Sample records for zinc isotope separation

  1. Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boda, A.; Singha Deb, A. K.; Ali, Sk. M.

    2014-04-24

    Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.

  2. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walle, J. van de; ISOLDE, CERN, Geneva; Aksouh, F.

    2009-01-15

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,2{sub 1}{sup +}{yields}0{sub 1}{sup +}) values in {sup 74-80}Zn, B(E2,4{sub 1}{sup +}{yields}2{sub 1}{sup +}) values in {sup 74,76}Zn and the determination of the energy of the first excited 2{sub 1}{sup +} states in {sup 78,80}Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of {sup 238}U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondarymore » target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.« less

  3. Application of zinc isotope tracer technology in tracing soil heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Norbu, Namkha; Wang, Shuguang; Xu, Yan; Yang, Jianqiang; Liu, Qiang

    2017-08-01

    Recent years the soil heavy metal pollution has become increasingly serious, especially the zinc pollution. Due to the complexity of this problem, in order to prevent and treat the soil pollution, it's crucial to accurately and quickly find out the pollution sources and control them. With the development of stable isotope tracer technology, it's able to determine the composition of zinc isotope. Based on the theory of zinc isotope tracer technique, and by means of doing some latest domestic and overseas literature research about the zinc isotope multi-receiving cups of inductively coupled plasma mass spectrometer (MC-ICP-MS) testing technology, this paper summarized the latest research results about the pollution tracer of zinc isotope, and according to the deficiencies and existing problems of previous research, made outlooks of zinc isotope fractionation mechanism, repository establishment and tracer multiple solutions.

  4. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.

    2007-01-01

    The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different

  5. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  6. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  7. Copper and Zinc isotope composition of CR, CB and CH-like meteorites.

    NASA Astrophysics Data System (ADS)

    Russell, S.; Zhu, X.; Guo, Y.; Mullane, E.; Gounelle, M.; Mason, T.; Coles, B.

    2003-04-01

    Copper and zinc isotopes have recently been shown to be variable in isotopic composi-tion among terrestrial and extraterrestrial materials [1-3]. For this study, we have se-lected samples (bulk meteorite and chondrule separates) from the CR meteorite clan: Bencubbin (CB), Renazzo (CR2), NWA 801 (CR2), and HaH237 (CH-like). These meteorites were selected because meteorites from this clan have experienced very little alteration since their initial formation [4] and for their extremely high refrac-tory/volatile element ratios. The latter characteristic may allow a test of the correlation observed by [2] between element ratios and Cu isotope composition. Measurements were performed on NHM/IC Micromass Isoprobe and Oxford Nu MC-ICP-MS using techniques described elsewhere [1,5]. Each of the meteorites measured so far for Cu and Zn are isotopically light compared to the terrestrial mantle. This suggests that the terrestrial value may have been altered from the pristine solar system value, or else there were multiple early solar system components. Zinc isotopic com-positions lie on a fractionation line and range from δ66ZnNIST = -1.4±0.1ppm (bulk NWA801) to -1.9±0.1ppm (separated chondrule, NWA 801). Copper isotope compositions vary from δ65CuNIST976 = -1.5±0.1ppm (bulk Renazzo) to -3.1±0.1ppm (separated chondrule, NWA 801). Two chondrules from NWA 801 have differing Cu isotope values (-3.1±0.1 and -2.0±0.1ppm) and both are lighter than the bulk meteorite (-1.9±0.1ppm), suggesting a lack of equilibration with respect to Cu in this meteorite. The light values for the two separated chondrules, compared the bulk meteorite, hints that chondrules may be isotopically lighter than co-existing matrix, metal and sulphides with respect to Cu. The copper isotope compositions are not as isotopically light as expected for the high refractory/volatile element ratio observed in these chondrites. Thus a model to account for the Cu isotopes in chondrites may require greater com

  8. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    PubMed Central

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  9. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  10. New separators for nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1976-01-01

    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  11. Zinc stable isotope fractionation upon accelerated oxidative weathering of sulfidic mine waste.

    PubMed

    Matthies, R; Krahé, L; Blowes, D W

    2014-07-15

    Accelerated oxidative weathering in a reaction cell (ASTM D 5744 standard protocol) was performed over a 33 week period on well characterized, sulfidic mine waste from the Kidd Creek Cu-Zn volcanogenic massive sulfide deposit, Canada. The cell leachate was monitored for physicochemical parameters, ion concentrations and stable isotope ratios of zinc. Filtered zinc concentrations (<0.45 μm) in the leachate ranged between 4.5 mg L(-1) and 1.9 g L(-1)-potentially controlled by pH, mineral solubility kinetics and (de)sorption processes. The zinc stable isotope ratios varied mass-dependently within +0.1 and +0.52‰ relative to IRMM 3702, and were strongly dependent on the pH (rpH-d66Zn=0.65, p<0.005, n=31). At a pH below 5, zinc mobilization was governed by sphalerite oxidation and hydroxide dissolution-pointing to the isotope signature of sphalerite (+0.1 to +0.16‰). Desorption processes resulted in enrichment of (66)Zn in the leachate reaching a maximum offset of +0.32‰ compared to the proposed sphalerite isotope signature. Over a period characterized by pH=6.1 ± 0.6, isotope ratios were significantly more enriched in (66)Zn with an offset of ≈ 0.23‰ compared to sphalerite, suggesting that zinc release may have been derived from a second zinc source, such as carbonate minerals, which compose 8 wt.% of the tailings. This preliminary study confirms the benefit of applying zinc isotopes alongside standard monitoring parameters to track principal zinc sources and weathering processes in complex multi-phase matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  13. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  14. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  15. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  16. Zinc isotope ratio imaging of rat brain thin sections from stable isotope tracer studies by LA-MC-ICP-MS.

    PubMed

    Urgast, Dagmar S; Hill, Sarah; Kwun, In-Sook; Beattie, John H; Goenaga-Infante, Heidi; Feldmann, Jörg

    2012-10-01

    Zinc stable isotope tracers (⁶⁷Zn and ⁷⁰Zn) were injected into rats at two different time points to investigate the feasibility of using tracers to study zinc kinetics at the microscale within distinct tissue features. Laser ablation coupled to multi-collector ICP-MS was used to analyse average isotope ratios in liver thin sections and to generate bio-images showing zinc isotope ratio distribution in brain thin sections. Average isotope ratios of all samples from treated animals were found to be statistically different (P < 0.05) from samples from untreated control animals. Furthermore, differing isotope ratios in physiological features of the brain, namely hippocampus, amygdala, cortex and hypothalamus, were identified. This indicates that these regions differ in their zinc metabolism kinetics. While cortex and hypothalamus contain more tracer two days after injection than 14 days after injection, the opposite is true for hippocampus and amygdala. This study showed that stable isotope tracer experiments can be combined with laser ablation MC-ICP-MS to measure trace element kinetics in tissues at a microscale level.

  17. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  18. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  19. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  20. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  1. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  2. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining

    USGS Publications Warehouse

    Borrok, D.M.; Nimick, D.A.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles. Average ??66Zn and ??65Cu values for streams varied from +0.02??? to +0.46??? and -0.7??? to +1.4???, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ???0.3??? (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.

  3. Apparatus and process for separating hydrogen isotopes

    DOEpatents

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  4. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  5. A critical examination of the possible application of zinc stable isotope ratios in bivalve mollusks and suspended particulate matter to trace zinc pollution in a tropical estuary.

    PubMed

    Araújo, Daniel; Machado, Wilson; Weiss, Dominik; Mulholland, Daniel S; Boaventura, Geraldo R; Viers, Jerome; Garnier, Jeremie; Dantas, Elton L; Babinski, Marly

    2017-07-01

    The application of zinc (Zn) isotopes in bivalve tissues to identify zinc sources in estuaries was critically assessed. We determined the zinc isotope composition of mollusks (Crassostrea brasiliana and Perna perna) and suspended particulate matter (SPM) in a tropical estuary (Sepetiba Bay, Brazil) historically impacted by metallurgical activities. The zinc isotope systematics of the SPM was in line with mixing of zinc derived from fluvial material and from metallurgical activities. In contrast, source mixing alone cannot account for the isotope ratios observed in the bivalves, which are significantly lighter in the contaminated metallurgical zone (δ 66 Zn JMC  = +0.49 ± 0.06‰, 2σ, n = 3) compared to sampling locations outside (δ 66 Zn JMC  = +0.83 ± 0.10‰, 2σ, n = 22). This observation suggests that additional factors such as speciation, bioavailability and bioaccumulation pathways (via solution or particulate matter) influence the zinc isotope composition of bivalves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Method of isotope separation by chemi-ionization

    DOEpatents

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  7. Separation of Isotopes by Electromigration in Fused Salts; SEPARATION DES ISOTOPES PAR ELECTROMIGRATION EN SELS FONDUS (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menes, F.

    1961-12-01

    A process is given for the separation of isotopes by reflux electromigration of fused salts. The process is carried out in a countercurrent manner on a fused mixture of a salt containing the isotopic cations with a salt having the same anion and a cation with a mobility as near as possible to that of the isotopic cations. An electrolytic cell for carrying out the process is described. Examples are presented of the process in which lithium-6 and lithium-7 are separated in a LiBr-KBr mixture, and calcium isotopes are separated in CaBr/sub 2/-KBr and CaBr/sub 2/- LiBr systems. (N.W.R.)

  8. Secondary battery containing zinc electrode with modified separator and method

    DOEpatents

    Poa, David S.; Yao, Neng-Ping

    1985-01-01

    A battery containing a zinc electrode with a porous separator between the anode and cathode. The separator is a microporous substrate carrying therewith an organic solvent of benzene, toluene or xylene with a tertiary organic amine therein, wherein the tertiary amine has three carbon chains each containing from six to eight carbon atoms. The separator reduces the rate of zinc dentrite growth in the separator during battery operation prolonging battery life by preventing short circuits. A method of making the separator is also disclosed.

  9. Secondary battery containing zinc electrode with modified separator and method

    DOEpatents

    Poa, D.S.

    1984-02-16

    A battery containing a zinc electrode with a porous separator between the anode and cathode. The separator is a microporous substrate carrying therewith an organic solvent of benzene, toluene or xylene with a tertiary organic amine therein, wherein the tertiary amine has three carbon chains each containing from six to eight carbon atoms. The separator reduces the rate of zinc dentrite growth in the separator during battery operation prolonging battery life by preventing short circuits. A method of making the separator is also disclosed.

  10. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska

    USGS Publications Warehouse

    Kelley, K.D.; Wilkinson, J.J.; Chapman, J.B.; Crowther, H.L.; Weiss, D.J.

    2009-01-01

    Analyses of sphalerite samples from shale-hosted massive sulfide and stratigraphically underlying vein breccia deposits in the Red Dog district in northern Alaska show a range ??66Zn values from zero to 0.60 per mil. The lowest values are observed in the vein breccia deposits, and the stratigraphically overlying (but structurally displaced) shale-hosted massive sulfide deposits show a systematic trend of increasing ??66Zn values from south to north (Main-Aqqaluk-Paalaaq-Anarraaq). The ??66Zn values are inversely correlated with sphalerite Fe/Mn ratio and also tend to be higher in low Cu sphalerite, consistent with precipitation of lower ??66Zn sphalerite closer to the principal hydrothermal fluid conduits. The most likely control on isotopic variation is Rayleigh fractionation during sulfide precipitation, with lighter zinc isotopes preferentially incorporated in the earliest sphalerite to precipitate from ore fluids at deeper levels (vein breccias) and close to the principal fluid conduits in the orebodies, followed by precipitation of sulfides with higher ??66Zn values in shallower and/or more distal parts of the flow path. There is no systematic variation among the paragenetic stages of sphalerite from a single deposit, suggesting an isotopically homogeneous zinc source and consistent transport-deposition conditions and/or dissolution-reprecipitation of earlier sphalerite without significant fractionation. Decoupled Zn and S isotope compositions are best explained by mixing of separate metal- and sulfur-bearing fluids at the depositional site. The results confirm that Zn isotopes may be a useful tracer for distinguishing between the central and distal parts of large hydrothermal systems as previously suggested and could therefore be of use in exploration. ?? 2009 by Economic Geology.

  11. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  12. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, Charles G. [Pleasanton, CA

    1978-08-29

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

  13. In-Vivo Zinc Metabolism by Isotope Ratio Mass Spectrometry

    USDA-ARS?s Scientific Manuscript database

    The purpose of this chapter is to highlight some of the methodological and technical issues surrounding the in vivo use of stable isotopes and to provide examples of how such studies have advanced our knowledge of human zinc metabolism. The advantages and disadvantages of the currently available in...

  14. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, C.G.

    1978-08-29

    Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

  15. Isotope separation apparatus and method

    DOEpatents

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  16. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Wang, Ze-Zhou; Liu, Sheng-Ao; Liu, Jingao; Huang, Jian; Xiao, Yan; Chu, Zhu-Yin; Zhao, Xin-Miao; Tang, Limei

    2017-02-01

    The zinc (Zn) stable isotope system has great potential for tracing planetary formation and differentiation processes due to its chalcophile, lithophile and moderately volatile character. As an initial approach, the terrestrial mantle, and by inference, the bulk silicate Earth (BSE), have previously been suggested to have an average δ66Zn value of ∼+0.28‰ (relative to JMC 3-0749L) primarily based on oceanic basalts. Nevertheless, data for mantle peridotites are relatively scarce and it remains unclear whether Zn isotopes are fractionated during mantle melting. To address this issue, we report high-precision (±0.04‰; 2SD) Zn isotope data for well-characterized peridotites (n = 47) from cratonic and orogenic settings, as well as their mineral separates. Basalts including mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) were also measured to avoid inter-laboratory bias. The MORB analyzed have homogeneous δ66Zn values of +0.28 ± 0.03‰ (here and throughout the text, errors are given as 2SD), similar to those of OIB obtained in this study and in the literature (+0.31 ± 0.09‰). Excluding the metasomatized peridotites that exhibit a wide δ66Zn range of -0.44‰ to +0.42‰, the non-metasomatized peridotites have relatively uniform δ66Zn value of +0.18 ± 0.06‰, which is lighter than both MORB and OIB. This difference suggests a small but detectable Zn isotope fractionation (∼0.1‰) during mantle partial melting. The magnitude of inter-mineral fractionation between olivine and pyroxene is, on average, close to zero, but spinels are always isotopically heavier than coexisting olivines (Δ66ZnSpl-Ol = +0.12 ± 0.07‰) due to the stiffer Zn-O bonds in spinel than silicate minerals (Ol, Opx and Cpx). Zinc concentrations in spinels are 11-88 times higher than those in silicate minerals, and our modelling suggests that spinel consumption during mantle melting plays a key role in generating high Zn concentrations and heavy Zn isotopic

  17. Zinc Isotopic Signatures of the Upper Continental Crust

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Zhang, X.; Zhang, H.; Huang, F.

    2016-12-01

    To examine the Zn isotope systematics within the Upper Continental Crust (UCC), and isotope fractionation during chemical weathering in large spatial and temporal scales, we analyzed Zn isotopic compositions of loess, glacial diamictites, river sediments, and igneous rocks (samples in total 77). The Zn isotopic compositions (δ66Zn relative to JMC-Lyon) of loess display a limited variation (0.17‰ to 0.29‰), which is negatively correlated with Zn content and proxies for chemical weathering (e.g. CIA values), reflect the impact of chemical weathering. Glacial diamictites have more variable δ66Zn (0.09‰ to 0.48‰), but the average δ66Zn (0.29±0.03‰, 2SD) is similar to loess. δ66Zn of glacial diamictites correlate roughly negatively with CIA values, but have no correlation with Zn content, implying source heterogeneity and effect from chemical weathering. δ66Zn of A-type (0.39‰ to 0.45‰) and S-type (0.28‰ to 0.35‰) granites are both homogeneous, but the latter have systematically lighter δ66Zn. This may reflect no Zn isotopic fractionation during magmatic processes and involvement of isotopically light meta-sedimentary into the sources of S-type granites. Furthermore, δ66Zn in riverine sediments display a small variation from 0.23‰ to 0.37‰, while δ66Zn of the the shales vary from 0.14‰ to 0.53‰, which could result from a combination of processes, such as biological cycling and chemical weathering. Overall, our data suggest that incipient chemical weathering can fractionate Zn isotopes significantly, meanwhile, during this process, heavy Zn are released preferentially. The UCC is estimated to have an average δ66Zn of 0.30 ±0.03‰ (2SD) with data collected in this study, which is similar to the estimated value of Bulk Silicate Earth (0.28±0.05‰)[1] and mean dissolved riverine flux (0.33‰)[2], but distinctly lighter than the bulk composition of dissolved Zn in the ocean (0.51‰)[2]. [1] Chen et al., Zinc isotope fractionation

  18. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  19. Zinc Isotopic Compositions of Spinel Peridotites

    NASA Astrophysics Data System (ADS)

    Chen, S.; Huang, F.

    2015-12-01

    Zn isotope geochemistry has shown great potential in exploring planetary differentiation and volatilization history [1,2,3,4]. However, the zinc isotopic composition of the mantle and its fractionation mechanism in high-temperature processes are still unclear. In order to understand Zn isotope composition of the mantle, here we measured Zn isotope data for mantle rocks and minerals, including coexisting olivine, orthopyroxene (Opx), clinopyroxene (Cpx) and spinel from peridotite xenoliths in the Hannuoba (China), Vitim (Siberia), Tariat (central Mongolia), and Dariganga (SE Mongolia). As an accessary mineral, spinels in our study have high Zn contents (500-1400 ppm), accounting for 18%-40% of the total Zn budget in peridotites. Spinels have higher δ66Zn ranging from 0.17 to 0.30‰ than other mantle minerals. For most samples, the δ66Zn of olivines vary from -0.03‰ to 0.19‰, indistinguishable to the value of the coexisting Opx (0.05‰ to 0.20‰). However, we also observed large fractionation between these two minerals, which may reflect disequilibrium fractionation due to kinetic processes. Finally, δ66Zn for peridotites are 0.12-0.21‰, slightly lighter than that of basalts (~0.25±0.05‰), revealing that Zn isotopes can be slightly fractionated during mantle melting. [1] Luck et al., (2005) Geochimica Cosmo Acta, 69, 5351-5363. [2] Paniello et al., (2012) Nature, 490, 376-379. [3] Chen et al., (2013) Meteoritics Planet Sci, 48, 2441-2450. [4] Day and Moynier, (2014) Phil. Transac. of the Royal Society B, 372, 20130259

  20. Fabrication and test of inorganic/organic separators. [for silver zinc batteries

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.

    1974-01-01

    Completion of testing and failure analysis of MDC 40 Ahr silver zinc cells containing largely inorganic separators was accomplished. The results showed that the wet stand and cycle life objectives of the silver zinc cell development program were accomplished. Building, testing and failure analysis of two plate cells employing three optimum separators selected on the basis of extensive screening tests, was performed. The best separator material as a result of these tests was doped calcium zirconate.

  1. Isotope Separation in Concurrent Gas Centrifuges

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.

    An analytical equation defining separative power of an optimized concurrent gas centrifuge is obtained for an arbitrary binary mixture of isotopes. In the case of the uranium isotopes the equation gives δU= 12.7(V/700 m/s)2(300 K/T)L, kg SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge, T is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges.

  2. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    USGS Publications Warehouse

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  3. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    USGS Publications Warehouse

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  4. Factors influence flexibility resistivity and zinc dendrite penetration rate of inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Developmental work resulted in a formulation which can improve the flexibility of the inorganic-organic-type separator for silver-zinc and nickel-zinc alkaline batteries. The effects of various fillers and reactive organic additives on separator volume resistivity are described. The effects of various inert fillers on the zinc dendrite penetration rate of the separator are shown. Conclusions regarding the operating mechanism of the separator are presented.

  5. Method for isotope separation by photodeflection

    DOEpatents

    Bernhardt, Anthony F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states.

  6. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  7. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  8. Lifetime estimates for sterilizable silver-zinc battery separators

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Walmsley, D. E.; Moacanin, J.

    1972-01-01

    The lifetime of separator membranes currently employed in the electrolyte environment of silver-zinc batteries was estimated at 3 to 5 years. The separator membranes are crosslinked polyethylene film containing grafted poly (potassium acrylate)(PKA), the latter being the hydrophilic agent which promotes electrolyte ion transport. The lifetime was estimated by monitoring the rate of loss of PKA from the separators, caused by chemical attack of the electrolyte, and relating this loss rate to a known relationship between battery performance and PKA concentration in the separators.

  9. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  10. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  11. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  12. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  13. The zinc stable isotope signature of waste rock drainage in Arctic Canada

    NASA Astrophysics Data System (ADS)

    Matthies, Romy; Blowes, David

    2014-05-01

    Leachate emerging from a pilot-scale waste rock pile of the Diavik diamond mine, Northwest Territories, was monitored. The well-characterized waste rock consists of granite, pegmatitic granite and biotite schist with an average total sulfur and carbonate carbon concentration of 0.053 and 0.027 wt. %, respectively. During the field seasons of 2011 and 2012, the Zn stable isotope footprint was characterized alongside standard monitoring parameters. pH ranged between 4.3 and 6.8 and carbonate alkalinity was low or undetectable. Al and Fe concentrations averaged 6.78 mg L-1 and 175 µg L-1, respectively. The pH and metal mobility were governed by sulfide oxidation and sorption and co-precipitation onto iron and aluminium hydroxides. The main processes controlling zinc mobility in the range of 0.4 and 4.7 mg L-1 was the oxidative dissolution of sphalerite (ZnS) in the biotite schist and the attenuation of zinc onto secondary iron and aluminium hydroxides and desorption upon the pH declining below the pHpzc. The isotope ratios between -0.16 and +0.19 ‰ (δ66Zn, avg = +0.05 ‰, n = 43) are consistent with values reported from other sphalerite containing deposits. Zn isotope ratios and concentrations were largely uncorrelated suggesting that the processes affecting Zn mobility had little or no impact on the Zn isotope signature. Data indicate, that the Zn isotope ratios of the waste rock leachate may be used as a fingerprint to track anthropogenic, mine-derived Zn sources under varying environmental conditions.

  14. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  15. Possible application of laser isotope separation

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1975-01-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.

  16. Apparatus for separating and recovering hydrogen isotopes

    DOEpatents

    Heung, Leung K.

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  17. VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES

    DOEpatents

    Britten, R.J.

    1957-12-31

    A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.

  18. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  19. Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation

    NASA Astrophysics Data System (ADS)

    Gélabert, A.; Pokrovsky, O. S.; Viers, J.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.

    2006-02-01

    This work is devoted to characterization of zinc interaction in aqueous solution with two marine planktonic ( Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species ( Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption and electrophoretic measurements with surface complexation modeling and by assessing Zn isotopes fractionation during both long term uptake and short term adsorption on diatom cells and their frustules. Reversible adsorption experiments were performed at 25 and 5 °C as a function of exposure time (5 min to 140 h), pH (2 to 10), zinc concentration in solution (10 nM to 1 mM), ionic strength ( I = 0.001 to 1.0 M) and the presence of light. While the shape of pH-dependent adsorption edge is almost the same for all four species, the constant-pH adsorption isotherm and maximal Zn binding capacities differ by an order of magnitude. The extent of adsorption increases with temperature from 5 to 25 °C and does not depend on light intensity. Zinc adsorption decreases with increase of ionic strength suggesting competition with sodium for surface sites. Cell number-normalized concentrations of sorbed zinc on whole cells and their silica frustules demonstrated only weak contribution of the latter (10-20%) to overall zinc binding by diatom cell wall. Measurements of electrophoretic mobilities ( μ) revealed negative diatoms surface potential in the full range of zinc concentrations investigated (0.15-760 μmol/L), however, the absolute value of μ decreases at [Zn] > 15 μmol/L suggesting a change in surface speciation. These observations allowed us to construct a surface complexation model for Zn binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Zn complexation with carboxylate and silanol groups. Thermodynamic and structural parameters of this model are based on previous acid-base titration and spectroscopic results and allow

  20. Device and method for separating oxygen isotopes

    DOEpatents

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  1. Separation of isotopes by cyclical processes

    DOEpatents

    Hamrin, Jr., Charles E.; Weaver, Kenny

    1976-11-02

    Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope.

  2. Zinc Isotopes as Tracers of Crust-Mantle Interactions and Mineralization Processes in Layered Intrusions

    NASA Astrophysics Data System (ADS)

    Day, J. M.; Moynier, F.

    2016-12-01

    Zinc isotopes are a powerful tool for studying igneous processes and may be useful for distinguishing between mantle or crustal origins for mineralization and for examining crystallization processes. Restricted ranges in δ66Zn for mantle-derived rocks (δ66Zn = 0.28±0.05‰; [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000] all uncertainties reported are 2SD) contrast the large δ66Zn variations in sedimentary rocks ( 0 to 1‰), or in volcanic and sedimentary hosted ore deposits (e.g., SEDEX; VHMS; MVT = -0.6 to 1.3‰). Here, we use Zn isotopes to investigate magmatic processes in the 1.27 Ga Muskox Intrusion (Canada) and 2.7 Ga Stillwater Intrusion (Montana). The Muskox main chromitite horizon has between 270-330 ppm Zn with δ66Zn ranging from 0.16 to 0.31‰. Zinc isotope compositions negatively correlate with Os isotopes. Chromitite (40a) with the lowest 187Os/188Os (0.132) has δ66Zn of 0.31±0.03‰; indistinguishable from the mantle value. CM19 glass from the co-eval Coppermine Volcanics, which has crust-like O and Nd isotopes but low 187Os/188Os (0.131), has been interpreted as the extrusive manifestation of chromitite genesis. The value of δ66Zn (0.27±0.07‰) for CM19 is within uncertainty of 40A, and permissive of formation during silicic-mafic melt mixing and large-scale chromitite crystallization. Stillwater chromitite seams exhibit a larger range in Zn (166-448 ppm), but generally lower δ66Zn (0.13±0.04‰) than Muskox chromitites, or to a JM Reef bulk sample (69 ppm Zn, δ66Zn = 0.22±0.03‰). These results suggest different sources of Zn for Ultramafic series chromitites versus the JM Reef (Banded series). Correspondingly, variations occur in Os isotopes for PGE poor chromitites (γOs = -2 to +4) versus the PGE-rich JM Reef (γOs = +12 to +34). Zinc isotope variations may be explained by either a mantle source with low δ66Zn that was subsequently contaminated by high δ66Zn crust, or from contamination of the ultramafic series by low δ66Zn

  3. Trace determination of zinc by substoichiometric isotope dilution analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhya, D.; Priya, S.; Subramanian, M.O.S.

    1996-09-01

    A radiometric method based on substoichiometric isotope dilution analysis using 1,10-phenanthroline and a substoichiometric amount of eosin was developed for determining trace amounts of zinc. Evaluation of various metal ion interferences shows that as little as 0.2 {mu}g Zn could be determined in an aqueous-phase volume of 60 mL. The method has been successfully applied to the determination of Zn in city waste incineration ash, cadmium metal, Fourts-B tablets, Boro-plus ointment, and magnesium alloy samples. 12 refs., 3 figs., 3 tabs.

  4. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  5. Zinc isotope systematics of subduction-zone magmas

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhang, X. C.; Huang, F.; Yu, H.

    2016-12-01

    Subduction-zone magmas are generated by partial melting of mantle wedge triggered by addition of fluids derived from subducted hydrothermally altered oceanic lithosphere. Source of the fluids may be sediment, altered oceanic crust and serpentinized peridotite/serpentinite. Knowledge of the exact fluid source can facilitate our better understanding of the mechanism of fluid flux, element cycling and crust-mantle interaction in subduction zones. Zinc isotopes have the potential to place a constraint on this issue, because (1) Zn has an intermediate mobility during fluid-rock interaction and is enriched in subduction-zone fluids (e.g., Li et al., 2013); (2) sediment, altered oceanic crust and serpentinite have distinct Zn isotopic compositions (Pons et al., 2011); and (3) the mantle has a homogeneous Zn isotope composition (δ66Zn = 0.28 ± 0.05‰, Chen et al., 2013). Thus, the Zn isotopic composition of subduction-zone magmas reflects the characteristics of slab-derived fluids of different sources. Here, high-precision Zn isotope analyses were conducted on igneous rocks from arcs of Central America, Kamchatka, South Lesser Antilles, and Aleutian. One rhyolite with 75.1 wt.% SiO2 and 0.2 wt.% FeOT displays the heaviest δ66Zn value of 0.394‰ (relative to JMC Lyon) that probably results from the crystallization of Fe-Ti oxides during the late-stage differentiation. The rest of rocks have Zn isotopic compositions (0.161 to 0.339‰) similar to or lighter than those of the mantle. In an individual arc, the δ66Zn values of rocks show broad negative correlations with Ba/Th and 87Sr/86Sr ratios, suggesting that the slab-derived fluids should have lighter δ66Zn as well as higher Ba/Th and 87Sr/86Sr ratios relative to the mantle. These features are in accordance with those of serpentinites. Thus, addition of serpentinite-derived 66Zn-depleted fluids into the mantle wedge can explain the declined δ66Zn of subduction-zone magmas. ReferenceChen et al. (2013) EPSL 369

  6. Cadmium and zinc isotopes of organic-rich marine sediments during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Sweere, T.; Dickson, A. J.; Jenkyns, H. C.; Porcelli, D.; Henderson, G. M.; van den Boorn, S.

    2017-12-01

    Mesozoic Oceanic Anoxic Events (OAEs) are characterized by widespread deposition of organic-rich sediments and the spread of low-oxygen marine environments. To drive and sustain unusually efficient carbon-burial during these events requires high export productivity rates, which has to be supported by an abundance of nutrients in the surface ocean. The presence of redox-sensitive bio-essential micronutrients may be particularly important, and potentially bio-limiting, during such events as they may be drawn down into sediment under low-oxygen conditions. Cadmium and zinc isotopes have potential as tracers for past (micro)nutrient dynamics considering their nutrient-like distribution in the modern ocean and isotope fractionation with uptake by primary producers. The modern deep ocean is generally well mixed for Cd and Zn while short-term cycling of these elements in the surface ocean imposes regional variation. Additional regional variation may be caused by sulfide formation and associated isotope fractionation in euxinic environments. The impact of such regional environmental conditions on the Cd- and Zn-isotope composition of the sediment therefore needs to be addressed in order to explore the use of these elements as a proxy for past nutrient conditions. Here we present an extensive dataset of cadmium- and zinc-isotope compositions of organic-rich marine sediments from different basins deposited during OAE 2 (Late Cretaceous). This comparison highlights regional differences in Cd- and Zn-isotope compositions. However, despite regional environmental controls, a correlation between δ114Cd and δ66Zn across the different sites is observed, which implies a largely similar control on the two isotope systems. When regional environmental controls are accounted for, the data may provide insight in the δ66Zn and δ114Cd evolution of global seawater during OAE 2 as well as information on the global cycling of redox-sensitive micronutrients during the event

  7. Silicon and Zinc Isotopes in Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.; Moynier, F.

    2013-12-01

    Analyses of Ocean Island Basalts (OIB) have shown that the Earth's mantle contains isotopically distinct components, but current debate about the degree and scale of compositional variability persists. Isotopic heterogeneities in OIB for both radiogenic (e.g. Sr, Nd, Pb) and stable (e.g. Li, O, Ca) isotope systems have been attributed to the presence of recycled materials in different mantle reservoirs [1]. The study of both silicon and zinc isotopes in OIB form a complimentary approach to investigate potential heterogeneities in the mantle. Both isotope systems show limited fractionation during igneous process [2,3]. However, both Si and Zn exhibit larger (>1‰) variability in low-temperature environments (e.g. as a result of chemical weathering and biological utilization). Therefore, Si and Zn isotopes may be useful as tracers for the presence of crustal material (derived from low-T surface processes) in OIB source regions. Furthermore, characterizing the isotopic composition of the mantle is of central importance to the use of these isotopic systems as a basis for interplanetary comparisons. Here we present high-precision Si and Zn isotopic data obtained by MC-ICPMS for a diverse suite of OIB representing the EM-1, EM-2, and HIMU mantle components. Samples represent locations in the Pacific, Atlantic, and Indian Oceans. Data are reported as the permil deviation (×2 sd) from NBS28 for Si (δ30Si) and JMC-Lyon for Zn (δ66Zn). Average δ30Si values for OIB from EM-1 (-0.32×0.09‰), EM-2 (-0.30×0.03‰), and HIMU (-0.34×0.12‰) are all in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (BSE) [4]. Similarly, the δ66Zn average values for OIB from the EM-1, EM-2, and HIMU components (0.31×0.06‰, 0.31×0.04‰, 0.31×0.05‰, respectively) agree well with previously published data for the δ66Zn value of BSE [3]. At the current levels of precision, both Si and Zn isotopes exhibit little variation in OIB, confirming the

  8. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    PubMed

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.

  9. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage.

    PubMed

    Aranda, Suzan; Borrok, David M; Wanty, Richard B; Balistrieri, Laurie S

    2012-03-15

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ(66)Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰±0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ(66)Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰±0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions.

    PubMed

    Kristensen, L J; Taylor, M P; Morrison, A L

    2015-03-01

    This study investigates an unusual source of environmental lead contamination - the emission and deposition of lead and zinc concentrates along train lines into and out of Australia's oldest silver-lead-zinc mine at Broken Hill, Australia. Transport of lead and zinc ore concentrates from the Broken Hill mines has occurred for more than 125 years, during which time the majority was moved in uncovered rail wagons. A significant amount of ore was lost to the adjoining environments, resulting in soil immediately adjacent to train lines elevated with concentrations of lead (695 mg kg(-1)) and zinc (2230 mg kg(-1)). Concentrations of lead and zinc decreased away from the train line and also with depth shown in soil profiles. Lead isotopic compositions demonstrated the soil lead contained Broken Hill ore in increasing percentages closer to the train line, with up to 97% apportioned to the mined Broken Hill ore body. SEM examination showed ceiling dusts collected from houses along the train line were composed of unweathered galena particles, characteristic of the concentrate transported in the rail wagons. The loss of ore from the uncovered wagons has significantly extended the environmental footprint of contamination from local mining operations over an area extending hundreds of kilometres along each of the three train lines.

  11. Uranium isotope separation from 1941 to the present

    NASA Astrophysics Data System (ADS)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  12. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes.

    PubMed

    Isson, Terry T; Love, Gordon D; Dupont, Christopher L; Reinhard, Christopher T; Zumberge, Alex J; Asael, Dan; Gueguen, Bleuenn; McCrow, John; Gill, Ben C; Owens, Jeremy; Rainbird, Robert H; Rooney, Alan D; Zhao, Ming-Yu; Stueeken, Eva E; Konhauser, Kurt O; John, Seth G; Lyons, Timothy W; Planavsky, Noah J

    2018-06-05

    The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth's history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote-rich ecosystem could have provided a means of more efficiently sequestering organic-derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records. © 2018 John Wiley & Sons Ltd.

  13. [Analysis and separation of organic and inorganic speciations of soluble zinc in edible flowers].

    PubMed

    Peng, Shan-shan; Huang, Guo-qing

    2005-02-01

    Considering the medicinal effects of the edible flowers, the authors studied the separation of trace element zinc's soluble organic and inorganic speciations in water decoction of three edible flowers: Chrysanthemum, Cottonrose hibiscus and Honeysucker by using the 0.45 microm membrane filter and amberlite XAD-2 macroreticular resins. And trace element zinc contents were determined by atomic absorption spectrometry. The optimal conditions for separation had been established. This study verifies the economic value of developing edible flowers, and provides theoretical basis for developing edible flowers as the third functional food materials.

  14. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya)

    NASA Astrophysics Data System (ADS)

    Jaouen, Klervia; Beasley, Melanie; Schoeninger, Margaret; Hublin, Jean-Jacques; Richards, Michael P.

    2016-05-01

    In order to explore the possibilities of using zinc (Zn) stable isotope ratios as dietary indicators, we report here on the measurements of the ratio of stable isotopes of zinc (66Zn/64Zn, expressed here as δ66Zn) in bioapatite (bone and dental enamel) of animals from a modern food web in the Koobi Fora region of the Turkana Basin in Kenya. We demonstrate that δ66Zn values in both bone and enamel allow a clear distinction between carnivores and herbivores from this food web. Differences were also observed between browsers and grazers as well as between carnivores that consumed bone (i.e. hyenas) compared to those that largely consume flesh (i.e. lions). We conclude that Zn isotope ratio measurements of bone and teeth are a new and promising dietary indicator.

  15. Mathematical Model of Nonstationary Separation Processes Proceeding in the Cascade of Gas Centrifuges in the Process of Separation of Multicomponent Isotope Mixtures

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.

    2017-03-01

    We have developed and realized on software a mathematical model of the nonstationary separation processes proceeding in the cascades of gas centrifuges in the process of separation of multicomponent isotope mixtures. With the use of this model the parameters of the separation process of germanium isotopes have been calculated. It has been shown that the model adequately describes the nonstationary processes in the cascade and is suitable for calculating their parameters in the process of separation of multicomponent isotope mixtures.

  16. Laser-assisted isotope separation of tritium

    DOEpatents

    Herman, Irving P.; Marling, Jack B.

    1983-01-01

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  17. Zinc Absorption from Representative Diet in a Chinese Elderly Population Using Stable Isotope Technique.

    PubMed

    Li, Ya Jie; Li, Min; Liu, Xiao Bing; Ren, Tong Xiang; Li, Wei Dong; Yang, Chun; Wu, Meng; Yang, Lin Li; Ma, Yu Xia; Wang, Jun; Piao, Jian Hua; Yang, Li Chen; Yang, Xiao Guang

    2017-06-01

    To determine the dietary zinc absorption in a Chinese elderly population and provide the basic data for the setting of zinc (Zn) recommended nutrient intakes (RNI) for Chinese elderly people. A total of 24 elderly people were recruited for this study and were administered oral doses of 3 mg 67Zn and 1.2 mg dysprosium on the fourth day. The primary macronutrients, energy, and phytic acid in the representative diet were examined based on the Chinese National Standard Methods. Fecal samples were collected during the experimental period and analyzed for zinc content, 67Zn isotope ratio, and dysprosium content. The mean (± SD) zinc intake from the representative Chinese diet was 10.6 ± 1.5 mg/d. The phytic acid-to-zinc molar ratio in the diet was 6.4. The absorption rate of 67Zn was 27.9% ± 9.2%. The RNI of zinc, which were calculated by the absorption rate in elderly men and women, were 10.4 and 9.2 mg/d, respectively. This study got the dietary Zn absorption in a Chinese elderly population. We found that Zn absorption was higher in elderly men than in elderly women. The current RNI in elderly female is lower than our finding, which indicates that more attention is needed regarding elderly females' zinc status and health. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, T.; Sugura, K.; Enokida, Y.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less

  19. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  20. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  1. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  2. Separation efficiency of the MASHA facility for short-lived mercury isotopes

    NASA Astrophysics Data System (ADS)

    Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Kliman, J.; Kondratiev, N. A.; Krupa, L.; Novoselov, A. S.; Oganessian, Yu. Ts.; Podshibyakin, A. V.; Salamatin, V. S.; Siváček, I.; Stepantsov, S. V.; Vanin, D. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2014-06-01

    The mass-separator MASHA built to identify Super Heavy Elements by their mass-to-charge ratios is described. The results of the off- and on-line measurements of its separation efficiency are presented. In the former case four calibrated leaks of noble gases were used. In the latter the efficiency was measured via 284 MeV Ar beam and with using the hot catcher. The ECR ion source was used in both cases. The -radioactive isotopes of mercury produced in the complete fusion reaction Ar+SmHg+xn were detected at the mass-separator focal plane. The half-lives and the separation efficiency for the short-lived mercury isotopes were measured. Potentialities of the MEDIPIX detector system have been demonstrated for future use at the mass-separator MASHA.

  3. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  4. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  5. Zinc and volatile element loss during planetary magma ocean phases

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2016-10-01

    Zinc is a moderately volatile element and a key tracer of volatile depletion on planetary bodies due to lack of significant isotopic fractionation under high-temperature processes. Terrestrial basalts have δ66Zn values similar to some chondrites (+ 0.15 to 0.3‰ where [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000]) and elevated Zn concentrations (100 ppm). Lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ and have low Zn concentrations (~2 ppm). Late-stage lunar magmatic products, such as ferroan anorthosite, Mg-suite and Alkali suite rocks exhibit heavier δ66Zn values (+3 to +6‰). The heavy δ66Zn lunar signature is thought to reflect evaporative loss and fractionation of zinc, either during a giant impact or in a magma ocean phase.We explore conditions of volatile element loss within a lunar magma ocean (LMO) using models of Zn isotopic fractionation that are widely applicable to planetary magma oceans. For the Moon, our objective was to identify conditions that would yield a δ66Zn signature of ~ +1.4‰ within the mantle, assuming a terrestrial mantle zinc starting composition.We examine two cases of zinc evaporative fractionation: (1) lunar surface zinc fractionation that was completed prior to LMO crystallization and (2) lunar surface zinc fractionation that was concurrent with LMO crystallization. The first case resulted in a homogeneous lunar mantle and the second case yielded a stratified lunar mantle, with the greatest zinc isotopic enrichment in late-stage crystallization products. This latter case reproduces the distribution of zinc isotope compositions in lunar materials quite well.We find that hydrodynamic escape was not a dominant process in losing Zn, but that erosion of a nascent lunar atmosphere, or separation of condensates into a proto-lunar crust are possible. While lunar volatile depletion is still possible as a consequence of the giant impact, this process cannot reproduce the variable δ66Zn found in the Moon. Outgassing

  6. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.

    2011-06-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship

  7. Investigation of the Photochemical Method for Uranium Isotope Separation

    DOE R&D Accomplishments Database

    Urey, H. C.

    1943-07-10

    To find a process for successful photochemical separation of isotopes several conditions have to be fulfilled. First, the different isotopes have to show some differences in the spectrum. Secondly, and equally important, this difference must be capable of being exploited in a photochemical process. Parts A and B outline the physical and chemical conditions, and the extent to which one might expect to find them fulfilled. Part C deals with the applicability of the process.

  8. Molten Salts and Isotope Separation

    NASA Astrophysics Data System (ADS)

    Lantelme, Frédéric

    2013-02-01

    The work on molten salts and isotope separation performed over the years at Université Pierre et Marie Curie and at Collège de France is critically reviewed. This research, closely related to A. Klemm's pioneering contributions, leads among other things to the discovery of the effect now called the `Chemla effect', after the late Professor Marius Chemla. These studies of ionic motions in melts, and liquids in general, have greatly benefitted from recent advances in molecular simulations. Some recent results of such simulations - molecular dynamics (MD) and Brownian dynamics (BD) - as well as of related theoretical work are discussed.

  9. Isotopic composition of zinc, copper, and iron in lunar samples

    NASA Astrophysics Data System (ADS)

    Moynier, F.; Albarède, F.; Herzog, G. F.

    2006-12-01

    We determined by ICP-MS the concentrations and isotopic ratios of Fe, Cu, and Zn in the Ti-rich lunar basalt 74275, in the lunar orange glass 74220, and in up to 10 lunar soils, namely, 14163, 15231, 64501, 66041, 68841, 69941, 70011, 72501, 75081, and 76501. Two analyses of zinc in lunar basalt 74275 give δ 66Zn = 0.17‰ and 0.75‰, values within the range of those measured in terrestrial basalts; copper in lunar basalt 74275 has δ 65Cu ˜ +1.4‰, which is isotopically heavier than values observed in terrestrial basalts. In the orange glass, we measured δ 56Fe = -0.24‰, δ 65Cu = -0.42‰, and δ 66Zn ˜ -3.6‰. These values of δ are more negative than those obtained for 74275 and for typical lunar basalts, but for Cu, comparable to those observed in terrestrial sulfides and meteorites. In lunar soils we found 0.11‰ ⩽ δ 56Fe ⩽ 0.51‰, 2.6‰ ⩽ δ 65Cu ⩽ 4.5‰, and 2.2‰ ⩽ δ 66Zn ⩽ 6.4‰. Insofar as we can generalize from a small sample set, S, Fe, Cu, Zn, and Cd show similar trends in isotopic fractionation on the Moon. Lunar basalts have nearly terrestrial isotopic ratios. Relative to the lunar basalt 74275, the pyroclastic glass 74220 is enriched in the lighter isotopes of Fe, Cu, and Zn, and the soils are enriched in the heavier isotopes of Fe, Cu, and Zn. The patterns in the basalts are likely inherited from the source material; the light-isotope enrichments seen in the orange glass originated during lava fountaining or, less probably, during partial condensation of vapor; and the heavy-isotope enrichments in the lunar soils were likely created by a combination of processes that included micrometeorite vaporization and sputtering. In the orange glass, the light-isotope enrichments (relative to lunar basalts) of Zn are larger than those of Cu. If these enrichments reflect accurately the isotopic composition of the gas, they suggest that Cu is more volatile than Zn in the liquid from which the gas derived. A simple model built on

  10. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  11. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  12. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain

    NASA Astrophysics Data System (ADS)

    Pašava, Jan; Tornos, Fernando; Chrastný, Vladislav

    2014-10-01

    We studied zinc and sulfur isotopes and the chemical composition of sphalerite samples from Picos de Europa (Aliva mine) and sphalerite and hydrozincite samples from La Florida mine, two carbonate-hosted Mississippi Valley-type (MVT) deposits located in northern Spain; despite being close, they are hosted in carbonatic rocks of different ages, Lower Carboniferous and Lower Cretaceous, respectively. The two generations of sphalerite at Picos de Europa show different δ66Zn values (stage 1 sphalerite +0.24 per mil and stage 2 sphalerite from -0.75 to +0.08 per mil). Both generations also differ in the sulfur isotope composition (stage 1 has δ34S = +6.6 and stage 2 has δ34S = -0.9 to +2.9 per mil) and the chemical composition (stage 1 sphalerite, compared to stage 2 sphalerite, is significantly enriched in Pb, As, Mn, Sb, slightly enriched in Ag, Ni, and Cu and depleted in Co, Ga, Tl, Te, Ge, and Sn). We suggest that Zn isotope fractionation was controlled predominantly by pH and T changes. High Zn isotope values reflect rapid precipitation of sphalerite from higher-temperature acidic fluids that carried Zn mostly as chloride species after interaction with carbonate rocks while lower Zn isotope values most likely resulted from a longer precipitation process from fluid at higher pH and decreasing T that carried dominantly Zn sulfide species. At La Florida, sphalerite samples show light 66Zn-depleted signatures with δ66Zn values from -0.80 to -0.01 per mil (mostly between -0.80 and -0.24 per mil) and δ34S values from +10.7 to +15.7 per mil without any relationship between the δ66Zn and δ34S values. Here, the variation in Zn isotope values is interpreted as related to mixing of fluids from two reservoirs. The Zn was carried by a single deep-seated and higher T (~250-320 °C) fluid, and precipitation took place after mixing with a connate S-rich fluid in a system with mH2S > mZn2+ as a result of change in pH, T, and Zn predominant species. The light δ66Zn

  13. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    PubMed

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Separation of uranium isotopes by chemical exchange

    DOEpatents

    Ogle, P.R. Jr.

    1974-02-26

    A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)

  15. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  16. Long life, rechargeable nickel-zinc battery

    NASA Technical Reports Server (NTRS)

    Luksha, E.

    1974-01-01

    A production version of the inorganic separator was evaluated for improving the life of the nickel-zinc system. Nickel-zinc cells (7-10 Ah capacities) of different electrode separator configurations were constructed and tested. The nickel-zinc cells using the inorganic separator encasing the zinc electrode, the nickel electrode, or both electrodes had shorter lives than cells using Visking and cellophane separation. Cells with the inorganic separation all fell below 70% of their theoretical capacity within 30 cycles, but the cells constructed with organic separation required 80 cycles. Failure of the cells using the ceramic separator was irreversible capacity degradation due to zinc loss through cracks developed in the inorganic separator. Zinc loss through the separator was minimized with the use of combinations of the inorganic separator with Visking and cellophane. Cells using the combined separation operated 130 duty cycles before degrading to 70% of their theoretical capacity.

  17. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  18. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  19. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  20. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  1. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  2. Biomedical research applications of electromagnetically separated enriched stable isotopes

    NASA Astrophysics Data System (ADS)

    Lambrecht, R. M.

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.

  3. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  4. CONTROL SYSTEM FOR ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Barnes, S.W.

    1960-01-26

    A method is described for controlling the position of the ion beams in a calutron used for isotope separation. The U/sup 238/ beams is centered over the U/sup 235/ receiving pocket, the operator monitoring the beam until a maximum reading is achieved on the meter connected to that pocket. Then both beams are simultaneously shifted by a preselected amount to move the U/sup 235/ beam over the U/sup 235/ pocket. A slotted door is placed over the entrance to that pocket during the U/sup 238/ beam centering to reduce the contamination to the pocket, while allowing enough beam to pass for monitoring purposes.

  5. Methods for separating medical isotopes using ionic liquids

    DOEpatents

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  6. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  7. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  8. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  9. Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotoh, K.; Kimura, K.; Nakamura, Y.

    2008-07-15

    It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appearmore » at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)« less

  10. Scrap tyre recycling process with molten zinc as direct heat transfer and solids separation fluid: A new reactor concept.

    PubMed

    Riedewald, Frank; Goode, Kieran; Sexton, Aidan; Sousa-Gallagher, Maria J

    2016-01-01

    Every year about 1.5 billion tyres are discarded worldwide representing a large amount of solid waste, but also a largely untapped source of raw materials. The objective of the method was to prove the concept of a novel scrap tyre recycling process which uses molten zinc as the direct heat transfer fluid and, simultaneously, uses this media to separate the solids products (i.e. steel and rCB) in a sink-float separation at an operating temperature of 450-470 °C. This methodology involved: •construction of the laboratory scale batch reactor,•separation of floating rCB from the zinc,•recovery of the steel from the bottom of the reactor following pyrolysis.

  11. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  12. Stormflow-hydrograph separation based on isotopes: the thrill is gone--what's next?

    USGS Publications Warehouse

    Burns, Douglas A.

    2002-01-01

    Beginning in the 1970s, the promise of a new method for separatingstormflow hydrographs using18O,2H, and3Hprovedanirresistibletemptation, and was a vast improvement over graphical separationand solute tracer methods that were prevalent at the time. Eventu-ally, hydrologists realized that this new method entailed a plethoraof assumptions about temporal and spatial homogeneity of isotopiccomposition (many of which were commonly violated). Nevertheless,hydrologists forged ahead with dozens of isotope-based hydrograph-separation studies that were published in the 1970s and 1980s.Hortonian overland flow was presumed dead. By the late 1980s,the new isotope-based hydrograph separation technique had movedinto adolescence, accompanied by typical adolescent problems suchas confusion and a search for identity. As experienced hydrologistscontinued to use the isotope technique to study stormflow hydrol-ogy in forested catchments in humid climates, their younger peersfollowed obligingly—again and again. Was Hortonian overland flowreally dead and forgotten, though? What about catchments in whichpeople live and work? And what about catchments in dry climatesand the tropics? How useful were study results when several of theassumptions about the homogeneity of source waters were commonlyviolated? What if two components could not explain the variation ofisotopic composition measured in the stream during stormflow? Andwhat about uncertainty? As with many new tools, once the initialshine wore off, the limitations of the method became a concern—oneof which was that isotope-based hydrograph separations alone couldnot reveal much about the flow paths by which water arrives at astream channel during storms.

  13. Electrospun nylon 6/zinc doped hydroxyapatite membrane for protein separation: Mechanism of fouling and blocking model.

    PubMed

    Esfahani, Hamid; Prabhakaran, Molamma P; Salahi, Esmaeil; Tayebifard, Ali; Rahimipour, Mohamad Reza; Keyanpour-Rad, Mansour; Ramakrishna, Seeram

    2016-02-01

    Development of composite nanofibrous membrane via electrospinning a polymer with ceramic nanoparticles (NPs) for application in protein separation systems is explored during this study. Positively charged zinc doped hydroxyapatite (xZH) NPs were prepared in three different compositions via chemical precipitation method. Herein, we created a positively charged surface containing nanoparticles on electrospun Nylon-6 nanofibers (NFs) to improve the separation and selectivity properties for adsorption of negatively charged protein, namely bovine serum albumin (BSA). The decline in permeate flux was analyzed using the framework of classical blocking models and fitting, demonstrated that the transition of fouling mechanisms was dominated during the filtration process. The standard blocking model provided the best fit of the experimental results during the mid-filtration period. The membrane decorated by NPs containing 4at.% zinc cations not only provided maximum BSA separation but also capable of separating higher amounts of BSA molecules (even after 1h filtration) than the pure Nylon membrane. Protein separation was achieved through this membrane with the incorporation of NPs that had high zeta potential (+5.9±0.2mV) and lower particle area (22,155nm(2)). The developed membrane has great potential to act as a high efficiency membrane for capturing BSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  15. Preparative separation of underivatized amino acids for compound-specific stable isotope analysis and radiocarbon dating of hydrolyzed bone collagen.

    PubMed

    Tripp, Jennifer A; McCullagh, James S O; Hedges, Robert E M

    2006-01-01

    Analysis of stable and radioactive isotopes from bone collagen provides useful information to archaeologists about the origin and age of bone artifacts. Isolation and analysis of single amino acids from the proteins can provide additional and more accurate information by removing contamination and separating a bulk isotope signal into its constituent parts. In this paper, we report a new method for the separation and isolation of underivatized amino acids from bone collagen, and their analysis by isotope ratio MS and accelerator MS. RP chromatography is used to separate the amino acids with nonpolar side chains, followed by an ion pair separation to isolate the remaining amino acids. The method produces single amino acids with little or no contamination from the separation process and allows for the measurement of accurate stable isotope ratios and pure samples for radiocarbon dating.

  16. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    DOEpatents

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  17. A status of progress for the Laser Isotope Separation (LIS) process

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1976-01-01

    An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.

  18. Laser photochemical lead isotopes separation for harmless nuclear power engineering

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Fateev, N. V.; Kim, V. A.; Zakrevsky, D. E.

    2016-09-01

    The collisional quenching of the metastable 3 P 1,2 and 1 D 2 lead atoms is studied experimentally in the gas flow of the lead atoms, reagent-molecules and a carrier gas Ar. The experimental parameters were similar to the conditions that are required in the operation of the experimental setup for photochemical isotope separation. Excited atoms are generated under electron impact conditions created by a gas glow discharge through the mixture of gases and monitored photoelectrically by attenuation of atomic resonance radiation from hollow cathode 208Pb lamp. The decay of the excited atoms has been studied in the presence various molecules and total cross section data are reported. The flow tube measurements has allowed to separate the physical and chemical quenching channels and measure the rates of the chemical reaction excited lead with N2O, CH2Cl2, SF6 and CuBr molecules. These results are discussed in the prospects of the obtaining isotopically modified lead as a promising coolant in the reactors on the fast-neutron.

  19. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  20. The oceanic budgets of nickel and zinc isotopes: the importance of sulfidic environments as illustrated by the Black Sea

    PubMed Central

    Little, Susan H.; Archer, Corey; Cameron, Vyllinniskii; Andersen, Morten B.; Rijkenberg, Micha J. A.; Lyons, Timothy W.

    2016-01-01

    Isotopic data collected to date as part of the GEOTRACES and other programmes show that the oceanic dissolved pool is isotopically heavy relative to the inputs for zinc (Zn) and nickel (Ni). All Zn sinks measured until recently, and the only output yet measured for Ni, are isotopically heavier than the dissolved pool. This would require either a non-steady-state ocean or other unidentified sinks. Recently, isotopically light Zn has been measured in organic carbon-rich sediments from productive upwelling margins, providing a potential resolution of this issue, at least for Zn. However, the origin of the isotopically light sedimentary Zn signal is uncertain. Cellular uptake of isotopically light Zn followed by transfer to sediment does not appear to be a quantitatively important process. Here, we present Zn and Ni isotope data for the water column and sediments of the Black Sea. These data demonstrate that isotopically light Zn and Ni are extracted from the water column, probably through an equilibrium fractionation between different dissolved species followed by sequestration of light Zn and Ni in sulfide species to particulates and the sediment. We suggest that a similar, non-quantitative, process, operating in porewaters, explains the Zn data from organic carbon-rich sediments. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035259

  1. Aspects regarding at 13C isotope separation column control using Petri nets system

    NASA Astrophysics Data System (ADS)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  2. Exploiting Diffusion Barrier and Chemical Affinity of Metal-Organic Frameworks for Efficient Hydrogen Isotope Separation.

    PubMed

    Kim, Jin Yeong; Balderas-Xicohténcatl, Rafael; Zhang, Linda; Kang, Sung Gu; Hirscher, Michael; Oh, Hyunchul; Moon, Hoi Ri

    2017-10-25

    Deuterium plays a pivotal role in industrial and scientific research, and is irreplaceable for various applications such as isotope tracing, neutron moderation, and neutron scattering. In addition, deuterium is a key energy source for fusion reactions. Thus, the isolation of deuterium from a physico-chemically almost identical isotopic mixture is a seminal challenge in modern separation technology. However, current commercial approaches suffer from extremely low separation efficiency (i.e., cryogenic distillation, selectivity of 1.5 at 24 K), requiring a cost-effective and large-scale separation technique. Herein, we report a highly effective hydrogen isotope separation system based on metal-organic frameworks (MOFs) having the highest reported separation factor as high as ∼26 at 77 K by maximizing synergistic effects of the chemical affinity quantum sieving (CAQS) and kinetic quantum sieving (KQS). For this purpose, the MOF-74 system having high hydrogen adsorption enthalpies due to strong open metal sites is chosen for CAQS functionality, and imidazole molecules (IM) are employed to the system for enhancing the KQS effect. To the best of our knowledge, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system, but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D 2 through direct selective separation studies using 1:1 D 2 /H 2 mixtures.

  3. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Vance, D.; Abouchami, W.; de Baar, H. J. W.

    2014-01-01

    the diatom frustule during growth. Experimental data are consistent with little or no fractionation during incorporation of Zn into this material. On the other hand, the light zinc at 40-80 m is most consistent with the regeneration of an intra-cellular pool that both culturing experiments and field data suggest will be isotopically light. The data thus imply two processes by which Zn is taken up in the surface ocean, that these pools have very different regeneration lengthscales, and that physical mixing of the oceans cannot eradicate their isotopic signatures. Finally, the deep δ66Zn ocean value is significantly higher than the current best estimate of the input to the oceans. The most obvious candidate for the required light sink is the survival of some of the cellular Zn to be buried in sediment.

  4. Zinc and Its Isotopes in the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  5. Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis.

    PubMed

    Oh, Hyunchul; Savchenko, Ievgeniia; Mavrandonakis, Andreas; Heine, Thomas; Hirscher, Michael

    2014-01-28

    Separating gaseous mixtures that consist of very similar size is one of the critical issues in modern separation technology. Especially, the separation of the isotopes hydrogen and deuterium requires special efforts, even though these isotopes show a very large mass ratio. Conventionally, H/D separation can be realized through cryogenic distillation of the molecular species or the Girdler-sulfide process, which are among the most energy-intensive separation techniques in the chemical industry. However, costs can be significantly reduced by using highly mass-selective nanoporous sorbents. Here, we describe a hydrogen isotope separation strategy exploiting the strongly attractive open metal sites present in nanoporous metal-organic frameworks of the CPO-27 family (also referred to as MOF-74). A theoretical analysis predicts an outstanding hydrogen isotopologue separation at open metal sites due to isotopal effects, which has been directly observed through cryogenic thermal desorption spectroscopy. For H2/D2 separation of an equimolar mixture at 60 K, the selectivity of 12 is the highest value ever measured, and this methodology shows extremely high separation efficiencies even above 77 K. Our theoretical results imply also a high selectivity for HD/H2 separation at similar temperatures, and together with catalytically active sites, we propose a mechanism to produce D2 from HD/H2 mixtures with natural or enriched deuterium content.

  6. Modelling aspects regarding the control in 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2016-08-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.

  7. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones.

    PubMed

    Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen

    2016-12-16

    Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ 66 Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ 66 Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO 4 2- complexes preferentially incorporate heavy δ 66 Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.

  8. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones

    PubMed Central

    Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen

    2016-01-01

    Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ66Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ66Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO42− complexes preferentially incorporate heavy δ66Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge. PMID:27982033

  9. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  10. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1985-01-01

    Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  11. Water isotope partitioning and ecohydrologic separation in mixed conifer forest explored with a centrifugation water extraction method

    NASA Astrophysics Data System (ADS)

    Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.

    2017-12-01

    Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the

  12. Isotopic separation of acetaldehyde and methanol from their deuterated isotopologues on a porous layer open tubular column allows quantification by stable isotope dilution without mass spectrometric detection.

    PubMed

    Schmarr, Hans-Georg; Wacker, Michael; Mathes, Maximilian

    2017-01-20

    An isotopic separation of acetaldehyde and acetaldehyde-2,2,2-d3 was achieved in a temperature programmed run on a porous layer open tubular (PLOT) capillary column coated with particles of divinylbenzene ethylene glycol/dimethylacrylate (Rt ® -U-BOND). This is the prerequisite for the development of quantitative analytical methods based on a stable isotope dilution assay (SIDA) without a mass spectrometric detection (non-MS SIDA). For routine analysis a flame ionization detector (FID) can thus be applied as a robust and low-cost alternative. In a preliminary study, static headspace extraction and gas chromatographic separation (HS-GC-FID) of acetaldehyde in aqueous solutions was shown as an application. Good linearity was obtained in a calibration range from 0.4 to 40mgL -1 , with peak integration benefitting from the inverse isotope effect encountered on the specific porous polymer. Furthermore, separation of methanol and deuterated methanol (d3) could also be achieved under the same chromatographic conditions. The achieved isotopic separation of these important volatile compounds now allows non-MS SIDA-based methods that are still to be developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  14. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  15. Inexpensive cross-linked polymeric separators made from water-soluble polymers. [for secondary alkaline nickel-zinc and silver-zinc cells

    NASA Technical Reports Server (NTRS)

    Hsu, L.-C.; Sheibley, D. W.

    1982-01-01

    Polyvinyl alcohol (PVA), cross-linked chemically with aldehyde reagents, produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity (less than 0.8 Ohms sq cm), low zincate diffusivity (less than 1 x 10 to the -7th mols/sq cm per min), and low zinc dendrite penetration rate (greater than 350 min) which make them suitable for use as alkaline battery separators. They are intrinsically low in cost, and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed.

  16. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping

    NASA Astrophysics Data System (ADS)

    Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.

    2017-05-01

    Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.

  17. Zinc isotopic fractionation in Phragmites australis in response to toxic levels of zinc

    PubMed Central

    Caldelas, Cristina; Dong, Shuofei; Araus, José Luis; Jakob Weiss, Dominik

    2011-01-01

    Stable isotope signatures of Zn have shown great promise in elucidating changes in uptake and translocation mechanisms of this metal in plants during environmental changes. Here this potential was tested by investigating the effect of high Zn concentrations on the isotopic fractionation patterns of Phragmites australis (Cav.) Trin. ex Steud. Plants were grown for 40 d in a nutritive solution containing 3.2 μM (sufficient) or 2 mM (toxic) Zn. The Zn isotopic composition of roots, rhizomes, shoots, and leaves was analysed. Stems and leaves were sampled at different heights to evaluate the effect of long-distance transport on Zn fractionation. During Zn sufficiency, roots, rhizomes, and shoots were isotopically heavy (δ66ZnJMC Lyon=0.2‰) while the youngest leaves were isotopically light (–0.5‰). During Zn excess, roots were still isotopically heavier (δ66Zn=0.5‰) and the rest of the plant was isotopically light (up to –0.5‰). The enrichment of heavy isotopes at the roots was attributed to Zn uptake mediated by transporter proteins under Zn-sufficient conditions and to chelation and compartmentation in Zn excess. The isotopically lighter Zn in shoots and leaves is consistent with long-distance root to shoot transport. The tolerance response of P. australis increased the range of Zn fractionation within the plant and with respect to the environment. PMID:21193582

  18. High-power CO laser with RF discharge for isotope separation employing condensation repression

    NASA Astrophysics Data System (ADS)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  19. Zinc isotope and transition-element dynamics accompanying hydrozincite biomineralization in the Rio Naracauli, Sardinia, Italy

    USGS Publications Warehouse

    Wanty, Richard B.; Podda, F.; De Giudici, Giovanni; Cidu, R.; Lattanzi, Pierfranco

    2013-01-01

    The Rio Naracauli in SW Sardinia drains part of the Ingurtosu Zn–Pb mining district, and contains extreme concentrations of dissolved Zn at near-neutral pH. In the upper reaches of the stream, pH, alkalinity and Zn concentrations are such that hydrozincite [Zn5(CO3)2(OH)6] precipitates in a biologically mediated process facilitated by a microalga (Chlorella sp.) and a cyanobacterium (Scytonema sp.). Values of δ66Zn in water and solid samples ranged from − 0.35‰ to + 0.5‰ relative to the JMC 3-0749-Lyon standard, and closely follow a mass-dependent fractionation line. Two composite samples of sphalerite, the primary ore mineral in the Ingurtosu deposits, had an average δ66Zn of + 0.15‰, similar to sphalerite measured elsewhere in hydrothermal mineral deposits. Zinc isotope measurements of the stream water and the hydrozincite forming in the stream show a consistent preference for the heavy isotope, 66Zn, in the hydrozincite relative to 64Zn. Synthetic hydrozincites produced without added bacteria have δ66Zn identical to the dissolved Zn, thus suggesting a biologically mediated mineralization process in Rio Naracauli. The average fractionation, Δhdz-water, is 0.35‰, the magnitude of which is consistent with other studies, and suggests an extracellular mechanism of the biomineralization process. Zinc concentration and dissolved δ66Zn steadily decrease in the reach of the stream where the biomineralization occurs. The biomineralization process also leads to the sequestration of Pb, Cu and Ni in the hydrozincite lattice, and the coeval precipitation of an amorphous CdCO3 solid, prompting the suggestion that if optimized, the biomineralization process might represent a feasible passive remediation strategy for streams with high Zn and other metals, and with near-neutral pH.

  20. Enhancement of Identity in the Hydraulic Characteristics of a Gas Centrifuge for Isotope Separation

    NASA Astrophysics Data System (ADS)

    Yatsenko, D. V.; Borisevich, V. D.; Godisov, O. N.

    The problem of non-identity in characteristics of the GCs for uranium isotope separation grows up with increase of a rotor speed of rotation. It may lead to noticeable decrease of the separative power of the centrifugal machines. The carried out assessments allowed to get the dependence of the relative separation performance losses on the non-identity in the hydraulic characteristics of the GCs connected in parallel. The results of calculation are compared with that of obtained in experiments.

  1. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  2. The Marine Biogeochemistry of Zinc Isotopes

    DTIC Science & Technology

    2007-06-01

    hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton, and seawater. By measuring Zn isotopes in a diverse array of...variations were discovered in hydrothermal fluids and minerals, with hydrothermal fluids ranging in 6 66Zn from 0.02 %o to +0.93 %o, and chimney minerals...drives much of the Zn isotope fractionation in hydrothermal systems. In cultured diatoms, a relationship was discovered between Zn transport by

  3. Basic features of boron isotope separation by SILARC method in the two-step iterative static model

    NASA Astrophysics Data System (ADS)

    Lyakhov, K. A.; Lee, H. J.

    2013-05-01

    In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.

  4. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  5. Laser separation of lithium isotopes by double resonance enhanced multiphoton ionization of Li/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balz, J.G.; Bernheim, R.A.; Gold, L.P.

    1987-01-01

    Multiphoton ionization spectra of /sup 7/Li/sub 2/, /sup 6/Li/sub 2/, and /sup 7/Li/sup 6/Li vapors have been measured in the 570--650 nm region using a single, low resolution, multimode cw dye laser. A number of wavelengths provide selective multiphoton ionization of one isotopic species demonstrating the possibility of efficient laser-driven isotopic separation in lithium in this wavelength region.

  6. Preparation of organic and water hydrogen for stable isotope analysis. Effects due to reaction vessels and zinc reagent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimmelmann, A.; DeNiro, M.J.

    1993-03-15

    Combustion of organic matter in sealed Pyrex, Vycor, and quartz ampules at temperatures between 520 and 900[degrees]C yields less than stoichiometric amounts of water. The loss of hydrogen to hydration reactions between water vapor and glass/quartz interferes with the determination of C/H and N/H elemental ratios in organic matter. The effect increases from quartz to Vycor to Pyrex, but the incomplete yield does not significantly affect the precision and accuracy of the determination of stable hydrogen isotope ratios. Reactions between water and Pyrex do not affect the conversion of water to hydrogen with zinc in Pyrex ampules at 500[degrees]C, whichmore » is quantitative, but even preoutgassed zinc contains a deuterium-depleted hydrogen blank. D/H ratios in hydrogen from the Zn method require a nonlinear correction to achieve compatibility with [delta]D values from the uranium method. 19 refs., 4 tabs.« less

  7. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.

    1989-01-01

    A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.

  8. Iron Bioavailability from Ferric Pyrophosphate in Extruded Rice Cofortified with Zinc Sulfate Is Greater than When Cofortified with Zinc Oxide in a Human Stable Isotope Study.

    PubMed

    Hackl, Laura; Zimmermann, Michael B; Zeder, Christophe; Parker, Megan; Johns, Paul W; Hurrell, Richard F; Moretti, Diego

    2017-03-01

    Background: Extruded rice grains are often cofortified with iron and zinc. However, it is uncertain if the addition of zinc to iron-fortified rice affects iron absorption and whether this is zinc-compound specific. Objective: We investigated whether zinc, added as zinc oxide (ZnO) or zinc sulfate (ZnSO 4 ), affects human iron absorption from extruded rice fortified with ferric pyrophosphate (FePP). Methods: In 19 iron-depleted Swiss women (plasma ferritin ≤16.5 μ/L) aged between 20 and 39 y with a normal body mass index (in kg/m 2 ; 18.7-24.8), we compared iron absorption from 4 meals containing fortified extruded rice with 4 mg Fe and 3 mg Zn. Three of the meals contained extruded rice labeled with FePP ( 57 FePP): 1 ) 1 meal without added zinc ( 57 FePP-Zn), 2 ) 1 cofortified with ZnO ( 57 FePP+ZnO), and 3 ) 1 cofortified with ZnSO 4 ( 57 FePP+ZnSO 4 ). The fourth meal contained extruded rice without iron or zinc, extrinsically labeled with ferrous sulfate ( 58 FeSO 4 ) added as a solution after cooking. All 4 meals contained citric acid. Iron bioavailability was measured by isotopic iron ratios in red blood cells. We also measured relative in vitro iron solubility from 57 FePP-Zn, 57 FePP+ZnO, and 57 FePP+ZnSO 4 expressed as a fraction of FeSO 4 solubility. Results: Geometric mean fractional iron absorption (95% CI) from 57 FePP+ZnSO 4 was 4.5% (3.4%, 5.8%) and differed from 57 FePP+ZnO (2.7%; 1.8%, 4.1%) ( P < 0.03); both did not differ from 57 FePP-Zn: 4.0% (2.8%, 5.6%). Relative iron bioavailabilities compared with 58 FeSO 4 were 62%, 57%, and 38% from 57 FePP+ZnSO 4 , 57 FePP-Zn, and 57 FePP+ZnO, respectively. In vitro solubility from 57 FePP+ZnSO 4 differed from that of 57 FePP-Zn (14.3%; P < 0.02) but not from that of 57 FePP+ZnO (10.2% compared with 13.1%; P = 0.08). Conclusions: In iron-depleted women, iron absorption from FePP-fortified extruded rice cofortified with ZnSO 4 was 1.6-fold (95% CI: 1.4-, 1.9-fold) that of rice cofortified with Zn

  9. Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models

    USGS Publications Warehouse

    Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.

    1996-01-01

    Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.

  10. Comparison of complementary feeding strategies to meet zinc requirements of older breastfed infants1234

    PubMed Central

    Krebs, Nancy F; Westcott, Jamie E; Culbertson, Diana L; Sian, Lei; Miller, Leland V; Hambidge, K Michael

    2012-01-01

    Background: The low zinc intake from human milk at ∼6 mo of age predicts the dependence on complementary foods (CF) to meet the zinc requirements of older breastfed-only infants. Objective: The objective of this study was to compare major variables of zinc homeostasis and zinc status in 9-mo-old breastfed infants who were randomly assigned to different complementary food regimens. Design: Forty-five exclusively breastfed 5-mo-old infants were randomly assigned to receive commercially available pureed meats, iron-and-zinc–fortified infant cereal (IZFC), or whole-grain, iron-only–fortified infant cereal (IFC) as the first and primary CF until completion of zinc metabolic studies between 9 and 10 mo of age. A zinc stable-isotope methodology was used to measure the fractional absorption of zinc (FAZ) in human milk and CF by dual-isotope ratios in urine. Calculated variables included the dietary intake from duplicate diets and 4-d test weighing, the total absorbed zinc (TAZ) from FAZ × diet zinc, and the exchangeable zinc pool size (EZP) from isotope enrichment in urine. Results: Mean daily zinc intakes were significantly greater for the meat and IZFC groups than for the IFC group (P < 0.001); only intakes in meat and IZFC groups met estimated average requirements. Mean (±SEM) TAZ amounts were 0.80 ± 0.08, 0.71 ± 0.09, and 0.52 ± 0.05 mg/d for the meat, IZFC, and IFC groups, respectively (P = 0.027). Zinc from human milk contributed <25% of TAZ for all groups. The EZP correlated with both zinc intake (r = 0.43, P < 0.01) and TAZ (r = 0.54, P < 0.001). Conclusion: Zinc requirements for older breastfed-only infants are unlikely to be met without the regular consumption of either meats or zinc-fortified foods. PMID:22648720

  11. Effect of dietary phytate on zinc homeostasis in young and elderly Korean women.

    PubMed

    Kim, Jihye; Paik, Hee Young; Joung, Hyojee; Woodhouse, Leslie R; Li, Shanji; King, Janet C

    2007-02-01

    Previous studies suggest that consumption of predominantly plant-based diets with high phytate content contribute to zinc deficiency by inhibiting zinc absorption. Age of the individual may also affect the ability to maintain zinc homeostasis. This study was designed to determine the effect of dietary phytate on zinc homeostasis and to evaluate the effect of age on the capacity to maintain the zinc homeostasis with changes in dietary phytate in young and elderly Korean women. Seven healthy young women (22-24 yr) and 10 healthy elderly women (66-75 yr) were studied consecutively for 3 months in 2 metabolic periods (MP) in two different metabolic units. During MP1 the women consumed a high phytate (HP) diet (P:Zn molar ratio = 23) for 9 days. After a 10 d wash-out period at home eating their usual diets, a lower phytate diet (LP) (P:Zn molar ratio = 10) was fed in MP2 for 9 d. Phytase was added to selected foods in the high phytate diet to reduce the phytate content of the meals in the LP period. The zinc content of both diets was about 6.5 mg/d. Stable isotopes of Zn ((70)Zn) were administered intravenously on d 5 of MP 1 and 2 for measuring endogenous fecal zinc excretion. Plasma samples were also collected on d 5 for measuring plasma zinc concentrations by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). 24 hr urine samples were collected for 5 d and complete fecal samples were collected for 9 d after isotope administration. Fractional zinc absorption (FZA) was calculated from mass balance corrected for endogenous fecal zinc (EFZ) excretion and EFZ was determined by using an isotopic dilution technique. Isotopic ratios for FZA and EFZ were measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Statistical analyses were done using ANOVA. Both the young and elderly women were in negative zinc balance during the HP period. This was due to a significant decrease in FZA and total absorbed zinc (TAZ) with a HP diet (43 vs 22% in young women

  12. Calibrating NIST SRM 683 as A New International Reference Standard for Zn Isotopes

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zhang, X.; Yu, H.; Huang, F.

    2017-12-01

    Zinc isotopes have been widely applied in the cosmochemical, geochemical, and environmental studies (Moynier et al. 2017). Obtaining precise Zn isotopic data for inter-laboratory comparison is a prerequisite to these applications. Currently, the JMC3-0749L is the primary reference standard for Zn isotopes (Albarède 2004), but it is not commercially available now. Thus, it is necessary to calibrate a new international primary reference standard for Zn isotopic analysis. Chen et al. (2016) showed that NIST SRM 683 (a pure Zn metal nugget of 140 grams) has a δ66ZnJMC of 0.12‰, which is falling within the range of natural Zn isotopic compositions, and it may a good candidate for the next generation of international reference standard (Chen et al. 2016). In order to further examine whether NIST SRM 683 has a homogeneous Zn isotopic composition, we measured more NIST SRM 683 by double-spike methods using MC-ICPMS (Conway et al. 2013). The metal nuggets of NIST SRM 683 were intensively sampled by micro-drilling. Zinc isotope analyses for two nuggets show that they have δ66Zn of 0.14 ± 0.02‰ (2SD, N = 32) and 0.13 ± 0.02‰ (2SD, N = 33), respectively. These values are similar to those of two Zn metal nuggets (0.11 ± 0.02‰ vs. 0.12 ± 0.02‰) reported previously by Chen et al. (2016). We fully dissolved one nugget, producing pure Zn solution with identical Zn isotopic composition with the drilling samples. All results strongly support that NIST SRM 683 is homogeneous in Zn isotopic compositions which could be an ideal candidate for the next reference for Zn isotopes. Tests on more metal nuggets will be performed in a few months for further confirming the Zn isotope compositions and homogeneity. Reference: Albarède et al., 2004. 'The stable isotope geochemistry of copper and zinc', Reviews in Mineralogy and Geochemistry, 55: 409-27. Chen et al., 2016. 'Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials', Geostandards and

  13. New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.

    2016-05-01

    We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.

  14. Resonance ionization laser ion sources for on-line isotope separators (invited).

    PubMed

    Marsh, B A

    2014-02-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  15. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites

    NASA Astrophysics Data System (ADS)

    Inglis, Edward C.; Debret, Baptiste; Burton, Kevin W.; Millet, Marc-Alban; Pons, Marie-Laure; Dale, Christopher W.; Bouilhol, Pierre; Cooper, Matthew; Nowell, Geoff M.; McCoy-West, Alex J.; Williams, Helen M.

    2017-07-01

    Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction.

  16. Separated isotopes: Vital tools for science and medicine

    NASA Astrophysics Data System (ADS)

    Deliberations and conclusions of a workshop on stable isotopes and derived radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the workshop is followed by reports of the four workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.

  17. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru.

    PubMed

    Skierszkan, E K; Mayer, K U; Weis, D; Beckie, R D

    2016-04-15

    The stable isotope composition of molybdenum (Mo) and zinc (Zn) in mine wastes at the Antamina Copper-Zn-Mo mine, Peru, was characterized to investigate whether isotopic variation of these elements indicated metal attenuation processes in mine drainage. Waste rock and ore minerals were analyzed to identify the isotopic composition of Mo and Zn sources, namely molybdenites (MoS2) and sphalerites (ZnS). Molybdenum and Zn stable isotope ratios are reported relative to the NIST-SRM-3134 and PCIGR-1 Zn standards, respectively. δ(98)Mo among molybdenites ranged from -0.6 to +0.6‰ (n=9) while sphalerites showed no δ(66)Zn variations (0.11±0.01‰, 2 SD, n=5). Mine drainage samples from field waste rock weathering experiments were also analyzed to examine the extent of isotopic variability in the dissolved phase. Variations spanned 2.2‰ in δ(98)Mo (-0.1 to +2.1‰) and 0.7‰ in δ(66)Zn (-0.4 to +0.3‰) in mine drainage over a wide pH range (pH2.2-8.6). Lighter δ(66)Zn signatures were observed in alkaline pH conditions, which was consistent with Zn adsorption and/or hydrozincite (Zn5(OH)6(CO3)2) formation. However, in acidic mine drainage Zn isotopic compositions reflected the value of sphalerites. In addition, molybdenum isotope compositions in mine drainage were shifted towards heavier values (0.89±1.25‰, 2 SD, n=16), with some overlap, in comparison to molybdenites and waste rock (0.13±0.82‰, 2 SD, n=9). The cause of heavy Mo isotopic signatures in mine drainage was more difficult to resolve due to isotopic heterogeneity among ore minerals and a variety of possible overlapping processes including dissolution, adsorption and secondary mineral precipitation. This study shows that variation in metal isotope ratios are promising indicators of metal attenuation. Future characterization of isotopic fractionation associated to key environmental reactions will improve the power of Mo and Zn isotope ratios to track the fate of these elements in mine drainage

  18. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    PubMed

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  19. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  20. Zinc isotope anomalies. [in Allende meteorite

    NASA Technical Reports Server (NTRS)

    Volkening, J.; Papanastassiou, D. A.

    1990-01-01

    The Zn isotope composition in refractory-element-rich inclusions of the Allende meteorite are determined. Typical inclusions contain normal Zn. A unique inclusion of the Allende meteorite shows an excess for Zn-66 of 16.7 + or - 3.7 eu (1 eu = 0.01 percent) and a deficit for Zn-70 of 21 + or - 13 eu. These results indicate the preservation of exotic components even for volatile elements in this inclusion. The observed excess Zn-66 correlates with excesses for the neutron-rich isotopes of Ca-48, Ti-50, Cr-54, and Fe-58 in the same inclusion.

  1. Multi-modular, tris(triphenylamine) zinc porphyrin-zinc phthalocyanine-fullerene conjugate as a broadband capturing, charge stabilizing, photosynthetic 'antenna-reaction center' mimic.

    PubMed

    Kc, Chandra B; Lim, Gary N; D'Souza, Francis

    2015-04-21

    A broadband capturing, charge stabilizing, photosynthetic antenna-reaction center model compound has been newly synthesized and characterized. The model compound is comprised of a zinc porphyrin covalently linked to three units of triphenylamine entities and a zinc phthalocyanine entity. The absorption and fluorescence spectra of zinc porphyrin complemented that of zinc phthalocyanine offering broadband coverage. Stepwise energy transfer from singlet excited triphenylamine to zinc porphyrin, and singlet excited zinc porphyrin to zinc phthalocyanine (kENT ∼ 10(11) s(-1)) was established from spectroscopic and time-resolved transient absorption techniques. Next, an electron acceptor, fullerene was introduced via metal-ligand axial coordination to both zinc porphyrin and zinc phthalocyanine centers, and they were characterized by spectroscopic and electrochemical techniques. An association constant of 4.9 × 10(4) M(-1) for phenylimidazole functionalized fullerene binding to zinc porphyrin, and 5.1 × 10(4) M(-1) for it binding to zinc phthalocyanine was obtained. An energy level diagram for the occurrence of different photochemical events within the multi-modular donor-acceptor conjugate was established from spectral and electrochemical data. Unlike the previous zinc porphyrin-zinc phthalocyanine-fullerene conjugates, the newly assembled donor-acceptor conjugate has been shown to undergo the much anticipated initial charge separation from singlet excited zinc porphyrin to the coordinated fullerene followed by a hole shift process to zinc phthalocyanine resulting in a long-lived charge separated state as revealed by femto- and nanosecond transient absorption spectroscopic techniques. The lifetime of the final charge separated state was about 100 ns.

  2. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast,more » and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.« less

  3. Chromatographic Separation of Cd from Plants via Anion-Exchange Resin for an Isotope Determination by Multiple Collector ICP-MS.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Peters, Marc; Yang, Junxing; Tian, Liyan; Han, Xiaokun

    2017-01-01

    In this study, key factors affecting the chromatographic separation of Cd from plants, such as the resin column, digestion and purification procedures, were experimentally investigated. A technique for separating Cd from plant samples based on single ion-exchange chromatography has been developed, which is suitable for the high-precision analysis of Cd isotopes by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The robustness of the technique was assessed by replicate analyses of Cd standard solutions and plant samples. The Cd yields of the whole separation process were higher than 95%, and the 114/110 Cd values of three Cd second standard solutions (Münster Cd, Spex Cd, Spex-1 Cd solutions) relative to the NIST SRM 3108 were measured accurately, which enabled the comparisons of Cd isotope results obtained in other laboratories. Hence, stable Cd isotope analyses represent a powerful tool for fingerprinting specific Cd sources and/or examining biogeochemical reactions in ecological and environmental systems.

  4. Separated isotopes: vital tools for science and medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the Workshop is followed by reports of the four Workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced asmore » Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.« less

  5. A novel procedure for Rubidium separation and its isotope measurements on geological samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Ma, J.; Zhang, Z.; Wei, G.; Zhang, L.

    2017-12-01

    A method including a novel column Rb separation procedure and high-precision Rb isotope measurement in geological materials by using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in standard-sample-bracketing (SSB) mode has been developed. Sr-Spec resin was employed, in which the distribution coefficients for Rb, K, Ba and Sr are different in nitric acid, to sequentially separate them from the matrix. The dissolved samples were loaded on the column in 3 M HNO3, the main matrix such as Al, Ca, Fe, Mg, Mn and Na were removed by rinsing with 4.5 mL HNO3, Rb and K were then sequentially eluted by 3 M HNO3 in different volumes. After that, Ba was eluted by 8 M HNO3, and Sr was finally eluted by Milli-Q water. This enable us to collect the pure Rb, K, Ba and Sr one by one with recovery close to 100% for their isotopic compositions measurement on MC-ICP-MS. We here focus on Rb isotope measurement. The measurement using MC-ICP-MS yielded an internal precision for δ87Rb of < ± 0.03‰ (2SE), and the external precision was generally better than ± 0.06‰ (2SD) based on the long-term results of the Rb standard solutions NIST SRM 984. A series of geological rock standards, were analyzed using this method, and the results indicate significant Rb isotope differences in different geologic materials. This will provide a powerful tool to investigate Rb isotope fractionation during geological processes.Based on this method, Rb isotope compositions from a basaltic weathering profile were carried out. The data show the lighter Rb (85Rb) isotope is preferentially leached from the weathering profile and remains heavy Rb isotope (87Rb) in the weathered residues during the incipient weathering stage. From the moderate to advanced weathering stage, the significant variations of Rb isotope were observed and multiple factors, such as leaching, adsorption, desorption, and precipitation, should play important role in fractionating Rb isotope.

  6. Separation of the Isotopes of Calcium by Countercurrent Electromigration in Fused Salts. Final Report; SEPARATION DES ISOTOPES DU CALCIUM PAR ELECTROMIGRATION A CONTRE COURANT EN SELS FONDUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menes, F.; Dirian, G.

    1962-12-14

    The results obtained up to June 25, 1962, on the separation of Ca isotopes by electromigration in fused salts have been reported in seven progress reports. The data given in these reports are summarized. Later study investigated the improvement of the diaphragm performance using nonclassical methods, preparation of an experiment confirming the performances of the high capacity U tube'' apparatus, and preparation of an installation designed for perfecting the dropping tube'' device. Only preliminary results on these studes are available. (J.S.R.)

  7. An overview of zinc addition for BWR dose rate control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marble, W.J.

    1995-03-01

    This paper presents an overview of the BWRs employing feedwater zinc addition to reduce primary system dose rates. It identifies which BWRs are using zinc addition and reviews the mechanical injection and passive addition hardware currently being employed. The impact that zinc has on plant chemistry, including the factor of two to four reduction in reactor water Co-60 concentrations, is discussed. Dose rate results, showing the benefits of implementing zinc on either fresh piping surfaces or on pipes with existing films are reviewed. The advantages of using zinc that is isotopically enhanced by the depletion of the Zn-64 precursor tomore » Zn-65 are identified.« less

  8. Simulation and Analysis of Isotope Separation System for Fusion Fuel Recovery System

    NASA Astrophysics Data System (ADS)

    Senevirathna, Bathiya; Gentile, Charles

    2011-10-01

    This paper presents results of a simulation of the Fuel Recovery System (FRS) for the Laser Inertial Fusion Engine (LIFE) reactor. The LIFE reaction will produce exhaust gases that will need to be recycled in the FRS along with xenon, the chamber's intervention gas. Solids and liquids will first be removed and then vapor traps are used to remove large gas molecules such as lead. The gas will be reacted with lithium at high temperatures to extract the hydrogen isotopes, protium, deuterium, and tritium in hydride form. The hydrogen isotopes will be recovered using a lithium blanket processing system already in place and this product will be sent to the Isotope Separation System (ISS). The ISS will be modeled in software to analyze its effectiveness. Aspen HYSYS was chosen for this purpose for its widespread use industrial gas processing systems. Reactants and corresponding chemical reactions had to be initialized in the software. The ISS primarily consists of four cryogenic distillation columns and these were modeled in HYSYS based on design requirements. Fractional compositions of the distillate and liquid products were analyzed and used to optimize the overall system.

  9. Preparation of ionic membranes for zinc/bromine storage batteries

    NASA Astrophysics Data System (ADS)

    Assink, R. A.; Arnold, C., Jr.

    Zinc/bromine flow batteries are being developed for vehicular and utility load leveling applications. During charge, an aqueous zinc bromide salt is electrolyzed to zinc metal and molecular bromine. During discharge, the zinc and bromine react to again form the zinc bromide salt. One serious disadvantage of the microporous separators presently used in the zinc/bromine battery is that modest amounts of bromine and negatively charged bromine moieties permeate through these materials and react with the zinc anode. This results in partial self-discharge of the battery and low coulombic efficiencies. Our approach to this problem is to impregnate the microporous separators with a soluble cationic polyelectrolyte. In laboratory screening tests a sulfonated polysulfone resin and fully fluorinated sulfonic acid polymer substantially reduced bromine permeation with only modest increases in the area resistance.

  10. A modified lead-matrix separation procedure shown for lead isotope analysis in Trojan silver artefacts as an example.

    PubMed

    Vogl, Jochen; Paz, Boaz; Koenig, Maren; Pritzkow, Wolfgang

    2013-03-01

    A modified Pb-matrix separation procedure using NH4HCO3 solution as eluent has been developed and validated for determination of Pb isotope amount ratios by thermal ionization mass spectrometry. The procedure is based on chromatographic separation using the Pb·Spec resin and an in-house-prepared NH4HCO3 solution serving as eluent. The advantages of this eluent are low Pb blanks (<40 pg mL(-1)) and the property that NH4HCO3 can be easily removed by use of a heating step (>60 °C). Pb recovery is >95 % for water samples. For archaeological silver samples, however, the Pb recovery is reduced to approximately 50 %, but causes no bias in the determination of Pb isotope amount ratios. The validated procedure was used to determine lead isotope amount ratios in Trojan silver artefacts with expanded uncertainties (k = 2) <0.09 %.

  11. Selective Hydrogen Isotope Separation via Breathing Transition in MIL-53(Al).

    PubMed

    Kim, Jin Yeong; Zhang, Linda; Balderas-Xicohténcatl, Rafael; Park, Jaewoo; Hirscher, Michael; Moon, Hoi Ri; Oh, Hyunchul

    2017-12-13

    Breathing of MIL-53(Al), a flexible metal-organic framework (MOF), leads to dynamic changes as narrow pore (np) transitions to large pore (lp). During the flexible and reversible transition, the pore apertures are continuously adjusted, thus providing the tremendous opportunity to separate mixtures of similar-sized and similar-shaped molecules that require precise pore tuning. Herein, for the first time, we report a strategy for effectively separating hydrogen isotopes through the dynamic pore change during the breathing of MIL-53(Al), a representative of flexible MOFs. The experiment shows that the selectivity for D 2 over H 2 is strongly related to the state of the pore structure of MIL-53(Al). The highest selectivity (S D 2 /H 2 = 13.6 at 40 K) was obtained by optimizing the exposure temperature, pressure, and time to systematically tune the pore state of MIL-53(Al).

  12. Isotopic insights into biological regulation of zinc in contaminated systems

    USGS Publications Warehouse

    Wanty, Richard B.; Balistrieri, Laurie S.; Wesner, Jeff S.; Walters, David; Schmidt, Travis S.; Podda, Francesca; De Giudici, G.; Stricker, Craig A.; Kraus, Johanna M.; Lattanzi, Pierfranco; Wolf, Ruth E.; Cidu, R.

    2015-01-01

    Aquatic organisms use a variety of biogeochemical reactions to regulate essential and non-essential trace metals. Many of these mechanisms can lead to isotopic fractionation, thus measurement of metal isotopes may yield insights into the processes by which organisms respond to metal exposure. We illustrate these concepts with two case studies, one involving an intra- and the other an extra-cellular mechanism of Zn sequestration. In the first study, the mayfly Neocloeon triangulifer was grown in the laboratory, and fed a diet of Zn-doped diatoms at Zn levels exceeding the requirements for normal mayfly life functions. The N. triangulifer larvae consumed the diatoms and retained their Zn isotopic signature. Upon metamorphosis, the subimago life stage lost Zn mass either in the exuvia or by excretion, and the Zn retained was isotopically enriched. Thus, Zn uptake is nonfractionating, but Zn regulation favors the lighter isotope. Thus the Zn remaining in the subimago was isotopically heavier. In the second study, Zn was adsorbed on the cell walls and exopolysaccharide secretions of cyanobacteria, which favored the heavier Zn isotope. Continued adsorption eventually resulted in nucleation and biomineralization of hydrozincite {Zn5(CO3)2(OH)6}. These case studies demonstrate the utility of Zn isotopes to provide insights into how aquatic insects respond to metal exposure.

  13. Isotope separation by selective photodissociation of glyoxal

    DOEpatents

    Marling, John B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  14. Nature and origin of the nonsulfide zinc deposits in the Sierra Mojada District, Coahuila, Mexico: constraints from regional geology, petrography, and isotope analyses

    NASA Astrophysics Data System (ADS)

    Kyle, J. Richard; Ahn, Hyein; Gilg, H. Albert

    2018-02-01

    The Sierra Mojada District comprises multiple types of near-surface mineral concentrations ranging from polymetallic sulfide zones, "nonsulfide Zn" (NSZ) deposits, and a silver-rich Pb carbonate deposit hosted by lower Cretaceous carbonate strata. Hypogene concentrations of Fe-Zn-Pb-Cu-Ag sulfides and sulfosalts are locally preserved and are associated with hydrothermal dolomite and silica. Alteration mineralogy and sulfur isotope data suggest primary Zn-Pb-Ag mineralization from circa 200 °C hydrothermal fluids. The NSZ deposits dominantly consist of smithsonite and hemimorphite associated with local Mn-Fe oxides. The Red Zinc Zone consists of strata-bound zones dominantly of hemimorphite that fills pores in residual and resedimented Fe oxides. The White Zinc Zone shows local dissolution features, including internal sediments interbanded with and cemented by smithsonite. Similar Pb isotopic compositions of smithsonite, hemimorphite, and cerussite to Sierra Mojada galena document that the NSZ deposits originated from polymetallic carbonate-replacement sulfide deposits, with flow of metal-bearing groundwater being controlled by local topography and structural features in this extensional terrane. Oxygen isotope values for Sierra Mojada smithsonite are relatively constant (δ18OVSMOW = 20.9 to 23.3‰) but are unusually low compared to other supergene smithsonites. Using δ18OVSMOW (- 8‰) of modern groundwater at nearby Cuatrociénegas, smithsonite formational temperatures are calculated to have been between 26 to 35 °C. Smithsonite precipitation was favored by near-neutral conditions typical of carbonate terranes, whereas hemimorphite precipitated by reaction with wallrock silica and locally, or episodically, more acidic conditions resulting from sulfide oxidation. Transition to, and stabilization of, the modern desert climate over the past 9000 years from the Late Pleistocene wetter, cooler climate of northern Mexico resulted in episodic drawdown of the water

  15. Determination of Plutonium Isotope Ratios at Very Low Levels by ICP-MS using On-Line Electrochemically Modulated Separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Lehn, Scott A; Olsen, Khris B

    2009-10-01

    Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO 3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by themore » applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.« less

  16. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding.

    PubMed

    Zinn, K R; Chaudhuri, T R; Cheng, T P; Morris, J S; Meyer, W A

    1994-02-01

    Positron emission tomography offers advantages for radioimmunodiagnosis of cancer but requires radionuclides of appropriate half-life that have high specific activity and high radio-purity. This work was designed to develop a viable method to produce and purify 64Cu, which has high specific activity, for positron emission tomography. 64Cu was produced at the University of Missouri Research Reactor by the nuclear reaction, 64Zn(n,p)64Cu. Highly pure zinc metal (99.9999%) was irradiated in a specially designed boron nitrite lined container, which minimized thermal neutron reactions during irradiation. A new two-step procedure was developed to chemically separate the no-carrier-added 64Cu from the zinc metal target. 64Cu recovery for 24 runs averaged 0.393 (+/- 0.007) mCi per milligram of zinc irradiated. The boron-lined irradiation container reduced unwanted zinc radionuclides 14.3-fold. Zinc radionuclides and non-radioactive zinc were separated successfully from the 64Cu. The new separation technique was fast (2 hours total time) and highly efficient for removing the zinc. The zinc separation factor for this technique averaged 8.5 x 10(-8), indicating less than 0.0000085% of the zinc remained after separation. Thus far, the highest 64Cu specific activity at end of irradiation was 683 Ci/mg Cu, with an average of 512 Ci/mg Cu for the last six analyzed runs. The boron-lined irradiation container has sufficient capacity for 75-fold larger-sized zinc targets (up to 45 g). The new separation technique was excellent for separating 64Cu, which appears to be a radionuclide with great potential for positron emission tomography.

  17. Zinc isotope anomalies in Allende meteorite inclusions

    NASA Technical Reports Server (NTRS)

    Loss, R. D.; Lugmair, G. W.

    1990-01-01

    The isotopic compositions of Zn, Cr, Ti, and Ca have been measured in a number of CAIs from the Allende meteorite. The aim was to test astrophysical models which predict large excesses of Zn-66 to accompany excesses in the neutron-rich isotopes of Ca, Ti, Cr, and Ni. Some of the CAIs show clearly resolved but small excesses for Zn-66 which are at least an order of magnitude smaller than predicted. This result may simply reflect the volatility and chemical behavior of Zn as compared to the other (more refractory) anomalous elements found in these samples. Alternatively, revision of parameters and assumptions used for the model calculations may be required.

  18. Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-06-01

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.

  19. Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gasmore » is taken to be constant.« less

  20. Determination of stable carbon and hydrogen isotopes of light hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumke, I.; Faber, E.; Poggenburg, J.

    1989-10-01

    A combined system for the measurement of {sup 13}C/{sup 12}C and D/H ratios on light hydrocarbons (C{sub 1}-C{sub 3}) and CO{sub 2} is described. The system is designed for natural gas and sediment gas analyses. It comprises gas chromatographic separation with online combustion of hydrocarbons to CO{sub 2} and H{sub 2}O, reduction of H{sub 2}O to H{sub 2} on zinc in closed ampules, and mass spectrometric determination of isotope ratios ({delta}{sup 13}C, {delta}D) using a mass spectrometer inlet system especially designed for low hydrogen gas quantities. Isotope analyses can be carried out in the range of 3-10,000 {mu}L of CO{submore » 2} and 100-10,000 {mu}L of H{sub 2} (gas quantities converted from sample compounds during preparation, STP). Including all preparation steps, reproducibility of isotope values for large sample quantities (>100 {mu}L of produced CO{sub 2} and >1,000 {mu}L of produced H{sub 2}). is {plus minus}0.2{per thousand} for {delta}{sup 13}C and {plus minus}3{per thousand} for {delta}D.« less

  1. Dual-isotope method for determination of human zinc absorption: the use of a test meal of turkey meat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, P.R.; Cluett, J.; Chamberlain, M.J.

    The percentage of /sup 65/Zn taken up (absorbed) from extrinsically labeled turkey meat was calculated from the amounts of /sup 65/Zn and a nonabsorbed /sup 51/Cr marker present in the body or in a single stool specimen after 1-2 d. /sup 51/CrCl/sub 3/ proved to be a suitable marker for unabsorbed /sup 65/Zn and so the early determination of /sup 65/Zn absorption was possible. With stool counting, /sup 65/Zn absorption data from first stool samples after 1-2 d were accurate as judged by correlation with the amount of /sup 65/Zn in the body 7-10 d later (retention); results from subsequentmore » stools gave lower absorption values due to the early excretion of some absorbed /sup 65/Zn. The dual-isotope method gave reproducible results when four successive tests of zinc absorption were carried out in a group of six subjects. The average (mean +/- SD) /sup 65/Zn absorption from turkey meals containing 31 mumol (2 mg) and 46 mumol (3 mg) of zinc was 39 +/- 8% and 29 +/- 6%, respectively, measured by stool counting; /sup 65/Zn absorption and retention correlated well in both studies. A series of different beverages was given in place of water with the turkey meal. Orange juice significantly reduced /sup 65/Zn absorption and milk also showed this tendency, but tea, whiskey, wine or beer had no significant effect on the absorption of /sup 65/Zn from the turkey meal. In groups of subjects the mean ratio of /sup 65/Zn absorption from extrinsically labeled turkey meat on two occasions (1.06) was not significantly different from that of the absorption of extrinsic to intrinsic /sup 65/Zn labels (1.16). The dual-isotope technique with either stool or body counting is suitable for the rapid determination of /sup 65/Zn absorption from extrinsically labeled turkey within 2 d.« less

  2. High‐precision determination of lithium and magnesium isotopes utilising single column separation and multi‐collector inductively coupled plasma mass spectrometry

    PubMed Central

    Misra, Sambuddha; Lloyd, Nicholas; Elderfield, Henry; Bickle, Mike J.

    2017-01-01

    Rationale Li and Mg isotopes are increasingly used as a combined tool within the geosciences. However, established methods require separate sample purification protocols utilising several column separation procedures. This study presents a single‐step cation‐exchange method for quantitative separation of trace levels of Li and Mg from multiple sample matrices. Methods The column method utilises the macro‐porous AGMP‐50 resin and a high‐aspect ratio column, allowing quantitative separation of Li and Mg from natural waters, sediments, rocks and carbonate matrices following the same elution protocol. High‐precision isotope determination was conducted by multi‐collector inductively coupled plasma mass spectrometry (MC‐ICPMS) on the Thermo Scientific™ NEPTUNE Plus™ fitted with 1013 Ω amplifiers which allow accurate and precise measurements at ion beams ≤0.51 V. Results Sub‐nanogram Li samples (0.3–0.5 ng) were regularly separated (yielding Mg masses of 1–70 μg) using the presented column method. The total sample consumption during isotopic analysis is <0.5 ng Li and <115 ng Mg with long‐term external 2σ precisions of ±0.39‰ for δ7Li and ±0.07‰ for δ26Mg. The results for geological reference standards and seawater analysed by our method are in excellent agreement with published values despite the order of magnitude lower sample consumption. Conclusions The possibility of eluting small sample masses and the low analytical sample consumption make this method ideal for samples of limited mass or low Li concentration, such as foraminifera, mineral separates or dilute river waters. PMID:29078008

  3. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  4. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE PAGES

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  5. Separated isotopes: vital tools for science and medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    This report summarizes the deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE). The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An Overview with three recommendations resulting from the Workshop, prepared by the Steering Committee, is followed by Chapters 1 to 4, reports of the following four Workshop panels: (1) panel on research applications in physics, chemistry and geoscience; (2) panelmore » on commercial applications; (3) panel on biomedical research applications; (4) panel on clinical applications. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They proved of great value and are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11. Selected papers have been abstracted and indexed.« less

  6. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  7. Unique zinc mass in mandibles separates drywood termites from other groups of termites

    NASA Astrophysics Data System (ADS)

    Cribb, Bronwen W.; Stewart, Aaron; Huang, Han; Truss, Rowan; Noller, Barry; Rasch, Ronald; Zalucki, Myron P.

    2008-05-01

    Previously, the presence of metals in arthropod mandibles has been linked with harder cuticle, and in termites, a 20% increase in hardness has been found for mandibles containing major quantities of zinc. The current study utilises electron microscopy and energy-dispersive X-ray microanalysis to assess incidence and abundance of metals in all extant subfamilies of the Isoptera. The basal clades contain no zinc and little to no manganese in the cutting edge of the mandible cuticle, suggesting that these states are ancestral for termites. However, experimentation with mandibles in vitro indicates the presence of some elements of the cuticular biochemistry necessary to enable uptake of zinc. The Termopsidae, Serritermitidae, Rhinotermitidae and Termitidae all contain minor quantities of manganese, while trace to minor quantities of zinc occur in all except the Serritermitidae. In contrast, all Kalotermitidae or drywood termites contain major levels of zinc in the mandible edge. Diet and life type are explored as links to metal profiles across the termites. The presence of harder mandibles in the drywood termites may be related to lack of access to free water with which to moisten wood. Scratch tests were applied to a set of mandibles. The coefficient of friction for Cryptotermes primus (Kalotermitidae) mandibles, when compared with species from other subfamilies, indicates that zinc-containing mandibles are likely to be more scratch resistant.

  8. Fast isotopic separation of 10 B and 11 B boric acid by capillary zone electrophoresis.

    PubMed

    Kamencev, Mikhail; Yakimova, Nina; Moskvin, Leonid; Kuchumova, Irina; Tkach, Kirill; Malinina, Yulia

    2016-11-01

    Fast isotopic separation of 10 B and 11 B boric acid by CZE was demonstrated. The BGE contained 25 mM phenylalanine and 5 mM putrescine (рН 8.95). The running conditions were +25 kV at 20°C with indirect photometric detection at 210 nm. Baseline separation was achieved in less than 9 min. RSD of migration times and corrected peak areas were less than 0.5 and 3%, respectively (n = 5). Linearity was demonstrated in the range 0.2-2 mM for 11 B and 0.2-0.5 mM for 10 B. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  10. Stabilized nickel-zinc battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himy, A.; Wagner, O.C.

    An alkaline nickel-zinc cell which has (1) a nickel-nickel hydroxide cathode; (2) a zinc-zinc oxide anode containing (A) a corrosion inhibitor such as PBO, SNO2, Tl2O3, in(OH)3 or mixtures thereof; (B) a slight corrosion accelerator such as cdo, bi2o3, ga2o3, or mixtures thereof; and (C) a zinc active material; (3) a mass-transport separator; (4) an alkaline electrolyte; and (5) means for charging the cell with an interrupted current having a frequency of from more than zero to 16 hertz with a rest period of not less than 60 milliseconds. Another desirable feature is the use of a pressure-cutoff switch tomore » terminate charging when the internal pressure of the cell reaches a selected value in the range of from 5 to 8 psig.« less

  11. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  12. Fractionation of metal stable isotopes by higher plants

    USGS Publications Warehouse

    Von Blanckenburg, F.; Von Wiren, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D.

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal's redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth's surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.

  13. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, G N; Petin, A N

    2016-03-31

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF{sub 6} and CF{sub 3}I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF{sub 6} molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with amore » surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation. (laser separation of isotopes)« less

  14. Metamorphosis affects metal concentrations and isotopic signatures in a mayfly (Baetis tricaudatus): Implications for the aquatic-terrestrial transfer of metals

    USGS Publications Warehouse

    Wesner, Jeff S.; Walters, David; Schmidt, Travis S.; Kraus, Johanna M.; Stricker, Craig A.; Clements, William H.; Wolf, Ruth E.

    2017-01-01

    Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 µg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ15N and δ13C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ15N by ~0.8‰, but not δ13C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ15N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g. larvae) to assess risk to wildlife that feed on subsequent life stages (e.g. adults).

  15. Metamorphosis Affects Metal Concentrations and Isotopic Signatures in a Mayfly (Baetis tricaudatus): Implications for the Aquatic-Terrestrial Transfer of Metals.

    PubMed

    Wesner, Jeff S; Walters, David M; Schmidt, Travis S; Kraus, Johanna M; Stricker, Craig A; Clements, William H; Wolf, Ruth E

    2017-02-21

    Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 μg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ 15 N and δ 13 C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ 15 N by ∼0.8‰, but not δ 13 C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ 15 N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).

  16. A Zn isotope perspective on the rise of continents.

    PubMed

    Pons, M-L; Fujii, T; Rosing, M; Quitté, G; Télouk, P; Albarède, F

    2013-05-01

    Zinc isotope abundances are fairly constant in igneous rocks and shales and are left unfractionated by hydrothermal processes at pH < 5.5. For that reason, Zn isotopes in sediments can be used to trace the changing chemistry of the hydrosphere. Here, we report Zn isotope compositions in Fe oxides from banded iron formations (BIFs) and iron formations of different ages. Zinc from early Archean samples is isotopically indistinguishable from the igneous average (δ(66) Zn ~0.3‰). At 2.9-2.7 Ga, δ(66) Zn becomes isotopically light (δ(66) Zn < 0‰) and then bounces back to values >1‰ during the ~2.35 Ga Great Oxygenation Event. By 1.8 Ga, BIF δ(66) Zn has settled to the modern value of FeMn nodules and encrustations (~0.9‰). The Zn cycle is largely controlled by two different mechanisms: Zn makes strong complexes with phosphates, and phosphates in turn are strongly adsorbed by Fe hydroxides. We therefore review the evidence that the surface geochemical cycles of Zn and P are closely related. The Zn isotope record echoes Sr isotope evidence, suggesting that erosion starts with the very large continental masses appearing at ~2.7 Ga. The lack of Zn fractionation in pre-2.9 Ga BIFs is argued to reflect the paucity of permanent subaerial continental exposure and consequently the insignificant phosphate input to the oceans and the small output of biochemical sediments. We link the early decline of δ(66) Zn between 3.0 and 2.7 Ga with the low solubility of phosphate in alkaline groundwater. The development of photosynthetic activity at the surface of the newly exposed continents increased the oxygen level in the atmosphere, which in turn triggered acid drainage and stepped up P dissolution and liberation of heavy Zn into the runoff. Zinc isotopes provide a new perspective on the rise of continents, the volume of carbonates on continents, changing weathering conditions, and compositions of the ocean through time. © 2013 Blackwell Publishing Ltd.

  17. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  18. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels.

    PubMed

    Borrok, David M; Gieré, Reto; Ren, Minghua; Landa, Edward R

    2010-12-01

    Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and δ(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The δ(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The δ(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest δ(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process.

  19. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels

    USGS Publications Warehouse

    Borrok, D.M.; Gieré, R.; Ren, M.; Landa, E.R.

    2010-01-01

    Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and δ(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The δ(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The δ(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest δ(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process.

  20. The study of trace metal absoption using stable isotopes and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fennessey, P. V.; Lloyd-Kindstrand, L.; Hambidge, K. M.

    1991-12-01

    The absorption and excretion of zinc stable isotopes have been followed in more than 120 human subjects. The isotope enrichment determinations were made using a standard VG 7070E HF mass spectrometer. A fast atom gun (FAB) was used to form the ions from a dry residue on a pure silver probe tip. Isotope ratio measurements were found to have a precision of better than 2% (relative standard deviation) and required a sample size of 1-5 [mu]g. The average true absorption of zinc was found to be 73 ± 12% (2[sigma]) when the metal was taken in a fasting state. This absorption figure was corrected for tracer that had been absorbed and secreted into the gastrointestinal (GI) tract over the time course of the study. The average time for a majority of the stable isotope tracer to pass through the GI tract was 4.7 ± 1.9 (2[sigma]) days.

  1. Hydrogen isotope separation

    DOEpatents

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  2. Natural Attenuation of Arsenic, Cadmium, Lead, and Zinc Using Hydrograph Separation

    NASA Astrophysics Data System (ADS)

    Burrows, J. E.; Peters, S. C.

    2009-12-01

    Strategies for remediating contaminated sites range from complete removal of the contaminated soil to in-situ monitored natural attenuation. The decision to let a property naturally attenuate is partially based on the estimated time it will take to return to ambient conditions. The Lehigh Gap Wildlife Refuge at Palmerton, PA was historically contaminated with arsenic, cadmium, lead, and zinc from a zinc smelting operation that ceased emissions twenty-nine years ago. This property provides an opportunity to assess whether the length of time required for the natural attenuation of metals in soil has been achieved using a watershed mass balance approach, focusing particularly on perturbations observed in the concentration-discharge relationships of contaminants compared to the conservative tracers sodium and chloride, and silicon as an indicator of rock-water interactions. Water samples were collected from 3 springs in the Wildlife Refuge for approximately 4 days following the onset of storm events and analyzed for cation and anion concentrations. Preliminary results show that while the concentrations of arsenic and lead were below detection limits, the fluxes of zinc and cadmium increase corresponding with the peak in the hydrograph relative to the fluxes of the tracers, indicating the solutes are being released from adsorption sites located in an unsaturated zone that is temporarily inundated during storm events. In comparison, the flux of the tracers remains constant, indicative of a steady-state leakage of the solutes from their respective reservoirs in the soil. Along with flux, the concentrations of zinc and cadmium also increase following the rise in discharge after storm events, further suggesting that these contaminants are being mobilized out of the soil profile.

  3. Hydrogen isotope separation

    DOEpatents

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  4. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  5. Zinc allocation and re-allocation in rice.

    PubMed

    Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E L; Struik, Paul C

    2014-01-01

    Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Two solution culture experiments using (70)Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg(-1) dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement.

  6. Zinc allocation and re-allocation in rice

    PubMed Central

    Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E. L.; Struik, Paul C.

    2014-01-01

    Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using 70Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg−1 dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement. PMID:24478788

  7. Tracing fluid transfer across subduction zones using iron and zinc stable isotopes

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Debret, B.; Pons, M. L.; Bouilhol, P.

    2016-12-01

    In subduction zones, serpentinite devolatilization within the downgoing slab and the fluids released play a fundamental role in volatile transfer as well as the redox evolution of the sub-arc mantle. Constraining subduction-related serpentinite devolatilisation is essential in order to better understand of the nature and composition of slab-derived fluids and fluid/rock interactions. Fe and Zn stable isotopes can trace fluid composition and speciation as isotope partitioning is driven by changes in oxidation state, coordination, and bonding environment. In the case of serpentinite devolatilisation, Fe isotope fractionation should reflect changes in Fe redox state and the formation of Fe-Cl- and SO42- complexes (Hill et al., GCA 2010); Zn isotope fractionation should be sensitive to complexation with CO32-, HS- and SO42- anions (Fujii et al., GCA 2011). We targeted samples from Western Alps ophiolite complexes, interpreted as remnants of serpentinized oceanic lithosphere metamorphosed and devolatilized during subduction (Hattori and Guillot, G3 2007; Debret et al., Chem. Geol. 2013). A striking negative correlation is present between bulk serpentinite Fe isotope composition and Fe3+/Fetot, with the highest grade samples displaying the heaviest Fe isotope compositions and lowest Fe3+/Fetot (Debret et al., Geology, 2016). The same samples also display a corresponding variation in Zn isotopes, with the highest grade samples displaying isotopically light compositions (Pons et al., in revision). The negative correlation between Fe and Zn isotopes and decrease in Fe3+/Fetot can explained by serpentinite sulfide breakdown and the release of fluids enriched in isotopically light Fe and heavy Zn sulphate complexes. The migration of these SOX-bearing fluids from the slab to the slab-mantle interface or mantle wedge has important implications for the redox evolution of the sub-arc mantle and the transport of metals from the subducting slab.

  8. Long Life, High Energy Silver-Zinc Batteries

    NASA Technical Reports Server (NTRS)

    Kainthla, Ramesh; Coffey, Brendan

    2003-01-01

    This viewgraph presentation includes: 1) an introduction to RBC Technologies; 2) Rechargeable Zinc Alkaline (RZA(tm)) Systems which include MnO2/Zn, Ni/Zn, Ag/Zn, and Zn/Air; and 3) RZA Silver/Zinc Battery Developments. Conclusions include the following: 1)Issues with long term wet life and cycle life of the silver/zinc battery system are being overcome through the use of new anode formulations and separator designs; 2) Performance may exceed 200 cycles to 80% of initial capacity and ultimate wet-life of > 36 months; and 3) Rechargeable silver/zinc batteries available in prismatic and cylindrical formats may provide a high energy, high power alternative to lithium-ion in military/aerospace applications.

  9. Atomic and Molecular Beam Scattering: Characterizing Structure and Dynamics of Hybrid Organic-Semiconductor Interfaces and Introducing Novel Isotope Separation Techniques

    NASA Astrophysics Data System (ADS)

    Nihill, Kevin John

    This thesis details a range of experiments and techniques that use the scattering of atomic beams from surfaces to both characterize a variety of interfaces and harness mass-specific scattering conditions to separate and enrich isotopic components in a mixture of gases. Helium atom scattering has been used to characterize the surface structure and vibrational dynamics of methyl-terminated Ge(111), thereby elucidating the effects of organic termination on a rigid semiconductor interface. Helium atom scattering was employed as a surface-sensitive, non-destructive probe of the surface. By means of elastic gas-surface diffraction, this technique is capable of providing measurements of atomic spacing, step height, average atomic displacement as a function of surface temperature, gas-surface potential well depth, and surface Debye temperature. Inelastic time-of-flight studies provide highly resolved energy exchange measurements between helium atoms and collective lattice vibrations, or phonons; a collection of these measurements across a range of incident kinematic parameters allowed for a thorough mapping of low-energy phonons (e.g., the Rayleigh wave) across the surface Brillouin zone and subsequent comparison with complementary theoretical calculations. The scattering of molecular beams - here, hydrogen and deuterium from methyl-terminated Si(111) - enables the measurement of the anisotropy of the gas-surface interaction potential through rotationally inelastic diffraction (RID), whereby incident atoms can exchange internal energy between translational and rotational modes and diffract into unique angular channels as a result. The probability of rotational excitations as a function of incident energy and angle were measured and compared with electronic structure and scattering calculations to provide insight into the gas-surface interaction potential and hence the surface charge density distribution, revealing important details regarding the interaction of H2 with an

  10. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  11. Isotopic separation of snowmelt runoff during an artificial rain-on-snow event

    NASA Astrophysics Data System (ADS)

    Juras, Roman; Pavlasek, Jirka; Šanda, Martin; Jankovec, Jakub; Linda, Miloslav

    2013-04-01

    Rain-on-snow events are common phenomenon in the climate conditions of central Europe, mainly during the spring snowmelt period. These events can cause serious floods in areas with seasonal snow. The snowpack hit by rain is able to store a fraction of rain water, but runoff caused by additional snowmelt also increases. Assessment of the rainwater ratio contributing to the outflow from the snowpack is therefore critical for discharge modelling. A rainfall simulator and water enriched by deuterium were used for the study of rainwater behaviour during an artificial rain-on-snow event. An area of 1 m2 of the snow sample, which was 1.2 m deep, consisting of ripped coarse-grained snow, was sprayed during the experiment with deuterium enriched water. The outflow from the snowpack was measured and samples of outflow water were collected. The isotopic content of deuterium was further analyzed from these samples by means of laser spectroscopy for the purpose of hydrograph separation. The concentration of deuterium in snow before and after the experiment was also investigated. The deuterium enriched water above the natural concentration of deuterium in snowpack was detected in the outflow in 7th minute from start of spraying, but the significant increase of deuterium concentration in outflow was observed in 19th minute. The isotopic hydrograph separation estimated, that deuterium enriched rainwater became the major part (> 50% volumetric) of the outflow in 28th minute. The culmination of the outflow (1.23 l min-1) as well as deuterium enriched rainwater fraction (63.5%) in it occurred in 63th minute, i.e. right after the end of spraying. In total, 72.7 l of deuterium enriched water was sprayed on the snowpack in 62 minutes. Total volume of outflow (after 12.3 hours) water was 97.4 l, which contained 48.3 l of deuterium enriched water (i.e. 49.6 %) and 49.1 l (50.4 %) of the melted snowpack. The volume of 24.4 l of deuterium enriched spray-water was stored in the snowpack. The

  12. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  13. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  14. Hydrogen isotope separation from water

    DOEpatents

    Jensen, R.J.

    1975-09-01

    A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

  15. Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) Useful in Geochemical and Environmental Sciences.

    PubMed

    Pin, Christian; Gannoun, Abdelmouhcine

    2017-02-21

    A fast and efficient sample preparation method in view of isotope ratio measurements is described, allowing the separation of 11 elements involved, either as "parent" or as "daughter" isotopes, in six radiogenic isotope systems used as chronometers and tracers in earth, planetary, and environmental sciences. The protocol is based on small extraction chromatographic columns, used either alone or in tandem, through which a single nitric acid solution is passed, without any intervening evaporation step. The columns use commercially available extraction resins (Sr resin, TRU resin, Ln resin, RE resin, and again Ln resin for isolating Sr and Pb, LREE then La-Ce-Nd-Sm, Lu(Yb), and Hf, Th, and U, respectively) along with an additional, in-house prepared resin for separating Rb. A simplified scheme is proposed for samples requiring the separation of Sr, Pb, Nd, and Hf only. Adverse effects of troublesome major elements (Fe 3+ , Ti) are circumvented by masking with ascorbic acid and hydrofluoric acid, respectively. Typical recoveries in the 85-95% range are achieved, with procedural blanks of 10-100 pg, negligible with regard to the amounts of analytes processed. The fractions separated are suitable for high precision isotope ratio measurements by TIMS or MC-ICP-MS, as demonstrated by the repeat analyses of several international reference materials of basaltic composition for 87 Sr/ 86 Sr, 208,207,206 Pb/ 204 Pb, 143 Nd/ 144 Nd, 176 Hf/ 177 Hf, and 230 Th/ 232 Th. Concentration data could be obtained by spiking and equilibrating the sample with appropriate isotopic tracers before the onset of the separation process and, finally, measuring the isotope ratios modified by the isotope dilution process.

  16. Geological and Geochemical Characteristics of Skarn Type Lead-Zinc Deposit in Baoshan Block, Yunnan Province

    NASA Astrophysics Data System (ADS)

    Yao, Xue; Wang, Peng

    2017-11-01

    Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.

  17. Separation of Platinum from Palladium and Iridium in Iron Meteorites and Accurate High-Precision Determination of Platinum Isotopes by Multi-Collector ICP-MS.

    PubMed

    Hunt, Alison C; Ek, Mattias; Schönbächler, Maria

    2017-12-01

    This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.

  18. A charge-stabilizing, multimodular, ferrocene-bis(triphenylamine)-zinc-porphyrin-fullerene polyad.

    PubMed

    Wijesinghe, Channa A; El-Khouly, Mohamed E; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2013-07-15

    A novel multimodular donor-acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge-stabilizing, photosynthetic-antenna/reaction-center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge-separation/hole-migration events leading to the creation of a long-lived charge-separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3-21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet-singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge-separated state persisted for about 8.5 μs and was governed by the distance between the final charge-transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge-stabilizing triphenylamine entities located on the zinc-porphyrin macrocycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples.

    PubMed

    Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang

    2015-01-01

    Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed

  20. Hydrocracking with molten zinc chloride catalyst containing 2-12% ferrous chloride

    DOEpatents

    Zielke, Clyde W.; Bagshaw, Gary H.

    1981-01-01

    In a process for hydrocracking heavy aromatic polynuclear carbonaceous feedstocks to produce hydrocarbon fuels boiling below about 475.degree. C. by contacting the feedstocks with hydrogen in the presence of a molten zinc chloride catalyst and thereafter separating at least a major portion of the hydrocarbon fuels from the spent molten zinc chloride catalyst, an improvement comprising: adjusting the FeCl.sub.2 content of the molten zinc chloride to from about 2 to about 12 mol percent based on the mixture of ferrous chloride and molten zinc chloride.

  1. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    NASA Astrophysics Data System (ADS)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  2. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    PubMed

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES.

  3. Sink-float ferrofluid separator applicable to full scale nonferrous scrap separation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Design and performance of a ferrofluid levitation separator for recovering nonferrous metals from shredded automobiles are reported. The scrap separator uses an electromagnet to generate a region of constant density within a pool of ferrofluid held between the magnetic poles; a saturated kerosene base ferrofluid as able to float all common industrial metals of interest. Conveyors move the scrap into the ferrofluid for separation according to density. Results of scrap mixture separation studies establish the technical feasibility of relatively pure aluminum alloy and zinc alloy fractions from shredded automobile scrap by this ferrofluid levitation process. Economic projections indicate profitable operation for shredders handling more than 300 cars per day.

  4. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  5. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  6. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  7. Zn and C isotopic evidence of climatic change during the Marinoan

    NASA Astrophysics Data System (ADS)

    Thiemens, M. M.; Moynier, F.; Koeberl, C.; Thiemens, M. H.; Shaheen, R.; Gyollai, I.; Popp, F.; Chong, K.

    2011-12-01

    The "Snowball Earth" events of the Cryogenian period are renowned for their remarkable chemical and isotopic signatures left in the geological record. Through analysis of post Marinoan glaciation cap carbonates from Namibia, specifically from Fransfontein, the Khowarib Valley, and Naraachamspos, a multi isotopic study was undertaken. We analyzed the δ 13C of chemically isolated calcite and dolomite. A moderate depletion of 13C in calcite (δ 13C<0% V-PDB) associated with global glaciations was observed, confirming the event. Associated dolomites also show a 13C depletion, but at a much lower magnitude. Zinc is a trace element that is necessary for all forms of life. Zn does not undergo redox cycling under normal environmental conditions, and biological uptake is one of the few processes that produces isotopic fractionation. This fractionation is in the range of 0.1 permil for the 66Zn/64Zn ratio (δ 66Zn in permil deviation), however with the advent of multi-collection inductively-coupled plasma mass spectrometry (MC-ICP-MS) such variations have become resolvable. We also have measured the Zinc composition of multiple species of lab cultured archaea, and found that the cells are enriched in the light isotopes of Zn compared to the culture medium. By measuring Zn levels in the Cap Carbonates, we seek corroboration for the carbon depletion we find during the glaciation. Zinc should undergo a similarly significant alteration at the mass extinction from climatic shifts inherent to a worldwide glaciation. We find the samples to be relatively consistent, with a δ 66Zn of approximately 0.30 to 0.40 in most places, with a δ 68Zn of double that, values typical of terrestrial rocks. Several sites have a much larger fractionation, with δ 66Zn of up to 0.90 in the Khowarib Valley, and up to 1.06 in the clays at the entrance to the South Valley. These isotopic compositions may be indicative of the massive climatic event leading to the formation of the cap carbonates.

  8. Method for laser induced isotope enrichment

    DOEpatents

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  9. Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling

    NASA Astrophysics Data System (ADS)

    Hunt, Alison C.; Cook, David L.; Lichtenberg, Tim; Reger, Philip M.; Ek, Mattias; Golabek, Gregor J.; Schönbächler, Maria

    2018-01-01

    The short-lived 182Hf-182W decay system is a powerful chronometer for constraining the timing of metal-silicate separation and core formation in planetesimals and planets. Neutron capture effects on W isotopes, however, significantly hamper the application of this tool. In order to correct for neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron dosimeter. This study applies this method to IAB iron meteorites, in order to constrain the timing of metal segregation on the IAB parent body. The ε182W values obtained for the IAB iron meteorites range from -3.61 ± 0.10 to -2.73 ± 0.09. Correlating εiPt with ε182W data yields a pre-neutron capture ε182W of -2.90 ± 0.06. This corresponds to a metal-silicate separation age of 6.0 ± 0.8 Ma after CAI for the IAB parent body, and is interpreted to represent a body-wide melting event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic break-up and subsequent reassembly of the parent body. Thermal models of the interior evolution that are consistent with these estimates suggest that the IAB parent body underwent metal-silicate separation as a result of internal heating by short-lived radionuclides and accreted at around 1.4 ± 0.1 Ma after CAIs with a radius of greater than 60 km.

  10. Method for sequential injection of liquid samples for radioisotope separations

    DOEpatents

    Egorov, Oleg B.; Grate, Jay W.; Bray, Lane A.

    2000-01-01

    The present invention is a method of separating a short-lived daughter isotope from a longer lived parent isotope, with recovery of the parent isotope for further use. Using a system with a bi-directional pump and one or more valves, a solution of the parent isotope is processed to generate two separate solutions, one of which contains the daughter isotope, from which the parent has been removed with a high decontamination factor, and the other solution contains the recovered parent isotope. The process can be repeated on this solution of the parent isotope. The system with the fluid drive and one or more valves is controlled by a program on a microprocessor executing a series of steps to accomplish the operation. In one approach, the cow solution is passed through a separation medium that selectively retains the desired daughter isotope, while the parent isotope and the matrix pass through the medium. After washing this medium, the daughter is released from the separation medium using another solution. With the automated generator of the present invention, all solution handling steps necessary to perform a daughter/parent radionuclide separation, e.g. Bi-213 from Ac-225 "cow" solution, are performed in a consistent, enclosed, and remotely operated format. Operator exposure and spread of contamination are greatly minimized compared to the manual generator procedure described in U.S. patent application Ser. No. 08/789,973, now U.S. Pat. No. 5,749,042, herein incorporated by reference. Using 16 mCi of Ac-225 there was no detectable external contamination of the instrument components.

  11. Method and apparatus for separation of heavy and tritiated water

    DOEpatents

    Lee, Myung W.

    2001-01-01

    The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.

  12. Gaseous isotope separation using solar wind phenomena.

    PubMed

    Wang, C G

    1980-12-01

    A large evacuated drum-like chamber fitted with supersonic nozzles in the center, with the chamber and the nozzles corotating, can separate gaseous fluids according to their molecular weights. The principle of separation is essentially the same as that of the solar wind propagation, in which components of the plasma fluid are separated due to their difference in the time-of-flight. The process can inherently be very efficient, serving as a pump as well as a separator, and producing well over 10(5) separative work units (kg/year) for the hydrogen/deuterium mixture at high-velocity flows.

  13. Intramolecular carbon and nitrogen isotope analysis by quantitative dry fragmentation of the phenylurea herbicide isoproturon in a combined injector/capillary reactor prior to GC separation.

    PubMed

    Penning, Holger; Elsner, Martin

    2007-11-01

    Potentially, compound-specific isotope analysis may provide unique information on source and fate of pesticides in natural systems. Yet for isotope analysis, LC-based methods that are based on the use of organic solvents often cannot be used and GC-based analysis is frequently not possible due to thermolability of the analyte. A typical example of a compound with such properties is isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea), belonging to the worldwide extensively used phenylurea herbicides. To make isoproturon accessible to carbon and nitrogen isotope analysis, we developed a GC-based method during which isoproturon was quantitatively fragmented to dimethylamine and 4-isopropylphenylisocyanate. Fragmentation occurred only partially in the injector but was mainly achieved on a heated capillary column. The fragments were then chromatographically separated and individually measured by isotope ratio mass spectrometry. The reliability of the method was tested in hydrolysis experiments with three isotopically different batches of isoproturon. For all three products, the same isotope fractionation factors were observed during conversion and the difference in isotope composition between the batches was preserved. This study demonstrates that fragmentation of phenylurea herbicides does not only make them accessible to isotope analysis but even enables determination of intramolecular isotope fractionation.

  14. Fabrication and testing of large size nickel-zinc cells

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1977-01-01

    The design and construction of nickel zinc cells, containing sintered nickel electrodes and asbestos coated inorganic separator materials, were outlined. Negative electrodes were prepared by a dry pressing process while various inter-separators were utilized on the positive electrodes, consisting of non-woven nylon, non-woven polypropylene, and asbestos.

  15. Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength

    NASA Astrophysics Data System (ADS)

    Bryan, Allison L.; Dong, Shuofei; Wilkes, Elise B.; Wasylenki, Laura E.

    2015-05-01

    Marine ferromanganese sediments represent one of the largest sinks from global seawater for Zn, a critical trace metal nutrient. These sediments are variably enriched in heavier isotopes of Zn relative to deep seawater, and some are among the heaviest natural samples analyzed to date. New experimental results demonstrate that adsorption of Zn to poorly crystalline Mn oxyhydroxide results in preferential association of heavier isotopes with the sorbent phase. At low ionic strength our experimental system displayed a short-lived kinetic isotope effect, with light isotopes adsorbed to birnessite (Δ66/64Znadsorbed-dissolved ∼ -0.2‰). After 100 h the sense of fractionation was opposite, such that heavier isotopes were preferentially adsorbed at steady state, but the magnitude of Δ66/64Znadsorbed-dissolved was indistinguishable from zero (+0.05 ± 0.08‰). At high ionic strength, we observed preferential sorption of heavy isotopes, with a strong negative correlation between Δ66/64Znadsorbed-dissolved and the percentage of Zn on the birnessite. Values of Δ66/64Znadsorbed-dissolved ranged from nearly +3‰ at low surface loading to +0.16‰ at high surface loading. Based on previous EXAFS work we infer that Zn adsorbs first as tetrahedral, inner-sphere complexes at low surface loading, with preferential incorporation of heavier isotopes relative to the octahedral Zn species predominating in solution. As surface loading increases, so does the proportion of Zn adsorbing as octahedral complexes, thus diminishing the magnitude of fractionation between the dissolved and adsorbed pools of Zn. The magnitude of fractionation at high ionic strength is also governed by aqueous speciation of Zn in synthetic seawater; a substantial fraction of Zn ions reside in chloro complexes, which preferentially incorporate light Zn isotopes, and this drives the adsorbed pool to be heavier relative to the bulk solution than it was at low ionic strength. Our results explain the observation

  16. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  17. Isotopic separation of He-3/He-4 from solar wind gases evolved from the lunar regolith

    NASA Astrophysics Data System (ADS)

    Wilkes, William R.; Wittenberg, Layton J.

    The potential benefits of He-3 when utilized in a nuclear fusion reactor to provide clean, safe electricity in the 21st century for the world's inhabitants has been documented. Unfortunately, He is scarce on earth. Large quantities of He-3, perhaps a million tons, are embedded in the lunar regolith, presumably implanted by the solar wind together with other elements, notably He-4, H, C, and N. Several studies have suggested processing the lunar regolith and recovering these valuable solar wind gases. Once released, these gases can be separated for use. The separation of helium isotopes is described in this paper. He-3 constitutes only 400 at. ppm of lunar He, too dilute to separate economically by distillation alone. A 'superfluid' separator is being considered to preconcentrate the He-3. The superfluid separator consists of a porous filter in a tube maintained at a temperature of 2.17 K or less. Although the He-4, which is superfluid below 2.17 K, flows readily through the filter, the He is blocked by the filter, and becomes enriched at the feed end. He can be enriched to about 10 percent in such a system. The enriched product from the superfluid separation serves as a feed to a distillation apparatus operating at a pressure of 9 kPa, with a boiler temperature of 2.4 K, and a condenser temperature of 1.6 K. Under constant flow conditions, a 99.9 percent enriched He product can be produced in this apparatus. The heat rejection load of the refrigeration equipment necessary to cool the separation operations would be conducted during the lunar nights.

  18. Development and fabrication of large vented nickel-zinc cells

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1975-01-01

    A preliminary cell design for a 300AH vented nickel-zinc cell was established based on volume requirements and cell component materials selected by NASA Lewis Research Center. A 100AH cell configuration was derived from the 300AH cell design utilizing the same size electrodes, separators, and cell terminal hardware. The first cells fabricated were four groups of three cells each in the 100AH size. These 100AH experimental nickel-zinc cells had as common components the nickel positive electrodes (GFM), flexible inorganic separator (GFM) bags on the negative electrodes, pressed powder zinc oxide electrodes, and cell containers with hardware. The variations introduced were four differing electrolyte absorber (interseparator) systems used to encase the nickel positive electrodes of each cell group. The four groups of 100AH experimental vented nickel-zinc cells were tested to determine, based on cell performance, the best two interseparator systems. Using the two interseparator systems, two groups of experimental 300AH cells were fabricated. Each group of three cells differed only in the interseparator material used. The six cells were filled, formed and tested to evaluate the interseparator materials and investigate the performance characteristics of the 300AH cell configuration and its components.

  19. Decomposition Mechanism and Decomposition Promoting Factors of Waste Hard Metal for Zinc Decomposition Process (ZDP)

    NASA Astrophysics Data System (ADS)

    Pee, J. H.; Kim, Y. J.; Kim, J. Y.; Seong, N. E.; Cho, W. S.; Kim, K. J.

    2011-10-01

    Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 °C, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of γ-β1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 °C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.

  20. The study of zinc ions binding to casein.

    PubMed

    Pomastowski, P; Sprynskyy, M; Buszewski, B

    2014-08-01

    The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Mass dependence of calcium isotope fractionations in crown-ether resin chromatography.

    PubMed

    Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Tositaka; Sakuma, Yoichi; Suzuki, Tatsuya; Umehara, Saori; Kishimoto, Tadahumi

    2010-06-01

    Benzo 18-crown-6-ether resin was synthesised by the phenol condensation polymerisation process in porous silica beads, of which particle diameter was ca 60micro Calcium adsorption chromatography was performed with the synthesised resin packed in a glass column. The effluent was sampled in fractions, and the isotopic abundance ratios of (42)Ca, (43)Ca, (44)Ca, and (48)Ca against (40)Ca were measured by a thermo-ionisation mass spectrometer. The enrichment of heavier calcium isotopes was observed at the front boundary of calcium adsorption chromatogram. The mass dependence of mutual separation of calcium isotopes was analysed by using the three-isotope-plots method. The slopes of three-isotope-plots indicate the relative values of mutual separation coefficients for concerned isotopic pairs. The results have shown the normal mass dependence; isotope fractionation is proportional to the reduced mass difference, (M - M')/MM', where M and M' are masses of heavy and light isotope, respectively. The mass dependence clarifies that the isotope fractionations are originated from molecular vibration. The observed separation coefficient epsilon is 3.1x10(-3) for the pair of (40)Ca and (48)Ca. Productivity of enriched (48)Ca by crown-ether-resin was discussed as the function of the separation coefficient and the height equivalent to the theoretical plate.

  2. Investigating the Relationship Between Soil Water Mobility and Stable Isotope Composition with Implications for the Ecohydrologic Separation Hypothesis

    NASA Astrophysics Data System (ADS)

    Shuler, J.; McNamara, J. P.; Benner, S. G.; Kohn, M. J.; Evans, S.

    2017-12-01

    The ecohydrologic separation (ES) hypothesis states that streams and plants return different soil water compartments to the atmosphere and that these compartments bear distinct isotopic compositions that can be used to infer soil water mobility. Recent studies have found isotopic evidence for ES in a variety of ecosystems, though interpretations of these data vary. ES investigations frequently suffer from low sampling frequencies as well as incomplete or missing soil moisture and matric potential data to support assumptions of soil water mobility. We sampled bulk soil water every 2-3 weeks in the upper 1 m of a hillslope profile from May 2016 to July 2017 in a semi-arid watershed outside Boise, ID. Twig samples of three plant species were also collected concurrently. Plant and soil water samples extracted via cryogenic vacuum distillation were analyzed for δ2H and δ18O composition. Soil moisture and soil matric potential sensors were installed at five and four depths in the profile, respectively. Shallow bulk soil water was progressively enriched in both isotopes over the growing season and plotted along a soil evaporation line in a plot of δ2H versus δ18O. Plant water during the growing season plotted below both the Local Meteoric Water Line and soil evaporation line. Plant water isotopic composition could not be traced to any source sampled in this study. Additionally, soil moisture and matric potential data revealed that soils were well-drained and that mobile soil water was unavailable throughout most of the growing season at the depths sampled. Soil water isotopic composition alone failed to predict mobility as observed in soil moisture and matric potential data. These results underscore the need for standard hydrologic definitions for the mobile and immobile compartments of soil water in future studies of the ES hypothesis and ecohydrologic processes in general.

  3. Isotope geochemistry of waters affected by acid mine drainage in old labour sites (SE, Spain).

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Agudo, Ines; Hernandez-Cordoba, Manuel; Recio, Clemente

    2015-04-01

    The ore deposits of this zone have iron, lead and zinc as the main metal components. Iron is present in oxides, hydroxides, sulfides, sulfates, carbonates, and silicates; lead and zinc occur in sulfides (galena and sphalerite, respectively), carbonates, sulfates, and lead or zinc-bearing (manganese, iron) oxides. Mining started with the Romans and activity peaked in the second half of the 19th century and throughout the 20th century until the 1980's. From 1940 to 1957, mineral concentration was made by froth flotation and, prior to this, by gravimetric techniques. The mining wastes, or tailings, with a very fine particle size were deposited inland (tailings dams) and, since 1957, huge releases were made in directly the sea coast. The objective of this work was to evaluate processes affecting waters from abandoned mine sites by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. Several common chemical and physical processes, such as evaporation, water-rock interaction and mixing could alter water isotopic composition. Evaporation, which causes an enrichment in δD and δ18O in the residual water, is an important process in semiarid areas. The results obtained indicate that, for sites near the coast, waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by A. ferrooxidans, while at depth, sulfate reduction occurred.

  4. Zinc in an ultraoligotrophic lake food web.

    PubMed

    Montañez, Juan Cruz; Arribére, María A; Rizzo, Andrea; Arcagni, Marina; Campbell, Linda; Ribeiro Guevara, Sergio

    2018-06-01

    Zinc (Zn) bioaccumulation and trophic transfer were analyzed in the food web of Lake Nahuel Huapi, a deep, unpolluted ultraoligotrophic system in North Patagonia. Benthic macroinvertebrates, plankton, and native and introduced fish were collected at three sites. The effect of pyroclastic inputs on Zn levels in lacustrine food webs was assessed by studying the impact of the eruption of Puyehue-Cordón Caulle volcanic complex (PCCVC) in 2011, by performing three sampling campaigns immediately before and after the PCCVC eruption, and after 2 years of recovery of the ecosystem. Zinc trophodynamics in L. Nahuel Huapi food web was assessed using nitrogen stable isotopes (δ 15 N). There was no significant increase of Zn concentrations ([Zn]) in L. Nahuel Huapi biota after the PCCVC eruption, despite the evidence of [Zn] increase in lake water that could be associated with volcanic ash leaching. The organisms studied exhibited [Zn] above the threshold level considered for dietary deficiency, regulating Zn adequately even under a catastrophic situations like PCCVC 2011 eruption. Zinc concentrations exhibited a biodilution pattern in the lake's food web. To the best of our knowledge, present research is the first report of Zn biodilution in lacustrine systems, and the first to study Zn transfer in a freshwater food web including both pelagic and benthic compartments.

  5. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong

    2018-01-01

    Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.

  6. Dietary Zinc Deficiency Affects Blood Linoleic Acid: Dihomo-γ-linolenic Acid (LA:DGLA) Ratio; a Sensitive Physiological Marker of Zinc Status in Vivo (Gallus gallus)

    PubMed Central

    Reed, Spenser; Qin, Xia; Ran-Ressler, Rinat; Brenna, James Thomas; Glahn, Raymond P.; Tako, Elad

    2014-01-01

    Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. To date, sensitive and specific biological markers of zinc status are still needed. The aim of this study was to evaluate Gallus gallus as an in vivo model in the context of assessing the sensitivity of a previously unexplored potential zinc biomarker, the erythrocyte linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Diets identical in composition were formulated and two groups of birds (n = 12) were randomly separated upon hatching into two diets, Zn(+) (zinc adequate control, 42.3 μg/g zinc), and Zn(−) (zinc deficient, 2.5 μg/g zinc). Dietary zinc intake, body weight, serum zinc, and the erythrocyte fatty acid profile were measured weekly. At the conclusion of the study, tissues were collected for gene expression analysis. Body weight, feed consumption, zinc intake, and serum zinc were higher in the Zn(+) control versus Zn(−) group (p < 0.05). Hepatic TNF-α, IL-1β, and IL-6 gene expression were higher in the Zn(+) control group (p < 0.05), and hepatic Δ6 desaturase was significantly higher in the Zn(+) group (p < 0.001). The LA:DGLA ratio was significantly elevated in the Zn(−) group compared to the Zn(+) group (22.6 ± 0.5 and 18.5 ± 0.5, % w/w, respectively, p < 0.001). This study suggests erythrocyte LA:DGLA is able to differentiate zinc status between zinc adequate and zinc deficient birds, and may be a sensitive biomarker to assess dietary zinc manipulation. PMID:24658588

  7. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage.

    PubMed

    Hemilä, Harri

    2017-05-01

    To compare the efficacy of zinc acetate lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of zinc acetate found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as zinc acetate lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further.

  8. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    PubMed

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation. © 2013 Elsevier B.V. All rights reserved.

  10. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  11. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  12. Dry phase reactor for generating medical isotopes

    DOEpatents

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  13. Zinc

    MedlinePlus

    ... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...

  14. METHOD OF SEPARATING HYDROGEN ISOTOPES

    DOEpatents

    Salmon, O.N.

    1958-12-01

    The process of separating a gaseous mixture of hydrogen and tritium by contacting finely dlvided palladium with the mixture in order to adsorb the gases, then gradually heating the palladium and collecting the evolved fractlons, is described. The fraction first given off is richer in trltium than later fractions.

  15. Preliminary results from a microvolume, dynamically heated analytical column for preconcentration and separation of simple gases prior to stable isotopic analysis

    NASA Astrophysics Data System (ADS)

    Panetta, Robert James; Seed, Mike

    2016-04-01

    Stable isotope applications that call for preconcentration (i.e., greenhouse gas measurements, small carbonate samples, etc.) universally call for cryogenic fluids such as liquid nitrogen, dry ice slurries, or expensive external recirculation chillers. This adds significant complexity, first and foremost in the requirements to store and handle such dangerous materials. A second layer of complexity is the instrument itself - with mechanisms to physically move either coolant around the trap, or move a trap in or out of the coolant. Not to mention design requirements for hardware that can safely isolate the fluid from other sensitive areas. In an effort to simplify the isotopic analysis of gases requiring preconcentration, we have developed a new separation technology, UltiTrapTM (patent pending), which leverage's the proprietary Advanced Purge & Trap (APT) Technology employed in elemental analysers from Elementar Analysensysteme GmbH products. UltiTrapTM has been specially developed as a micro volume, dynamically heated GC separation column. The introduction of solid-state cooling technology enables sub-zero temperatures without cryogenics or refrigerants, eliminates all moving parts, and increases analytical longevity due to no boiling losses of coolant . This new technology makes it possible for the system to be deployed as both a focussing device and as a gas separation device. Initial data on synthetic gas mixtures (CO2/CH4/N2O in air), and real-world applications including long-term room air and a comparison between carbonated waters of different origins show excellent agreement with previous technologies.

  16. Characterization of diesel fuel by chemical separation combined with capillary gas chromatography (GC) isotope ratio mass spectrometry (IRMS).

    PubMed

    Harvey, Scott D; Jarman, Kristin H; Moran, James J; Sorensen, Christina M; Wright, Bob W

    2012-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for discovering fuel tax evasion schemes or for environmental forensic studies. Two urea adduction-based techniques were used to isolate the n-alkanes from the fuel. Both carbon isotope ratio (δ(13)C) and hydrogen isotope ratio (δD) values for the n-alkanes were then determined by CSIA in each sample. The samples investigated had δ(13)C values that ranged from -30.1‰ to -26.8‰, whereas δD values ranged from -83‰ to -156‰. Plots of δD versus δ(13)C with sample n-alkane points connected in order of increasing carbon number gave well-separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ(13)C, δD, or combined δ(13)C and δD data was applied to extract the maximum information content. PCA scores plots could clearly differentiate the samples, thereby demonstrating the potential of this approach for distinguishing (e.g., fingerprinting) fuel samples using δ(13)C and δD values. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia.

    PubMed

    Alarcon, Karl; Kolsteren, Patrick W; Prada, Ana M; Chian, Ana M; Velarde, Ruth E; Pecho, Iris L; Hoeree, Tom F

    2004-11-01

    Anemia is the most prevalent nutritional deficiency in the world. Attempts to improve iron indexes are affected by deficiency of and interaction between other micronutrients. Our goal was to assess whether zinc added to iron treatment alone or with vitamin A improves iron indexes and affects diarrheal episodes. This was a randomized, placebo-controlled, double-blind trial conducted in Peru. Anemic children aged 6-35 mo were assigned to 3 treatment groups: ferrous sulfate (FS; n = 104), ferrous sulfate and zinc sulfate (FSZn; n = 109), and ferrous sulfate, zinc sulfate, and vitamin A (FSZnA; n = 110). Vitamin A or its placebo was supplied only once; iron and zinc were provided under supervision >/=1 h apart 6 d/wk for 18 wk. The prevalence of anemia was 42.97%. The increase in hemoglobin in the FS group (19.5 g/L) was significantly less than that in the other 2 groups (24.0 and 23.8 g/L in the FSZn and FSZnA groups, respectively). The increase in serum ferritin in the FS group (24.5 mug/L) was significantly less than that in the other 2 groups (33.0 and 30.8 mug/L in the FSZn and FSZnA groups, respectively). The median duration of diarrhea and the mean number of stools per day was significantly higher in the FS group than in other 2 groups (P < 0.005). Adding zinc to iron treatment increases hemoglobin response, improves iron indexes, and has positive effects on diarrhea. No additional effect of vitamin A was found.

  18. Metal stable isotopes in weathering and hydrology: Chapter 10

    USGS Publications Warehouse

    Bullen, Thomas D.; Holland, Heinrich; Turekian, K.

    2014-01-01

    This chapter highlights some of the major developments in the understanding of the causes of metal stable isotope compositional variability in and isotope fractionation between natural materials and provides numerous examples of how that understanding is providing new insights into weathering and hydrology. At this stage, our knowledge of causes of stable isotope compositional variability among natural materials is greatest for the metals lithium, magnesium, calcium, and iron, the isotopes of which have already provided important information on weathering and hydrological processes. Stable isotope compositional variability for other metals such as strontium, copper, zinc, chromium, barium, molybdenum, mercury, cadmium, and nickel has been demonstrated but is only beginning to be applied to questions related to weathering and hydrology, and several research groups are currently exploring the potential. And then there are other metals such as titanium, vanadium, rhenium, and tungsten that have yet to be explored for variability of stable isotope composition in natural materials, but which may hold untold surprises in their utility. This impressive list of metals having either demonstrated or potential stable isotope signals that could be used to address important unsolved questions related to weathering and hydrology, constitutes a powerful toolbox that will be increasingly utilized in the coming decades.

  19. [Baseflow separation methods in hydrological process research: a review].

    PubMed

    Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui

    2011-11-01

    Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.

  20. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  1. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  2. System for recovery of daughter isotopes from a source material

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Lewis, Leroy C [Idaho Falls, ID; Henscheid, Joseph P [Idaho Falls, ID

    2009-08-04

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  3. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  4. Kinetic control on Zn isotope signatures recorded in marine diatoms

    NASA Astrophysics Data System (ADS)

    Köbberich, Michael; Vance, Derek

    2017-08-01

    Marine diatoms dominate the oceanic cycle of the essential micronutrient zinc (Zn). The stable isotopes of zinc and other metals are increasingly used to understand trace metal micronutrient cycling in the oceans. One clear feature of the early isotope data is the heavy Zn isotope signature of the average oceanic dissolved pool relative to the inputs, potentially driven by uptake of light isotopes into phytoplankton cells and export to sediments. However, despite the fact that diatoms strip Zn from surface waters across the Antarctic polar front in the Southern Ocean, the local upper ocean is not isotopically heavy. Here we use culturing experiments to quantify the extent of Zn isotope fractionation by diatoms and to elucidate the mechanisms driving it. We have cultured two different open-ocean diatom species (T. oceanica and Chaetoceros sp.) in a series of experiments at constant medium Zn concentration but at bioavailable medium Fe ranging from limiting to replete. We find that T. oceanica can maintain high growth rates and Zn uptake rates over the full range of bioavailable iron (Fe) investigated, and that the Zn taken up has a δ66Zn that is unfractionated relative to that of the bioavailable free Zn in the medium. The studied representative of the genus Chaetoceros, on the other hand, shows more significantly reduced Zn uptake rates at low Fe and records more variable biomass δ66Zn signatures, of up to 0.85‰ heavier than the medium. We interpret the preferential uptake of heavy isotopes at extremely low Zn uptake rates as potentially due to either of the following two mechanisms. First, the release of extracellular polymeric substances (EPS), at low Fe levels, may preferentially scavenge heavy Zn isotopes. Second, the Zn uptake rate may be slow enough to establish pseudo-equilibrium conditions at the transporter site, with heavy Zn isotopes forming more stable surface complexes. Thus we find that, in our experiments, Fe-limitation exerts a key control that

  5. Functioning of inorganic/organic battery separators in silver-zinc cells

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1976-01-01

    The results of three experimental studies related to the inorganic/organic battery separator operating mechanism are described: saponification of the plasticizer, resistivity of the simulated separators, and zincate diffusion through the separators. The inorganic/organic separator appears to be a particular example of a general class of ionic conducting films composed of inorganic fillers and/or substrates bonded together by an organic polymer containing an incompatible plasticizer that may be leached by the electrolyte. The I/O separator functions as a microporous film of varying tortuosity with essentially no specific chemical inhibition to zincate diffusion.

  6. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will bemore » installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.« less

  7. Golan Heights Groundwater Systems: Separation By REE+Y And Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Siebert, C.; Geyer, S.; Knoeller, K.; Roediger, T.; Weise, S.; Dulski, P.; Moeller, P.; Guttman, J.

    2008-12-01

    In a semi-arid to arid country like Israel, all freshwater resources are under (over-) utilization. Particularly, the Golan Heights rank as one of the most important extraction areas of groundwater of good quality and quantity. Additionally the mountain range feed to a high degree the most important freshwater reservoir of Israel, the Sea of Galilee. Hence, knowing the sources and characters of the Golan Heights groundwater systems is an instantaneous demand regarding sustainable management and protection. Within the "German-Israeli-Jordanian-Palestinian Joint Research Program for the Sustainable Utilisation of Aquifer Systems", hundreds of water samples were taken from all over the Jordan-Dead Sea rift-system to understand groundwater flow-systems and salinisation. For that purpose, each sample was analysed for major and minor ions, rare earth elements including yttrium (REY) and stable isotopes of water (d18O, d2H). The REY distribution in groundwater is established during infiltration by the first water-rock interaction and consequently reflects the leachable components of sediments and rocks of the recharge area. In well- developed flow-systems, REY are adsorbed onto pore surfaces are in equilibrium with the percolating groundwater, even if the lithology changes (e.g. inter-aquifer flow). Thus, groundwater sampled from wells and springs still show the REY distribution pattern established in the recharge area. Since high temperatures do not occur in Golan Heights, d2H and d18O are less controlled by water-rock interaction than by climatic and geomorphological factors at the time of replenishment. Applying the REY signature as a grouping criterion of groundwaters, d18O vs. d2H plots yield a new dimension in interpreting isotope data. The combined use of hydrochemical and isotopic methods enabled us to contain the areas of replenishment and the flow-paths of all investigated groundwater in the Golan Heights. Despite location, salinity or temperature of spring or

  8. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    PubMed

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  9. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  10. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    NASA Astrophysics Data System (ADS)

    Avraamides, J.; Senanayake, G.; Clegg, R.

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2 M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25 °C. Alkaline leaching with 6 M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30 min at 30 °C using 0.1-1.0 M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1 M to 2 M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide.

  11. Upregulation of Zinc Absorption Matches Increases in Physiologic Requirements for Zinc in Women Consuming High- or Moderate-Phytate Diets during Late Pregnancy and Early Lactation.

    PubMed

    Hambidge, K Michael; Miller, Leland V; Mazariegos, Manolo; Westcott, Jamie; Solomons, Noel W; Raboy, Victor; Kemp, Jennifer F; Das, Abhik; Goco, Norman; Hartwell, Ty; Wright, Linda; Krebs, Nancy F

    2017-06-01

    Background: Estimated physiologic requirements (PRs) for zinc increase in late pregnancy and early lactation, but the effect on dietary zinc requirements is uncertain. Objective: The aim of this study was to determine changes in daily fractional absorbed zinc and total absorbed zinc (TAZ) from ad libitum diets of differing phytate contents in relation to physiologic zinc requirements during pregnancy and lactation. Methods: This was a prospective observational study of zinc absorption at 8 (phase 1) and 34 (phase 2) wk of gestation and 2 (phase 3) and 6 (phase 4) mo of lactation. Participants were indigenous Guatemalan women of childbearing age whose major food staple was maize and who had been randomly assigned in a larger study to either of 2 ad libitum feeding groups: low-phytate maize (LP; 1.6 mg/g; n = 14) or control maize (C; 7.1 mg/g; n = 8). Total dietary zinc (milligrams per day, TDZ) and phytate (milligrams per day) were determined from duplicate diets and fractional absorption (FAZ) by dual isotope ratio technique (TAZ = TDZ × FAZ). All variables were examined longitudinally and by group and compared with PRs. TAZ values at later phases were compared with phase 1. Measured TAZ was compared with predicted TAZ for nonpregnant, nonlactating (NPNL) women. Results: TAZ was greater in the LP group than in the C group at all phases. All variables increased from phase 1 to phases 2 and 3 and declined at phase 4. TAZ increased by 1.25 mg/d ( P = 0.045) in the C group and by 0.81 mg/d ( P = 0.058) in the LP group at phase 2. At phase 3, the increases were 2.66 mg/d ( P = 0.002) in the C group and 2.28 mg/d ( P = 0.0004) in the LP group, compared with a 1.37-mg/d increase in PR. Measured TAZ was greater than predicted values in phases 2-4. Conclusions: Upregulation of zinc absorption in late pregnancy and early lactation matches increases in PRs of pregnant and lactating women, regardless of dietary phytate, which has implications for dietary zinc requirements of

  12. Assessing the dietary bioavailability of metals associated with natural particles: Extending the use of the reverse labeling approach to zinc

    USGS Publications Warehouse

    Croteau, Marie-Noele; Cain, Daniel J.; Fuller, Christopher C.

    2017-01-01

    We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66Zn assimilation into the snail’s soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.

  13. Assessing the Dietary Bioavailability of Metals Associated with Natural Particles: Extending the Use of the Reverse Labeling Approach to Zinc.

    PubMed

    Croteau, Marie-Noële; Cain, Daniel J; Fuller, Christopher C

    2017-03-07

    We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67 Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66 Zn assimilation into the snail's soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.

  14. Calculations on Isotope Separation by Laser Induced Photodissociation of Polyatomic Molecules. Final Report

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1978-11-01

    This report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. Newton`s equations of motion were integrated for the atoms of the SF{sub 6} molecule including the laser field interaction. The first year`s work has been largely dedicated to obtaining a suitable interatomic potential valid for arbitrary configurations of the seven particles. This potential gives the correct symmetry of the molecule, the equilibrium configuration, the frequencies of the six distinct normal modes of oscillation and the correct (or assumed) value of the total potential energy of the molecule. Other conditions can easily be imposed in order to obtain a more refined potential energy function, for example, by making allowance for anharmonicity data. A suitable expression was also obtained for the interaction energy between a laser field and the polyatomic molecule. The electromagnetic field is treated classically, and it would be easily possible to treat the cases of time dependent pulses, frequency modulation and noise.

  15. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Recovery of Metal Values from Spent Zinc-Carbon Dry Cell Batteries

    NASA Astrophysics Data System (ADS)

    Khan, Majharul Haque; Gulshan, Fahmida; Kurny, A. S. W.

    2013-04-01

    Spent zinc-carbon dry cell batteries were characterized in the process of recovery of metal values. Zinc, manganese and steel were the major metallic materials constituting 63 % of the weight of spent batteries. Different components of the spent batteries were separately processed to extract the metallic values. A maximum of 92 % of total amount of zinc contained in the anodes could be extracted with a purity of over 99.0 % from the anodes by heating at 600 °C for 10 min in presence of 12 % NH4Cl flux. Spent electrolyte paste containing manganese and zinc as major metallic elements, was leached in sulfuric acid solution in presence of hydrogen peroxide as a reducing agent. The optimum condition for leaching was found to be concentration of sulfuric acid: 2.5 M, concentration of hydrogen peroxide: 10 %, temperature: 60 °C, stirring speed: 600 rpm and solid/liquid ratio 1:12. A maximum of 88 % manganese contained in the paste could be dissolved within 27 min of leaching under the optimized conditions. Dissolution of zinc under the same conditions was 97 %. A maximum of 69.89 % of manganese and 83.29 % of zinc contained in the leach liquor could be precipitated in the form of manganese carbonate and zinc oxalate.

  17. Levels of dissolved zinc and cadmium in some surface waters of western Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatoki, O.S.

    1993-12-31

    Dissolved zinc and cadmium in some surface waters of Western Nigeria were separated and quantified using anion exchange of their chloro-complexes and detected by atomic absorption spectrophotometry. Concentrations of zinc and cadmium found in tested water samples ranged from 0.99 to 2.97 mg L{sup {minus}1} and 0.13 to 0.17 mg L{sup {minus}1}, respectively. 35 refs., 2 tabs.

  18. Measurement of total Zn and Zn isotope ratios by quadrupole ICP-MS for evaluation of Zn uptake in gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Wolf, R.E.; Todd, A.S.; Brinkman, S.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.

    2009-01-01

    This study evaluates the potential use of stable zinc isotopes in toxicity studies measuring zinc uptake by the gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The use of stable isotopes in such studies has several advantages over the use of radioisotopes, including cost, ease of handling, elimination of permit requirements, and waste disposal. A pilot study using brown trout was performed to evaluate sample preparation methods and the ability of a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) system to successfully measure changes in the 67Zn/66Zn ratios for planned exposure levels and duration. After completion of the pilot study, a full-scale zinc exposure study using rainbow trout was performed. The results of these studies indicate that there are several factors that affect the precision of the measured 67Zn/66Zn ratios in the sample digests, including variations in sample size, endogenous zinc levels, and zinc uptake rates by individual fish. However, since these factors were incorporated in the calculation of the total zinc accumulated by the gills during the exposures, the data obtained were adequate for their intended use in calculating zinc binding and evaluating the influences of differences in water quality parameters.

  19. An infrared and Raman spectroscopic study of natural zinc phosphates.

    PubMed

    Frost, Ray L

    2004-06-01

    Zinc phosphates are important in the study of the phosphatisation of metals. Raman spectroscopy in combination with infrared spectroscopy has been used to characterise the zinc phosphate minerals. The minerals may be characterised by the patterns of the hydroxyl stretching vibrations in both the Raman and infrared spectra. Spencerite is characterised by a sharp Raman band at 3516 cm(-1) and tarbuttite by a single band at 3446 cm(-1). The patterns of the Raman spectra of the hydroxyl stretching region of hopeite and parahopeite are different in line with their differing crystal structures. The Raman spectrum of the PO4 stretching region shows better band separated peaks than the infrared spectra which consist of a complex set of overlapping bands. The position of the PO4 symmetric stretching mode can be used to identify the zinc phosphate mineral. It is apparent that Raman spectroscopy lends itself to the fundamental study of the evolution of zinc phosphate films.

  20. Method of capturing or trapping zinc using zinc getter materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  1. Photonuclear Production of Medical Isotopes

    NASA Astrophysics Data System (ADS)

    Weinandt, Nick

    2011-10-01

    Every year, more than 20 million people in the United States receive a nuclear medicine procedure. Many of the isotopes needed for these procedures are under-produced. Suppliers of the isotopes are usually located outside the United States, which presents a problem when the desired isotopes have short half-lives. Linear accelerators were investigated as a possible method of meeting isotope demand. Linear accelerators are cheaper, safer, and have lower decommissioning costs compared to nuclear reactors. By using (γ,p) reactions, the desired isotope can be separated from the target material due to the different chemical nature of each isotope. Isotopes investigated were Cu-67, In-111, and Lu-111. Using the results the photon flux Monte Carlo simulations, the expected activity of isotopes can be calculated. After samples were irradiated, a high purity germanium detector and signal processing apparatus were used to count the samples. The activity at the time of irradiation stop was then calculated. The uses of medical isotopes will also be presented. Thanks to Idaho State University, the Idaho Accelerator Center, and the National Science Foundation for supporting the research.

  2. New Fragment Separation Technology for Superheavy Element Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaughnessy, D A; Moody, K J; Henderson, R A

    2008-01-28

    This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physicallymore » separate the products from nuclear reactions based on their isotopic masses rather than their decay characteristics. The separator was designed to have a separation between isotopic masses of {+-}0.25 amu, which would enable the mass of element 114 isotopes to be measured with outstanding resolution, thereby confirming their discovery. In order to increase the production rate of element 114 nuclides produced via the {sup 244}Pu+{sup 48}Ca reaction, a new target technology was required. Instead of a traditional thin actinide target, the MASHA separator required a thick, ceramic-based Pu target that was thick enough to increase element 114 production while still being porous enough to allow reaction products to migrate out of the target and travel through the separator to the detector array located at the back end. In collaboration with UNLV, we began work on development of the Pu target for MASHA. Using waste-form synthesis technology, we began by creating zirconia-based matrices that would form a ceramic with plutonium oxide. We used samarium oxide as a surrogate for Pu and created ceramics that had varying amounts of the starting materials in order to establish trends in material density and porosity. The results from this work are described in more detail in Refs. [1,4,10]. Unfortunately, work on MASHA was delayed in Russia because

  3. Supramolecular complex of a fused zinc phthalocyanine-zinc porphyrin dyad assembled by two imidazole-C60 units: ultrafast photoevents.

    PubMed

    Follana-Berná, Jorge; Seetharaman, Sairaman; Martín-Gomis, Luis; Charalambidis, Georgios; Trapali, Adelais; Karr, Paul A; Coutsolelos, Athanassios G; Fernández-Lázaro, Fernando; D'Souza, Francis; Sastre-Santos, Ángela

    2018-03-14

    A new zinc phthalocyanine-zinc porphyrin dyad (ZnPc-ZnP) fused through a pyrazine ring has been synthesized as a receptor for imidazole-substituted C 60 (C 60 Im) electron acceptor. Self-assembly via metal-ligand axial coordination and the pertinent association constants in solution were determined by 1 H-NMR, UV-Vis and fluorescence titration experiments at room temperature. The designed host was able to bind up to two C 60 Im electron acceptor guest molecules to yield C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor supramolecular complex. The spectral data showed that the two binding sites behave independently with binding constants similar in magnitude. Steady-state fluorescence studies were indicative of an efficient singlet-singlet energy transfer from zinc porphyrin to zinc phthalocyanine within the fused dyad. Accordingly, the transient absorption studies covering a wide timescale of femto-to-milli seconds revealed ultrafast energy transfer from 1 ZnP* to ZnPc (k EnT ∼ 10 12 s -1 ) in the fused dyad. Further, a photo induced electron transfer was observed in the supramolecularly assembled C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor complex leading to charge separated states, which persisted for about 200 ns.

  4. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    USGS Publications Warehouse

    Bullen, Thomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  5. Improved, low cost inorganic-organic separators for rechargeable silver-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1979-01-01

    Several flexible, low-cost inorganic-organic separators with performance characteristics and cycle life equal to, or better than, the Lewis Research Center Astropower separator were developed. These new separators can be made on continuous-production equipment at about one-fourth the cost of the Astropower separator produced the same way. In test cells, these new separators demonstrate cycle life improvement, acceptable operating characteristics, and uniform current density. The various separator formulas, test cell construction, and data analysis are described.

  6. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    USGS Publications Warehouse

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among

  7. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF

  8. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  9. Efficacy of highly bioavailable zinc from fortified water: a randomized controlled trial in rural Beninese children.

    PubMed

    Galetti, Valeria; Kujinga, Prosper; Mitchikpè, Comlan Evariste S; Zeder, Christophe; Tay, Fabian; Tossou, Félicien; Hounhouigan, Joseph D; Zimmermann, Michael B; Moretti, Diego

    2015-11-01

    Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel point-of-use water ultrafiltration device configured with glass zinc plates to produce zinc-fortified, potable water. The objective was to determine zinc bioavailability from filtered water and the efficacy of zinc-fortified water in improving zinc status. In a crossover balanced study, we measured fractional zinc absorption (FAZ) from the zinc-fortified water in 18 healthy Swiss adults using zinc stable isotopes and compared it with zinc-fortified maize porridge. We conducted a 20-wk double-blind randomized controlled trial (RCT) in 277 Beninese school children from rural settings who were randomly assigned to receive a daily portion of zinc-fortified filtered water delivering 2.8 mg Zn (Zn+filter), nonfortified filtered water (Filter), or nonfortified nonfiltered water (Pump) from the local improved supply, acting as the control group. The main outcome was plasma zinc concentration (PZn), and the 3 groups were compared by using mixed-effects models. Secondary outcomes were prevalence of zinc deficiency, diarrhea prevalence, and growth. Geometric mean (-SD, +SD) FAZ was 7-fold higher from fortified water (65.9%; 42.2, 102.4) than from fortified maize (9.1%; 6.0, 13.7; P < 0.001). In the RCT, a significant time-by-treatment effect on PZn (P = 0.026) and on zinc deficiency (P = 0.032) was found; PZn in the Zn+filter group was significantly higher than in the Filter (P = 0.006) and Pump (P = 0.025) groups. We detected no effect on diarrhea or growth, but our study did not have the duration and power to detect such effects. Consumption of filtered water fortified with a low dose of highly bioavailable zinc is an effective intervention in children from rural African settings. Large community-based trials are needed to assess the

  10. A review of zinc oxide mineral beneficiation using flotation method.

    PubMed

    Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi

    2014-04-01

    In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. [Study on solid phase extraction spectrophotometric determination of zinc with 2-(2-quinolylazo)-5-dimthylaminophenol].

    PubMed

    Zhou, Shi-ping; Duan, Chang-qun; Liu, Hong-cheng; Hu, Qiu-fen

    2005-10-01

    A highly sensitive, selective and rapid method for the determination of zinc based on the rapid reaction of zinc(II) with 2-(2-quinolylazo)-5-dimthylaminophenol (QADMAP) and the solid phase extraction of zinc ion with anion exchange resin cartridge was developed. In the presence of pH 8.5 buffer solution and Triton X-100 medium, QADMAP can react with zinc(II) to form a stable 2 :1 complex (QADMAP:Zn(II)). The molar absorptivity is 1.22 x 10(5)L x moL(-1) x cm(-1) at 590 nm. Beer's law is obeyed in the range of 0-1.0 microg x mL(-1). The zinc ions in the samples can be enriched and separated by solid phase extraction with anion exchange resincartridge. Testing results show that recovery for zinc(II) was from 95% to 104%, and RSD was below 3%. This method was applied to the determination of zinc in water and food with good results.

  12. Zinc Fractional Absorption from a Representative Diet in Young Chinese Men and Women of the Shandong Rural Region.

    PubMed

    Wang, Cuiping; Lin, Xinying; Guo, Dongmei; Ding, Lili; Guo, Haifeng; Xu, Guifa; Cui, Xi; Wang, Xia

    2017-05-01

    The objective of this study was to investigate the zinc fractional absorption of young Chinese men and women from the Shandong rural region under the routine dietary pattern by stable isotope technique. Ten men and 10 women, aged 20 to 35 years, and with a representative diet during the experiment were recruited from the Shandong rural region. Stable 67 Zn was used as a tracer to label ZnCl 2 , and Yb was used to monitor the excretion of 67 Zn in urine and feces. All volunteers were given rice containing 4.0 mg 67 Zn and 1.0 mg Yb on the fourth day. Then the food and fecal samples of all subjects were collected for 12 consecutive days. The total zinc and the stable zinc isotope ratio of all samples were determined by atomic absorption spectrophotometer and thermal ionization mass spectrometer, respectively. The determination of the other nutrients was performed based on the Chinese National Standard Methods. Among volunteers, the daily intake of zinc was 15.50 mg, 103.33 % of recommended nutrient intake (RNI, set by the Chinese Nutrition Society) in men and 15.43 mg, 134.17 % in women. The fractional absorption of Zn was 23.42 ± 2.23 % in men, and 22.49 ± 2.19 % in women. The protein candidates got from the typical diets was 93.96 % of RNI in women. Calcium and ascorbic acid intakes were 76.23 % of RNI and 27.91 % of RNI in men, respectively and 51.17 % of RNI and 34.23 % of RNI in women, respectively. Our results showed that a typical meal for someone in the Shandong rural region presented an adequate intake of zinc and a moderate Zn bioavailability. The shortage of protein and the inappropriate protein pattern may play important roles in reducing zinc bioavailability.

  13. Copper, iron and zinc absorption, retention and status of young women fed vitamin B-6 deficient diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnlund, J.R.; Keyes, W.R.; Hudson, C.A.

    1991-03-11

    A study was conducted in young women to determine the effect of vitamin B-6 deficient diets on copper, iron and zinc metabolism. Young women were confined to a metabolic research unit for 84 and 98 days. They were fed a vitamin B-6 deficient formula diet initially, followed by food diet containing four increasing levels of vitamin B-6. Copper, iron and zinc absorption, retention and status were determined at intervals throughout the study. Absorption was determined using the stable isotopes {sup 65}Cu, {sup 54}Fe, and {sup 67}Zn. Status was based on serum copper and zinc, hemoglobin, hematocrit and mean corpuscular volume.more » Copper absorption averaged 18 {plus minus} 1% during vitamin B-6 depletion, significantly lower than 24 {plus minus} 1% during repletion, but serum copper was not affected and balance was positive. Iron absorption was not impaired significantly by vitamin B-6 deficient diets, but status declined during the depletion period. Zinc absorption averaged 40 {plus minus} 2% during depletion and 27 {plus minus} 2% during repletion. Zinc absorption and retention were significantly greater during vitamin B-6 depletion, but serum zinc declined suggesting the absorbed zinc was not available for utilization. The results suggest that vitamin B-6 depletion of young women may inhibit copper absorption, affect iron status and alter zinc metabolism. The effects of vitamin B-6 depletion differ markedly among these elements.« less

  14. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2008-10-15

    The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.

  15. Carbon isotope ratios and isotopic correlations between components in fruit juices

    NASA Astrophysics Data System (ADS)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  16. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    1980-06-01

    The feasibility of the nickel zinc battery for electric vehicle propulsion is discussed. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal manufacturing, and thermal management. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge applications. Shape change has been reduced significantly. Progress in the area of thermal management was significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation.

  17. Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint.

    PubMed

    Hermans, Joen; Osmond, Gillian; van Loon, Annelies; Iedema, Piet; Chapman, Robyn; Drennan, John; Jack, Kevin; Rasch, Ronald; Morgan, Garry; Zhang, Zhi; Monteiro, Michael; Keune, Katrien

    2018-06-04

    Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

  18. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    PubMed Central

    Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.

    2013-01-01

    Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081

  19. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application.

    PubMed

    Khonina, Tat'yana G; Ivanenko, Maria V; Chupakhin, Oleg N; Safronov, Alexander P; Bogdanova, Ekaterina A; Karabanalov, Maxim S; Permikin, Vasily V; Larionov, Leonid P; Drozdova, Lyudmila I

    2017-09-30

    Nanoparticles synthesized using sol-gel method are promising agents for biomedical applications, in particular for the therapy and diagnosis of various diseases. Using silicon and zinc glycerolates as biocompatible precursors we synthesized by the sol-gel method a new bioactive silicon-zinc-containing glycerohydrogel combining the positive pharmacological properties of the precursors. In the present work the structural features of silicon-zinc-containing glycerohydrogel and its immunotropic properties were studied. The advanced physical methods, including XRD, TEM, dynamic and electrophoretic light scattering, were used for studying the structural features of the gel. Hydrolysis of zinc monoglycerolate was investigated under gelation conditions. Evaluation of the efficiency of silicon-zinc-containing glycerohydrogel in providing immune functions was carried out using a model of the complicated wound process behind immunosuppression induced by hydrocortisone administration in the Wistar rats. It has been shown that zinc monoglycerolate exists in the state of amorphous nanoparticles in the cells of 3D-network formed due to incomplete hydrolysis of silicon glycerolates and subsequent silanol condensation. Zinc monoglycerolate is not hydrolyzed and does not enter 3D-network of the gel with the formation of Zn-O-Si groups, but it forms a separate phase. Immunotropic action of silicon-zinc-containing glycerohydrogel was revealed by the histology and immunohistochemistry methods. Amorphous nanoparticles of zinc monoglycerolate, water-soluble silicon glycerolates, and products of their hydrolytic transformations, which are present in a aqueous-glycerol medium, are in the first place responsible for the pharmacological activity of hydrogel. The results obtained allow us to consider silicon-zinc-containing glycerohydrogel as a promising immunotropic agent for topical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  1. Mantle Helium and Carbon Isotopes in Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon: Evidence for Renewed Volcanic Activity or a Long Term Steady State System?

    USGS Publications Warehouse

    Van Soest, M. C.; Kennedy, B.M.; Evans, William C.; Mariner, R.H.

    2002-01-01

    Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of strong crustal uplift currently occurring at a rate of 4-5 cm/yr (Wicks, et. al., 2001).Helium [RC/RA = 7.44 and 8.61 RA (RC/R A = (3He/4He)sample-. air corrected/(3He/4He)air))] and carbon (??13C = -11.59 to -9.03??? vs PDB) isotope data and CO2/3He (5 and 9 ?? 109) show that bubbling cold springs in the Separation Creek area near South Sister volcano carry a strong mantle signal, indicating the presence of fresh basaltic magma in the volcanic plumbing system. There is no evidence though, to directly relate this signal to the crustal uplift that is currently taking place in the area, which started in 1998. The geothermal system in the area is apparently much longer lived and shows no significant changes in chemistry compared to data from the early 1990s. Hot springs in the area, which are relatively far removed from the volcanic edifice, do not carry a strong mantle signal in helium isotope ratios (2.79 to 5.08 RA), unlike the cold springs, and also do not show any significant changes in helium isotope ratios compared to literature data for the same springs of over two decades ago. The cold springs of the Separation Creek area form a very diffuse but significant low temperature geothermal system, that should, due to its close vicinity to the center of up uplift, be more sensitive to changes in the deeper volcanic plumbing system than the far removed hot springs and therefore require much more study and consideration when dealing with volcano monitoring in the Cascade range or possibly with geothermal exploration in general.

  2. Development and fabrication of large vented nickel--zinc cells. Final report. [300 Ah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnel, C.P.I.

    1975-12-01

    A preliminary cell design for a 300-Ah vented nickel--zinc cell was established based on volume requirements and cell component materials selected by NASA Lewis Research Center. A 100-Ah cell configuration was derived from the 300-Ah cell design utilizing the same size electrodes, separators, and cell terminal hardware. The first cells fabricated were four groups of three cells each in the 100-Ah size. These 100-Ah experimental nickel--zinc cells had as common components the nickel positive electrodes (GFM), flexible inorganic separator (GFM) bags on the negative electrodes, pressed powder zinc oxide electrodes, and cell containers with hardware. The variations introduced were fourmore » differing electrolyte absorber (interseparator) systems used to encase the nickel positive electrodes of each cell group. The four groups of 100-Ah experimental vented nickel--zinc cells were tested to determine, based on cell performance, the best two interseparator systems. Using the two interseparator systems, two groups of experimental 300-AH cells were fabricated. Each group of three cells differed only in the interseparator material used. The six cells were filled, formed and tested to evaluate the interseparator materials and investigate the performance characteristics of the 300-Ah cell configuration and its components. (auth)« less

  3. Improvement of Pt/C/PTFE catalyst type used for hydrogen isotope separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasut, F.; Preda, A.; Zamfirache, M.

    2008-07-15

    The CANDU reactor from the Nuclear Power plant Cernavoda (Romania)) is the most powerful tritium source from Europe. This reactor is moderated and cooled by heavy water that becomes continuously contaminated with tritium. Because of this reason, the National R and amp;D Inst. for Cryogenic and Isotopic Technologies developed a detritiation technology based on catalytic isotopic exchange and cryogenic distillation. The main effort of our Inst. was focused on finding more efficient catalysts with a longer operational life. Some of the tritium removal processes involved in Fusion Science and Technology use this type of catalyst 1. Several Pt/C/PTFE hydrophobic catalystsmore » that could be used in isotopic exchange process 2,3,4 were produced. The present paper presents a comparative study between the physical and morphological properties of different catalysts manufactured by impregnation at our institute. The comparison consists of a survey of specific surface, pores volume and pores distribution. (authors)« less

  4. Fe, Zn, and Cd stable isotopes from the eastern tropical South Pacific from GEOTRACES cruise GP16 - Methods and data

    NASA Astrophysics Data System (ADS)

    Helgoe, J. M.; Townsend, E.; John, S.

    2014-12-01

    A new method has been developed for the rapid analysis of metal concentrations and stable isotope ratios using a prepFAST automated sample processing robot. Although concentrations and isotopes are processed separately, similar methods are used for both. Initially all seawater is acidified to pH 2. Then Nobias resin with EDTA/IDA functional groups is added to either 10mL of sample for concentrations or ~1L samples for isotopes. Fe binds to the resin at low pH, and the pH is subsequently raised to allow Zn and Cd to bind. For concentration analyses, all subsequent chemistry is automated on the prepFAST including removal of seawater, rinsing of resin, and elution of resin into acid. For isotope samples these extraction techniques are performed manually, but the subsequent purification of Fe, Zn, and Cd by anion exchange chromatography is automated using the prepFAST. With these new methods, samples from the US GEOTRACES cruise GP16, in the eastern tropical South Pacific, are being analyzed. High concentrations of dissolved Fe are observed near the continental shelf and near submarine hydrothermal vents. Interestingly, isotope data show that dissolved Fe near the continental shelf generally has a δ56Fe close to 0 ‰. This δ56 Fe signature is suggestive of a non-reductive dissolution source for Fe, as Fe(II) released by reductive dissolution is typically closer to -2 ‰. Preliminary data show nutrient-type profiles for Zn and Cd, with Zn matching Si and Cd having a similar distribution to P. An increase in dissolved Zn near hydrothermal vents suggests a possible hydrothermal zinc source to the deep ocean. Continuing analysis of isotope data will reveal more about the source and biogeochemical cycling of these three chemically and biologically important trace metals throughout the eastern tropical Pacific Ocean.

  5. [Determination of 235U/238U isotope ratios in camphor tree bark samples by MC-ICP-MS after separation of uranium from matrix elements].

    PubMed

    Wang, Xiao-Ping; Zhang, Ji-Long

    2007-07-01

    Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25.

  6. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    NASA Astrophysics Data System (ADS)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  7. Zinc pharmacokinetic parameters in the determination of body zinc status in children.

    PubMed

    Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J

    2014-02-01

    Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.

  8. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  9. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  10. A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.

    PubMed

    Wastney, Meryl E; McDonald, Christine M; King, Janet C

    2018-05-01

    Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.

  11. Automatically activated, 300 ampere-hour silver-zinc cell

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1972-01-01

    A prototype silver zinc cell is reported for which the electrolyte is being stored in a separate tank; the cell is being activated when additional power is required by collapsing the neoprene bellows container and thus forcing the electrolyte into cell through a plastic connection. A solar array is proposed as main power source for the flow actuator.

  12. Using isotopes of dissolved inorganic carbon species and water to separate sources of recharge in a cave spring, northwestern Arkansas, USA Blowing Spring Cave

    USGS Publications Warehouse

    Knierim, Katherine J.; Pollock, Erik; Hays, Phillip D.

    2013-01-01

    Blowing Spring Cave in northwestern Arkansas is representative of cave systems in the karst of the Ozark Plateaus, and stable isotopes of water (δ18O and δ2H) and inorganic carbon (δ13C) were used to quantify soil-water, bedrock-matrix water, and precipitation contributions to cave-spring flow during storm events to understand controls on cave water quality. Water samples from recharge-zone soils and the cave were collected from March to May 2012 to implement a multicomponent hydrograph separation approach using δ18O and δ2H of water and dissolved inorganic carbon (δ13C–DIC). During baseflow, median δ2H and δ18O compositions were –41.6‰ and –6.2‰ for soil water and were –37.2‰ and –5.9‰ for cave water, respectively. Median DIC concentrations for soil and cave waters were 1.8 mg/L and 25.0 mg/L, respectively, and median δ13C–DIC compositions were –19.9‰ and –14.3‰, respectively. During a March storm event, 12.2 cm of precipitation fell over 82 h and discharge increased from 0.01 to 0.59 m3/s. The isotopic composition of precipitation varied throughout the storm event because of rainout, a change of 50‰ and 10‰ for δ2H and δ18O was observed, respectively. Although, at the spring, δ2H and δ18O only changed by approximately 3‰ and 1‰, respectively. The isotopic compositions of precipitation and pre-event (i.e., soil and bedrock matrix) water were isotopically similar and the two-component hydrograph separation was inaccurate, either overestimating (>100%) or underestimating (<0%) the precipitation contribution to the spring. During the storm event, spring DIC and δ13C–DIC decreased to a minimum of 8.6 mg/L and –16.2‰, respectively. If the contribution from precipitation was assumed to be zero, soil water was found to contribute between 23 to 72% of the total volume of discharge. Although the assumption of negligible contributions from precipitation is unrealistic, especially in karst systems where rapid flow

  13. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, David A.; Duncan, James B.; Jensen, George A.

    1995-01-01

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained.

  14. Heterogeneous distribution of Zn stable isotopes in mice and applications to medical sciences

    NASA Astrophysics Data System (ADS)

    Moynier, F.; Fujii, T.; Shaw, A.; Le Borgne, M.

    2013-12-01

    Zinc is required for the function of more than 300 enzymes involved in many metabolic pathways, and is a vital micronutrient for living organisms. To investigate if Zn isotopes could be used to better understand metal homeostasis, as well as a biomarker for diseases, we assessed the distribution of natural Zn isotopes in various mouse tissues. We found that, with respect to Zn isotopes, most mouse organs are isotopically distinct and that the total range of variation within one mouse encompasses the variations observed in the Earth's crust. Therefore, biological activity must have a major impact on the distribution of Zn isotopes in inorganic materials. The most striking aspect of the data is that red blood cells and bones are enriched by ~0.5 per mil in 66Zn relative to 64Zn when compared to serum, and up to ~1 per mil when compared to the brain and liver. This fractionation is well explained by the equilibrium distribution of isotopes between different bonding environments of Zn in different organs. Differences in gender and genetic background did not appear to affect the isotopic distribution of Zn. Together, these results suggest that potential use of Zn isotopes as a tracer for dietary Zn, and for detecting disturbances in Zn metabolism due to pathological conditions.

  15. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  16. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  17. Future Opportunities at the Facility for Rare Isotope Beams

    NASA Astrophysics Data System (ADS)

    Sherrill, Bradley M.

    2018-05-01

    This paper overviews the Facility for Rare Isotope Beams, FRIB, its construction status at the time of the conference, and its scientific program. FRIB is based on a high-power, heavy-ion, superconducting linear accelerator that is designed to deliver at least 400kW at 200 MeV/u for all stable-ion beams and produce a large fraction of all possible isotopes of the elements. A three-stage fragment separator will separate rare isotope beams for use in experiments at high energy or stopped and reaccelerated to up to 10MeV/u. The facility is expected to have first beams in 2021. An overview of the planned scientific program, experimental capabilities, and equipment initiatives are presented.

  18. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  19. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  20. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groessle, R.; Beck, A.; Bornschein, B.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase atmore » the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)« less

  1. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  2. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  3. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    PubMed

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  4. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications.

    PubMed

    Kogan, Samuel; Sood, Aditya; Garnick, Mark S

    2017-04-01

    Our understanding of the role of zinc in normal human physiology is constantly expanding, yet there are major gaps in our knowledge with regard to the function of zinc in wound healing. This review aims to provide the clinician with sufficient understanding of zinc biology and an up-to-date perspective on the role of zinc in wound healing. Zinc is an essential ion that is crucial for maintenance of normal physiology, and zinc deficiency has many manifestations ranging from delayed wound healing to immune dysfunction and impairment of multiple sensory systems. While consensus has been reached regarding the detrimental effects of zinc deficiency on wound healing, there is considerable discord in the literature on the optimal methods and true benefits of zinc supplementation.

  5. Zinc

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of zinc: U.S. Department of Agriculture's (USDA’s) National Nutrient Database Nutrient List for zinc ( ...

  6. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, D.A.; Duncan, J.B.; Jensen, G.A.

    1995-09-19

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained. 1 fig.

  7. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  8. Hafnium isotope stratigraphy of ferromanganese crusts

    PubMed

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  9. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  10. Gaseous species as reaction tracers in the solvothermal synthesis of the zinc oxide terephthalate MOF-5.

    PubMed

    Hausdorf, Steffen; Baitalow, Felix; Seidel, Jürgen; Mertens, Florian O R L

    2007-05-24

    Gaseous species emitted during the zinc oxide/zinc hydroxide 1,4-benzenedicarboxylate metal organic framework synthesis (MOF-5, MOF-69c) have been used to investigate the reaction scheme that leads to the framework creation. Changes of the gas-phase composition over time indicate that the decomposition of the solvent diethylformamide occurs at least via two competing reaction pathways that can be linked to the reaction's overall water and pH management. From isotope exchange experiments, we deduce that one of the decomposition pathways leads to the removal of water from the reaction mixture, which sets the conditions when the synthesis of an oxide-based (MOF-5) instead of an hydroxide-based MOF (MOF-69c) occurs. A quantitative account of most reactants and byproducts before and after the MOF-5/MOF-69c synthesis is presented. From the investigation of the reaction intermediates and byproducts, we derive a proposal of a basic reaction scheme for the standard synthesis zinc oxide carboxylate MOFs.

  11. New design studies for TRIUMF's ARIEL High Resolution Separator

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Marchetto, M.

    2016-06-01

    As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.

  12. The viability of MCM-41 as separator in secondary alkaline cells

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

  13. Update on zinc biology.

    PubMed

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  14. Zinc at glutamatergic synapses.

    PubMed

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  15. LONG-TERM EFFECTS OF ZINC EXPOSURES ON BROOK TROUT ('SALVELINUS FONTINALIS')

    EPA Science Inventory

    Exposure of three generations of brook trout (Salvelinus fontinalis) to zinc concentrations ranging from 2.6 to 534 micrograms/liter produced no significant harmful effects. During a separate exposure of embryos and larvae, 1,368 micrograms Zn/liter significantly reduced (P = 0.0...

  16. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi

    2014-10-15

    Highlights: • The spent Zn–Mn batteries collected from manufacturers is the target waste. • A facile reclaiming process is presented. • The zinc is reclaimed to valuable electrolytic zinc by electrodepositing method. • The manganese elements are to produce valuable LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} battery material. • The reclamation process features environmental friendliness and saving resource. - Abstract: A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn–Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organicmore » separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H{sub 2}SO{sub 4} (2 mol L{sup −1}) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37–40 °C and 300 A m{sup −2}. The most of MnO{sub 2} and a small quantity of electrolytic MnO{sub 2} are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material of lithium-ion battery. The as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} discharges 118.3 mAh g{sup −1} capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO{sub 2}. This process can recover the substances in the spent Zn–Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable.« less

  17. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation

    PubMed Central

    Kato, Chizu; Moynier, Frédéric

    2017-01-01

    The distribution and isotopic composition of volatile elements in planetary materials holds a key to the characterization of the early solar system and the Moon’s formation. The Moon and Earth are chemically and isotopically very similar. However, the Moon is highly depleted in volatile elements and the origin of this depletion is still debated. We present gallium isotopic and elemental measurements in a large set of lunar samples to constrain the origin of this volatile depletion. We show that while Ga has a geochemical behavior different from zinc, both elements show a systematic enrichment in the heavier isotopes in lunar mare basalts and Mg-suite rocks compared to the silicate Earth, pointing to a global-scale depletion event. On the other hand, the ferroan anorthosites are isotopically heterogeneous, suggesting a secondary distribution of Ga at the surface of the Moon by volatilization and condensation. The isotopic difference of Ga between Earth and the Moon and the isotopic heterogeneity of the crustal ferroan anorthosites suggest that the volatile depletion occurred following the giant impact and during the lunar magma ocean phase. These results point toward a Moon that has lost its volatile elements during a whole-scale evaporation event and that is now relatively dry compared to Earth. PMID:28782027

  18. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.

    PubMed

    Lin, Wen; Li, Deqiang

    2018-06-01

    Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

  19. METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON

    DOEpatents

    Jenkins, F.A.

    1958-05-01

    Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.

  20. Can the waiting-point nucleus 78Ni be studied at an on-line mass-separator?

    NASA Astrophysics Data System (ADS)

    Wöhr, A.; Andreyev, A.; Bijnens, N.; Breitenbach, J.; Franchoo, S.; Huyse, M.; Kudryavtsev, Y. A.; Piechaczek, A.; Raabe, R. R.; Reusen, I.; Vermeeren, L.; Van Duppen, P.

    1997-02-01

    Short-lived nickel isotopes have been studied using a chemically selective Ion Guide Laser Ion Source (IGLIS) based on resonance ionisation of atoms at the Leuven Isotope Separator On-Line (LISOL) separator. The decay properties of different Ni isotopes have been studied using β-γ-coincidences. Experimental production rates of proton induced fission of 238U are obtained for 69,71Ni. These numbers are in a strong disagreement with Silberg-Tsao calculations.

  1. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  2. Isotopic Changes During Digestion: Protein

    NASA Astrophysics Data System (ADS)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  3. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    PubMed

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  4. [Health hazards resulting from exposure to zinc and its inorganic compounds in industry].

    PubMed

    Pakulska, Daria; Czerczak, Sławomir

    2017-10-17

    This article deals with health risks resulting from exposure to zinc and its inorganic compounds in industry. The main source of zinc exposure are fumes generated during thermal and chemical processes, mainly zinc oxide fume formed by immediate oxidation of metallic zinc vapor formed during high-temperature processes, as well as dust generated during the mechanical processing of zinc-containing materials. It is recognized that zinc ions are responsible for health effects of exposure to dust/fumes of the majority of zinc compounds, and the final effect of exposure depends on the degree of dispersion of dusts/fumes suspended in the air. Since the effects of exposure depends on the particle size, occupational exposure limits have began to be established separately for respirable and inhalable fractions. A critical effect of acute exposure to respirable fraction is a "fume fever" which in chronic exposure occurs as an effect associated with recurrent symptoms of acute poisoning. Impaired lung function and asthma symptoms are considered to be the main effects of exposure to inhalable fraction. Due to the limited number of the available data it is not possible to assess carcinogenicity, reproductive toxicity and teratogenicity of zinc and its compounds. The aim of the study was to analyze the major health hazards resulting from occupational exposure to zinc and its inorganic compounds in the context of their physico-chemical properties, a wide range of applications and occupational exposure data. Med Pr 2017;68(6):779-794. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  5. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat.

    PubMed

    Kamran, Sana; Shahid, Izzah; Baig, Deeba N; Rizwan, Muhammad; Malik, Kauser A; Mehnaz, Samina

    2017-01-01

    Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 ( Pseudomonas fragi) , EPS 6 ( Pantoea dispersa) , EPS 13 ( Pantoea agglomerans) , PBS 2 ( E. cloacae) and LHRW1 ( Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO 3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS

  6. Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils

    NASA Astrophysics Data System (ADS)

    Arnold, Tim; Markovic, Tamara; Kirk, Guy J. D.; Schönbächler, Maria; Rehkämper, Mark; Zhao, Fangjie J.; Weiss, Dominik J.

    2015-11-01

    Stable isotope fractionation is emerging quickly as a powerful novel technique to study metal uptake and translocation in plants. Fundamental to this development is a thorough understanding of the processes that lead to isotope fractionation under differing environmental conditions. In this study, we investigated Zn and Fe isotope fractionation in rice grown to maturity in anaerobic and aerobic soils under greenhouse conditions. The overall Zn isotope fractionation between the soil and above ground plant material was negligible in aerobic soil but significant in anaerobic soil with isotopically lighter Zn in the rice plant. The observed range of fractionation is in line with previously determined fractionations of Zn in rice grown in hydroponic solutions and submerged soils and emphasizes the effect of taking up different chemical forms of Zn, most likely free and organically complexed Zn. The Zn in the grain was isotopically lighter than in the rest of the above ground plant in rice grown in aerobic and anaerobic soils alike. This suggests that in the course of the grain loading and during the translocation within the plant important biochemical and/or biophysical processes occur. The isotope fractionation observed in the grains would be consistent with an unidirectional controlled transport from shoot to grain with a fractionation factor of α ≈ 0.9994. Iron isotopes showed an isotopic lighter signature in shoot and grain compared to the bulk soil or the leachate in aerobic and anaerobic soils alike. The negative direction of isotopic fractionation is consistent with possible changes in the redox state of Fe occurring during the uptake and translocation processes. The isotope fractionation pattern between shoots and grain material are different for Zn and Fe which finally suggests that different mechanisms operate during translocation and grain-loading in rice for these two key micronutrients.

  7. Zinc

    USDA-ARS?s Scientific Manuscript database

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  8. Separating the Role of Protein Restraints and Local Metal-Site Interaction Chemistry in the Thermodynamics of a Zinc Finger Protein

    PubMed Central

    Dixit, Purushottam D.; Asthagiri, D.

    2011-01-01

    We express the effective Hamiltonian of an ion-binding site in a protein as a combination of the Hamiltonian of the ion-bound site in vacuum and the restraints of the protein on the site. The protein restraints are described by the quadratic elastic network model. The Hamiltonian of the ion-bound site in vacuum is approximated as a generalized Hessian around the minimum energy configuration. The resultant of the two quadratic Hamiltonians is cast into a pure quadratic form. In the canonical ensemble, the quadratic nature of the resultant Hamiltonian allows us to express analytically the excess free energy, enthalpy, and entropy of ion binding to the protein. The analytical expressions allow us to separate the roles of the dynamic restraints imposed by the protein on the binding site and the temperature-independent chemical effects in metal-ligand coordination. For the consensus zinc-finger peptide, relative to the aqueous phase, the calculated free energy of exchanging Zn2+ with Fe2+, Co2+, Ni2+, and Cd2+ are in agreement with experiments. The predicted excess enthalpy of ion exchange between Zn2+ and Co2+ also agrees with the available experimental estimate. The free energy of applying the protein restraints reveals that relative to Zn2+, the Co2+, and Cd2+-site clusters are more destabilized by the protein restraints. This leads to an experimentally testable hypothesis that a tetrahedral metal binding site with minimal protein restraints will be less selective for Zn2+ over Co2+ and Cd2+ compared to a zinc finger peptide. No appreciable change is expected for Fe2+ and Ni2+. The framework presented here may prove useful in protein engineering to tune metal selectivity. PMID:21943427

  9. Zinc and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less

  10. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival

    PubMed Central

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent

    2016-01-01

    ABSTRACT The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. IMPORTANCE A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae. This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. PMID:27672194

  11. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  12. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    PubMed Central

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  13. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  14. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  15. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.

    PubMed

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi; Huang, Shanna; Hu, Keshui; Xiao, Xin; Nan, Junmin

    2014-10-01

    A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn-Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organic separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H2SO4 (2 mol L(-1)) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37-40°C and 300 A m(-2). The most of MnO2 and a small quantity of electrolytic MnO2 are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi0.5Mn1.5O4 material of lithium-ion battery. The as-synthesized LiNi0.5Mn1.5O4 discharges 118.3 mAh g(-1) capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO2. This process can recover the substances in the spent Zn-Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Method for isotopic analysis of chlorinated organic compounds

    DOEpatents

    Holt, Ben D.; Sturchio, Neil C.

    1999-01-01

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO.sub.2 and CuCl. The CO.sub.2 is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH.sub.3 I to form CH.sub.3 Cl, extracted and analyzed for chlorine isotope ratio.

  17. Stable-isotope customer list and summary of shipments, FY 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W.C.

    1983-04-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The inforamtion is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.

  18. Attomole quantitation of protein separations with accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, J S; Grant, P G; Buccholz, B A

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundancesmore » in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.« less

  19. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  20. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  1. Copper and Zinc Metallation Status of Copper Zinc Superoxide Dismutase form Amyotrophic Lateral Sclerosis Transgenic Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelie, H.L.; Miller, L.; Liba, A.

    2010-09-24

    Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS. Insoluble SOD1-rich fractions were not enriched in copper and zinc. However, the soluble mutantmore » and WT SOD1s were highly metallated except for the metal-binding-region mutant H46R/H48Q, which did not bind any copper. Due to the stability conferred by high metallation of G37R and G93A, it is unlikely that these soluble SOD1s are prone to aggregation in vivo, supporting the hypothesis that immature nascent SOD1 is the substrate for aggregation. We also investigated the effect of SOD1 overexpression and disease on metal homeostasis in spinal cord cross-sections of SOD1-ALS mice using synchrotron-based x-ray fluorescence microscopy. In each mouse genotype, except for the H46R/H48Q mouse, we found a redistribution of copper between gray and white matters correlated to areas of high SOD1. Interestingly, a disease-specific increase of zinc was observed in the white matter for all mutant SOD1 mice. Together these data provide a picture of copper and zinc in the cell as well as highlight the importance of these metals in understanding SOD1-ALS pathology.« less

  2. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  3. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  4. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.

    PubMed

    Ghimici, Luminita

    2016-03-15

    The flocculation efficiency of a cationic polyelectrolyte with quaternary ammonium salt groups in the backbone, namely PCA5 was evaluated on zirconium silicate (kreutzonit), kaolin, K- feldspar and zinc oxide (ZnO) suspensions prepared either with each pollutant or with their mixture. The effect of several parameters such as settling time, polymer dose and the pollutant type on the separation efficacy was evaluated and followed by optical density and zeta potential measurements. Except for ZnO, the interactions between PCA5 and suspended particles led to low residual turbidity values (around 4% for kreutzonit, 5% for kaolin and 8% for K-feldspar) as well as to the reduction of flocs settling time (from 1200 min to 30 min and 120 min in case of kaolinit and K-feldspar, respectively), that meant a high efficiency in their separation. The negative value of the zeta potential and flocs size measurements, at the optimum polymer dose, point to contribution from charge patch mechanism for the particles flocculation. A good efficiency of PCA5 in separation of paraffin oil (a minimum residual turbidity of 9.8%) has been also found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. High Throughput Strontium Isotope Method for Monitoring Fluid Flow Related to Geological CO2 Storage

    NASA Astrophysics Data System (ADS)

    Capo, R. C.; Wall, A. J.; Stewart, B. W.; Phan, T. T.; Jain, J. C.; Hakala, J. A.; Guthrie, G. D.

    2012-12-01

    Natural isotope tracers, such as strontium (Sr), can be a unique and powerful component of a monitoring strategy at a CO2 storage site, facilitating both the quantification of reaction progress for fluid-rock interactions and the tracking of brine migration caused by CO2 injection. Several challenges must be overcome, however, to enable the routine use of isotopic tracers, including the ability to rapidly analyze numerous aqueous samples with potentially complex chemical compositions. In a field situation, it might be necessary to analyze tens of samples over a short period of time to identify subsurface reactions and respond to unexpected fluid movement in the host formation. These conditions require streamlined Sr separation chemistry for samples ranging from pristine groundwaters to those containing high total dissolved solids, followed by rapid measurement of isotope ratios with high analytical precision. We have optimized Sr separation chemistry and MC-ICP-MS methods to provide rapid and precise measurements of isotope ratios in geologic, hydrologic, and environmental samples. These improvements will allow an operator to independently prepare samples for Sr isotope analysis off-site using fast, low cost chemical separation procedures and commercially available components. Existing vacuum-assisted Sr separation procedures were modified by using inexpensive disposable parts to eliminate cross contamination. Experimental results indicate that the modified columns provide excellent separation of Sr from chemically complex samples and that Sr can be effectively isolated from problematic matrix elements (e.g., Ca, Ba, K) associated with oilfield brines and formation waters. The separation procedure is designed for high sample throughput in which batches of 24 samples can be processed in approximately 2 hours, and are ready for Sr isotope measurements by MC-ICP-MS immediately after collection from the columns. Precise Sr isotope results can be achieved by MC

  6. Method for isotopic analysis of chlorinated organic compounds

    DOEpatents

    Holt, B.D.; Sturchio, N.C.

    1999-08-24

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO{sub 2} and CuCl. The CO{sub 2} is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH{sub 3}I to form CH{sub 3}Cl, extracted and analyzed for chlorine isotope ratio. 9 figs.

  7. Zinc triggers microglial activation.

    PubMed

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  8. Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles

    NASA Astrophysics Data System (ADS)

    Münch, Thomas; Kipfstuhl, Sepp; Freitag, Johannes; Meyer, Hanno; Laepple, Thomas

    2017-09-01

    The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (≳ 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (≪ 1 ‰ RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.

  9. Zinc Information

    MedlinePlus

    ... for Eye Conditions Clinical Digest: Hepatitis C and Dietary Supplements Related Resources From Other Agencies Age-Related Eye Disease Study 2 (AREDS2) ( NEI ) Can Zinc Be Harmful? ( ODS ) Zinc ( ODS ) Follow NCCIH: Read our disclaimer ...

  10. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  11. Cu, Fe, and Zn Isotope Variations Within a High-Temperature Mid-Ocean Ridge Sulfide Structure

    NASA Astrophysics Data System (ADS)

    Ewing, S. M.; Nelson, B. K.; Kelley, D. S.; Nielsen, D. C.

    2006-12-01

    Hydrothermal processes at mid-ocean ridges play an important role in controlling the transition metal budget of seawater and the crust through which it circulates. Preliminary work has shown stable metal isotope variations accompany these processes. We report Cu, Zn, and Fe isotope analyses of transects through a high temperature sulfide structure ("Fin") collected during the 1998 Edifice Rex Sulfide Recovery Project. We analyzed two horizontal transects through the sulfide edifice, from inner conduit to outer surface. Transects A and F are 9 and 6 cm in length, respectively. Each displays radially zoned mineralogy progressing from a chalcopyrite (ccp) zone through zones of zinc sulfide, pyrite-anhydrite (pyr-anh) matrix, zinc sulfide-anhydrite (zns-anh) matrix, to an outer well-cemented silica (Si) zone. Additional ccp and pyr-anh zones appear in transect A resulting from a smaller breakout conduit. In transect A, Cu displays the most isotopic variation, with little variation in Fe and Zn isotopes. From the inner ccp zone outward, the Cu isotope profile shows a 0.4‰ (±0.05‰ 2σ) increase in the first pyr-anh zone over the coarse-grained ccp zone. The δ65Cu drops by 0.6‰ in the secondary ccp zone and recovers to values of the innermost wall in the following zone where it is constant until the outermost portion of the Si rich zone, which shows a 1.3‰ increase over inner zone values. The Zn isotope profile has a total variation of 0.27‰ (±0.05‰ 2σ), with a 0.2‰ increase in the first pyr- anh zone followed by a .27‰ decrease in the adjacent zone, and recovering to its heaviest values in the second pyr-anh zone. The Zn profile lacks any significant increase of the δ^{64}Zn in the outermost zones. The Fe isotope profile shows very little variation across the chimney wall, but does have a sharp 0.7‰ (±0.1‰ 2σ) increase in the δ56Fe in the well-cemented Si rich zone. In transect F, the Cu isotope profile again shows the most variation, but

  12. Measurement of (n,α) cross section for set of structural material isotopes

    NASA Astrophysics Data System (ADS)

    Khryachkov, Vitaly; Gurbich, Alexander; Khromyleva, Tatiana; Bondarenko, Ivan; Ketlerov, Vladimir; Prusachenko, Pavel

    2017-09-01

    A novel spectrometer was developed and used to measure the cross section for the (n,α) reaction at IPPE. Direct measurements of the α-particles yield from solid isotopic pure targets of 50, 52 and 53 chromium, 54 and 57 iron, 60 nickel, and 64 zinc were carried out in the neutron energy range from 4.7 to 7.2 MeV. For some isotopes the (n,α) reaction cross-section for neutron energies less than 14 MeV were measured for the first time. The result of the comparison of new experimental data with the evaluated data from libraries ENDF/B VII, JENDL 4.0, JEFF 3.1, ROSFOND 2010 and BROND 3 and with the experimental data of other authors is presented.

  13. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  14. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  15. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival.

    PubMed

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent; Hiron, Aurélia

    2016-12-15

    The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Zinc triggers microglial activation

    PubMed Central

    Kauppinen, Tiina M.; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A.

    2009-01-01

    Microglia are resident immune cells of the central nervous system. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, “amoeboid” morphology and release matrix metalloproteinases, reactive oxygen species, and other pro-inflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here we show that zinc directly triggers microglial activation. Microglia transfected with an NF-kB reporter gene showed a several-fold increase in NF-kB activity in response to 30 μM zinc. Cultured mouse microglia exposed to 15 – 30 μM zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-κB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-κB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders. PMID:18509044

  17. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Supplemental levels of iron and calcium interfere with repletion of zinc status in zinc-deficient animals.

    PubMed

    Jayalakshmi, S; Platel, Kalpana

    2016-05-18

    Negative interactions between minerals interfering with each other's absorption are of concern when iron and calcium supplements are given to pregnant women and children. We have previously reported that supplemental levels of iron and calcium inhibit the bioaccessibility of zinc, and compromise zinc status in rats fed diets with high levels of these two minerals. The present study examined the effect of supplemental levels of iron and calcium on the recovery of zinc status during a zinc repletion period in rats rendered zinc-deficient. Iron and calcium, both individually and in combination, significantly interfered with the recovery of zinc status in zinc deficient rats during repletion with normal levels of zinc in the diet. Rats maintained on diets containing supplemental levels of these two minerals had significantly lower body weight, and the concentration of zinc in serum and organs was significantly lower than in zinc-deficient rats not receiving the supplements. Iron and calcium supplementation also significantly inhibited the activity of zinc-containing enzymes in the serum as well as liver. Both iron and calcium independently exerted this negative effect on zinc status, while their combination seemed to have a more prominent effect, especially on the activities of zinc containing enzymes. This investigation is probably the first systematic study on the effect of these two minerals on the zinc status of zinc deficient animals and their recovery during repletion with normal amounts of zinc.

  19. A preliminary study for the production of high specific activity radionuclides for nuclear medicine obtained with the isotope separation on line technique.

    PubMed

    Borgna, F; Ballan, M; Corradetti, S; Vettorato, E; Monetti, A; Rossignoli, M; Manzolaro, M; Scarpa, D; Mazzi, U; Realdon, N; Andrighetto, A

    2017-09-01

    Radiopharmaceuticals represent a fundamental tool for nuclear medicine procedures, both for diagnostic and therapeutic purposes. The present work aims to explore the Isotope Separation On-Line (ISOL) technique for the production of carrier-free radionuclides for nuclear medicine at SPES, a nuclear physics facility under construction at INFN-LNL. Stable ion beams of strontium, yttrium and iodine were produced using the SPES test bench (Front-End) to simulate the production of 89 Sr, 90 Y, 125 I and 131 I and collected with good efficiency on suitable targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sr isotopic tracer study of the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-01-01

    Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.

  1. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.

    2005-04-01

    Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.

  2. Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate

    USGS Publications Warehouse

    Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.

    1985-01-01

    A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.

  3. Zinc supplementation for tinnitus.

    PubMed

    Person, Osmar C; Puga, Maria Es; da Silva, Edina Mk; Torloni, Maria R

    2016-11-23

    , precluding a meta-analysis. The participants were all adults over 18 years with subjective tinnitus, but one study conducted in 2013 (n = 109) included only elderly patients. Improvement in tinnitus severity and disabilityOnly the study in elderly patients used a validated instrument (Tinnitus Handicap Questionnaire) for this primary outcome. The authors of this cross-over study did not report the results of the two phases separately and found no significant differences in the proportion of patients reporting tinnitus improvement at four months of follow-up: 5% (5/93) versus 2% (2/94) in the zinc and placebo groups, respectively (risk ratio (RR) 2.53, 95% confidence interval (CI) 0.50 to 12.70; very low-quality evidence).None of the included studies reported any significant adverse effects. Secondary outcomesFor the secondary outcome change in tinnitus loudness, one study reported no significant difference between the zinc and placebo groups after eight weeks: mean difference in tinnitus loudness -9.71 dB (95% CI -25.53 to 6.11; very low-quality evidence). Another study also measured tinnitus loudness but used a 0- to 100-point scale. The authors of this second study reported no significant difference between the zinc and placebo groups after four months: mean difference in tinnitus loudness rating scores 0.50 (95% CI -5.08 to 6.08; very low-quality evidence).Two studies used unvalidated instruments to assess tinnitus severity. One (with 50 participants) reported the severity of tinnitus using a non-validated scale (0 to 7 points) and found no significant difference in subjective tinnitus scores between the zinc and placebo groups at the end of eight weeks of follow-up (mean difference (MD) -1.41, 95% CI -2.97 to 0.15; very low-quality evidence). A third trial (n = 50) also evaluated the improvement of tinnitus using a non-validated instrument (a 0 to 10 scale: 10 = severe and unbearable tinnitus). In this study, after eight weeks there was no difference in the proportion of

  4. [Zinc and chronic enteropathies].

    PubMed

    Giorgi, P L; Catassi, C; Guerrieri, A

    1984-01-01

    In recent years the nutritional importance of zinc has been well established; its deficiency and its symptoms have also been recognized in humans. Furthermore, Acrodermatitis Enteropathica has been isolated, a rare but severe disease, of which skin lesions, chronic diarrhoea and recurring infections are the main symptoms. The disease is related to the malfunctioning of intestinal absorption of zinc and can be treated by administering pharmacological doses of zinc orally. Good dietary sources of zinc are meat, fish and, to a less extent, human milk. The amount of zinc absorbed in the small intestine is influenced by other nutrients: some compounds inhibit this process (dietary fiber, phytate) while others (picolinic acid, citric acid), referred to as Zn-binding ligands (ZnBL) facilitate it. Citric acid is thought to be the ligand which accounts for the high level of bioavailability of zinc in human milk. zinc absorption occurs throughout the small intestine, not only in the prossimal tract (duodenum and jejunum) but also in the distal tract (ileum). Diarrhoea is one of the clinical manifestations of zinc deficiency, thus many illnesses distinguished by chronic diarrhoea entail a bad absorption of zinc. In fact, in some cases of chronic enteropathies in infants, like coeliac disease and seldom cystic fibrosis, a deficiency of zinc has been isolated. Some of the symptoms of Crohn's disease, like retarded growth and hypogonadism, have been related to hypozinchemia which is present in this illness. Finally, it is possible that some of the dietary treatments frequently used for persistent post-enteritis diarrhoea (i.e. cow's milk exclusion, abuse and misuse of dietary fiber like carrot and carub powder, use of soy formula) can constitute a scarce supply of zinc and therefore could promote the persistency of diarrhoea itself.

  5. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  6. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT.

    PubMed

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-07-07

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  7. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    PubMed Central

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-01-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6–5 and acquisition energy window widths of 16–22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16–22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  8. Probing Supramolecular Interactions between a Crown Ether Appended Zinc Phthalocyanine and an Ammonium Group Appended to a C60 Derivative.

    PubMed

    Lederer, Marcus; Hahn, Uwe; Strub, Jean-Marc; Cianférani, Sarah; Van Dorsselaer, Alain; Nierengarten, Jean-François; Torres, Tomas; Guldi, Dirk M

    2016-02-01

    Self-assembly driven by crown ether complexation of zinc phthalocyanines equipped with one 18-crown-6 moiety and fullerenes bearing an ammonium head group afforded a novel donor-acceptor hybrid. In reference experiments, fullerenes containing a Boc-protected amine functionality have been probed. The circumvention of zinc phthalocyanine aggregation is important for the self-assembly, which required the addition of pyridine. From absorption and fluorescence titration assays, which provided sound and unambiguous evidence for mutual interactions between the electron donor and the electron acceptor within the hybrids, association constants in the order of 8.0×10 5  m -1 have been derived. The aforementioned is based on 1:1 stoichiometries, which have been independently confirmed by Job's plot measurements. In the excited state, which has been examined by transient absorption experiments, intermolecular charge separation evolves from the photoexcited zinc phthalocyanine to the fullerene subunit and leads to short-lived charge-separated states. Interestingly, photoexcitation of zinc phthalocyanine dimers/aggregates can also be followed by an intermolecular charge separation between vicinal phthalocyanines. These multicomponent supramolecular ensembles have also been shown by in-depth electrospray ionization mass spectrometry (ESI-MS) studies, giving rise to the formation and detection of a variety of non-covalently linked species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  10. The Most Useful Actinide Isotope: Americium-241.

    ERIC Educational Resources Information Center

    Navratil, James D.; And Others

    1990-01-01

    Reviewed is the discovery, nuclear and chemical properties, and uses of an isotope of Americium (Am-241). Production and separation techniques used in industry are emphasized. Processes are illustrated in flow sheets. (CW)

  11. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  12. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ian, Ridley W.; Lamothe, P.J.; Kimball, B.A.; Verplanck, P.L.; Runkel, R.L.

    2009-01-01

    Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, ??56Fe and ??66Zn isotopic signatures of filtered stream water samples varied by ???3.5??? and 0.4???, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in ??56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in ??66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<-2.0???) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4???). Acidic drainage from mine wastes contributed heavier dissolved Fe (???+0.5???) and lighter Zn (???+0.2???) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (??56Fe ??? 0???) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds. ?? 2009 Elsevier Ltd.

  13. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994

  14. Steroid isotopic standards for gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS).

    PubMed

    Zhang, Ying; Tobias, Herbert J; Brenna, J Thomas

    2009-03-01

    Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5alpha-androstan-3beta-ol acetate (5alpha-A-AC), 5alpha-androstan-3alpha-ol-17-one acetate (androsterone acetate, A-AC), 5beta-androstan-3alpha-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5alpha-cholestane (Cne). CU/USADA 34-1 contains 5beta-androstan-3alpha-ol-17-one (etiocholanolone, E), 5alpha-androstan-3alpha-ol-17-one (androsterone, A), and 5beta-pregnane-3alpha, 20alpha-diol (5betaP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute delta(13)C(VPDB) and Deltadelta(13)C(VPDB) values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(delta(13)C)<0.2 per thousand. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.

  15. Interactions between surface waters in King George Island, Antarctica - a stable isotope perspective

    NASA Astrophysics Data System (ADS)

    Perşoiu, Aurel; Bădăluşă, Carmen

    2017-04-01

    In this paper we present a first study of the isotopic composition of surface waters in the southern peninsulas (Barton, Fildes, Weaver and Potter) of King George Island, Antarctica. We have collected > 200 samples of snow and snowmelt, water (lake, river and spring), ice (glacier ice and permafrost) from the four peninsulas in February 2016 and analyzed them for their oxygen and hydrogen stable isotopic composition. Samples from lake water (50+) indicate a clear west-east depletion trend, suggesting a rain-out process as air masses are moving westward (and are progressively depleted in heavy isotopes) from their origin in the Drake Passage. In both Fildes and Barton Peninsulas, permafrost samples have the heaviest isotopic composition, most probably due to preferential incorporation of heavy isotopes in the ice during freezing (and no fractionation during melting). As permafrost melts, the resulting water mixes with isotopically lighter infiltrated snowmelt, and thus the groundwater has a lower isotopic composition. Further, lake and river (the later fed by lakes) water has the lightest isotopic composition, being derived mostly from the melting of light snow and glacier ice. It seems feasible to separate isotopically water in lakes/rivers (largely fed by melting multi-year glaciers and snow) and water from melting of snow/ground ice This preliminary study suggests that it is possible to separate various water sources in the southern peninsulas of King George Island, and this separation could be used to study permafrost degradation, as well as feeding and migration patterns in the bird fauna, with implications for protection purposes. Acknowledgments. The National Institute of Research and Development for Biological Sciences (Bucharest, Romania) and the Korean polar institute financially supported fieldwork in King George Island. We thank the personal at King Sejong (South Korea), Belingshaussen (Russia) and Carlini (Argentina) stations in King George Island for

  16. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    PubMed

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.

  17. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  18. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE PAGES

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.; ...

    2017-05-03

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  19. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  20. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    USGS Publications Warehouse

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  2. Cs-Ba separation using N 2O as a reactant gas in a Multiple Collector-Inductively Coupled Plasma Mass Spectrometer collision-reaction cell: Application to the measurements of Cs isotopes in spent nuclear fuel samples

    NASA Astrophysics Data System (ADS)

    Granet, M.; Nonell, A.; Favre, G.; Chartier, F.; Isnard, H.; Moureau, J.; Caussignac, C.; Tran, B.

    2008-11-01

    In the general frameworks of the nuclear fuel cycle and environmental research field, the Cs isotopic composition must be known with high precision and accuracy. The direct determination of Cs isotopes by mass spectrometry techniques is generally hampered by the presence of Ba isobaric interferences however. Here we present a new method which takes advantage of the collision-reaction cell based Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and allows to analyse Cs isotopes in the presence of Ba without prior separation step. The addition of N 2O gas in the cell leads to an antagonistic behavior of Cs + and Ba + as the latter reacts with the gas to form BaO + and BaOH + products whereas Cs + remains unreactive. The efficiency of the method was demonstrated for an UOx sample by comparing the results obtained (1) from the measurements of pure Cs fractions and (2) from Fission Products fractions containing more than 30 ionisable elements in addition to Cs, Ba, and where U and Pu were previously removed by using ion exchange resin. An excellent agreement is achieved between each set of experiments with an external reproducibility always better than 0.5% (RSD, k = 2). This study confirms the strong potential of collision-reaction cell to measure Cs isotopes in presence of interfering Ba, precluding therefore former systematic chemical separations.

  3. Isotope effects on the optical spectra of semiconductors

    NASA Astrophysics Data System (ADS)

    Cardona, Manuel; Thewalt, M. L. W.

    2005-10-01

    Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.

  4. The influence of kinetics on the oxygen isotope composition of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Nielsen, Laura C.; Ryerson, Frederick J.; DePaolo, Donald J.

    2013-08-01

    Paleotemperature reconstructions rely on knowledge of the equilibrium separation of oxygen isotopes between aqueous solution and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature-dependence remains uncertain because other factors, such as slow exchange of isotopes between dissolved CO2-species and water, can obscure the temperature signal. This is problematic for crystal growth experiments on laboratory timescales and for interpreting the oxygen isotope composition of crystals formed in natural settings. We present results from experiments in which inorganic calcite is precipitated in the presence of 0.25 μM dissolved bovine carbonic anhydrase (CA). The presence of dissolved CA accelerates oxygen isotope equilibration between the dissolved carbon species CO2, H2CO3, HCO3-, CO32- and water, thereby eliminating this source of isotopic disequilibrium during calcite growth. The experimental results allow us to isolate, for the first time, kinetic oxygen isotope effects occurring at the calcite-water interface. We present a framework of ion-by-ion growth of calcite that reconciles our new measurements with measurements of natural cave calcites that are the best candidate for having precipitated under near-equilibrium conditions. Our findings suggest that isotopic equilibrium between calcite and water is unlikely to have been established in laboratory experiments or in many natural settings. The use of CA in carbonate precipitation experiments offers new opportunities to refine oxygen isotope-based geothermometers and to interrogate environmental variables other than temperature that influence calcite growth rates.

  5. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    PubMed

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  6. 99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, LOOKING NORTH. NOTE ONE STYLE OF DENVER AGITATOR IN LOWER RIGHT CELL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  7. Serum thymulin in human zinc deficiency.

    PubMed Central

    Prasad, A S; Meftah, S; Abdallah, J; Kaplan, J; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no overt clinical manifestations of zinc deficiency. The diagnosis of mild zinc deficiency was based on the assay of zinc in lymphocytes, granulocytes, and platelets. Serum thymulin activity was decreased as a result of mild zinc deficiency and was corrected by in vivo and in vitro zinc supplementation, suggesting that this parameter was a sensitive indicator of zinc deficiency in humans. An increase in T101-, sIg-cells, decrease in T4+/T8+ ratio, and decreased IL 2 activity were observed in the experimental human model during the zinc depletion phase, all of which were corrected after repletion with zinc. Similar changes in lymphocyte subpopulation, correctable with zinc supplementation, were also observed in mildly ZD SCA subjects. Inasmuch as thymulin is known to induce intra- and extrathymic T cell differentiation, our studies provide a possible mechanism for the role of zinc on T cell functions. Images PMID:3262625

  8. Zinc supplementation in public health.

    PubMed

    Penny, Mary Edith

    2013-01-01

    Zinc is necessary for physiological processes including defense against infections. Zinc deficiency is responsible for 4% of global child morbidity and mortality. Zinc supplements given for 10-14 days together with low-osmolarity oral rehydration solution (Lo-ORS) are recommended for the treatment of childhood diarrhea. In children aged ≥ 6 months, daily zinc supplements reduce the duration of acute diarrhea episodes by 12 h and persistent diarrhea by 17 h. Zinc supplements could reduce diarrhea mortality in children aged 12-59 months by an estimated 23%; they are very safe but are associated with an increase in vomiting especially with the first dose. Heterogeneity between the results of trials is not understood but may be related to dose and the etiology of the diarrhea infection. Integration of zinc and Lo-ORS into national programs is underway but slowly, procurement problems are being overcome and the greatest challenge is changing health provider and caregiver attitudes to diarrhea management. Fewer trials have been conducted of zinc adjunct therapy in severe respiratory tract infections and there is as yet insufficient evidence to recommend addition of zinc to antibiotic therapy. Daily zinc supplements for all children >12 months of age in zinc deficient populations are estimated to reduce diarrhea incidence by 11-23%. The greatest impact is in reducing multiple episodes of diarrhea. The effect on duration of diarrheal episodes is less clear, but there may be up to 9% reduction. Zinc is also efficacious in reducing dysentery and persistent diarrhea. Zinc supplements may also prevent pneumonia by about 19%, but heterogeneity across studies has not yet been explained. When analyses are restricted to better quality studies using CHERG (Child Health Epidemiology Reference Group) methodology, zinc supplements are estimated to reduce diarrheal deaths by 13% and pneumonia deaths by 20%. National-level programs to combat childhood zinc deficiency should be

  9. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  10. History of Zinc in Agriculture12

    PubMed Central

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  11. Isotopic Abundances as Tracers of the Processes of Lunar Formation

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.

    2011-12-01

    different, if the Moon preferentially forms from the liquid or vapor relative to the Earth, mass-dependent isotopic differences at the planetary scale may arise. The large density contrast between liquid and vapor makes phase separation possible. (3) The precision with which planetary isotopic compositions can be determined has increased such that measurements are sensitive to even small degrees of high-temperature phase separation. Using thermodynamic models of silicate liquids to determine the partial vaporization behavior of the major elements, we will present calculations of isotopic fractionation due to liquid-vapor separation for the elements iron, magnesium, silicon, and oxygen. Improvements in analytical precision have largely settled the question of the source of the lunar material - the Earth's mantle - and isotopic measurements are now beginning to yield insight into the high-temperatures processes operating during lunar formation.

  12. Improvements in Cd stable isotope analysis achieved through use of liquid-liquid extraction to remove organic residues from Cd separates obtained by extraction chromatography.

    PubMed

    Murphy, Katy; Rehkämper, Mark; Kreissig, Katharina; Coles, Barry; van de Flierdt, Tina

    2016-01-23

    Organic compounds released from resins that are commonly employed for trace element separations are known to have a detrimental impact on the quality of isotopic analyses by MC-ICP-MS. A recent study highlighted that such effects can be particularly problematic for Cd stable isotope measurements (M. Gault-Ringold and C. H. Stirling, J. Anal. At. Spectrom. , 2012, 27 , 449-459). In this case, the final stage of sample purification commonly applies extraction chromatography with Eichrom TRU resin, which employs particles coated with octylphenyl- N , N -di-isobutyl carbamoylphosphine oxide (CMPO) dissolved in tri- n -butyl phosphate (TBP). During chromatography, it appears that some of these compounds are eluted alongside Cd and cannot be removed by evaporation due to their high boiling points. When aliquots of the zero-ε reference material were processed through the purification procedure, refluxed in concentrated HNO 3 and analyzed at minimum dilution (in 1 ml 0.1 M HNO 3 ), they yielded Cd isotopic compositions (ε 114/110 Cd = 4.6 ± 3.4, 2SD, n = 4) that differed significantly from the expected value, despite the use of a double spike technique to correct for instrumental mass fractionation. This result was accompanied by a 35% reduction in instrumental sensitivity for Cd. With increasing dilution of the organic resin residue, both of these effects are reduced and they are insignificant when the eluted Cd is dissolved in ≥3 ml 0.1 M HNO 3 . Our results, furthermore, indicate that the isotopic artefacts are most likely related to anomalous mass bias behavior. Previous studies have shown that perchloric acid can be effective at avoiding such effects (Gault-Ringold and Stirling, 2012; K. C. Crocket, M. Lambelet, T. van de Flierdt, M. Rehkämper and L. F. Robinson, Chem. Geol. , 2014, 374-375 , 128-140), presumably by oxidizing the resin-derived organics, but there are numerous disadvantages to its use. Here we show that liquid-liquid extraction with n -heptane

  13. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, Jr., Henry D.

    1993-01-01

    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  14. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  15. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  16. Measurements of zinc absorption: application and interpretation in research designed to improve human zinc nutriture.

    PubMed

    Hambidge, K Michael; Miller, Leland V; Tran, Cuong D; Krebs, Nancy F

    2005-11-01

    The focus of this paper is on the application of measurements of zinc absorption in human research, especially studies designed to assess the efficacy of intervention strategies to prevent and manage zinc deficiency in populations. Emphasis is given to the measurement of quantities of zinc absorbed rather than restricting investigations to measurements of fractional absorption of zinc. This is especially important when determining absorption of zinc from the diet, whether it be the habitual diet or an intervention diet under evaluation. Moreover, measurements should encompass all meals for a minimum of one day with the exception of some pilot studies. Zinc absorption is primarily via an active saturable transport process into the enterocytes of the proximal small intestine. The relationship between quantity of zinc absorbed and the quantity ingested is best characterized by saturable binding models. When applied to human studies that have sufficient data to examine dose-response relationships, efficiency of absorption is high until approximately 50-60% maximal absorption is achieved, even with moderate phytate intakes. This also coincides approximately with the quantity of absorbed zinc necessary to meet physiologic requirements. Efficiency of absorption with intakes that exceed this level is low or very low. These observations have important practical implications for the design and interpretation of intervention studies to prevent zinc deficiency. They also suggest the potential utility of measurements of the quantity of zinc absorbed when evaluating the zinc status of populations.

  17. Interaction of zinc with dental mineral.

    PubMed

    Ingram, G S; Horay, C P; Stead, W J

    1992-01-01

    As some currently available toothpastes contain zinc compounds, the reaction of zinc with dental mineral and its effect on crystal growth rates were studied using three synthetic calcium-deficient hydroxyapatites (HAP) as being representative of dental mineral. Zinc was readily acquired by all HAP samples in the absence of added calcium, the amount adsorbed being proportional to the HAP surface area; about 9 mumol Zn/m2 was adsorbed at high zinc concentrations. As zinc was acquired, calcium was released, consistent with 1:1 Ca:Zn exchange. Soluble calcium reduced zinc uptake and similarly, calcium post-treatment released zinc. Pretreatment of HAP with 0.5 mM zinc reduced its subsequent ability to undergo seeded crystal growth, as did extracts of a toothpaste containing 0.5% zinc citrate, even in the presence of saliva. The reverse reaction, i.e. displacement of adsorbed zinc by salivary levels of calcium, however, indicates the mechanism by which zinc can reduce calculus formation in vivo by inhibiting plaque mineralisation without adversely affecting the anti-caries effects of fluoride.

  18. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, T.C.; McLarnon, F.R.; Cairns, E.J.

    1994-04-12

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K[sub 2]CO[sub 3] salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics. 8 figures.

  19. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1994-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  20. Process for strontium-82 separation

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1992-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.

  1. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  2. Galacti chemical evolution: Hygrogen through zinc

    NASA Technical Reports Server (NTRS)

    Timmes, F. X.; Woosley, S. E.; Weaver, Thomas A.

    1995-01-01

    Using the output from a grid of 60 Type II supernova models (Woosley & Weaver 1995) of varying mass (11 approx. less than (M/solar mass) approx. less than 40) and metallicity (0, 10(exp -4), 0.01, and 1 solar metallicity), the chemical evolution of 76 stable isotopes, from hydrogen to zinc, is calculated. The chemical evolution calculation employs a simple dynamical model for the Galaxy (infall with a 4 Gyr e-folding timescale onto a exponential dsk and 1/r(exp 2) bulge), and standard evolution parameters, such as a Salpeter initial mass function and a quadratic Schmidt star formation rate. The theoretical results are compared in detail with observed stellar abundances in stars with metallicities in the range -3.0 approx. less than (Fe/H) approx. less than 0.0 dex. While our discussion focuses on the solar neighborhood where there are the most observations, the supernova rates, an intrinsically Galactic quality, are also discussed.

  3. Decline of phosphorus, copper, and zinc in anaerobic lagoon columns receiving pretreated influent

    USDA-ARS?s Scientific Manuscript database

    In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on reduction of total suspended solids (TSS), total phosphorus (TP), soluble reactive phosphorus (SRP), copper (Cu) and zinc (Zn) in swine lagoons using (i) enhanced solid–liquid separation with polymer (SS) and (i...

  4. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  5. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS.

    PubMed

    Wang, Bo-Shian; You, Chen-Feng; Huang, Kuo-Fang; Wu, Shein-Fu; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Lin, Pei-Ying

    2010-09-15

    An improved technique for precise and accurate determination of boron isotopic composition in Na-rich natural waters (groundwater, seawater) and marine biogenic carbonates was developed. This study used a 'micro-sublimation' technique to separate B from natural sample matrices in place of the conventional ion-exchange extraction. By adjusting analyte to appropriate pH, quantitative recovery of boron can be achieved (>98%) and the B procedural blank is limited to <8 pg. An additional mass bias effect in MC-ICP-MS was observed which could not be improved via the standard-sample-standard bracketing or the 'pseudo internal' normalization by Li. Therefore a standard other than NBS SRM 951 was used to monitor plasma condition in order to maintain analytical accuracy. An isotope cross-calibration with results from TIMS shows that the space-charge mass bias on MC-ICP-MS can be successfully corrected using off-line mathematical manipulation. Several reference materials, including the seawater IAPSO and two groundwater standards IAEA-B-2 and IAEA-B-3, were used to validate this approach. We found that the delta(11)B of the reference coral JCp-1 was 24.22+/-0.28 per thousand, corresponding to seawater pH based on the coral delta(11)B-pH function. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Uptake and partitioning of zinc in Lemnaceae.

    PubMed

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  7. The plasma separation process as a pre-cursor for large scale radioisotope production

    NASA Astrophysics Data System (ADS)

    Stevenson, Nigel R.

    2001-07-01

    Radioisotope production generally employs either accelerators or reactors to convert stable (usually enriched) isotopes into the desired product species. Radioisotopes have applications in industry, environmental sciences, and most significantly in medicine. The production of many potentially useful radioisotopes is significantly hindered by the lack of availability or by the high cost of key enriched stable isotopes. To try and meet this demand, certain niche enrichment processes have been developed and commercialized. Calutrons, centrifuges, and laser separation processes are some of the devices and techniques being employed to produce large quantities of selective enriched stable isotopes. Nevertheless, the list of enriched stable isotopes in sufficient quantities remains rather limited and this continues to restrict the availability of many radioisotopes that otherwise could have a significant impact on society. The Plasma Separation Process is a newly available commercial technique for producing large quantities of a wide range of enriched isotopes and thereby holds promise of being able to open the door to producing new and exciting applications of radioisotopes in the future.

  8. Zinc: an essential but elusive nutrient123

    PubMed Central

    King, Janet C

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515

  9. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  10. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, H.D. Jr.

    1993-04-20

    A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  11. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    PubMed

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction.

  12. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  13. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    NASA Astrophysics Data System (ADS)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  14. Highly tritiated water processing by isotopic exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, W.M.; Willms, R.S.; Glugla, M.

    2015-03-15

    Highly tritiated water (HTW) is produced in fusion machines and one of the promising technologies to process it is isotopic exchange. 3 kinds of Pt-catalyzed zeolite (13X-APG, CBV-100-CY and HiSiv-1000) were tested as candidates for isotopic exchange of highly tritiated water (HTW), and CBV-100-CY (Na-Y type with a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of ∼ 5.0) shows the best performance. Small-scale tritium testing indicates that this method is efficient for reaching an exchange factor (EF) of 100. Full-scale non-tritium testing implies that an EF of 300 can be achieved in 24 hours of operation if a temperature gradient is appliedmore » along the column. For the isotopic exchange, deuterium recycled from the Isotope Separation System (deuterium with 1% T and/or 200 ppm T) should be employed, and the tritiated water regenerated from the Pt-catalyzed zeolite bed after isotopic exchange should be transferred to Water Detritiation System (WDS) for further processing.« less

  15. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.

    PubMed

    Baba, A A; Adekola, A F; Bale, R B

    2009-11-15

    The potential of solvent extraction using Cynanex272 for the recovery of zinc from spent zinc carbon batteries after a prior leaching in hydrochloric acid has been investigated. The elemental analysis of the spent material was carried out by ICP-MS. The major metallic elements are: ZnO (41.30%), Fe(2)O(3) (4.38%), MnO(2) (2.69%), Al(2)O(3) (1.01%), CaO (0.36%) and PbO (0.11%). The quantitative leaching by hydrochloric acid showed that the dissolution rates are significantly influenced by temperature and concentration of the acid solutions. The experimental data for the dissolution rates have been analyzed and were found to follow the shrinking core model for mixed control reaction with surface chemical reaction as the rate-determining step. About 90.3% dissolution was achieved with 4M HCl solution at 80 degrees C with 0.050-0.063 mm particle size within 120 min at 360 rpm. Activation energy value of 22.78 kJ/mol and a reaction order of 0.74 with respect to H(+) ion concentration were obtained for the dissolution process. An extraction yield of 94.23% zinc by 0.032M Cyanex272 in kerosene was obtained from initial 10 g/L spent battery leach liquor at 25+/-2 degrees C and at optimal stirring time of 25 min. Iron has been effectively separated by precipitation prior to extraction using ammoniacal solution at pH 3.5, while lead and other trace elements were firstly separated from Zn and Fe by cementation prior to iron removal and zinc extraction. Finally, the stripping study showed that 0.1M HCl led to the stripping of about 95% of zinc from the organic phase.

  16. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    PubMed Central

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  17. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  18. Evaluation of Inorganic/Organic Separators

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1976-01-01

    Thirty-six (36) experimental 40AH sealed silver-zinc cells were constructed during phase I of this two (2) phase program. These cells were divided into six (6) groups of six (6) cells each. Each group of six (6) cells was evenly divided into two batches of three (3) cells each. Groups 1 through 4 each featured a different inorganic filler material in the slurry used to coat the separator substrate. Groups 5 and 6 featured an alternate method of separator bag construction. With the exception of the various separator materials, the parts and processes used to produce these thirty-six (36) cells were the same as those used to make the HR40-7 cell. The two (2) batches of cells in each cell group differed only in the lots of solutions and other separator slurry components used. Each cell was given two formation charge/discharge cycles prior to being shipped to NASA Lewis Research Center. Phase II of the program consisted of constructing another thirty-six (36) 40AH experimental cells in six (6) groups of six (6) cells each. Each group was distinguished by the type of precoated separator material used to fabricate separator bags. A new method of separator bag construction was used in this phase of the program. These cells were given two (2) formation cycles and shipped to NASA Lewis Research Center.

  19. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Redondo, L. M.; Silva, J. Fernando; Canacsinh, H.; Ferrão, N.; Mendes, C.; Soares, R.; Schipper, J.; Fowler, A.

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  20. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, Anna; Borrok, David M.

    2016-01-01

    In order to better understand the factors influencing zinc (Zn) isotope composition in hydrological systems, we analyzed the δ66Zn of dissolved Zn in the streams and groundwater of the Upper and Middle Rio Grande watershed in Colorado and New Mexico, United States. The stream water samples have a wider variation of δ66Zn (-0.57 to + 0.41 ‰ relative to the JMC 3-0749-Lyon standard) than groundwater samples (-0.13 to + 0.12 ‰) and than samples from streams that are in close proximity to abandoned mining sites (+0.24 to + 0.40 ‰). Regional changes of bedrock geology, from primarily igneous rocks to primarily sedimentary rocks, have no resolvable effect on the δ66Zn of aqueous samples. Instead, an increase in water pH from 7.5 to 8.5 corresponds to a considerable decrease in the δ66Zn of dissolved Zn (R2 = - 0.37, p = 0.003, n = 22). Consequently, we link the observed Zn isotope variations to the process of adsorption of Zn onto suspended sediment and bedrock minerals (average Δ66Znadsorbed-dissolved = + 0.31 ‰). Our results are in good agreement with previous experimental and empirical studies suggesting that Zn adsorption leads to a residual dissolved pool enriched in light Zn isotopes. Given that anthropogenic Zn sources can also be responsible for lowering of δ66Zn, and may overlap with the pH/adsorption effect on δ66Zn, the latter needs to be carefully considered in future studies to differentiate between natural and anthropogenic factors influencing Zn isotopes in this and other aquatic systems.

  1. Advanced silver zinc battery development for the SRB and ET range safety subsystems

    NASA Technical Reports Server (NTRS)

    Adamedes, Zoe

    1994-01-01

    This document presents in viewgraph format the design and development of silver zinc (AgZn) batteries for the solid rocket booster (SRB) and external tank (ET) range safety subsystems. Various engineering techniques, including composite separator systems, new electrode processing techniques, and new restraint techniques, were used to meet difficult requirements.

  2. Chapter 13 Petrogenesis of the Campanian Ignimbrite: implications for crystal-melt separation and open-system processes from major and trace elements and Th isotopic data

    USGS Publications Warehouse

    Bohrson, W.A.; Spera, F.J.; Fowler, S.J.; Belkin, H.E.; de Vivo, B.; Rolandi, G.

    2006-01-01

    The Campanian Ignimbrite is a large-volume trachytic to phonolitic ignimbrite that was deposited at ???39.3 ka and represents one of a number of highly explosive volcanic events that have occurred in the region near Naples, Italy. Thermodynamic modeling using the MELTS algorithm reveals that major element variations are dominated by crystal-liquid separation at 0.15 GPa. Initial dissolved H2O content in the parental melt is ???3 wt.% and the magmatic system fugacity of oxygen was buffered along QFM+1. Significantly, MELTS results also indicate that the liquid line of descent is marked by a large change in the proportion of melt (from 0.46 to 0.09) at ???884??C, which leads to a discontinuity in melt composition (i.e., a compositional gap) and different thermodynamic and transport properties of melt and magma across the gap. Crystallization of alkali feldspar and plagioclase dominates the phase assemblage at this pseudo-invariant point temperature of ???884??C. Evaluation of the variations in the trace elements Zr, Nb, Th, U, Rb, Sm, and Sr using a mass balance equation that accounts for changing bulk mineral-melt partition coefficients as crystallization occurs indicates that crystal-liquid separation and open-system processes were important. Th isotope data yield an apparent isochron that is ???20 kyr younger than the age of the deposit, and age-corrected Th isotope data indicate that the magma body was an open system at the time of eruption. Because open-system behavior can profoundly change isotopic and elemental characteristics of a magma body, these Th results illustrate that it is critical to understand the contribution that open-system processes make to magmatic systems prior to assigning relevance to age or timescale information derived from such systems. Fluid-magma interaction has been proposed as a mechanism to change isotopic and elemental characteristics of magma bodies, but an evaluation of the mass and thermal constraints on such a process suggests

  3. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    PubMed

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer

    PubMed Central

    Franklin, Renty B; Feng, Pei; Milon, B; Desouki, Mohamed M; Singh, Keshav K; Kajdacsy-Balla, André; Bagasra, Omar; Costello, Leslie C

    2005-01-01

    Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands). In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN). These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down-regulation in adenocarcinomatous

  5. Protein Stable Isotope Fingerprinting (P-SIF): A New Tool to Understand Natural Isotopic Heterogeneity of Mixed Microbial Ecosystems

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Mohr, W.; Tang, T.; Sattin, S.; Bovee, R.

    2014-12-01

    Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the ratios of 13C/12C (values of δ13C) for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms, while (iii) not perturbing the system, i.e., not adding exogenous substrates or isotope labels. To accomplish this, we employ two-dimensional HPLC to resolve a sample containing ca. 5-10 mg of mixed proteins into 960-1440 fractions. Each fraction then is split in two aliquots: The first is digested with trypsin for peptide sequencing, while the second is measured in triplicate using an isotope-ratio mass spectrometer interfaced with a spooling wire microcombustion device. Data from pure cultures show that bacteria have a narrow distribution of protein δ13C values within individual taxa (±0.7-1.2‰, 1σ). This is moderately larger than the mean precision of the triplicate isotope measurements (±0.5‰, 1σ) and may reflect heterogeneous distribution of 13C among the amino acids. When cells from different species are mixed together prior to protein extraction and separation, the results can predict accurately (to within ±1σ) the δ13C values of the original taxa. The number of data points required for this endmember prediction is ≥20/taxon, yielding a theoretical resolution of ca. 10 taxonomic units/sample. Initial tests on environmental samples suggest the approach will be useful to determine the overall trophic breadth of mixed microbial ecosystems.

  6. Protein-based stable isotope probing.

    PubMed

    Jehmlich, Nico; Schmidt, Frank; Taubert, Martin; Seifert, Jana; Bastida, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Vogt, Carsten

    2010-12-01

    We describe a stable isotope probing (SIP) technique that was developed to link microbe-specific metabolic function to phylogenetic information. Carbon ((13)C)- or nitrogen ((15)N)-labeled substrates (typically with >98% heavy label) were used in cultivation experiments and the heavy isotope incorporation into proteins (protein-SIP) on growth was determined. The amount of incorporation provides a measure for assimilation of a substrate, and the sequence information from peptide analysis obtained by mass spectrometry delivers phylogenetic information about the microorganisms responsible for the metabolism of the particular substrate. In this article, we provide guidelines for incubating microbial cultures with labeled substrates and a protocol for protein-SIP. The protocol guides readers through the proteomics pipeline, including protein extraction, gel-free and gel-based protein separation, the subsequent mass spectrometric analysis of peptides and the calculation of the incorporation of stable isotopes into peptides. Extraction of proteins and the mass fingerprint measurements of unlabeled and labeled fractions can be performed in 2-3 d.

  7. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  8. A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures

    USGS Publications Warehouse

    Croteau, M.-N.; Dybowska, A.D.; Luoma, S.N.; Valsami-Jones, E.

    2011-01-01

    If engineered nanomaterials are released into the environment, some are likely to end up associated with the food of animals due to aggregation and sorption processes. However, few studies have considered dietary exposure of nanomaterials. Here we show that zinc (Zn) from isotopically modified 67ZnO particles is efficiently assimilated by freshwater snails when ingested with food. The 67Zn from nano-sized 67ZnO appears as bioavailable as 67Zn internalized by diatoms. Apparent agglomeration of the zinc oxide (ZnO) particles did not reduce bioavailability, nor preclude toxicity. In the diet, ZnO nanoparticles damage digestion: snails ate less, defecated less and inefficiently processed the ingested food when exposed to high concentrations of ZnO. It was not clear whether the toxicity was due to the high Zn dose achieved with nanoparticles or to the ZnO nanoparticles themselves. Further study of exposure from nanoparticles in food would greatly benefit assessment of ecological and human health risks. ?? 2011 Informa UK, Ltd.

  9. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each ofmore » which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes« less

  10. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks.

    PubMed

    Que, Emily L; Bleher, Reiner; Duncan, Francesca E; Kong, Betty Y; Gleber, Sophie C; Vogt, Stefan; Chen, Si; Garwin, Seth A; Bayer, Amanda R; Dravid, Vinayak P; Woodruff, Teresa K; O'Halloran, Thomas V

    2015-02-01

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.

  11. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE PAGES

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; ...

    2014-12-15

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. Here we show that the zinc spark arises from a system of thousands ofmore » zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. We conclude that the discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.« less

  12. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    PubMed Central

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak; Woodruff, Teresa K.; O’Halloran, Thomas V.

    2015-01-01

    Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes. PMID:25615666

  13. Effects of organic selenium and zinc on the aging process of laying hens

    USDA-ARS?s Scientific Manuscript database

    The objective of the study was to determine whether supplementing the diets of post-molted hens with organic selenium (Se) (Sel-Plex®) and/or organic Zinc (Zn) (Bio-Plex®) could improve laying hen performance. Prior to molting, 120-78 wk old laying hens were separated into four treatment groups of ...

  14. High Precision Low-blank Lithium Isotope Ratios in Forams.

    NASA Astrophysics Data System (ADS)

    Misra, S.; Froelich, P. N.

    2007-12-01

    We present a high precision (±1‰, 2σ) low blank (<500 fg/ml) method for Li isotope measurements of forams using <2 ng of Li by single collector Quad ICP-MS (Agilent 7500cs). The Li isotope ratio of seawater (δ7Li) recorded in planktonic forams has the potential to constrain the evolution of seawater chemistry and elucidate the factors driving variations of oceanic mass balances linked to the continental and sea floor/hydrothermal silica cycles. In addition a δ7Li record of seawater will complement other long-term recorders of seawater chemistry such as Sr, Os and S isotopes. Li isotope measurements of forams are limited by several factors: low Li concentrations in forams (1-2 ppm), instrument-induced fractionation and mass bias effects, matrix effects, high Li blanks and incomplete recovery of Li during column separation. Modest concentrations of alkali and alkaline earth elements in the matrix result in variable mass bias in measured Li isotope ratios. Even worse, Li strongly fractionates during chromatographic clean-up to remove Na+, Ca2+ and Mg2+, from +100‰ in the leading edge to - 100‰ in the trailing edge of elution peaks (Urey 1938). Consequently, miniscule incomplete recoveries of Li during chromatographic separations can result in large unrecognized isotope fractionation of eluents. Large mass-dependent fractionation caused by a difference of 17% in mass between 6Li and 7Li, makes Li a powerful tracer of geochemical processes, but also promotes large and difficult-to-fix isotope fractionations during laboratory chemical processing. Matrix effects of Na & Ca and of column chromatography on Li isotope ratios were investigated using artificial Li solutions representative of foram compositions (matrix matching). Li/Ca and Li/Na ratios in cleaned forams are 10 μmol/mol and 3 mmol/mol respectively. An ICP-MS tolerance limit of 20 ppb for Na and 20 μM for Ca was established, much higher tolerances than by TIMS. A single step chromatographic method to

  15. Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters.

    PubMed Central

    Taylor, Kathryn M; Morgan, Helen E; Johnson, Andrea; Nicholson, Robert I

    2004-01-01

    The KE4 proteins are an emerging group of proteins with little known functional data. In the present study, we report the first characterization of the recombinant human KE4 protein in mammalian cells. The KE4 sequences are included in the subfamily of ZIP (Zrt-, Irt-like Proteins) zinc transporters, which we have termed LZT (LIV-1 subfamily of ZIP zinc Transporters). All these LZT sequences contain similarities to ZIP transporters, including the consensus sequence in transmembrane domain IV, which is essential for zinc transport. However, the new LZT subfamily can be separated from other ZIP transporters by the presence of a highly conserved potential metalloprotease motif (HEXPHEXGD) in transmembrane domain V. Here we report the location of HKE4 on intracellular membranes, including the endoplasmic reticulum, and its ability to increase the intracellular free zinc as measured with the zinc-specific fluorescent dye, Newport Green, in a time-, temperature- and concentration-dependent manner. This is in contrast with the zinc influx ability of another LZT protein, LIV-1, which was due to its plasma membrane location. Therefore we have added to the functionality of LZT proteins by reporting their ability to increase intracellular-free zinc, whether they are located on the plasma membrane or on intracellular membranes. This result, in combination with the crucial role that zinc plays in cell growth, emphasizes the importance of this new LZT subfamily, including the KE4 sequences, in the control of intracellular zinc homoeostasis, aberrations of which can lead to diseases such as cancer, immunological disorders and neurological dysfunction. PMID:14525538

  16. Extreme isotopic variations in the upper mantle: evidence from Ronda

    NASA Astrophysics Data System (ADS)

    Reisberg, Laurie; Zindler, Alan

    1986-12-01

    The Ronda Ultramafic Complex in southern Spain represents a piece of the Earth's mantle which has been tectonically emplaced into the crust. Nd and Sr isotopic analyses are presented for leached, hand-picked Cr-diopside separates prepared from 15 rock and 18 river sediment samples from Ronda. These results demonstrate that within this small, contiguous body there exists the entire range of Nd isotopic compositions, and much of the range of Sr compositions, found in rocks derived from the sub-oceanic mantle. The sediment cpx samples show that the average isotopic composition of the massif becomes progressively less "depleted" moving from SW to NE along the long axis of the massif. The rock cpx samples document 143Nd/ 144Nd variations from 0.5129 to 0.5126 and 87Sr/ 86Sr variations from 0.7031 to 0.7039 within a uniform outcrop less than 10 m in extent. Thus, extreme isotopic fluctuations exist over a wide range of wavelengths. Sr and Nd isotopes are generally inversely correlated, forming a trend on a Nd-Sr diagram that sharply crosscuts that of the "mantle array". Many of the 143Nd/ 144Nd values, and all of the Sm/Nd values, from one section of the massif are lower than that SCV015SCV0 of the bulk earth, implying that this region existed, or was influenced by a component which existed, in a LREE-enriched environment for a significant period of time. Among the sediment cpxs there is a positive correlation between 143Nd/ 144Nd and 147Sm/ 144Nd. The rock cpx separates display considerably more scatter. A simple, single-stage differentiation event starting with a uniform mantle source cannot explain these results. At least one episode of mixing with a LREE-enriched component is required. If these results from Ronda are typical of the upper mantle, basalts with different isotopic compositions need not derive from spatially separated mantle sources.

  17. Zinc Absorption from Milk Is Affected by Dilution but Not by Thermal Processing, and Milk Enhances Absorption of Zinc from High-Phytate Rice in Young Dutch Women.

    PubMed

    Talsma, Elise F; Moretti, Diego; Ly, Sou Chheng; Dekkers, Renske; van den Heuvel, Ellen Ghm; Fitri, Aditia; Boelsma, Esther; Stomph, Tjeerd Jan; Zeder, Christophe; Melse-Boonstra, Alida

    2017-06-01

    Background: Milk has been suggested to increase zinc absorption. The effect of processing and the ability of milk to enhance zinc absorption from other foods has not been measured directly in humans. Objective: We aimed to assess zinc absorption from 1 ) milk undergoing various processing and preparatory steps and 2 ) from intrinsically labeled high-phytate rice consumed with milk or water. Methods: Two randomized crossover studies were conducted in healthy young women [age:18-25 y; body mass index (in kg/m 2 ): 20-25]: 1 ) a milk study ( n = 19) comparing the consumption of 800 mL full-fat ultra-high temperature (UHT) milk [heat-treated milk (HTM)], full-fat UHT milk diluted 1:1 with water [heat-treated milk and water (MW)], water, or unprocessed (raw) milk (UM), each extrinsically labeled with 67 Zn, and 2 ) a rice study ( n = 18) comparing the consumption of 90 g intrinsically 67 Zn-labeled rice with 600 mL of water [rice and water (RW)] or full-fat UHT milk [rice and milk (RM)]. The fractional absorption of zinc (FAZ) was measured with the double-isotope tracer ratio method. In vitro, we assessed zinc extraction from rice blended into water, UM, or HTM with or without phytate. Results: FAZ from HTM was 25.5% (95% CI: 21.6%, 29.4%) and was not different from UM (27.8%; 95% CI: 24.2%, 31.4%). FAZ from water was higher (72.3%; 95% CI: 68.7%, 75.9%), whereas FAZ from MW was lower (19.7%; 95% CI: 17.5%, 21.9%) than HTM and UM (both P < 0.01). FAZ from RM (20.7%; 95% CI: 18.8%, 22.7%) was significantly higher than from RW (12.8%; 95% CI: 10.8%, 14.6%; P < 0.01). In vitro, HTM and UM showed several orders of magnitude higher extraction of zinc from rice with HTM than from rice with water at various phytate concentrations. Conclusions: Milk enhanced human FAZ from high-phytate rice by 62% compared with water. Diluting milk with water decreases its absorption-enhancing proprieties, whereas UHT processing does not. This trial was registered at the Dutch trial registry as

  18. Zinc in Infection and Inflammation.

    PubMed

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  19. The zinc paradigm for metalloneurochemistry.

    PubMed

    Barr, Chelsea A; Burdette, Shawn C

    2017-05-09

    Neurotransmission and sensory perception are shaped through metal ion-protein interactions in various brain regions. The term "metalloneurochemistry" defines the unique field of bioinorganic chemistry focusing on these processes, and zinc has been the leading target of metalloneurochemists in the almost 15 years since the definition was introduced. Zinc in the hippocampus interacts with receptors that dictate ion flow and neurotransmitter release. Understanding the intricacies of these interactions is crucial to uncovering the role that zinc plays in learning and memory. Based on receptor similarities and zinc-enriched neurons (ZENs) in areas of the brain responsible for sensory perception, such as the olfactory bulb (OB), and dorsal cochlear nucleus (DCN), zinc participates in odor and sound perception. Development and improvement of methods which allow for precise detection and immediate manipulation of zinc ions in neuronal cells and in brain slices will be critical in uncovering the synaptic action of zinc and, more broadly, the bioinorganic chemistry of cognition. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Microscopic model for the isotope effect in the high-Tc oxides

    NASA Astrophysics Data System (ADS)

    Kresin, V. Z.; Wolf, S. A.

    1994-02-01

    An unconventional microscopic mechanism relating Tc and the isotope substitution for the doped superconductors such as the high-Tc oxides is proposed. Strong nonadiabaticity, when it is impossible, strictly speaking, to separate fully the nuclear and electronic degrees of freedom, leads to a peculiar dependence of the carrier concentration n on the ionic mass M. This case corresponds, for example, to the isotopic substitution of the axial oxygen in YBa2Cu3O7-x. Because of the dependence of Tc on n, this leads to the dependence of Tc on M, that is to the isotope effect. The minimum value of the isotope coefficient corresponds to Tc=Tmaxc.

  1. Mineral resource of the month: zinc

    USGS Publications Warehouse

    Tolcin, Amy C.

    2009-01-01

    The article provides information on zinc, the fourth most-widely consumed metal. It traces the first use of zinc with the Romans' production of brass. It describes the presence of zinc in Earth's crust and the importance of sphalerite as a source of zinc and other some minor metal production. The production and consumption of zinc as well as the commercial and industrial uses of this metal are also discussed.

  2. Zinc Therapy in Dermatology: A Review

    PubMed Central

    Mahajan, Vikram K.; Mehta, Karaninder S.; Chauhan, Pushpinder S.

    2014-01-01

    Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts), inflammatory dermatoses (acne vulgaris, rosacea), pigmentary disorders (melasma), and neoplasias (basal cell carcinoma). Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc. PMID:25120566

  3. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    PubMed

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  4. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.

  5. Protein Stable Isotope Fingerprinting (P-SIF): Multidimensional Protein Chromatography Coupled to Stable Isotope-Ratio Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.

    2012-12-01

    As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.

  6. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern.

    PubMed

    Wani, Ab Latif; Ahmad, Ajaz; Shadab, G G H A; Usmani, Jawed Ahmad

    2017-03-01

    Lead and zinc are mostly present at the same occupational source and usually found as co-contaminants. Lead is known to associate with detrimental effects to humans. Zinc however is an essential nutrient and its deficiency causes debilitating effects on growth and development. Besides, it acts as core ion of important enzymes and proteins. The purpose of this study was to examine if zinc concentrations are associated with blood lead levels and if zinc may prevent lead-induced DNA damage. Blood samples were collected from 92 workers as participants occupationally exposed to lead or lead and zinc and 38 comparison participants having no history of such exposure. Lead and zinc levels were determined from blood by atomic absorption spectrophotometry and genetic damage was assessed by comet assay. Correlation was calculated by Spearman's rho. Lead concentrations were observed to increase among workers with increase in years of exposure. There was a significant difference (p < 0.001) in blood lead levels between workers and controls. In addition, significant difference (p < 0.001) in the genetic damage was observed among workers and controls. A clear effect of increased occupational exposure was visible among workers. Multiple regression analysis further reveals the positive effect of lead, while as the inverse effect of zinc on DNA damage. The results suggest that zinc may influence body lead absorption and may have a role in preventing the genetic damage caused by lead.

  7. Compound-specific isotope analysis: Questioning the origins of a trichloroethene plume

    USGS Publications Warehouse

    Eberts, S.M.; Braun, C.; Jones, S.

    2008-01-01

    Stable carbon isotope ratios of trichloroethene (TCE), cis-1,2- dichloroethene, and trans-1,2-dichloroethene were determined by use of gas chromatography-combustion-isotope ratio mass spectroscopy to determine whether compound-specific stable carbon isotopes could be used to help understand the origin and history of a TCE groundwater plume in Fort Worth, TX. Calculated ??13C values for total chlorinated ethenes in groundwater samples, which can approximate the ??13C of a spilled solvent if all degradation products are accounted for, were useful for determining whether separate lobes of the plume resulted from different sources. Most notably, values for one lobe, where tetrachloroethene (PCE) has been detected periodically, were outside the range for manufactured TCE but within the range for manufactured PCE, whereas values for a separate lobe, which is downgradient of reported TCE spills, were within the range for manufactured TCE. Copyright ?? Taylor & Francis Group, LLC.

  8. Process for strontium-82 separation

    DOEpatents

    Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

    1992-12-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.

  9. Precise Analysis of Gallium Isotopic Composition by MC-ICP-MS.

    PubMed

    Yuan, Wei; Chen, Jiu Bin; Birck, Jean-Louis; Yin, Zuo Ying; Yuan, Sheng Liu; Cai, Hong Ming; Wang, Zhong Wei; Huang, Qiang; Wang, Zhu Hong

    2016-10-04

    Though an isotope approach could be beneficial for better understanding the biogeochemical cycle of gallium (Ga), an analogue of the monoisotopic element aluminum (Al), the geochemistry of Ga isotopes has not been widely elaborated. We developed a two-step method for purifying Ga from geological (biological) samples for precise measurement of Ga isotope ratio using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Ga was thoroughly separated from other matrix elements using two chromatographic columns loaded with AG 1-X4 and Ln-spec resin, respectively. The separation method was carefully calibrated using both synthetic and natural samples and validated by assessing the extraction yield (99.8 ± 0.8%, 2SD, n = 23) and the reproducibility (2SD uncertainty better than 0.05‰, n = 116) of the measured isotopic ratio (expressed as δ 71 Ga). The validation of the whole protocol, together with instrumental analysis, was confirmed by the investigation of the matrix effect, the result of a standard addition experiment, and the comparison of Ga isotope measurement on two mass spectrometers-Nu Plasma II and Neptune Plus. Although the measurements using the sample-standard bracketing (SSB) correction method on both instruments resulted in identical δ 71 Ga values for reference materials, the modified empirical external normalization (MEEN) method gave relatively better precision compared to SSB on Neptune. Our preliminary results showed large variation of δ 71 Ga (up to 1.83‰) for 10 standards, with higher values in industrially produced materials, implying potential application of Ga isotopes.

  10. Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China

    NASA Astrophysics Data System (ADS)

    Xu, Chunxia; Yin, Runsheng; Peng, Jiantang; Hurley, James P.; Lepak, Ryan F.; Gao, Jianfeng; Feng, Xinbin; Hu, Ruizhong; Bi, Xianwu

    2018-03-01

    The Lanuoma and Cuona sediment-hosted Pb-Zn deposits hosted by Upper Triassic limestone and sandstone, respectively, are located in the Changdu area, SW China. Mercury concentrations and Hg isotopic compositions from sulfide minerals and potential source rocks (e.g., the host sedimentary rocks and the metamorphic basement) were investigated to constrain metal sources and mineralization processes. In both deposits, sulfide minerals have higher mercury (Hg) concentrations (0.35 to 1185 ppm) than the metamorphic basement rocks (0.05 to 0.15 ppm) and sedimentary rocks (0.02 to 0.08 ppm). Large variations of mass-dependent fractionation (3.3‰ in δ202Hg) and mass-independent fractionation (0.3‰ in Δ199Hg) of Hg isotopes were observed. Sulfide minerals have Hg isotope signatures that are similar to the hydrothermal altered rocks around the deposit, and similar to the metamorphic basement, but different from barren sedimentary rocks. The variation of Δ199Hg suggests that Hg in sulfides was mainly derived from the underlying metamorphic basement. Mercury isotopes could be a geochemical tracer in understanding metal sources in hydrothermal ore deposits.

  11. Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs.

    PubMed

    Deng, Bo; Zhou, Xihong; Wu, Jie; Long, Ciming; Yao, Yajun; Peng, Hongxing; Wan, Dan; Wu, Xin

    2017-10-01

    An experiment was conducted to compare the effects of zinc sulfate (ZS) and tribasic zinc sulfate (TBZ) as sources of supplemental zinc on growth performance, serum zinc (Zn) content and messenger RNA (mRNA) expression of Zn transporters (ZnT1/ZnT2/ZnT5/ZIP4/DMT1) of young growing pigs. A total of 96 Duroc × Landrace × Yorkshire pigs were randomly allotted to two treatments and were fed a basal diet supplemented with 100 mg/kg Zn from either ZS or TBZ for 28 days. Feed : gain ratio in pigs fed TBZ were lower (P < 0.05) than pigs fed ZS, and average daily weight gain tended to increase (0.05 ≤ P ≤ 0.10) in pigs fed TBZ. Compared with pigs fed ZS, pigs fed TBZ had a higher CuZn-superoxide dismutase and Zn content in serum (P < 0.05) while they had a lower Zn content in feces (P < 0.05). In addition, ZIP4 mRNA expression of zinc transporter in either duodenum or jejunum of pigs fed TBZ were higher (P < 0.05) than pigs fed ZS. These results indicate that TBZ is more effective in serum Zn accumulation and intestinal Zn absorption, and might be a potential substitute for ZS in young growing pigs. © 2017 Japanese Society of Animal Science.

  12. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  13. Review of Specifications for Zinc-Rich Paints,

    DTIC Science & Technology

    1979-09-01

    inspected in 1976, the repair inorganic zinc was in very poor condition due to extensive " chicken pox " rusting. The original red lead alkyd and basic...Nebraska H-186 New Hampshire H-188 New Jersey H-189 /y’/9 7’ 𔃼 New Mexico H(-216.0 North Carolina H-217 North Dakota l1- 246 Ohio H-247 Oklahoma H-254...8217l.% 2. Olharfing I r A1 1 1e a £I )II d To be separately packaged in multiples of 0 54 pound of pox der per M . Cnpost vehicle. One 2.70 pound

  14. Recovering Zinc From Discarded Tires

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Zinc sulfate monohydrate sold at profit. Shredded tire material steeped in three sulfuric acid baths to extract zinc. Final product removed by evaporating part of solution until product crystallizes out. Recovered as zinc sulfate monohydrate and sold as fertilizer or for general use.

  15. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    NASA Astrophysics Data System (ADS)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  16. Zinc Signal in Brain Diseases.

    PubMed

    Portbury, Stuart D; Adlard, Paul A

    2017-11-23

    The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.

  17. Zinc in Entamoeba invadens.

    NASA Technical Reports Server (NTRS)

    Morgan, R. S.; Sattilaro, R. F.

    1972-01-01

    Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.

  18. Regulation of biokinetics of (65)Zn by curcumin and zinc in experimentally induced colon carcinogenesis in rats.

    PubMed

    Jain, Kinnri; Dhawan, Devinder K

    2014-10-01

    This study was conducted to investigate the role of curcumin and zinc on the biokinetics and biodistribution of (65)Zn during colon carcinogenesis. Male wistar rats were divided into five groups, namely normal control, 1,2-dimethylhydrazine (DMH) treated, DMH + curcumin treated, DMH + zinc treated, and DMH + curcumin + zinc treated. Weekly subcutaneous injections of DMH (30 mg/kg body weight) for 16 weeks initiated colon carcinogenesis. Curcumin (100 mg/kg body weight orally) and ZnSO4 (227 mg/L in drinking water) were supplemented for 16 weeks. This study revealed a significant depression in the fast (Tb1) and slow component (Tb2) of biological half-life of (65)Zn in the whole body of DMH-treated rats, whereas liver showed a significant elevation in these components. Further, DMH treatment showed a significant increase in the uptake values of (65)Zn in colon, small intestine, and kidneys. Subcellular distribution depicted a significant increase in (65)Zn uptake values in mitochondrial, microsomal, and postmicrosomal fractions of colon. However, curcumin and zinc supplementation when given separately or in combination reversed the trends and restored the uptake values close to normal range. Our study concludes that curcumin and zinc supplementation during colon carcinogenesis shall prove to be efficacious in regulating the altered zinc metabolism.

  19. A Photoluminescence Study of the Changes Induced in the Zinc White Pigment by Formation of Zinc Complexes

    PubMed Central

    Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela

    2017-01-01

    It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700

  20. Study Protocol for a Randomized, Double-Blind, Community-Based Efficacy Trial of Various Doses of Zinc in Micronutrient Powders or Tablets in Young Bangladeshi Children

    PubMed Central

    Islam, M. Munirul; McDonald, Christine M.; Krebs, Nancy F.; Westcott, Jamie; Rahman, Ahmed Ehsanur; El Arifeen, Shams; Ahmed, Tahmeed; King, Janet C.; Black, Robert E.

    2018-01-01

    Zinc is essential to supporting growth in young children especially for tissues undergoing rapid cellular differentiation and turnover, such as those in the immune system and gastrointestinal tract. Therapeutic zinc supplementation has been initiated in low-income countries as part of diarrhea treatment programs to support these needs for young children, but the effects of preventive supplemental zinc as a tablet or as a multiple micronutrient powder (MNP) on child growth and diarrheal disease are mixed and pose programmatic uncertainties. Thus, a randomized, double-blind community-based efficacy trial of five different doses, forms, and frequencies of preventive zinc supplementation vs. a placebo was designed for a study in children aged 9–11 months in an urban community in Dhaka, Bangladesh. The primary outcomes of this 24-week study are incidence of diarrheal disease and linear growth. Study workers will conduct in-home morbidity checks twice weekly; anthropometry will be measured at baseline, 12 weeks and 24 weeks. Serum zinc and other related biomarkers will be measured in a subsample along with an estimate of the exchangeable zinc pool size using stable isotope techniques in a subgroup. Therapeutic zinc will be provided as part of diarrhea treatment, in accordance with Bangladesh’s national policy. Therefore, the proposed study will determine the additional benefit of a preventive zinc supplementation intervention. The protocol has been approved by the Institutional Review Boards (IRBs) of icddr,b and Children’s Hospital Oakland Research Institute (CHORI). The IRB review process is underway at the University of Colorado Denver as well.

  1. Zinc in Infection and Inflammation

    PubMed Central

    Gammoh, Nour Zahi; Rink, Lothar

    2017-01-01

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136

  2. Oxygen isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Valley, John W.

    1998-06-01

    The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition 18O in the order: hornblende ≪ gedrite < cummingtonite ≤ anthophyllite. The observed fractionations at ˜575°C are: Δ(Ged-Hbl) = 0.8‰, Δ(Cum-Hbl) = 0.9, Δ(Cum-Ged) = 0.2, Δ(Ath-Ged) = 0.3, and Δ(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that Δ(Act-Hbl) ˜ 0.2, Δ(Gln-Grt) ≫ 1, and Δ(Hbl-Grt) ˜ 0. Thus, glaucophane strongly partitions 18O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components such as CaAl(NaSi) -1, NaAl(CaMg) -1, CaMg -1, MgFe -1, FeMn -1, KNa -1, KAl( Si) -1, and Fe 3+Al -1. Applications of the exchange component method reproduce measured amphibole fractionations to within ±0.1 to ±0.2‰, whereas other predictive methods cause misfit for typical metamorphic hornblende of ≥0.5‰ at 575°C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium δ 18O differences of 2-9‰. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.

  3. Multi-purpose hydrogen isotopes separation plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overallmore » plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)« less

  4. Facile synthesis and photocatalytic activity of ZnO/zinc titanate core-shell nanorod arrays

    NASA Astrophysics Data System (ADS)

    He, Ding-Chao; Fu, Qiu-Ming; Ma, Zhi-Bin; Zhao, Hong-Yang; Tu, Ya-Fang; Tian, Yu; Zhou, Di; Zheng, Guang; Lu, Hong-Bing

    2018-02-01

    ZnO/zinc titanate core-shell nanorod arrays (CSNRs) were successfully prepared via a simple synthesis process by combining hydrothermal synthesis and liquid phase deposition (LPD). The surface morphologies, crystalline characteristics, optical properties and surface electronic states of the ZnO/zinc titanate CSNRs were characterized by scanning electron microscope, transmission electron microscope, x-ray diffractometer, x-ray photoelectron spectroscopy, PL and ultraviolet (UV)-visible absorption spectra. By controlling the reaction time of LPD, the shell thickness could vary with the reaction time. Furthermore, the impacts of the reaction time and post-annealing temperature on the crystalline structure and chemical composition of the CSNRs were also investigated. The studies of photocatalytic activity under UV light irradiation revealed that the ZnO/zinc titanate CSNRs annealed at 700 °C with 30 min deposition exhibited the best photocatalytic activity and good stability for degradation of methylene blue. It had been found that the effective separation of photogenerated electron-hole pairs in the CSNRs led to the enhanced photocatalytic activity. Moreover, the ZnO/zinc titanate CSNRs grown on quartz glass substrate could be easily recycled for reuse with almost unchanged photocatalytic activity.

  5. A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, C.; Jeong, S.

    2018-01-01

    In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.

  6. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM

    DOEpatents

    Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.

    1962-11-13

    A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)

  7. New Insights into the Role of Zinc Acquisition and Zinc Tolerance in Group A Streptococcal Infection.

    PubMed

    Ong, Cheryl-Lynn Y; Berking, Olga; Walker, Mark J; McEwan, Alastair G

    2018-06-01

    Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus ; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (Δ adcA Δ adcAII ) and export (Δ czcD ) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens. Copyright © 2018 American Society for Microbiology.

  8. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity.

    PubMed

    Zhang, Ziran; Zhou, Feibai; Liu, Xiaoling; Zhao, Mouming

    2018-08-30

    An oyster protein hydrolysates-zinc complex (OPH-Zn) was prepared and investigated to improve zinc bioaccessibility. Zinc ions chelating with oyster protein hydrolysates (OPH) cause intramolecular and intermolecular folding and aggregation, homogeneously forming the OPH-Zn complex as nanoclusters with a Z-average at 89.28 nm (PDI: 0.16 ± 0.02). The primary sites of zinc-binding in OPH were carboxyl groups, carbonyl groups, and amino groups, and they were related to the high number of charged amino acid residues. Furthermore, formation of the OPH-Zn complex could significantly enhance zinc solubility both under specific pH conditions as well as during simulated gastrointestinal digestion, compared to the commonly used ZnSO 4 . Additionally, after digestion, either preserved or enhanced antioxidant activity of OPH was found when chelated with zinc. These results indicated that the OPH-Zn complex could be a potential functional ingredient with improved antioxidant bioactivity and zinc bioaccessibility. Copyright © 2018. Published by Elsevier Ltd.

  9. Empirical calibration of the clinopyroxene-garnet magnesium isotope geothermometer and implications

    NASA Astrophysics Data System (ADS)

    Li, Wang-Ye; Teng, Fang-Zhen; Xiao, Yilin; Gu, Hai-Ou; Zha, Xiang-Ping; Huang, Jian

    2016-07-01

    The large equilibrium Mg isotope fractionation between clinopyroxene and garnet observed in eclogites makes it a potential high-precision geothermometer, but calibration of this thermometer by natural samples is still limited. Here, we report Mg isotopic compositions of eclogite whole rocks as well as Mg and O isotopic compositions of clinopyroxene and garnet separates from 16 eclogites that formed at different temperatures from the Dabie orogen, China. The whole-rock δ26Mg values vary from -1.20 to +0.10 ‰. Among them, 11 samples display limited δ26Mg variations from -0.36 to -0.17 ‰, similar to those of their protoliths. The mineral separates exhibit very different δ26Mg values, from -0.39 to +0.39 ‰ for clinopyroxenes and from -1.94 to -0.81 ‰ for garnets. The clinopyroxene-garnet Mg isotope fractionation (Δ26Mgclinopyroxene-garnet = δ26Mgclinopyroxene-δ26Mggarnet) varies from 1.05 to 2.15 ‰. The clinopyroxene-garnet O isotope fractionation (Δ18Oclinopyroxene-garnet = δ18Oclinopyroxene-δ18Ogarnet) varies from -1.01 to +0.98 ‰. Equilibrium Mg isotope fractionation between clinopyroxene and garnet in the investigated samples is selected based on both the δ26Mgclinopyroxene versus δ26Mggarnet plot and the state of O isotope equilibrium between clinopyroxene and garnet. The equilibrium Δ26Mgclinopyroxene-garnet and corresponding temperature data obtained in this study, together with those available so far in literatures for natural eclogites, are used to calibrate the clinopyroxene-garnet Mg isotope thermometer. This yields a function of Δ26Mgclinopyroxene-garnet = (0.99 ± 0.06) × 106/ T 2, where T is temperature in Kelvin. The refined function not only provides the best empirically calibrated clinopyroxene-garnet Mg isotope thermometer for precise constraints of temperatures of clinopyroxene- and garnet-bearing rocks, but also has potential applications in high-temperature Mg isotope geochemistry.

  10. Zinc-mediated Allosteric Inhibition of Caspase-6*

    PubMed Central

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  11. The biological inorganic chemistry of zinc ions.

    PubMed

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn 2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn 2+ differs from s-block cations such as Ca 2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  12. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...

  13. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...

  14. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.

  15. Longitudinal changes in zinc transport kinetics, metallothionein, and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment$

    PubMed Central

    Gauthier, Nicole A.; Karki, Shakun; Olley, Bryony J.; Thomas, W. Kelly

    2008-01-01

    A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 µmol Zn/L) in cell culture and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression, and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2), and Zip1 (SLC39A1). Zinc release by cells of the BBB model was significantly increased after 12–24 h of exposure, but decreased back to control levels after 48–96 h, as indicated by transport across the BBB from both the ablumenal (brain) and lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and ablumenal directions within 12–24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB’s response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cell’s capacity to sequester zinc with additional MT and increase zinc export with the ZnT-1 protein. But, the longer term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and maintain brain zinc homeostasis. PMID:18061429

  16. Zinc-The key to preventing corrosion

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  17. Tracing contamination sources in soils with Cu and Zn isotopic ratios.

    PubMed

    Fekiacova, Z; Cornu, S; Pichat, S

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ(65)Cu values vary from -0.15 to 0.44‰ and the δ(66)Zn from -0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from -0.95 to 0.44‰ for δ(65)Cu and from -0.53 to 0.64‰ for δ(66)Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Differing roles for zinc fingers in DNA recognition: Structure of a six-finger transcription factor IIIA complex

    PubMed Central

    Nolte, Robert T.; Conlin, Rachel M.; Harrison, Stephen C.; Brown, Raymond S.

    1998-01-01

    The crystal structure of the six NH2-terminal zinc fingers of Xenopus laevis transcription factor IIIA (TFIIIA) bound with 31 bp of the 5S rRNA gene promoter has been determined at 3.1 Å resolution. Individual zinc fingers are positioned differently in the major groove and across the minor groove of DNA to span the entire length of the duplex. These results show how TFIIIA can recognize several separated DNA sequences by using fewer fingers than necessary for continuous winding in the major groove. PMID:9501194

  19. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1995-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing one or more hydroxides having the formula M(OH), one or more fluorides having the formula MF, and one or more carbonates having the formula M.sub.2 CO.sub.3, where M is a metal selected from the group consisting of alkali metals. The electrolyte inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  20. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Mazzuca, James W.; Haut, Nathaniel K.

    2018-06-01

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.