the sorption will help in selection of the fibre and optimisation of its chemical modification, if any. The aim of this paper is to investigate the connection, if any, between the distribution of lignin and pectin and the loading of Pb and Zn on coir (mesocarp fibres from Cocos nucifera L.). The coir consisted mainly of xylem and a fibre sheath. The lignin was evenly distributed in the cell walls of the fibre sheath, but in the xylem, there was no detectable content in the compound middle lamella, and a smaller content of lignin in the secondary walls than in the walls of the fibre sheath. The only detectable content of pectin in the fibre sheath walls was in the middle lamella, cell corners and extracellular matrix, while in the xylem, the pectin was almost evenly distributed in the wall, with a higher concentration in the middle lamella and cell corners. All cell walls facing the lacuna had a high content of pectin. The metal ions were mainly loaded on the xylem and cell walls facing the lacuna, maybe with an additional trend to be loaded on the large fibres. Lead was distributed on and across the whole secondary wall. Zinc was loaded on the secondary walls, but there was no information about the distribution across the wall. If there is a simple correlation between the loading of metal ions and the distribution of lignin or pectin, these investigations point at no correlation with lignin and a positive correlation with pectin. It has to be stressed that these conclusions are made on limited material and are therefore preliminary in nature.

  7. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each ofmore » which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes« less

  8. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks.

    PubMed

    Que, Emily L; Bleher, Reiner; Duncan, Francesca E; Kong, Betty Y; Gleber, Sophie C; Vogt, Stefan; Chen, Si; Garwin, Seth A; Bayer, Amanda R; Dravid, Vinayak P; Woodruff, Teresa K; O'Halloran, Thomas V

    2015-02-01

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.

  9. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE PAGES

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; ...

    2014-12-15

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. Here we show that the zinc spark arises from a system of thousands ofmore » zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. We conclude that the discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.« less

  10. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    PubMed Central

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak; Woodruff, Teresa K.; O’Halloran, Thomas V.

    2015-01-01

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes. PMID:25615666

  11. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    PubMed

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  12. ElaC encodes a novel binuclear zinc phosphodiesterase.

    PubMed

    Vogel, Andreas; Schilling, Oliver; Niecke, Manfred; Bettmer, Jorg; Meyer-Klaucke, Wolfram

    2002-08-09

    ElaC is a widespread gene found in eubacteria, archaebacteria, and mammals with a highly conserved sequence. Two human ElaC variants were recently associated with cancer (Tavtigian, S. V., Simard, J., Teng, D. H., Abtin, V., Baumgard, M., Beck, A., Camp, N. J., Carillo, A. R., Chen, Y., Dayananth, P., Desrochers, M., Dumont, M., Farnham, J. M., Frank, D., Frye, C., Ghaffari, S., Gupte, J. S., Hu, R., Iliev, D., Janecki, T., Kort, E. N., Laity, K. E., Leavitt, A., Leblanc, G., McArthur-Morrison, J., Pederson, A., Penn, B., Peterson, K. T., Reid, J. E., Richards, S., Schroeder, M., Smith, R., Snyder, S. C., Swedlund, B., Swensen, J., Thomas, A., Tranchant, M., Woodland, A. M., Labrie, F., Skolnick, M. H., Neuhausen, S., Rommens, J., and Cannon-Albright, L. A. (2001) Nat. Genet. 27, 172-180; Yanaihara, N., Kohno, T., Takakura, S., Takei, K., Otsuka, A., Sunaga, N., Takahashi, M., Yamazaki, M., Tashiro, H., Fukuzumi, Y., Fujimori, Y., Hagiwara, K., Tanaka, T., and Yokota, J. (2001) Genomics 72, 169-179). Analysis of the primary sequence indicates homology to an arylsulfatase and predicts a metallo-beta-lactamase fold. At present, no ElaC gene product has been investigated. We cloned the Escherichia coli ElaC gene and purified the recombinant gene product. An enzymatic analysis showed that ElaC does not encode an arylsulfatase but rather encodes a phosphodiesterase that hydrolyzes bis(p-nitrophenyl)phosphate with a k(cat) of 59 s(-1) and K' of 4 mm. Kinetic analysis of the dimeric enzyme revealed positive cooperativity for the substrate bis(p-nitrophenyl)phosphate with a Hill coefficient of 1.6, whereas hydrolysis of the substrate thymidine-5'-p-nitrophenyl phosphate followed Michaelis-Menten kinetics. Furthermore, the enzyme is capable of binding two zinc or two iron ions. However, it displays phosphodiesterase activity only in the zinc form. The metal environment characterized by zinc K-edge x-ray absorption spectroscopy was modeled with two histidine residues, one

  13. Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator.

    PubMed

    Fabrega, Julia; Tantra, Ratna; Amer, Aisha; Stolpe, Bjorn; Tomkins, Jordan; Fry, Tony; Lead, Jamie R; Tyler, Charles R; Galloway, Tamara S

    2012-01-17

    We studied the effects of ZnO nanoparticles [ZnO NPs, primary particle size 35 ± 10 nm (circular diameter, TEM)], bulk [160 ± 81 nm (circular diameter, TEM)], and Zn ions (from ZnCl(2)) on mortality, growth, and reproductive endpoints in the sediment dwelling marine amphipod Corophium volutator over a complete lifecycle (100 days). ZnO NPs were characterized by size, aggregation, morphology, dissolution, and surface properties. ZnO NPs underwent aggregation and partial dissolution in the seawater exposure medium, resulting in a size distribution that ranged in size from discrete nanoparticles to the largest aggregate of several micrometers. Exposure via water to all forms of zinc in the range of 0.2-1.0 mg L(-1) delayed growth and affected the reproductive outcome of the exposed populations. STEM-EDX analysis was used to characterize insoluble zinc precipitates (sphaerites) of high sulfur content, which accumulated in the hepatopancreas following exposures. The elemental composition of the sphaerites did not differ for ZnO NP, Zn(2+), and bulk ZnO exposed organisms. These results provide an illustration of the comparable toxicity of Zn in bulk, soluble, and nanoscale forms on critical lifecycle parameters in a sediment dwelling organism.

  14. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less

  15. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    NASA Astrophysics Data System (ADS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  16. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  17. ttm-1 Encodes CDF Transporters That Excrete Zinc from Intestinal Cells of C. elegans and Act in a Parallel Negative Feedback Circuit That Promotes Homeostasis

    PubMed Central

    Roh, Hyun Cheol; Collier, Sara; Deshmukh, Krupa; Guthrie, James; Robertson, J. David; Kornfeld, Kerry

    2013-01-01

    Zinc is an essential metal involved in a wide range of biological processes, and aberrant zinc metabolism is implicated in human diseases. The gastrointestinal tract of animals is a critical site of zinc metabolism that is responsible for dietary zinc uptake and distribution to the body. However, the role of the gastrointestinal tract in zinc excretion remains unclear. Zinc transporters are key regulators of zinc metabolism that mediate the movement of zinc ions across membranes. Here, we identified a comprehensive list of 14 predicted Cation Diffusion Facilitator (CDF) family zinc transporters in Caenorhabditis elegans and demonstrated that zinc is excreted from intestinal cells by one of these CDF proteins, TTM-1B. The ttm-1 locus encodes two transcripts, ttm-1a and ttm-1b, that use different transcription start sites. ttm-1b expression was induced by high levels of zinc specifically in intestinal cells, whereas ttm-1a was not induced by zinc. TTM-1B was localized to the apical plasma membrane of intestinal cells, and analyses of loss-of-function mutant animals indicated that TTM-1B promotes zinc excretion into the intestinal lumen. Zinc excretion mediated by TTM-1B contributes to zinc detoxification. These observations indicate that ttm-1 is a component of a negative feedback circuit, since high levels of cytoplasmic zinc increase ttm-1b transcript levels and TTM-1B protein functions to reduce the level of cytoplasmic zinc. We showed that TTM-1 isoforms function in tandem with CDF-2, which is also induced by high levels of cytoplasmic zinc and reduces cytoplasmic zinc levels by sequestering zinc in lysosome-related organelles. These findings define a parallel negative feedback circuit that promotes zinc homeostasis and advance the understanding of the physiological roles of the gastrointestinal tract in zinc metabolism in animals. PMID:23717214

  18. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors.

    PubMed

    Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua

    2016-07-19

    The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes.

  19. Potential Interactions of Calcium-Sensitive Reagents with Zinc Ion in Different Cultured Cells

    PubMed Central

    Fujikawa, Koichi; Fukumori, Ryo; Nakamura, Saki; Kutsukake, Takaya; Takarada, Takeshi; Yoneda, Yukio

    2015-01-01

    Background Several chemicals have been widely used to evaluate the involvement of free Ca2+ in mechanisms underlying a variety of biological responses for decades. Here, we report high reactivity to zinc of well-known Ca2+-sensitive reagents in diverse cultured cells. Methodology/Principal Findings In rat astrocytic C6 glioma cells loaded with the fluorescent Ca2+ dye Fluo-3, the addition of ZnCl2 gradually increased the fluorescence intensity in a manner sensitive to the Ca2+ chelator EGTA irrespective of added CaCl2. The addition of the Ca2+ ionophore A23187 drastically increased Fluo-3 fluorescence in the absence of ZnCl2, while the addition of the Zn2+ ionophore pyrithione rapidly and additionally increased the fluorescence in the presence of ZnCl2, but not in its absence. In cells loaded with the zinc dye FluoZin-3 along with Fluo-3, a similarly gradual increase was seen in the fluorescence of Fluo-3, but not of FluoZin-3, in the presence of both CaCl2 and ZnCl2. Further addition of pyrithione drastically increased the fluorescence intensity of both dyes, while the addition of the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) rapidly and drastically decreased FluoZin-3 fluorescence. In cells loaded with FluoZin-3 alone, the addition of ZnCl2 induced a gradual increase in the fluorescence in a fashion independent of added CaCl2 but sensitive to EGTA. Significant inhibition was found in the vitality to reduce 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide in a manner sensitive to TPEN, EDTA and BAPTA in C6 glioma cells exposed to ZnCl2, with pyrithione accelerating the inhibition. Similar inhibition occurred in an EGTA-sensitive fashion after brief exposure to ZnCl2 in pluripotent P19 cells, neuronal Neuro2A cells and microglial BV2 cells, which all expressed mRNA for particular zinc transporters. Conclusions/Significance Taken together, comprehensive analysis is absolutely required for the demonstration of a

  20. Effect of Zinc Oxide Film Deposition Position on the Characteristics of Zinc Oxide Thin Film Transistors Fabricated by Low-Temperature Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Takechi, Kazushige; Nakata, Mitsuru; Eguchi, Toshimasa; Otsuki, Shigeyoshi; Yamaguchi, Hirotaka; Kaneko, Setsuo

    2008-09-01

    We report on the effect of zinc oxide (ZnO) film deposition position on the characteristics of ZnO thin-film transistors (TFTs) fabricated by magnetron sputtering with no intentional heating of the substrate. We evaluate the properties of ZnO (channel semiconductor) films deposited at various positions with respect to the target position. We show that the film deposition at a position off-centered from the target results in good TFT characteristics. This might be due to the fact that the off-centered deposition position is effective for suppressing the effect of energetic negative ions in the plasma.

  1. Mineral resource of the month: zinc

    USGS Publications Warehouse

    Tolcin, Amy C.

    2009-01-01

    The article provides information on zinc, the fourth most-widely consumed metal. It traces the first use of zinc with the Romans' production of brass. It describes the presence of zinc in Earth's crust and the importance of sphalerite as a source of zinc and other some minor metal production. The production and consumption of zinc as well as the commercial and industrial uses of this metal are also discussed.

  2. Zinc Therapy in Dermatology: A Review

    PubMed Central

    Mahajan, Vikram K.; Mehta, Karaninder S.; Chauhan, Pushpinder S.

    2014-01-01

    Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts), inflammatory dermatoses (acne vulgaris, rosacea), pigmentary disorders (melasma), and neoplasias (basal cell carcinoma). Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc. PMID:25120566

  3. Influence of iron substitution by selected rare-earth ions on the properties of NiZn ferrite fillers and PVC magneto-polymer composites

    NASA Astrophysics Data System (ADS)

    Ušák, Elemír; Ušáková, Mariana; Dosoudil, Rastislav; Šoka, Martin; Dobročka, Edmund

    2018-04-01

    Nickel-zinc ferrites are very important soft magnetic materials from the point of view of diverse technical applications (such as, e.g., various electronic devices and components) for their high magnetic permeability and permittivity, low core loss, high resistivity, high Curie temperature as well as mechanical strength and chemical stability. Due to their good absorbing properties, they can be used as microwave absorbing and shielding materials with the aim of decreasing the environmental pollution caused by non-ionizing microwave radiation. The ferrite material incorporated into the polymer matrix creates qualitatively new magneto-polymer composite material taking benefits from both components. The properties typical for polymers (elasticity, mouldability, etc.) are combined with good high-frequency magnetic parameters, thus allowing to utilize these materials, e.g., in high-frequency applications where especially flexibility of composite materials plays a key role. Small amounts of selected rare-earth (RE) ions, in particular Y3+, La3+, Eu3+ and Gd3+ have been embedded into the nickel-zinc ferrite that has been used as the magnetic filler in magnetic polymer composites with polyvinylchloride (PVC) acting as the polymeric matrix. The effect of various types of rare-earth ions on the structural as well as quasi-static and dynamic (electro)magnetic properties of the ferrite fillers as well as ferrite/PVC composites, in particular the frequency dispersion of the complex permeability, has been studied.

  4. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1998-01-01

    The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox potential apparatus described previously (P. I. Harvey and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997). This apparatus is designed to control the redox potential in the leaching compartment of an electrolytic cell by reduction or oxidation of dissolved iron. By controlling the redox potential the apparatus maintains the concentrations of ferrous and ferric ions at their initial values. Experiments were conducted in the presence of T. ferrooxidans and under sterile conditions. Analysis of the conversion of zinc sulfide in the absence of the bacteria and analysis of the conversion of zinc sulfate in the presence of the bacteria produced the same results. This indicates that the only role of the bacteria under the conditions used is regeneration of ferric ions in solution. In this work we found no evidence that there is a direct mechanism for bacterial leaching. PMID:9758769

  5. Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor.

    PubMed

    Zdanowski, Konrad; Doughty, Phillip; Jakimowicz, Piotr; O'Hara, Liisa; Buttner, Mark J; Paget, Mark S B; Kleanthous, Colin

    2006-07-11

    ZAS proteins are widespread bacterial zinc-containing anti-sigma factors that regulate the activity of sigma factors in response to diverse cues. One of the best characterized ZAS proteins is RsrA from Streptomyces coelicolor, which responds to disulfide stress. Zn-RsrA binds and represses the transcriptional activity of sigmaR in the reducing environment of the cytoplasm but undergoes reversible, intramolecular disulfide bond formation during oxidative stress. This expels the single metal ion and causes dramatic structural changes in RsrA that result in its dissociation from sigmaR, leaving the sigma factor free to activate the transcription of antioxidant genes. We showed recently that Zn2+ serves a critical role in modulating the redox activity of RsrA thiols but uncertainty remains as to how the metal ion is coordinated in RsrA and related ZAS proteins. Using a combination of random and site-specific mutagenesis with zinc K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we have assigned unambiguously the metal ligands in RsrA, thereby distinguishing between the different ligation models that have been proposed. The data show that the zinc site in RsrA is comprised of Cys11, His37, Cys41, and Cys44. Three of these residues are part of a conserved ZAS-specific sequence motif (H37xxxC41xxC44), with the fourth ligand, Cys11, found in a subset of ZAS proteins. Cys11 and Cys44 form the trigger disulfide in RsrA, explaining why the metal ion is expelled during oxidation. We discuss these data in the context of redox sensing by RsrA and the sensory mechanisms of other ZAS proteins.

  6. Zinc oxide doped graphene oxide films for gas sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetna,, E-mail: chetna2288@gmail.com; Kumar, Shani; Chaudhary, S.

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer’s method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheetsmore » play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.« less

  7. Synthesis and investigation of physico-chemical, antibacterial, biomymetic properties of silver and zinc containing hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zhuk, Ilya; Rasskazova, Lyudmila; Korotchenko, Natalia; Kozik, Vladimir; Kurzina, Irina

    2017-11-01

    In the work we carried out microwave synthesis of modified hydroxyapatites (HA) with different content of ions. A solid solution based on HA remains a single-phase sample when the calcium ions are substituted by silver and zinc ions up to 5 % by weight (0.5 mole fraction). The microstructure parameters, morphology and the particle powders size were studied by X-ray diffraction analysis, IR spectroscopy, and scanning electron microscopy (SEM). It is shown that the modification of HA by silver (AgHA) and zinc (ZnHA) ions increases the size of its particles, the degree of crystallinity, and the pore sizes of the samples while reducing their specific surface and uniformity of their forms. Elemental analysis and distribution of elements over the surface of HA, AgHA, and ZnHA powders were performed by X-ray spectral microanalysis (RSMA). The ratio of Ca/P is within the range of 1.66-1.77 and corresponds to the ratio of Ca/P in stoichiometric HA and the HA entering bone tissue. The ability of AgHA- and ZnHA-substrates to form on their surface a calcium-phosphate layer from the simulated body fluid (SBF) at 37 °C is determined. This ability decreases in the order: in ZnHA it is less than in AgHA, but greater than in HA. The antibacterial activity of the samples was analyzed. The AgHA sample has both bactericidal and persistent bacteriostatic properties in the case of direct contact with Escherichia coli cells.

  8. Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs.

    PubMed

    Deng, Bo; Zhou, Xihong; Wu, Jie; Long, Ciming; Yao, Yajun; Peng, Hongxing; Wan, Dan; Wu, Xin

    2017-10-01

    An experiment was conducted to compare the effects of zinc sulfate (ZS) and tribasic zinc sulfate (TBZ) as sources of supplemental zinc on growth performance, serum zinc (Zn) content and messenger RNA (mRNA) expression of Zn transporters (ZnT1/ZnT2/ZnT5/ZIP4/DMT1) of young growing pigs. A total of 96 Duroc × Landrace × Yorkshire pigs were randomly allotted to two treatments and were fed a basal diet supplemented with 100 mg/kg Zn from either ZS or TBZ for 28 days. Feed : gain ratio in pigs fed TBZ were lower (P < 0.05) than pigs fed ZS, and average daily weight gain tended to increase (0.05 ≤ P ≤ 0.10) in pigs fed TBZ. Compared with pigs fed ZS, pigs fed TBZ had a higher CuZn-superoxide dismutase and Zn content in serum (P < 0.05) while they had a lower Zn content in feces (P < 0.05). In addition, ZIP4 mRNA expression of zinc transporter in either duodenum or jejunum of pigs fed TBZ were higher (P < 0.05) than pigs fed ZS. These results indicate that TBZ is more effective in serum Zn accumulation and intestinal Zn absorption, and might be a potential substitute for ZS in young growing pigs. © 2017 Japanese Society of Animal Science.

  9. Recovering Zinc From Discarded Tires

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Zinc sulfate monohydrate sold at profit. Shredded tire material steeped in three sulfuric acid baths to extract zinc. Final product removed by evaporating part of solution until product crystallizes out. Recovered as zinc sulfate monohydrate and sold as fertilizer or for general use.

  10. A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density.

    PubMed

    Xie, Congxin; Zhang, Huamin; Xu, Wenbin; Wang, Wei; Li, Xianfeng

    2018-05-01

    A zinc-iodine flow battery (ZIFB) with long cycle life, high energy, high power density, and self-healing behavior is prepared. The long cycle life was achieved by employing a low-cost porous polyolefin membrane and stable electrolytes. The pores in the membrane can be filled with a solution containing I 3 - that can react with zinc dendrite. Therefore, by consuming zinc dendrite, the battery can self-recover from micro-short-circuiting resulting from overcharging. By using KI, ZnBr 2 , and KCl as electrolytes and a high ion-conductivity porous membrane, a very high power density can be achieved. As a result, a ZIFB exhibits an energy efficiency (EE) of 82 % at 80 mA cm -2 , which is 8 times higher than the currently reported ZIFBs. Furthermore, a stack with an output of 700 W was assembled and continuously run for more than 300 cycles. We believe this ZIFB can lead the way to development of new-generation, high-performance flow batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Zinc Signal in Brain Diseases.

    PubMed

    Portbury, Stuart D; Adlard, Paul A

    2017-11-23

    The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.

  12. Oligonucleotide synthesis catalyzed by the Zn/2+/ ion

    NASA Technical Reports Server (NTRS)

    Sawai, H.; Orgel, L. E.

    1975-01-01

    Results of experiments are reported in which Zn(2+) ion catalyzed the formation of oligonucleotides from nucleoside phosphorimidazolides in aqueous solution, even in the absence of a template. Specifically, the imidazolides (ImpU or ImpA) polymerized to form ImpApA, and pApA, pApApA, and pApApApA, or the analogous uracil compounds. In addition, the expected hydrolysis products of the hydrolysis of ImpA were formed (pA, imidazole). Judging from the ratio of pA(n) over pA (with and without zinc ion), this ion increased the efficiency of phosphodiester-bond formation by up to 10 times. Possible mechanisms for the reaction are tentatively proposed.

  13. Zinc in Entamoeba invadens.

    NASA Technical Reports Server (NTRS)

    Morgan, R. S.; Sattilaro, R. F.

    1972-01-01

    Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.

  14. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxiainducible factor-1alpha expression via Poly(ADP-ribose) polymerase -1

    PubMed Central

    Pan, Rong; Chen, Chen; Liu, Wenlan; Liu, Ke Jian

    2013-01-01

    Aim Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study testes the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Methods Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-hour hypoxic treatment. Results Although 3-hr hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc concentration dependent manner. Exposure of astrocytes to hypoxia for 3-hr remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Conclusions Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. PMID:23582235

  15. Zinc chelation with hydroxamate in histone deacetylases modulated by water access to the linker binding channel.

    PubMed

    Wu, Ruibo; Lu, Zhenyu; Cao, Zexing; Zhang, Yingkai

    2011-04-27

    It is of significant biological interest and medical importance to develop class- and isoform-selective histone deacetylase (HDAC) modulators. The impact of the linker component on HDAC inhibition specificity has been revealed but is not understood. Using Born-Oppenheimer ab initio QM/MM MD simulations, a state-of-the-art approach to simulating metallo-enzymes, we have found that the hydroxamic acid remains to be protonated upon its binding to HDAC8, and thus disproved the mechanistic hypothesis that the distinct zinc-hydroxamate chelation modes between two HDAC subclasses come from different protonation states of the hydroxamic acid. Instead, our simulations suggest a novel mechanism in which the chelation mode of hydroxamate with the zinc ion in HDACs is modulated by water access to the linker binding channel. This new insight into the interplay between the linker binding and the zinc chelation emphasizes its importance and gives guidance regarding linker design for the development of new class-IIa-specific HDAC inhibitors.

  16. p-type zinc-blende GaN on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.

    1993-08-01

    We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.

  17. Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters.

    PubMed Central

    Taylor, Kathryn M; Morgan, Helen E; Johnson, Andrea; Nicholson, Robert I

    2004-01-01

    The KE4 proteins are an emerging group of proteins with little known functional data. In the present study, we report the first characterization of the recombinant human KE4 protein in mammalian cells. The KE4 sequences are included in the subfamily of ZIP (Zrt-, Irt-like Proteins) zinc transporters, which we have termed LZT (LIV-1 subfamily of ZIP zinc Transporters). All these LZT sequences contain similarities to ZIP transporters, including the consensus sequence in transmembrane domain IV, which is essential for zinc transport. However, the new LZT subfamily can be separated from other ZIP transporters by the presence of a highly conserved potential metalloprotease motif (HEXPHEXGD) in transmembrane domain V. Here we report the location of HKE4 on intracellular membranes, including the endoplasmic reticulum, and its ability to increase the intracellular free zinc as measured with the zinc-specific fluorescent dye, Newport Green, in a time-, temperature- and concentration-dependent manner. This is in contrast with the zinc influx ability of another LZT protein, LIV-1, which was due to its plasma membrane location. Therefore we have added to the functionality of LZT proteins by reporting their ability to increase intracellular-free zinc, whether they are located on the plasma membrane or on intracellular membranes. This result, in combination with the crucial role that zinc plays in cell growth, emphasizes the importance of this new LZT subfamily, including the KE4 sequences, in the control of intracellular zinc homoeostasis, aberrations of which can lead to diseases such as cancer, immunological disorders and neurological dysfunction. PMID:14525538

  18. Zinc-mediated Allosteric Inhibition of Caspase-6*

    PubMed Central

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  19. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...

  20. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...