Sample records for zinc manganese iron

  1. The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium

    PubMed Central

    2014-01-01

    Background The ColRS two-component system has been shown to contribute to the membrane functionality and stress tolerance of Pseudomonas putida as well as to the virulence of Pseudomonas aeruginosa and plant pathogenic Xanthomonas species. However, the conditions activating the ColRS pathway and the signal(s) sensed by ColS have remained unknown. Here we aimed to analyze the role of the ColRS system in metal tolerance of P. putida and to test whether ColS can respond to metal excess. Results We show that the ColRS system is necessary for P. putida to tolerate the excess of iron and zinc, and that it also contributes to manganese and cadmium tolerance. Excess of iron, zinc, manganese or cadmium activates ColRS signaling and as a result modifies the expression of ColR-regulated genes. Our data suggest that the genes in the ColR regulon are functionally redundant, as several loci have to be deleted to observe a significant decrease in metal tolerance. Site-directed mutagenesis of ColS revealed that excess of iron and, surprisingly, also zinc are sensed by a conserved ExxE motif in ColS’s periplasmic domain. While ColS is able to sense different metals, it still discriminates between the two oxidation states of iron, specifically responding to ferric and not ferrous iron. We propose a signal perception model involving a dimeric ColS, where each monomer donates one ExxE motif for metal binding. Conclusions Several transition metals are essential for living organisms in certain amounts, but toxic in excess. We show that ColRS is a sensor system which detects and responds to the excess of physiologically important metals such as zinc, iron and manganese. Thus, the ColRS system is an important factor for metal homeostasis and tolerance in P. putida. PMID:24946800

  2. A green analytical method using ultrasound in sample preparation for the flow injection determination of iron, manganese, and zinc in soluble solid samples by flame atomic absorption spectrometry.

    PubMed

    Yebra, M Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors.

  3. A Green Analytical Method Using Ultrasound in Sample Preparation for the Flow Injection Determination of Iron, Manganese, and Zinc in Soluble Solid Samples by Flame Atomic Absorption Spectrometry

    PubMed Central

    Yebra, M. Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5–30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2–4.6%) and a sample throughput of ca. 25 samples h–1 were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4–25.61 μg g−1 for iron, 5.74–18.30 μg g−1 for manganese, and 33.27–57.90 μg g−1 for zinc in soluble solid food samples and 3.75–9.90 μg g−1 for iron, 0.47–5.05 μg g−1 for manganese, and 1.55–15.12 μg g−1 for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553

  4. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yieldsmore » from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.« less

  5. Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries

    NASA Astrophysics Data System (ADS)

    De Michelis, I.; Ferella, F.; Karakaya, E.; Beolchini, F.; Vegliò, F.

    This paper concerns the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. The metals were dissolved by a reductive-acid leaching with sulphuric acid in the presence of oxalic acid as reductant. Leaching tests were realised according to a full factorial design, then simple regression equations for Mn, Zn and Fe extraction were determined from the experimental data as a function of pulp density, sulphuric acid concentration, temperature and oxalic acid concentration. The main effects and interactions were investigated by the analysis of variance (ANOVA). This analysis evidenced the best operating conditions of the reductive acid leaching: 70% of manganese and 100% of zinc were extracted after 5 h, at 80 °C with 20% of pulp density, 1.8 M sulphuric acid concentration and 59.4 g L -1 of oxalic acid. Both manganese and zinc extraction yields higher than 96% were obtained by using two sequential leaching steps.

  6. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    NASA Astrophysics Data System (ADS)

    Avraamides, J.; Senanayake, G.; Clegg, R.

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2 M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25 °C. Alkaline leaching with 6 M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30 min at 30 °C using 0.1-1.0 M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1 M to 2 M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide.

  7. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    PubMed

    Ippolito, N M; Belardi, G; Medici, F; Piga, L

    2016-05-01

    The aim of the study is the recovery by thermal treatment of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, on the basis of the different phase change temperatures of the two metal-bearing phases. ASR (Automotive Shredder Residue), containing 68% of carbon, was added to the mixture to act as a reductant to metallic Zn of the zinc-bearing phases. The mixture was subsequently heated in different atmospheres (air, CO2 and N2) and at different temperatures (900°C, 1000°C and 1200°C) and stoichiometric excess of ASR (300%, 600% and 900%). Characterization of the mixture and of the residues of thermal treatment was carried out by chemical analysis, TGA/DTA, SEM and XRD. The results show that recovery of 99% of zinc (grade 97%) is achieved at 1000°C in N2 with a stoichiometric excess of car-fluff of 900%. This product could be suitable for production of new batteries after refining by hydrometallurgical way. Recovery of Mn around 98% in the residue of the treatment is achieved at any temperature and atmosphere tested with a grade of 57% at 900% excess of car-fluff. This residue is enriched in manganese oxide and could be used in the production of iron-manganese alloys. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency.

    PubMed

    Bjørklund, Geir; Aaseth, Jan; Skalny, Anatoly V; Suliburska, Joanna; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-05-01

    Iron (Fe) deficiency is considered as the most common nutritional deficiency. Iron deficiency is usually associated with low Fe intake, blood loss, diseases, poor absorption, gastrointestinal parasites, or increased physiological demands as in pregnancy. Nutritional Fe deficiency is usually treated with Fe tablets, sometimes with Fe-containing multimineral tablets. Trace element interactions may have a significant impact on Fe status. Existing data demonstrate a tight interaction between manganese (Mn) and Fe, especially in Fe-deficient state. The influence of Mn on Fe homeostasis may be mediated through its influence on Fe absorption, circulating transporters like transferrin, and regulatory proteins. The existing data demonstrate that the influence of zinc (Zn) on Fe status may be related to their competition for metal transporters. Moreover, Zn may be involved in regulation of hepcidin production. At the same time, human data on the interplay between Fe and Zn especially in terms of Fe-deficiency and supplementation are contradictory, demonstrating both positive and negative influence of Zn on Fe status. Numerous data also demonstrate the possibility of competition between Fe and chromium (Cr) for transferrin binding. At the same time, human data on the interaction between these metals are contradictory. Therefore, while managing hypoferremia and Fe-deficiency anemia, it is recommended to assess the level of other trace elements in parallel with indices of Fe homeostasis. It is supposed that simultaneous correction of trace element status in Fe deficiency may help to decrease possible antagonistic or increase synergistic interactions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    PubMed

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel. 2010 Elsevier B.V. All rights reserved.

  10. Removal of Iron and Manganese in Groundwater using Natural Biosorbent

    NASA Astrophysics Data System (ADS)

    Baharudin, F.; Tadza, M. Y. Mohd; Imran, S. N. Mohd; Jani, J.

    2018-04-01

    This study was conducted to measure and compare the concentration of iron, manganese and hardness of the river and groundwater and to determine the effectiveness of iron and manganese removal by using natural biosorbent which is banana peels. The samples of river and groundwater were collected at riverbank filtration site at Jenderam Hilir, Dengkil. Based on the water quality investigation, the concentration of iron and manganese in the samples of groundwater have exceeded the drinking water quality standard which are 0.3 mg/L for iron and 0.1 mg/L for manganese. The removal process of the iron and manganese in the groundwater was done by using 2, 4 and 8 grams of banana peels activated carbon. It is found that with higher amount of activated banana peels, the removal of iron and manganese is more effective. The ranges of percentage of iron and manganese removal are between 82.25% to 90.84% and 98.79% to 99.43% respectively. From the result, banana peels activated carbon can be concluded as a one of the most effective low-cost adsorbent for groundwater treatment.

  11. Selection of organic acid leaching reagent for recovery of zinc and manganese from zinc-carbon and alkaline spent batteries

    NASA Astrophysics Data System (ADS)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Ramadhan, I. T.; Kusumadewi, F. A.

    2018-03-01

    Zinc-carbon and alkaline batteries are often used in electronic equipment that requires small quantities of power. The waste from these batteries contains valuable metals, such as zinc and manganese, that are needed in many industries and can pollute the environment if not treated properly. This paper concerns the recovery of zinc and manganese metals from zinc-carbon and alkaline spent batteries with leaching method and using organic acid as the environmental friendly leaching reagent. Three different organic acids, namely citric acid, malic acid and aspartic acid, were used as leaching reagents and compared with sulfuric acid as non-organic acid reagents that often used for leaching. The presence of hydrogen peroxide as manganese reducers was investigated for both organic and non-organic leaching reagents. The result showed that citric acid can recover 64.37% Zinc and 51.32% Manganese, while malic acid and aspartic acid could recover less than these. Hydrogen peroxide gave the significant effect for leaching manganese with non-organic acid, but not with organic acid.

  12. Tissue distribution of manganese in iron-sufficient or iron-deficient rats after stainless steel welding-fume exposure.

    PubMed

    Park, Jung-Duck; Kim, Ki-Young; Kim, Dong-Won; Choi, Seong-Jin; Choi, Byung-Sun; Chung, Yong Hyun; Han, Jeong Hee; Sung, Jae Hyuck; Kwon, Il Hoon; Mun, Je-Hyeok; Yu, Il Je

    2007-05-01

    Welders can be exposed to high levels of manganese through welding fumes. Although it has already been suggested that excessive manganese exposure causes neurotoxicity, called manganism, the pathway of manganese transport to the brain with welding-fume exposure remains unclear. Iron is an essential metal that maintains a homeostasis in the body. The divalent metal transporter 1 (DMT1) transports iron and other divalent metals, such as manganese, and the depletion of iron is known to upregulate DMT1 expression. Accordingly, this study investigated the tissue distribution of manganese in iron-sufficient and iron-deficient rats after welding-fume exposure. The feeding of an iron-deficient diet for 4 wk produced a depletion of body iron, such as decreased iron levels in the serum and tissues, and upregulated the DMT1 expression in the rat duodenum. The iron-sufficient and iron-deficient rats were then exposed to welding fumes generated from manual metal arc stainless steel at a concentration of 63.5 +/- 2.3 mg/m3 for 2 h per day over a 30-day period. Animals were sacrificed on days 1, 15, and 30. The level of body iron in the iron-deficient rats was restored to the control level after the welding-fume exposure. However, the tissue distributions of manganese after the welding-fume exposure showed similar patterns in both the iron-sufficient and iron-deficient groups. The concentration of manganese increased in the lungs and liver on days 15 and 30, and increased in the olfactory bulb on day 30. Slight and heterogeneous increases of manganese were observed in different brain regions. Consequently, these findings suggest that the presence of Fe in the inhaled welding fumes may not have a significant effect on the uptake of Mn into the brain. Thus, the condition of iron deficiency did not seem to have any apparent effect on the transport of Mn into the brain after the inhalation of welding fumes.

  13. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    PubMed

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw < maize straw modified by manganese oxides < maize straw modified by iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Matrix Infrared Spectra of Manganese and Iron Isocyanide Complexes.

    PubMed

    Chen, Xiuting; Li, Qingnuan; Andrews, Lester; Gong, Yu

    2017-11-22

    Mono and diisocyanide complexes of manganese and iron were prepared via the reactions of laser-ablated manganese and iron atoms with (CN) 2 in an argon matrix. Product identifications were performed based on the characteristic infrared absorptions from isotopically labeled (CN) 2 experiments as compared with computed values for both cyanides and isocyanides. Manganese atoms reacted with (CN) 2 to produce Mn(NC) 2 upon λ > 220 nm irradiation, during which MnNC was formed mainly as a result of the photoinduced decomposition of Mn(NC) 2 . Similar reaction products FeNC and Fe(NC) 2 were formed during the reactions of Fe and (CN) 2 . All the product molecules together with the unobserved cyanide isomers were predicted to have linear geometries at the B3LYP level of theory. The cyanide complexes of manganese and iron were computed to be more stable than the isocyanide isomers with energy differences between 0.4 and 4 kcal/mol at the CCSD(T) level. Although manganese and iron cyanide molecules are slightly more stable according to the theory, no absorption can be assigned to these isomers in the region above the isocyanides possibly due to their low infrared intensities.

  15. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater.

    PubMed

    Li, Chunyan; Wang, Shuting; Du, Xiaopeng; Cheng, Xiaosong; Fu, Meng; Hou, Ning; Li, Dapeng

    2016-11-01

    In this study, three bacteria with high Fe- and Mn-oxidizing capabilities were isolated from groundwater well sludge and identified as Acinetobacter sp., Bacillus megaterium and Sphingobacterium sp. The maximum removal ratios of Fe and Mn (99.75% and 96.69%) were obtained by an optimal combination of the bacteria at a temperature of 20.15°C, pH 7.09 and an inoculum size of 2.08%. Four lab-scale biofilters were tested in parallel for the removal of iron and manganese ions from groundwater. The results indicated that the Fe/Mn removal ratios of biofilter R4, which was inoculated with iron- and manganese-oxidizing bacteria and a biofilm-forming bacterium, were approximately 95% for each metal during continuous operation and were better than the other biofilters. This study demonstrated that the biofilm-forming bacterium could promote the immobilization of the iron- and manganese-oxidizing bacteria on the biofilters and enhance the removal efficiency of iron and manganese ions from groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. X-Ray Microanalytic Concentration Measurements in Unsectioned Specimens: a Technique and its Application to Zinc, Manganese, and Iron Enriched Mechanical Structures of Organisms from Three Phyla

    NASA Astrophysics Data System (ADS)

    Schofield, Robert M. S.

    A method for measuring concentrations of minor elements in microscopic volumes of heterogeneous, unsectioned biological specimens using an ion microprobe is developed. The element quantity is obtained from PIXE (Proton Induced X-ray Emission) and the total quantity of material is derived from STIM (Scanning Transmission Ion Microscopy) energy loss measurements. Sources of error, including changes in x-ray production cross section with proton energy and absorption of induced x-rays, are discussed and a method of calculating the total measurement uncertainty, typically about 25% here, is developed. The measurement accuracy is shown to be improved for symmetric specimens, and a method of using the bremsstrahlung background to correct for x-ray attenuation within irregular specimens is developed. Methods for measuring local concentrations in internal features are also discussed. With this technique, scorpions were found to contain cuticular accumulations of one or more heavy metals (manganese up to 5% of dry weight, iron up to 8%, zinc up to 24%) in the chelicera, pedipalp denticles, tarsal claws, and stingers; different region soften contained different metals. The stingers are argued to be of particular interest because they are not homologous to legs. Similar accumulations were found in spiders, some other chelicerates and crustaceans. Previous reports of manganese and zinc accumulations in insect and worm mouth parts were augmented with local concentration measurements and with the detection of other enrichment features (such as 6% iron in the paragnaths of the worm Nereis vexillosa). Zinc accumulations (up to only 0.1%) were also found in the tips of the teeth of a hagfish, Myxine + glutinosa. X-ray images of several of these features are presented. It is argued that the extreme magnitude of some concentration values suggests that some metals are incorporated in unusual biominerals rather than organically bound. Results of x-ray diffractometry and Vickers

  17. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  18. Release of iron, zinc, and lead from common iron construction bars and zinc metallic bars in water solutions and meals.

    PubMed

    Lechtig, Aarón; Lòpez de Romaña, Daniel; Boy, Erick; Vargas, Alejandro; Rosas del Portal, Mauricio; Huaylinos, María Luisa

    2007-12-01

    The use of iron pots has decreased the prevalence of anemia. To investigate the release of iron, zinc, and lead from metallic iron and zinc bars incubated in water and in meals. Iron, zinc, and lead concentrations were measured at different incubation conditions in water and in meals. The iron concentration in water was 1.26 mg/L after incubation with one iron bar at pH 7 and 100 degrees C for 20 minutes and in meals was 0.97 mg per 100 g of wet meals, rich in phytate, cooking at 100 degrees C during 20 minutes. The maximum contents were 7720 mg/L of iron and 1826 mg/L of zinc in vinegar at pH 3 and 20 degrees C after 90 and 32 days, respectively. Lead was released from the bars, but at concentrations well below the upper tolerable limits. In outreach populations, the use of iron and zinc metallic bars in water and meals could contribute to sustainable, very low-cost prevention of iron and zinc deficiencies, and home-fortified vinegar could be used for treatment of both deficiencies. Field trials should be performed to determine the impact that the use of iron and zinc metallic bars in water and meals might have on the iron and zinc status of population groups.

  19. Novel MntR-Independent Mechanism of Manganese Homeostasis in Escherichia coli by the Ribosome-Associated Protein HflX

    PubMed Central

    Kaur, Gursharan; Sengupta, Sandeepan; Kumar, Vineet; Kumari, Aruna; Ghosh, Aditi; Parrack, Pradeep

    2014-01-01

    Manganese is a micronutrient required for activities of several important enzymes under conditions of oxidative stress and iron starvation. In Escherichia coli, the manganese homeostasis network primarily constitutes a manganese importer (MntH) and an exporter (MntP), which are regulated by the MntR dual regulator. In this study, we find that deletion of E. coli hflX, which encodes a ribosome-associated GTPase with unknown function, renders extreme manganese sensitivity characterized by arrested cell growth, filamentation, lower rate of replication, and DNA damage. We demonstrate that perturbation by manganese induces unprecedented influx of manganese in ΔhflX cells compared to that in the wild-type E. coli strain. Interestingly, our study indicates that the imbalance in manganese homeostasis in the ΔhflX strain is independent of the MntR regulon. Moreover, the influx of manganese leads to a simultaneous influx of zinc and inhibition of iron import in ΔhflX cells. In order to review a possible link of HflX with the λ phage life cycle, we performed a lysis-lysogeny assay to show that the Mn-perturbed ΔhflX strain reduces the frequency of lysogenization of the phage. This observation raises the possibility that the induced zinc influx in the manganese-perturbed ΔhflX strain stimulates the activity of the zinc-metalloprotease HflB, the key determinant of the lysis-lysogeny switch. Finally, we propose that manganese-mediated autophosphorylation of HflX plays a central role in manganese, zinc, and iron homeostasis in E. coli cells. PMID:24794564

  20. Removal of iron and manganese using biological roughing up flow filtration technology.

    PubMed

    Pacini, Virginia Alejandra; María Ingallinella, Ana; Sanguinetti, Graciela

    2005-11-01

    The removal of iron and manganese from groundwater using biological treatment methods is almost unknown in Latin America. Biological systems used in Europe are based on the process of double rapid biofiltration during which dissolved oxygen and pH need to be strictly controlled in order to limit abiotic iron oxidation. The performance of roughing filter technology in a biological treatment process for the removal of iron and manganese, without the use of chemical agents and under natural pH conditions was studied. Two pilot plants, using two different natural groundwaters, were operated with the following treatment line: aeration, up flow roughing filtration and final filtration (either slow or rapid). Iron and manganese removal efficiencies were found to be between 85% and 95%. The high solid retention capability of the roughing filter means that it is possible to remove iron and manganese simultaneously by biotic and abiotic mechanisms. This system combines simple, low-cost operation and maintenance with high iron and manganese removal efficiencies, thus constituting a technology which is particularly suited to small waterworks.

  1. Wustite-based photoelectrodes with lithium, hydrogen, sodium, magnesium, manganese, zinc and nickel additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Emily Ann; Toroker, Maytal Caspary

    A photoelectrode, photovoltaic device and photoelectrochemical cell and methods of making are disclosed. The photoelectrode includes an electrode at least partially formed of FeO combined with at least one of lithium, hydrogen, sodium, magnesium, manganese, zinc, and nickel. The electrode may be doped with at least one of lithium, hydrogen, and sodium. The electrode may be alloyed with at least one of magnesium, manganese, zinc, and nickel.

  2. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    PubMed

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  3. Moessbauer studies in zinc-manganese ferrites for use in measuring small velocities and accelerations with great precision

    NASA Technical Reports Server (NTRS)

    Escue, W. T.; Gupta, R. G.; Mendiratta, R. G.

    1975-01-01

    Mossbauer spectroscopy was used for a systematic study of the magnetic behavior of manganese and zinc in mixed ferrites. It was observed that Zn2+ has preference to substitute Mn2+ at interstitial sites where the metal ions are tetrahedrally coordinated with four oxygen neighbors. The internal magnetic hyperfine field at the tetrahedral iron site is larger than that at the octahedral site. The relaxation effects were observed to play an important role as the zinc contents were increased, while the spin-correlation time and the magnetic field were observed to decrease in strength. It is concluded that Mossbauer effect data on complex materials, when used in conjunction with other data, can provide useful insight into the origin of the microscopic properties of magnetic materials.

  4. Radio-manganese, -iron, -phosphorus uptake by water hyacinth and economic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colley, T.N.; Gonzalez, M.H.; Martin, D.F.

    To determine the effects of the deprivation of specific micronutrients on the water hyacinth (Eichhornia crassipes), the rate of uptake by the water hyacinth of iron and manganese in comparison with phosphorus was studied. Materials and methodology are described. Experimentation indicates that all three elements are actively absorbed by the root systems, but the rates of absorption differ markedly. The rate of absorption of manganese by roots is 13 and 21 times that for radio-iron and -phosphorous, and iron was taken up by the roots at nearly twice the rate of phosphorous. Manganese translocation appeared to be faster than phosphorusmore » translocation by an order of magnitude and 65 times faster than iron translocation. 9 references, 2 tables.« less

  5. Absorption of Manganese and Iron in a Mouse Model of Hemochromatosis

    PubMed Central

    Kim, Jonghan; Buckett, Peter D.; Wessling-Resnick, Marianne

    2013-01-01

    Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1) and Fpn (ferroportin), transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe −/− knockout mice after intravenous, intragastric, and intranasal administration of 54Mn. These values were compared to intravenous and intragastric administration of 59Fe. Intestinal absorption of 59Fe was increased and clearance of injected 59Fe was also increased in Hfe−/− mice compared to controls. Hfe −/− mice displayed greater intestinal absorption of 54Mn compared to wild-type Hfe+/+ control mice. After intravenous injection, the distribution of 59Fe to heart and liver was greater in Hfe −/− mice but no remarkable differences were observed for 54Mn. Although olfactory absorption of 54Mn into blood was unchanged in Hfe −/− mice, higher levels of intranasally-instilled 54Mn were associated with Hfe−/− brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency. PMID:23705020

  6. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Supplemental levels of iron and calcium interfere with repletion of zinc status in zinc-deficient animals.

    PubMed

    Jayalakshmi, S; Platel, Kalpana

    2016-05-18

    Negative interactions between minerals interfering with each other's absorption are of concern when iron and calcium supplements are given to pregnant women and children. We have previously reported that supplemental levels of iron and calcium inhibit the bioaccessibility of zinc, and compromise zinc status in rats fed diets with high levels of these two minerals. The present study examined the effect of supplemental levels of iron and calcium on the recovery of zinc status during a zinc repletion period in rats rendered zinc-deficient. Iron and calcium, both individually and in combination, significantly interfered with the recovery of zinc status in zinc deficient rats during repletion with normal levels of zinc in the diet. Rats maintained on diets containing supplemental levels of these two minerals had significantly lower body weight, and the concentration of zinc in serum and organs was significantly lower than in zinc-deficient rats not receiving the supplements. Iron and calcium supplementation also significantly inhibited the activity of zinc-containing enzymes in the serum as well as liver. Both iron and calcium independently exerted this negative effect on zinc status, while their combination seemed to have a more prominent effect, especially on the activities of zinc containing enzymes. This investigation is probably the first systematic study on the effect of these two minerals on the zinc status of zinc deficient animals and their recovery during repletion with normal amounts of zinc.

  8. Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation

    PubMed Central

    Hibbing, Michael E.; Xu, Jing; Natarajan, Ramya; Buechlein, Aaron M.

    2015-01-01

    ABSTRACT Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability

  9. Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State

    NASA Astrophysics Data System (ADS)

    Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.

    2015-12-01

    Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.

  10. [Factors affecting biological removal of iron and manganese in groundwater].

    PubMed

    Xue, Gang; He, Sheng-Bing; Wang, Xin-Ze

    2006-01-01

    Factors affecting biological process for removing iron and manganese in groundwater were analyzed. When DO and pH in groundwater after aeration were 7.0 - 7.5 mg/L and 6.8 - 7.0 respectively, not only can the activation of Mn2+ oxidizing bacteria be maintained, but also the demand of iron and manganese removal can be satisfied. A novel inoculating approach of grafting mature filter material into filter bed, which is easier to handle than selective culture media, was employed in this research. However, this approach was only suitable to the filter material of high-quality manganese sand with strong Mn2+ adsorption capacity. For the filter material of quartz sand with weak adsorption capacity, only culturing and domesticating Mn2+ oxidizing bacteria by selective culture media can be adopted as inoculation in filter bed. The optimal backwashing rate of biological filter bed filled with manganese sand and quartz sand should be kept at a relatively low level of 6 - 9 L/(m2 x s) and 7 -11 L/( m2 x s), respectively. Then the stability of microbial phase in filter bed was not disturbed, and iron and manganese removal efficiency recovered in less than 5h. Moreover, by using filter material with uniform particle size of 1.0 - 1.2 mm in filter bed, the filtration cycle reached as long as 35 - 38h.

  11. Reversing Sports-Related Iron and Zinc Deficiencies.

    ERIC Educational Resources Information Center

    Loosli, Alvin R.

    1993-01-01

    Many active athletes do not consume enough zinc or iron, which are important for oxygen activation, electron transport, and injury healing. Subclinical deficiencies may impair performance and impair healing times. People who exercise regularly need counseling about the importance of adequate dietary intake of iron and zinc. (SM)

  12. Trace Element Status (Zinc, Copper, Selenium, Iron, Manganese) in Patients with Long-Term Home Parenteral Nutrition.

    PubMed

    Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel

    2016-01-01

    The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.

  13. Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism

    PubMed Central

    Zhao, Lu; Xia, Zhidan; Wang, Fudi

    2014-01-01

    Iron, copper, zinc, and eight other minerals are classified as essential trace elements because they present in minute in vivo quantities and are essential for life. Because either excess or insufficient levels of trace elements can be detrimental to life (causing human diseases such as iron-deficiency anemia, hemochromatosis, Menkes syndrome and Wilson's disease), the endogenous levels of trace minerals must be tightly regulated. Many studies have demonstrated the existence of systems that maintain trace element homeostasis, and these systems are highly conserved in multiple species ranging from yeast to mice. As a model for studying trace mineral metabolism, the zebrafish is indispensable to researchers. Several large-scale mutagenesis screens have been performed in zebrafish, and these screens led to the identification of a series of metal transporters and the generation of several mutagenesis lines, providing an in-depth functional analysis at the system level. Moreover, because of their developmental advantages, zebrafish have also been used in mineral metabolism-related chemical screens and toxicology studies. Here, we systematically review the major findings of trace element homeostasis studies using the zebrafish model, with a focus on iron, zinc, copper, selenium, manganese, and iodine. We also provide a homology analysis of trace mineral transporters in fish, mice and humans. Finally, we discuss the evidence that zebrafish is an ideal experimental tool for uncovering novel mechanisms of trace mineral metabolism and for improving approaches to treat mineral imbalance-related diseases. PMID:24639652

  14. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  15. New chemical determinations of zinc in basalts, and rocks of similar composition

    USGS Publications Warehouse

    Rader, L.F.; Swadley, W.C.; Huffman, C.; Lipp, H.H.

    1963-01-01

    New determinations of zinc in 124 basalts by the chemical method described (Huff-Man et al. 1963) are reported. Average zinc values, in per cent, for basalts from diverse regions are as follows: Idaho, 28 samples, 0.013; Hawaii, 33 samples, 0.010; Connecticut, 27 samples, 0.0090; Oregon, 17 samples, 0.0081; California, 8 samples, 0.0071; and New Mexico, 11 samples, 0.0086; average, all samples, 0.0099 per cent zinc. A plot of differentiation indicator ratios calculated from the conventional rock analyses, CaO/(Na2O + K2O) as the ordinate and SiO2/MgO as the abscissa, was used to select, from different localities, samples essentially the same in chemical composition that were to be used for comparisons of zinc and other minor elements. Zinc correlates with MnO and with total iron as FeO. An inverse relationship found for zinc and manganese is related to the total iron content of the basalts. Thus for a given iron concentration as zinc increases, manganese decreases and vice versa. Ratios of zinc, the common denominator, to 11 other minor elements determined spectro-graphically show correlations with cobalt, gallium, scandium, yttrium, and zirconium. ?? 1963.

  16. Geological reconnaissance of some Uruguayan iron and manganese deposits in 1962

    USGS Publications Warehouse

    Wallace, Roberts Manning

    1976-01-01

    Three mineralized areas lie in an area near the town of Minas de Corrales in the Departamento de Rivera; they are the Cerro Amelia, the Cerro de Papagayo, and the Cerro Iman. The Cerro Amelia is composed of small bands of iron-rich rock separated by an amphibolitic or mafic rock. Selective mining would be necessary to extract the 31,000 tons per meter of depth of iron-rich rock that ranges from 15 to 40 percent metallic iron. The Cerro de Papagayo district contains many small, rich deposits of ferruginous manganese ore. The ratio of Mn to Fe varies widely within each small deposit as well as from deposit to deposit. Some ferruginous manganese ore contains 50-55 percent manganese dioxide. Although there are many thousands of tons of ore in the district, small-scale mining operations are imperative. One deposit, the Cerro Avestuz manganese mine, was visited. The manganese ore body lies within contorted highly metamorphosed itabirite that contains both hard low grade and soft high grade ferruginous manganese ores estimated to average 40 percent Mn. About 38,000 tons of manganese ore is present in this deposit. The Cerro Iman is a large block of itabirite that contains about 40 percent Fe. The grade is variable and probably runs from less than 35 percent Fe to more than 50 percent Fe. No exploration has been done on this deposit. It is recommended that the Cerro de Iman area be geologically mapped in detail, and that a geological reconnaissance be made of the area that is between the Cuchilla de Corrales and the Cuchilla de Areycua/Cuchilla del Cerro Pelado area.

  17. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    PubMed

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P < 0.001). The mRNA levels of the placental iron uptake protein transferrin receptor 1 were 30-49% higher in the PE and PE+MMN arms than in the FeFol arm ( P < 0.031), and also higher in the PE+MMN arm (29%; P = 0.042) than in the MMN arm. Ferritin in infant cord blood was 18-22% lower in the LNS groups ( P < 0.024). Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P < 0.001) than in other intervention arms. mRNA levels for intracellular zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P < 0.025). Furthermore, mRNA expression of ZIP1 was 85% lower in the PE+MMN group than in the PE group ( P = 0.003). Conclusion: In conditions of low maternal iron and in the absence of supplemental

  18. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    NASA Astrophysics Data System (ADS)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  19. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  20. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  1. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F.T.; Bau, M.; Kang, J.-K.; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. Iron and manganese deposits occur in five forms: nodules, crusts, cements, mounds and sediment-hosted stratabound layers. Seafloor oxides show a wide range of compositions from nearly pure iron to nearly pure manganese end members. Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (up to 52% Mn) for hydrothermal stratabound manganese oxides from active volcanic arcs. Hydrogenetic Fe-Mn crusts that occur on most seamounts in the ocean basins have a mean Fe/Mn ratio of 0.7 for open-ocean seamount crusts and 1.2 for continental margin seamount crusts. Fe-Mn nodules of potential economic interest from the Clarion-Clipperton Zone have a mean Fe/Mn ratio of 0.3, whereas the mean ratio for nodules from elsewhere in the Pacific is about 0.7. Crusts are enriched in Co, Ni and Pt and nodules in Cu and Ni, and both have significant concentrations of Pb, Zn, Ba, Mo, V and other elements. In contrast, hydrothermal deposits commonly contain only minor trace metal contents, although there are many exceptions, for example, with Ni contents up to 0.66%, Cr to 1.2%, and Zn to 1.4%. Chondrite-normalized REE patterns generally show a positive Ce anomaly and abundant ΣREEs for hydrogenetic and mixed hydrogenetic-diagenetic deposits, whereas the Ce anomaly is negative for hydrothermal deposits and ΣREE contents are low. However, the Ce anomaly in crusts may vary from strongly positive in East Pacific crusts to slightly negative in West Pacific crusts, which may reflect

  2. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi

    2014-10-15

    Highlights: • The spent Zn–Mn batteries collected from manufacturers is the target waste. • A facile reclaiming process is presented. • The zinc is reclaimed to valuable electrolytic zinc by electrodepositing method. • The manganese elements are to produce valuable LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} battery material. • The reclamation process features environmental friendliness and saving resource. - Abstract: A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn–Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organicmore » separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H{sub 2}SO{sub 4} (2 mol L{sup −1}) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37–40 °C and 300 A m{sup −2}. The most of MnO{sub 2} and a small quantity of electrolytic MnO{sub 2} are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material of lithium-ion battery. The as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} discharges 118.3 mAh g{sup −1} capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO{sub 2}. This process can recover the substances in the spent Zn–Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable.« less

  3. Barium and manganese-doped zinc silicate rods prepared by mesoporous template route and their luminescence property

    NASA Astrophysics Data System (ADS)

    Dang, Lingyan; Tian, Chen; Zhao, Shifeng; Lu, Qingshan

    2018-06-01

    Barium and manganese-doped zinc silicates was prepared under hydrothermal treatment by mesoporous template route employing mesoporous silica as an active template. The sample displays a rod-like morphology with a mean diameter of ∼40 nm and a mean length of ∼450 nm, which inherits the characteristics of mesoporous silica. The individual rods show single crystalline and assemble into bundle-like hierarchical structure along the channels of the mesoporous silica. When barium ions together with manganese ions are co-doped in zinc silicate, the green emission corresponding to manganese ions display a significant enhancement, especially for the sample with the barium doping concentration of 0.08, which indicates that an energy transfer from barium to manganese ions takes place. With further increasing barium concentration from 0.08 to 0.10, the recombination between the defects related to barium and the excitation states of the manganese dominates accompanying non-radiative transitions which can reduce the emission efficiency.

  4. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries.

    PubMed

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-08-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.

  5. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

    PubMed Central

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-01-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed. PMID:27877694

  6. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  7. Alteration of serum concentrations of manganese, iron, ferritin, and transferrin receptor following exposure to welding fumes among career welders.

    PubMed

    Lu, Ling; Zhang, Long-Lian; Li, G Jane; Guo, Wenrui; Liang, Wannian; Zheng, Wei

    2005-03-01

    This study was performed to determine airborne manganese levels during welding practice and to establish the relationship between long-term, low-level exposure to manganese and altered serum concentrations of manganese, iron, and proteins associated with iron metabolism in career welders. Ninety-seven welders (average age of 36 years) who have engaged in electric arc weld in a vehicle manufacturer were recruited as the exposed group. Welders worked 7-8h per day with employment duration of 1-33 years. Control subjects consisted of 91 employees (average age of 35 years) in the same factory but not in the welding profession. Ambient manganese levels in welders' breathing zone were the highest inside the vehicle (1.5 +/- 0.7 mg/m3), and the lowest in the center of the workshop (0.2 +/- 0.05 mg/m3). Since the filter size was 0.8 microm, it is possible that these values may be likely an underestimation of the true manganese levels. Serum levels of manganese and iron in welders were about three-fold (p < 0.01) and 1.2-fold (p < 0.01), respectively, higher than those of controls. Serum concentrations of ferritin and transferrin were increased among welders, while serum transferrin receptor levels were significantly decreased in comparison to controls. Linear regression analyses revealed a lack of association between serum levels of manganese and iron. However, serum concentrations of iron and ferritin were positively associated with years of welder experience (p < 0.05). Moreover, serum transferrin receptor levels were inversely associated with serum manganese concentrations (p < 0.05). These findings suggest that exposure to welding fume among welders disturbs serum homeostasis of manganese, iron, and the proteins associated with iron metabolism. Serum manganese may serve as a reasonable biomarker for assessment of recent exposure to airborne manganese.

  8. Calcium, Iron, and Zinc Bioaccessibilities of Australian Sweet Lupin (Lupinus angustifolius L.) Cultivars.

    PubMed

    Karnpanit, Weeraya; Coorey, Ranil; Clements, Jon; Benjapong, Wenika; Jayasena, Vijay

    2017-06-14

    In this study, we aimed to determine the effect of the cultivar and dehulling on calcium, iron, and zinc bioaccessibilities of Australian sweet lupin (ASL). Ten ASL cultivars grown in 2011, 2012, and 2013 in Western Australia were used for the study. The bioaccessibilities of calcium, iron, and zinc in whole seed and dehulled lupin samples were determined using a dialysability method. The cultivar had significant effects on calcium, iron, and zinc contents and their bioaccessibilities. Average bioaccessibilities of 6% for calcium, 17% for iron, and 9% for zinc were found for whole seeds. Dehulled ASL had average calcium, iron, and zinc bioaccessibilities of 11%, 21%, and 12%, respectively. Compared to some other pulses, ASL had better iron bioaccessibility and poorer calcium and zinc bioaccessibilities. Dehulling increased calcium bioaccessibilities of almost all lupin cultivars. The effect of dehulling on iron and zinc bioaccessibilities depends on the ASL cultivar.

  9. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.

    PubMed

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi; Huang, Shanna; Hu, Keshui; Xiao, Xin; Nan, Junmin

    2014-10-01

    A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn-Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organic separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H2SO4 (2 mol L(-1)) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37-40°C and 300 A m(-2). The most of MnO2 and a small quantity of electrolytic MnO2 are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi0.5Mn1.5O4 material of lithium-ion battery. The as-synthesized LiNi0.5Mn1.5O4 discharges 118.3 mAh g(-1) capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO2. This process can recover the substances in the spent Zn-Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Human Calprotectin Is an Iron-Sequestering Host-Defense Protein

    PubMed Central

    Nakashige, Toshiki G.; Zhang, Bo; Krebs, Carsten; Nolan, Elizabeth M.

    2015-01-01

    Human calprotectin (CP) is a metal-chelating antimicrobial protein of the innate immune response. The current working model states that CP sequesters manganese and zinc from pathogens. We report the discovery that CP chelates iron and deprives bacteria of this essential nutrient. Elemental analysis of CP-treated growth medium establishes that CP reduces the concentrations of manganese, iron, and zinc. Microbial growth studies reveal that iron depletion by CP contributes to the growth inhibition of bacterial pathogens. Biochemical investigations demonstrate that CP coordinates Fe(II) at an unusual hexahistidine motif, and the Mössbauer spectrum of 57Fe(II)-bound CP is consistent with coordination of high-spin Fe(II) at this site (δ = 1.20 mm/s, ΔEQ = 1.78 mm/s). In the presence of Ca(II), CP turns on its iron-sequestering function and exhibits sub-picomolar affinity for Fe(II). Our findings expand the biological coordination chemistry of iron and support a previously unappreciated role for CP in mammalian iron homeostasis. PMID:26302479

  11. Metabolism and tissue distribution of trace elements in broiler chickens' fed diets containing deficient and plethoric levels of copper, manganese, and zinc.

    PubMed

    Mondal, Sovik; Haldar, Sudipto; Saha, Pinaki; Ghosh, Tapan Kumar

    2010-11-01

    Supplementation of broiler diets with copper, manganese, and zinc at levels higher than that stipulated by the National Research Council 1994 reportedly improved live weight, feed conversion, and cured leg abnormality supposedly caused by inadequate intake of Mn and Zn. The objective of the study was to ascertain the effects of plethoric supplementation of copper (Cu), manganese (Mn), and zinc (Zn) on performance and metabolic responses in broiler chickens. The study also aimed to discriminate the responses of the birds when the mineral elements were supplemented either in an inorganic or in an organic form. Cobb 400 broiler chickens (1-day old, n = 300) were assigned to three dietary treatments each containing nine replicates with ten birds for 39 days. The treatments included a control in which the diet was devoid of supplemental trace elements and treatments supplemented with an inorganic trace element premix (ITM) and supplemented with a combination of the inorganic and an organic trace element premix (OTM). The ITM contained (per kilogram) copper, 15 g; iron, 90 g; manganese, 90 g; zinc, 80 g (all as sulfated salts); iodine (as potassium iodide), 2 g; and selenium (as sodium selenite), 0.3 g. The OTM on the other hand, contained copper, 2.5 g; iron, 15 g; manganese, 15 g; zinc, 13.33 g; and chromium, 0.226 g (all as protein chelates). Plethoric supplementation of trace elements improved live weight gain and feed/gain ratio (p < 0.05). Leg abnormality developed in the 16% of the control group of birds but not in the supplemented group. Metabolizability of dry matter, organic matter, and protein was higher (p < 0.01) in the ITM and OTM groups. Excretion of Cu, Fe, and Zn decreased (p < 0.1) due to supplementation of the trace elements leading to increased apparent absorption of the said mineral elements (p < 0.01). Concentration of the concerned trace elements in serum, liver, and composite muscle samples was higher (p < 0.05) in the ITM and OTM dietary groups

  12. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake

    NASA Astrophysics Data System (ADS)

    Herndon, Elizabeth M.; Havig, Jeff R.; Singer, David M.; McCormick, Michael L.; Kump, Lee R.

    2018-06-01

    Manganese and iron are redox-sensitive elements that yield clues about biogeochemistry and redox conditions both in modern environments and in the geologic past. Here, we investigated Mn and Fe-bearing minerals preserved in basin sediments underlying Fayetteville Green Lake, a redox-stratified lake that serves as a geochemical analogue for Paleoproterozoic oceans. Synchrotron-source microprobe techniques (μXRF, μXANES, and μXRD) and bulk geochemical analyses were used to examine the microscale distribution and speciation of Mn, Fe, and S as a function of depth in the top 48 cm of anoxic lake sediments. Manganese was primarily associated with calcite grains as a manganese-rich carbonate that precipitated in the chemocline of the water column and settled through the euxinic basin to collect in lake sediments. Iron was preserved in framboidal iron sulfides that precipitated in euxinic bottom waters and underwent transformation to pyrite and marcasite in the sediments. Previous studies attribute the formation of manganese-rich carbonates to the diagenetic alteration of manganese oxides deposited in basins underlying oxygenated water. Our study challenges this paradigm by providing evidence that Mn-bearing carbonates form in the water column and accumulate in sediments below anoxic waters. Consequently, manganoan carbonates preserved in the rock record do not necessarily denote the presence of oxygenated bottom waters in ocean basins.

  13. A micronutrient powder with low doses of highly absorbable iron and zinc reduces iron and zinc deficiency and improves weight-for-age Z-scores in South African children.

    PubMed

    Troesch, Barbara; van Stuijvenberg, Martha E; van Stujivenberg, Martha E; Smuts, Cornelius M; Kruger, H Salomè; Biebinger, Ralf; Hurrell, Richard F; Baumgartner, Jeannine; Zimmermann, Michael B

    2011-02-01

    Micronutrient powders (MNP) are often added to complementary foods high in inhibitors of iron and zinc absorption. Most MNP therefore include high amounts of iron and zinc, but it is no longer recommended in malarial areas to use untargeted MNP that contain the Reference Nutrient Intake for iron in a single serving. The aim was to test the efficacy of a low-iron and -zinc (each 2.5 mg) MNP containing iron as NaFeEDTA, ascorbic acid (AA), and an exogenous phytase active at gut pH. In a double-blind controlled trial, South African school children with low iron status (n = 200) were randomized to receive either the MNP or the unfortified carrier added just before consumption to a high-phytate maize porridge 5 d/wk for 23 wk; primary outcomes were iron and zinc status and a secondary outcome was somatic growth. Compared with the control, the MNP increased serum ferritin (P < 0.05), body iron stores (P < 0.01) and weight-for-age Z-scores (P < 0.05) and decreased transferrin receptor (P < 0.05). The prevalence of iron deficiency fell by 30.6% (P < 0.01) and the prevalence of zinc deficiency decreased by 11.8% (P < 0.05). Absorption of iron from the MNP was estimated to be 7-8%. Inclusion of an exogenous phytase combined with NaFeEDTA and AA may allow a substantial reduction in the iron dose from existing MNP while still delivering adequate iron and zinc. In addition, the MNP is likely to enhance absorption of the high native iron content of complementary foods based on cereals and/or legumes.

  14. Removal of iron and manganese using granular activated carbon and zeolite in artificial barrier of riverbank filtration

    NASA Astrophysics Data System (ADS)

    Ismail, Abustan; Harmuni, Halim; Mohd, Remy Rozainy M. A. Z.

    2017-04-01

    Iron and Manganese was examined from riverbank filtration (RBF) and river water in Sungai Kerian, Lubok Buntar, Serdang Kedah. Water from the RBF was influenced by geochemical and hydro chemical processes in the aquifer that made concentrations of iron (Fe), and manganese (Mn) high, and exceeded the standard values set by the Malaysia Ministry of Health. Therefore, in order to overcome the problem, the artificial barrier was proposed to improve the performance of the RBF. In this study, the capability and performance of granular activated carbon, zeolite and sand were investigated in this research. The effects of dosage, shaking speed, pH and contact time on removal of iron and manganese were studied to determine the best performance. For the removal of iron using granular activated carbon (GAC) and zeolite, the optimum contact time was at 2 hours with 200rpm shaking speed with 5g and 10g at pH 5 with percentage removal of iron was 87.81% and 83.20% respectively. The removal of manganese and zeolite arose sharply in 75 minutes with 90.21% removal, with 100rpm shaking speed. The GAC gave the best performance with 99.39% removal of manganese. The highest removal of manganese was achieved when the adsorbent dosage increased to 10g with shaking speed of 200rpm.

  15. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence

    PubMed Central

    Porcheron, Gaëlle; Garénaux, Amélie; Proulx, Julie; Sabri, Mourad; Dozois, Charles M.

    2013-01-01

    For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect. PMID:24367764

  16. Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations.

    PubMed

    Wu, Ting-Ying; Gruissem, Wilhelm; Bhullar, Navreet K

    2018-05-01

    Iron deficiency affects one third of the world population. Most iron biofortification strategies have focused on genes involved in iron uptake and storage but facilitating internal long-distance iron translocation has been understudied for increasing grain iron concentrations. Citrate is a primary iron chelator, and the transporter FERRIC REDUCTASE DEFECTIVE 3 (FRD3) loads citrate into the xylem. We have expressed AtFRD3 in combination with AtNAS1 (NICOTIANAMINE SYNTHASE 1) and PvFER (FERRITIN) or with PvFER alone to facilitate long-distance iron transport together with efficient iron uptake and storage in the rice endosperm. The citrate and iron concentrations in the xylem sap of transgenic plants increased two-fold compared to control plants. Iron and zinc levels increased significantly in polished and unpolished rice grains to more than 70% of the recommended estimated average requirement (EAR) for iron and 140% of the recommended EAR for zinc in polished rice grains. Furthermore, the transformed lines showed normal phenotypic growth, were tolerant to iron deficiency and aluminum toxicity, and had grain cadmium levels similar to control plants. Together, our results demonstrate that deploying FRD for iron biofortification has no obvious anti-nutritive effects and should be considered as an effective strategy for reducing human iron deficiency anemia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The efficacy of deferiprone on tissues aluminum removal and copper, zinc, manganese level in rabbits.

    PubMed

    Liu, Ping; Yao, Yu-Na; Wu, Shi-De; Dong, Huai-Jun; Feng, Guo-Chang; Yuan, Xiao-Yan

    2005-08-01

    The effect of 1,2-dimethyl-3-hydroxypyrid-4-one [deferiprone (DE)] on aluminum mobilization and elimination from tissues and serum as well as the influence on the excretion of trace elements, copper, zinc and manganese in rabbits was investigated. Sixteen New Zealand rabbits were randomly divided into three groups: control, Al-only and Al+DE. The Al-only and Al+DE animals received injections of Al2(SO43.18H2O 600 micromol Al/kg 5 days per week for 3 weeks. One week after the last Al injection the Al+DE rabbits were given deferiprone 750 micromol/kg/day intragastrically for 2 weeks. At the 42nd day the animals were sacrificed and the organs were taken and digested. Blood was taken from the ear artery three times (at the initiation of the experiment, before and after deferiprone administration). The aluminum and copper, zinc, manganese were determined by atomic absorption spectrophotometry. Our results showed that deferiprone could highly mobilize aluminum stores from tissues. At the end of experiment the aluminum contents of bone, kidney, liver and brain in Al+DE were significantly lower than that in Al-only rabbits. The copper, zinc, manganese contents were not affected by deferiprone administration.

  18. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    PubMed

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  19. Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Micronutrients are essential elements needed in small amounts for adequate human nutrition and include the elements iron and zinc. Both of these minerals are essential to human well-being, and an adequate supply of iron and zinc helps to prevent iron deficiency anemia and zinc deficiency, two preva...

  20. Compromised zinc status of experimental rats as a consequence of prolonged iron & calcium supplementation.

    PubMed

    Jayalakshmi, S; Platel, Kalpana

    2016-02-01

    Iron supplementation is usually given to pregnant and lactating women who may also have marginal deficiency of zinc. The negative impact of supplemental iron and calcium on zinc status is a cause of concern. The present investigation was undertaken to examine the effect of inclusion of iron and calcium in the diet at supplementary levels on zinc status of experimental rats. Groups of experimental rats were maintained on diets supplemented with iron (Molar ratio - Zn:Fe 1:30) and calcium (Molar ratio - Zn:Ca 1:667) both individually and in combination for six weeks. Zinc status of these rats was assessed by determining zinc concentration in circulation and in organs, and the activities of zinc containing enzymes in serum and liver. The zinc status of experimental rats receiving supplemental levels of iron and calcium was significantly compromised. Zinc concentration in serum, kidney, spleen and liver was reduced significantly by both these minerals. Six weeks of supplementation of iron and calcium individually, significantly reduced the activity of liver and serum superoxide dismutase and alkaline phosphatase. Activity of liver alcohol dehydrogenase was lowered in calcium supplemented group and in calcium + iron supplemented group, while that of carbonic anhydrase was significantly reduced by iron, calcium and their combination. Supplemental levels of iron and calcium, both individually and in combination, significantly compromised the zinc status of experimental rats. This negative effect of these two minerals was more prominent when these were supplemented for a period of six weeks.

  1. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    USGS Publications Warehouse

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  2. Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash

    NASA Astrophysics Data System (ADS)

    Adekola, F. A.; Hodonou, D. S. S.; Adegoke, H. I.

    2016-11-01

    The adsorption behavior of rice husk ash with respect to manganese and iron has been studied by batch methods to consider its application for water and waste water treatment. The optimum conditions of adsorption were determined by investigating the effect of initial metal ion concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. Adsorption equilibrium time was observed at 120 min. The adsorption efficiencies were found to be pH dependent. The equilibrium adsorption experimental data were found to fit the Langmuir, Freundlich and Temkin isotherms for iron, but fitted only Langmuir isotherm for manganese. The pseudo-second order kinetic model was found to describe the manganese and iron kinetics more effectively. The thermodynamic experiment revealed that the adsorption processes involving both metals were exothermic. The adsorbent was finally applied to typical raw water with initial manganese and iron concentrations of 3.38 mg/l for Fe and 6.28 mg/l, respectively, and the removal efficiency was 100 % for Mn and 70 % for Fe. The metal ions were desorbed from the adsorbent using 0.01 M HCl, it was found to quantitatively remove 67 and 86 % of Mn and Fe, respectively, within 2 h. The results revealed that manganese and iron are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.

  3. Manganese, Iron, and sulfur cycling in Louisiana continental shelf sediments

    EPA Science Inventory

    Sulfate reduction is considered the primary pathway for organic carbon remineralization on the northern Gulf of Mexico Louisiana continental shelf (LCS) where bottom waters are seasonally hypoxic, yet limited information is available on the importance of iron and manganese cyclin...

  4. Compromised zinc status of experimental rats as a consequence of prolonged iron & calcium supplementation

    PubMed Central

    Jayalakshmi, S.; Platel, Kalpana

    2016-01-01

    Background & objectives: Iron supplementation is usually given to pregnant and lactating women who may also have marginal deficiency of zinc. The negative impact of supplemental iron and calcium on zinc status is a cause of concern. The present investigation was undertaken to examine the effect of inclusion of iron and calcium in the diet at supplementary levels on zinc status of experimental rats. Methods: Groups of experimental rats were maintained on diets supplemented with iron (Molar ratio - Zn:Fe 1:30) and calcium (Molar ratio - Zn:Ca 1:667) both individually and in combination for six weeks. Zinc status of these rats was assessed by determining zinc concentration in circulation and in organs, and the activities of zinc containing enzymes in serum and liver. Results: The zinc status of experimental rats receiving supplemental levels of iron and calcium was significantly compromised. Zinc concentration in serum, kidney, spleen and liver was reduced significantly by both these minerals. Six weeks of supplementation of iron and calcium individually, significantly reduced the activity of liver and serum superoxide dismutase and alkaline phosphatase. Activity of liver alcohol dehydrogenase was lowered in calcium supplemented group and in calcium + iron supplemented group, while that of carbonic anhydrase was significantly reduced by iron, calcium and their combination. Interpretation & conclusions: Supplemental levels of iron and calcium, both individually and in combination, significantly compromised the zinc status of experimental rats. This negative effect of these two minerals was more prominent when these were supplemented for a period of six weeks. PMID:27121523

  5. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  6. New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans.

    PubMed

    Knez, Marija; Graham, Robin D; Welch, Ross M; Stangoulis, James C R

    2017-07-03

    Iron deficiency is the most prevalent nutritional deficiency, affecting more than 30% of the total world's population. It is a major public health problem in many countries around the world. Over the years various methods have been used with an effort to try and control iron-deficiency anemia. However, there has only been a marginal reduction in the global prevalence of anemia. Why is this so? Iron and zinc are essential trace elements for humans. These metals influence the transport and absorption of one another across the enterocytes and hepatocytes, due to similar ionic properties. This paper describes the structure and roles of major iron and zinc transport proteins, clarifies iron-zinc interactions at these sites, and provides a model for the mechanism of these interactions both at the local and systemic level. This review provides evidence that much of the massive extent of iron deficiency anemia in the world may be due to an underlying deficiency of zinc. It explains the reasons for predominance of cellular zinc status in determination of iron/zinc interactions and for the first time thoroughly explains mechanisms by which zinc brings about these changes.

  7. Modified clinoptilolite in the removal of iron and manganese from water

    NASA Astrophysics Data System (ADS)

    Barloková, D.; Ilavský, J.

    2012-11-01

    It is necessary to treat water intended for drinking purposes in many cases to meet the requirements of the Regulation of the Government of the Slovak Republic No. 496/2010 on Drinking Water. There is a tendency to look for technology with new, more efficient and cost-effective materials and technologies. The goal of this study is to compare activated natural zeolite known as clinoptilolite (rich deposits of clinoptilolite were found in the region of East Slovakia Region in the 1980s) with the imported Greensand and Cullsorb materials in the removal of iron and manganese from water. The results obtained from experiments carried out at WTP Kúty prove that Klinopur-Mn is suitable for the removal of iron and manganese from water and is comparable with the imported materials.

  8. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    PubMed

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  9. Ferromagnetic properties of manganese doped iron silicide

    NASA Astrophysics Data System (ADS)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  10. Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements in Ground Water in the Glacial Aquifer System of the Northern United States

    USGS Publications Warehouse

    Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.

    2009-01-01

    Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element

  11. Rising atmospheric CO2 lowers food zinc, iron, and protein concentrations

    USDA-ARS?s Scientific Manuscript database

    Dietary deficiencies of zinc and iron are a major global public health problem. Most people who experience these deficiencies depend on agricultural crops for zinc and iron. In this context, the influence of rising concentrations of atmospheric CO2 on the availability of these nutrients from crops i...

  12. Two iron-regulated transporter (IRT) genes showed differential expression in poplar trees under iron or zinc deficiency.

    PubMed

    Huang, Danqiong; Dai, Wenhao

    2015-08-15

    Two iron-regulated transporter (IRT) genes were cloned from the iron chlorosis resistant (PtG) and susceptible (PtY) Populus tremula 'Erecta' lines. Nucleotide sequence analysis showed no significant difference between PtG and PtY. The predicted proteins contain a conserved ZIP domain with 8 transmembrane (TM) regions. A ZIP signature sequence was found in the fourth TM domain. Phylogenetic analysis revealed that PtIRT1 was clustered with tomato and tobacco IRT genes that are highly responsible to iron deficiency. The PtIRT3 gene was clustered with the AtIRT3 gene that was related to zinc and iron transport in plants. Tissue specific expression indicated that PtIRT1 only expressed in the root, while PtIRT3 constitutively expressed in all tested tissues. Under iron deficiency, the expression of PtIRT1 was dramatically increased and a significantly higher transcript level was detected in PtG than in PtY. Iron deficiency also enhanced the expression of PtIRT3 in PtG. On the other hand, zinc deficiency down-regulated the expression of PtIRT1 and PtIRT3 in both PtG and PtY. Zinc accumulated significantly under iron-deficient conditions, whereas the zinc deficiency showed no significant effect on iron accumulation. A yeast complementation test revealed that the PtIRT1 and PtIRT3 genes could restore the iron uptake ability under the iron uptake-deficiency condition. The results will help understand the mechanisms of iron deficiency response in poplar trees and other woody species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Iron, zinc, and copper in retinal physiology and disease.

    PubMed

    Ugarte, Marta; Osborne, Neville N; Brown, Laurence A; Bishop, Paul N

    2013-01-01

    The essential trace metals iron, zinc, and copper play important roles both in retinal physiology and disease. They are involved in various retinal functions such as phototransduction, the visual cycle, and the process of neurotransmission, being tightly bound to proteins and other molecules to regulate their structure and/or function or as unbound free metal ions. Elevated levels of "free" or loosely bound metal ions can exert toxic effects, and in order to maintain homeostatic levels to protect retinal cells from their toxicity, appropriate mechanisms exist such as metal transporters, chaperones, and the presence of certain storage molecules that tightly bind metals to form nontoxic products. The pathways to maintain homeostatic levels of metals are closely interlinked, with various metabolic pathways directly and/or indirectly affecting their concentrations, compartmentalization, and oxidation/reduction states. Retinal deficiency or excess of these metals can result from systemic depletion and/or overload or from mutations in genes involved in maintaining retinal metal homeostasis, and this is associated with retinal dysfunction and pathology. Iron accumulation in the retina, a characteristic of aging, may be involved in the pathogenesis of retinal diseases such as age-related macular degeneration (AMD). Zinc deficiency is associated with poor dark adaptation. Zinc levels in the human retina and RPE decrease with age in AMD. Copper deficiency is associated with optic neuropathy, but retinal function is maintained. The changes in iron and zinc homeostasis in AMD have led to the speculation that iron chelation and/or zinc supplements may help in its treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Effect of iron and zinc deficiency on short term memory in children.

    PubMed

    Umamaheswari, K; Bhaskaran, Mythily; Krishnamurthy, Gautham; Vasudevan, Hemamalini; Vasudevan, Kavita

    2011-04-01

    To evaluate the effect of iron and zinc deficiency on short term memory of children in the age group of 6-11 years and to assess the response to supplementation therapy. Interventional study. 100 children in the age group of 6-11 years (subdivided into 6-8 yr and 9-11 yr groups) from an urban corporation school. After collection of demographic data, the study children underwent hematological assessment which included serum iron, serum zinc, and hemoglobin estimation. Based on the results, they were divided into Iron deficient, Zinc deficient, and Combined deficiency groups. Verbal and nonverbal memory assessment was done in all the children. Iron (2mg/kg bodyweight in two divided doses) and zinc (5mg once-a-day) supplementation for a period of 3 months for children in the deficient group. All children with iron and zinc deficiency in both the age groups had memory deficits. Combined deficiency in 9-11 years group showed severe degree of affectation in verbal (P<0.01) and non-verbal memory (P<0.01), and improved after supplementation (P = 0.05 and P< 0.01, respectively). In 6-8 years group, only non-verbal form of memory (P =0.02) was affected, which improved after supplementation. Iron and zinc deficiency is associated with memory deficits in children. There is a marked improvement in memory after supplementation. Post supplementation IQ scores do not show significant improvement in deficient groups in 6-8 year olds.

  15. Iron-[S,S']-EDDS (FeEDDS) Chelate as an Iron Source for Horticultural Crop Production: Marigold Growth and Nutrition, Spectral Properties, and Photodegradation

    USDA-ARS?s Scientific Manuscript database

    Aminopolycarboxylic acid (APCA) complexones, commonly referred to as ligands or chelating agents, like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to p...

  16. Evaluation of Serum Levels of Zinc, Copper, Iron, and Zinc/Copper Ratio in Cutaneous Leishmaniasis

    PubMed Central

    Pourfallah, F; Javadian, S; Zamani, Z; Saghiri, R; Sadeghi, S; Zarea, B; Faiaz, Sh; Mirkhani, F; Fatemi, N

    2009-01-01

    Background: The purpose of this study was to evaluate the levels of zinc (Zn), copper (Cu), iron (Fe) and zinc/ copper ratio in the serum of patients with cutaneous leishmaniasis in Qom Province, center of Iran. Methods: Serum levels of zinc and copper were determined by flame atomic absorption spectrophotometer and serum iron concentration was measured by using an Auto Analyzer. The study group consisted of 60 patients with cutaneous leishmaniasis and the control group of 100 healthy volunteers from the same area who were not exposed to cutaneous leishmaniasis. Result: There were no statistically significant differences in age and body mass index between the two groups. Serum Zn (P< 0.001) and Fe (P< 0.05) levels were lower in patients with cutaneous leishmaniasis than the control group. We also found serum Cu concentration (P< 0.05) in the patient group was significantly higher than that of the control group. However, zinc/ copper ratio (P< 0.001) was lower in patients with cutaneous leishmaniasis than in the control group. Conclusion: Our data indicated that Zn/Cu ratio was significantly lower in patients with CL as compared to the controls. Earlier reports suggest that, this ratio imbalance could be a useful marker for immune dysfunction in leishmaniasis. There was also strong association of Zn, Cu and Fe with CL. It suggests the use of blood zinc, copper, iron concentration and the copper/zinc ratio (Zn/Cu), as a means for estimating the prognosis of CL. PMID:22808376

  17. Zinc transport by respiratory epithelial cells and interaction with iron homeostasis.

    PubMed

    Deng, Zhongping; Dailey, Lisa A; Soukup, Joleen; Stonehuerner, Jacqueline; Richards, Judy D; Callaghan, Kimberly D; Yang, Funmei; Ghio, Andrew J

    2009-10-01

    Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn(2+) transport interacts with iron homeostasis in these same cells. Zn(2+) uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn(2+) release occurred in the 4 h immediately following cell exposure to ZnSO(4). Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO(4). Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn(2+). Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-alpha, IFN-gamma, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.

  18. Oral Zinc Supplementation Decreases the Serum Iron Concentration in Healthy Schoolchildren: A Pilot Study

    PubMed Central

    de Brito, Naira Josele Neves; de Medeiros Rocha, Érika Dantas; de Araújo Silva, Alfredo; Costa, João Batista Sousa; França, Mardone Cavalcante; das Graças Almeida, Maria; Brandão-Neto, José

    2014-01-01

    The recognized antagonistic actions between zinc and iron prompted us to study this subject in children. A convenience sample was used. Thirty healthy children between 8 and 9 years of age were studied with the aim of establishing the effect of a 3-mo oral zinc supplementation on iron status. Fifteen individuals were given a placebo (control group), and 15 were given 10 mg Zn/day (experimental group). Blood samples were collected at 0, 60, 120, 180 and 210 min after a 12-h overnight fast, before and after placebo or zinc supplementation. This supplementation was associated with significant improvements in energy, protein, fat, carbohydrate, fiber, calcium, iron, and zinc intake in accordance with the recommendations for age and sex. The basal serum zinc concentration significantly increased after oral zinc supplementation (p < 0.001). However, basal serum iron concentrations and area under the iron curves significantly decreased in the experimental group (p < 0.0001) and remained at the same level throughout the 210-min study. The values obtained for hemoglobin, mean corpuscular volume, ferritin, transferrin, transferrin saturation, ceruloplasmin and total protein were within normal reference ranges. In conclusion, the decrease in serum iron was likely due to the effects of chronic zinc administration, and the decrease in serum iron was not sufficient to cause anemia. PMID:25192026

  19. [Impact of fortified milk on the iron and zinc levels in Mexican preschool children].

    PubMed

    Grijalva-Haro, María Isabel; Chavarria, Elsa Yolanda; Artalejo, Elizabeth; Nieblas, Amparo; Ponce, José Antonio; Robles-Sardin, Alma E

    2014-02-01

    The aim of this study was to assess the efficacy of a national program of consumption of fortified milk "Liconsa" on the nutritional status of iron and zinc in pre-school children (3-5 y). The study was conducted in 77 healthy children of both genders. 54 of them consumed Liconsa fortified milk (GCLFL) and 23 consumed no fortified milk (GR). Iron status was determined by measuring hemoglobin and ferritin and zinc status by serum zinc. The consumption of milk was on free demand and it was estimated at baseline and 6 mo after. Through 24-h recall of measured consumption of iron and zinc in the total diet. Descriptive statistics, Student's t test for independent samples and chi-square test for differences in proportions. Children who consumed fortified milk showed an increase of hemoglobin and ferritin levels [1.13 g/dL (p < 0.05) and 5.83 μg/L (p < 0.05) respectively]. Additionally, a decrease was found of the prevalence of low iron stores from 20.4 to 4.1% (p < 0.05). The serum zinc level showed an increase of 45.2 μg/dL (p < 0.05). At the end of the study no child showed a micronutrient deficiency. Children who did not consume fortified milk Liconsa showed no significant change in their serum iron and zinc values. The average consumption of milk powder Liconsa was 22.7 ± 14.5 g, providing 2.5 mg of daily iron and zinc. Supplied diet 9.2 ± 3.4 mg of iron and 6.9 ± 3 mg of zinc. The consumption of fortified milk had a beneficial effect on the serum levels of iron and zinc in children's social welfare program Liconsa. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. Elements of the iron and manganese cycles in Lake Baikal

    USGS Publications Warehouse

    Granina, L.Z.; Callender, E.

    2007-01-01

    Using data obtained in recent years, we considered the external mass balance and characteristics of internal iron and manganese cycles in Lake Baikal (biological uptake, remineralization, sedimentary and diffusive fluxes, accumulation in sediments, time of renewal, etc.). Some previous results and common concepts were critically reevaluated. ?? Pleiades Publishing, Ltd. 2007.

  1. Removal of Iron and Manganese from Natural Groundwater by Continuous Reactor Using Activated and Natural Mordenite Mineral Adsorption

    NASA Astrophysics Data System (ADS)

    Zevi, Y.; Dewita, S.; Aghasa, A.; Dwinandha, D.

    2018-01-01

    Mordenite minerals derived from Sukabumi natural green stone founded in Indonesia was tested in order to remove iron and manganese from natural groundwater. This research used two types of adsorbents which were consisted of physically activated and natural mordenite. Physical activation of the mordenite was carried out by heating at 400-600°C for two hours. Batch system experiments was also conducted as a preliminary experiment. Batch system proved that both activated and natural mordenite minerals were capable of reducing iron and manganese concentration from natural groundwater. Then, continuous experiment was conducted using down-flow system with 45 ml/minute of constant flow rate. The iron & manganese removal efficiency using continuous reactor for physically activated and natural mordenite were 1.38-1.99%/minute & 0.8-1.49%/minute and 2.26%/minute & 1.37-2.26%/minute respectively. In addition, the regeneration treatment using NH4Cl solution managed to improve the removal efficiency of iron & manganese to 1.98%/minute & 1.77-1.90%/minute and 2.25%/minute & 2.02-2.21%/minute on physically activated mordenite and natural mordenite respectively. Subsequently, the activation of the new mordenite was carried out by immersing mordenite in NH4Cl solution. This chemical activation showed 2.42-2.75%/minute & 0.96 - 2.67 %/minute and 2.66 - 2.78 %/minute & 1.34 - 2.32 %/minute of iron & manganese removal efficiency per detention time for chemically activated and natural mordenite respectively.

  2. Iron and zinc bioaccessibility of fermented maize, sorghum and millets from five locations in Zimbabwe.

    PubMed

    Gabaza, Molly; Shumoy, Habtu; Muchuweti, Maud; Vandamme, Peter; Raes, Katleen

    2018-01-01

    The present study is an evaluation of iron and zinc bioaccessibility of fermented maize, sorghum, pearl millet and finger millet from five different locations in Zimbabwe. Iron and zinc contents ranged between 3.22 and 49.7 and 1.25-4.39mg/100gdm, respectively. Fermentation caused a reduction of between 20 and 88% of phytic acid (PA) while a general increase in soluble phenolic compounds (PC) and a decrease of the bound (PC) was observed. Bioaccessibility of iron and zinc ranged between 2.77 and 26.1% and 0.45-12.8%, respectively. The contribution of the fermented cereals towards iron and zinc absolute requirements ranged between 25 and 411% and 0.5-23% with higher contribution of iron coming from cereals that were contaminated with extrinsic iron. Populations subsisting on cereals could be more at risk of zinc rather than iron deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    NASA Astrophysics Data System (ADS)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  4. Manganese intake is inversely associated with depressive symptoms during pregnancy in Japan: Baseline data from the Kyushu Okinawa Maternal and Child Health Study.

    PubMed

    Miyake, Yoshihiro; Tanaka, Keiko; Okubo, Hitomi; Sasaki, Satoshi; Furukawa, Shinya; Arakawa, Masashi

    2017-03-15

    One epidemiological study in Canada has addressed the association between zinc intake and depressive symptoms during pregnancy while another epidemiological study in Korea has examined the association between iron intake and depressive symptoms during pregnancy. The present cross-sectional study in Japan examined the association between intake of zinc, magnesium, iron, copper, and manganese and depressive symptoms during pregnancy. Study subjects were 1745 pregnant women. Dietary intake during the preceding month was assessed using a self-administered diet history questionnaire. Depressive symptoms were defined as a score ≥16 on the Center for Epidemiologic Studies Depression Scale. Adjustment was made for age, gestation, region of residence, number of children, family structure, history of depression, family history of depression, smoking, secondhand smoke exposure at home and at work, employment, household income, education, body mass index, and intake of saturated fatty acids, eicosapentaenoic acid plus docosahexaenoic acid, calcium, vitamin D, and isoflavones. In crude analysis, significant inverse associations were observed between intake levels of zinc, magnesium, iron, copper, and manganese and the prevalence of depressive symptoms during pregnancy. After adjustment for confounding factors, only manganese intake was independently inversely associated with depressive symptoms during pregnancy: the adjusted prevalence ratio between extreme quartiles was 0.74 (95% confidence interval:0.56-0.97, P for trend=0.046). Information was obtained between the 5th and 39th week of pregnancy. The current cross-sectional study of Japanese women demonstrated higher manganese intake to be independently associated with a lower prevalence of depressive symptoms during pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado

    USGS Publications Warehouse

    Theobald, P.K.; Lakin, H.W.; Hawkins, D.B.

    1963-01-01

    The oxidation of disseminated pyrite in relatively acid schists and gneisses of the Snake River drainage basin provides abundant iron sulfate and sulfuric acid to ground and surface water. This acid water dissolves large quantities of many elements, particularly aluminum and surprisingly large quantities of elements, such as magnesium and zinc, not expected to be abundant in the drainage basin. The adjoining drainage to the west, Deer Creek, is underlain by basic rocks, from which the water inherits a high pH. Despite the presence of base- and precious- metal veins in the drainage basin of Deer Creek, it carries less metal than the Snake River. The principal precipitate on the bed of the Snake River is hydrated iron oxide with small quantities of the other metals. In Deer Creek manganese oxide is precipitated with iron oxide and large quantities of other metals are carried down with this precipitate. Below the junction of these streams the pH stabilizes at a near-neutral value. Iron is removed from the Snake River water at the junction, and aluminum is precipitated for some distance downstream. The aluminum precipitate carries down other metals in concentrations slightly less than that in the manganese precipitate on Deer Creek. The natural processes observed in this junction if carried to a larger scale could provide the mechanism described by Ansheles (1927) for the formation of bauxite. In the environment described, geochemical exploration by either water or stream sediment techniques is difficult because of (1) the extreme pH differential between the streams above their junction and (2) the difference in the precipitates formed on the streambeds. ?? 1963.

  6. Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia.

    PubMed

    Fedor, Monika; Socha, Katarzyna; Urban, Beata; Soroczyńska, Jolanta; Matyskiela, Monika; Borawska, Maria H; Bakunowicz-Łazarczyk, Alina

    2017-03-01

    The purpose of the present study was the assessment of the serum concentration of antioxidant microelements-zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Eighty-three children were examined (mean age 14.36 ± 2.49 years) with myopia. The control group was 38 persons (mean age 12.89 ± 3.84 years). Each patient had complete eye examination. The serum concentration of zinc, copper, manganese, and selenium was determined by atomic absorption spectrometry. Cu/Zn ratio, which is the indicator of the oxidative stress, was also calculated. The average serum concentration of zinc in myopic patients was significantly lower (0.865 ± 0.221 mg L -1 ) in comparison to the control group (1.054 ± 0.174 mg L -1 ). There was significantly higher Cu/Zn ratio in myopic patients (1.196 ± 0.452) in comparison to that in the control group (0.992 ± 0.203). The average serum concentration of selenium in the study group was significantly lower (40.23 ± 12.07 μg L -1 ) compared with that in the control group (46.00 ± 12.25 μg L -1 ). There were no essential differences between serum concentration of copper and manganese in the study group and the control group. Low serum concentration of zinc and selenium in myopic children may imply an association between insufficiency of these antioxidant microelements and the development of the myopia and could be the indication for zinc and selenium supplementation in the prevention of myopia. Significantly, higher Cu/Zn ratio in the study group can suggest the relationship between myopia and oxidative stress.

  7. Process for the recycling of alkaline and zinc-carbon spent batteries

    NASA Astrophysics Data System (ADS)

    Ferella, Francesco; De Michelis, Ida; Vegliò, Francesco

    In this paper a recycling process for the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries is proposed. Laboratory tests are performed to obtain a purified pregnant solution from which metallic zinc (purity 99.6%) can be recovered by electrolysis; manganese is recovered as a mixture of oxides by roasting of solid residue coming from the leaching stage. Nearly 99% of zinc and 20% of manganese are extracted after 3 h, at 80 °C with 10% w/v pulp density and 1.5 M sulphuric acid concentration. The leach liquor is purified by a selective precipitation of iron, whereas metallic impurities, such as copper, nickel and cadmium are removed by cementation with zinc powder. The solid residue of leaching is roasted for 30 min at 900 °C, removing graphite completely and obtaining a mixture of Mn 3O 4 and Mn 2O 3 with 70% grade of Mn. After that a technical-economic assessment is carried out for a recycling plant with a feed capacity of 5000 t y -1 of only alkaline and zinc-carbon batteries. This analysis shows the economic feasibility of that plant, supposing a battery price surcharge of 0.5 € kg -1, with a return on investment of 34.5%, gross margin of 35.8% and around 3 years payback time.

  8. Zinc and iron supplementation on motor and language milestone scores of infants and toddlers

    PubMed Central

    Surkan, Pamela J.; Siegel, Emily H.; Patel, Shivani; Katz, Joanne; Khatry, Subarna K.; Stoltzfus, Rebecca J.; LeClerq, Steven C.; Tielsch, James M.

    2013-01-01

    Objective To assess the effects of zinc and iron-folic acid supplementation on motor and language milestones in Nepali children. Methods A total of 544 children 4–17 months old residing in Ishwarpur, Nepal were randomized to receive placebo, iron-folic acid, zinc and zinc plus iron-folic acid daily. Data were collected at baseline and at three month intervals for one year. Main effects of zinc and iron folic-acid supplementation were estimated for motor and language milestones. We modeled crude and adjusted mean cumulative changes in scores between visits 1 and 5, and adjusted rates-of-change. Results Adjusted differences in motor milestone scores between visits 1 and 5 and rates-of-change were not significantly different for zinc and non-zinc groups (adj. β=−0.7, 95% CI: −1.4, 0.01; adj. β=−0.1, 95% CI:−0.5, 0.3, respectively). Motor milestones in children receiving and not receiving iron supplements were not significantly different (adj. β=0.1, 95% CI:−0.7, 0.8 from visit 1 to 5; adj. β=0.1, 95% CI:−0.3, 0.5 for rate-of-change). Children receiving zinc had a 0.8 lower mean crude change in language score between visits 1 and 5 compared to children not receiving zinc (95% CI −1.3,−0.3), but significance was lost after adjustment (adj. β=−0.2, 95% CI:−0.6, 0.2, comparing visits 1 to 5; β=−0.1, 95% CI:−0.3, 0.2 for rate-of-change). We observed no significant difference in motor or language milestone scores due to iron supplementation.. Conclusion After one year, neither zinc nor iron-folic acid supplementation in Nepali children improved attainment of motor or language milestones. PMID:23298972

  9. Production of bare argon, manganese, iron and nickel nuclei in the Dresden EBIT

    NASA Astrophysics Data System (ADS)

    Kentsch, U.; Zschornack, G.; Großmann, F.; Ovsyannikov, V. P.; Ullmann, F.; Fritzsche, S.; Surzhykov, A.

    2002-02-01

    The production of highly charged argon, manganese, iron and nickel ions in a room-temperature electron beam ion trap (EBIT), the Dresden EBIT, has been investigated by means of energy dispersive X-ray spectroscopy of the direct excitation (DE) and radiative recombination (RR) processes. To derive the charge state distributions of the ions in the trap, direct excitation and radiative recombination cross-sections were calculated at electron energies of 8 and 14.4 keV. Based on these theoretical cross-sections and the measured X-ray spectra, the ion densities and the absolute number of ions, which are trapped in the electron beam, are determined for argon, manganese, iron and nickel. Emphasis has been paid to the highly charged ions, including the helium-like and hydrogen-like ions and bare nuclei. In the case of iron we also determined the contributions from lower ionization stages from DE transition lines. It is shown, that in the Dresden EBIT elements at least up to nickel can be fully ionized. Beside energy dispersive spectroscopy it is shown for iron by wavelength dispersive X-ray spectroscopy that with a comparably high gas pressure in the order of 10 -8 mbar carbon-, boron-, beryllium-, lithium- and helium-like iron ions can be produced.

  10. [Nutritive value of daily food rations reproduced in different regions of the country. IV. Copper, zinc and manganese levels].

    PubMed

    Rutkowska, U; Wojtasik, A; Iwanow, K; Kunachowicz, H

    1991-01-01

    The content of copper, zinc and manganese in daily diets reconstructed in the laboratory in 1988 on the basis of data on the yearly food consumption in 1986 of two social groups (manual and mental workers) with medium income was determined. The diets were prepared for four regions of the country (Warszawa, Lublin, Poznań, Wrocław). It was found out that the content of copper and zinc in the diets in 1986 and the realisation of recommended dietary allowances for these minerals were lower than in 1973, 1980 and 1981. The degree of realization of the recommended intake of zinc and copper in diets from 1986 was on average 67% and 45% respectively. The content of manganese in the diets was in the range of recommendation. The content of microminerals in the diets was usually similar in the all studied regions of the country.

  11. Dietary zinc and iron intake and risk of depression: A meta-analysis.

    PubMed

    Li, Zongyao; Li, Bingrong; Song, Xingxing; Zhang, Dongfeng

    2017-05-01

    The associations between dietary zinc and iron intake and risk of depression remain controversial. Thus, we carried out a meta-analysis to evaluate these associations. A systematic search was performed in PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI) and Wanfang databases for relevant studies up to January 2017. Pooled relative risks (RRs) with 95% confidence intervals (CIs) were calculated using a random effects model. A total of 9 studies for dietary zinc intake and 3 studies for dietary iron intake were finally included in present meta-analysis. The pooled RRs with 95% CIs of depression for the highest versus lowest dietary zinc and iron intake were 0.67 (95% CI: 0.58-0.76) and 0.57 (95% CI: 0.34-0.95), respectively. In subgroup analysis by study design, the inverse association between dietary zinc intake and risk of depression remained significant in the cohort studies and cross-sectional studies. The pooled RRs (95% CIs) for depression did not substantially change in the influence analysis and subgroup analysis by adjustment for body mass index (BMI). The present meta-analysis indicates inverse associations between dietary zinc and iron intake and risk of depression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  12. Selenium, copper, zinc, iron and manganese content of seven meat cuts from Hereford and Braford steers fed pasture in Uruguay.

    PubMed

    Cabrera, M C; Ramos, A; Saadoun, A; Brito, G

    2010-03-01

    Tenderloin (T), eye of rump (E), striploin (S), eye round (ER), tri-tip (TT), rib-eye roll (RR) and three rib plate-flank on (RP) meat cuts were evaluated. Selenium contents ranged between 0.42 and 1.20 mg/kg wet tissue (wt) in Hereford (H) breed and between 0.49 and 1.3 mg/kg wt in Braford (B) breed. In H and B breeds, T, TT and RP, and TT and RP were the richest cuts in selenium, respectively. Copper contents ranged between 0.25 and 1.04 mg/kg wt in H, and between 0.19 and 1.09 mg/kg wt in B. In H breed, RP had significantly more Cu than ER, TT, and RR. In B breed, ER and RR show a significant lower Cu level in comparison to the other meat cuts. Zinc contents ranged between 23 and 72.7 mg/kg wt in H, and between 23 and 63.9 mg/kg wt in B. RP is the richest cut in Zn compared to the other cuts in the two breeds. Iron contents ranged between 16.4 and 48.2 mg/kg wt in H, and between 14.2 and 47.9 mg/kg wt in B. In H breed, RR shows a lower content compared to the other cuts, except RP and S. In B breed, RR had the lowest level of Fe compared to the other cuts, except RP and T. Manganese contents ranged between 0.05 and 0.17 mg/kg wt in H, and between 0.04 and 0.48 mg/kg wt in B. In H no differences were detected between cuts. In B breed, ER cut shows the highest level of Mn. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Effect of Initial Iron Content in a Zinc Bath on the Dissolution Rate of Iron During a Hot Dip Galvanizing Process

    NASA Astrophysics Data System (ADS)

    Lee, Sang Myung; Lee, Suk Kyu; Paik, Doo-Jin; Park, Joo Hyun

    2017-04-01

    The mechanism of iron dissolution and the effect of initial Fe content in a Zn bath on the dissolution rate of iron were investigated using a finger rotating method (FRM). When the initial iron content, [Fe]°, in the zinc bath was less than the solubility limit, the iron content in the zinc bath showed a rapid increase, whereas a moderate increase was observed when [Fe]° was close to the solubility limit. Based on Eisenberg's kinetic model, the mass transfer coefficient of iron in the present experimental condition was calculated to be k M = 1.2 × 10-5 m/s, which was similar to the results derived by Giorgi et al. under industrial practice conditions. A dissolution of iron occurred even when the initial iron content in the zinc bath was greater than the solubility limit, which was explained by the interfacial thermodynamics in conjunction with the morphology of the surface coating layer. By analyzing the diffraction patterns using TEM, the outermost dendritic-structured coating layer was confirmed as FeZn13 ( ζ). In order to satisfy the local equilibrium based on the Gibbs-Thomson equation, iron in the dendrite-structured phase spontaneously dissolved into the zinc bath, resulting in the enrichment of iron in front of the dendrite tip. Through the diffusion boundary layer in front of the dendritic-structured layer, dissolved Fe atoms diffused out and reacted with Zn and small amounts of Al, resulting in the formation of dross particles such as FeZn10Al x ( δ). It was experimentally confirmed that the smaller the difference between the initial iron content in the zinc bath and the iron solubility limit at a given temperature, the lower the number of formed dross particles.

  14. Mineral resource of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  15. Zinc toxicity among galvanization workers in the iron and steel industry.

    PubMed

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  16. A high prevalence of zinc- but not iron-deficiency among women in rural Malawi: a cross-sectional study.

    PubMed

    Siyame, Edwin W P; Hurst, Rachel; Wawer, Anna A; Young, Scott D; Broadley, Martin R; Chilimba, Allan D C; Ander, Louise E; Watts, Michael J; Chilima, Benson; Gondwe, Jellita; Kang'ombe, Dalitso; Kalimbira, Alexander; Fairweather-Tait, Susan J; Bailey, Karl B; Gibson, Rosalind S

    2013-01-01

    Zinc deficiency is often associated with nutritional iron deficiency (ID), and may be exacerbated by low selenium status. To investigate risk of iron and zinc deficiency in women with contrasting selenium status. In a cross-sectional study, 1-day diet composites and blood samples were collected from self-selected Malawian women aged 18-50 years from low- (Zombwe) (n=60) and high-plant-available soil selenium (Mikalango) (n=60) districts. Diets were analyzed for trace elements and blood for biomarkers. Zinc deficiency (>90 %) was greater than ID anemia (6 %), or ID (5 %), attributed to diets low in zinc (median 5.7 mg/day) with high phytate:zinc molar ratios (20.0), but high in iron (21.0 mg/day) from soil contaminant iron. Zombwe compared to Mikalango women had lower (p<0.05) intakes of selenium (6.5 vs. 55.3 µg/day), zinc (4.8 vs. 6.4 mg/day), iron (16.6 vs. 29.6 mg/day), lower plasma selenium (0.72 vs. 1.60 µmol/L), and higher body iron (5.3 vs. 3.8 mg/kg), although plasma zinc was similar (8.60 vs. 8.87 µmol/L). Body iron and plasma zinc were positive determinants of hemoglobin. Risk of zinc deficiency was higher than ID and was shown not to be associated with selenium status. Plasma zinc was almost as important as body iron as a hemoglobin determinant.

  17. Spectroscopic Studies of the Iron and Manganese Reconstituted Tyrosyl Radical in Bacillus Cereus Ribonucleotide Reductase R2 Protein

    PubMed Central

    Tomter, Ane B.; Zoppellaro, Giorgio; Bell, Caleb B.; Barra, Anne-Laure; Andersen, Niels H.; Solomon, Edward I.; Andersson, K. Kristoffer

    2012-01-01

    Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g 1-value of 2.0090 for the tyrosyl radical was extracted. This g 1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g 1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher

  18. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  19. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  20. Content of total iron, copper and manganese in liver of animals during hypokinesia, muscle activity and process of recovery

    NASA Technical Reports Server (NTRS)

    Potapovich, G. M.; Taneyeva, G. V.; Uteshev, A. B.

    1980-01-01

    It is shown that the content of total iron, copper and manganese in the liver of animals is altered depending on the intensity and duration of their swimming. Hypodynamia for 7 days does not alter the concentration of iron, but sufficiently increases the content of copper and manganese. The barometric factor effectively influences the maintenance of constancy in the content of microelements accumulated in the liver after intensive muscle activity.

  1. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    PubMed

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. E.; Vilčáková, J.; Křesálek, V.; Sáha, P.; Sapurina, I.; Stejskal, J.

    2004-02-01

    Polycrystalline manganese-zinc ferrite has been coated with polyaniline (PANI) and embedded into a polyurethane matrix. The complex permeability of the composites was studied in the frequency range 1 MHz-3 GHz. The conductivity of PANI coating was adjusted by controlled protonation with picric acid. Large shifts in the resonance frequency were observed as a function of varying PANI conductivity. The changes in the magnetic properties of the PANI-coated composite material are due to the change of the boundary conditions of the microwave field at the interface between the ferrite particle and polymer matrix. This effect is observed especially when the magnetic anisotropy of ferrite is low.

  3. [Interaction among the trace elements zinc, copper and iron after depletion and repletion of dairy cows with zinc].

    PubMed

    Kirchgessner, M; Schwarz, F J; Roth, H P; Schwarz, W A

    1978-12-01

    Imbalances in the supply with trace elements may be caused by the excessive administration of one or several elements or the insufficient administration in relation to other trace elements. This article deals with the interactions between the trace elements zinc and copper resp. zinc and iron under the conditions of the insufficient supply with Zn (6 mg per kg dry matter of the fodder) and the supply according to the demand with other trace elements (14 mg copper resp. 83 mg iron per dry matter of the fodder). For this purpose we investigated the copper, iron and zinc content of the milk and the serum of cows that were first depleted of zinc through a semi-synthetic zinc deficiency diet and then repleted with extra allowances of zinc. The closest connections exist between the copper and zinc content of the milk. Thus extreme Zn-deficiency feeding conditions the decreased Zn-content on the one hand and increased Cu-content on the other. In contrast to this, the cows' Zn-excretion in the milk increases after Zn-repletion whereas the Cu-content decreases. This shows a distinctly negative correlation. A loose connection could only be detected for the Cu- and Zn-content of the serum. Though the Zn-content changed considerably in dependence on the Zn-supply, the Cu-content remained largely uninfluenced. The Fe-content of both milk and serum shows no interaction with the nutritive Zn-supply. Only after 19 test weeks of extreme Zn-deficiency could a slight increase of the Fe-concentration be indicated.

  4. An Innovative Carbonate Coprecipitation Process For The Removal Of Zinc And Manganese From Mining Impacted Waters

    EPA Science Inventory

    Although mine drainage is usually thought of as acidic, there are many cases where the water is of neutral pH, but still contains metal species that can be harmful to human or aquatic animal health, such as manganese (Mn) and zinc (Zn). Typical treatment of mine drainage waters ...

  5. Abu Zenima synthetic zeolite for removing iron and manganese from Assiut governorate groundwater, Egypt

    NASA Astrophysics Data System (ADS)

    Farrag, Abd El Hay Ali; Abdel Moghny, Th.; Mohamed, Atef Mohamed Gad; Saleem, Saleem Sayed; Fathy, Mahmoud

    2017-10-01

    Groundwater in Upper Egypt especially in Assiut Governorate is considered the second source of fresh water and used for drinking, agriculture, domestic and industrial purposes. Unfortunately, it is characterized by high concentrations of iron and manganese ions. The study aimed at synthesizing zeolite-4A from kaolinite for removing the excess iron and manganese ions from Assiut Governorate groundwater wells. Therefor, the kaolinite was hydrothermally treated through the metakaolinization and zeolitization processes to produce crystalline zeolite-4A. The chemical composition of crystalline zeolite-4A and its morphology were then characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Then the column experiments were conducted to study the performance of crystalline salt-4A as ion exchange and investigate their operating parameters and regeneration conditions. Thomas and Yoon-Nelson models were applied to predict adsorption capacity and the time required for 50 % breakthrough curves. The effects of initial concentrations of 600 and 1000 mg L-1 for Fe2+ and Mn2+, feed flow rate of 10-30 ml/min, and height range of 0.4-1.5 cm on the breakthrough behavior of the adsorption system were determined. The obtained results indicated that the synthesized zeolite-A4 can remove iron and manganese ions from groundwater to the permissible limit according to the standards drinking water law.

  6. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.

  7. Development of low-cost technology for the removal of iron and manganese from ground water in siwa oasis.

    PubMed

    El-Naggar, Hesham M

    2010-01-01

    Ground water is the only water resource for Siwa Oasis. It is obtained from natural freshwater wells and springs fed by the Nubian aquifer. Water samples collected from Siwa Oasis had relatively higher iron (Fe) and manganese (Mn) than the permissible limits specified in WHO Guidelines and Egyptian Standards for drinking water quality. Aeration followed by sand filtration is the most commonly used method for the removal of iron from ground water. The study aimed at development of low-cost technology for the removal of iron and manganese from ground water in Siwa Oasis. The study was carried out on Laboratory-scale columns experiments sand filters with variable depths of 15, 30, 45, 60, 75, 90 cm and three graded types of sand were studied. The graded sand (E.S. =0.205 mm, U.C. =3.366, depth of sand = 60 cm and filtration rate = 1.44 m3/m2/hr) was the best type of filter media. Iron and manganese concentrations measured in ground water with aeration only, decreased with an average removal percentage of 16%, 13% respectively. Iron and manganese concentrations after filtration with aeration came down to 0.1123, 0.05 mg/L respectively in all cases from an initial concentration of 1.14, 0.34 mg/L respectively. Advantages of such treatment unit included simplicity, low cost design, and no need for chemical addition. In addition, the only maintenance required was periodic washing of the sand filter or replacement of the sand in order to maintain reasonable flow rate through the system.

  8. Duration of exclusive breast-feeding and infant iron and zinc status in rural Bangladesh.

    PubMed

    Eneroth, Hanna; El Arifeen, Shams; Persson, Lars-Ake; Kabir, Iqbal; Lönnerdal, Bo; Hossain, Mohammad Bakhtiar; Ekström, Eva-Charlotte

    2009-08-01

    There is a concern that exclusive breast-feeding (EBF) for 6 mo may lead to iron and zinc deficiency in low-birth weight (LBW) infants. We assessed the association between duration of EBF and infant iron and zinc status in the Maternal and Infant Nutrition Interventions in Matlab trial, Bangladesh, stratified for normal birth weigh (NBW) and LBW. Duration of EBF was classified into EBF <4 mo and EBF 4-6 mo based on monthly recalls of foods introduced to the infant. Blood samples collected at 6 mo were analyzed for plasma zinc (n = 1032), plasma ferritin (n = 1040), and hemoglobin (Hb) (n = 791). Infants EBF 4-6 mo had a higher mean plasma zinc concentration (9.9 +/- 2.3 micromol/L) than infants EBF <4mo (9.5 +/- 2.0 micromol/L) (P < 0.01). This association was apparent in only the NBW strata and was not reflected in a lower prevalence of zinc deficiency. Duration of EBF was not associated with concentration of plasma ferritin, Hb concentration, or prevalence of iron deficiency or anemia in any strata. Regardless of EBF duration, the prevalence of zinc deficiency, iron deficiency, and anemia was high in infants in this population and strategies to prevent deficiency are needed.

  9. Effect of olfactory manganese exposure on anxiety-related behavior in a mouse model of iron overload hemochromatosis

    PubMed Central

    Ye, Qi; Kim, Jonghan

    2015-01-01

    Manganese in excess promotes unstable emotional behavior. Our previous study showed that olfactory manganese uptake into the brain is altered in Hfe−/− mice, a model of iron overload hemochromatosis, suggesting that Hfe deficiency could modify the neurotoxicity of airborne manganese. We determined anxiety-related behavior and monoaminergic protein expression after repeated intranasal instillation of MnCl2 to Hfe−/− mice. Compared with manganese-instilled wild-type mice, Hfe−/− mice showed decreased manganese accumulation in the cerebellum. Hfe−/− mice also exhibited increased anxiety with decreased exploratory activity and elevated dopamine D1 receptor and norepinephrine transporter in the striatum. Moreover, Hfe deficiency attenuated manganese-associated impulsivity and modified the effect of manganese on the expression of tyrosine hydroxylase, vesicular monoamine transporter and serotonin transporter. Together, our data indicate that loss of HFE function alters manganese-associated emotional behavior and further suggest that HFE could be a potential molecular target to alleviate affective disorders induced by manganese inhalation. PMID:26189056

  10. Preventive effects of zinc against psychological stress-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.

    PubMed

    Li, Yingjie; Zheng, Yuanyuan; Qian, Jianxin; Chen, Xinmin; Shen, Zhilei; Tao, Liping; Li, Hongxia; Qin, Haihong; Li, Min; Shen, Hui

    2012-06-01

    Psychological stress (PS) could cause decreased iron absorption and iron redistribution in body resulting in low iron concentration in the bone marrow and inhibition of erythropoiesis. In the present study, we investigated the effect of zinc supplementation on the iron metabolism, erythropoiesis, and oxidative stress status in PS-induced rats. Thirty-two rats were divided into two groups randomly: control group and zinc supplementation group. Each group was subdivided into two subgroups: control group and PS group. Rats received zinc supplementation before PS exposure established by a communication box. We investigated the serum corticosterone (CORT) level; iron apparent absorption; iron contents in liver, spleen, cortex, hippocampus, striatum, and serum; hematological parameters; malondialdehyde (MDA); reduced glutathione (GSH); and superoxide dismutase (SOD). Compared to PS-treated rats with normal diet, the PS-treated rats with zinc supplementation showed increased iron apparent absorption, serum iron, hemoglobin, red blood cell, GSH, and SOD activities; while the serum CORT; iron contents in liver, spleen, and regional brain; and MDA decreased. These results indicated that dietary zinc supplementation had preventive effects against PS-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.

  11. Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular Aspergillus fumigatus Hyphal Growth and Corneal Infection.

    PubMed

    Clark, Heather L; Jhingran, Anupam; Sun, Yan; Vareechon, Chairut; de Jesus Carrion, Steven; Skaar, Eric P; Chazin, Walter J; Calera, José Antonio; Hohl, Tobias M; Pearlman, Eric

    2016-01-01

    Calprotectin, a heterodimer of S100A8 and S100A9, is an abundant neutrophil protein that possesses antimicrobial activity primarily because of its ability to chelate zinc and manganese. In the current study, we showed that neutrophils from calprotectin-deficient S100A9(-/-) mice have an impaired ability to inhibit Aspergillus fumigatus hyphal growth in vitro and in infected corneas in a murine model of fungal keratitis; however, the ability to inhibit hyphal growth was restored in S100A9(-/-) mice by injecting recombinant calprotectin. Furthermore, using recombinant calprotectin with mutations in either the Zn and Mn binding sites or the Mn binding site alone, we show that both zinc and manganese binding are necessary for calprotectin's antihyphal activity. In contrast to hyphae, we found no role for neutrophil calprotectin in uptake or killing of intracellular A. fumigatus conidia either in vitro or in a murine model of pulmonary aspergillosis. We also found that an A. fumigatus ∆zafA mutant, which demonstrates deficient zinc transport, exhibits impaired growth in infected corneas and following incubation with neutrophils or calprotectin in vitro as compared with wild-type. Collectively, these studies demonstrate a novel stage-specific susceptibility of A. fumigatus to zinc and manganese chelation by neutrophil-derived calprotectin. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. Iron Bioavailability from Ferric Pyrophosphate in Extruded Rice Cofortified with Zinc Sulfate Is Greater than When Cofortified with Zinc Oxide in a Human Stable Isotope Study.

    PubMed

    Hackl, Laura; Zimmermann, Michael B; Zeder, Christophe; Parker, Megan; Johns, Paul W; Hurrell, Richard F; Moretti, Diego

    2017-03-01

    Background: Extruded rice grains are often cofortified with iron and zinc. However, it is uncertain if the addition of zinc to iron-fortified rice affects iron absorption and whether this is zinc-compound specific. Objective: We investigated whether zinc, added as zinc oxide (ZnO) or zinc sulfate (ZnSO 4 ), affects human iron absorption from extruded rice fortified with ferric pyrophosphate (FePP). Methods: In 19 iron-depleted Swiss women (plasma ferritin ≤16.5 μ/L) aged between 20 and 39 y with a normal body mass index (in kg/m 2 ; 18.7-24.8), we compared iron absorption from 4 meals containing fortified extruded rice with 4 mg Fe and 3 mg Zn. Three of the meals contained extruded rice labeled with FePP ( 57 FePP): 1 ) 1 meal without added zinc ( 57 FePP-Zn), 2 ) 1 cofortified with ZnO ( 57 FePP+ZnO), and 3 ) 1 cofortified with ZnSO 4 ( 57 FePP+ZnSO 4 ). The fourth meal contained extruded rice without iron or zinc, extrinsically labeled with ferrous sulfate ( 58 FeSO 4 ) added as a solution after cooking. All 4 meals contained citric acid. Iron bioavailability was measured by isotopic iron ratios in red blood cells. We also measured relative in vitro iron solubility from 57 FePP-Zn, 57 FePP+ZnO, and 57 FePP+ZnSO 4 expressed as a fraction of FeSO 4 solubility. Results: Geometric mean fractional iron absorption (95% CI) from 57 FePP+ZnSO 4 was 4.5% (3.4%, 5.8%) and differed from 57 FePP+ZnO (2.7%; 1.8%, 4.1%) ( P < 0.03); both did not differ from 57 FePP-Zn: 4.0% (2.8%, 5.6%). Relative iron bioavailabilities compared with 58 FeSO 4 were 62%, 57%, and 38% from 57 FePP+ZnSO 4 , 57 FePP-Zn, and 57 FePP+ZnO, respectively. In vitro solubility from 57 FePP+ZnSO 4 differed from that of 57 FePP-Zn (14.3%; P < 0.02) but not from that of 57 FePP+ZnO (10.2% compared with 13.1%; P = 0.08). Conclusions: In iron-depleted women, iron absorption from FePP-fortified extruded rice cofortified with ZnSO 4 was 1.6-fold (95% CI: 1.4-, 1.9-fold) that of rice cofortified with Zn

  13. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Bogdan F.; Frischer, Josa M.; Webb, Samuel M.

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distributionmore » of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Furthermore, upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.« less

  14. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions

    DOE PAGES

    Popescu, Bogdan F.; Frischer, Josa M.; Webb, Samuel M.; ...

    2017-03-22

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distributionmore » of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Furthermore, upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.« less

  15. Is iron and zinc nutrition a concern for vegetarian infants and young children in industrialized countries?

    PubMed

    Gibson, Rosalind S; Heath, Anne-Louise M; Szymlek-Gay, Ewa A

    2014-07-01

    Well-planned vegetarian diets are considered adequate for all stages of the life cycle, despite limited data on the zinc status of vegetarians during early childhood. The bioavailability of iron and zinc in vegetarian diets is poor because of their higher content of absorption inhibitors such as phytate and polyphenols and the absence of flesh foods. Consequently, children as well as adult vegetarians often have lower serum ferritin concentrations than omnivores, which is indicative of reduced iron stores, despite comparable intakes of total iron; hemoglobin differences are small and rarely associated with anemia. However, data on serum zinc concentrations, the recommended biomarker for identifying population groups at elevated risk of zinc deficiency, are sparse and difficult to interpret because recommended collection and analytic procedures have not always been followed. Existing data indicate no differences in serum zinc or growth between young vegetarian and omnivorous children, although there is some evidence of low serum zinc concentrations in vegetarian adolescents. Some vegetarian immigrants from underprivileged households may be predisposed to iron and zinc deficiency because of nondietary factors such as chronic inflammation, parasitic infections, overweight, and genetic hemoglobin disorders. To reduce the risk of deficiency, the content and bioavailability of iron and zinc should be enhanced in vegetarian diets by consumption of fortified cereals and milk, by consumption of leavened whole grains, by soaking dried legumes before cooking and discarding the soaking water, and by replacing tea and coffee at meals with vitamin C-rich drinks, fruit, or vegetables. Additional recommended practices include using fermented soy foods and sprouting at least some of the legumes consumed. Fortified foods can reduce iron deficiency, but whether they can also reduce zinc deficiency is less certain. Supplements may be necessary for vegetarian children following very

  16. Assessment of Occupational Exposure to Manganese and Other Metals in Welding Fumes by Portable X-ray Fluorescence Spectrometer

    PubMed Central

    Laohaudomchok, Wisanti; Cavallari, Jennifer M.; Fang, Shona C.; Lin, Xihong; Herrick, Robert F.; Christiani, David C.; Weisskopf, Marc G.

    2011-01-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM2.5 deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman ρ = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the

  17. Assessment of occupational exposure to manganese and other metals in welding fumes by portable X-ray fluorescence spectrometer.

    PubMed

    Laohaudomchok, Wisanti; Cavallari, Jennifer M; Fang, Shona C; Lin, Xihong; Herrick, Robert F; Christiani, David C; Weisskopf, Marc G

    2010-08-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM(2.5) deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman rho = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that

  18. Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration.

    PubMed

    Vries, D; Bertelkamp, C; Schoonenberg Kegel, F; Hofs, B; Dusseldorp, J; Bruins, J H; de Vet, W; van den Akker, B

    2017-02-01

    A model has been developed that takes into account the main characteristics of (submerged) rapid filtration: the water quality parameters of the influent water, notably pH, iron(II) and manganese(II) concentrations, homogeneous oxidation in the supernatant layer, surface sorption and heterogeneous oxidation kinetics in the filter, and filter media adsorption characteristics. Simplifying assumptions are made to enable validation in practice, while maintaining the main mechanisms involved in iron(II) and manganese(II) removal. Adsorption isotherm data collected from different Dutch treatment sites show that Fe(II)/Mn(II) adsorption may vary substantially between them, but generally increases with higher pH. The model is sensitive to (experimentally) determined adsorption parameters and the heterogeneous oxidation rate. Model results coincide with experimental values when the heterogeneous rate constants are calibrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The oxidation state of iron and manganese in polymetallic nodules from the Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Ganwani, Girish; Meena, Samay Singh; Ram, Sahi; Bijlani, N.; Bhatia, Beena; Tripathi, R. P.

    2018-05-01

    The study of oxidation states of iron (Fe) and manganese (Mn) in polymetallic nodules were carried out by means of X-ray photoelectron spectroscopic techniques. The polymetallic nodules were collected from different locations of the Central Indian Ocean Basin (CIOB). The Mn/Fe ratio allowed the differentiation of these nodules from their origin: "hydrogeneous" or "hydrothermal". The binding energies of Mn 2p3/2 (ranging from 641.5 to 642.4 ev), Fe 2p3/2 (ranging from 711.0 to 711.8 ev) and O 1s (ranging from 530.2 to 530.9 ev) from XPS reveal that most of manganese is in Mn4+ and iron is in Fe3+ state.

  20. Effect of short term zinc supplementation on iron status of children with acute diarrhea.

    PubMed

    Zaka-ur-Rab, Zeeba; Ahmad, Syed Moiz; Naim, Mohammed; Alam, Seema; Adnan, Mohammad

    2015-05-01

    To study the effect of short term (2 wk) zinc supplementation on hemoglobin and iron status of children with acute diarrhea. This study was a prospective, open label, single arm interventional trial conducted from June 2008 through October 2009 in a teaching hospital of North India. Three to sixty months old children presenting with acute diarrhea participated in the study. Subjects were supplemented with recommended doses of oral zinc gluconate for 2 wk. Changes in levels of hemoglobin, serum iron, total iron binding capacity, and serum ferritin were the main outcome measures. Sixty-two patients completed the study successfully. The prevalence of anemia before and after 2 wk of zinc supplementation remained unchanged. However, a small decline (p > 0.05) was observed in mean hemoglobin (from 8.95 ± 1.4 to 8.73 ± 1.43 g/dL), serum iron (79.56 ± 45.81 to 78.61 ± 44.41 μg/dL) and ferritin (84.77 ± 45.35 to 83.55 ± 44.10 ng/mL) levels. Total iron binding capacity increased from 331.60 ± 109.72 to 341.30 ± 119.90 μg/dL post supplementation (p > 0.05). Even though statistically insignificant, the small change observed in the levels of hemoglobin, and indicators of iron status following short term zinc supplementation might assume significance in some settings in developing countries where children receive short courses of zinc repeatedly for frequent diarrheal episodes.

  1. Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: a comparison study.

    PubMed

    Etcheverry, P; Wallingford, J C; Miller, D D; Glahn, R P

    2004-11-01

    Adding human milk fortifiers (HMF) to human milk (HM) is one way of overcoming the nutrient deficits found in the latter. In this study, the bioavailabilities of calcium, zinc, and iron in S-26/SMA HMF added to HM were compared with those in HM fortified with various bovine milk proteins: alpha-lactalbumin, colostrum, caseinate, casein phosphopeptides, and whey protein concentrate. The bioavailability of each mineral was assessed using an in vitro digestion/Caco-2 cell culture model. Calcium and zinc uptake by the cells was traced with radioisotopes; iron uptake was assessed via cell ferritin levels. Samples were prepared on an equal protein content basis and with added calcium, but no zinc or iron was added. Results revealed that calcium uptake from HM + S-26/SMA was not different from any of the HM fortified with the bovine milk proteins, except for unfortified HM and HM + colostrum in which calcium uptake was significantly lower (-89 and -38%, respectively). Uptake of zinc and iron were significantly higher for HM + S-26/SMA than for the other HM + fortifiers.

  2. Women with Fibromyalgia Have Lower Levels of Calcium, Magnesium, Iron and Manganese in Hair Mineral Analysis

    PubMed Central

    Kim, Young-Sang; Kim, Kwang-Min; Lee, Duck-Joo; Kim, Bom-Taeck; Park, Sat-Byul; Cho, Doo-Yeoun; Suh, Chang-Hee; Kim, Hyoun-Ah; Park, Rae-Woong

    2011-01-01

    Little is known about hair mineral status in fibromyalgia patients. This study evaluated the characteristics of hair minerals in female patients with fibromyalgia compared with a healthy reference group. Forty-four female patients diagnosed with fibromyalgia according to the American College of Rheumatology criteria were enrolled as the case group. Ageand body mass index-matched data were obtained from 122 control subjects enrolled during visit for a regular health check-up. Hair minerals were analyzed and compared between the two groups. The mean age was 43.7 yr. General characteristics were not different between the two groups. Fibromyalgia patients showed a significantly lower level of calcium (775 µg/g vs 1,093 µg/g), magnesium (52 µg/g vs 72 µg/g), iron (5.9 µg/g vs 7.1 µg/g), copper (28.3 µg/g vs 40.2 µg/g) and manganese (140 ng/g vs 190 ng/g). Calcium, magnesium, iron, and manganese were loaded in the same factor using factor analysis; the mean of this factor was significantly lower in fibromyalgia group in multivariate analysis with adjustment for potential confounders. In conclusion, the concentrations of calcium, magnesium, iron, and manganese in the hair of female patients with fibromyalgia are lower than of controls, even after adjustment of potential confounders. PMID:22022174

  3. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    NASA Astrophysics Data System (ADS)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  4. Children consuming cassava as a staple food are at risk for inadequate zinc, iron, and vitamin A intake.

    PubMed

    Gegios, Alison; Amthor, Rachel; Maziya-Dixon, Busie; Egesi, Chedozie; Mallowa, Sally; Nungo, Rhoda; Gichuki, Simon; Mbanaso, Ada; Manary, Mark J

    2010-03-01

    Cassava contains little zinc, iron, and beta-carotene, yet it is the primary staple crop of over 250 million Africans. This study used a 24-hour dietary recall to test the hypothesis that among healthy children aged 2-5 years in Nigeria and Kenya, cassava's contribution to the childrens' daily diets is inversely related to intakes of zinc, iron, and vitamin A. Dietary and demographic data and anthropometric measurements were collected from 449 Kenyan and 793 Nigerian children. Among Kenyan children 89% derived at least 25% of their dietary energy from cassava, while among the Nigerian children 31% derived at least 25% of energy from cassava. Spearman's correlation coefficient between the fraction of dietary energy obtained from cassava and vitamin A intake was r = -0.15, P < 0.0001, zinc intake was r = -0.11, P < 0.0001 and iron intake was r = -0.36, P < 0.0001. In Kenya, 59% of children consumed adequate vitamin A, 22% iron, and 31% zinc. In Nigeria, 17% of children had adequate intake of vitamin A, 57% iron, and 41% zinc. Consumption of cassava is a risk factor for inadequate vitamin A, zinc and/or iron intake.

  5. Iron and Vitamin C Co-Supplementation Increased Serum Vitamin C Without Adverse Effect on Zinc Level in Iron Deficient Female Youth

    PubMed Central

    Khoshfetrat, Mohammad Reza; Mortazavi, Sima; Neyestani, Tirang; Mahmoodi, Mohammad Reza; Zerafati-Shoae, Nahid; Mohammadi-Nasrabadi, Fatemeh

    2014-01-01

    Background: Iron supplementation can decrease the absorption of zinc and influence other antioxidants levels such as vitamin C. This study aimed to investigate the effect of iron supplements alone and in combination with vitamin C on zinc and vitamin C status in iron deficient female students. Methods: In a double-blind randomized clinical trail, 60 iron deficient students were selected from 289 volunteers residing in dormitory. After matching, subjects were randomly assigned into two groups: Group I (50 mg elemental iron supplements) and Group II (50 mg elemental iron + 500 mg ascorbic acid). Serum ferritin, iron, serum zinc, and plasma vitamin C concentrations were measured by using enzyme-linked immunosorbent assay, spectrophotometer, atomic absorption spectrometer, and colorimeter, respectively after 6 and 12 weeks supplementation. Student's t-test and repeated measures analysis of variance were applied to analyze the data using SPSS software. Results: Serum zinc levels had no significant differences between 2 groups at the baseline; however, its concentration decreased from 80.9 ± 4.2-68.9 ± 2.7 μg/dl to 81.2 ± 4.5-66.1 ± 2.9 μg/dl (P < 0.001) in Groups I and II, respectively after 6 weeks of supplementation. Continuous supplementation increased serum zinc concentration to baseline levels (79.0 ± 2.9 μg/dl; P < 0.01) in Group I and 70.5 ± 3.1 μg/dl in Group II following 12 weeks of supplementation. Plasma vitamin C increased from 3 ± 0/1-3.3 ± 0.2 mg/dl to 2.7 ± 0. 1-4.2 ± 0.2 mg/dl (P < 0.01) in Groups I and II, respectively. At the end of study, plasma vitamin C significantly increased from 3.3 ± 0.3-4.7 ± 0.3 (P < 0.01) to 4.2 ± 0.2-7.1 ± 0.2 (P < 0.001) in Groups I and II, respectively. Conclusions: Iron supplementation with and without vitamin C led to reduction in serum Zn in iron-deficient female students after 6 weeks. However, the decreasing trend stops after repletion of iron stores and Zn levels returned to the approximately

  6. The photochemistry of manganese and the origin of banded iron formations

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Holland, H. D.

    1992-01-01

    The origin of the deposition of superior-type Precambrian banded iron formations (BIFs) is investigated in experiments where the effect of UV radiation on dissolved manganese was studied to determine if the commonly accepted photochemical model for BIF formation is consistent with the distribution of Mn in BIFs. Solutions containing 0.56 M NaCl and about 180 microM MnCl2, with or without 3 to 200 microM FeCl2 were irradiated with filtered and unfiltered UV light for up to 8 hrs; the solutions were deaerated and buffered to a pH of 7, and the experiments were conducted under oxygen-free atmosphere. Data on the rate of manganese photooxidation confirmed that a photochemical model for the origin of oxide facies BIFs is consistent with field observations.

  7. Low-temperature nitridation of manganese and iron oxides using NaNH2 molten salt.

    PubMed

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-10-21

    Manganese and iron nitrides are important functional materials, but their synthesis processes from oxides often require high temperatures. Herein, we show a novel meta-synthesis method for manganese and iron nitrides by low-temperature nitridation of their oxides using NaNH2 molten salt as the nitrogen source in an autoclave at 240 °C. With this method, nitridation of micrometer-sized oxide particles kept their initial morphologies, but the size of the primary particles decreased. The thermodynamic driving force is considered to be the conversion of oxides to sodium hydroxide, and the kinetic of nitridation is improved by the decrease of particle size and the low melting point of NaNH2. This technique as developed here has the advantages of low reaction temperature, reduced consumption of ammonia, employing nonspecialized equipment, and providing facile control of the reactions for producing nitrides from oxides.

  8. Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 Protein as a Manganese Transporter*

    PubMed Central

    Nishito, Yukina; Tsuji, Natsuko; Fujishiro, Hitomi; Takeda, Taka-aki; Yamazaki, Tomohiro; Teranishi, Fumie; Okazaki, Fumiko; Matsunaga, Ayu; Tuschl, Karin; Rao, Rajini; Kono, Satoshi; Miyajima, Hiroaki; Narita, Hiroshi; Himeno, Seiichiro; Kambe, Taiho

    2016-01-01

    Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating their ability to reduce manganese toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and the zinc-specific transporter hZnT1 showed that residue Asn43, which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique manganese mobilization activity; residues Cys52 and Leu242 in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the His → Asn reversion mutant in hZnT1 conferred manganese transport activity and loss of zinc transport activity. These results provide important information about manganese detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a manganese transporter. PMID:27226609

  9. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells.

    PubMed

    Abreu, Isidro; Saéz, Ángela; Castro-Rodríguez, Rosario; Escudero, Viviana; Rodríguez-Haas, Benjamín; Senovilla, Marta; Larue, Camille; Grolimund, Daniel; Tejada-Jiménez, Manuel; Imperial, Juan; González-Guerrero, Manuel

    2017-11-01

    Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone. © 2017 John Wiley & Sons Ltd.

  10. Magnetic particles extracted from manganese nodules: Suggested origin from stony and iron meteorites

    USGS Publications Warehouse

    Finkelman, R.B.

    1970-01-01

    On the basis of x-ray diffraction and electron microprobe data, spherical and ellipsoidal particles extracted from manganese nodules were divided into three groups. Group I particles are believed to be derived from iron meteorites, and Group II particles from stony meteorites. Group III particles are believed to be volcanic in origin.

  11. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles.

    PubMed

    Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning

    2012-02-02

    In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.

  12. Status of nickel/zinc and nickel/iron battery technology for electric vehicle applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, N.P.; Christianson, C.C.; Elliott, R.C.

    1980-01-01

    Significant progress in nickel/zinc and nickel/iron technology has been made towards achieving the battery technical performance goals necessary for widespread use of these battery systems in electric vehicle applications. This progress is reviewed. Nickel/zinc module test data have shown a specific energy of nearly 70 Whr/kg and a specific power of 130 W/kg. However, cycle life improvements are still needed (presently demonstrated capability of 120 cycles) and are expected to be demonstrated during 1980. Nickel/iron modules have demonstrated a specific energy of nearly 50 Wh/kg and a specific power of 100 W/kg. Indications are that improved performance in these areasmore » can be shown during 1980. Nickel/iron modules cycle lives of 300 have been achieved during early 1980 and testing continues. Energy efficiency has been improved from less than 50% to over 65%. Cost reduction (both initial and operating) continues to receive major emphasis at developers of both nickel/zinc and nickel/iron batteries in order to achieve the lowest possible life cycle cost to the battery user.« less

  13. Serum zinc, copper and iron status of children with coeliac disease on three months of gluten-free diet with or without four weeks of zinc supplements: a randomised controlled trial.

    PubMed

    Negi, K; Kumar, R; Sharma, L; Datta, S P; Choudhury, M; Kumar, P

    2018-04-01

    Data about the effect of zinc supplementation with gluten-free diet on normalisation of plasma zinc, copper and iron in patients with coeliac disease are scanty. We evaluated the effect of zinc supplementation on serum zinc, copper and iron levels in patients with coeliac disease, by randomising 71 children newly diagnosed with coeliac disease into two groups: Group A = gluten-free diet (GFD); and Group B = gluten-free diet with zinc supplements (GFD +Zn). The rise in iron and zinc was significantly higher in the latter, but the mean rise of copper levels was slightly higher in the former, but the difference was not significant.

  14. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  15. Role of manganese dioxide in the recovery of oxide-sulphide zinc ore.

    PubMed

    Yang, Kun; Zhang, Libo; Zhu, Xingcai; Peng, Jinhui; Li, Shiwei; Ma, Aiyuan; Li, Haoyu; Zhu, Fei

    2018-02-05

    In this article, the role of MnO 2 in the recovery of oxide-sulphide zinc ore discussed. Through adopting various modern analysis techniques (such as X-ray diffraction pattern, X-ray photoelectron spectroscopy, scanning electron microscope, energy dispersive X-ray analysis, and fourier transform infrared spectroscopy), the function and mechanism of MnO 2 during the phase transformation process is found out. Thermodynamic mechanisms involved in the phase transformation process with or without addition of manganese dioxide investigated by exploiting the Equilib module of FactSage. What's more, XRD patterns, XPS spectra and SEM-EDAX analyses of zinc calcines verify well the calculations of FactSage. Results reveal that the addition of MnO 2 will produce an aggregation of ZnMn 2 O 4 , a valuable energy material, while roasting on its own, results in generating undesirable Zn 2 SiO 4 , the oxidation degree being relatively low. Moreover, XRD pattern of zinc calcine and FT-IR spectrum of yellow product collected in the calcination process prove that the sulphur-fixing value of the additive MnO 2 , which can promote transforming to the elemental sulphur. The volatile S can be collected through a simple guiding device. In this process, the emission of SO 2 effectively avoids, thus MnO 2 deems as a potential additive in the recovery of oxide-sulphide zinc ore. Copyright © 2017. Published by Elsevier B.V.

  16. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    NASA Astrophysics Data System (ADS)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  17. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2017-07-03

    Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H 2 . The total free energy barrier of the formation of methanol from CO 2 and H 2 catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe 3 ) 2 -3,4-(CH 2 ) 4 (η 5 -C 4 COH)]Fe(CO) 2 H, is 26.0 kcal mol -1 in the methanol solvent. We also evaluated the catalytic activities of 8 other experimentally reported iron cyclopentadienone complexes and 37 iron, cobalt, and manganese cyclopentadienone complexes proposed in this study. In general, iron and manganese complexes have relatively higher catalytic activities. Among all calculated complexes, [2,5-(SiMe 3 ) 2 -3,4-CH 3 CHSCH 2 (η 5 -C 4 COH)]Fe(CO) 2 H (1 Fe-Casey-S-CH3 ) is the most active one with a total free energy barrier of 25.1 kcal mol -1 in the methanol solvent. Such a low barrier indicates that 1 Fe-Casey-S-CH3 is a very promising low-cost and high efficiency catalyst for the conversion of CO 2 and H 2 to methanol under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Theoretical technique for predicting the cumulative impact of iron and manganese oxidation in streams receiving discharge from coal mines

    USGS Publications Warehouse

    Bobay, Keith E.

    1986-01-01

    Two U.S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge water on the dissolved chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved iron, dissolved manganese, and dissolved oxygen concentrations; alkalinity; and, pH of surface water downstream from the point of discharge. First, the one-dimensional, stead-state stream, water quality program uses a dissolved oxygen model to calculate the changes in concentration of elements as a function of the chemical reaction rates and time-of-travel. Second, a program (PHREEQE) combining pH, reduction-oxidation potential, and equilibrium equations uses an aqueous-ion association model to determine the saturation indices and to calculate pH; it then mixes the discharge with a receiving stream. The kinetic processes of the first program dominate the system, whereas the equilibrium thermodynamics of the second define the limits of the reactions. A comprehensive test of the technique was not possible because a complete set of data was unavailable. However, the cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to illustrate the operation of the technique and to determine its sensitivity to changes in physical, chemical, and kinetic parameters. Mine discharges averaged 2 cu ft/sec, with a pH of 6.0, and concentrations of 7.0 mg/L dissolved iron, 4.0 mg/L dissolved manganese, and 8.08 mg/L dissolved oxygen. The receiving stream discharge was 2 cu ft/sec, with a pH of 7.0, and concentrations of 0.1 mg/L dissolved iron, 0.1 mg/L dissolved manganese, and 8.70 mg/L dissolved oxygen. Results of the simulations indicated the following cumulative impact on the receiving stream from five discharges as compared with the effect from one discharge: 0.30 unit decrease in pH, 1.82 mg/L increase in dissolved

  19. The concentration of manganese, iron and strontium in bone of red fox Vulpes vulpes (L. 1758).

    PubMed

    Budis, Halina; Kalisinska, Elzbieta; Lanocha, Natalia; Kosik-Bogacka, Danuta I

    2013-12-01

    The aims of the study were to determine manganese (Mn), iron (Fe) and strontium (Sr) concentrations in fox bone samples from north-western Poland and to examine the relationships between the bone Mn, Fe and Sr concentrations and the sex and age of the foxes. In the studied samples of fox cartilage, cartilage with adjacent compact bone, compact bone and spongy bone, the concentrations of the analysed metals had the following descending order: Fe > Sr > Mn. The only exception was in compact bone, in which the concentrations were arranged in the order Sr > Fe > Mn. Manganese concentrations were significantly higher in cartilage, compact bone and cartilage with compact bone than in spongy bone. Iron concentrations were higher in cartilage and spongy bone compared with compact bone. Strontium concentrations were greater in compact bone than in cartilage and spongy bone. The manganese, iron and strontium concentrations in the same type of bone material in many cases correlated with each other, with the strongest correlation (r > 0.70) between Mn and Fe in almost all types of samples. In addition, concentrations of the same metals in different bone materials were closely correlated for Mn and Fe in cartilage and cartilage with adjacent compact bone, and for Sr in compact bone and cartilage with compact bone. In the fox from NW Poland, there were no statistically significant differences in Mn, Fe and Sr in any of the types of bone material between the sexes and immature and adult foxes.

  20. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment.

    PubMed

    Hernandez, Rafael; Zappi, Mark; Kuo, Chiang-Hai

    2004-10-01

    Addition of corrosion promoters, such as sodium and potassium chloride, accelerated TNT degradation during water treatment using zerovalent zinc and iron. It was theorized that corrosion promoters could be used to accelerate electron generation from metallic species, create new reactive sites on the surface of metals during contaminated water treatment, and minimize passivating effects. The surface area normalized pseudo-first-order rate constant for the reaction of zerovalent zinc with TNT in the absence of KCl was 1.364 L x m(-2) x h(-1). In the presence of 0.3 mM and 3 mM KCI, the rate constant increased to 10.5 L x m(-2) x h(-1) and 51.0 L x m(-2) x h(-1), respectively. For the reaction with zerovalent iron and TNT, the rate constant increased from 6.5 (L/m2 x h) in the absence of KCl to 37 L x m(-2) x h(-1) using 3 mM KCl. The results demonstrate that chloride based corrosion promoters enhance the rate of TNT degradation. The in-situ breakage of the oxide layer using corrosion promoters was applied as a treatment to maintain the long-term activity of the metallic species. Zinc maintained a high reactivity toward TNT, and the reactivity of iron increased after 5 treatment cycles using 3 mM KCI. Zinc and iron scanning electron micrographs indicate that TNT degradation rate enhancement is caused by the pitting corrosion mechanism.

  1. Main and interaction effects of iron, zinc, lead, and parenting on children's cognitive outcomes.

    PubMed

    Hubbs-Tait, Laura; Mulugeta, Afework; Bogale, Alemtsehay; Kennedy, Tay S; Baker, Eric R; Stoecker, Barbara J

    2009-01-01

    This study examined relations of blood lead < 10 microg/dL, iron, zinc, and parenting to Head Start children's (N = 112) scores on Peabody Picture Vocabulary Test-III (PPVT-III) and McCarthy Scales of Children's Abilities (MSCA). Venous whole blood and plasma samples were analyzed for lead and zinc by ICP-MS and iron status was assessed by serum transferrin receptors. Hierarchical regressions revealed significant effects of lead on MSCA perceptual scores and iron on PPVT-III and MSCA verbal scores. Children with lead > 2.5 microg/dL had significantly lower MSCA perceptual scores than children < 2.5 microg/dL. Permissive parenting significantly exacerbated negative effects of higher lead or lower iron on children's perceptual or verbal scores, respectively.

  2. Copper, iron and zinc absorption, retention and status of young women fed vitamin B-6 deficient diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnlund, J.R.; Keyes, W.R.; Hudson, C.A.

    1991-03-11

    A study was conducted in young women to determine the effect of vitamin B-6 deficient diets on copper, iron and zinc metabolism. Young women were confined to a metabolic research unit for 84 and 98 days. They were fed a vitamin B-6 deficient formula diet initially, followed by food diet containing four increasing levels of vitamin B-6. Copper, iron and zinc absorption, retention and status were determined at intervals throughout the study. Absorption was determined using the stable isotopes {sup 65}Cu, {sup 54}Fe, and {sup 67}Zn. Status was based on serum copper and zinc, hemoglobin, hematocrit and mean corpuscular volume.more » Copper absorption averaged 18 {plus minus} 1% during vitamin B-6 depletion, significantly lower than 24 {plus minus} 1% during repletion, but serum copper was not affected and balance was positive. Iron absorption was not impaired significantly by vitamin B-6 deficient diets, but status declined during the depletion period. Zinc absorption averaged 40 {plus minus} 2% during depletion and 27 {plus minus} 2% during repletion. Zinc absorption and retention were significantly greater during vitamin B-6 depletion, but serum zinc declined suggesting the absorbed zinc was not available for utilization. The results suggest that vitamin B-6 depletion of young women may inhibit copper absorption, affect iron status and alter zinc metabolism. The effects of vitamin B-6 depletion differ markedly among these elements.« less

  3. Genomics of mineral nutrient biofortification: calcium, iron and zinc

    USDA-ARS?s Scientific Manuscript database

    Dietary deficiencies affect nearly half of the people on the planet, who simply do not receive sufficient nutrition from the food they buy or grow. Inadequate calcium, iron, and zinc consumption create short and long term health problems, which in turn can magnify and stagnate national development. ...

  4. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study.

    PubMed

    Cotruvo, Joseph A; Stubbe, Joanne

    2012-10-01

    How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(ii) and manganese(ii) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe(II) as a Lewis acid under normal growth conditions but which switch to Mn(II) under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe(II) and Mn(II), the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed

  5. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Tong, Qiang; Shan, Weijun; Xing, Zhiqiang; Wang, Yuejiao; Wen, Siqi; Lou, Zhenning

    2017-09-01

    Iron hydroxide/manganese dioxide doped straw activated carbon was synthesized for As(III) adsorption. The Fe-Mn-SAc adsorbent has two advantages, on the one hand, the straw active carbon has a large surface area (1360.99 m2 g-1) for FeOOH and MnO2 deposition, on the other hand, the manganese dioxide has oxidative property as a redox potential of (MnO2 + H+)/Mn2+, which could convert As(III) into As(V). Combined with the arsenic species after reacting with Fe-Mn-SAc, the As(III) transformation and adsorption mechanism was discussed. H2AsO4-oxidized from As(III) reacts with the Fe-Mn-SAc by electrostatic interaction, and unoxidized As(III) as H3AsO3 reacts with SAc and/or iron oxide surface by chelation effect. The adsorption was well-described by Langmuir isotherms model, and the adsorption capacity of As(III) was 75.82 mg g-1 at pH 3. Therefore, considering the straw as waste biomass material, the biosorbent (Fe-Mn-SAc) is promising to be exploited for applications in the treatment of industrial wastewaters containing a certain ratio of arsenic and germanium.

  6. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Voltammetric determination of arsenic in high iron and manganese groundwaters.

    PubMed

    Gibbon-Walsh, Kristoff; Salaün, Pascal; Uroic, M Kalle; Feldmann, Joerg; McArthur, John M; van den Berg, Constant M G

    2011-09-15

    Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia.

    PubMed

    Alarcon, Karl; Kolsteren, Patrick W; Prada, Ana M; Chian, Ana M; Velarde, Ruth E; Pecho, Iris L; Hoeree, Tom F

    2004-11-01

    Anemia is the most prevalent nutritional deficiency in the world. Attempts to improve iron indexes are affected by deficiency of and interaction between other micronutrients. Our goal was to assess whether zinc added to iron treatment alone or with vitamin A improves iron indexes and affects diarrheal episodes. This was a randomized, placebo-controlled, double-blind trial conducted in Peru. Anemic children aged 6-35 mo were assigned to 3 treatment groups: ferrous sulfate (FS; n = 104), ferrous sulfate and zinc sulfate (FSZn; n = 109), and ferrous sulfate, zinc sulfate, and vitamin A (FSZnA; n = 110). Vitamin A or its placebo was supplied only once; iron and zinc were provided under supervision >/=1 h apart 6 d/wk for 18 wk. The prevalence of anemia was 42.97%. The increase in hemoglobin in the FS group (19.5 g/L) was significantly less than that in the other 2 groups (24.0 and 23.8 g/L in the FSZn and FSZnA groups, respectively). The increase in serum ferritin in the FS group (24.5 mug/L) was significantly less than that in the other 2 groups (33.0 and 30.8 mug/L in the FSZn and FSZnA groups, respectively). The median duration of diarrhea and the mean number of stools per day was significantly higher in the FS group than in other 2 groups (P < 0.005). Adding zinc to iron treatment increases hemoglobin response, improves iron indexes, and has positive effects on diarrhea. No additional effect of vitamin A was found.

  9. Oxidant Selection for the Treatment of Manganese (II), Iron (II), and Arsenic (III) in Groundwaters

    EPA Science Inventory

    In order to comply with the United States Environmental Protection Agency’s (U.S. EPA’s) arsenic standard and the manganese and iron secondary maximum contaminant levels (MCLs) in water (10µg/L, 50µg/L, and 300µg/L, respectively), many Midwestern water utilities must add a strong...

  10. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers

    PubMed Central

    Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the human milk samples collected were 3.88 ± 1.74 mg/L, 0.69 ± 0.25 mg/L, and 5.85 ± 8.53 mg/L, respectively. The mothers who consumed alcoholic beverages during pregnancy had tended to have lower concentrations of zinc and copper, as well as significantly lower concentrations of iron, in their milk (p < 0.047). In contrast, the mothers who took daily supplements had much higher iron concentrations in their milk (p = 0.002). Dietary intakes of zinc, copper, and iron during lactation did not affect the concentrations of zinc, copper, and iron in the milk samples analyzed. Intakes of vitamin C, selenium, and iodine were associated with the concentration of copper in the milk samples analyzed, and consumption of food categorized as 'meat and meat products' was positively associated with the concentration of zinc. Consumption of rice was the top contributor to the concentrations of all three minerals. In conclusion, associations between maternal diet and nutrient concentrations in transitory human milk can provide useful information, particularly in regard to infant growth. PMID:26839873

  11. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram

    2011-10-01

    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  12. Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties

    PubMed Central

    Afify, Abd El-Moneim M. R.; El-Beltagi, Hossam S.; Abd El-Salam, Samiha M.; Omran, Azza A.

    2011-01-01

    The changes in phytate, phytase activity and in vitro bioavailability of iron and zinc during soaking and germination of three white sorghum varieties (Sorghum bicolor L. Moench), named Dorado, Shandweel-6, and Giza-15 were investigated. Sorghum varieties were soaked for 20 h and germinated for 72 h after soaking for 20 h to reduce phytate content and increase iron and zinc in vitro bioavailability. The results revealed that iron and zinc content was significantly reduced from 28.16 to 32.16% and 13.78 to 26.69% for soaking treatment and 38.43 to 39.18% and 21.80 to 31.27% for germination treatments, respectively. Phytate content was significantly reduced from 23.59 to 32.40% for soaking treatment and 24.92 to 35.27% for germination treatments, respectively. Phytase enzymes will be activated during drying in equal form in all varieties. The results proved that the main distinct point is the change of phytase activity as well as specific activity during different treatment which showed no significant differences between the varieties used. The in vitro bioavailability of iron and zinc were significantly improved as a result of soaking and germination treatments. PMID:22003395

  13. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China.

    PubMed

    Ma, G; Li, Y; Jin, Y; Zhai, F; Kok, F J; Yang, X

    2007-03-01

    To assess the phytate intake and molar ratios of phytate to calcium, iron and zinc in the diets of people in China. 2002 China Nationwide Nutrition and Health Survey is a cross-sectional nationwide representative survey on nutrition and health. The information on dietary intakes was collected using consecutive 3 days 24 h recall by trained interviewers. The data of 68 962 residents aged 2-101 years old from 132 counties were analyzed. The median daily dietary intake of phytate, calcium, iron and zinc were 1186, 338.1, 21.2 and 10.6 mg, respectively. Urban residents consumed less phytate (781 vs 1342 mg/day), more calcium (374.5 vs 324.1 mg/day) and comparable amounts of iron (21.1 vs 21.2 mg/day) and zinc (10.6 vs 10.6 mg/day) than their rural counterparts. A wide variation in phytate intake among residents from six areas was found, ranging from 648 to 1433 mg/day. The median molar ratios of phytate to calcium, iron, zinc and phytate x calcium/zinc were 0.22, 4.88, 11.1 and 89.0, respectively, with a large variation between urban and rural areas. The phytate:zinc molar ratios ranged from 6.2 to 14.2, whereas the phytate x calcium/zinc molar ratios were from 63.7 to 107.2. The proportion of subjects with ratios above the critical values of phytate to iron, phytate to calcium, phytate to zinc and phytate x calcium/zinc were 95.4, 43.7, 23.1 and 8.7%, respectively. All the phytate/mineral ratios of rural residents were higher than that of their urban counterparts. The dietary phytate intake of people in China was higher than those in Western developed countries and lower than those in developing countries. Phytate may impair the bioavailability of iron, calcium and zinc in the diets of people in China.

  14. Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India.

    PubMed

    Hemalatha, Sreeramaiah; Platel, Kalpana; Srinivasan, Krishnapura

    2007-01-01

    Influence of heat processing on the bioaccessibility of zinc and iron from food grains consumed in India was evaluated. Cereals - rice (Oryza sativa), finger millet (Eleusine coracana), sorghum (Sorghum vulgare), wheat (Triticum aestivum), and maize (Zea mays), and pulses - chickpea (Cicer arietinum) - whole and decorticated, green gram (Phaseolus aureus) - whole and decorticated, decorticated black gram (Phaseolus mungo), decorticated red gram (Cajanus cajan), cowpea (Vigna catjang), and French bean (Phaseolus vulgaris) were examined for zinc and iron bioaccessibility by employing an in vitro dialysability procedure. Both pressure-cooking and microwave heating were tested for their influence on mineral bioaccessibility. Zinc bioaccessibility from food grains was considerably reduced upon pressure-cooking, especially in pulses. Among cereals, pressure-cooking decreased zinc bioaccessibility by 63% and 57% in finger millet and rice, respectively. All the pressure-cooked cereals showed similar percent zinc bioaccessibility with the exception of finger millet. Bioaccessibility of zinc from pulses was generally lower as a result of pressure-cooking or microwave heating. The decrease in bioaccessibility of zinc caused by microwave heating ranged from 11.4% in chickpea (whole) to 63% in cowpea. Decrease in zinc bioaccessibility was 48% in pressure-cooked whole chickpea, 45% and 55% in pressure-cooked or microwave-heated whole green gram, 32% and 22% in pressure-cooked or microwave-heated decorticated green gram, and 45% in microwave-heated black gram. Iron bioaccessibility, on the other hand, was significantly enhanced generally from all the food grains studied upon heat treatment. Thus, heat treatment of grains produced contrasting effect on zinc and iron bioaccessibility.

  15. Zinc, iron, and lead: relations to head start children's cognitive scores and teachers' ratings of behavior.

    PubMed

    Hubbs-Tait, Laura; Kennedy, Tay Seacord; Droke, Elizabeth A; Belanger, David M; Parker, Jill R

    2007-01-01

    The objective of this study was to conduct a preliminary investigation of lead, zinc, and iron levels in relation to child cognition and behavior in a small sample of Head Start children. The design was cross-sectional and correlational. Participants were 42 3- to 5-year-old children attending rural Head Start centers. Nonfasting blood samples of whole blood lead, plasma zinc, and ferritin were collected. Teachers rated children's behavior on the California Preschool Social Competency Scale, Howes' Sociability subscale, and the Preschool Behavior Questionnaire. Children were tested individually with the McCarthy Scales of Children's Abilities. Hierarchical regression analyses revealed that zinc and ferritin jointly explained 25% of the variance in McCarthy Scales of Children's Abilities verbal scores. Lead levels explained 25% of the variance in teacher ratings of girls' sociability and 20% of the variance in teacher ratings of girls' classroom competence. Zinc levels explained 39% of the variance in teacher ratings of boys' anxiety. Univariate analysis of variance revealed that the four children low in zinc and iron had significantly higher blood lead (median=0.23 micromol/L [4.73 microg/dL]) than the 31 children sufficient in zinc or iron (median=0.07 micromol/L [1.54 microg/dL]) or the 7 children sufficient in both (median=0.12 micromol/L [2.52 microg/dL]), suggesting an interaction among the three minerals. Within this small low-income sample, the results imply both separate and interacting effects of iron, zinc, and lead. They underscore the importance of studying these three minerals in larger samples of low-income preschool children to make more definitive conclusions.

  16. Effect of different home-cooking methods on the bioaccessibility of zinc and iron in conventionally bred cowpea (Vigna unguiculata L. Walp) consumed in Brazil.

    PubMed

    Pereira, Elenilda J; Carvalho, Lucia M J; Dellamora-Ortiz, Gisela M; Cardoso, Flávio S N; Carvalho, José L V

    2016-01-01

    The cowpea (Vigna unguiculata L. Wap.) is an excellent source of iron and zinc. However, iron from plant sources is poorly absorbed compared with iron from animal sources. The objective of this study was to evaluate iron and zinc bioaccessibility in cowpea cultivars after processing. Zinc and iron bioaccessibilities in cowpea samples were determined based on an in vitro method involving simulated gastrointestinal digestion with suitable modifications. When water-soaked beans were cooked in a regular pan, the highest percentage of bioaccessible iron obtained was 8.92%, whereas when they were cooked in a pressure cooker without previous soaking, the highest percentage was 44.33%. Also, the percentage of bioaccessible zinc was 52.78% when they were cooked in a regular pan without prior soaking. Higher percentages of bioaccessible iron were found when cooking was done in a pressure cooker compared with regular pan cooking. In all cultivars, cooking of cowpea beans in both pressure cooker and in a regular pan yielded higher percentages of bioaccessible zinc compared with availability of bioaccessible iron. Iron bioaccessibility values suggest that cooking in a regular pan did not have a good effect on iron availability, since the percentage of bioaccessible iron was lower than that of zinc. The determination of iron and zinc bioaccessibility makes it possible to find out the actual percentage of absorption of such minerals and allows the development of efficient strategies for low-income groups to access foods with high levels of these micronutrients.

  17. Recovery of manganese from manganese oxide ores in the EDTA solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Wang, Shuai; Cao, Zhan-fang; Zhong, Hong

    2018-04-01

    A new process has been experimentally and theoretically established for the recovery of manganese from manganese oxide ores, mainly including the reductive leaching of manganese by ethylenediaminetetraacetic acid (EDTA), EDTA recovery, and manganese electrolysis. The experimental conditions for this process were investigated. Moderate leaching environment by EDTA with the pH in the range of 5-6 is of benefit to leach manganese from some manganese oxide ores with high-content impurities, such as iron and aluminum. Most of EDTA can be recovered by acidification. A small amount of the residual EDTA in the electrolyte can prevent the generation of anode mud. In addition, trimanganese tetroxide (Mn3O4) can be obtained by the roasting of the EDTA-Mn crystallized product.

  18. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae

    PubMed Central

    Brown, Lindsey R.; Caulkins, Rachel C.; Schartel, Tyler E.; Rosch, Jason W.; Honsa, Erin S.; Schultz-Cherry, Stacey; Meliopoulos, Victoria A.; Cherry, Sean; Thornton, Justin A.

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H2O2. Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms. PMID:28638805

  19. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    PubMed

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  20. Yacon effects in immune response and nutritional status of iron and zinc in preschool children.

    PubMed

    Vaz-Tostes, Maria das Graças; Viana, Mirelle Lomar; Grancieri, Mariana; Luz, Tereza Cecília dos Santos; Paula, Heberth de; Pedrosa, Rogério Graça; Costa, Neuza Maria Brunoro

    2014-06-01

    The aim of this study was to evaluate the effect of yacon flour on iron and zinc nutritional status and immune response biomarkers in preschool children. Preschool children ages 2 to 5 y were selected from two nurseries and were placed into a control group (n = 58) or a yacon group (n = 59). The yacon group received yacon flour in preparations for 18 wk at a quantity to provide 0.14 g of fructooligosaccharides/kg of body weight daily. Anthropometric parameters were measured before and after the intervention and dietary intake was measured during the intervention. To assess iron and zinc status, erythrograms, serum iron, ferritin, and plasma, and erythrocyte zinc were evaluated. Systemic immune response was assessed by the biomarkers interleukin IL-4, IL-10, IL-6, and tumor necrosis factor-alfa (TNF-α). Intestinal immune response was analyzed by secretory IgA (sIgA) levels before and after the intervention. Statistical significance was evaluated using the paired t test (α = 5%). Before and after the study, the children presented a high prevalence of overweight and an inadequate dietary intake of zinc and fiber. The yacon group presented with lower hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration at the end of the study (P < 0.05). Erythrocyte zinc was reduced in both groups at the end of the study (P < 0.05). Yacon intake increased the serum levels of IL-4 and fecal sIgA (P < 0.05). The control group had lower serum TNF-α after the study period (P < 0.05). Yacon improved intestinal immune response but demonstrated no effect on the nutritional status of iron and zinc in preschool children. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater.

    PubMed

    Yang, Liu; Li, Xiangkun; Chu, Zhaorui; Ren, Yuhui; Zhang, Jie

    2014-03-01

    A biofilter was developed in this study, which showed an excellent performance with the simultaneous removal of AsIII from 150 to 10mg L(-1) during biological iron and manganese oxidation. The distribution and genetic diversity of the microorganisms along the depth of the biofilter have been investigated using DGGE. Results suggested that Iron oxidizing bacteria (IOB, such as Gallionella, Leptothrix), Manganese oxidizing bacteria (MnOB, such as Leptothrix, Pseudomonas, Hyphomicrobium, Arthrobacter) and AsIII-oxidizing bacteria (AsOB, such as Alcaligenes, Pseudomonas) are dominant in the biofilter. The spatial distribution of IOB, MnOB and AsOB at different depths of the biofilter determined the removal zone of FeII, MnII and AsIII, which site at the depths of 20, 60 and 60cm, respectively, and the corresponding removal efficiencies were 86%, 84% and 87%, respectively. This process shows great potential to the treatment of groundwater contaminated with iron, manganese and arsenic due to its stable performance and significant cost-savings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with themore » proposed models.« less

  3. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1.

    PubMed Central

    Myers, C R; Nealson, K H

    1990-01-01

    An oxidant pulse technique, with lactate as the electron donor, was used to study respiration-linked proton translocation in the manganese- and iron-reducing bacterium Shewanella putrefaciens MR-1. Cells grown anaerobically with fumarate or nitrate as the electron acceptor translocated protons in response to manganese (IV), fumarate, or oxygen. Cells grown anaerobically with fumarate also translocated protons in response to iron(III) and thiosulfate, whereas those grown with nitrate did not. Aerobically grown cells translocated protons only in response to oxygen. Proton translocation with all electron acceptors was abolished in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (20 microM) and was partially to completely inhibited by the electron transport inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (50 microM). PMID:2172208

  4. Maternal Cadmium, Iron and Zinc Levels, DNA Methylation and Birth Weight

    EPA Science Inventory

    BACKGROUND:Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationsh...

  5. Effects of cooking methods on the iron and zinc contents in cowpea (Vigna unguiculata) to combat nutritional deficiencies in Brazil

    PubMed Central

    Pereira, Elenilda J.; Carvalho, Lucia M. J.; Dellamora-Ortiz, Gisela M.; Cardoso, Flávio S. N.; Carvalho, José L. V.; Viana, Daniela S.; Freitas, Sidinea C.; Rocha, Maurisrael M.

    2014-01-01

    Background Because iron deficiency anemia is prevalent in developing countries, determining the levels of iron and zinc in beans, the second most consumed staple food in Brazil, is essential, especially for the low-income people who experience a deficiency of these minerals in their diet. Objectives This study aimed to evaluate the effect of cooking methods by measuring the iron and zinc contents in cowpea cultivars before and after soaking to determine the retention of these minerals. Methods The samples were cooked in both regular pans and pressure cookers with and without previous soaking. Mineral analyses were carried out by Spectrometry of Inductively Coupled Plasma (ICP). Results The results showed high contents of iron and zinc in raw samples as well as in cooked ones, with the use of regular pan resulting in greater percentage of iron retention and the use of pressure cooker ensuring higher retention of zinc. Conclusions The best retention of iron was found in the BRS Aracê cultivar prepared in a regular pan with previous soaking. This cultivar may be indicated for cultivation and human consumption. The best retention of zinc was found for the BRS Tumucumaque cultivar prepared in a pressure cooker without previous soaking. PMID:24624050

  6. Non-invasive detection of iron deficiency by fluorescence measurement of erythrocyte zinc protoporphyrin in the lip

    PubMed Central

    Hennig, Georg; Homann, Christian; Teksan, Ilknur; Hasbargen, Uwe; Hasmüller, Stephan; Holdt, Lesca M.; Khaled, Nadia; Sroka, Ronald; Stauch, Thomas; Stepp, Herbert; Vogeser, Michael; Brittenham, Gary M.

    2016-01-01

    Worldwide, more individuals have iron deficiency than any other health problem. Most of those affected are unaware of their lack of iron, in part because detection of iron deficiency has required a blood sample. Here we report a non-invasive method to optically measure an established indicator of iron status, red blood cell zinc protoporphyrin, in the microcirculation of the lower lip. An optical fibre probe is used to illuminate the lip and acquire fluorescence emission spectra in ∼1 min. Dual-wavelength excitation with spectral fitting is used to distinguish the faint zinc protoporphyrin fluorescence from the much greater tissue background fluorescence, providing immediate results. In 56 women, 35 of whom were iron-deficient, the sensitivity and specificity of optical non-invasive detection of iron deficiency were 97% and 90%, respectively. This fluorescence method potentially provides a rapid, easy to use means for point-of-care screening for iron deficiency in resource-limited settings lacking laboratory infrastructure. PMID:26883939

  7. Influences On The Oceanic Biogeochemical Cycling Of The Hybrid-Type Metals: Cobalt, Iron, And Manganese

    DTIC Science & Technology

    2012-02-01

    have been possible. We also thank Scot Birdwhistell in the Woods Hole Oceanographic Institution (WHOI) inductively coupled plasma mass spectrometry...Cobalt, Iron, and Manganese MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...by Abigail Emery Noble Massachusetts Institute of Technology Cambridge, Massachusetts 02139 and Woods Hole Oceanographic Institution Woods Hole

  8. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  9. Effects of rutin supplementation on antioxidant status and iron, copper, and zinc contents in mouse liver and brain.

    PubMed

    Gao, Zhonghong; Xu, Huibi; Huang, Kaixun

    2002-09-01

    The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.

  10. [A neonate with anaemia of prematurity: zinc protoporphyrin identifies iron deficiency anaemia without iron deficiency].

    PubMed

    van der Feen, Diederik E; van Hillegersberg, Jacqueline L A M; Schippers, Johannes A

    2015-01-01

    Anaemia is a common problem in premature infants and is generally easy to treat with iron supplementation. If the anaemia persists despite appropriate correction of deficiencies, more extensive evaluation is required. We describe a case of a premature male infant with a production-deficient anaemia without metabolic deficiencies, eventually identified as anaemia of prematurity. This type of anaemia is commonly diagnosed but its highly variable and complex aetiology and phenotype are often poorly understood. A probable explanation for the anaemia of prematurity in this case was a transient iron incorporation defect, identifiable by high levels of zinc protoporphyrin.

  11. Acceptability and solubility of iron and zinc contents of modified Moringa oleifera sauces consumed in the Far-north region of Cameroon.

    PubMed

    Mawouma, Saliou; Ponka, Roger; Mbofung, Carl Moses

    2017-03-01

    Consumption of Moringa oleifera leaves is a local and inexpensive solution to iron and zinc deficiencies in the Far-north region of Cameroon. However, traditional household's cooking techniques result in sauces with high pH levels and low leaves incorporation rates that compromise the bioavailability of iron and zinc. The aim of our study was to investigate the effect of modifying a standard Moringa sauce on consumer acceptability and the solubility of iron and zinc, which is an indicator of their bioavailability. Lime juice or tamarind pulp was added to a standard recipe in order to reduce the pH by about one unit, and Moringa leaf powder was incorporated in each acidulated sauce at three levels (1, 2, and 4 g/100 g of sauce). All the formulations were evaluated for their acceptability by 30 housewives using a five-point hedonic scale. The pH was measured by a digital electronic pH-meter. Moisture and ash were determined by AOAC methods. Total iron and zinc contents were determined by atomic absorption spectrophotometry, and soluble iron and zinc by HCl-extractability. The lime juice-acidulated sauce and the tamarind pulp-acidulated sauce enriched with 1 g of Moringa leaf powder were the most acceptable formulations with scores of 3.4 and 3.6, respectively. Their chemical analysis showed a reduced pH (6.4 and 6.1, respectively), compared to the Control (7.2). Lime juice-acidulated sauce improved iron and zinc solubility from 42.19 to 66.38% and 54.03 to 82.03%, respectively. Tamarind pulp-acidulated sauce enriched with 1 g of Moringa leaf powder showed a decrease in iron solubility from 42.19 to 38.26% and an increase in zinc solubility from 54.03 to 72.86%. These results confirm the beneficial effect of lime juice in improving iron and zinc bioavailability.

  12. A mechanistic study and computational prediction of iron, cobalt and manganese cyclopentadienone complexes for hydrogenation of carbon dioxide.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2016-10-13

    A series of cobalt and manganese cyclopentadienone complexes are proposed and examined computationally as promising catalysts for hydrogenation of CO 2 to formic acid with total free energies as low as 20.0 kcal mol -1 in aqueous solution. Density functional theory study of the newly designed cobalt and manganese complexes and experimentally reported iron cyclopentadienone complexes reveals a stepwise hydride transfer mechanism with a water or a methanol molecule assisted proton transfer for the cleavage of H 2 as the rate-determining step.

  13. Role of a gas phase in the kinetics of zinc and iron reduction with carbon from slag melts

    NASA Astrophysics Data System (ADS)

    Chumarev, V. M.; Selivanov, E. N.

    2013-03-01

    The influence of the mass transfer conditions in the gas phase having formed at the carbon-slag melt interface on CO regeneration is approximately estimated in the framework of a two-stage scheme of metal reduction from slag melts by carbon. The effect of zinc vapors on the combined reduction of iron and zinc from slags is considered. The influence of the slag composition and temperature on the critical concentration of zinc oxide above which no iron forms as an individual phase is explained.

  14. Recovery of Metal Values from Spent Zinc-Carbon Dry Cell Batteries

    NASA Astrophysics Data System (ADS)

    Khan, Majharul Haque; Gulshan, Fahmida; Kurny, A. S. W.

    2013-04-01

    Spent zinc-carbon dry cell batteries were characterized in the process of recovery of metal values. Zinc, manganese and steel were the major metallic materials constituting 63 % of the weight of spent batteries. Different components of the spent batteries were separately processed to extract the metallic values. A maximum of 92 % of total amount of zinc contained in the anodes could be extracted with a purity of over 99.0 % from the anodes by heating at 600 °C for 10 min in presence of 12 % NH4Cl flux. Spent electrolyte paste containing manganese and zinc as major metallic elements, was leached in sulfuric acid solution in presence of hydrogen peroxide as a reducing agent. The optimum condition for leaching was found to be concentration of sulfuric acid: 2.5 M, concentration of hydrogen peroxide: 10 %, temperature: 60 °C, stirring speed: 600 rpm and solid/liquid ratio 1:12. A maximum of 88 % manganese contained in the paste could be dissolved within 27 min of leaching under the optimized conditions. Dissolution of zinc under the same conditions was 97 %. A maximum of 69.89 % of manganese and 83.29 % of zinc contained in the leach liquor could be precipitated in the form of manganese carbonate and zinc oxalate.

  15. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    PubMed Central

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm−3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

  16. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    PubMed

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  17. Determination of calcium, copper, iron, magnesium, manganese, potassium, phosphorus, sodium, and zinc in fortified food products by microwave digestion and inductively coupled plasma-optical emission spectrometry: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric

    2012-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-optical emission spectrometry in order to modernize AOAC Official Method 984.27. The improvements involved extension of the scope to all food matrixes (including infant formula), optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed- or open-vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proven through a successful RT using experienced independent food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD, and HorRat values) regarding SLVs and RTs. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an extended updated version of AOAC Official Method 984.27 for fortified food products, including infant formula.

  18. Iron and zinc content of selected foods in the diet of schoolchildren in Kumi district, east of Uganda: a cross-sectional study

    PubMed Central

    2011-01-01

    Background Iron and zinc are essential micronutrients for humans and deficiency of the two elements is widespread in the world with the highest prevalence in less developed countries. There are few data on dietary intake of iron and zinc in Uganda, and no food composition table is available. There is hardly any widely published literature that clearly documents the quality of Ugandan children's diet. Thus information of both food intake and the concentration of these trace elements in local food ingredients are needed in order to assess daily intake. Methods The present study focused on the iron and zinc content in selected foods and intake of the micronutrients iron and zinc among schoolchildren in Kumi District, Uganda. Over a period of 4 weeks single 24-hour dietary recall interviews were carried out on a convenience sample of 178 schoolchildren (9-15 years old). Data from the dietary recalls was used when selecting foods for chemical analysis. Results Results from this study showed that the iron concentrations varied, and were high in some cereals and vegetables. The zinc concentrations in foods generally corresponded with results from other African countries (Mali and Kenya). Data from the 24-hour dietary recall showed that the daily Recommended Nutrient Intake (RNI) was met for iron but not for zinc. Conclusions The schoolchildren of Kumi district had a predominantly vegetable based diet. Foods of animal origin were consumed occasionally. The iron content in the selected foods was high and variable, and higher than in similar ingredients from Kenya and Mali, while the zinc concentrations were generally in accordance with reported values. The total daily zinc (mg) intake does not meet the daily RNI. The iron intake is adequate according to RNI, but due to iron contamination and reduced bioavailability, RNI may not be met in a vegetable based diet. More studies are needed to investigate possible sources of contamination. PMID:21827701

  19. Nut traits and nutritional composition of hazelnut (Corylus avellana L.) as influenced by zinc fertilization.

    PubMed

    Özenç, Nedim; Özenç, Damla Bender

    2015-07-01

    Zinc is an essential element for plants and its deficiency is a widespread problem throughout the world, causing decreased yields and nutritional quality. In this study the effect of zinc fertilization on some nut traits and the nutritional composition of 'Tombul' hazelnut (Corylus avellana L.) variety cultivated in the Black Sea region of Turkey was investigated and the contribution of this nut to human nutrition determined. Trials were carried out at 'Tombul' hazelnut orchards, and zinc fertilizers were applied at 0, 0.2, 0.4, 0.8 and 1.6 kg Zn ha(-1) in three consecutive years. Significant differences in some nut traits and mineral composition (protein, total oil, ash, kernel percentage, empty and wrinkled nuts, copper, boron, manganese and molybdenum) were observed with zinc fertilizer applications. In terms of daily nutritional element requirements, 100 g of hazelnut provided about 44.74% phosphorus, 13.39% potassium, 19.32% calcium, 37.49% magnesium, 0.19% sodium, 51.63% iron, 25.73% zinc and 14.05% boron of the recommended daily amounts (RDAs), while copper, manganese and molybdenum contents exceeded their RDAs. In order to improve some nut traits and the mineral composition of hazelnut, 0.8 and 1.6 kg Zn ha(-1) fertilizations could be recommended in practice. © 2014 Society of Chemical Industry.

  20. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese

    PubMed Central

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler; Bak, Friedhelm

    1993-01-01

    A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S0) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S0 was microbially disproportionated to sulfate and sulfide, as follows: 4S0 + 4H2O → SO42- + 3H2S + 2H+. Subsequent chemical reactions between the formed sulfide and the added FeOOH led to the observed precipitation of iron sulfides. Sulfate and iron sulfides were also produced when FeOOH was replaced by FeCO3. Further enrichment with manganese oxide, MnO2, instead of FeOOH yielded stable cultures which formed sulfate during concomitant reduction of MnO2 to Mn2+. Growth of small rod-shaped bacteria was observed. When incubated without MnO2, the culture did not grow but produced small amounts of SO42- and H2S at a ratio of 1:3, indicating again a disproportionation of S0. The observed microbial disproportionation of S0 only proceeds significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S0 disproportionation in the presence of FeOOH or MnO2 was high, > 104 cm-3 in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic sulfide oxidation to sulfate in anoxic sediments. PMID:16348835

  1. Genome Wide Identification of Orthologous ZIP Genes Associated with Zinc and Iron Translocation in Setaria italica.

    PubMed

    Alagarasan, Ganesh; Dubey, Mahima; Aswathy, Kumar S; Chandel, Girish

    2017-01-01

    Genes in the ZIP family encode transcripts to store and transport bivalent metal micronutrient, particularly iron (Fe) and or zinc (Zn). These transcripts are important for a variety of functions involved in the developmental and physiological processes in many plant species, including most, if not all, Poaceae plant species and the model species Arabidopsis. Here, we present the report of a genome wide investigation of orthologous ZIP genes in Setaria italica and the identification of 7 single copy genes. RT-PCR shows 4 of them could be used to increase the bio-availability of zinc and iron content in grains. Of 36 ZIP members, 25 genes have traces of signal peptide based sub-cellular localization, as compared to those of plant species studied previously, yet translocation of ions remains unclear. In silico analysis of gene structure and protein nature suggests that these two were preeminent in shaping the functional diversity of the ZIP gene family in S. italica . NAC, bZIP and bHLH are the predominant Fe and Zn responsive transcription factors present in SiZIP genes. Together, our results provide new insights into the signal peptide based/independent iron and zinc translocation in the plant system and allowed identification of ZIP genes that may be involved in the zinc and iron absorption from the soil, and thus transporting it to the cereal grain underlying high micronutrient accumulation.

  2. The relationship between maternal serum iron and zinc levels and their nutritional intakes in early pregnancy with gestational diabetes.

    PubMed

    Behboudi-Gandevani, Samira; Safary, Kolsum; Moghaddam-Banaem, Lida; Lamyian, Minoor; Goshtasebi, Azita; Goshtasbi, Azita; Alian-Moghaddam, Narges

    2013-07-01

    The aim of this study was to investigate the association between maternal iron/zinc serum levels and their nutritional intake in early pregnancy with gestational diabetes. The maternal serum zinc/iron levels were measured in 1,033 healthy singleton pregnant women aged 20-35 between 14 and 20 weeks of gestation, within two groups: namely, normal and gestational diabetes, and participants were followed up to 24-28 weeks of gestation. Food frequency questionnaire was used to assess nutritional intakes of iron/zinc. The main outcome was gestational diabetes screened with the 50-g glucose challenge test and diagnosed with oral glucose tolerance test at 24-28 weeks of gestation. Gestational diabetes occurred in 72 (6.96 %) of 1,033 women in study. There was a statistical relationship between early pregnancy maternal serum iron and gestational diabetes, mean (SD), 143.8 (48.7) vs. 112.5 (83.5) μg/dl, P value of <0.0001. There was no statistical significant difference in zinc levels and iron/zinc nutritional intake between groups. The results remained unchanged after using regression model for adjustment of potential risk factors with an adjusted OR of 1.006 (95 % CI 1.002 to 1.009; P = 0.001) for early pregnancy maternal serum iron to cause gestational diabetes. The receiver-operator characteristic curve identified that a maternal serum iron above 100 μg/dl in early pregnancy is the optimum cutoff value for predicting gestational diabetes, which showed a sensitivity and specificity of 80.6 and 50.7 %, respectively. In conclusion, high maternal serum iron in early pregnancy could increase the risk of gestational diabetes. Also, it could be used as a sensitive and specific predictor for gestational diabetes.

  3. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat.

    PubMed

    Uauy, Cristobal; Distelfeld, Assaf; Fahima, Tzion; Blechl, Ann; Dubcovsky, Jorge

    2006-11-24

    Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.

  4. Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy.

    PubMed

    Palmucci, William; Rusi, Sergio; Di Curzio, Diego

    2016-06-01

    Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.

  5. Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females.

    PubMed

    Yadrick, M K; Kenney, M A; Winterfeldt, E A

    1989-01-01

    Response of iron, copper, and zinc status to supplementation with Zn or a combination of Zn and Fe was assessed in adult females in a 10-wk study. Group Z received 50 mg Zn/d as Zn gluconate; group F-Z received 50 mg Fe as ferrous sulfate monohydrate in addition to the Zn. For Group Z, serum ferritin, hematocrit, and erythrocyte Cu,Zn-superoxide dismutase (ESOD) were significantly lower (p less than 0.05) after 10 wk supplementation compared with pretreatment levels. Serum Zn increased (p less than 0.01) but no change occurred in serum ceruloplasmin, hemoglobin, or salivary sediment Zn with treatment. For Group F-Z ESOD decreased with treatment as did salivary sediment Zn (p less than 0.05). Serum ferritin and serum Zn increased significantly, but hemoglobin, hematocrit, and ceruloplasmin were not affected by this treatment. Supplementation with Zn poses a risk to Fe and Cu status. Inclusion of Fe with Zn ameliorates the effect on Fe but not on Cu status.

  6. Combined copper/zinc attachment to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  7. Suppressive Effect of Zinc on the Formation of Colonic Preneoplastic Lesions in the Mouse Fed High Levels of Dietary Iron

    PubMed Central

    Park, Hyunji; Kang, Bong Su; Kim, Dang Young; Yoon, Ja Seon; Jeong, Jae-Hwang; Nam, Sang Yoon; Yun, Young Won

    2012-01-01

    We investigated the effect of zinc on the formation of colonic aberrant crypt foci induced by azoxymethane (AOM) followed by dextran sodium sulfate (DSS) in mice with high iron diet (HFe; 450 ppm iron). Sixweek old ICR mice were fed on high iron diets with combination of three different levels of zinc in diets, low-zinc (LZn; 0.01 ppm), medium-zinc (MZn; 0.1 ppm), and high-zinc (HZn; 1 ppm) for 12 weeks. Animals were received weekly intraperitoneal injections of AOM (10 mg/kg B.W. in saline) for 3 weeks followed by 2% DSS (molecular weight 36,000~50,000) in the drinking water for a week. To confirm the iron storage in the body, the hepatic iron concentration has been determine chemically and compared with histological assessment visualized by Prussian blue reaction. Aberrant crypt (AC) and aberrant crypt foci (ACF) were analyzed in the colonic mucosa of mouse fed high dietary iron. Superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) level were also investigated. Apoptosis in the preneoplastic lesion was determined by terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling (TUNEL). In addition, immunohistochemistry of β-catenin was also performed on the mucous membrane of colon. The number of large ACF (≥ 4 AC/ACF), which possess greater tumorigenic potential, was significantly lower in MZn and HZn groups compared with LZn group. Cytosolic SOD activity in the liver was significantly higher in HZn group compared with LZn group. Hepatic MDA level was decreased significantly in HZn group compared with MZn and LZn groups. Apoptotic index was significantly higher in HZn group. Taken together, these findings indicate that dietary zinc might exert a protective effect against colonic preneoplastic lesion induced by AOM/DSS in ICR mice with high iron status, and suggest that dietary supplement of zinc might play a role in suppressing colon carcinogenesis in mice. PMID:24278588

  8. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae

    PubMed Central

    Schothorst, Joep; Zeebroeck, Griet V.; Thevelein, Johan M.

    2017-01-01

    Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway. PMID:28357393

  9. QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population.

    PubMed

    Blair, Matthew W; Medina, Juliana I; Astudillo, Carolina; Rengifo, Judith; Beebe, Steve E; Machado, Gloria; Graham, Robin

    2010-10-01

    Iron and zinc deficiencies are human health problems found throughout the world and biofortification is a plant breeding-based strategy to improve the staple crops that could address these dietary constraints. Common bean is an important legume crop with two major genepools that has been the focus of genetic improvement for seed micronutrient levels. The objective of this study was to evaluate the inheritance of seed iron and zinc concentrations and contents in an intra-genepool Mesoamerican × Mesoamerican recombinant inbred line population grown over three sites in Colombia and to identify quantitative trait loci (QTL) for each mineral. The population had 110 lines and was derived from a high-seed iron and zinc climbing bean genotype (G14519) crossed with a low-mineral Carioca-type, prostrate bush bean genotype (G4825). The genetic map for QTL analysis was created from SSR and RAPD markers covering all 11 chromosomes of the common bean genome. A set of across-site, overlapping iron and zinc QTL was discovered on linkage group b06 suggesting a possibly pleiotropic locus and common physiology for mineral uptake or loading. Other QTL for mineral concentration or content were found on linkage groups b02, b03, b04, b07, b08 and b11 and together with the b06 cluster were mostly novel compared to loci found in previous studies of the Andean genepool or inter-genepool crosses. The discovery of an important new locus for seed iron and zinc concentrations may facilitate crop improvement and biofortification using the high-mineral genotype especially within the Mesoamerican genepool.

  10. Inclusion of Guava Enhances Non-Heme Iron Bioavailability but Not Fractional Zinc Absorption from a Rice-Based Meal in Adolescents12

    PubMed Central

    Nair, Krishnapillai Madhavan; Brahmam, Ginnela N.V.; Radhika, Madhari S.; Dripta, Roy Choudhury; Ravinder, Punjal; Balakrishna, Nagalla; Chen, Zhensheng; Hawthorne, Keli M.; Abrams, Steven A.

    2013-01-01

    Assessing the bioavailability of non-heme iron and zinc is essential for recommending diets that meet the increased growth-related demand for these nutrients. We studied the bioavailability of iron and zinc from a rice-based meal in 16 adolescent boys and girls, 13–15 y of age, from 2 government-run residential schools. Participants were given a standardized rice meal (regular) and the same meal with 100 g of guava fruit (modified) with 57Fe on 2 consecutive days. A single oral dose of 58Fe in orange juice was given at a separate time as a reference dose. Zinc absorption was assessed by using 70Zn, administered intravenously, and 67Zn given orally with meals. The mean hemoglobin concentration was similar in girls (129 ± 7.8 g/L) and boys (126 ± 7.1 g/L). There were no sex differences in the indicators of iron and zinc status except for a higher hepcidin concentration in boys (P < 0.05). The regular and modified meals were similar in total iron (10–13 mg/meal) and zinc (2.7 mg/meal) content. The molar ratio of iron to phytic acid was >1:1, but the modified diet had 20 times greater ascorbic acid content. The absorption of 57Fe from the modified meal, compared with regular meal, was significantly (P < 0.05) greater in both girls (23.9 ± 11.2 vs. 9.7 ± 6.5%) and boys (19.2 ± 8.4 vs. 8.6 ± 4.1%). Fractional zinc absorption was similar between the regular and modified meals in both sexes. Hepcidin was found to be a significant predictor of iron absorption (standardized β = −0.63, P = 0.001, R2 = 0.40) from the reference dose. There was no significant effect of sex on iron and zinc bioavailability from meals. We conclude that simultaneous ingestion of guava fruit with a habitual rice-based meal enhances iron bioavailability in adolescents. PMID:23596161

  11. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    PubMed

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable.

  12. Iron, zinc and iodide status in Mexican children under 12 years and women 12-49 years of age. A probabilistic national survey.

    PubMed

    Villalpando, Salvador; García-Guerra, Armando; Ramírez-Silva, Claudia Ivonne; Mejía-Rodríguez, Fabiola; Matute, Guadalupe; Shamah-Levy, Teresa; Rivera, Juan A

    2003-01-01

    To describe the epidemiology of iron, zinc and iodide deficiencies in a probabilistic sample of Mexican women and children and explore its association with some dietary and socio-demographic variables. We carried out in 1999 an epidemiological description of iron (percent transferrin saturation, PTS, < 16%), serum zinc (< 65 ug/dl) and iodide (< 50 ug/l urine) deficiencies in a probabilistic sample of 1,363 Mexican children under 12 years and of 731 women of child-bearing age. Serum iron, Total Iron Binding Capacity (TIBC) and zinc were measured by atomic absorption spectrometry, and urinary iodide by a colorimetric method. Logistic regression models explored determinants for such micromineral deficiencies. Iron deficiency was higher (67%) in infants < 2 years of age. Prevalence declined (34-39%) at school age. The prevalence for iron deficiency in women was 40%. Zinc deficiency was higher in infants < 2 years of age (34%) than in school-age children (19-24%). Prevalence in women was 30%, with no rural/urban difference. In women the likelihood of iron deficiency decreased as SEL improved (p = 0.04) and increased with the intake of cereals (p = 0.01). The likelihood of low serum zinc levels was greater in women and children of low socioeconomic level (SEL) (p < 0.02 and p = 0.001) iodide deficiency was negligible in both children and women. The data shows high prevalence of iron deficiency-specially in infants 12 to 24 months of age. It is suggested that in older children and women 12 to 49 years of age that iron bioavailability is low. The prevalence of zinc deficiency was also very high. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.

  13. Effects of phytase, cellulase, and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba L.) Flour and Legume Fractions.

    PubMed

    Luo, Yu-Wei; Xie, Wei-Hua; Cui, Qun-Xiang

    2010-02-24

    Simulations of gastrointestinal digestion were used to try to identify the nature of the complexes between antinutritional factors and iron and zinc in faba bean and legume fractions. In digestible residue of raw faba bean flour, simultaneous action of cellulase and phytases made it possible to release about 28% units more iron than that released with the treatment without enzymes. About 49.8% of iron in raw faba bean flour was solubilized after in vitro digestion and simultaneous action of cellulase and phytase. In the hull fraction, the action of phytases and the simultaneous action of cellulase and phytase allowed about 7 and 35% units of additional zinc to be solubilized, respectively. Single enzymatic degradation of phytates from dehulled faba bean allowed solubilization from 65 to 93% of zinc, depending upon the treatment. In dehulled faba bean, iron was chelated by phytates and by fibers, whereas zinc was almost exclusively chelated by phytates. In the hull of faba bean, a high proportion of iron was chelated by iron-tannins, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers.

  14. Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean ferritin gene.

    PubMed

    Mhatre, Minal; Srinivas, Lingam; Ganapathi, Thumballi R

    2011-12-01

    Pineapple (Ananas comosus L. Merr., cv. "Queen") leaf bases were transformed with Agrobacterium tumefaciens strain EHA 105 harboring the pSF and pEFESF plasmids with soybean ferritin cDNA. Four to eight percent of the co-cultivated leaf bases produced multiple shoots 6 weeks after transfer to Murashige and Skoog's medium supplemented with α-naphthalene acetic acid 1.8 mg/l, indole-3-butyric acid 2.0 mg/l, kinetin 2.0 mg/l, cefotaxime 400 mg/l, and kanamycin 50 mg/l. Putatively transformed shoots (1-2 cm) were selected and multiplied on medium of the same composition and elongated shoots (5 cm) were rooted on liquid rooting medium supplemented with cefotaxime 400 mg/l and kanamycin 100 mg/l. The rooted plants were analyzed through PCR, genomic Southern analysis, and reverse transcription PCR. The results clearly confirmed the integration and expression of soybean ferritin gene in the transformed plants. Atomic absorption spectroscopic analysis carried out with six independently transformed lines of pSF and pEFE-SF revealed a maximum of 5.03-fold increase in iron and 2.44-fold increase in zinc accumulation in the leaves of pSF-transformed plants. In pEFE-SF-transformed plants, a 3.65-fold increase in iron and 2.05-fold increase in zinc levels was observed. Few of the transgenic plants were hardened in the greenhouse and are being grown to maturity to determine the enhanced iron and zinc accumulation in the fruits. To the best of our knowledge this is the first report on the transformation of pineapple with soybean ferritin for enhanced accumulation of iron and zinc content in the transgenic plants.

  15. Removal of Arsenic, Iron, Manganese, and Ammonia in Drinking Water: Nagaoka International Corporation CHEMILES NCL Series Water Treatment System

    EPA Science Inventory

    The Nagaoka International Corporation CHEMILES NCL Series system was tested to verify its performance for the reduction of multiple contaminants including: arsenic, ammonia, iron, and manganese. The objectives of this verification, as operated under the conditions at the test si...

  16. Sequential Extraction as Novel Approach to Compare 12 Medicinal Plants From Kenya Regarding Their Potential to Release Chromium, Manganese, Copper, and Zinc.

    PubMed

    Mogwasi, R; Zor, S; Kariuki, D K; Getenga, M Z; Nischwitz, V

    2018-04-01

    This study is focusing on a novel approach to screen a large number of medicinal plants from Kenya regarding their contents and availability of selected metals potentially relevant for treatment of diabetes patients. For this purpose, total levels of zinc, chromium, manganese, and copper were determined by flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry as well as BCR sequential extraction to fractionate the elemental species in anti-diabetic medicinal plants collected from five natural locations in two sub counties in Nyamira County, Kenya. Solanum mauense had the highest zinc level of 123.0 ± 3.1 mg/kg while Warburgia ugandensis had the lowest level of 13.9 ± 0.4 mg/kg. The highest level of copper was in Bidens pilosa (29.0 ± 0.6 mg/kg) while the lowest was in Aloe vera (3.0 ± 0.1 mg/kg). Croton macrostachyus had the highest manganese level of 1630 ± 40 mg/kg while Clerodendrum myricoides had the lowest (80.2 ± 1.2 mg/kg). The highest level of chromium was in Solanum mauense (3.20 ± 0.06 mg/kg) while the lowest (0.04 ± 0.01 mg/kg) were in Clerodendrum myricoides and Warburgia ugandesis among the medicinal plants from Nyamira and Borabu, respectively. The levels of the elements were statistically different from that of other elements while the level of a given element was not statistically different in the medicinal plants from the different sub counties. Sequential extraction was performed to determine the solubility and thus estimate the bioavailability of the four investigated essential and potentially therapeutically relevant metals. The results showed that the easily bioavailable fraction (EBF) of chromium, manganese, zinc, and copper ranged from 6.7 to 13.8%, 4.1 to 10%, 2.4 to 10.2%, and 3.2 to 12.0% while the potentially bioavailable fraction (PBF) ranged from 50.1 to 67.6%, 32.2 to 48.7%, 23.0 to 41.1%, and 34.6 to 53.1%, respectively. Bidens pilosa, Croton macrostachyus, Ultrica dioica

  17. Inclusion of guava enhances non-heme iron bioavailability but not fractional zinc absorption from a rice-based meal in adolescents

    USDA-ARS?s Scientific Manuscript database

    Assessing the bioavailability of non-heme iron and zinc is essential for recommending diets that meet the increased growth-related demand for these nutrients. We studied the bioavailability of iron and zinc from a rice-based meal in 16 adolescent boys and girls, 13–15 y of age, from 2 government-run...

  18. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS No...

  19. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS No...

  20. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS No...

  1. Synthesis and Characterization of Mixed Iron-Manganese Oxide Nanoparticles and Their Application for Efficient Nickel Ion Removal from Aqueous Samples

    PubMed Central

    Serra, Antonio; Monteduro, Anna Grazia; Padmanabhan, Sanosh Kunjalukkal; Licciulli, Antonio; Bonfrate, Valentina; Salvatore, Luca; Calcagnile, Lucio

    2017-01-01

    Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution. PMID:28804670

  2. [Determination of trace lead and iron in nickel chloride and manganese sulfate by flame atomic absorption spectrometry after coprecipitation with yttrium phosphate].

    PubMed

    Su, Yao-Dong; Zhu, Wen-Ying; Ma, Hong-Mei; Chen, Long-Wu

    2006-09-01

    Using yttrium phosphate as the coprecipitation collector for the separation and preconcentration of trace lead and iron in nickel chloride and manganese sulfate, flame atomic absorption spectrometric (FAAS) determination was described in the present paper. Coprecipitation parameters including the pH of the solution, and the amounts of YCl3 and H3 PO4 were discussed. It was found that lead and iron in nickel chloride could be coprecipitated quantitatively in the range of pH 3.0-4.0, and so could be lead in manganese sulfate. The detection limits (3sigma) of lead and iron in 20 mL solution were 1.63 x 10(-2) mg x L(-1) and 4.58 x 10(-2) mg x L(-1) respectively. In NiCl2 solution the standard addition recoveries for lead and iron were 100.91% and 99.73% respectively, and in MnSO4 solution the standard addition recoveries were 99.45% and 98.98% respectively. The method has eliminated the interference of matrix, and the result is satisfied.

  3. The Effect of Low Dose Iron and Zinc Intake on Child Micronutrient Status and Development during the First 1000 Days of Life: A Systematic Review and Meta-Analysis.

    PubMed

    Petry, Nicolai; Olofin, Ibironke; Boy, Erick; Donahue Angel, Moira; Rohner, Fabian

    2016-11-30

    Adequate supply of micronutrients during the first 1000 days is essential for normal development and healthy life. We aimed to investigate if interventions administering dietary doses up to the recommended nutrient intake (RNI) of iron and zinc within the window from conception to age 2 years have the potential to influence nutritional status and development of children. To address this objective, a systematic review and meta-analysis of randomized and quasi-randomized fortification, biofortification, and supplementation trials in women (pregnant and lactating) and children (6-23 months) delivering iron or zinc in doses up to the recommended nutrient intake (RNI) levels was conducted. Supplying iron or zinc during pregnancy had no effects on birth outcomes. There were limited or no data on the effects of iron/zinc during pregnancy and lactation on child iron/zinc status, growth, morbidity, and psychomotor and mental development. Delivering up to 15 mg iron/day during infancy increased mean hemoglobin by 4 g/L ( p < 0.001) and mean serum ferritin concentration by 17.6 µg/L ( p < 0.001) and reduced the risk for anemia by 41% ( p < 0.001), iron deficiency by 78% (ID; p < 0.001) and iron deficiency anemia by 80% (IDA; p < 0.001), but had no effect on growth or psychomotor development. Providing up to 10 mg of additional zinc during infancy increased plasma zinc concentration by 2.03 µmol/L ( p < 0.001) and reduced the risk of zinc deficiency by 47% ( p < 0.001). Further, we observed positive effects on child weight for age z -score (WAZ) ( p < 0.05), weight for height z -score (WHZ) ( p < 0.05), but not on height for age z -score (HAZ) or the risk for stunting, wasting, and underweight. There are no studies covering the full 1000 days window and the effects of iron and zinc delivered during pregnancy and lactation on child outcomes are ambiguous, but low dose daily iron and zinc use during 6-23 months of age has a positive effect on child iron and zinc status.

  4. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    PubMed

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T 3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  5. MODIFYING IRON REMOVAL PROCESSES TO INCREASE ARSENIC REMOVAL

    EPA Science Inventory

    Iron and manganese are naturally occurring substances that are normally found in insoluble forms in many ground waters in the US. Similar to iron and manganese, arsenic also occurs widely in the earth's crust and is a natural contaminant of many ground waters. Iron and manganese ...

  6. Micronutrient supplementation adherence and influence on the prevalences of anemia and iron, zinc and vitamin A deficiencies in preemies with a corrected age of six months

    PubMed Central

    de Freitas, Brunnella Alcantara Chagas; Lima, Luciana Moreira; Moreira, Maria Elisabeth Lopes; Priore, Silvia Eloiza; Henriques, Bruno David; Carlos, Carla Fernanda Lisboa Valente; Sabino, Jusceli Souza Nogueira; do Carmo Castro Franceschini, Sylvia

    2016-01-01

    OBJECTIVE: To analyze adherence to the recommended iron, zinc and multivitamin supplementation guidelines for preemies, the factors associated with this adherence, and the influence of adherence on the occurrence of anemia and iron, zinc and vitamin A deficiencies. METHODS: This prospective cohort study followed 58 preemies born in 2014 until they reached six months corrected age. The preemies were followed at a referral secondary health service and represented 63.7% of the preterm infants born that year. Outcomes of interest included high or low adherence to iron, zinc and multivitamin supplementation guidelines; prevalence of anemia; and prevalences of iron, zinc, and vitamin A deficiencies. The prevalence ratios were calculated by Poisson regression. RESULTS: Thirty-eight (65.5%) preemies presented high adherence to micronutrient supplementation guidelines. At six months of corrected age, no preemie had vitamin A deficiency. The prevalences of anemia, iron deficiency and zinc deficiency were higher in the low-adherence group but also concerning in the high-adherence group. Preemies with low adherence to micronutrient supplementation guidelines were 2.5 times more likely to develop anemia and 3.1 times more likely to develop zinc deficiency. Low maternal education level increased the likelihood of nonadherence to all three supplements by 2.2 times. CONCLUSIONS: Low maternal education level was independently associated with low adherence to iron, zinc and vitamin A supplementation guidelines in preemies, which impacted the prevalences of anemia and iron and zinc deficiencies at six months of corrected age. PMID:27626474

  7. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants

    PubMed Central

    Socha, Amanda L.; Guerinot, Mary Lou

    2014-01-01

    Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis. PMID:24744764

  8. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill.

    PubMed

    Pleasant, Saraya; O'Donnell, Amanda; Powell, Jon; Jain, Pradeep; Townsend, Timothy

    2014-07-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Air sparging and vadose zone aeration (VZA) were evaluated as remedial approaches at a closed, unlined municipal solid waste landfill in Florida, USA. The goal of aeration was to oxidize Fe and Mn to their respective immobile forms. VZA and shallow air sparging using a partially submerged well screen were employed with limited success (Phase 1); decreases in dissolved iron were observed in three of nine monitoring wells during shallow air sparging and in two of 17 wells at VZA locations. During Phase 2, where deeper air sparging was employed, dissolved iron levels decreased in a significantly greater number of monitoring wells surrounding injection points, however no radial pattern was observed. Additionally, in wells affected positively by air sparging (mean total iron (FeTOT) <4.2mg/L, after commencement of air sparging), rising manganese concentrations were observed, indicating that the redox potential of the groundwater moved from an iron-reducing to a manganese-reducing environment. The mean FeTOT concentration observed in affected monitoring wells throughout the study was 1.40 mg/L compared to a background of 15.38 mg/L, while the mean Mn concentration was 0.60 mg/L compared to a background level of 0.27 mg/L. Reference wells located beyond the influence of air sparging areas showed little variation in FeTOT and Mn, indicating the observed effects were the result of air injection activities at study locations and not a natural phenomenon. Air sparging was found effective in intercepting plumes of dissolved Fe surrounding municipal landfills, but the effect on dissolved Mn was contrary to the desired outcome of decreased Mn groundwater concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Changes in iron, zinc and chelating agents during traditional African processing of maize: Effect of iron contamination on bioaccessibility.

    PubMed

    Greffeuille, Valérie; Polycarpe Kayodé, A P; Icard-Vernière, Christèle; Gnimadi, Muriel; Rochette, Isabelle; Mouquet-Rivier, Claire

    2011-06-15

    The effect of the different unit operations of processing traditionally used to produce four maize foods commonly consumed in Africa on the nutritional composition of the products was investigated, using Benin as a study context. The impact of the processes on lipid, fibre, phytate, iron and zinc contents varied with the process. The lowest IP6/Fe and IP6/Zn molar ratios, the indices used to assess Fe and Zn bioavailability were obtained in mawè, a fermented dough. Analysis of maize products highlighted a significant increase in iron content after milling, as a result of contamination by the equipment used. Evaluation of iron bioaccessibility by in vitro enzymatic digestion followed by dialysis revealed that the iron contamination, followed by lactic acid fermentation, led to a considerable increase in bioaccessible iron content. Extrinsic iron supplied to food products by the milling equipment could play a role in iron intake in developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  11. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    NASA Astrophysics Data System (ADS)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  12. MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese

    PubMed Central

    Kehl-Fie, Thomas E.; Zhang, Yaofang; Moore, Jessica L.; Farrand, Allison J.; Hood, M. Indriati; Rathi, Subodh; Chazin, Walter J.; Caprioli, Richard M.

    2013-01-01

    During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed “nutritional immunity.” The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection. PMID:23817615

  13. Distribution of iron, copper and manganese in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Moffett, James

    2014-05-01

    The distribution of iron, copper and manganese was studied on a zonal transect of the Arabian Sea during the SW monsoon in 2007. The distribution of metals in the eastern and western ends of the transect are completely different, with concentrations of Fe and Mn higher in the east, but copper much higher in the west. Redox cycling in the east, and enhanced ventilation in the west contributes to these processes. It seems likely that blooms of Phaeocystis sp. contribute to the pronounced surface depletion and oxicline regeneration we observe, particularly for copper. The results are very different than similar surveys in the Peru upwelling, indicating controls by very different processes. These results have important implications for carbon and nitrogen cycling, particularly for processes mediated by key Cu and Fe metalloenzymes.

  14. Manganese

    USGS Publications Warehouse

    Cannon, William F.; Kimball, Bryn E.; Corathers, Lisa A.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Manganese is an essential element for modern industrial societies. Its principal use is in steelmaking, where it serves as a purifying agent in iron-ore refining and as an alloy that converts iron into steel. Although the amount of manganese consumed to make a ton of steel is small, ranging from 6 to 9 kilograms, it is an irreplaceable component in the production of this fundamental material. The United States has been totally reliant on imports of manganese for many decades and will continue to be so for at least the near future. There are no domestic reserves, and although some large low-grade resources are known, they are far inferior to manganese ores readily available on the international market. World reserves of manganese are about 630 million metric tons, and annual global consumption is about 16 million metric tons. Current reserves are adequate to meet global demand for several decades. Global resources in traditional land-based deposits, including both reserves and rocks sufficiently enriched in manganese to be ores in the future, are much larger, at about 17 billion metric tons. Manganese resources in seabed deposits of ferromanganese nodules and crusts are larger than those on land and have not been fully quantified. No production from seabed deposits has yet been done, but current research and development activities are substantial and may bring parts of these seabed resources into production in the future. The advent of economically successful seabed mining could substantially alter the current scenario of manganese supply by providing a large new source of manganese in addition to traditional land-based deposits.From a purely geologic perspective, there is no global shortage of proven ores and potential new ores that could be developed from the vast tonnage of identified resources. Reserves and resources are very unevenly distributed, however. The Kalahari manganese district in South Africa contains 70 percent of the world’s identified resources

  15. The Escherichia coli Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese

    PubMed Central

    Martin, Julia E.; Waters, Lauren S.; Storz, Gisela; Imlay, James A.

    2015-01-01

    Escherichia coli does not routinely import manganese, but it will do so when iron is unavailable, so that manganese can substitute for iron as an enzyme cofactor. When intracellular manganese levels are low, the cell induces the MntH manganese importer plus MntS, a small protein of unknown function; when manganese levels are high, the cell induces the MntP manganese exporter and reduces expression of MntH and MntS. The role of MntS has not been clear. Previous work showed that forced MntS synthesis under manganese-rich conditions caused bacteriostasis. Here we find that when manganese is scarce, MntS helps manganese to activate a variety of enzymes. Its overproduction under manganese-rich conditions caused manganese to accumulate to very high levels inside the cell; simultaneously, iron levels dropped precipitously, apparently because manganese-bound Fur blocked the production of iron importers. Under these conditions, heme synthesis stopped, ultimately depleting cytochrome oxidase activity and causing the failure of aerobic metabolism. Protoporphyrin IX accumulated, indicating that the combination of excess manganese and iron deficiency had stalled ferrochelatase. The same chain of events occurred when mutants lacking MntP, the manganese exporter, were exposed to manganese. Genetic analysis suggested the possibility that MntS exerts this effect by inhibiting MntP. We discuss a model wherein during transitions between low- and high-manganese environments E. coli uses MntP to compensate for MntH overactivity, and MntS to compensate for MntP overactivity. PMID:25774656

  16. Zinc-containing yeast extract promotes nonrapid eye movement sleep in mice.

    PubMed

    Cherasse, Yoan; Saito, Hitomi; Nagata, Nanae; Aritake, Kosuke; Lazarus, Michael; Urade, Yoshihiro

    2015-10-01

    Zinc is an essential trace element for humans and animals, being located, among other places, in the synaptic vesicles of cortical glutamatergic neurons and hippocampal mossy fibers in the brain. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate and GABA receptors. Because of the central role of these neurotransmitters in brain activity, we examined in this study the sleep-promoting activity of zinc by monitoring locomotor activity and electroencephalogram after its administration to mice. Zinc-containing yeast extract (40 and 80 mg/kg) dose dependently increased the total amount of nonrapid eye movement sleep and decreased the locomotor activity. However, this preparation did not change the amount of rapid eye movement sleep or show any adverse effects such as rebound of insomnia during a period of 24 h following the induction of sleep; whereas the extracts containing other divalent cations (manganese, iron, and copper) did not decrease the locomotor activity. This is the first evidence that zinc can induce sleep. Our data open the way to new types of food supplements designed to improve sleep. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum (Sorghum bicolor L. Moench)

    PubMed Central

    Phuke, Rahul M.; Anuradha, Kotla; Radhika, Kommineni; Jabeen, Farzana; Anuradha, Ghanta; Ramesh, Thatikunta; Hariprasanna, K.; Mehtre, Shivaji P.; Deshpande, Santosh P.; Anil, Gaddameedi; Das, Roma R.; Rathore, Abhishek; Hash, Tom; Reddy, Belum V. S.; Kumar, Are Ashok

    2017-01-01

    The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines) were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg−1 and Zinc = 10.2 to 58.7 mg kg−1, across environments) and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc) was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p < 0.01) indicating possibility of simultaneous effective selection for both the traits. The RIL population showed good variability and high heritabilities (>0.60, in individual environments) for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc. PMID:28529518

  18. The Effect of Low Dose Iron and Zinc Intake on Child Micronutrient Status and Development during the First 1000 Days of Life: A Systematic Review and Meta-Analysis

    PubMed Central

    Petry, Nicolai; Olofin, Ibironke; Boy, Erick; Donahue Angel, Moira; Rohner, Fabian

    2016-01-01

    Adequate supply of micronutrients during the first 1000 days is essential for normal development and healthy life. We aimed to investigate if interventions administering dietary doses up to the recommended nutrient intake (RNI) of iron and zinc within the window from conception to age 2 years have the potential to influence nutritional status and development of children. To address this objective, a systematic review and meta-analysis of randomized and quasi-randomized fortification, biofortification, and supplementation trials in women (pregnant and lactating) and children (6–23 months) delivering iron or zinc in doses up to the recommended nutrient intake (RNI) levels was conducted. Supplying iron or zinc during pregnancy had no effects on birth outcomes. There were limited or no data on the effects of iron/zinc during pregnancy and lactation on child iron/zinc status, growth, morbidity, and psychomotor and mental development. Delivering up to 15 mg iron/day during infancy increased mean hemoglobin by 4 g/L (p < 0.001) and mean serum ferritin concentration by 17.6 µg/L (p < 0.001) and reduced the risk for anemia by 41% (p < 0.001), iron deficiency by 78% (ID; p < 0.001) and iron deficiency anemia by 80% (IDA; p < 0.001), but had no effect on growth or psychomotor development. Providing up to 10 mg of additional zinc during infancy increased plasma zinc concentration by 2.03 µmol/L (p < 0.001) and reduced the risk of zinc deficiency by 47% (p < 0.001). Further, we observed positive effects on child weight for age z-score (WAZ) (p < 0.05), weight for height z-score (WHZ) (p < 0.05), but not on height for age z-score (HAZ) or the risk for stunting, wasting, and underweight. There are no studies covering the full 1000 days window and the effects of iron and zinc delivered during pregnancy and lactation on child outcomes are ambiguous, but low dose daily iron and zinc use during 6–23 months of age has a positive effect on child iron and zinc status. PMID

  19. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi.

    PubMed

    Aguirre, J Dafhne; Clark, Hillary M; McIlvin, Matthew; Vazquez, Christine; Palmere, Shaina L; Grab, Dennis J; Seshu, J; Hart, P John; Saito, Mak; Culotta, Valeria C

    2013-03-22

    The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.

  20. Use of ferrous iron by metallo-β-lactamases.

    PubMed

    Cahill, Samuel T; Tarhonskaya, Hanna; Rydzik, Anna M; Flashman, Emily; McDonough, Michael A; Schofield, Christopher J; Brem, Jürgen

    2016-10-01

    Metallo-β-lactamases (MBLs) catalyse the hydrolysis of almost all β-lactam antibacterials including the latest generation carbapenems and are a growing worldwide clinical problem. It is proposed that MBLs employ one or two zinc ion cofactors in vivo. Isolated MBLs are reported to use transition metal ions other than zinc, including copper, cadmium and manganese, with iron ions being a notable exception. We report kinetic and biophysical studies with the di-iron(II)-substituted metallo-β-lactamase II from Bacillus cereus (di-Fe(II) BcII) and the clinically relevant B1 subclass Verona integron-encoded metallo-β-lactamase 2 (di-Fe(II) VIM-2). The results reveal that MBLs can employ ferrous iron in catalysis, but with altered kinetic and inhibition profiles compared to the zinc enzymes. A crystal structure of di-Fe(II) BcII reveals only small overall changes in the active site compared to the di-Zn(II) enzyme including retention of the di-metal bridging water; however, the positions of the metal ions are altered in the di-Fe(II) compared to the di-Zn(II) structure. Stopped-flow analyses reveal that the mechanism of nitrocefin hydrolysis by both di-Fe(II) BcII and di-Fe(II) VIM-2 is altered compared to the di-Zn(II) enzymes. Notably, given that the MBLs are the subject of current medicinal chemistry efforts, the results raise the possibility the Fe(II)-substituted MBLs may be of clinical relevance under conditions of low zinc availability, and reveal potential variation in inhibitor activity against the differently metallated MBLs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levelsmore » to those in the pituitary gland of AD and control subjects.« less

  2. Enhancement of arsenite removal using manganese oxide coupled with iron (III) trimesic

    NASA Astrophysics Data System (ADS)

    Phanthasri, Jakkapop; Khamdahsag, Pummarin; Jutaporn, Panitan; Sorachoti, Kwannapat; Wantala, Kitirote; Tanboonchuy, Visanu

    2018-01-01

    A simultaneous removal of As(III) was investigated on a mixture of manganese oxide based octahedral molecular sieves (K-OMS2) and iron-benzenetricarboxylate (Fe-BTC). As(III) removal was stimulated by an oxidation cooperated with adsorption process. K-OMS2 and Fe-BTC were separately synthesized and characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). K-OMS2 showed characters of pure cryptomelane phase, nanorod structure, and a mixed-valent manganese framework with the coexistence of Mn(IV) and Mn(III). As(III) was successfully oxidized to As(V) by K-OMS2 in a temperature range of 303-333 K. An intermediate adsorption of As(V) was carried out with Fe-BTC in the same batch. A maximum adsorption capacity, described by Langmuir isotherm model, was observed at 76.34 mg/g. With an As(III) initial concentration of 5 mg/L, when K-OMS2 and Fe-BTC were simultaneously introduced into the solution, the As(III) removal process was completed within 60 min. Thus, it shortened the process time compared to the case where K-OMS2 was added first, followed by the addition of Fe-BTC.

  3. Iron promotes protein insolubility and aging in C. elegans

    PubMed Central

    Klang, Ida M.; Schilling, Birgit; Sorensen, Dylan J.; Sahu, Alexandria K.; Kapahi, Pankaj; Andersen, Julie K.; Swoboda, Peter; Killilea, David W.; Gibson, Bradford W.; Lithgow, Gordon J.

    2014-01-01

    Many late-onset proteotoxic diseases are accompanied by a disruption in homeostasis of metals (metallostasis) including iron, copper and zinc. Although aging is the most prominent risk factor for these disorders, the impact of aging on metallostasis and its role in proteotoxic disease remain poorly understood. Moreover, it is not clear whether a loss of metallostasis influences normal aging. We have investigated the role of metallostasis in longevity of Caenorhabditis elegans. We found that calcium, copper, iron, and manganese levels increase as a function of age, while potassium and phosphorus levels tend to decrease. Increased dietary iron significantly accelerated the age-related accumulation of insoluble protein, a molecular pathology of aging. Proteomic analysis revealed widespread effects of dietary iron in multiple organelles and tissues. Pharmacological interventions to block accumulation of specific metals attenuated many models of proteotoxicity and extended normal lifespan. Collectively, these results suggest that a loss of metallostasis with aging contributes to age-related protein aggregation. PMID:25554795

  4. Iron promotes protein insolubility and aging in C. elegans.

    PubMed

    Klang, Ida M; Schilling, Birgit; Sorensen, Dylan J; Sahu, Alexandria K; Kapahi, Pankaj; Andersen, Julie K; Swoboda, Peter; Killilea, David W; Gibson, Bradford W; Lithgow, Gordon J

    2014-11-01

    Many late-onset proteotoxic diseases are accompanied by a disruption in homeostasis of metals (metallostasis) including iron, copper and zinc. Although aging is the most prominent risk factor for these disorders, the impact of aging on metallostasis and its role in proteotoxic disease remain poorly understood. Moreover, it is not clear whether a loss of metallostasis influences normal aging. We have investigated the role of metallostasis in longevity ofCaenorhabditis elegans. We found that calcium, copper, iron, and manganese levels increase as a function of age, while potassium and phosphorus levels tend to decrease. Increased dietary iron significantly accelerated the age-related accumulation of insoluble protein, a molecular pathology of aging. Proteomic analysis revealed widespread effects of dietary iron in multiple organelles and tissues. Pharmacological interventions to block accumulation of specific metals attenuated many models of proteotoxicity and extended normal lifespan. Collectively, these results suggest that a loss of metallostasis with aging contributes to age-related protein aggregation.

  5. Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness

    USDA-ARS?s Scientific Manuscript database

    Biofortification aims to improve the micronutrient concentration of staple food crops through the best practices of breeding and modern biotechnology. However, increased zinc and iron concentrations in food crops may not always translate into proportional increases in absorbed zinc (Zn) and iron (Fe...

  6. Relative contribution of phytates, fibers, and tannins to low iron and zinc in vitro solubility in pearl millet (Pennisetum glaucum) flour and grain fractions.

    PubMed

    Lestienne, Isabelle; Caporiccio, Bertrand; Besançon, Pierre; Rochette, Isabelle; Trèche, Serge

    2005-10-19

    In vitro digestions were performed on pearl millet flours with decreased phytate contents and on two dephytinized or nondephytinized pearl millet grain fractions, a decorticated fraction, and a bran fraction with low and high fiber and tannin contents, respectively. Insoluble residues of these digestions were then incubated with buffer or enzymatic solutions (xylanases and/or phytases), and the quantities of indigestible iron and zinc released by these different treatments were determined. In decorticated pearl millet grain, iron was chelated by phytates and by insoluble fibers, whereas zinc was almost exclusively chelated by phytates. In the bran of pearl millet grain, a high proportion of iron was chelated by iron-binding phenolic compounds, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers. The low effect of phytase action on iron and zinc solubility of bran of pearl millet grain shows that, in the case of high fiber and tannin contents, the chelating effect of these compounds was higher than that of phytates.

  7. Anti-sigma factor YlaD regulates transcriptional activity of sigma factor YlaC and sporulation via manganese-dependent redox-sensing molecular switch in Bacillus subtilis.

    PubMed

    Kwak, Min-Kyu; Ryu, Han-Bong; Song, Sung-Hyun; Lee, Jin-Won; Kang, Sa-Ouk

    2018-05-14

    YlaD, a membrane-anchored anti-sigma factor of Bacillus subtilis , contains a HX 3 CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc-coordinated anti-sigma factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained zinc and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX 3 CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese. The ylaC gene expression using βGlu activity from P yla : gusA was observed at the late-exponential and early-stationary phase and the ylaC -overexpressing mutant constitutively expressed gene transcripts of clpP and sigH , an important alternative sigma factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in manganese ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and manganese-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function sigma factors during sporulation via a manganese-dependent redox-sensing molecular switch. ©2018 The Author(s).

  8. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  9. National Center for Food Safety and Technology

    DTIC Science & Technology

    2013-12-05

    on the Determination of Copper, Iron, Manganese and Zinc in Beef and Goat Liver American Chemical Society (ACS) – September, 2013 22. Meng Xu...addresses key food safety issues facing the country and supports the development of safe food with health-promoting properties from farm to fork. This...Reddy, Renate Reimschuessel. 2013. Proficiency Test on the Determination of Copper, Iron, Manganese and Zinc in Beef and Goat Liver American

  10. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  11. MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan

    2016-01-01

    Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well asmore » the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.« less

  12. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging

    PubMed Central

    Zecca, Luigi; Stroppolo, Antonella; Gatti, Alberto; Tampellini, Davide; Toscani, Marco; Gallorini, Mario; Giaveri, Giuseppe; Arosio, Paolo; Santambrogio, Paolo; Fariello, Ruggero G.; Karatekin, Erdem; Kleinman, Mark H.; Turro, Nicholas; Hornykiewicz, Oleh; Zucca, Fabio A.

    2004-01-01

    In this study, a comparative analysis of metal-related neuronal vulnerability was performed in two brainstem nuclei, the locus coeruleus (LC) and substantia nigra (SN), known targets of the etiological noxae in Parkinson's disease and related disorders. LC and SN pars compacta neurons both degenerate in Parkinson's disease and other Parkinsonisms; however, LC neurons are comparatively less affected and with a variable degree of involvement. In this study, iron, copper, and their major molecular forms like ferritins, ceruloplasmin, neuromelanin (NM), manganese-superoxide dismutase (SOD), and copper/zinc-SOD were measured in LC and SN of normal subjects at different ages. Iron content in LC was much lower than that in SN, and the ratio heavy-chain ferritin/iron in LC was higher than in the SN. The NM concentration was similar in LC and SN, but the iron content in NM of LC was much lower than SN. In both regions, heavy- and light-chain ferritins were present only in glia and were not detectable in neurons. These data suggest that in LC neurons, the iron mobilization and toxicity is lower than that in SN and is efficiently buffered by NM. The bigger damage occurring in SN could be related to the higher content of iron. Ferritins accomplish the same function of buffering iron in glial cells. Ceruloplasmin levels were similar in LC and SN, but copper was higher in LC. However, the copper content in NM of LC was higher than that of SN, indicating a higher copper mobilization in LC neurons. Manganese-SOD and copper/zinc-SOD had similar age trend in LC and SN. These results may explain at least one of the reasons underlying lower vulnerability of LC compared to SN in Parkinsonian syndromes. PMID:15210960

  13. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    PubMed

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field

    USDA-ARS?s Scientific Manuscript database

    Iron (Fe) and zinc (Zn) deficiencies are the most prevalent micronutrient malnutrition globally1. Fe in rice has proven efficacious in improving serum ferritin concentration and body Fe levels2. Rapid progress in biofortification demonstrates the feasibility to enhance Fe in polished rice by expre...

  15. Minerals, haem and non-haem iron contents of rhea meat.

    PubMed

    Ramos, A; Cabrera, M C; Del Puerto, M; Saadoun, A

    2009-01-01

    Mineral contents, haem and non-haem iron of rhea (Rhea americana) muscles Obturatorius medialis (OM), Iliotibialis lateralis (IL) and Iliofibularis (I) were determined. No differences between the three muscles were observed for calcium, phosphorus, magnesium and sodium. There is more potassium, zinc and copper in IL muscle than in OM and I muscles. For Manganese, OM and IL muscles show a higher content in comparison with I muscle. For selenium, IL and I muscles show the highest content compared to OM muscle. For total, haem and non-haem iron, the IL muscle shows the highest content respect to the other muscles. When compared to other meats, the minerals content of rhea meat show an elevated level in phosphorus, selenium and total and haem iron. The human health concern due to the deficient diet in selenium and iron, and their high contents in rhea meat will be of great importance in the promotion of this meat.

  16. Improvement of the in vitro digestible iron and zinc content of okra (Hibiscus esculentus L.) sauce widely consumed in Sahelian Africa.

    PubMed

    Avallone, Sylvie; Bohuon, Philippe; Hemery, Youna; Treche, Serge

    2007-03-01

    The effects of the formulation (okra, fish, soumbala, extract of wood ash) and cooking time of okra sauce on total iron and zinc content and on their in vitro digestibility were evaluated following a Doehlert uniform shell design with 5 factors and 33 trials. Cooking time had no significant effect on in vitro digestible iron and zinc content, whereas formulation did. Each ingredient had a specific effect. Extract of wood ash, which is a source of soluble and digestible iron and zinc, is a good way of increasing the digestible mineral content of the dish. Okra, the main ingredient in this sauce, has a negative effect and should be added in moderate quantities (< 37.7% of the DM of the sauce). An optimization using the desirability function allows us to identify the optimal recipe that enabled the quantity of digestible iron to be doubled and the quantity of digestible zinc to be increased by one third. This recipe calls for a mixture of 37.7% okra, 26.3% dried fish, 18.5% soumbala, and 3.7% extract of wood ash cooked for 25 min.

  17. Mineral deposits of Central America, with a section on manganese deposits of Panama

    USGS Publications Warehouse

    Roberts, Ralph Jackson; Irving, Earl Montgomery; Simons, F.S.

    1957-01-01

    The mineral deposits of Central America were studied between 1942 and 1945, in cooperation with the United States Department of State and the Foreign Economic Administration. Emphasis was originally placed on the study of strategic-mineral deposits, especially of antimony, chromite, manganese, quartz, and mica, but deposits of other minerals that offered promise of significant future production were also studied. A brief appraisal of the base-metal deposits was made, and deposits of iron ore in Honduras and of lead and zinc ores in Guatemala were mapped. In addition, studies were made of the regional geology of some areas, data were collected from many sources, and a new map of the geology of Central America was compiled.

  18. The prevalence of low serum zinc and copper levels and dietary habits associated with serum zinc and copper in 12- to 36-month-old children from low-income families at risk for iron deficiency.

    PubMed

    Schneider, Julie M; Fujii, Mary L; Lamp, Catherine L; Lönnerdal, Bo; Zidenberg-Cherr, Sheri

    2007-11-01

    Iron and zinc share common food sources, and children at risk of iron deficiency may also develop zinc deficiency. We determined the prevalence of zinc and copper deficiency and examined factors associated with serum zinc and copper in young children from low-income families at risk of iron deficiency. A cross-sectional study design was used to assess serum zinc and copper, along with an interview-assisted survey to assess factors associated with serum zinc and copper in a convenience sample. Participants were 435 children aged 12 to 36 months recruited from select clinics of the Special Supplemental Nutrition Program for Women, Infants, and Children in Contra Costa and Tulare Counties, California. Frequencies were used to report prevalence. Multiple linear regressions were conducted to examine factors associated with serum zinc and copper, controlling for age, sex, and ethnicity. The prevalence of low serum zinc level (<70 microg/dL [<10.7 micromol/L]) was 42.8%, and low serum copper level (<90 microg/dL [<14.2 micromol/L]) was <1%. Mean+/-standard deviation of serum copper was 150+/-22 microg/dL (23.6+/-3.5 micromol/L) and 140+/-24 microg/dL (22.1+/-3.8 micromol/L) for anemic and non-anemic children, respectively (t test, P=0.026). In multiple linear regression consumption of sweetened beverages was negatively associated with serum zinc level, and consumption of >15 g/day meat was positively associated with serum zinc level, whereas current consumption of breast milk and >15 g/day beans were positively associated with serum copper level. The prevalence of low serum zinc concentration in the sample was high, and warrants further investigation amongst vulnerable populations.

  19. Determination of instream metal loads using tracer-injection and synoptic-sampling techniques in Wightman Fork, southwestern Colorado, September 1997

    USGS Publications Warehouse

    Ortiz, Roderick F.; Bencala, Kenneth E.

    2001-01-01

    Spatial determinations of the metal loads in Wightman Fork can be used to identify potential source areas to the stream. In September 1997, a chloride tracer-injection study was done concurrently with synoptic water-quality sampling in Wightman Fork near the Summitville Mine site. Discharge was determined and metal concentrations at 38 sites were used to generate mass-load profiles for dissolved aluminum, copper, iron, manganese, and zinc. The U.S. Environmental Protection Agency had previously identified these metals as contaminants of concern.Metal loads increased substantially in Wightman Fork near the Summitville Mine. A large increase occurred along a 60-meter reach that is north of the North Waste Dump and generally corresponds to a region of radial faults. Metal loading from this reach was equivalent to 50 percent or more of the dissolved aluminum, copper, iron, manganese, and zinc load upstream from the outfall of the Summitville Water Treatment Facility (SWTF). Overall, sources along the entire reach upstream from the SWTF were equivalent to 15 percent of the iron, 33 percent of the copper and manganese, 58 percent of the zinc, and 66 percent of the aluminum load leaving the mine site. The largest increases in metal loading to Wightman Fork occurred as a result of inflow from Cropsy Creek. Aluminum, iron, manganese, and zinc loads from Cropsy Creek were equivalent to about 40 percent of the specific metal load leaving the mine site. Copper, iron, and manganese loads from Cropsy Creek were nearly as large or larger than the load from sources upstream from the SWTF.

  20. Iron, Manganese and Copper Release from Synthetic Hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, Douglas W.

    1999-01-01

    Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn>Cu>Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn>Cu>Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.

  1. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  2. Mineral of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2005-01-01

    Manganese is one of the most important ferrous metals and one of the few for which the United States is totally dependent on imports. It is a black, brittle element predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production, which together provide the largest market for manganese (about 83 percent). It is also used as an alloy with nonferrous metals such as aluminum and copper. Nonmetallurgical applications of manganese include battery cathodes, soft ferrite magnets used in electronics, micronutrients found in fertilizers and animal feed, water treatment chemicals, and a colorant for bricks and ceramics.

  3. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  4. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.).

    PubMed

    Izquierdo, Paulo; Astudillo, Carolina; Blair, Matthew W; Iqbal, Asif M; Raatz, Bodo; Cichy, Karen A

    2018-05-11

    Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.

  5. The Mismetallation of Enzymes during Oxidative Stress*

    PubMed Central

    Imlay, James A.

    2014-01-01

    Mononuclear iron enzymes can tightly bind non-activating metals. How do cells avoid mismetallation? The model bacterium Escherichia coli may control its metal pools so that thermodynamics favor the correct metallation of each enzyme. This system is disrupted, however, by superoxide and hydrogen peroxide. These species oxidize ferrous iron and thereby displace it from many iron-dependent mononuclear enzymes. Ultimately, zinc binds in its place, confers little activity, and imposes metabolic bottlenecks. Data suggest that E. coli compensates by using thiols to extract the zinc and by importing manganese to replace the catalytic iron atom. Manganese resists oxidants and provides substantial activity. PMID:25160623

  6. Analysis of the world distribution of metal-rich subsea manganese nodules

    USGS Publications Warehouse

    McKelvey, Vincent Ellis; Wright, Nancy A.; Bowen, Roger W.

    1983-01-01

    Publicly available data on the composition of subsea manganese nodules extend previous reports of differences in average metal contents from ocean to ocean and of variations related to latitude and depth. Pacific Ocean nodules have the highest average manganese, nickel, and copper contents, and Atlantic Ocean nodules have the highest average iron content. The average manganese, nickel, and copper contents generally increase toward the equator in both hemispheres, and iron content generally decreases. The variation of metal content with water depth is not linear; instead, there appears to be a threshold depth of about 2,900 to 3,000 m, above which combined nickel and copper contents are generally less than 1 percent and below which cobalt content is generally less than about 0.6 percent. The composition of the nodules varies widely, but three rarely overlapping types that are of possible economic interest can be recognized. (1) Nodules containing more than about 1 percent combined nickel and copper only exceptionally contain more than 0.5 percent cobalt and 35 percent manganese. (2) Nodules containing more than 0.5 percent cobalt rarely contain more than 1 percent combined nickel and copper and 35 percent manganese. (3) Nodules containing more than 35 percent manganese only exceptionally contain more than 0.5 percent cobalt, although they average nearly 1.1 percent combined nickel and copper. Current economic interest in nodule mining is focused on the Clarion-Clipperton zone in the northeastern equatorial Pacific Ocean, the largest known area in which nodules average 1.8 percent or more combined nickel and copper. Several other areas in which nodules are rich in these metals are found in the Pacific and Indian Oceans and may be viewed as targets for exploration. Nearly 60 chemical elements have been found in manganese nodules, many in concentrations far exceeding their crustal abundances. The amounts in which many minor elements are present vary with the amounts of

  7. Effect of Zinc in Enteropathogenic Escherichia coli Infection▿ †

    PubMed Central

    Crane, John K.; Naeher, Tonniele M.; Shulgina, Irina; Zhu, Chengru; Boedeker, Edgar C.

    2007-01-01

    Enteropathogenic Escherichia coli (EPEC) infection triggers the release of ATP from host intestinal cells, and the ATP is broken down to ADP, AMP, and adenosine in the lumen of the intestine. Ecto-5′-nucleotidase (CD73) is the main enzyme responsible for the conversion of 5′-AMP to adenosine, which triggers fluid secretion from host intestinal cells and also has growth-promoting effects on EPEC bacteria. In a recent study, we examined the role of the host enzyme CD73 in EPEC infection by testing the effect of ecto-5′-nucleotidase inhibitors. Zinc was a less potent inhibitor of ecto-5′-nucleotidase in vitro than the nucleotide analog α,β-methylene-ADP, but in vivo, zinc was much more efficacious in preventing EPEC-induced fluid secretion in rabbit ileal loops than α,β-methylene-ADP. This discrepancy between the in vitro and in vivo potencies of the two inhibitors prompted us to search for potential targets of zinc other than ecto-5′-nucleotidase. Zinc, at concentrations that produced little or no inhibition of EPEC growth, caused a decrease in the expression of EPEC protein virulence factors, such as bundle-forming pilus (BFP), EPEC secreted protein A, and other EPEC secreted proteins, and reduced EPEC adherence to cells in tissue culture. The effects of zinc were not mimicked by other transition metals, such as manganese, iron, copper, or nickel, and the effects were not reversed by an excess of iron. Quantitative real-time PCR showed that zinc reduced the abundance of the RNAs encoded by the bfp gene, by the plasmid-encoded regulator (per) gene, by the locus for the enterocyte effacement (LEE)-encoded regulator (ler) gene, and by several of the esp genes. In vivo, zinc reduced EPEC-induced fluid secretion into ligated rabbit ileal loops, decreased the adherence of EPEC to rabbit ileum, and reduced histopathological damage such as villus blunting. Some of the beneficial effects of zinc on EPEC infection appear to be due to the action of the metal on

  8. Manganese(II), iron(II), cobalt(II), and copper(II) complexes of an extended inherently chiral tris-bipyridyl cage.

    PubMed

    Perkins, David F; Lindoy, Leonard F; McAuley, Alexander; Meehan, George V; Turner, Peter

    2006-01-17

    Manganese(II), iron(II), cobalt(II), and copper(II) derivatives of two inherently chiral, Tris(bipyridyl) cages (L and L') of type [ML]-(PF(6))(2)(solvent)(n) and [FeL'](ClO(4))(2) are reported, where L is the hexa-tertiary butyl-substituted derivative of L'. These products were obtained by using the free cage and metal template procedures; the latter involved the reductive amination of the respective Tris-dialdehyde precursor complexes of iron(II), cobalt(II), or nickel(II). Electrochemical, EPR, and NMR studies have been used to probe the nature of the individual complexes. X-ray structures of the manganese(II), iron(II), and copper(II) complexes of L and the iron(II) complex of L' are presented; these are compared with the previously reported structures of the corresponding nickel(II) complex and metal-free cage (L). In each complex the metal cation occupies the cage's central cavity and is coordinated to six nitrogens from the three bipyridyl groups. The cations [MnL](2+) and [FeL](2+) are isostructural but both exhibit a different arrangement of the bound cage to that observed in the corresponding nickel(II) and copper(II) complexes. The latter have an exo-exo arrangement of the bridgehead nitrogen lone pairs, with the metal inducing a triple helical twist that extends approximately 22 A along the axial length of each complex. In contrast, [MnL](2+) and [FeL](2+) have their terminal nitrogen lone pairs directed endo, causing a significant change in the configuration of the bound ligand. In [FeL'](2+), the cage has both bridgehead nitrogen lone pairs orientated exo. Semiempirical calculations indicate that the observed endo-endo and exo-exo arrangements are of comparable energy.

  9. Biogeochemistry of the coupled manganese-iron-sulfur cycles of intertidal surface sediments

    NASA Astrophysics Data System (ADS)

    Bosselmann, K.; Boettcher, M. E.; Billerbeck, M.; Walpersdorf, E.; Debeer, D.; Brumsack, H.-J.; Huettel, M.; Joergensen, B. B.

    2003-04-01

    The biogeochemistry of the coupled iron-manganese-sulfur-carbon cycles was studied in temperate intertidal surface sediments of the German Wadden Sea (North Sea). Coastal sampling sites include sand, mixed and mud flats with different organic matter and metal contents and permeability reflecting different hydrodynamic regimes. The field study focusses on the influence of temperature, organic matter load, and sediment types on the dynamics of biogeochemical reactions on different time scales (season, day-night, tidal cycles). One of the main interests was related to the cycling of metals (Mn, Fe) in relation to the activity of sulfate-reducing bacteria. Pore water profiles were investigated by sediment sectioning and high resolution gel sampling techniques. Microbial sulfate reduction rates were measured using radiolabeled sulfate with the whole core incubation technique and the spatial distribution of bacterial activity was visualised by using "2D-photoemulsion-monitoring technique". The biogeochemical sulfur cycle was additionally characterised by the stable isotope ratios (S,O) of different sulfur species (e.g., SO_4, AVS, pyrite). Element transfers (metals, nutrients) across the sediment-water interface were additionally quantified by the application of benthic flux chambers. Microbial sulfate reduction was generally highest in the suboxic zone of the surface sediments indicating its potential importance for the mobilization of iron and manganese. In organic matter poor permeable sediments tidal effects additionally influence the spatial and temporal distribution of dissolved redox-sensitive metals. In organic matter-rich silty and muddy sediments, temperature controlled the microbial sulfate reduction rates. Depth-integrated sulfate reduction rates in sandy sediments were much lower and controlled by both temperature and organic matter. Formation of anoxic sediment surfaces due to local enhanced organic matter load (so-called "black spots") may create windows

  10. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice

    PubMed Central

    Alsulimani, Helal Hussain; Ye, Qi

    2015-01-01

    Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe-/-) and their control wild-type (Hfe+/+) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe+/+ mice, but not in Hfe-/- mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe+/+ compared with water-drinking Hfe+/+ mice. However, Mn-exposed Hfe-/- mice spent more time to find the target hole than Mn-drinking Hfe+/+ mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and other iron overload

  11. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice.

    PubMed

    Alsulimani, Helal Hussain; Ye, Qi; Kim, Jonghan

    2015-12-01

    Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe (-/-)) and their control wild-type (Hfe (+/+)) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe (+/+) mice, but not in Hfe (-/-) mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe (+/+) compared with water-drinking Hfe (+/+) mice. However, Mn-exposed Hfe (-/-) mice spent more time to find the target hole than Mn-drinking Hfe (+/+) mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and

  12. Cadmium, copper, iron, and zinc concentrations in kidneys of grey wolves, Canis lupus, from Alaska, Idaho, Montana (USA) and the Northwest Territories (Canada).

    PubMed

    Hoffmann, S R; Blunck, S A; Petersen, K N; Jones, E M; Koval, J C; Misek, R; Frick, J A; Cluff, H D; Sime, C A; McNay, M; Beckman, K B; Atkinson, M W; Drew, M; Collinge, M D; Bangs, E E; Harper, R G

    2010-11-01

    Cadmium, copper, iron, and zinc levels were measured in the kidneys of 115 grey wolves (Canis lupus) from Idaho, Montana and Alaska (United States), and from the Northwest Territories (Canada). No significant differences in the levels of iron or copper were observed between locations, but wolf kidneys from more northern locations had significantly higher cadmium levels (Alaska > Northwest Territories > Montana ≈ Idaho), and wolves from Alaska showed significantly higher zinc than other locations. Additionally, female wolves in Alaska had higher iron levels than males, and adult wolves in Montana had higher copper levels than subadults.

  13. The Impact of Potassium Manganate (VII) on the Effectiveness of Coagulation in the Removal of Iron and Manganese from Groundwater with an Increased Content of Organic Substances

    NASA Astrophysics Data System (ADS)

    Krupińska, Izabela

    2017-12-01

    The article presents the results of studies concerning the impact of the method of Fe(II) ion oxidisation (dissolved oxygen and potassium manganate (VII)) on the effectiveness of coagulation in the removal of iron and manganese from groundwater with an increased content of organic substances. The efficiencies of two coagulants were compared: aluminium sulphate (VI) and polyaluminium chloride (Flokor 1.2A). Among the used methods of iron (II) oxidisation, the best effects have been achieved by potassium manganate (VII) because one of the oxidation products was manganese oxide (IV) precipitating from water. Better results in purifying the water were obtained with the use of a prehydrolysed coagulant Flokor 1.2 A than aluminium sulphate (VI).

  14. Synthesis, characterization and electrochemical studies of heterometallic manganese(IV)-zinc(II) and manganese(IV)-copper(II) complexes derived from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Phukan, Arnab; Chanu, Oinam B.; Kumar, A.; Lal, R. A.

    2014-02-01

    Five manganese(IV) complexes [Mn(L)(bpy)] (1) and heterobimetallic complexes [MMn(L)Cl2(H2O)4]·1.5H2O (M = ZnII(2), CuII(3)) and [MnM(L)(bpy)Cl2] (M = ZnII(4), CuII(5)] have been synthesized from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4L) in methanol medium. The composition of the complexes have been established based on the data obtained from analytical, thermoanalytical and mass spectral studies. The structures of the complexes have been discussed in the light of molar conductance, magnetic moment, electronic, EPR, IR, FT-IR spectroscopic studies and transmission electron microscopies. The molar conductance values of these complexes in DMSO suggest their non-electrolytic nature. The μeff value for the complexes (1), (2) and (4) fall in the range 3.82-4.12 BM characteristic of the presence of the manganese(IV) in them. The complex (3) has μeff value of 3.70 BM at RT indicating considerable antiferromagnetic interaction between Mn(IV) and Cu(II). The μeff value of 4.72 BM for complex (5) is slightly lower than 4.90 BM for S = 2 ground state. In the complex (1) to (3), the ligand is coordinated to the metal centres as tetradentate ligand while in the complexes (4) and (5) as hexadentate ligand. Manganese(IV) has distorted octahedral stereochemistry in all complexes. Copper(II) has distorted octahedral and square planar stereochemistry in complexes (3) and (5) while zinc has distorted octahedral and tetrahedral stereochemistry, respectively. EPR studies of the complexes are also reported. The electron transfer reactions of the complexes have also been investigated by cyclic voltammetry.

  15. High manganese concentrations in rocks at Gale crater, Mars

    USGS Publications Warehouse

    Lanza, Nina L.; Fischer, Woodward W.; Wiens, Roger C.; Grotzinger, John P.; Ollila, Ann M.; Anderson, Ryan B.; Clark, Benton C.; Gellert, Ralf; Mangold, Nicolas; Maurice, Sylvestre; Le Mouélic, Stéphane; Nachon, Marion; Schmidt, Mariek E.; Berger, Jeffrey; Clegg, Samuel M.; Forni, Olivier; Hardgrove, Craig; Melikechi, Noureddine; Newsom, Horton E.; Sautter, Violaine

    2014-01-01

    The surface of Mars has long been considered a relatively oxidizing environment, an idea supported by the abundance of ferric iron phases observed there. However, compared to iron, manganese is sensitive only to high redox potential oxidants, and when concentrated in rocks, it provides a more specific redox indicator of aqueous environments. Observations from the ChemCam instrument on the Curiosity rover indicate abundances of manganese in and on some rock targets that are 1–2 orders of magnitude higher than previously observed on Mars, suggesting the presence of an as-yet unidentified manganese-rich phase. These results show that the Martian surface has at some point in time hosted much more highly oxidizing conditions than has previously been recognized.

  16. Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkin, S.P.; Martin, M.H.

    1985-02-01

    In this paper, an experiment is described on the assimilation of zinc, cadmium, lead, copper and iron by Dysdera crocata collected from a site in central Bristol. The spiders were fed on woodlice from their own site, and on woodlice from a site contaminated by a smelting works which contained much higher levels of zinc, cadmium and lead than the spiders would have been used to in their normal diet.

  17. Meta-QTL analysis of seed iron and zinc concentration in common bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrien...

  18. Removal of iron and manganese by artificial destratification in a tropical climate (Upper Layang Reservoir, Malaysia).

    PubMed

    Ismail, R; Kassim, M A; Inman, M; Baharim, N H; Azman, S

    2002-01-01

    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.

  19. An analysis of manganese as an indicator for heavy metal removal in passive treatment using laboratory spent mushroom compost columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, B.A.; Unz, R.F.; Dempsey, B.A.

    1999-07-01

    The National Pollution Discharge Elimination System (NPDES) dictates removal of manganese in mine drainage to less than 4 mg/1 daily or less than 2 mg/1 on a monthly average. Owing to its high solubility at low and circumneutral pH, removal of manganese is often the most difficult of the NPDES discharge standards. This has lead to the use of Mn(II) as a surrogate for metal removal. However, recent studies concluded that zinc or nickel may be more appropriate indicators for removal of other metals. Previous field studies showed zinc removal to be highly correlated to the removal of copper, cobalt,more » and nickel in a sulfate reducing subsurface loaded wetland, whereas manganese removal was poorly correlated. The objective of this study was to evaluate zinc and manganese retention under sulfate reducing conditions in bench scale columns containing fresh spent mushroom compost. Column effluent data were analyzed using an EPA geochemical computer model (MINTEQ) over the pH range of 6.0 to 6.8. Under these conditions, zinc and manganese displayed distinctly reactivities. Zn(II) was supersaturated with respect to ZnS{sub s} and the Zn(HS){sub 2}{degree} and Zn(HS){sub 3}{sup minus} complexes dominated solubility. Soluble zinc concentrations were inversely correlated to sulfide. Mn(II) remained as soluble Mn{sup +2}. During early column operation at pH > 7, MnCO{sup 3(s)} was supersaturated. Manganese concentrations did not correlate with pH or sulfide. Given these fundamental differences in removal mechanisms between Zn and Mn under sulfate reducing conditions, the use of manganese removal as a surrogate for heavy metal removal in passive treatment of mine drainage seems unjustified.« less

  20. Metals, Oxidative Stress and Neurodegeneration: A focus on Iron, Manganese and Mercury

    PubMed Central

    Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira

    2013-01-01

    Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This reviews focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH•. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. PMID:23266600

  1. Microbial community response reveals underlying mechanism of industrial-scale manganese sand biofilters used for the simultaneous removal of iron, manganese and ammonia from groundwater.

    PubMed

    Zhang, Yu; Sun, Rui; Zhou, Aijuan; Zhang, Jiaguang; Luan, Yunbo; Jia, Jianna; Yue, Xiuping; Zhang, Jie

    2018-01-08

    Most studies have employed aeration-biofiltration process for the simultaneous removal of iron, manganese and ammonia in groundwater. However, what's inside the "black box", i.e., the potential contribution of functional microorganisms behavior and interactions have seldom been investigated. Moreover, little attention has been paid to the correlations between environmental variables and functional microorganisms. In this study, the performance of industrial-scale biofilters for the contaminated groundwater treatment was studied. The effluent were all far below the permitted concentration level in the current drinking water standard. Pyrosequencing illustrated that shifts in microbial community structure were observed in the microbial samples from different depths of filter. Microbial networks showed that the microbial community structure in the middle- and deep-layer samples was similar, in which a wide range of manganese-oxidizing bacteria was identified. By contrast, canonical correlation analysis showed that the bacteria capable of ammonia-oxidizing and nitrification was enriched in the upper-layer, i.e., Propionibacterium, Nitrosomonas, Nitrosomonas and Candidatus Nitrotoga. The stable biofilm on the biofilter media, created by certain microorganisms from the groundwater microflora, played a crucial role in the simultaneous removal of the three pollutants.

  2. Mathematical model of the direct reduction of dust composite pellets containing zinc and iron

    NASA Astrophysics Data System (ADS)

    An, Xiu-wei; Wang, Jing-song; She, Xue-feng; Xue, Qing-guo

    2013-07-01

    Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.

  3. Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents.

    PubMed

    Kobayashi, Naomasa; Okamura, Hideo

    2005-12-01

    Interactive toxic effects between heavy metals were investigated using a sea urchin (Anthocidaris crassispina) bioassay. An effluent from an abandoned mine showed significant inhibitory effects on embryo development as well as producing specific malformations. The effects on the embryos were reproduced by synthetic polluted seawater consisting of eight metals (manganese, lead, cadmium, nickel, zinc, chromium, iron, and copper) at the concentrations detected in the mine effluent. This indicated that the heavy metals were responsible for the effects observed. Five heavy metals were ranked in decreasing order of toxicity as follows: Cu>Zn>Pb>Fe>Mn. Among these, zinc and manganese could cause malformation of the embryos. From bioassay results using 27 combinations of heavy metals, 16 combinations including zinc could produce specific malformations, such as radialized, exo-gastrulal, and spaceship Apollo-like gastrulal embryos. Zinc was one of the elements responsible for causing malformations and its effects were intensified by the presence of the other metals, such as manganese, lead, iron, and copper.

  4. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    PubMed

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  5. The Effects of Iron and/or Zinc Supplementation on Maternal Reports of Sleep in Infants from Nepal and Zanzibar

    PubMed Central

    Kordas, Katarzyna; Siegel, Emily H.; Olney, Deanna K.; Katz, Joanne; Tielsch, James M.; Kariger, Patricia K.; Khalfan, Sabra S.; LeClerq, Steven C.; Khatry, Subarna K.; Stoltzfus, Rebecca J.

    2009-01-01

    Background There is some evidence that sleep patterns may be affected by iron deficiency anemia but the role of iron in sleep has not been tested in a randomized iron supplementation trial. Objective We investigated the effect of iron supplementation on maternal reports of sleep in infants in 2 randomized, placebo-controlled trials from Pemba Island, Zanzibar, and Nepal. Design In both studies, which had parallel designs and were carried out in years 2002 to 2003, infants received iron–folic acid with or without zinc daily for 12 months, and assessments of development were made every 3 months for the duration of the study. Eight hundred seventy-seven Pemban (12.5 ± 4.0 months old) and 567 Nepali (10.8 ± 4.0 months) infants participated. Maternal reports of sleep patterns (napping frequency and duration, nighttime sleep duration, frequency of night waking) were collected. Results Mean Hb concentration was 9.2 ± 1.1 for Pemban and 10.1 ± 1.2 g/dL for Nepali infants. Approximately, one-third of the children were stunted. Supplemental iron was consistently associated with longer night and total sleep duration. The effects of zinc supplementation also included longer sleep duration. Conclusions Micronutrient supplementation in infants at high risk for iron deficiency and iron deficiency anemia was related to increased night sleep duration and less night waking. PMID:19322104

  6. Deciphering Genomic Regions for High Grain Iron and Zinc Content Using Association Mapping in Pearl Millet

    PubMed Central

    Anuradha, N.; Satyavathi, C. Tara; Bharadwaj, C.; Nepolean, T.; Sankar, S. Mukesh; Singh, Sumer P.; Meena, Mahesh C.; Singhal, Tripti; Srivastava, Rakesh K.

    2017-01-01

    Micronutrient malnutrition, especially deficiency of two mineral elements, iron [Fe] and zinc [Zn] in the developing world needs urgent attention. Pearl millet is one of the best crops with many nutritional properties and is accessible to the poor. We report findings of the first attempt to mine favorable alleles for grain iron and zinc content through association mapping in pearl millet. An association mapping panel of 130 diverse lines was evaluated at Delhi, Jodhpur and Dharwad, representing all the three pearl millet growing agro-climatic zones of India, during 2014 and 2015. Wide range of variation was observed for grain iron (32.3–111.9 ppm) and zinc (26.6–73.7 ppm) content. Genotyping with 114 representative polymorphic SSRs revealed 0.35 mean gene diversity. STRUCTURE analysis revealed presence of three sub-populations which was further supported by Neighbor-Joining method of clustering and principal coordinate analysis (PCoA). Marker-trait associations (MTAs) were analyzed with 267 markers (250 SSRs and 17 genic markers) in both general linear model (GLM) and mixed linear model (MLM), however, MTAs resulting from MLM were considered for more robustness of the associations. After appropriate Bonferroni correction, Xpsmp 2261 (13.34% R2-value), Xipes 0180 (R2-value of 11.40%) and Xipes 0096 (R2-value of 11.38%) were consistently associated with grain iron and zinc content for all the three locations. Favorable alleles and promising lines were identified for across and specific environments. PPMI 1102 had highest number (7) of favorable alleles, followed by four each for PPMFeZMP 199 and PPMI 708 for across the environment performance for both grain Fe and Zn content, while PPMI 1104 had alleles specific to Dharwad for grain Fe and Zn content. When compared with the reference genome Tift 23D2B1-P1-P5, Xpsmp 2261 amplicon was identified in intergenic region on pseudomolecule 5, while the other marker, Xipes 0810 was observed to be overlapping with aspartic

  7. Impacts of iron and steelmaking facilities on soil quality.

    PubMed

    Strezov, Vladimir; Chaudhary, Chandrakant

    2017-12-01

    Iron and steel are highly important materials used in a wide range of products with important contribution to the economic development. The processes for making iron and steel are energy intensive and known to contribute to local pollution. Deposition of the metals may also have adverse impacts on soil quality, which requires detailed assessment. The aim of this study was to investigate the impacts of iron and steelmaking facilities on the local soil quality. Soil samples were collected in the vicinity of two steelmaking sites in Australia, one based on blast furnace steelmaking operation, while the second site was based on electric arc furnace steel recycling. The soil samples were compared to a background site where no industrial impact is expected. The soil collected near industrial facilities contained larger toxic metal contents, however this concentration for all priority metals was within the Australian National Environmental Protection Measure guidelines for the acceptable recreational soil quality. When compared to the international soil quality guidelines, some of the soils collected near the industrial sites, particularly near the blast furnace operated steelmaking, exceeded the arsenic, iron and manganese (according to United States Environmental Protection Agency guidelines) and chromium, copper and nickel concentrations (according to the Canadian guidelines). The work further provided a novel environmental assessment model taking into consideration the environmental and health impacts of each element. The environmental assessment revealed most significant contribution of manganese, followed by titanium, zinc, chromium and lead. Titanium was the second most important contributor to the soil quality, however this metal is currently not included in any of the international soil quality guidelines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Isolation of iron bacteria from terrestrial and aquatic environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Bertram; Szewzyk, Ulrich

    2010-05-01

    Bacteria, which are capable of iron oxidation or at least iron deposition are widely distributed in environments where zones of dissolved ferrous iron and oxygen gradients are overlapping [1]. They take part in the biological cycling of iron and influence other cycles of elements for example carbon [2]. Manganese can be used for similar metabolic purposes as iron, because it can be biologically oxidized by chemolithotrophs or can be reduced by respirating bacteria as well [3, 4]. Bacterial activity is responsible for the accumulation of ferric iron compounds in their surroundings. The formation of bog ore is a well known example for a soil horizon, with an extreme enrichment of biogenic ferric iron [5]. We focused on the isolation of neutrophilic iron bacteria and bacteria capable of manganese oxidation. We used samples from Tierra del Fuego (Argentina) the National Park "Unteres Odertal" (Germany) and Berlin ground water wells. Microscopic examination of the samples revealed a considerable diversity of iron encrusted structures of bacterial origin. Most of these morphologic types are already well known. The taxonomic classification of many of these organisms is based on morphologic features and is not reliable compared to recent methods of molecular biology. That is mainly due to the fact, that most of these bacteria are hardly culturable or do not show their characteristic morphologic features under culture conditions. We established a collection of more than 300 iron depositing strains. Phylogenetic analyses showed that we have many yet uncultured strains in pure culture. We obtained many isolates which form distinct branches within long known iron bacteria groups like the Sphaerotilus-Leptothrix cluster. But some of the strains belong to groups, which have not yet been associated with iron oxidation activity. The strains deposit high amounts of oxidized iron and manganese compounds under laboratory conditions. However it is unclear if these precipitations are

  9. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    PubMed

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Manganese Deposits in the Artillery Mountains Region, Mohave County, Arizona

    USGS Publications Warehouse

    Lasky, S.G.; Webber, B.N.

    1944-01-01

    .08 percent of phosphorus, 1.1 percent of barium, and minute quantities of copper, lead, and zinc. Although the manganese content of the sandstone and clay ore may change abruptly from bed to bed, the content within any individual bed changes gradually, and for any large volume of ore both the nanganese and iron content are remarkably uniform. Explorations to June 1941 consisted chiefly of 49 holes diamond-drilled in the upper zone on the Artillery Mountains side of the area. The district is estimated to contain an assured minimum of 200,000,000 tons of material having an average manganese content of 3 to 4 percent. About 20,000,000 tons of this total contains 5 percent or more of manganese, and 2,000,000 to 3,000,000 tons contains 10 percent or more. To what extent these deposits can be utilized is a metallurgical and economic problem. Although the clay and sandstone ores, as well as the 'hard' ore, are present in large tonnages, the 'hard' ore is the only kind that combines minable tonnage with promising grade. About 15,000,000 tons of 'hard' ore is present; about 500,000 tons of this contains 15 percent or more of manganese and averages 17 percent, and somewhat over 2,000,000 tons contains 10 percent or more and averages nearly 13 percent. Except for closer drilling to determine such things as the tonnage, grade, spacing, and form of the richer shoots with greater accuracy before beginning to mine them, further explorations are not recommended, for any new ore found is likely to be similar, both in grade and kind, to that already discovered.

  11. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    NASA Astrophysics Data System (ADS)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  12. Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children.

    PubMed

    Vaz-Tostes, Maria das Graças; Verediano, Thaisa Agrizzi; de Mejia, Elvira Gonzalez; Brunoro Costa, Neuza Maria

    2016-03-15

    Biofortified beans have been produced with higher nutrient concentrations. The objective was to evaluate the in vitro and in vivo iron and zinc bioavailability of common beans Pontal (PO), targeted for biofortification, compared with conventional Perola (PE) and their effects on the iron and zinc nutritional status of preschool children. In Caco-2 cells, PO and PE beans did not show differences in ferritin (PO, 13.1 ± 1.4; PE, 13.6 ± 1.4 ng mg(-1) protein) or zinc uptake (PO, 15.9 ± 1.5; PE, 15.5 ± 3.5 µmol mg(-1) protein). In the rat, PO and PE beans presented high iron bioavailability (PO, 109.6 ± 29.5; PE, 110.7 ± 13.9%). In preschool children, no changes were observed in iron and zinc nutritional status comparing before and after PO consumption (ferritin, 41.2 ± 23.2 and 28.9 ± 40.4 µg L(-1) ; hemoglobin, 13.7 ± 2.2 and 13.1 ± 3.2 g dL(-1) ; plasma zinc, 119.2 ± 24.5 and 133.9 ± 57.7 µg dL(-1) ; erythrocyte zinc, 53.5 ± 13.8 and 59.4 ± 17.1 µg g(-1) hemoglobin). Iron and zinc bioavailability in PO and PE beans was not statistically different using either cell culture, animal or human models. Efforts should focus on increasing mineral bioavailability of beans targeted for biofortification. © 2015 Society of Chemical Industry.

  13. Chemical analyses of stream sediment in the Tar Creek basin of the Picher mining area, northeast Oklahoma

    USGS Publications Warehouse

    Parkhurst, David L.; Doughten, Michael; Hearn,, Paul P.

    1988-01-01

    Chemical analyses are presented for 47 sediment samples from the Tar Creek drainage in the Picher mining area of northeast Oklahoma. The samples were taken in December 1983, June 1984, and June 1985. All of the samples were taken downstream from mine-water discharge points of abandoned lead and zinc mines. The 34 samples taken in December 1983 and June 1984 were analyzed semiquantitatively by emission spectrography for 64 elements and quantitatively for cadmium, copper, iron, manganese, nickel, lead, sulfur, zinc, and organic carbon. The 13 samples taken in June 1985 were analyzed quantitatively for aluminum, cadmium, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, phosphorus, lead, sulfur, silicon, titanium, vanadium, zinc, and organic carbon.

  14. [Vitamin and mineral supplements in the diet of military personnel: effect on the balance of iron, copper and manganese, immune reactivity and physical work-capacity].

    PubMed

    Zaĭtseva, I P; Nosolodin, V V; Zaĭtsev, O N; Gladkikh, I P; Koznienko, I V; Beliakov, R A; Arshinov, N P

    2012-03-01

    Conducted with the participation of 50 students of military educational study the effect of various vitamin and mineral complexes for the provision by the body naturally iron, copper and manganese on the immune and physical status. Found that diets enriched BMV was accompanied by a significant delay in the micro-elements, mainly iron, which indicates a deficiency of these bioelements in chickens Santo during the summer. Under the influence of vitamin-mineral complexes significantly increased rates of natural and specific immunity. As the delay increases significantly increased iron medical indicators of immunological reaction efficiency and physical performance.

  15. Ion-Selective Deposition of Manganese Sulphate Solution from Trenggalek Manganese Ore by Active Carbon and Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Andriyah, L.; Sulistiyono, E.

    2017-02-01

    One of the step in manganese dioxide manufacturing process for battery industry is a purification process of lithium manganese sulphate solution. The elimination of impurities such as iron removal is important in hydrometallurgical processes. Therefore, this paper present the purification results of manganese sulphate solution by removing impurities using a selective deposition method, namely activated carbon adsorption and NaOH. The experimental results showed that the optimum condition of adsorption process occurs on the addition of 5 g adsorbent and the addition of 10 ml NaOH 1 N, processing time of 30 minutes and the best is the activated carbon adsorption of Japan. Because the absolute requirement of the cathode material of lithium ion manganese are free of titanium then of local wood charcoal is good enough in terms of eliminating ions Ti is equal to 70.88%.

  16. Correlation of Zn2+ content with aflatoxin content of corn.

    PubMed Central

    Failla, L J; Lynn, D; Niehaus, W G

    1986-01-01

    Forty-nine samples from the 1983 Virginia corn harvest were analyzed for aflatoxin, zinc, copper, iron, and manganese content. Values (mean +/- standard deviation) were as follows: aflatoxin, 117 +/- 360 micrograms/kg; zinc, 22.5 +/- 3.4 mg/kg; copper, 2.27 +/- 0.56 mg/kg; iron, 40.8 +/- 18.7 mg/kg; and manganese, 5.1 +/- 1.1 mg/kg. Aflatoxin levels positively correlated with zinc (Spearman correlation coefficient, 0.385; P less than 0.006) and copper levels (Spearman correlation coefficient, 0.573; P less than 0.0001). Based on biochemical data in the literature, we believe that the correlation with zinc is important and that there may be a cause-and-effect relationship between zinc levels in corn and aflatoxin levels which are produced upon infection with Aspergillus flavus or A. parasiticus. Control of aflatoxin contamination in field corn by decreasing the zinc levels may be feasible, but no methods to decrease zinc levels are currently available. PMID:3729406

  17. Environmental impacts of iron ore tailings—The case of Tolo Harbour, Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, M. H.

    1981-03-01

    Disposal of iron ore tailings along the shore of Tolo Harbour, Hong Kong has altered the adjacent environment. Due to the ever-expanding population, the vast development of various industries, and the lack of sanitary control, the existing pollution problem of Tolo Harbour is serious. The iron ore tailings consist of a moderate amount of various heavy metals, e.g., copper, iron, manganese, lead, zinc, and a lower level of macronutrients. A few living organisms have been found colonizing this manmade habitat. Higher metal contents were also found in the tissue of Paphia sp. (clam); Scopimera intermedia (crab); Chaetomorpha brychagona (green alga); Enteromorpha crinita (green alga); and Neyraudia reynaudiana (grass). The area can be reclaimed by surface amelioration using inert materials, soils, or organic substrates, and by direct seeding, using nontolerant and tolerant plant materials. Reclamation of the tailings would improve the amenity of the adjacent environment and also mitigate pollution escaping to the sea.

  18. Bioturbation and Manganese Cycling in Hemipelagic Sediments

    NASA Astrophysics Data System (ADS)

    Aller, R. C.

    1990-06-01

    The activities of infaunal macrobenthos have major influences on the types, rates and distributions of diagenetic reactions involving manganese in relatively carbon-rich deep-sea and nearshore sediments. In some non-sulphidic hemipelagic deposits of the eastern equatorial Pacific (Panama Basin) biogenic reworking drives internal cycles of manganese, which can apparently account for up to ca. 100% of organic carbon oxidation and reduction of O2 supplied (diffusively) to the sea floor. Heterotrophic (carbon-based) manganese reduction is stimulated by simultaneous mixing of reactive organic matter and manganese oxide into suboxic-anoxic deposits. In sulphidic sediments, biogenic reworking must also enhance a lithotrophic pathway (sulphur-based) pathway of manganese reduction by promoting contact of manganese oxides and iron sulphides. Particle reworking dramatically alters the balance between aerobic and anaerobic decomposition pathways, promoting the utilization of O2 in the reoxidaton of reduced metabolites rather than direct oxidation of carbon. Irrigated burrows create microenvironments, which increase manganese reduction-oxidation and deplete Mn2+ from deeper pore waters. This may increase net Mn2+ production rates by removal of metabolites and potential co-precipitants with Mn2+. The occurrence and geometry of manganese oxide encrusted biogenic structures imply specific adaptations of infauna to manganese based microbial activity in hemipelagic sediments like the Panama Basin.

  19. Phanerozoic Rifting Phases And Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  20. Manganese: it turns iron into steel (and does so much more)

    USGS Publications Warehouse

    Cannon, William F.

    2014-01-01

    Manganese is a common ferrous metal with atomic weight of 25 and the chemical symbol Mn. It constitutes roughly 0.1 percent of the Earth’s crust, making it the 12th most abundant element. Its early uses were limited largely to pigments and oxidants in chemical processes and experiments, but the significance of manganese to human societies exploded with the development of modern steelmaking technology in the 1860s. U.S consumption of manganese is about 500,000 metric tons each year, predominantly by the steel industry. Because manganese is essential and irreplaceable in steelmaking and its global mining industry is dominated by just a few nations, it is considered one of the most critical mineral commodities for the United States.

  1. Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide.

    PubMed

    McDaniel, Sean A; Lancaster, Adam; Evans, Jonathan W; Kar, Ajoy K; Cook, Gary

    2016-02-22

    We report demonstration of Watt level waveguide lasers fabricated using Ultrafast Laser Inscription (ULI). The waveguides were fabricated in bulk chromium and iron doped zinc selenide crystals with a chirped pulse Yb fiber laser. The depressed cladding structure in Fe:ZnSe produced output powers of 1 W with a threshold of 50 mW and a slope efficiency of 58%, while a similar structure produced 5.1 W of output in Cr:ZnSe with a laser threshold of 350 mW and a slope efficiency of 41%. These results represent the current state-of-the-art for ULI waveguides in zinc based chalcogenides.

  2. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.

    PubMed

    Chou, Da-Tren; Wells, Derrick; Hong, Daeho; Lee, Boeun; Kuhn, Howard; Kumta, Prashant N

    2013-11-01

    The present work provides an assessment of 3-D printed iron-manganese biodegradable scaffolds as a bone scaffold material. Iron-based alloys have been investigated due to their high strength and ability to slowly corrode. Current fabrications of Fe-based materials generate raw material which must be machined into their desired form. By using inkjet 3-D printing, a technique which generates complex, customizable parts from powders mechanically milled Fe-30Mn (wt.%) powder was directly processed into scaffolds. The 3-D printed parts maintained an open porosity of 36.3% and formed a mixed phase alloy of martensitic ε and austenitic γ phases. Electrochemical corrosion tests showed the 3-D printed Fe-Mn to desirably corrode significantly more rapidly than pure iron. The scaffolds exhibited similar tensile mechanical properties to natural bone, which may reduce the risk of stress shielding. Cell viability testing of MC3T3-E1 pre-osteoblast cells seeded directly onto the Fe-Mn scaffolds using the live/dead assay and with cells cultured in the presence of the scaffolds' degradation products demonstrated good in vitro cytocompatibility compared to tissue culture plastic. Cell infiltration into the open pores of the 3-D printed scaffolds was also observed. Based on this preliminary study, we believe that 3-D printed Fe-Mn alloy is a promising material for craniofacial biomaterial applications, and represents an opportunity for other biodegradable metals to be fabricated using this unique method. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors.

    PubMed

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of >50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of >50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. DETERMINATION OF MATERNAL SERUM ZINC, IRON, CALCIUM AND MAGNESIUM DURING PREGNANCY IN PREGNANT WOMEN AND UMBILICAL CORD BLOOD AND THEIR ASSOCIATION WITH OUTCOME OF PREGNANCY

    PubMed Central

    Khoushabi, Fahimeh; Shadan, Mohammad Reza; Miri, Ali; Sharifi-Rad, Javad

    2016-01-01

    Background: Trace elements and specially minerals are critical for the development of fetus. Many minerals are transferred to the fetus for fetal stores in the latter part of the pregnancy. It has been shown that various trace elements such as Zinc, Iron, Calcium and Magnesium are metabolically interrelated and there is alteration in their concentration during pregnancy. Beyond pregnancy is associated with increased demand of all the nutrients and deficiency of any of these could affect pregnancy, delivery and outcome of pregnancy. Aim: To study the levels of trace elements namely zinc, iron, magnesium and calcium in maternal and umbilical cord blood and their association with pregnancy outcome. Methods: Sixty pregnant women in Zabol, Iran were selected from those who had registered their names for the prenatal care and who had followed up till the 3rd trimester of pregnancy ending in child birth. Biochemical parameters analyzed with help of the biochemical laboratory. Data were analyzed by SPSS software. Results: The mean biochemical profile such, serum calcium, magnesium, zinc and iron in the pregnant women were as follow: in the 1st trimester 8.3, 1.9, 74.9 and 74.4 µg/dl respectively; in the 2nd trimester 8.5, 1.9, 73.1 and 79.3 µg/dl, respectively; in the 3rd trimester 8.6, 1.9, 68.4, and 82.2 µg/dl, respectively. In the umbilical cord blood, the mean serum calcium, magnesium, zinc and iron were 8.5, 1.9, 84.1, and 89.8 µg/dl, respectively. The mean serum calcium and magnesium during the three trimesters of pregnancy were not significantly different from that in the umbilical cord blood, while the mean serum zinc and iron in the umbilical cord blood were significantly different (p<0.05) in the three trimester of pregnancy. The mean birth weight of neonates was 3.1 kg and 12% of neonates showed low birth weight. Our findings showed that, except magnesium, the profile of other biochemical variables, namely, calcium, zinc and iron in the umbilical cord blood

  5. Possible roles of manganese redox chemistry in the sulfur cycle

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.

    1985-01-01

    Sulfate reducing bacteria (SRB) are very potent MnO2 reducers by virtue of their sulfide production: H2S reacts rapidly with MnO2 to yield Mn(2), elemental sulfur, and water. In manganese rich zones, Mn cycles rapidly if sulfate is present to drive the reduction and the MnO2 precipitates and sinks into anaerobic zones. The production of sulfide (by organisms requiring organic carbon compounds) to reduce manganese oxides might act to couple the carbon and sulfur cycles in water bodies in which the two cycles are physically separated. Iron has been proposed for this provision of reducing power by (Jorgensen, 1983), but since MnS is soluble and FeS is very insoluble in water, it is equally likely that manganese rather than iron provides the electrons to the more oxidized surface layers.

  6. Zinc complexes developed as metallopharmaceutics for treating diabetes mellitus based on the bio-medicinal inorganic chemistry.

    PubMed

    Yoshikawa, Yutaka; Yasui, Hiroyuki

    2012-01-01

    Biological trace metals such as iron, zinc, copper, and manganese are essential to life and health of humans, and the success of platinum drugs in the cancer chemotherapy has rapidly grown interest in developing inorganic pharmaceutical agents in medicinal chemistry, that is, medicinal inorganic chemistry, using essential elements and other biological trace metals. Transition metal complexes with unique chemical structures may be useful alternatives to the drugs available to address some of the incurable diseases. In this review, we emphasize that metal complexes are an expanding of interest in the research field of treatment of diabetes mellitus. Especially, orally active anti-diabetic and anti-metabolic syndrome zinc complexes have been developed and progressed since the discovery in 2001, where several highly potent anti-diabetic zinc complexes with different coordination structures have quite recently been disclosed, using experimental diabetic animals. In all of the complexes discussed, zinc is found to be biologically active and function by interacting with some target proteins related with diabetes mellitus. The design and screening of zinc complexes with higher activity is not efficient without consideration of the translational research. For the development of a clinically useful metallopharmaceutics, the research of zinc complexes on the long-term toxicity including side effects, clear-cut evidence of target molecule for the in vivo pharmacological action, and good pharmacokinetic property are essential in the current and future studies.

  7. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  8. The binding of manganese(II) and zinc(II) to the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2. A 1H NMR study.

    PubMed

    Frøystein, N A; Sletten, E

    1991-03-01

    The interaction of the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2 with two different transition-metal ions has been investigated in aqueous solution by means of 1H NMR spectroscopy. The effects on the DNA due to the presence of manganese(II) or zinc(II) have been monitored by observing the paramagnetic broadening and diamagnetic shifts of the non-exchangeable proton resonance lines, respectively. The 1H NMR spectra acquired during the course of the manganese(II) titration show very distinct broadening effects on certain DNA resonance lines. Primarily, the H8 resonance of G4 is affected, but also the H5 and H6 resonances of C3 are clearly affected by the metal. The results imply that the binding of manganese(II) to DNA is sequence specific. The 1H spectra obtained during the zinc(II) titration reveal diamagnetic shift effects which largely conform with the paramagnetic broadening effects due to the presence of manganese(II), although this picture is somewhat more complex. The H8 resonance of G4 displays a clearly visible high-field shift, while for the other guanosine H8 protons this effect is absent. The H1' and H2' protons of C3 show an effect of similar strength, although in the opposite direction, while H5 and H6 of C3 are only slightly affected. Local differences in the structure of the DNA and the basicities of potential binding sites on different base steps in the sequence might account for the observed sequence selectivity.

  9. Acidic leaching both of zinc and iron from basic oxygen furnace sludge.

    PubMed

    Trung, Zuzana Hoang; Kukurugya, Frantisek; Takacova, Zita; Orac, Dusan; Laubertova, Martina; Miskufova, Andrea; Havlik, Tomas

    2011-09-15

    During the steel production in the basic oxygen furnace (BOF), approximately 7-15 kg of dust per tonne of produced steel is generated. This dust contains approximately 1.4-3.2% Zn and 54-70% Fe. Regarding the zinc content, the BOF dust is considered to be highly problematic, and therefore new technological processes for recycling dusts and sludge from metallurgical production are still searched for. In this study the hydrometallurgical processing of BOF sludge in the sulphuric acid solutions under atmospheric pressure and temperatures up to 100 °C is investigated on laboratory scale. The influence of sulphuric acid concentration, temperature, time and liquid to solid ratio (L:S) on the leaching process was studied. The main aim of this study was to determine optimal conditions when the maximum amount of zinc passes into the solution whilst iron remains in a solid residue. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.

    PubMed

    Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M

    2006-08-01

    Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.

  11. The prion-ZIP connection: From cousins to partners in iron uptake

    PubMed Central

    Singh, Neena; Asthana, Abhishek; Baksi, Shounak; Desai, Vilok; Haldar, Swati; Hari, Sahi; Tripathi, Ajai K

    2015-01-01

    ABSTRACT Converging observations from disparate lines of inquiry are beginning to clarify the cause of brain iron dyshomeostasis in sporadic Creutzfeldt-Jakob disease (sCJD), a neurodegenerative condition associated with the conversion of prion protein (PrPC), a plasma membrane glycoprotein, from α-helical to a β-sheet rich PrP-scrapie (PrPSc) isoform. Biochemical evidence indicates that PrPC facilitates cellular iron uptake by functioning as a membrane-bound ferrireductase (FR), an activity necessary for the transport of iron across biological membranes through metal transporters. An entirely different experimental approach reveals an evolutionary link between PrPC and the Zrt, Irt-like protein (ZIP) family, a group of proteins involved in the transport of zinc, iron, and manganese across the plasma membrane. Close physical proximity of PrPC with certain members of the ZIP family on the plasma membrane and increased uptake of extracellular iron by cells that co-express PrPC and ZIP14 suggest that PrPC functions as a FR partner for certain members of this family. The connection between PrPC and ZIP proteins therefore extends beyond common ancestry to that of functional cooperation. Here, we summarize evidence supporting the facilitative role of PrPC in cellular iron uptake, and implications of this activity on iron metabolism in sCJD brains. PMID:26689487

  12. Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Groundwater Quality and Remediation Progress at DoD Sites

    DTIC Science & Technology

    2007-02-01

    years if kept refrigerated in its preservative solution of ethanol, sodium benzoate , and ethylene diamine tetra-acetic acid (EDTA). Alternatively... sodium bicarbonate solution, EDTA, and sodium azide solution to remove residual gylcerol, sulfide, cadmium, chromium, copper, iron, nickel, zinc, and lead...Magnesium Cadmium Nickel Potassium Chromium Selenium Sodium Copper Vanadium Aluminum Iron Zinc Arsenic Lead Antimony Manganese Anions (1-3 days

  13. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the New Jersey highlands

    USGS Publications Warehouse

    Johnson, C.A.; Skinner, B.J.

    2003-01-01

    The New Jersey Highlands terrace, which is an exposure of the Middle Proterozoic Grenville orogenic belt located in northeastern United States, contains stratiform zinc oxide-silicate deposits at Franklin and Sterling Hill and numerous massive magnetite deposits. The origins of the zinc and magnetite deposits have rarely been considered together, but a genetic link is suggested by the occurrence of the Furnace magnetite bed and small magnetite lenses immediately beneath the Franklin zinc deposit. The Furnace bed was metamorphosed and deformed along with its enclosing rocks during the Grenvillian orogeny, obscuring the original mineralogy and obliterating the original rock fabrics. The present mineralogy is manganiferous magnetite plus calcite. Trace hydrous silicates, some coexisting with fluorite, have fluorine contents that are among the highest ever observed in natural assemblages. Furnace bed calcite has ??13C values of -5 ?? 1 per mil relative to Peedee belemnite (PDB) and ??18O values of 11 to 20 per mil relative to Vienna-standard mean ocean water (VSMOW). The isotopic compositions do not vary as expected for an original siderite layer that decarbonated during metamorphism, but they are consistent with nearly isochemical metamorphism of an iron oxide + calcite protolith that is chemically and minerlogically similar to iron-rich sediments found near the Red Sea brine pools and isotopically similar to Superior-type banded iron formations. Other magniferous magnite + calcite bodies occur at approximately the same stratigraphic position as far 50 km from the zinc deposits. A model is presented in which the iron and zinc deposits formed along the western edge of a Middle Proterozoic marine basin. Zinc was transported by sulfate-stable brines and was precipitated under sulfate-stable conditions as zincian carbonates and Fe-Mn-Zn oxides and silicates. Whether the zincian assemblages settled from the water column or formed by replacement reactions in shallowly

  14. Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities.

    PubMed

    Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang

    2017-06-29

    Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.

  15. Process optimization and leaching kinetics of zinc and manganese metals from zinc-carbon and alkaline spent batteries using citric acid reagent

    NASA Astrophysics Data System (ADS)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Zn-Carbon and Alkaline spent batteries contains heavy metals, such as zinc and manganese, which can causes environmental problem if not handled properly. Usually the recovery of these metals were done by leaching method using strong acid, but the use of strong acids as leaching reagents can be harmful to the environment. This paper concerns the recovery of Zn and Mn metals from Zn-C and alkaline spent batteries with leaching method using citric acid as the environmental friendly leaching reagent. The leaching conditions using citric acid were optimized and the leaching kinetics of Zn and Mn in citric acid solution was investigated. The leaching of 89.62% Zn and 63.26% Mn was achieved with 1.5 M citric acid, 90°C temperature, and 90 minutes stirring time. Kinetics data for the dissolution of Zn showed the best fit to chemical control shrinking core model, while the diffusion controlled model was suitable for the dissolution of Mn kinetics data. The activation energy of 6.12 and 1.73 kcal/mol was acquired for the leaching of Zn and Mn in the temperature range 60°C-90°C.

  16. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  17. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  18. Distinctive Pattern of Serum Elements During the Progression of Alzheimer's Disease.

    PubMed

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-03-09

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer's disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD.

  19. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst

    NASA Astrophysics Data System (ADS)

    Sumboja, Afriyanti; Ge, Xiaoming; Zheng, Guangyuan; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2016-11-01

    Neutral chloride-based electrolyte and directly grown manganese oxide on carbon paper are used as the electrolyte and air cathode respectively for rechargeable Zn-air batteries. Oxygen reduction and oxygen evolution reactions on manganese oxide show dependence of activities on the pH of the electrolyte. Zn-air batteries with chloride-based electrolyte and manganese oxide catalyst exhibit satisfactory voltage profile (discharge and charge voltage of 1 and 2 V at 1 mA cm-2) and excellent cycling stability (≈90 days of continuous cycle test), which is attributed to the reduced carbon corrosion on the air cathode and decreased carbonation in neutral electrolyte. This work describes a robust electrolyte system that improves the cycle life of rechargeable Zn-air batteries.

  20. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOEpatents

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  1. Root Uptake Of Lipophilic Zinc-Rhamnolipid Complexes

    EPA Science Inventory

    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Bra...

  2. Structural and Thermodynamic Consequences of the Replacement of Zinc with Environmental Metals on ERα-DNA Interactions

    PubMed Central

    Deegan, Brian J.; Bona, Anna M.; Bhat, Vikas; Mikles, David C.; McDonald, Caleb B.; Seldeen, Kenneth L.; Farooq, Amjad

    2011-01-01

    Estrogen receptor α (ERα) acts as a transcription factor by virtue of the ability of its DNA-binding (DB) domain, comprised of a tandem pair of zinc fingers, to recognize the estrogen response element (ERE) within the promoters of target genes. Herein, using an array of biophysical methods, we probe structural consequences of the replacement of zinc within the DB domain of ERα with various environmental metals and their effects on the thermodynamics of binding to DNA. Our data reveal that while the DB domain reconstituted with divalent ions of zinc, cadmium, mercury and cobalt binds to DNA with affinities in the nanomolar range, divalent ions of barium, copper, iron, lead, manganese, nickel and tin are unable to regenerate DB domain with DNA-binding potential though they can compete with zinc for coordinating the cysteine ligands within the zinc fingers. We also show that the metal-free DB domain is a homodimer in solution and that the binding of various metals only results in subtle secondary and tertiary structural changes, implying that metal-coordination may only be essential for DNA-binding. Collectively, our findings provide mechanistic insights into how environmental metals may modulate the physiological function of a key nuclear receptor involved in mediating a plethora of cellular functions central to human health and disease. PMID:22038807

  3. Selenium, copper, zinc, iron levels and mortality in patients with sepsis and systemic inflammatory response syndrome in Western Black Sea Region, Turkey.

    PubMed

    Ayoglu, Hilal; Sezer, Ustun; Akin, Mehmet; Okyay, Dilek; Ayoglu, Ferruh; Can, Murat; Kucukosman, Gamze; Piskin, Ozcan; Aydin, Bengu; Cimencan, Murat; Gur, Abdullah; Turan, Isil

    2016-04-01

    To evaluate the changing levels of selenium, copper, zinc and iron in patients with sepsis and systemic inflammatory response syndrome and their influence on mortality. The prospective study was conducted at a tertiary care university hospital in Zonguldak city in the western Black Sea region of Turkey from January 2012 to December 2013, and comprised patients with sepsis and systemic inflammatory response syndrome. Blood samples were taken on 1st, 3rd, 5th and 7th days to measure serum selenium, copper, zinc and iron levels. Patients' demographic data, presence of additional diseases and mortality were recorded. Of the 57 patients, 28(49.1%) were female and 29(50.9%) were male, with an overall mean age of 60.3±19.4 years, mean height of 166.1±11.4cm, mean weight of 76.5±17.5kg. Copper and zinc levels were in the normal range, while selenium and iron levels were lower than the limit values at all measuring periods. There was no significant difference between first and other days in accordance with element levels (p>0.05). Baseline copper levels in patients with malignancy were lower than patients without malignancy (p< 0.05). In hypertensive patients, baseline copper levels were higher and 7th day levels were lower than non-hypertensive (p< 0.05). Baseline selenium levels of those who died were lower than the other patients (p< 0.05). Selenium and iron levels were decreased in patients with sepsis-systemic inflammatory response syndrome and copper levels were lower in patients with malignancy, hypertension and chronic obstructive pulmonary disease (p< 0.05). There was no change in zinc levels of the patients. Reduced basal selenium levels of patients with sepsis and systemic inflammatory response syndrome were associated with mortality.

  4. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-Free Breads Supplemented with Natural Additives.

    PubMed

    Regula, J; Cerba, A; Suliburska, J; Tinkov, A A

    2018-03-01

    The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.

  5. Zinc and the iron donor frataxin regulate oligomerization of the scaffold protein to form new Fe-S cluster assembly centers.

    PubMed

    Galeano, B K; Ranatunga, W; Gakh, O; Smith, D Y; Thompson, J R; Isaya, G

    2017-06-21

    Early studies of the bacterial Fe-S cluster assembly system provided structural details for how the scaffold protein and the cysteine desulfurase interact. This work and additional work on the yeast and human systems elucidated a conserved mechanism for sulfur donation but did not provide any conclusive insights into the mechanism for iron delivery from the iron donor, frataxin, to the scaffold. We previously showed that oligomerization is a mechanism by which yeast frataxin (Yfh1) can promote assembly of the core machinery for Fe-S cluster synthesis both in vitro and in cells, in such a manner that the scaffold protein, Isu1, can bind to Yfh1 independent of the presence of the cysteine desulfurase, Nfs1. Here, in the absence of Yfh1, Isu1 was found to exist in two forms, one mostly monomeric with limited tendency to dimerize, and one with a strong propensity to oligomerize. Whereas the monomeric form is stabilized by zinc, the loss of zinc promotes formation of dimer and higher order oligomers. However, upon binding to oligomeric Yfh1, both forms take on a similar symmetrical trimeric configuration that places the Fe-S cluster coordinating residues of Isu1 in close proximity of iron-binding residues of Yfh1. This configuration is suitable for docking of Nfs1 in a manner that provides a structural context for coordinate iron and sulfur donation to the scaffold. Moreover, distinct structural features suggest that in physiological conditions the zinc-regulated abundance of monomeric vs. oligomeric Isu1 yields [Yfh1]·[Isu1] complexes with different Isu1 configurations that afford unique functional properties for Fe-S cluster assembly and delivery.

  6. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology.

    PubMed

    Shao, GuoSheng; Chen, MingXue; Wang, DanYing; Xu, ChunMei; Mou, RenXiang; Cao, ZhaoYun; Zhang, XiuFu

    2008-03-01

    Effects of two kinds of iron fertilizer, FeSO4 and EDTA.Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA.Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA.Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA.Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA.Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.

  7. Chemiluminescent photon yields measured in the flame photometric detector on chromatographic peaks containing sulfur, phosphorus, manganese, ruthenium, iron or selenium

    NASA Astrophysics Data System (ADS)

    Aue, Walter A.; Singh, Hameraj

    2001-05-01

    Photon yields — the number of photons generated per analyte atom — are of obvious analytical and mechanistic importance in flame chemiluminescence. However, such numbers are unavailable for spectral detectors in gas chromatography (as well as for most conventional spectroscopic systems). In this study, photon yields have been determined for the chemiluminescence of several elements in the flame photometric detector (FPD). The number of photons generated per atom of FPD-active element was 2×10 -3 for sulfur (emitter S 2*, test compound thianaphthene), 3×10 -3 for phosphorus [HPO*, tris(pentafluorophenyl)phosphine], 8×10 -3 for manganese (Mn*, methylcyclopentadienyl manganese tricarbonyl), 3×10 -3 for ruthenium (emitter unknown, ruthenocene), 4×10 -5 for iron (Fe*, ferrocene) and 2×10 -4 for selenium (Se 2*, dimethylbenzselenazole). Total flows, maximum thermocouple temperatures, and visible flame volumes have also been estimated for each element under signal/noise-optimized conditions in order to provide a database for kinetic calculations.

  8. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation

    PubMed Central

    Kobayashi, Takanori; Nagasaka, Seiji; Senoura, Takeshi; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2013-01-01

    Iron is essential for most living organisms. Plants transcriptionally induce genes involved in iron acquisition under conditions of low iron availability, but the nature of the deficiency signal and its sensors are unknown. Here we report the identification of new iron regulators in rice, designated Oryza sativa Haemerythrin motif-containing Really Interesting New Gene (RING)- and Zinc-finger protein 1 (OsHRZ1) and OsHRZ2. OsHRZ1, OsHRZ2 and their Arabidopsis homologue BRUTUS bind iron and zinc, and possess ubiquitination activity. OsHRZ1 and OsHRZ2 are susceptible to degradation in roots irrespective of iron conditions. OsHRZ-knockdown plants exhibit substantial tolerance to iron deficiency, and accumulate more iron in their shoots and grains irrespective of soil iron conditions. The expression of iron deficiency-inducible genes involved in iron utilization is enhanced in OsHRZ-knockdown plants, mostly under iron-sufficient conditions. These results suggest that OsHRZ1 and OsHRZ2 are iron-binding sensors that negatively regulate iron acquisition under conditions of iron sufficiency. PMID:24253678

  9. Manganese oxide shuttling in pre-GOE oceans - evidence from molybdenum and iron isotopes

    NASA Astrophysics Data System (ADS)

    Kurzweil, Florian; Wille, Martin; Gantert, Niklas; Beukes, Nicolas J.; Schoenberg, Ronny

    2016-10-01

    The local occurrence of oxygen-rich shallow marine water environments has been suggested to significantly predate atmospheric oxygenation, which occurred during the Great Oxidation Event (GOE) ca. 2.4 billion years ago. However, the potential influence of such 'oxygen oases' on the mobility, distribution and isotopic composition of redox sensitive elements remains poorly understood. Here, we provide new molybdenum and iron isotopic data from shallow marine carbonate and silicate iron formations of the Koegas Subgroup, South Africa, that confirm local ocean redox stratification prior to the GOE. Mn concentrations correlate negatively with both δ98 Mo and δ56 Fe values, which highlights the substantial role of particulate manganese for the cycling of Mo and Fe in the Paleoproterozoic oceans. Based on these trends we propose that pore water molybdate was recharged (1) by the diffusional transport of seawater molybdate with high δ98 Mo and (2) by the re-liberation of adsorbed molybdate with low δ98 Mo during Mn oxide dissolution within the sediment. The relative contribution of isotopically light Mo is highest close to a Mn chemocline, where the flux of Mn oxides is largest, causing the negative correlation of Mn concentrations and δ98 Mo values in the Koegas sediments. The negative correlation between δ56 Fe values and Mn concentrations is likely related to Fe isotope fractionation during Fe(II) oxidation by Mn oxides, resulting in lower δ56 Fe values in the uppermost water column close to a Mn chemocline. We argue that the preservation of these signals within Paleoproterozoic sediments implies the existence of vertically extended chemoclines with a smoother gradient, probably as a result of low atmospheric oxygen concentrations. Furthermore, we suggest that abiotic oxidation of Fe(II) by a Mn oxide particle shuttle might have promoted the deposition of the Koegas iron formations.

  10. Biphasic zinc compartmentalisation in a human fungal pathogen.

    PubMed

    Crawford, Aaron C; Lehtovirta-Morley, Laura E; Alamir, Omran; Niemiec, Maria J; Alawfi, Bader; Alsarraf, Mohammad; Skrahina, Volha; Costa, Anna C B P; Anderson, Andrew; Yellagunda, Sujan; Ballou, Elizabeth R; Hube, Bernhard; Urban, Constantin F; Wilson, Duncan

    2018-05-01

    Nutritional immunity describes the host-driven manipulation of essential micronutrients, including iron, zinc and manganese. To withstand nutritional immunity and proliferate within their hosts, pathogenic microbes must express efficient micronutrient uptake and homeostatic systems. Here we have elucidated the pathway of cellular zinc assimilation in the major human fungal pathogen Candida albicans. Bioinformatics analysis identified nine putative zinc transporters: four cytoplasmic-import Zip proteins (Zrt1, Zrt2, Zrt3 and orf19.5428) and five cytoplasmic-export ZnT proteins (orf19.1536/Zrc1, orf19.3874, orf19.3769, orf19.3132 and orf19.52). Only Zrt1 and Zrt2 are predicted to localise to the plasma membrane and here we demonstrate that Zrt2 is essential for C. albicans zinc uptake and growth at acidic pH. In contrast, ZRT1 expression was found to be highly pH-dependent and could support growth of the ZRT2-null strain at pH 7 and above. This regulatory paradigm is analogous to the distantly related pathogenic mould, Aspergillus fumigatus, suggesting that pH-adaptation of zinc transport may be conserved in fungi and we propose that environmental pH has shaped the evolution of zinc import systems in fungi. Deletion of C. albicans ZRT2 reduced kidney fungal burden in wild type, but not in mice lacking the zinc-chelating antimicrobial protein calprotectin. Inhibition of zrt2Δ growth by neutrophil extracellular traps was calprotectin-dependent. This suggests that, within the kidney, C. albicans growth is determined by pathogen-Zrt2 and host-calprotectin. As well as serving as an essential micronutrient, zinc can also be highly toxic and we show that C. albicans deals with this potential threat by rapidly compartmentalising zinc within vesicular stores called zincosomes. In order to understand mechanistically how this process occurs, we created deletion mutants of all five ZnT-type transporters in C. albicans. Here we show that, unlike in Saccharomyces cerevisiae, C

  11. Characterization of the root transcriptome for iron and zinc homeostasis-related genes in indica rice (Oryza sativa L)

    USDA-ARS?s Scientific Manuscript database

    Micronutrient malnutrition is the most common form of nutrient deficiency among populations having a cereal based-diet. Rice is the staple food for one third of the world’s population, but is a poor source of iron and zinc concentration. We have characterized the root transcriptome of diverse indica...

  12. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    PubMed Central

    Gutknecht, Toni; Gustafsson, Anna; Forsgren, Christer; Steenari, Britt-Marie

    2015-01-01

    Metal oxide varistors (MOVs) are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching) process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production. PMID:26421313

  13. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion

    PubMed Central

    Schrag, Matthew; Mueller, Claudius; Oyoyo, Udochukwu; Kirsch, Wolff M.

    2011-01-01

    Dysfunctional homeostasis of transition metals is believed to play a role in the pathogenesis of Alzheimer’s disease (AD). Although questioned by some, brain copper, zinc, and particularly iron overload are widely accepted features of AD which have led to the hypothesis that oxidative stress generated from aberrant homeostasis of these transition metals might be a pathogenic mechanism behind AD. This meta-analysis compiled and critically assessed available quantitative data on brain iron, zinc and copper levels in AD patients compared to aged controls. The results were very heterogeneous. A series of heavily cited articles from one laboratory reported a large increase in iron in AD neocortex compared to age-matched controls (p<0.0001) while seven laboratories failed to reproduce these findings reporting no significant difference between the groups (p=0.76). A more than three-fold citation bias was found to favor outlier studies reporting increases in iron and this bias was particularly prominent among narrative review articles. Additionally, while zinc was not significantly changed in the neocortex (p=0.29), copper was significantly depleted in AD (p=0.0003). In light of these findings, it will be important to re-evaluate the hypothesis that transition metal overload accounts for oxidative injury noted in AD. PMID:21600264

  14. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Demetallization of Enterococcus faecalis biofilm: a preliminary study

    PubMed Central

    ESTRELA, Carlos; COSTA E SILVA, Rodrigo; URBAN, Roberta Cerasi; GONÇALVES, Pablo José; SILVA, Júlio A.; ESTRELA, Cyntia R.A.; PECORA, Jesus Djalma; PETERS, Ove A.

    2018-01-01

    Abstract Objectives To determine the concentration of calcium, iron, manganese and zinc ions after the application of chelator to Enterococcus faecalis biofilms. Material and Methods Fifty bovine maxillary central incisors were prepared and inoculated with E. faecalis for 60 days. The following were used as irrigation solutions: 17% EDTA (pH 3, 7 and 10), 2.5% sodium hypochlorite (NaOCl) combined with 17% EDTA (pH 3, 7 and 10), distilled water (pH 3, 7 and 10), and 2.5% NaOCl. Each solution was kept in the root canal for five minutes. Fifteen uncontaminated root canals were irrigated with 17% EDTA (pH 3, 7 and 10). Six teeth were used as bacterial control. The number of calcium, iron, manganese and zinc ions was determined using flame atomic absorption spectrometry. Mean ± standard deviation (SD) values were used for descriptive statistics. Results Calcium chelation using 17% EDTA at pH 7 was higher than at pH 3 and 10, regardless of whether bacterial biofilm was present. The highest concentration of iron occurred at pH 3 in the presence of bacterial biofilm. The highest concentration of manganese found was 2.5% NaOCl and 17% EDTA at pH 7 in the presence of bacterial biofilm. Zinc levels were not detectable. Conclusions The pH of chelating agents affected the removal of calcium, iron, and manganese ions. The concentration of iron ions in root canals with bacterial biofilm was higher after the use of 17% EDTA at pH 3 than after the use of the other solutions at all pH levels. PMID:29451651

  16. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  17. Levels and predictors of airborne and internal exposure to manganese and iron among welders.

    PubMed

    Pesch, Beate; Weiss, Tobias; Kendzia, Benjamin; Henry, Jana; Lehnert, Martin; Lotz, Anne; Heinze, Evelyn; Käfferlein, Heiko Udo; Van Gelder, Rainer; Berges, Markus; Hahn, Jens-Uwe; Mattenklott, Markus; Punkenburg, Ewald; Hartwig, Andrea; Brüning, Thomas

    2012-01-01

    We investigated airborne and internal exposure to manganese (Mn) and iron (Fe) among welders. Personal sampling of welding fumes was carried out in 241 welders during a shift. Metals were determined by inductively coupled plasma mass spectrometry. Mn in blood (MnB) was analyzed by graphite furnace atom absorption spectrometry. Determinants of exposure levels were estimated with multiple regression models. Respirable Mn was measured with a median of 62 (inter-quartile range (IQR) 8.4-320) μg/m(3) and correlated with Fe (r=0.92, 95% CI 0.90-0.94). Inhalable Mn was measured with similar concentrations (IQR 10-340 μg/m(3)). About 70% of the variance of Mn and Fe could be explained, mainly by the welding process. Ventilation decreased exposure to Fe and Mn significantly. Median concentrations of MnB and serum ferritin (SF) were 10.30 μg/l (IQR 8.33-13.15 μg/l) and 131 μg/l (IQR 76-240 μg/l), respectively. Few welders were presented with low iron stores, and MnB and SF were not correlated (r=0.07, 95% CI -0.05 to 0.20). Regression models revealed a significant association of the parent metal with MnB and SF, but a low fraction of variance was explained by exposure-related factors. Mn is mainly respirable in welding fumes. Airborne Mn and Fe influenced MnB and SF, respectively, in welders. This indicates an effect on the biological regulation of both metals. Mn and Fe were strongly correlated, whereas MnB and SF were not, likely due to higher iron stores among welders.

  18. Excess iron: considerations related to development and early growth.

    PubMed

    Wessling-Resnick, Marianne

    2017-12-01

    What effects might arise from early life exposures to high iron? This review considers the specific effects of high iron on the brain, stem cells, and the process of erythropoiesis and identifies gaps in our knowledge of what molecular damage may be incurred by oxidative stress that is imparted by high iron status in early life. Specific areas to enhance research on this topic include the following: longitudinal behavioral studies of children to test associations between iron exposures and mood, emotion, cognition, and memory; animal studies to determine epigenetic changes that reprogram brain development and metabolic changes in early life that could be followed through the life course; and the establishment of human epigenetic markers of iron exposures and oxidative stress that could be monitored for early origins of adult chronic diseases. In addition, efforts to understand how iron exposure influences stem cell biology could be enhanced by establishing platforms to collect biological specimens, including umbilical cord blood and amniotic fluid, to be made available to the research community. At the molecular level, there is a need to better understand stress erythropoiesis and changes in iron metabolism during pregnancy and development, especially with respect to regulatory control under high iron conditions that might promote ineffective erythropoiesis and iron-loading anemia. These investigations should focus not only on factors such as hepcidin and erythroferrone but should also include newly identified interactions between transferrin receptor-2 and the erythropoietin receptor. Finally, despite our understanding that several key micronutrients (e.g., vitamin A, copper, manganese, and zinc) support iron's function in erythropoiesis, how these nutrients interact remains, to our knowledge, unknown. It is necessary to consider many factors when formulating recommendations on iron supplementation. © 2017 American Society for Nutrition.

  19. Arsenic accumulation, elimination, and interaction with copper, zinc and manganese in liver and kidney of rats.

    PubMed

    Cui, Xing; Okayasu, Ryuichi

    2008-12-01

    The arsenic accumulation, distribution and influences on metallothionein-1 (MT-1) expression and other trace elements in various organs were examined in rats orally exposed to sodium arsenate (iAs(V)). Rats received a dose of 0, 1, 10 and 100ppm of iAs(V) in drinking water daily for 4- and 16-weeks. Arsenic seems to be distributed in all of the tissues, and was accumulated relatively higher in the spleen, lung and kidney compared to the liver, and much lower in skin and cerebrum. High dose of iAs(V)-exposure significantly increased the concentration of copper in the kidney, but did not influence other trace elements such as zinc and manganese in the liver. The mRNA expression of MT-1 was dose-dependently increased by iAs(V)-exposure in the liver whereas it was decreased in the kidney. These data indicate that arsenic is widely distributed and significantly accumulated in various organs and influences on other trace elements, and also modulates MT-1 expression in the liver and kidney.

  20. How Many Atomic Layers of Zinc Are in a Galvanized Iron Coating? An Experiment for General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Yang, Shui-Ping

    2007-01-01

    This article describes an experiment using a novel gasometric assembly to determine the thickness and number of atomic layers of zinc coating on galvanized iron substrates. Students solved this problem through three stages. In the first stage, students were encouraged to find a suitable acidic concentration through the guided-inquiry approach. In…

  1. Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora

    PubMed Central

    Redondo-Gómez, Susana; Andrades-Moreno, Luis; Mateos-Naranjo, Enrique; Parra, Raquel; Valera-Burgos, Javier; Aroca, Ricardo

    2011-01-01

    Spartina densiflora is a C4 halophytic species that has proved to have a high invasive potential which derives from its physiological plasticity to environmental factors, such as salinity. It is found in coastal marshes of south-west Spain, growing over sediments with between 1 mmol l−1 and 70 mmol l−1 zinc. A glasshouse experiment was designed to investigate the synergic effect of zinc from 0 mmol l−1 to 60 mmol l−1 at 0, 1, and 3% NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters and gas exchange, and its recovery after removing zinc. Antioxidant enzyme activities and total zinc, sodium, calcium, iron, magnesium, manganese, phosphorus, potassium, and nitrogen concentrations were also determined. Spartina densiflora showed the highest growth at 1 mmol l−1 zinc and 1% NaCl after 90 d of treatment; this enhanced growth was supported by the measurements of net photosynthetic rate (A). Furthermore, there was a stimulatory effect of salinity on accumulation of zinc in tillers of this species. Zinc concentrations >1 mmol l−1 reduced growth of S. densiflora, regardless of salinity treatments. This declining growth may be attributed to a decrease in A caused by diffusional limitation of photosynthesis, owing to the modification of the potassium/calcium ratio. Also, zinc and salinity had a marked overall effect on the photochemical (photosystem II) apparatus, partially mediated by the accumulation of H2O2 and subsequent oxidative damage. However, salinity favoured the recovery of the photosynthetic apparatus to the toxic action of zinc, and enhanced the nutrient uptake. PMID:21841175

  2. Localized normalization for improved calibration curves of manganese and zinc in laser-induced plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Sabri, Nursalwanie Mohd; Haider, Zuhaib; Tufail, Kashif; Imran, Muhammad; Ali, Jalil

    2017-03-01

    Laser-induced plasma spectroscopy is performed to determine the elemental compositions of manganese and zinc in potassium bromide (KBr) matrix. This work has utilized Q-switched Nd:YAG laser installed in LIBS2500plus system at fundamental wavelength. The pelletized sample were ablated in air with maximum laser energy of 650 mJ for different gate delays ranging from 0-18 µs. The spectra of samples are obtained for five different compositions containing preferred spectral lines. The intensity of spectral line is observed at its maximum at a gate-delay 0.83 µs and subsequently decayed exponentially with the increasing of gate delay. Maximum signal-to-background ratio of Mn and Zn were found at gate delays of 7.92 and 7.50 µs, respectively. Initial calibration curves show bad data fitting, whereas the locally normalized intensity for both spectral lines shows enhancement since it is more linearly regressed. This study will give a better understanding in studying the plasma emission and the spectra analysis. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.

  3. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    PubMed

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Molecular Beam Epitaxial Growth of Iron Nitrides on Zinc-Blende Gallium Nitride(001)

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Lin, Wenzhi; Chinchore, Abhijit; Wang, Kangkang; Smith, Arthur R.

    2008-03-01

    Iron nitrides are attractive materials for their high magnetic moments, corrosion, and oxidation resistance. We present the successful epitaxial growth of iron nitride on zinc-blende gallium nitride (c-GaN) in order to develop a novel magnetic transition metal nitride/semiconductor system. First, GaN is grown on magnesium oxide (MgO) substrates having (001) orientation using rf N2-plasma molecular beam epitaxy. Then we grow FeN at substrate temperature of ˜ 210 ^oC up to a thickness of ˜ 10.5 nm. In-situ reflection high-energy electron diffraction (RHEED) is used to monitor the surface during growth. Initial results suggest that the epitaxial relationship is FeN[001] || GaN[001] and FeN[100] || GaN[100]. Work in progress is to investigate the surface using in-situ scanning tunneling microscopy (STM) to reveal the surface structure at atomic scale, as well as to explore more Fe-rich magnetic phases.

  5. Distinctive Pattern of Serum Elements During the Progression of Alzheimer’s Disease

    PubMed Central

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-01-01

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer’s disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD. PMID:26957294

  6. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  7. Bioaccumulation of manganese and its toxicity in feral pigeons (Columba livia) exposed to manganese oxide dust (Mn{sub 3}O{sub 4})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, P.; Chakrabarti, S.; Tounkara, R.

    1998-11-01

    Manganese tetroxide (Mn{sub 3}O{sub 4}) is a product from the combustion of methylcyclopentadienyl manganese tricarbonyl. Exposure to high levels of manganese can lead to serious health effects especially to the central nervous and respiratory systems. Very few studies on the effects of long-term low level exposure to Mn{sub 3}O{sub 4} have been reported. The present study was therefore conducted to examine the bioaccumulation and toxicity of manganese in various organs of feral pigeons (Columba kivia) when exposed to low levels of Mn{sub 3}O{sub 4} via inhalation and hence to find any possible relationship between these two parameters. A total ofmore » 22 pigeons was exposed to 239 {micro}g/m{sup 3} of manganese for 7 h/day, 5 days/week for 5, 9, and 13 consecutive weeks. Manganese concentrations in various tissues, e.g., brain (mesencephalon), lung, liver, intestine, pancreas, kidney, muscle, bone, and whole blood, were measured by neutron activation analysis. Various biochemical parameters in blood, e.g., hematocrit, total proteins, glucose, uric acid, alinine aminotransferase, total iron, blood urea nitrogen and triglycerides, were also measured.« less

  8. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model

    PubMed Central

    Frontela, Carmen; Scarino, Maria Laura; Ferruzza, Simonetta; Ros, Gaspar; Martínez, Carmen

    2009-01-01

    AIM: To test the effect of the dephytinization of three different commercial infant cereals on iron, calcium, and zinc bioavailability by estimating the uptake, retention, and transport by Caco-2 cells. METHODS: Both dephytinized (by adding an exogenous phytase) and non-dephytinized infant cereals were digested using an in vitro digestion protocol adapted to the gastrointestinal conditions of infants younger than 6 mo. Mineral cell retention, transport, and uptake from infant cereals were measured using the soluble fraction of the simulated digestion and the Caco-2 cells. RESULTS: Dephytinization of infant cereals significantly increased (P < 0.05) the cell uptake efficiency (from 0.66%-6.05% to 3.93%-13%), retention (from 6.04%-16.68% to 14.75%-20.14%) and transport efficiency (from 0.14%-2.21% to 1.47%-6.02%), of iron, and the uptake efficiency (from 5.0%-35.4% to 7.3%-41.6%) and retention (from 4.05%-20.53% to 14.45%-61.3%) of zinc, whereas calcium only cell uptake showed a significant increase (P < 0.05) after removing phytate from most of the samples analyzed. A positive relationship (P < 0.05) between mineral solubility and the cell uptake and transport efficiencies was observed. CONCLUSION: Removing phytate from infant cereals had a beneficial effect on iron and zinc bioavailability when infant cereals were reconstituted with water. Since in developing countries cereal-based complementary foods for infants are usually consumed mixed with water, exogenous phytase additions could improve the nutritional value of this weaning food. PMID:19399930

  9. The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum glaucum) with Elevated Levels of Grain Iron and Zinc

    PubMed Central

    Manwaring, Hanna R.; Bligh, H. F. J.; Yadav, Rattan

    2016-01-01

    Deficiencies of essential micronutrients such as iron and zinc are the cause of extensive health problems in developing countries. They adversely affect performance, productivity and are a major hindrance to economic development. Since many people who suffer from micronutrient deficiencies are dependent on staple crops to meet their dietary requirements, the development of crop cultivars with increased levels of micronutrients in their edible parts is becoming increasingly recognized as a sustainable solution. This is largely facilitated by genetics and genomic platforms. The cereal crop pearl millet (Pennisetum glaucum), is an excellent candidate for genetic improvement due to its ability to thrive in dry, semi-arid regions, where farming conditions are often unfavorable. Not only does pearl millet grow in areas where other crops such as maize and wheat do not survive, it contains naturally high levels of micronutrients, proteins and a myriad of other health benefitting characteristics. This review discusses the current status of iron and zinc deficiencies and reasons why interventions such as fortification, supplementation, and soil management are neither practicable nor affordable in poverty stricken areas. We argue that the most cost effective, sustainable intervention strategy is to biofortify pearl millet with enhanced levels of bioavailable iron and zinc. We discuss how naturally occurring genetic variations present in germplasm collections can be incorporated into elite, micronutrient rich varieties and what platforms are available to drive this research. We also consider the logistics of transgenic methods that could facilitate the improvement of the pearl millet gene pool. PMID:28066495

  10. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach.

    PubMed

    Verma, Shailender Kumar; Kumar, Satish; Sheikh, Imran; Malik, Sachin; Mathpal, Priyanka; Chugh, Vishal; Kumar, Sundip; Prasad, Ramasare; Dhaliwal, Harcharan Singh

    2016-01-01

    To transfer the 2S chromosomal fragment(s) of Aegilops kotschyi (2S(k)) into the bread wheat genome which could lead to the biofortification of wheat with high grain iron and zinc content. Wheat-Ae. kotschyi 2A/2S(k) substitution lines with high grain iron and zinc content were used to transfer the gene/loci for high grain Fe and Zn content into wheat using seed irradiation approach. Bread wheat plants derived from 40 krad-irradiated seeds showed the presence of univalents and multivalents during meiotic metaphase-I. Genomic in situ hybridization analysis of seed irradiation hybrid F2 seedlings showed several terminal and interstitial signals indicated the introgression of Ae. kotschyi chromosome segments. This proves the efficacy of seed radiation hybrid approach in gene transfer experiments. All the radiation-treated hybrid plants with high grain Fe and Zn content were analyzed with wheat group 2 chromosome-specific polymorphic simple sequence repeat markers to identify the introgression of small alien chromosome fragment(s). Radiation-induced hybrids showed more than 65% increase in grain iron and 54% increase in Zn contents with better harvest index than the elite wheat cultivar WL711 indicating effective and compensating translocations of 2S(k) fragments into wheat genome.

  11. Stability of Vitamin A, Iron and Zinc in Fortified Rice during Storage and Its Impact on Future National Standards and Programs—Case Study in Cambodia

    PubMed Central

    Kuong, Khov; Laillou, Arnaud; Chea, Chantum; Chamnan, Chhoun; Berger, Jacques; Wieringa, Frank T.

    2016-01-01

    Fortified rice holds great potential for bringing essential micronutrients to a large part of the world population. The present study quantified the losses of three different micronutrients (vitamin A, iron, zinc) in fortified rice that were produced using three different techniques (hot extrusion, cold extrusion, and coating) and stored at two different environments (25 ± 5 °C at a humidity of 60% and 40 ± 5 °C at a humidity of 75%) for up to one year. Fortified rice premix from the different techniques was mixed with normal rice in a 1:100 ratio. Each sample was analyzed in triplicate. The study confirmed the high stability of iron and zinc during storage while the retention of vitamin A was significantly affected by storage and the type of techniques used to make rice premix. Losses for iron and zinc were typically <10% for any type of rice premix. After 12 months at mild conditions (25 °C and humidity of 60%), losses for vitamin A ranged from 20% for cold extrusion, 30% for hot extruded rice 77% for coated rice premix. At higher temperatures and humidity, losses of vitamin A were 40%–50% for extruded premix and 93% for coated premix after 6 months. We conclude that storage does lead to a major loss of vitamin A and question whether rice is a suitable food vehicle to fortify with vitamin A. For Cambodia, fortification of rice with iron and zinc could be an effective strategy to improve the micronutrient status of the population if no other food vehicles are available. PMID:26784227

  12. Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins.

    PubMed

    Rouault, Tracey A; Zhang, De-Liang; Jeong, Suh Young

    2009-12-01

    Maintenance of appropriate iron homeostasis in the brain is important, but the mechanisms involved in brain iron uptake are incompletely understood. Here, we have analyzed where messenger RNAs that encode iron transport proteins are expressed in the brain, using the Allen Brain atlas, and we conclude that several important iron transporters are highly expressed in the choroid plexus. Based on recent estimates of the surface area of the choroid plexus and on MRI imaging studies of manganese uptake in the brain, we propose that the choroid plexus may have a much greater role than has been previously appreciated in brain iron transport.

  13. Agronomic Approach of Zinc Biofortification Can Increase Zinc Bioavailability in Wheat Flour and thereby Reduce Zinc Deficiency in Humans

    PubMed Central

    Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin

    2017-01-01

    Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO4·7H2O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour. PMID:28481273

  14. Agronomic Approach of Zinc Biofortification Can Increase Zinc Bioavailability in Wheat Flour and thereby Reduce Zinc Deficiency in Humans.

    PubMed

    Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin

    2017-05-06

    Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO₄·7H₂O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour.

  15. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media.

    PubMed

    Herting, Gunilla; Wallinder, Inger Odnevall; Leygraf, Christofer

    2008-09-01

    The main focus of this paper is the assessment of release rates of chromium, nickel, iron and manganese from manganese-chromium stainless steel grades of low nickel content. The manganese content varied between 9.7 and 1.5 wt% and the corresponding nickel content between 1 and 5 wt%. All grades were exposed to artificial rain and two were immersed in a synthetic body fluid of similar pH but of different composition and exposure conditions. Surface compositional studies were performed using X-ray photoelectron spectroscopy (XPS) in parallel to correlate the metal release process with changes in surface oxide properties. All grades, independent of media, revealed a time-dependent metal release process with a preferential low release of iron and manganese compared to nickel and chromium while the chromium content of the surface oxide increased slightly. Manganese was detected in the surface oxide of all grades, except the grade of the lowest manganese bulk content. No nickel was observed in the outermost surface oxide. Stainless steel grades of the lowest chromium content (approximately 16 wt%) and highest manganese content (approximately 7-9 wt%), released the highest quantity of alloy constituents in total, and vice versa. No correlation was observed between the release rate of manganese and the alloy composition. Released main alloy constituents were neither proportional to the bulk alloy composition nor to the surface oxide composition.

  16. Manganese

    MedlinePlus

    ... de Manganèse, Dioxyde de Manganèse, Gluconate de Manganèse, Glycérophosphate de Manganèse, Manganèse, Manganese Amino Acid Chelate, Manganese ... Chloridetetrahydrate, Manganese Citrate, Manganese Dioxide, Manganese ... Sulfate, Manganese Sulfate Monohydrate, Manganese Sulfate Tetrahydrate, ...

  17. Manganese micro-nodules on ancient brick walls.

    PubMed

    López-Arce, P; García-Guinea, J; Fierro, J L G

    2003-01-20

    Romans, Jews, Arabs and Christians built the ancient city of Toledo (Spain) with bricks as the main construction material. Manganese micro-nodules (circa 2 microm in diameter) have grown under the external bio-film surface of the bricks. Recent anthropogenic activities such as industrial emissions, foundries, or traffic and housing pollution have further altered these old bricks. The energy-dispersive X-ray microanalyses (XPS) of micro-nodules show Al, Si, Ca, K, Fe and Mn, with some carbon species. Manganese atoms are present only as Mn(4+) and iron as Fe(3+) (FeOOH-Fe(2)O(3) mixtures). The large concentration of alga biomass of the River Tagus and the Torcón and Guajaraz reservoirs suggest manganese micro-nodules are formed either from water solutions rich in anthropogenic MnO(4)K in a reduction environment (from Mn(7+) to Mn(4+)) or by oxidation mechanisms from dissolved Mn(2+) (from Mn(2+) to Mn(4+)) linked to algae biofilm onto the ancient brick surfaces. Ancient wall surfaces were also studied by scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Chemical and biological analyses of the waters around Toledo are also analysed for possible sources of manganese. Manganese micro-nodules on ancient brick walls are good indicators of manganese pollution. Copyright 2002 Elsevier Science B.V.

  18. [Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.)].

    PubMed

    Hu, Ying; Huang, Yi-Zong; Huang, Yan-Chao; Liu, Yun-Xia; Liang, Jian-Hong

    2013-10-01

    A pot experiment was conducted to clarify the effect of selenium on the uptake and translocation of manganese (Mn), iron (Fe) , phosphorus (P) and selenium (Se) in rice ( Oryza sativa L.). The results showed that addition of Se led to the significant increase of Se concentration in iron plaque on the root surface, root, shoot, husk and brown rice, and significant decrease of Mn concentration in shoot, husk and brown rice. At the Se concentrations of 0.5 and 1.0 mg.kg-1 in soil, Mn concentrations in rice shoot decreased by 32. 2% and 35.0% respectively, in husk 22.0% and 42.6% , in brown rice 27.5% and 28.5% , compared with the Se-free treatment. There was no significant effect of Se on the P and Fe concentrations in every parts of rice, except for Fe concentrations in husk. The translocation of P and Fe from iron plaque, root, shoot and husk to brown rice was not significantly affected by Se addition, but Mn translocation from iron plaque and root to brown rice was significantly inhibited by Se addition. Addition of 1.0 mg.kg-1. Se resulted in the decrease of translocation factor from iron plaque and root to brown rice by 38.9% and 37.9%, respectively, compared with the control treatment. The distribution ratios of Mn, Fe, P and Se in iron plaque, root, shoot, husk and brown rice were also affected by Se addition. The results indicated that Mn uptake, accumulation and translocation in rice could be decreased by the addition of Se in soil, therefore, Se addition could reduce the Mn harm to human health through food chain.

  19. 40 CFR 143.4 - Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Criteria for analyzing aluminum, copper, iron, manganese, silver and zinc samples with digestion or directly without digestion, and other analytical test procedures are contained in Technical Notes on...

  20. 40 CFR 143.4 - Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Criteria for analyzing aluminum, copper, iron, manganese, silver and zinc samples with digestion or directly without digestion, and other analytical test procedures are contained in Technical Notes on...

  1. 40 CFR 143.4 - Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Criteria for analyzing aluminum, copper, iron, manganese, silver and zinc samples with digestion or directly without digestion, and other analytical test procedures are contained in Technical Notes on...

  2. 40 CFR 143.4 - Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Criteria for analyzing aluminum, copper, iron, manganese, silver and zinc samples with digestion or directly without digestion, and other analytical test procedures are contained in Technical Notes on...

  3. Intake of Trace Metals and the Risk of Incident Kidney Stones.

    PubMed

    Ferraro, Pietro Manuel; Gambaro, Giovanni; Curhan, Gary C; Taylor, Eric N

    2018-06-01

    The association between the intake of trace metals and the risk of incident stones has not been longitudinally investigated. We performed a prospective analysis of 193,551 participants in the Health Professionals Follow-up Study, and the Nurses' Health Study I and II. During a followup of 3,316,580 person-years there was a total of 6,576 incident stones. We used multivariate regression models to identify associations of the intake of zinc, iron, copper and manganese with the risk of stones. In a subset of participants with 24-hour urine collections we examined the association between the intake of trace metals and urine composition. After multivariate adjustment total and dietary intakes of zinc and iron were not significantly associated with incident stones. A higher intake of manganese was associated with a lower risk of stones. The pooled HR of the highest quintile of total manganese intake compared with the lowest intake was 0.82 (95% CI 0.68-0.98, p = 0.02). Total but not dietary copper intake was marginally associated with a higher risk of stones (pooled HR 1.14, 95% CI 1.02-1.28, p = 0.01). There were no statistically significant associations of the total intake of manganese and copper with urinary supersaturation. Zinc and iron intake was not associated with a risk of stones. Copper intake may be associated with a higher risk in some individuals. Higher total manganese intake was associated with a lower risk of stones but not with traditional 24-hour urinary composite markers of stone risk. Further research is needed to elucidate the mechanisms by which manganese may reduce kidney stone formation. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. [MORPHOFUNCTIONAL ADJUSTMENT VASCULAR AND CELLULAR COMPONENTS OF THE CEREBELLAR CORTEX IN EXPOSURE TO BODY SULFATES OF COPPER, ZINC AND IRON].

    PubMed

    Grintsova, N; Vasko, L; Kiptenko, L; Gortinsky, A; Murenets, N

    2015-09-01

    In order to analyze the morphological and morphometric reconstructions of the vascular bed, and Purkinje cells of the cerebellar cortex of rats in long-term action (for 90 days) on the body of sulphates of copper, zinc and iron, an experiment was conducted on 48 adult white male rats weighing 200-250 g in age 5-7 months. We used anatomical, morphometric, statistical and common methods of microanatomical research. It was found that the combined effect on the body of sulphates of copper and zinc, and iron in the cerebellum has enough expressive toxicity, which affects the condition of the vascular bed, and Purkinje cells. The degree of morphological transformations is in direct proportion to the duration of the experiment. In the pathogenesis of violations leading role played by hypoxia, develop signs of swelling of the cerebellar cortex with signs hemorrhagic infiltration, the severity of which is maximum on the 60th day of the experiment.

  5. Thermomagnetic identification of manganese and iron minerals present in soils and industrial dusts

    NASA Astrophysics Data System (ADS)

    Wawer, Małgorzata; Rachwał, Marzena; Jabłońska, Mariola; Krzykawski, Tomasz; Magiera, Tadeusz

    2017-04-01

    Many industries (e.g. metallurgy, power, cement, and coking plants) constitute a sources of industrial dusts containing technogenic magnetic particles (TMP). TMP are mostly iron oxides with ferrimagnetic or antiferromagnetic properties, therefore their presence in dusts, soils and sediments can be easily detected by magnetic susceptibility measurements. TMP, thanks their specific mineral and magnetic properties, and well developed specific surface area, are characterized by a chemical affinity for some elements like heavy metals. The main objective of this study was identification of manganese and iron (hydro)oxides occurring in industrial dusts and soils being under their deposition for long time period. In principle, Mn and Fe (hydro)oxides present in these samples originate from high-temperature technological processes. Soils samples (collected from different soil horizons) taken from surroundings of power station, iron/steel and non-ferrous plants as well as metallurgical dusts and fly ashes from power stations were subjected to investigation. During the studies temperature dependent magnetic susceptibility measurements and X-ray powder diffraction analyses were applied. Thermomagnetic analyses (K-T) revealed differences between samples from particular industries, however an inflexion at 450-500°C of all curves was observed indicating a probable occurrence of maghemite- or titanomagnetite-like phases. The curves of TMP emitted by power plants have inflection at 580 °C indicating that magnetite was the main magnetic phase. In case of TMP originated from non-ferrous metal smelting additional curve deflection at 130 and 210 °C occurred relating to intermediate titanomagnetite or iron sulfides. X-ray diffraction proved the occurrence of magnetite and maghemite in almost all samples, especially connected with power industry and iron/steel metallurgy. Mineral analysis revealed that kind of industrial process influenced on the dominating mineral forms found in

  6. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare).

    PubMed

    Platel, Kalpana; Eipeson, Sushma W; Srinivasan, Krishnapura

    2010-07-14

    Malted grains are extensively used in weaning and geriatric foods. Malting generally improves the nutrient content and digestibility of foods. The present investigation examined the influence of malting of finger millet, wheat, and barley on the bioaccessibility of iron, zinc, calcium, copper, and manganese. Malting increased the bioaccessibility of iron by >3-fold from the two varieties of finger millet and by >2-fold from wheat, whereas such a beneficial influence was not seen in barley. The bioaccessibility of zinc from wheat and barley increased to an extent of 234 and 100%, respectively, as a result of malting. However, malting reduced the bioaccessibility of zinc from finger millet. Malting marginally increased the bioaccessibility of calcium from white finger millet and wheat. Whereas malting did not exert any influence on bioaccessibility of copper from finger millet and wheat, it significantly decreased (75%) the same from barley. Malting did increase the bioaccessibility of manganese from brown finger millet (17%) and wheat (42%). Thus, malting could be an appropriate food-based strategy to derive iron and other minerals maximally from food grains.

  7. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  8. Serum Zinc, Iron, and Copper Concentrations during Typhoid Fever in Man: Effect of Chloramphenicol Therapy

    DTIC Science & Technology

    1974-11-12

    automated colori- exposure. In those volunteers who became clinically metric technique (13, 14). ill and were hospitalized, blood samples were ob- Monkey ...study. Two adult female rhesus monkeys tained for an additional seven days. were inoculated intravenously with 1 x 1010 viable S. Serum zinc, iron, and...on Serum Transferrin and am0 at-Macroglebullfl Concentrations zoo D a ft T r peora laa r mr U ea n b Uoac t o o Control 283 * 7 ml339 :L 13 10 di 120

  9. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae.

    PubMed

    Saavedra, Ricardo; Muñoz, Raúl; Taboada, María Elisa; Vega, Marisol; Bolado, Silvia

    2018-04-26

    This work represents a comparative uptake study of the toxic elements arsenic, boron, copper, manganese and zinc in monometallic and multimetallic solutions by four green microalgae species (Chlamydomonas reinhardtii, Chlorella vulgaris, Scenedesmus almeriensis and an indigenous Chlorophyceae spp.), evaluating the effect of pH and contact time. Maximum removal efficiencies for each toxic element were 99.4% for Mn (C. vulgaris, pH 7.0, 3 h), 91.9% for Zn (Chlorophyceae spp., pH 5.5, 3 h), 88% for Cu (Chlorophyceae spp., pH 7.0, 10 min), 40.7% for As (S. almeriensis, pH 9.5, 3 h) and 38.6% for B (S. almeriensis, pH 5.5, 10 min). B removal efficiencies decreased remarkably in multimetallic solutions (down to 0.2% in C. reinhardtii), except for Chlorophyceae spp., the only species isolated from a polluted environment. FTIR spectra shown the highest interactions for As (1150-1300 cm -1 ) and Cu (3300, 1741, 1535, 1350-1400 cm -1 ). Results confirm microalgae biomass as a potential biosorbent for toxic elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. An innovative carbonate coprecipitation process for the removal of zinc and manganese from mining impacted waters

    USGS Publications Warehouse

    Sibrell, P.L.; Chambers, M.A.; Deaguero, A.L.; Wildeman, T.R.; Reisman, D.J.

    2007-01-01

    Although mine drainage is usually thought of as acidic, there are many cases where the water is of neutral pH, but still contains metal species that can be harmful to human or aquatic animal health, such as manganese (Mn) and zinc (Zn). Typical treatment of mine drainage waters involves pH adjustment, but this often results in excessive sludge formation and removal of nontoxic species such as magnesium and calcium. Theoretical consideration of the stability of metal carbonate species suggests that the target metals could be removed from solution by coprecipitation with calcium carbonate. The U.S. Geological Survey has developed a limestone-based process for remediation of acid mine drainage that increases calcium carbonate saturation. This treatment could then be coupled with carbonate coprecipitation as an innovative method for removal of toxic metals from circumneutral mine drainage waters. The new process was termed the carbonate coprecipitation (CCP) process. The CCP process was tested at the laboratory scale using a synthetic mine water containing 50 mg/L each of Mn and Zn. Best results showed over 95% removal of both Mn and Zn in less than 2 h of contact in a limestone channel. The process was then tested on a sample of water from the Palmerton zinc superfund site, near Palmerton, Pennsylvania, containing over 300 mg/L Zn and 60 mg/L Mn. Treatment of this water resulted in removal of over 95% of the Zn and 40% of the Mn in the limestone channel configuration. Because of the potential economic advantages of the CCP process, further research is recommended for refinement of the process for the Palmerton water and for application to other mining impacted waters as well. ?? Mary Ann Liebert, Inc.

  11. Antibacterial activity and spectral studies of trivalent chromium, manganese, iron macrocyclic complexes derived from oxalyldihydrazide and glyoxal.

    PubMed

    Singh, D P; Kumar, Ramesh; Singh, Jitender

    2009-06-01

    A new series of complexes is synthesized by template condensation of oxalyldihydrazide and glyoxal in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type: [M(C(8)H(8)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(-1)(3), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry for these complexes has been proposed. The biological activities of the metal complexes were tested in vitro against a number of pathogenic bacteria and some of the complexes exhibited remarkable antibacterial activities.

  12. Placental IGF-I, IGFBP-1, zinc, and iron, and maternal and infant anthropometry at birth.

    PubMed

    Akram, Shahzad K; Carlsson-Skwirut, Christine; Bhutta, Zulfiqar A; Söder, Olle

    2011-11-01

    To correlate placental protein levels of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-1, with previously determined levels of IGF-I and IGF-II mRNA expression, and the micronutrients zinc and iron, and maternal and newborn anthropometry. Placental samples were collected from rural field sites in Pakistan. Samples were divided into small and large for gestational age groups (SGA and LGA, respectively). IGFBP-1 levels were assessed using Western immunoblotting. IGF-I protein levels were assessed using ELISA techniques. IGF mRNA expression, zinc, and iron, were quantified as previously described and were used for comparative purposes only. Thirty-three subjects were included (SGA, n = 12; LGA n = 21). Higher levels of IGFBP-1 were seen in the SGA group (p < 0.01). IGFBP-1 correlated positively with maternal and infant triceps skin-fold thickness in the LGA and SGA groups, respectively (p < 0.05). Significantly lower IGF-I protein levels were seen in the SGA group. IGF-I levels correlated significantly with maternal and newborn anthropometry. IGFBP-1 correlated significantly with IGF-II mRNA expression (p < 0.05). Placental protein levels of IGF-I and IGFBP-1 appear to be associated with maternal anthropometry. Maternal anthropometry may thus influence IGFBP-1 and IGF-I levels and may possibly be used for screening of pregnancies, with the potential for timely identification of these high-risk pregnancies. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  13. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.

    PubMed

    Liang, Jianfen; Han, Bei-Zhong; Nout, M J Robert; Hamer, Robert J

    2010-02-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and [PA]/[Fe] and [PA]/[Zn] similarly ranged between 5 and 74, with most values between 20 and 30. [PA]/[mineral] molar ratios in intensively processed products were lower. Solubility of calcium ranged from 0% to 87%, with the lowest in brown rice (12%) and the highest in infant foods (50%). Iron solubility in two-thirds of samples was lower than 30%, and that of zinc narrowly ranged from 6% to 30%. Solubility of minerals was not significantly affected by [PA]/[mineral]. At present, neither primary nor intensively processed rice-based products are good dietary sources of minerals. Improvements should be attempted by dephytinization, mineral fortification or, preferably, combination of both.

  14. Spectroscopic characterization of manganese minerals.

    PubMed

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Frataxin Depletion in Yeast Triggers Up-regulation of Iron Transport Systems before Affecting Iron-Sulfur Enzyme Activities*

    PubMed Central

    Moreno-Cermeño, Armando; Obis, Èlia; Bellí, Gemma; Cabiscol, Elisa; Ros, Joaquim; Tamarit, Jordi

    2010-01-01

    The primary function of frataxin, a mitochondrial protein involved in iron homeostasis, remains controversial. Using a yeast model of conditional expression of the frataxin homologue YFH1, we analyzed the primary effects of YFH1 depletion. The main conclusion unambiguously points to the up-regulation of iron transport systems as a primary effect of YFH1 down-regulation. We observed that inactivation of aconitase, an iron-sulfur enzyme, occurs long after the iron uptake system has been activated. Decreased aconitase activity should be considered part of a group of secondary events promoted by iron overloading, which includes decreased superoxide dismutase activity and increased protein carbonyl formation. Impaired manganese uptake, which contributes to superoxide dismutase deficiency, has also been observed in YFH1-deficient cells. This low manganese content can be attributed to the down-regulation of the metal ion transporter Smf2. Low Smf2 levels were not observed in AFT1/YFH1 double mutants, indicating that high iron levels could be responsible for the Smf2 decline. In summary, the results presented here indicate that decreased iron-sulfur enzyme activities in YFH1-deficient cells are the consequence of the oxidative stress conditions suffered by these cells. PMID:20956517

  16. Process for strontium-82 separation

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1992-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.

  17. Influence of welding fume on systemic iron status.

    PubMed

    Casjens, Swaantje; Henry, Jana; Rihs, Hans-Peter; Lehnert, Martin; Raulf-Heimsoth, Monika; Welge, Peter; Lotz, Anne; Gelder, Rainer Van; Hahn, Jens-Uwe; Stiegler, Hugo; Eisele, Lewin; Weiss, Tobias; Hartwig, Andrea; Brüning, Thomas; Pesch, Beate

    2014-11-01

    Iron is the major metal found in welding fumes, and although it is an essential trace element, its overload causes toxicity due to Fenton reactions. To avoid oxidative damage, excess iron is bound to ferritin, and as a result, serum ferritin (SF) is a recognized biomarker for iron stores, with high concentrations linked to inflammation and potentially also cancer. However, little is known about iron overload in welders. Within this study, we assessed the iron status and quantitative associations between airborne iron, body iron stores, and iron homeostasis in 192 welders not wearing dust masks. Welders were equipped with personal samplers in order to determine the levels of respirable iron in the breathing zone during a working shift. SF, prohepcidin and other markers of iron status were determined in blood samples collected after shift. The impact of iron exposure and other factors on SF and prohepcidin were estimated using multiple regression models. Our results indicate that respirable iron is a significant predictor of SF and prohepcidin. Concentrations of SF varied according to the welding technique and respiratory protection used, with a median of 103 μg l(-1) in tungsten inert gas welders, 125 μg l(-1) in those wearing air-purifying respirators, and 161 μg l(-1) in other welders. Compared to welders with low iron stores (SF < 25 μg l(-1)), those with excess body iron (SF ≥ 400 μg l(-1)) worked under a higher median concentration of airborne iron (60 μg m(-3) versus 148 μg m(-3)). Even though air concentrations of respirable iron and manganese were highly correlated, and low iron stores have been reported to increase manganese uptake in the gastrointestinal tract, no correlation was seen between SF and manganese in blood. In conclusion, monitoring SF may be a reasonable method for health surveillance of welders. Respiratory protection with air-purifying respirators can decrease iron exposure and avoid chronically higher SF in welders working with

  18. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water

    PubMed Central

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-01-01

    An iron-manganese co-oxide filter film (MeOx) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeOx was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeOx was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6–8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeOx included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeOx was formed by abiotic ways and the main elements on the surface of MeOx were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeOx as both ammonia molecules and ammonium ions and the active species of O2 were possibly •O and O2−. PMID:28753939

  19. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    PubMed

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  20. Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling.

    PubMed

    Latta, Drew E; Gorski, Christopher A; Scherer, Michelle M

    2012-12-01

    Recent work has indicated that iron (oxyhydr-)oxides are capable of structurally incorporating and releasing metals and nutrients as a result of Fe2+-induced iron oxide recrystallization. In the present paper, we briefly review the current literature examining the mechanisms by which iron oxides recrystallize and summarize how recrystallization affects metal incorporation and release. We also provide new experimental evidence for the Fe2+-induced release of structural manganese from manganese-doped goethite. Currently, the exact mechanism(s) for Fe2+-induced recrystallization remain elusive, although they are likely to be both oxide-and metal-dependent. We conclude by discussing some future research directions for Fe2+-catalysed iron oxide recrystallization.

  1. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.

    PubMed

    Gorgas, Nikolaus; Kirchner, Karl

    2018-06-19

    Sustainable processes that utilize nontoxic, readily available, and inexpensive starting materials for organic synthesis constitute a major objective in modern chemical research. In this context, it is highly important to perform reactions under catalytic conditions and to replace precious metal catalysts by earth-abundant nonprecious metal catalysts. In particular, iron and manganese are promising candidates, as these are among the most abundant metals in the earth's crust, are inexpensive, and exhibit a low environmental impact. As far as chemical processes are concerned, hydrogenations and acceptorless alcohol dehydrogenation (AAD), sometimes in conjunction with hydrogen autotransfer reactions, are becoming important areas of research. While the first is a very important synthetic process representing a highly atom-efficient and clean methodology, AAD is an oxidant-free, environmentally benign reaction where carbonyl compounds together with dihydrogen as a valuable product and/or reactant (autotransfer) and water are formed. Carbonyl compounds, typically generated in situ, can be converted into other useful organic materials such as amines, imines, or heterocycles. In 2016 several groups, including ours, discovered for the first time the potential of hydride biscarbonyl Mn(I) complexes bearing strongly bound PNP pincer ligands or related tridentate ligands as highly effective and versatile catalysts for hydrogenation, transfer hydrogenation, and dehydrogenation reactions. These complexes are isoelectronic analogues of the respective hydride monocarbonyl Fe(II) PNP compounds and display similar reactivities but also quite divergent behavior depending on the coligands. Moreover, manganese compounds show improved long-term stability and high robustness toward harsh reaction conditions. In light of these recent achievements, this Account contrasts Mn(I) and Fe(II) PNP pincer catalysts, highlighting specific features that are connected to particular structural and

  2. [Studies on semen quality in workers exposed to manganese and electric welding].

    PubMed

    Wu, W; Zhang, Y; Zhang, F

    1996-09-01

    Three hundred and ten workers were selected to study the effects of manganese and electric welding on male reproductive function, with 211 occupationally exposed to manganess and electric welding fume and 99 controls. Concentrations of manganese and welding fume in the air of the workplace were 0.14-5.5 mg/m3 and 6.5-82.3 mg/m3, respectively. Semen concentrations of manganese, copper, chromium, nickel, and iron in workers employed in electric welding were significantly higher than those in controls. Time from ejaculation to liquefaction of semen in exposed workers was longer than that in controls, and volume of semen, sperm count, viable sperm count and percentage were significantly lower in the exposed workers than in the controls. Stepwise regression analysis suggests a direct toxic effect of manganese on sperm production.

  3. Unique zinc mass in mandibles separates drywood termites from other groups of termites

    NASA Astrophysics Data System (ADS)

    Cribb, Bronwen W.; Stewart, Aaron; Huang, Han; Truss, Rowan; Noller, Barry; Rasch, Ronald; Zalucki, Myron P.

    2008-05-01

    Previously, the presence of metals in arthropod mandibles has been linked with harder cuticle, and in termites, a 20% increase in hardness has been found for mandibles containing major quantities of zinc. The current study utilises electron microscopy and energy-dispersive X-ray microanalysis to assess incidence and abundance of metals in all extant subfamilies of the Isoptera. The basal clades contain no zinc and little to no manganese in the cutting edge of the mandible cuticle, suggesting that these states are ancestral for termites. However, experimentation with mandibles in vitro indicates the presence of some elements of the cuticular biochemistry necessary to enable uptake of zinc. The Termopsidae, Serritermitidae, Rhinotermitidae and Termitidae all contain minor quantities of manganese, while trace to minor quantities of zinc occur in all except the Serritermitidae. In contrast, all Kalotermitidae or drywood termites contain major levels of zinc in the mandible edge. Diet and life type are explored as links to metal profiles across the termites. The presence of harder mandibles in the drywood termites may be related to lack of access to free water with which to moisten wood. Scratch tests were applied to a set of mandibles. The coefficient of friction for Cryptotermes primus (Kalotermitidae) mandibles, when compared with species from other subfamilies, indicates that zinc-containing mandibles are likely to be more scratch resistant.

  4. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Charbel A.; Zheng Weili; Mark Haacke, E.

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, theremore » were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.« less

  5. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, A.C.; Zheng, W.; Haacke, E.M.

    To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximalmore » to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.« less

  6. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    NASA Astrophysics Data System (ADS)

    Habib, Charbel A.; Zheng, Weili; Mark Haacke, E.; Webb, Sam; Nichol, Helen

    2010-07-01

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.

  7. SYNTHESIS, REACTIVITY, AND CATALYTIC BEHAVIOR OF IRON/ZINC-CONTAINING SPECIES INVOLVED IN OXIDATION OF HYDROCARBONS UNDER GIF-TYPE CONDITIONS. (R823377)

    EPA Science Inventory

    The present study explores the nature and reactivity of iron- and zinc-containing species
    generated in hydrocarbon-oxidizing Gif(IV)-type solutions Fe catalyst/Zn/O-2 in pyridine/acetic acid
    (10:1 v/v). The ultimate goal of this investigation is to unravel the role of metal...

  8. Trace elements and their distribution in protein fractions of camel milk in comparison to other commonly consumed milks.

    PubMed

    Al-Awadi, F M; Srikumar, T S

    2001-08-01

    Studies on camels' milk, whether with respect to concentration or bioavailability of trace elements from this milk, are limited and warrant further investigation. The object of this study was to analyse the concentration and distribution of zinc, copper, selenium, manganese and iron in camel milk compared to those in human milk, cows' milk and infant formula under similar experimental conditions. Camels' milk and cows' milk were collected from local farms, human milk samples were obtained from healthy donors in Kuwait and infant formula was purchased locally. Milk fractionation was performed by ultra-centrifugation and gelcolumn chromatography. The concentration of trace elements was analysed by atomic absorption spectrometry and that of protein was determined spectrophotometrically. The concentration of manganese and iron in camels' milk was remarkably higher (7-20-fold and 4-10-fold, respectively) than in human milk, cows' milk and infant formula. The zinc content of camels' milk was higher than that of human milk but slightly lower than in cows' milk and infant formula. The concentration of copper in camels' milk was similar to that of cows' milk but lower than in human milk and infant formula. The selenium content of camels' milk was comparable to those of other types of milk, Approximately 50-80% of zinc, copper and manganese in camels' milk were associated with the casein fraction, similar to that of cows' milk, The majority of selenium and iron in camels' milk was in association with the low molecular weight fraction, It is recommended that camels' milk be considered as a potential source of manganese, selenium and iron, perhaps not only for infants, but also for other groups suspected of mild deficiency of these elements. Further investigations are required to confirm this proposal.

  9. Occupational and environmental exposure of automobile mechanics and nonautomotive workers to airborne manganese arising from the combustion of methylcyclopentadienyl manganese tricarbonyl (MMT).

    PubMed

    Sierra, P; Loranger, S; Kennedy, G; Zayed, J

    1995-07-01

    Inhalation exposure to manganese (Mn) was measured for a group of garage mechanics and a control group of nonautomotive workers. The airborne Mn exposure of 35 garage mechanics suspected of being relatively highly exposed to Mn from MMT was measured at the workplace over one-week period. It also was measured for 30 nonautomotive workers at the University of Montreal. The environmental exposure also was measured for the two groups, as was the exposure to three other metals, aluminum (Al), iron (Fe), and zinc (Zn). At work the mechanics were exposed to Mn concentrations varying from 0.010 to 6.673 micrograms m-3 with a mean of 0.45 microgram m-5, while the control group was exposed to concentrations varying from 0.011 to 1.862 microgram m-3 with a mean of 0.04 microgram m-3. The mean environmental exposure for the two groups was similar to the Mn concentrations gathered in Montreal in 1992. Workplace concentrations of Al, Fe, and Zn also were higher for the garage mechanics. The results suggest that less than 10% of the Mn exposure of the garage mechanics was due to MMT. The levels of the metals measured were below the established limits for industrial and even environmental exposure.

  10. NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains.

    PubMed

    Boonyaves, Kulaporn; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-02-01

    Rice is a staple food for over half of the world's population, but it contains only low amounts of bioavailable micronutrients for human nutrition. Consequently, micronutrient deficiency is a widespread health problem among people who depend primarily on rice as their staple food. Iron deficiency anemia is one of the most serious forms of malnutrition. Biofortification of rice grains for increased iron content is an effective strategy to reduce iron deficiency. Unlike other grass species, rice takes up iron as Fe(II) via the IRON REGULATED TRANSPORTER (IRT) in addition to Fe(III)-phytosiderophore chelates. We expressed Arabidopsis IRT1 (AtIRT1) under control of the Medicago sativa EARLY NODULIN 12B promoter in our previously developed high-iron NFP rice lines expressing NICOTIANAMINE SYNTHASE (AtNAS1) and FERRITIN. Transgenic rice lines expressing AtIRT1 alone had significant increases in iron and combined with NAS and FERRITIN increased iron to 9.6 µg/g DW in the polished grains that is 2.2-fold higher as compared to NFP lines. The grains of AtIRT1 lines also accumulated more copper and zinc but not manganese. Our results demonstrate that the concerted expression of AtIRT1, AtNAS1 and PvFERRITIN synergistically increases iron in both polished and unpolished rice grains. AtIRT1 is therefore a valuable transporter for iron biofortification programs when used in combination with other genes encoding iron transporters and/or storage proteins.

  11. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.

    PubMed

    Hedrich, Sabrina; Johnson, D Barrie

    2012-02-01

    A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to <1mg/L. The system was highly effective in selectively removing iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Mass loading of selected major and trace elements in Lake Fork Creek near Leadville, Colorado, September-October 2001

    USGS Publications Warehouse

    Walton-Day, Katherine; Flynn, Jennifer L.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    A mass-loading study of Lake Fork Creek of the Arkansas River between Sugarloaf Dam and the mouth was completed in September-October 2001 to help ascertain the following: (1) variation of pH and aqueous constituent concentrations (calcium, sulfate, alkalinity, aluminum, cadmium, copper, iron, manganese, lead, and zinc) and their relation to toxicity standards along the study reach; (2) location and magnitude of sources of metal loading to Lake Fork Creek; (3) amount and locations of metal attenuation; (4) the effect of streamside wetlands on metal transport from contributing mine tunnels; and (5) the effect of organic-rich inflow from the Leadville National Fish Hatchery on water quality in Lake Fork Creek. The study was done in cooperation with the Bureau of Land Management, U.S. Department of Agriculture Forest Service, and U.S. Fish and Wildlife Service. Constituent concentrations and pH showed variable patterns over the study reach. Hardness-based acute and chronic toxicity standards were exceeded for some inflows and some constituents. However, stream concentrations did not exceed standards except for zinc starting in the upper parts of the study reach and extending to just downstream from the inflow from the Leadville National Fish Hatchery. Dilution from that inflow lowered stream zinc concentrations to less than acute and chronic toxicity standards. The uppermost 800 meters of the study reach that contained inflow from the Bartlett, Dinero, and Nelson mine tunnels and the Dinero wetland was the greatest source of loading for manganese and zinc. A middle section of the study reach that extended approximately 2 kilometers upstream from the National Fish Hatchery inflow to just downstream from that inflow was the largest source of aluminum, copper, iron, and lead loading. The loading was partially from the National Fish Hatchery inflow but also from unknown sources upstream from that inflow, possibly ground water. The largest sources for calcium and sulfate

  13. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1984-01-01

    .Mining allowed oxidation of ore deposits which, on saturation with water, resulted in poor-quality water that generally contains large concentrations of sulfate and trace metals. Water from mines in the eastern area contained dissolved-solids concentrations of less than 500 mg/L (milligrams per liter), a median pH of 3.9, sulfate concentrations that ranged between 98 and 290 mg/L, and median concentrations for zinc of 37,600 pg/L (micrograms per liter), for lead of 240 pg/L, for cadmium of 180 ug/L, for iron of 70 pg/L, for manganese of 240 pg/L, and for silica of 15 mg/L. Water from mines in the western area contained dissolved-solids concentrations of generally more than 500 mg/L, a median pH of 6.8, sulfate concentrations that ranged between 170 and 2,150 mg/L, and median concentrations for zinc of 3,200 pg/L, for lead of 0 pg/L (minimum detection limit is 10 pg/L), for cadmium of 6 pg/L, for iron of 840 pg/L, for manganese of 440 ug/L, and for silica of 11 mg/L.No conclusive evidence of lateral migration of water from the mines into domestic well-water supplies in the shallow aquifer was found in the study area in Kansas. Analyses of water from public-supply wells tapping the deep aquifer did not indicate contamination with trace metals, although chemical analyses from four of six wells exhibited increasing trends through time in sulfate concentrations. These increases probably reflect localized leakage of water from the shallow aquifer along corroded or leaky well casings.Effects of abandoned lead and zinc mines on tributaries of the Spring River in the eastern area are most severe in Short Creek. Compared with water samples from three other major streams in the eastern area, a sample collected from Short Creek, 2 miles west of Galena, Kansas, during August 1981, contained the largest concentrations of dissolved sulfate (240 mg/L), zinc (25,000 pg/L), cadmium (170 pg/L), manganese (1,700 ug/L), and the lowest pH (6.0). Concentrations of these constituents are due primarily

  14. Heavy metal contaminants in tissues of the garfish, Belone belone L., 1761, and the bluefish, Pomatomus saltatrix L., 1766, from Turkey waters.

    PubMed

    Türkmen, Aysun; Tepe, Yalçin; Türkmen, Mustafa; Mutlu, Ekrem

    2009-01-01

    Levels of contaminants in fish are of particular interest because of the potential risk to humans who consume them. Fish samples were collected through the coastal waters of Turkey and the contents of cadmium, cobalt, chrome, copper, iron, manganese, nickel, zinc and lead in the liver and muscle tissues were determined. Among the metals analyzed, copper, zinc and iron were the most abundant in the different tissues while cadmium and lead were the least abundant both in Belone belone and Pomatomus saltatrix. Metal concentrations in muscles of fish species were found 0.01-0.38 mg kg(-1) for cadmium, 0.01-0.53 mg kg(-1) for cobalt, 0.05-1.87 mg kg(-1) for chromium, 0.21-5.89 mg kg(-1) for copper, 9.99-43.3 mg kg(-1) for iron, 0.14-1.33 mg kg(-1) for manganese, 0.06-4.70 mg kg(-1) for nickel, 0.09-0.81 mg kg(-1) for lead, 3.85-15.9 mg kg(-1) for zinc, respectively. Regional changes in metal concentration were observed in the tissues of both species, but these variations may not influence consumption advisories.

  15. Geochemical variability of soils and biogeochemical variability of plants in the Piceance Basin, Colorado

    USGS Publications Warehouse

    Tuttle, M.L.; Severson, R.C.; Dean, W.E.; Klusman, R.W.

    1986-01-01

    Geochemical baselines for native soils and biogeochemical baselines for plants in the Piceance basin provide data that can be used to assess geochemical and biogeochemical effects of oil-shale development, monitor changes in the geochemical and biogeochemical environment during development, and assess the degree of success of rehabilitation of native materials after development. Baseline values for 52 properties in native soils, 15 properties in big sagebrush, and 13 properties in western wheatgrass were established. Our Study revealed statistically significant regional variations of the following properties across the basin: in soil&-aluminum, cobalt, copper, iron, manganese, sodium, nickel, phosphorus, lead, scandium, titanium, vanadium, zinc, organic and total carbon, pH, clay, dolomite, sodium feldspar, and DTPA-extractable calcium, cadmium, iron, potassium, manganese, nickel, phosphorus, yttrium, and zinc; in big sagebrush-barium, calcium, copper, magnesium, molybdenum, sodium, strontium, zinc, and ash; and in western wheatgrass-boron, barium, calcium, magnesium, manganese, molybdenum, strontium, zinc, and ash. These variations show up as north-south trends across the basin, or they reflect differences in elevation, hydrology, and soil parent material. Baseline values for properties that do not have statistically significant regional variations can be represented by geometric means and deviations calculated from all values within the basin. Chemical and mineralogical analyses of soil and chemical analyses of western wheatgrass samples from Colorado State University's experimental revegetation plot at Anvil Points provide data useful in assessing potential effects on soil and plant properties when largescale revegetation operations begin. The concentrations of certain properties are related to the presence of topsoil over spent shale in the lysimeters. In soils, calcium, fluorine, lithium, magnesium, sodium, phosphorus, strontium, carbonate and total carbon

  16. Increased risk of iron deficiency and reduced iron absorption but no difference in zinc, vitamin A or B-vitamin status in obese women in India.

    PubMed

    Herter-Aeberli, Isabelle; Thankachan, Prashanth; Bose, Beena; Kurpad, Anura V

    2016-12-01

    Two objectives were investigated: (1) to assess the risk of micronutrient deficiencies in relation to weight status in Indian women with a focus on iron but also including zinc, vitamin A and B vitamins and (2) to compare fractional iron absorption between obese (OB) and normal weight (NW) women. Part 1 was a cross-sectional study including 146 healthy, middle-class women from Bangalore, India, with a BMI between 19 and 40 kg/m 2 . Anthropometrics and blood pressure were measured, and a fasting blood sample was obtained for the analysis of vitamin and mineral status, hepcidin, blood lipids and glucose. In part 2, 16 OB and 13 NW women consumed a standardized test meal labeled with the stable iron isotope 57 Fe. Incorporation of the iron isotope into erythrocytes was measured 14 days later. In addition, iron status, hepcidin and inflammatory markers were determined. In part 1, compared to NW women, overweight/OB subjects had significantly higher C-reactive protein, serum ferritin, soluble transferrin receptor (sTfR) and hepcidin concentrations (p < 0.05). The odds ratio for having high sTfR concentrations (i.e., low iron status) with increasing BMI was 1.09 (95 % CI 1.02-1.17). None of the other micronutrients investigated showed any differences between weight status groups. In part 2, fractional iron absorption was significantly lower in the OB group compared to the NW group even after controlling for differences in iron status (10.0 ± 6.5 vs. 16.7 ± 4.6 %; p = 0.038). OB women in Bangalore have an increased risk of low iron status and absorb less dietary iron; however, their risk of other micronutrient deficiencies was similar to NW women. Our results clearly demonstrate the importance of considering the double burden of malnutrition in the planning of prevention strategies especially in transition countries with emerging obesity epidemics.

  17. Micronutrients and kelp cultures: Evidence for cobalt and manganese deficiency in Southern California deep seawater

    USGS Publications Warehouse

    Kuwabara, J.S.

    1982-01-01

    It has been suggested that naturally occurring copper and zinc concentrations in deep seawater are toxic to marine organisms when the free ion forms are overabundant. The effects of micronutrients on the growth of gametophytes of the ecologically and commercially significant giant kelp (Macrocystis pyrifera) were studied in defined media. The results indicate that toxic copper and zinc ion concentrations as well as cobalt and manganese deficiencies may be among the factors controlling the growth of marine organisms in nature. Copyright ?? 1982 AAAS.

  18. Criticality of iron and its principal alloying elements.

    PubMed

    Nuss, Philip; Harper, E M; Nassar, N T; Reck, Barbara K; Graedel, T E

    2014-04-01

    Because modern technology depends on reliable supplies of a wide variety of materials and because of increasing concern about those supplies, a comprehensive methodology was created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to iron and several of its main alloying elements (i.e., vanadium, chromium, manganese, and niobium). These elements represent the basic metals of any industrial society and are vital for national security and economic well-being. Assessments relating to the dimensions of criticality - supply risk, vulnerability to supply restriction, and environmental implications - for 2008 are made on the global level and for the United States. Evaluations of each of the multiple indicators are presented, with aggregate results plotted in "criticality space", together with Monte Carlo simulation-derived "uncertainty cloud" estimates. Iron has the lowest supply risk, primarily because of its widespread geological occurrence. Vanadium displays the highest cradle-to-gate environmental implications, followed by niobium, chromium, manganese, and iron. Chromium and manganese, both essential in steel making, display the highest vulnerability to supply restriction, largely because substitution or substitution at equal performance is not possible for all end-uses. From a comprehensive perspective, we regard the overall criticality as low for iron and modest for the alloying elements we evaluated.

  19. Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification.

    PubMed

    Connorton, James M; Jones, Eleanor R; Rodríguez-Ramiro, Ildefonso; Fairweather-Tait, Susan; Uauy, Cristobal; Balk, Janneke

    2017-08-01

    Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate micronutrient deficiencies. In particular, iron deficiency anemia is a major global health issue, but the iron content of staple crops such as wheat ( Triticum aestivum ) is difficult to change because of genetic complexity and homeostasis mechanisms. To identify target genes for the biofortification of wheat, we functionally characterized homologs of the VACUOLAR IRON TRANSPORTER ( VIT ). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2 , which have different expression patterns but are both low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue the growth of a yeast ( Saccharomyces cerevisiae ) mutant defective in vacuolar iron transport. TaVIT2 also complemented a manganese transporter mutant but not a vacuolar zinc transporter mutant. By overexpressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a greater than 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the United Kingdom. The antinutrient phytate was not increased and the iron in the white flour fraction was bioavailable in vitro, suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene approach impacted minimally on plant growth and also was effective in barley ( Hordeum vulgare ). Our results show that by enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue, bypassing existing homeostatic mechanisms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Development and Evaluation of a Manganese and Iron Food Frequency Questionnaire for Pediatrics

    PubMed Central

    Zipkin, Frida B; Falciglia, Grace A; Kuhnell, Pierce; Haynes, Erin N

    2017-01-01

    Manganese (Mn) is an essential nutrient, but overexposure can lead to neurotoxicity. Given the essentiality of Mn in the diet, particularly during children’s growth and development, it is imperative to quantify dietary Mn intake in populations that may be exposed to industrial sources of Mn. Dietary absorption of Mn is inversely associated with iron (Fe) stores, yet there is currently no food frequency questionnaire (FFQ) to assess dietary Mn and Fe intake. The study objective was to develop and evaluate the validity of a FFQ to measure dietary Mn and Fe intake in pediatrics by comparing the estimated intakes of Mn and Fe with biomarkers: Mn in blood and hair and Fe in serum. This study utilized a subset of the Communities Actively Researching Exposure Study (CARES) population residing in Guernsey County, Ohio. Dietary Mn was not correlated with either blood or hair Mn; however, dietary Mn and serum ferritin were significantly correlated, with a correlation coefficient of 0.51, p < 0.01. Moreover, dietary Fe and serum ferritin were also significantly correlated, with a correlation coefficient of 0.51, p < 0.01. This FFQ is a valid measurement tool for Fe intake as measured by serum ferritin; however, Mn intake did not correlate with either blood or hair Mn. PMID:28906436

  1. Development and Evaluation of a Manganese and Iron Food Frequency Questionnaire for Pediatrics.

    PubMed

    Zipkin, Frida B; Falciglia, Grace A; Kuhnell, Pierce; Haynes, Erin N

    2017-09-14

    Manganese (Mn) is an essential nutrient, but overexposure can lead to neurotoxicity. Given the essentiality of Mn in the diet, particularly during children's growth and development, it is imperative to quantify dietary Mn intake in populations that may be exposed to industrial sources of Mn. Dietary absorption of Mn is inversely associated with iron (Fe) stores, yet there is currently no food frequency questionnaire (FFQ) to assess dietary Mn and Fe intake. The study objective was to develop and evaluate the validity of a FFQ to measure dietary Mn and Fe intake in pediatrics by comparing the estimated intakes of Mn and Fe with biomarkers: Mn in blood and hair and Fe in serum. This study utilized a subset of the Communities Actively Researching Exposure Study (CARES) population residing in Guernsey County, Ohio. Dietary Mn was not correlated with either blood or hair Mn; however, dietary Mn and serum ferritin were significantly correlated, with a correlation coefficient of 0.51, p < 0.01. Moreover, dietary Fe and serum ferritin were also significantly correlated, with a correlation coefficient of 0.51, p < 0.01. This FFQ is a valid measurement tool for Fe intake as measured by serum ferritin; however, Mn intake did not correlate with either blood or hair Mn.

  2. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    USGS Publications Warehouse

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  3. The water soluble peripherally tetra-substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines as new potential anticancer agents.

    PubMed

    Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu

    2016-09-28

    In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition.

  4. Process for strontium-82 separation

    DOEpatents

    Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

    1992-12-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.

  5. Repletion of Zinc and Iron Deficiencies Improves Cognition of Premenopausal Women.

    DTIC Science & Technology

    1997-10-01

    to our earlier observations in premenopausal women (1, 13) and are consistent with the fact that many premenopausal women select diets that are low...women: associations of diet with serum ferritin and plasma zinc disappearance, and of serum ferritin with plasma zinc and plasma zinc disappearance...women: Associations of diet with serum ferritin and plasma zinc disappearance and of serum ferritin with plasma zinc and plasma zinc disappearance. J

  6. Application of multivariate statistical techniques for differentiation of ripe banana flour based on the composition of elements.

    PubMed

    Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat

    2009-01-01

    Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.

  7. The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: Preliminary results from a three year study

    USDA-ARS?s Scientific Manuscript database

    Micronutrient malnutrition, especially selenium (Se), iron (Fe), and zinc (Zn) deficiency, is a major global health problem. Previous attempts to prevent micronutrient malnutrition through food fortification, supplementation, and enrichment of staple crops has had limited success. Canadian grown len...

  8. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide

    NASA Astrophysics Data System (ADS)

    Lee, Boeun; Yoon, Chong Seung; Lee, Hae Ri; Chung, Kyung Yoon; Cho, Byung Won; Oh, Si Hyoung

    2014-08-01

    Zn-ion batteries are emerging energy storage systems eligible for large-scale applications, such as electric vehicles. These batteries consist of totally environmentally-benign electrode materials and potentially manufactured very economically. Although Zn/α-MnO2 systems produce high energy densities of 225 Wh kg-1, larger than those of conventional Mg-ion batteries, they show significant capacity fading during long-term cycling and suffer from poor performance at high current rates. To solve these problems, the concrete reaction mechanism between α-MnO2 and zinc ions that occur on the cathode must be elucidated. Here, we report the intercalation mechanism of zinc ions into α-MnO2 during discharge, which involves a reversible phase transition of MnO2 from tunneled to layered polymorphs by electrochemical reactions. This transition is initiated by the dissolution of manganese from α-MnO2 during discharge process to form layered Zn-birnessite. The original tunneled structure is recovered by the incorporation of manganese ions back into the layers of Zn-birnessite during charge process.

  9. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements.

    PubMed

    Lemmens, Elien; De Brier, Niels; Spiers, Kathryn M; Ryan, Chris; Garrevoet, Jan; Falkenberg, Gerald; Goos, Peter; Smolders, Erik; Delcour, Jan A

    2018-10-30

    Chelation of iron and zinc in wheat as phytates lowers their bio-accessibility. Steeping and germination (15 °C, 120 h) lowered phytate content from 0.96% to only 0.81% of initial dry matter. A multifactorial experiment in which (steeped/germinated) wheat was subjected to different time (2-24 h), temperature (20-80 °C) and pH (2.0-8.0) conditions showed that hydrothermal processing of germinated (15 °C, 120 h) wheat at 50 °C and pH 3.8 for 24 h reduced phytate content by 95%. X-ray absorption near-edge structure imaging showed that it indeed abolished chelation of iron to phytate. It also proved that iron was oxidized during steeping, germination and hydrothermal processing. It was further shown that zinc and iron bio-accessibility were respectively 3 and 5% in wheat and 27 and 37% in hydrothermally processed wheat. Thus, hydrothermal processing of (germinated) wheat paves the way for increasing elemental bio-accessibility in whole grain-based products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Impact of Manganese, Copper and Zinc Ions on the Transcriptome of the Nosocomial Pathogen Enterococcus faecalis V583

    PubMed Central

    Coelho Abrantes, Marta; Lopes, Maria de Fátima; Kok, Jan

    2011-01-01

    Mechanisms that enable Enterococcus to cope with different environmental stresses and their contribution to the switch from commensalism to pathogenicity of this organism are still poorly understood. Maintenance of intracellular homeostasis of metal ions is crucial for survival of these bacteria. In particular Zn2+, Mn2+ and Cu2+ are very important metal ions as they are co-factors of many enzymes, are involved in oxidative stress defense and have a role in the immune system of the host. Their concentrations inside the human body vary hugely, which makes it imperative for Enterococcus to fine-tune metal ion homeostasis in order to survive inside the host and colonize it. Little is known about metal regulation in Enterococcus faecalis. Here we present the first genome-wide description of gene expression of E. faecalis V583 growing in the presence of high concentrations of zinc, manganese or copper ions. The DNA microarray experiments revealed that mostly transporters are involved in the responses of E. faecalis to prolonged exposure to high metal concentrations although genes involved in cellular processes, in energy and amino acid metabolisms and genes related to the cell envelope also seem to play important roles. PMID:22053193

  11. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    NASA Astrophysics Data System (ADS)

    Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-10-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.

  12. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge.

    PubMed

    Mikhailov, Ivan; Komarov, Sergey; Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis

    2017-01-05

    Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1g/l addition of nZVI and 0.05M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15min treatment with 0.1M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice

    PubMed Central

    Yamaguchi, Noriko; Ishikawa, Satoru; Abe, Tadashi; Baba, Koji; Terada, Yasuko

    2012-01-01

    Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ‘Koshihikari’ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected. PMID:22291135

  14. Nanostructured Iron and Manganese Oxide Electrode Materials for Lithium Batteries: Influence of Chemical and Physical Properties on Electrochemistry

    NASA Astrophysics Data System (ADS)

    Durham, Jessica L.

    The widespread use of portable electronics and growing interest in electric and hybrid vehicles has generated a mass market for batteries with increased energy densities and enhanced electrochemical performance. In order to address a variety of applications, commercially fabricated secondary lithium-ion batteries employ transition metal oxide based electrodes, the most prominent of which include lithium nickel manganese cobalt oxide (LiNixMn yCo1-x-yO2), lithium iron phosphate (LiFePO4), and lithium manganese oxide (LiMn 2O4). Transition metal oxides are of particular interest as cathode materials due to their robust framework for lithium intercalation, potential for high energy density, and utilization of earth-abundant elements (i.e. iron and manganese) leading to decreased toxicity and cost-effective battery production on industrial scales. Specifically, this research focuses on MgFe2O4, AgxMn8O16, and AgFeO 2 transition metal oxides for use as electrode materials in lithium-based batteries. The electrode materials are prepared via co-precipitation, reflux, and hydrothermal methods and characterized by several techniques (XRD, SEM, BET, TGA, DSC, XPS, Raman, etc.). The low-temperature syntheses allowed for precise manipulation of structural, compositional, and/or functional properties of MgFe2O4, AgxMn8 O16, and AgFeO2 which have been shown to influence electrochemical behavior. In addition, advanced in situ and ex situ characterization techniques are employed to study the lithiation/de-lithiation process and establish valid redox mechanisms. With respect to both chemical and physical properties, the influence of MgFe2O4 particle size and morphology on electrochemical behavior was established using ex situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) imaging. Based on composition, tunneled AgxMn8O16 nanorods, prepared with distinct Ag+ contents and crystallite sizes, display dramatic differences in ion-transport kinetics due to

  15. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    USDA-ARS?s Scientific Manuscript database

    Historic emissions from two zinc smelters have damaged the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils. As little as 10% Palmerton soil mixed wi...

  16. Correlations between lead, cadmium, copper, zinc, and iron concentrations in frozen tuna fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo, L.; Hardisson, A.; Montelongo, F.G.

    1986-04-01

    The presence of metallic pollutants in marine ecosystems has promoted wide research plans in order to evaluate pollution levels in marine organisms. However, little is known concerning environmental and physiological processes that regulate the concentration of trace metals in marine organisms. Even though the toxicity of lead and cadmium is well established, copper, zinc and iron are considered as essential elements for mammals. Little is known about heavy metals, other than mercury, concentrations in fresh and frozen tuna fish. Fifty samples obtained at the entrance of a canning factory in Santa Cruz de Tenerife (Canary Islands), were analyzed by atomicmore » absorption spectrophotometry. Results were treated by applying the Statistical Package for the Social Sciences compiled and linked in the software of a Digital VAX/VMS 11/780 computer.« less

  17. Study on the pre-treatment of oxidized zinc ore prior to flotation

    NASA Astrophysics Data System (ADS)

    He, Dong-sheng; Chen, Yun; Xiang, Ping; Yu, Zheng-jun; Potgieter, J. H.

    2018-02-01

    The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%.

  18. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    PubMed

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Ferrous Analysis.

    ERIC Educational Resources Information Center

    Straub, William A.

    1989-01-01

    Elements covered in this review include: aluminum, antimony, arsenic, bismuth, boron, calcium, carbon, chromium, cobalt, copper, hydrogen, iron, lead, magnesium, manganese, molybdenum, nickel, niobium, nitrogen, oxygen, phosphorus, platinum, rare earths, silicons, sulfur, tin, titanium, tungsten, vanadium, zinc, and zirconium. Analytical methods…

  20. RESPIROMETRY AS A TOOL TO DETERMINE METAL TOXICITY IN A SULFATE REDUCING BACTERIAL CULTURE

    EPA Science Inventory

    A novel method under development for treatment of acid mine drainage waste uses biologically- generated hydrogen sulfide (H2S) to precipitate the metals in acid mine drainage (principally zinc, copper, aluminum, nickel, cadmium, arsenic, manganese, iron, and cobalt). The insolub...

  1. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    EPA Science Inventory

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  2. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  3. Adverse health effects in Canada geese (Branta canadensis) associated with waste from zinc and lead mines in the Tri-State Mining District (Kansas, Oklahoma, and Missouri, USA).

    PubMed

    van der Merwe, Deon; Carpenter, James W; Nietfeld, Jerome C; Miesner, John F

    2011-07-01

    Lead and zinc poisoning have been recorded in a variety of bird species, including migrating waterfowl such as Canada Geese (Branta canadensis), at sites contaminated with mine waste from lead and zinc mines in the Tri-State Mining District, Kansas, Oklahoma, and Missouri, USA. The adverse health impacts from mine waste on these birds may, however, be more extensive than is apparent from incidental reports of clinical disease. To characterize health impacts from mine waste on Canada Geese that do not have observable signs of poisoning, four to eight apparently healthy birds per site were collected from four contaminated sites and an uncontaminated reference site, and examined for physical and physiologic evidence of metals poisoning. Tissue concentrations of silver, aluminum, arsenic, barium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, nickel, lead, selenium, thallium, vanadium, and zinc were determined by inductively coupled plasma mass spectroscopy. Adverse health effects due to lead were characterized by assessing blood δ-aminolevulinic acid dehydratase (ALAD) enzyme activity. Adverse effects associated with zinc poisoning were determined from histologic examination of pancreas tissues. Elevated tissue lead concentrations and inhibited blood ALAD enzyme activities were consistently found in birds at all contaminated sites. Histopathologic signs of zinc poisoning, including fibrosis and vacuolization, were associated with elevated pancreatic zinc concentrations at one of the study sites. Adverse health effects associated with other analyzed elements, or tissue concentrations indicating potentially toxic exposure levels to these elements, were not observed.

  4. Trace Metal Associations with Manganese-Rich Surface Coatings of Lead Service Lines

    EPA Science Inventory

    Analysis of lead service line samples from U. S. Environmental Protection Agency’s long-term research program to evaluate control and metal release from domestic drinking water service lines has revealed that Manganese-rich solids also contain Iron and sometimes Aluminum have fre...

  5. Assessment of metal transport into and out of Terrace Reservoir, Conejos County, Colorado, April 1994 through March 1995; interim report

    USGS Publications Warehouse

    Ferguson, Sheryl; Edelmann, Patrick

    1996-01-01

    Terrace Reservoir is the primary source of water for crops and livestock in the southwestern part of the San Luis Valley in southern Colorado. Mining activities have occurred in the basin for more than 100 years, and substantial mining of gold has occurred intermittently at the Summitville Mine.Historically, the Summitville Mine site has produced highly acidic, metal-enriched water that drained from the mine site into Wightman Fork and flowed to the Alamosa River and Terrace Reservoir. In 1994, a study was begun as part of risk-assessment and remediation efforts and to evaluate metal transport into and out of Terrace Reservoir. During the study period, the pH immediately upstream from Terrace Reservoir ranged from 4.3 to 7.8. The highest pH occurred during the pre-peak snowmelt period; the lowest pH occurred during storm runoff during summer. Downstream from Terrace Reservoir, the pH ranged from 4.6 to 7.6. The highest pH occurred during the pre-peak snowmelt period, and the lowest pH occurred during summer in mid-July. A comparison of the streamflow hydrographs upstream and downstream from Terrace Reservoir indicated that there was only a small difference between the annual volume of water that entered the reservoir and the annual volume of water that was released from the reservoir. Large spatial and temporal variations in concentrations of the metals of concern occurred during the study.The median and maximum concentrations of dissolved and total aluminum, iron, copper, cadmium, manganese, and zinc were larger upstream from the reservoir than downstream from the reservoir. The largest concentrations of dissolved aluminum, iron, copper, cadmium, manganese, and zinc generally occurred between mid-June and November. Throughout the study, aluminum was transported into the reservoir predominantly in the particulate or suspended form. Downstream from the reservoir, the suspended-aluminum fraction was predominant only during the pre-peak snowmelt and peak snowmelt

  6. Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification1[OPEN

    PubMed Central

    Jones, Eleanor R.; Rodríguez-Ramiro, Ildefonso

    2017-01-01

    Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate micronutrient deficiencies. In particular, iron deficiency anemia is a major global health issue, but the iron content of staple crops such as wheat (Triticum aestivum) is difficult to change because of genetic complexity and homeostasis mechanisms. To identify target genes for the biofortification of wheat, we functionally characterized homologs of the VACUOLAR IRON TRANSPORTER (VIT). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2, which have different expression patterns but are both low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue the growth of a yeast (Saccharomyces cerevisiae) mutant defective in vacuolar iron transport. TaVIT2 also complemented a manganese transporter mutant but not a vacuolar zinc transporter mutant. By overexpressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a greater than 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the United Kingdom. The antinutrient phytate was not increased and the iron in the white flour fraction was bioavailable in vitro, suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene approach impacted minimally on plant growth and also was effective in barley (Hordeum vulgare). Our results show that by enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue, bypassing existing homeostatic mechanisms. PMID:28684433

  7. Isolation and reconstitution of iron- and manganese-containing superoxide dismutases from Bacteroides thetaiotaomicron.

    PubMed Central

    Pennington, C D; Gregory, E M

    1986-01-01

    Superoxide dismutase (SOD) from extracts of anaerobically maintained Bacteroides thetaiotaomicron was a dimer of equally sized 23,000-molecular-weight monomers joined noncovalently. A preparation with a specific activity of 1,200 U/mg contained 1.1 g-atom of Fe, 0.6 g-atom of Zn, and less than 0.05 g-atom of Mn per mol of dimer. The apoprotein, prepared by dialysis of iron-SOD in 5 M guanidinium chloride-20 mM 8-hydroxyquinoline, had no superoxide-scavenging activity when renatured without exogenous metal. Enzymatic activity was restored to the denatured apoprotein by dialysis against either 1 mM Fe(NH4)2 or 1 mM MnCl2 in 20 mM Tris (pH 7.0). The Fe-reconstituted enzyme and the native enzyme were inhibited approximately 50% by 0.2 mM NaN3, whereas the Mn-reconstituted enzyme was inhibited 60% by 10 mM NaN3. Aeration of the anaerobic cells resulted in a fourfold induction of an azide-resistant SOD. The enzyme (43,000 molecular weight) isolated from aerated cells was a dimer of equally sized subunits. The metal content was 1.0 g-atom of Mn, 0.55 g-atom of Fe, and 0.3 g-atom of Zn per mol of dimer. Enzymatic activity of the denatured apoprotein from this enzyme was also restored on addition of either iron or manganese. The constitutive Fe-SOD and the O2-induced Mn-SOD, tested alone and in combination, migrated identically on acrylamide gels, had similar amino acid compositions, and had alanine as the sole N-terminal amino acid. These data are consistent with the synthesis of a single apoprotein in either anaerobically maintained or oxygenated cells. We have observed a similar phenomenon with SOD from Bacteroides fragilis (E. M. Gregory, Arch. Biochem. Biophys. 238:83-89, 1985). PMID:3700336

  8. Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic

    PubMed Central

    Browning, T. J.; Achterberg, E. P.; Yong, J. C.; Rapp, I.; Utermann, C.; Engel, A.; Moore, C. M.

    2017-01-01

    In certain regions of the predominantly nitrogen limited ocean, microbes can become co-limited by phosphorus. Within such regions, a proportion of the dissolved organic phosphorus pool can be accessed by microbes employing a variety of alkaline phosphatase (APase) enzymes. In contrast to the PhoA family of APases that utilize zinc as a cofactor, the recent discovery of iron as a cofactor in the more widespread PhoX and PhoD implies the potential for a biochemically dependant interplay between oceanic zinc, iron and phosphorus cycles. Here we demonstrate enhanced natural community APase activity following iron amendment within the low zinc and moderately low iron Western North Atlantic. In contrast we find no evidence for trace metal limitation of APase activity beneath the Saharan dust plume in the Eastern Atlantic. Such intermittent iron limitation of microbial phosphorus acquisition provides an additional facet in the argument for iron controlling the coupling between oceanic nitrogen and phosphorus cycles. PMID:28524880

  9. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  10. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  11. Wet chemical synthesis of zinc-iron oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Ito, Honami; Amagasa, Shota; Nishida, Naoki; Kobayashi, Yoshio; Yamada, Yasuhiro

    2017-11-01

    Zinc-iron oxide nanoparticles (ZnxFe3-xO4 and δ-ZnxFe1-xOOH) were successfully synthesized by room temperature chemical reaction of a solution containing ZnCl2 and FeCl2 in the presence of gelatin. The composition of products could be controlled by variation of the Zn/Fe mixture ratio of the starting material. ZnxFe3-xO4 nanoparticles were obtained from a solution with a high Zn/Fe ratio, whereas Zn-doped feroxyhyte ( δ-ZnxFe1-xOOH) nanoparticles were obtained from a solution with a low Zn/Fe ratio. The ZnxFe3-xO4 nanoparticles were spherical with diameters of approximately 10 nm, and the δ-ZnxFe1-xOOH particles were needle-like with lengths of approximately 100 nm. Mössbauer spectra measured at room temperature indicated superparamagnetic behavior of the nanoparticles, whereas the magnetic components were observed at low temperature. The Zn content of the intermediate species (( {Zn}^{ {II}}x {Fe}^{ {II}}_{1-x} {Fe}^{ {III}}2O4)) plays an important role in the oxidation process. When the Zn concentration was high, the content of Fe2+ in the intermediate species was small, and Zn2+ prevented further oxidation of the nanoparticles. When the starting material had low Zn concentration, the amount of Fe2+ in the intermediate species became large and was rapidly oxidized into δ-ZnxFe1-xOOH while rinsing under the ambient atmosphere.

  12. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    PubMed

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

  13. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence

    PubMed Central

    2016-01-01

    Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1. Comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganese were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2–3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region. PMID:27434052

  14. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco

    2009-01-01

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

  15. Installation Restoration Program. Phase I: Records Search Goodfellow Air Force Base, Texas.

    DTIC Science & Technology

    1985-03-01

    CHDRO - ARSENIC SARIUM, CADMIUM MIUM. COPPER. IRON, DIS- DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UOIL (UCIL (UGIL (UG/L... cadmium , chromium, copper, iron, lead, manganese, mercury, nickel, silver, and zinc. The recommended parameters include those compounds known or...8217. ... . . -. * -:,-..’... .... ’.... ...’. .’..".-... ... -......- . ..............-............... . ..... .. APPENDIX A (Continued, Page 2 of 7) Cadmium A metal used in batteries and other industrial

  16. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  17. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    PubMed

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  18. Composition of the edible portion of raw (fresh or frozen) crustaceans, finfish, and mollusks. III. Microelements. [Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidwell, V.D.; Loomis, A.L.; Loomis, K.J.

    1978-09-01

    This report summarizes data from 224 publications referring to the microelements found in the flesh of commonly eaten seafoods. These microelements are: copper, iron, zinc, iodine, manganese, mercury, organic mercury, lead arsenic, fluorine, silver, cadmium, cobalt, selenium, chromium, vanadium, tin, aluminum, nickel, barium, and molybdenum.

  19. Evaluation of calcium, phosphorus, and selected trace mineral status in commercially available dry foods formulated for dogs

    USDA-ARS?s Scientific Manuscript database

    Objective – To evaluate the mineral content including calcium, phosphorus, zinc, iron, copper, manganese, and selenium of canine commercial pet foods and compare them to current AAFCO recommendations for adult maintenance. Design - Descriptive study. Sample – Forty-five over the counter dry canine p...

  20. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments

    USGS Publications Warehouse

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.

    1996-01-01

    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  1. Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells.

    PubMed

    Salazar, G; Huang, J; Feresin, R G; Zhao, Y; Griendling, K K

    2017-07-01

    The role of oxidative stress and inflammation in the development and progression of cardiovascular diseases (CVD) is well established. Increases in oxidative stress can further exacerbate the inflammatory response and lead to cellular senescence. We previously reported that angiotensin II (Ang II) and zinc increase reactive oxygen species (ROS) and cause senescence of vascular smooth muscle cells (VSMCs) and that senescence induced by Ang II is a zinc-dependent process. Zinc stimulated NADPH oxidase (Nox) activity; however, the role of Nox isoforms in zinc effects was not determined. Here, we show that downregulation of Nox1, but not Nox4, by siRNA prevented both Ang II- and zinc-induced senescence in VSMCs. On the other hand, overexpression of Nox1 induced senescence, which was associated with reduced proliferation, reduced expression of telomerase and increased DNA damage. Zinc increased Nox1 protein expression, which was inhibited by chelation of zinc with TPEN and by overexpression of the zinc exporters ZnT3 and ZnT10. These transporters work to reduce cytosolic zinc, suggesting that increased cytosolic zinc mediates Nox1 upregulation. Other metals including copper, iron, cobalt and manganese failed to upregulate Nox1, suggesting that this pathway is zinc specific. Nox1 upregulation was inhibited by actinomycin D (ACD), an inhibitor of transcription, by inhibition of NF-κB, a known Nox1 transcriptional regulator and by N-acetyl cysteine (NAC) and MitoTEMPO, suggesting that NF-κB and mitochondrial ROS mediate zinc effects. Supporting this idea, we found that zinc increased NF-κB activation in the cytosol, stimulated the translocation of the p65 subunit to the nucleus, and that zinc accumulated in mitochondria increasing mitochondrial ROS, measured using MitoSox. Further, zinc-induced senescence was reduced by inhibition of NF-κB or reduction of mitochondrial ROS with MitoTEMPO. NF-κB activity was also reduced by MitoTEMPO, suggesting that mitochondrial ROS

  2. Metal-metal interaction mediates the iron induction of Drosophila MtnB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Wenjia; Huang, Yunpeng; Wan, Zhihui

    Metallothionein (MT) protein families are a class of small and universal proteins rich in cysteine residues. They are synthesized in response to heavy metal stresses to sequester the toxic ions by metal-thiolate bridges. Five MT family members, namely MtnA, MtnB, MtnC, MtnD and MtnE, have been discovered and identified in Drosophila. These five isoforms of MTs are regulated by metal responsive transcription factor dMTF-1 and play differentiated but overlapping roles in detoxification of metal ions. Previous researches have shown that Drosophila MtnB responds to copper (Cu), cadmium (Cd) and zinc (Zn). Interestingly in this study we found that Drosophila MtnBmore » expression also responds to elevated iron levels in the diet. Further investigations revealed that MtnB plays limited roles in iron detoxification, and the direct binding of MtnB to ferrous iron in vitro is also weak. The induction of MtnB by iron turns out to be mediated by iron interference of other metals, because EDTA at even a partial concentration of that of iron can suppress this induction. Indeed, in the presence of iron, zinc homeostasis is altered, as reflected by expression changes of zinc transporters dZIP1 and dZnT1. Thus, iron-mediated MtnB induction appears resulting from interrupted homeostasis of other metals such as zinc, which in turns induced MtnB expression. Metal-metal interaction may more widely exist than we expected. - Highlights: • Metallothionein B expression is regulated by iron in Drosophila melanogaster. • MtnB has limited physiological roles in iron detoxification. • Binding affinity of MtnB to iron is weak in vitro. • Induction of Drosophila MtnB by iron is mediated indirectly through metal-metal interaction.« less

  3. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family

    PubMed Central

    2004-01-01

    Manganese is an essential, but potentially toxic, trace metal in biological systems. Overexposure to manganese is known to cause neurological deficits in humans, but the pathways that lead to manganese toxicity are largely unknown. We have employed the bakers' yeast Saccharomyces cerevisiae as a model system to identify genes that contribute to manganese-related damage. In a genetic screen for yeast manganese-resistance mutants, we identified S. cerevisiae MAM3 as a gene which, when deleted, would increase cellular tolerance to toxic levels of manganese and also increased the cell's resistance towards cobalt and zinc. By sequence analysis, Mam3p shares strong similarity with the mammalian ACDP (ancient conserved domain protein) family of polypeptides. Mutations in human ACDP1 have been associated with urofacial (Ochoa) syndrome. However, the functions of eukaryotic ACDPs remain unknown. We show here that S. cerevisiae MAM3 encodes an integral membrane protein of the yeast vacuole whose expression levels directly correlate with the degree of manganese toxicity. Surprisingly, Mam3p contributes to manganese toxicity without any obvious changes in vacuolar accumulation of metals. Furthermore, through genetic epistasis studies, we demonstrate that MAM3 operates independently of the well-established manganese-trafficking pathways in yeast, involving the manganese transporters Pmr1p, Smf2p and Pho84p. This is the first report of a eukaryotic ACDP family protein involved in metal homoeostasis. PMID:15498024

  4. Contribution of meat to vitamin B₁₂, iron and zinc intakes in five ethnic groups in the USA: implications for developing food-based dietary guidelines.

    PubMed

    Sharma, S; Sheehy, T; Kolonel, L N

    2013-04-01

    To describe the sources of meat and their contributions to vitamin B₁₂, iron and zinc in five ethnic groups in the USA. Dietary data for the Multiethnic Cohort, established in Hawaii and Los Angeles, were collected using a quantitative food frequency questionnaire from more than 215,000 subjects, aged 45-75 years at baseline (1993-1996). Participants included African American, Latino, Japanese American, Native Hawaiian and Caucasian men and women. Servings of meat items were calculated based on the US Department of Agriculture recommendations and their contributions to intakes of total meat, red meat, vitamin B₁₂, iron and zinc were determined. Of all types of meat, poultry contributed the most to meat consumption, followed by red meat and fish among all ethnicities, except for Latino (born in Mexico and Central/South America) men who consumed more beef. Lean beef was the most commonly consumed red meat for all ethnic-sex groups (9.3-14.3%), except for Native Hawaiian and Japanese American men, and Japanese American women whose top contributor was stew/curry with beef/lamb and stir-fried beef/pork with vegetables, respectively. The contribution of meat was most substantial for zinc (11.1-29.3%) and vitamin B₁₂ (19.7-40%) and, to a lesser extent, for iron (4.3-14.2%). This is the first large multiethnic cohort study to describe meat sources and their contributions to selected nutrients among ethnic minorities in the USA. These findings may be used to develop ethnic-specific recommendations for meat consumption aiming to improve dietary quality among these groups. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  5. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    PubMed Central

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  6. Crystal Structure of Manganese Lipoxygenase of the Rice Blast Fungus Magnaporthe oryzae*

    PubMed Central

    Wennman, Anneli; Oliw, Ernst H.; Karkehabadi, Saeid; Chen, Yang

    2016-01-01

    Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungus Magnaporthe oryzae (Mo), was expressed in Pichia pastoris. Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX. PMID:26783260

  7. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination.

    PubMed

    Eroglu, Seckin; Giehl, Ricardo F H; Meier, Bastian; Takahashi, Michiko; Terada, Yasuko; Ignatyev, Konstantin; Andresen, Elisa; Küpper, Hendrik; Peiter, Edgar; von Wirén, Nicolaus

    2017-07-01

    Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis ( Arabidopsis thaliana ) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 ( VIT1 ), MTP8 built up iron (Fe) hotspots in MTP8 -expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. iTRAQ Analysis Reveals Mechanisms of Growth Defects Due to Excess Zinc in Arabidopsis1[W][OA

    PubMed Central

    Fukao, Yoichiro; Ferjani, Ali; Tomioka, Rie; Nagasaki, Nahoko; Kurata, Rie; Nishimori, Yuka; Fujiwara, Masayuki; Maeshima, Masayoshi

    2011-01-01

    The micronutrient zinc is essential for all living organisms, but it is toxic at high concentrations. Here, to understand the effects of excess zinc on plant cells, we performed an iTRAQ (for isobaric tags for relative and absolute quantification)-based quantitative proteomics approach to analyze microsomal proteins from Arabidopsis (Arabidopsis thaliana) roots. Our approach was sensitive enough to identify 521 proteins, including several membrane proteins. Among them, IRT1, an iron and zinc transporter, and FRO2, a ferric-chelate reductase, increased greatly in response to excess zinc. The expression of these two genes has been previously reported to increase under iron-deficient conditions. Indeed, the concentration of iron was significantly decreased in roots and shoots under excess zinc. Also, seven subunits of the vacuolar H+-ATPase (V-ATPase), a proton pump on the tonoplast and endosome, were identified, and three of them decreased significantly in response to excess zinc. In addition, excess zinc in the wild type decreased V-ATPase activity and length of roots and cells to levels comparable to those of the untreated de-etiolated3-1 mutant, which bears a mutation in V-ATPase subunit C. Interestingly, excess zinc led to the formation of branched and abnormally shaped root hairs, a phenotype that correlates with decreased levels of proteins of several root hair-defective mutants. Our results point out mechanisms of growth defects caused by excess zinc in which cross talk between iron and zinc homeostasis and V-ATPase activity might play a central role. PMID:21325567

  9. The effects of a lipid‐based nutrient supplement and antiretroviral therapy in a randomized controlled trial on iron, copper, and zinc in milk from HIV‐infected Malawian mothers and associations with maternal and infant biomarkers

    PubMed Central

    Shahab‐Ferdows, Setareh; Gertz, Erik; Flax, Valerie L.; Adair, Linda S.; Bentley, Margaret E.; Jamieson, Denise J.; Tegha, Gerald; Chasela, Charles S.; Kamwendo, Debbie; van der Horst, Charles M.; Allen, Lindsay H.

    2017-01-01

    Abstract We evaluated effects of antiretroviral (ARV) therapy and lipid‐based nutrient supplements (LNSs) on iron, copper, and zinc in milk of exclusively breastfeeding HIV‐infected Malawian mothers and their correlations with maternal and infant biomarkers. Human milk and blood at 2, 6, and 24 weeks post‐partum and blood during pregnancy (≤30 weeks gestation) were collected from 535 mothers/infant‐pairs in the Breastfeeding, Antiretrovirals, and Nutrition study. The participants received ARV, LNS, ARV and LNS, or no intervention from 0 to 28 weeks post‐partum. ARVs negatively affected copper and zinc milk concentrations, but only at 2 weeks, whereas LNS had no effect. Among all treatment groups, approximately 80–90% of copper and zinc and <50% of iron concentrations met the current adequate intake for infants at 2 weeks and only 1–19% at 24 weeks. Pregnancy haemoglobin was negatively correlated with milk iron at 2 and 6 weeks (r = −.18, p < .02 for both). The associations of the milk minerals with each other were the strongest correlations observed (r = .11–.47, p < .05 for all); none were found with infant biomarkers. At 2 weeks, moderately anaemic women produced milk higher in iron when ferritin was higher or TfR lower. At 6 weeks, higher maternal α‐1‐acid glycoprotein and C‐reactive protein were associated with higher milk minerals in mildly anaemic women. Infant TfR was lower when milk mineral concentrations were higher at 6 weeks and when mothers were moderately anaemic during pregnancy. ARV affects copper and zinc milk concentrations in early lactation, and maternal haemoglobin during pregnancy and lactation could influence the association between milk minerals and maternal and infant iron status and biomarkers of inflammation. PMID:28851037

  10. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  11. Comparison of machinability of manganese alloyed austempered ductile iron produced using conventional and two step austempering processes

    NASA Astrophysics Data System (ADS)

    Hegde, Ananda; Sharma, Sathyashankara

    2018-05-01

    Austempered Ductile Iron (ADI) is a revolutionary material with high strength and hardness combined with optimum ductility and toughness. The discovery of two step austempering process has lead to the superior combination of all the mechanical properties. However, because of the high strength and hardness of ADI, there is a concern regarding its machinability. In the present study, machinability of ADI produced using conventional and two step heat treatment processes is assessed using tool life and the surface roughness. Speed, feed and depth of cut are considered as the machining parameters in the dry turning operation. The machinability results along with the mechanical properties are compared for ADI produced using both conventional and two step austempering processes. The results have shown that two step austempering process has produced better toughness with good hardness and strength without sacrificing ductility. Addition of 0.64 wt% manganese did not cause any detrimental effect on the machinability of ADI, both in conventional and two step processes. Marginal improvement in tool life and surface roughness were observed in two step process compared to that with conventional process.

  12. Seasonal changes in chemical composition and nutritive value of native forages in a spruce-hemlock forest, southeastern Alaska.

    Treesearch

    Thomas A. Hanley; Jay D. McKendrick

    1983-01-01

    Twenty-two forages from Admiralty Island, southeastern Alaska, were monitored bimonthly for one year to assess seasonal changes in their chemical composition: neutral detergent fiber, acid detergent fiber, cellulose, lignin/cutin, invitro dry-matter digestibility, total nitrogen, phosphorus, potassium, calcium, magnesium, sodium, copper, manganese, iron, and zinc....

  13. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis.

    PubMed Central

    Kazantzis, G

    1981-01-01

    The possible carcinogenicity of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium is reviewed, taking into account epidemiological data, the results of animal experimental studies, data on mutagenic effects and on other in vitro test systems. Of the great variety of occupations where exposure to one of these metals may occur, only haematite mining has been clearly shown to involve an increased human cancer risk. While the possibility that haematite might in some way act as a carcinogen has to be taken into consideration it is more likely that other carcinogens are responsible. Certain platinum coordination complexes are used in cancer chemotherapy, are mutagenic, and likely to be carcinogenic. Cobalt, its oxide and sulfide, certain lead salts, one organomanganese, and one organotitanium compound have been shown to have a limited carcinogenic effect in experimental animal studies, and except for titanium appear to be mutagenic. Certain mercury compounds are mutagenic but none have been shown to be carcinogenic. The presently available data are inadequate to assess the possible carcinogenicity of selenium compounds, but a few observations suggest that selenium may suppress the effect of other carcinogens administered to experimental animals and may even be associated with lower cancer mortality rates in man. Epidemiological observations are essential for the assessment of a human cancer risk, but the difficulty in collecting past exposure data in occupational groups and the complexity of multiple occupational exposures with changes over time, limits the usefulness of retrospective epidemiological studies. PMID:7023929

  14. Novel synergistic hydrous iron-nickel-manganese (HINM) trimetal oxide for hazardous arsenite removal.

    PubMed

    Nasir, A M; Goh, P S; Ismail, A F

    2018-06-01

    A novel hydrous iron-nickel-manganese (HINM) trimetal oxide was successfully fabricated using oxidation and coprecipitation method for metalloid arsenite removal. The atomic ratio of Fe:Ni:Mn for this adsorbent is 3:2:1. HINM adsorbent was identified as an amorphous nanosized adsorbent with particle size ranged from 30 nm to 60 nm meanwhile the total active surface area and pore diameter of HINM area of 195.78 m 2 /g and 2.43 nm, respectively. Experimental data of arsenite adsorption is best fitted into pseudo-second order and Freundlich isotherm model. The maximum adsorption capacity of arsenite onto HINM was 81.9 mg/g. Thermodynamic study showed that the adsorption of arsenite was a spontaneous and endothermic reaction with enthalpy change of 14.04 kJ/mol and Gibbs energy of -12 to -14 kJ/mol. Zeta potential, thermal gravimetric (TGA) and Fourier transform infrared (FTIR) analysis were applied to elucidate the mechanism of arsenite adsorption by HINM. Mechanism of arsenite adsorption by HINM involved both chemisorption and physisorption based on the electrostatic attraction between arsenite ions and surface charge of HINM. It also involved the hydroxyl substitution by arsenite ions through the formation of inner-sphere complex. Reusability of HINM trimetal oxide was up to 89% after three cycles of testing implied that HINM trimetal oxide is a promising and practical adsorbent for arsenite. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Heavy metals in hair of wild canids from the Brazilian Cerrado.

    PubMed

    Curi, Nelson Henrique de Almeida; Brait, Carlos Henrique Hoff; Antoniosi Filho, Nelson Roberto; Talamoni, Sônia Aparecida

    2012-06-01

    In this study, we aimed to assess whether free-ranging wild canids are exposed to heavy metals in one of the most developed and populated regions of Brazil. Hair of 26 wild canids (maned wolves Chrysocyon brachyurus, crab-eating foxes Cerdocyon thous, and hoary foxes Lycalopex vetulus) from the Cerrado biome in Southeast Brazil were analyzed by spectrophotometry to detect cadmium, chromium, and lead, and also the essential copper, iron, manganese, and zinc traces. All samples showed traces of copper, iron, manganese, and zinc. Non-essential lead was detected in 57% (2.35 ± 0.99 mg/kg), and chromium in 88% (2.98 ± 1.56 mg/kg) of samples. Cadmium traces (detection limit 0.8 mg/kg) were not found. Crab-eating foxes had more copper, iron, and manganese in hair than maned wolves. Correlations among element levels differed between maned wolves and crab-eating foxes. Concentrations of chromium and lead were outstandingly higher than in wild canids from other areas. Addressing the causes of such levels and the impacts of the heavy metal pollution in Neotropical ecosystems is urgent for animal health and conservation purposes. We argue that heavy metal pollution should be considered as dangerous threats to wildlife health in Brazil and recommend hair sampling as a biomonitoring tool for heavy metals in Neotropical terrestrial mammals.

  16. Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems.

    PubMed

    Peng, Ching-Yu; Korshin, Gregory V; Valentine, Richard L; Hill, Andrew S; Friedman, Melinda J; Reiber, Steve H

    2010-08-01

    Corrosion scales and deposits formed within drinking water distribution systems (DWDSs) have the potential to retain inorganic contaminants. The objective of this study was to characterize the elemental and structural composition of extracted pipe solids and hydraulically-mobile deposits originating from representative DWDSs. Goethite (alpha-FeOOH), magnetite (Fe(3)O(4)) and siderite (FeCO(3)) were the primary crystalline phases identified in most of the selected samples. Among the major constituent elements of the deposits, iron was most prevalent followed, in the order of decreasing prevalence, by sulfur, organic carbon, calcium, inorganic carbon, phosphorus, manganese, magnesium, aluminum and zinc. The cumulative occurrence profiles of iron, sulfur, calcium and phosphorus for pipe specimens and flushed solids were similar. Comparison of relative occurrences of these elements indicates that hydraulic disturbances may have relatively less impact on the release of manganese, aluminum and zinc, but more impact on the release of organic carbon, inorganic carbon, and magnesium. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Compositional variability of nutrients and phytochemicals in corn after processing.

    PubMed

    Prasanthi, P S; Naveena, N; Vishnuvardhana Rao, M; Bhaskarachary, K

    2017-04-01

    The result of various process strategies on the nutrient and phytochemical composition of corn samples were studied. Fresh and cooked baby corn, sweet corn, dent corn and industrially processed and cooked popcorn, corn grits, corn flour and corn flakes were analysed for the determination of proximate, minerals, xanthophylls and phenolic acids content. This study revealed that the proximate composition of popcorn is high compared to the other corn products analyzed while the mineral composition of these maize products showed higher concentration of magnesium, phosphorus, potassium and low concentration of calcium, manganese, zinc, iron, copper, and sodium. Popcorn was high in iron, zinc, copper, manganese, sodium, magnesium and phosphorus. The xanthophylls lutein and zeaxanthin were predominant in the dent corn and the total polyphenolic content was highest in dent corn while the phenolic acids distribution was variable in different corn products. This study showed preparation and processing brought significant reduction of xanthophylls and polyphenols.

  18. Trace elements in fruit juices.

    PubMed

    Bragança, Victor Luiz Cordoba; Melnikov, Petr; Zanoni, Lourdes Z

    2012-05-01

    Fruit juices are widely consumed in tropical countries as part of habitual diet. The concentrations of several minerals in these beverages were evaluated. Four commercially available brands of juices were analyzed for cadmium, lead, copper, zinc, aluminum, iron, chromium, manganese, and molybdenum. The levels ranged from 0.02 to 0.08 mg/L for copper, from 0.05 to 0.23 mg/L for zinc, from 0.1 to 0.4 mg/L for aluminum, from 0.02 to 0.45 mg/L for iron, and from 0.01 to 0.22 mg/L for manganese. The levels of cadmium, lead, and chromium in all samples were very low or undetectable. The metal contents of fruit juices depend on a number of factors, including the soil composition, the external conditions during fruit growing and fruit harvesting, as well as on details of the fruit juice manufacturing processes employed. The concentrations of none of the metals in juice samples analyzed exceeded the limits imposed by local legislation.

  19. Simulation of the mobility of metal - EDTA complexes in groundwater: The influence of contaminant metals

    USGS Publications Warehouse

    Friedly, J.C.; Kent, D.B.; Davis, J.A.

    2002-01-01

    Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results

  20. Fat-soluble vitamin and mineral comparisons between zoo-based and free-ranging koalas (Phascolarctos cinereus).

    PubMed

    Schmidt, Debra A; Pye, Geoffrey W; Hamlin-Andrus, Chris C; Ellis, William A; Bercovitch, Fred B; Ellersieck, Mark R; Chen, Tai C; Holick, Michael F

    2013-12-01

    As part of a health investigation on koalas at San Diego Zoo, serum samples were analyzed from 18 free-ranging and 22 zoo-based koalas, Phascolarctos cinereus. Serum concentrations of calcium, chloride, cobalt, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, selenium, sodium, zinc, and vitamins A, E, and 25(OH)D3 were quantified. Calcium, chloride, molybdenum, selenium, and vitamin E concentrations were significantly higher in zoo-based koalas than in free-ranging koalas, whereas magnesium, manganese, phosphorus, and zinc concentrations were significantly higher in the free-ranging koalas. No significant differences were found between genders. The results from this study will help to establish a starting point for determining target circulating nutrient concentrations in koalas.

  1. Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies.

    PubMed

    Castro-Guerrero, Norma A; Isidra-Arellano, Mariel C; Mendoza-Cozatl, David G; Valdés-López, Oswaldo

    2016-01-01

    Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals.

  2. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radka, Christopher D.; DeLucas, Lawrence J.; Wilson, Landon S.

    2017-06-30

    Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. InYersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA ismore » polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.« less

  3. Superoxide poisons mononuclear iron enzymes by causing mismetallation

    PubMed Central

    Gu, Mianzhi; Imlay, James A.

    2013-01-01

    Summary Superoxide (O2−) is a primary agent of intracellular oxidative stress. Genetic studies in many organisms have confirmed that excess O2− disrupts metabolism, but to date only a small family of [4Fe-4S] dehydratases have been identified as direct targets. This investigation reveals that in Escherichia coli O2− also poisons a broader cohort of non-redox enzymes that employ ferrous iron atoms as catalytic cofactors. These enzymes were inactivated by O2− both in vitro and in vivo. Although the enzymes are known targets of hydrogen peroxide, the outcome with O2− differs substantially. When purified enzymes were damaged by O2− in vitro, activity could be completely restored by iron addition, indicating that the O2− treatment generated an apoprotein without damaging the protein polypeptide. Superoxide stress inside cells caused the progressive mismetallation of these enzymes with zinc, which confers little activity. When O2− stress was terminated, cells gradually restored activity by extracting zinc from the proteins. The overloading of cells with zinc caused mismetallation even without O2− stress. These results support a model in which O2− repeatedly excises iron from these enzymes, allowing zinc to compete with iron for remetallation of their apoprotein forms. This action substantially expands the physiological imprint of O2− stress. PMID:23678969

  4. Contribution of meat to vitamin B-12, iron, and zinc intakes in five ethnic groups in the U.S.: Implications for developing food-based dietary guidelines

    PubMed Central

    Sharma, Sangita; Sheehy, Tony; Kolonel, Laurence N

    2016-01-01

    Background To describe the sources of meat and their contributions to vitamin B-12, iron, and zinc in five ethnic groups in the USA. Methods Dietary data for the Multiethnic Cohort, established in Hawaii and Los Angeles, were collected using a quantitative food frequency questionnaire from more than 215,000 subjects aged 45–75 years at baseline (1993–1996). Participants included African American, Latino, Japanese American (JpAm), Native Hawaiian (NH) and Caucasian men and women. Servings of meat items were calculated based on the USDA recommendations and their contributions to intakes of total meat, red meat, vitamin B-12, iron, and zinc were determined. Results Of all types of meat, poultry contributed the most to meat consumption, followed by red meat and fish among all ethnicities, except for Latino (born in Mexico and Central/South America) men who consumed more beef. Lean beef was the most commonly consumed red meat for all ethnic-sex groups (9.3–14.3%), except for NH and JpAm men, and JpAm women whose top contributor was stew/curry with beef/lamb and stir-fried beef/pork with vegetables respectively. The contribution of meat was most substantial for zinc (11.1–29.3%) and vitamin B-12 (19.7–40%), and to a lesser extent for iron (4.3–14.2%). Conclusions This is the first large multiethnic cohort study to describe meat sources and their contributions to selected nutrients among ethnic minorities in the U.S. These findings may be used to develop ethnic-specific recommendations for meat consumption to improve dietary quality among these groups. PMID:23398393

  5. The Properties of Fluorine, Oxygen Bifluoride, and Chlorine Trifluoride

    DTIC Science & Technology

    1949-09-06

    they should be of forg€;d steel. Welded joints are excellent provided the welds are slag -free. Cast iron or any ether material containing silica cannot...400°C brilliant light Manganese powder form; 500°C formation of fluoride with glowing Zinc Cadmium powder form; heating glowing and flashing...reaction upon heating Magnesium at first, no reaction; explosive reaction Aluminum after ignition with carbon Zinc TV „ 1X11 Lead Cupfier L

  6. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis.

    PubMed

    Kliegman, Joseph I; Griner, Sarah L; Helmann, John D; Brennan, Richard G; Glasfeld, Arthur

    2006-03-21

    The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR.

  7. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis.

    PubMed

    Barberon, Marie; Dubeaux, Guillaume; Kolb, Cornelia; Isono, Erika; Zelazny, Enric; Vert, Grégory

    2014-06-03

    In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.

  8. Contamination of wells completed in the Roubidoux aquifer by abandoned zinc and lead mines, Ottawa County, Oklahoma

    USGS Publications Warehouse

    Christenson, Scott C.

    1995-01-01

    The Roubidoux aquifer in Ottawa County Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. Water in the Roubidoux aquifer in eastern Ottawa County has relatively low dissolved-solids concentrations (less than 200 mg/L) with calcium, magnesium, and bicarbonate as the major ions. The Boone Formation is stratigraphically above the Roubidoux aquifer and is the host rock for zinc and lead sulfide ores, with the richest deposits located in the vicinity of the City of Picher. Mining in what became known as the Picher mining district began in the early 1900's and continued until about 1970. The water in the abandoned zinc and lead mines contains high concentrations of calcium, magnesium, bicarbonate, sulfate, fluoride, cadmium, copper, iron, lead, manganese, nickel, and zinc. Water from the abandoned mines is a potential source of contamination to the Roubidoux aquifer and to wells completed in the Roubidoux aquifer. Water samples were collected from wells completed in the Roubidoux aquifer in the Picher mining district and from wells outside the mining district to determine if 10 public supply wells in the mining district are contaminated. The chemical analyses indicate that at least 7 of the 10 public supply wells in the Picher mining district are contaminated by mine water. Application of the Mann-Whitney test indicated that the concentrations of some chemical constituents that are indicators of mine-water contamination are different in water samples from wells in the mining area as compared to wells outside the mining area. Application of the Wilcoxon signed-rank test showed that the concentrations of some chemical constituents that are indicators of mine-water contamination were higher in current (1992-93) data than in historic (1981-83) data, except for pH, which was lower in current than in historic data. pH and sulfate, alkalinity, bicarbonate, magnesium, iron, and tritium concentrations consistently

  9. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  10. Soil Chemistry Still Affected 23 Years After Large Application of Fluidized Bed Material

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to assess the movement of arsenic, aluminum, calcium, copper, iron, lead, magnesium, manganese, mercury and zinc in an old apple (Malus domestica Borkh) orchard that received a one time application of 36 kg/ m2 of fluidized bed combustion material (FBCM) 23 years earlier. S...

  11. Interference of three herbicides on iron acquisition in maize plants.

    PubMed

    Bartucca, Maria Luce; Di Michele, Alessandro; Del Buono, Daniele

    2018-05-07

    The use of herbicides to control weed species could lead to environmental threats due to their persistence and accumulation in the ecosystems and cultivated fields. Nonetheless, the effect of these compounds on plant mineral nutrition in crops has been barely investigated. This study aimed at ascertaining the effect of three herbicides (S-metolachlor, metribuzin and terbuthylazine) on the capacity of maize to acquire iron (Fe). Interferences on plant growth and reductions on the Fe contents were found in the plants treated. Furthermore, root cell viability and functionality losses were ascertained following the treatments, which, in turn, decreased the amount of phytosiderophores (PSs) released by the roots. An investigation carried out in greater depth on root apices of treated plants using an FE-SEM (Scanning Electron Microscope) coupled with EDX (Energy Dispersive X-ray) indicated that the reductions on Fe content started in this part of the roots. Lastly, decreases were found also in copper (Cu +2 ), zinc (Zn +2 ) and manganese (Mn +2 ) content in root apices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The Single Superoxide Dismutase of Rhodobacter capsulatus Is a Cambialistic, Manganese-Containing Enzyme

    PubMed Central

    Tabares, Leandro C.; Bittel, Cristian; Carrillo, Néstor; Bortolotti, Ana; Cortez, Néstor

    2003-01-01

    The phototrophic bacterium Rhodobacter capsulatus contains a single, oxygen-responsive superoxide dismutase (SODRc) homologous to iron-containing superoxide dismutase enzymes. Recombinant SODRc, however, displayed higher activity after refolding with Mn2+, especially when the pH of the assay mixture was raised. SODRc isolated from Rhodobacter cells also preferentially contains manganese, but metal discrimination depends on the culture conditions, with iron fractions increasing from 7% in aerobic cultures up to 40% in photosynthetic cultures. Therefore, SODRc behaves as a Mn-containing dismutase with cambialistic properties. PMID:12730184

  13. Manganese-induced effects on cerebral trace element and nitric oxide of Hyline cocks.

    PubMed

    Liu, Xiaofei; Zuo, Nan; Guan, Huanan; Han, Chunran; Xu, Shi Wen

    2013-08-01

    Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg(-1). After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.

  14. Iron Drinking Water Pipe Corrosion Products: Concentrators of Toxic Metals

    DTIC Science & Technology

    2013-01-01

    health risk. In addition Pb corrosion products may be sinks for other metals such as chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn). These...Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag ’, Journal

  15. Iron concentrations in breast milk and selected maternal factors of human milk bank donors.

    PubMed

    Mello-Neto, Julio; Rondó, Patrícia H C; Morgano, Marcelo A; Oshiiwa, Marie; Santos, Mariana L; Oliveira, Julicristie M

    2010-05-01

    The aim of this study was to evaluate the relationship between iron concentration in mature breast milk and characteristics of 136 donors of a Brazilian milk bank. Iron, vitamin A, zinc, and copper concentrations were assessed in human milk and maternal blood. Data were collected on maternal anthropometrics, obstetric, socioeconomic, demographic, and lifestyle factors. Iron, zinc, and copper in milk and zinc and copper in blood were detected by spectrophotometry. Vitamin A in milk and blood was determined by high-performance liquid chromatography. Hemoglobin was measured by electronic counting and serum iron and ferritin by colorimetry and chemoluminescence, respectively. Transferrin and ceruloplasmin were determined by nephelometry. According to multivariate linear regression analysis, iron in milk was positively associated with vitamin A in milk and with smoking but negatively associated with timing of breast milk donation (P < .001). These results indicate that iron concentration in milk of Brazilian donors may be influenced by nutritional factors and smoking.

  16. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.

    PubMed

    de Figueiredo, Marislaine A; Boldrin, Paulo F; Hart, Jonathan J; de Andrade, Messias J B; Guilherme, Luiz R G; Glahn, Raymond P; Li, Li

    2017-02-01

    Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds. Published by Elsevier Masson SAS.

  17. Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects.

    PubMed

    Kobayashi, Naomasa; Okamura, Hideo

    2004-06-01

    The toxicity of the polluted waters originating from a disused lead mine was evaluated using both sea urchin bioassays and heavy metal analysis. Samples from three polluted waters (a seawater and two freshwaters) were collected from the mine area and one seawater sample was taken from a non-contaminated reference site. The test waters contained higher concentrations of heavy metals such as manganese, lead, cadmium, zinc, chromium, nickel, iron, and copper than did ambient seawater. The three test waters had inhibitory effects, in a dose-dependent manner, on the first cleavage of sea urchin embryos and on pluteus formation during the development. Some malformations, such as a radialized pluteus, exo-gastrula, and spaceship Apollo-like embryos were induced by the test waters without dilution. Zinc alone also induced the same anomaly. Zinc in the test seawater was ascertained as one of the metals that caused the anomalies, but not all of the toxicity was caused by zinc. It was speculated that interactive effects, involving zinc and possibly manganese and nickel, were occurring.

  18. Quality of ground water in southeastern and south-central Washington, 1982

    USGS Publications Warehouse

    Turney, G.L.

    1986-01-01

    In 1982 groundwater was sampled at over 100 sites in the southeastern-south central region of Washington and analyzed for pH, specific conductance, and concentrations of fecal-coliform bacteria, major dissolved irons, and dissolved iron, manganese, and nitrate. Twenty percent of the samples were analyzed for concentrations of dissolved aluminum, arsenic, barium, cadmium, chromium, cooper, lead, mercury, selenium, silver, and zinc. The predominant water type was calcium bicarbonate. Some sodium bicarbonate water was found in samples from the Lower Yakima, Horse Heaven Hills, and Walla Walla-Tucannon subregions. Dissolved solids concentrations were typically less than 500 mg/L (milligrams per liter). Median iron and manganese concentrations were less than 20 micrograms/L except in the Palouse subregion, where the median concentration of iron was 200 micrograms/L and the median concentrations of manganese was 45 micrograms/L. Generally, trace-metal concentrations were also less than 10 micrograms/L except for barium, copper, and zinc. Nitrate concentrations were less than 1.0 mg/L in waters from half the wells sampled. Concentrations greater than 5.0 mg/L were found in areas of the Lower Yakima, Walla Walla-Tucannon and Hanford subregions. No fecal-coliform bacteria were detected. U.S. Environmental Protection Agency drinking water regulation limits were generally not exceeded, except for occasional high concentrations of nitrate or dissolved solids. The historical data for the region were evaluated for these same constituents. Quantitative differences were found, but the historical and 1982 data led to similar qualitative conclusions. (USGS)

  19. Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem.

    PubMed

    Hare, Dominic J; Lee, Jason K; Beavis, Alison D; van Gramberg, Amanda; George, Jessica; Adlard, Paul A; Finkelstein, David I; Doble, Philip A

    2012-05-01

    Atlases depicting molecular and functional features of the brain are becoming an integral part of modern neuroscience. In this study we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantitatively measure iron (Fe), copper (Cu), and zinc (Zn) levels in a serially sectioned C57BL/6 mouse brain (cerebrum and brainstem). Forty-six sections were analyzed in a single experiment of approximately 158 h in duration. We constructed a 46-plate reference atlas by aligning quantified images of metal distribution with corresponding coronal sections from the Allen Mouse Brain Reference Atlas. The 46 plates were also used to construct three-dimensional models of Fe, Cu, and Zn distribution. This atlas represents the first reconstruction of quantitative trace metal distribution through the brain by LA-ICPMS and will facilitate the study of trace metals in the brain and help to elucidate their role in neurobiology.

  20. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination1[OPEN

    PubMed Central

    Takahashi, Michiko; Terada, Yasuko

    2017-01-01

    Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. PMID:28461400

  1. Photographic Processing Interpretation Facility Wastewater Conceptual Treatment Design.

    DTIC Science & Technology

    1983-03-01

    Total Chromium (Cr) - - - ɘ.05 - Copper (Cu) - - - ɘ.05 - Iron (Fe) - - - - - Manganese (Mn) - - - ɘ.03 - Mercury (Hg) - - - ɘ.004 - Potassium (K...8.3 - Silver (Ag) 2.2 7.0 17 0.15 2.2 Sodium (Na) - - - 8.2 - Zinc (Zn) - - - 0.12 - Biochemical Oxygen " Demand (BOD_) - - - 40 - Sulfate (SO...nonconventional pollutants include boron, dissolved sol i halides, iron, ammonia, nitrogen, phenols, sulfate and TOC. ,P,, 99 percent of the 11,000

  2. Host-imposed manganese starvation of invading pathogens: two routes to the same destination

    PubMed Central

    Morey, Jacqueline R.; McDevitt, Christopher A.; Kehl-Fie, Thomas E.

    2015-01-01

    During infection invading pathogens must acquire all essential nutrients, including first row transition metals, from the host. To combat invaders, the host exploits this fact and restricts the availability of these nutrients using a defense mechanism known as nutritional immunity. While iron sequestration is the most well-known aspect of this defense, recent work has revealed that the host restricts the availability of other essential elements, notably manganese, during infection. Furthermore, these studies have revealed that the host utilizes multiple strategies that extend beyond metal sequestration to prevent bacteria from obtaining these metals. This review will discuss the mechanisms by which bacteria attempt to obtain the essential first row transition metal ion manganese during infection, and the approaches utilized by the host to prevent this occurrence. In addition, this review will discuss the impact of host-imposed manganese starvation on invading bacteria. PMID:25836716

  3. Reducing acid leaching of manganiferous ore: Effect of the iron removal operation on solid waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca

    2009-01-15

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary ironmore » removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.« less

  4. Levels of iron, silver, zinc, and lead in oranges and avocados from two gold-rich towns compared with levels in an adjacent gold-deficient town

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golow, A.A.; Laryea, J.N.

    1994-09-01

    Fruits such as oranges and avocados are important sources of drinks and food in the Ghanaian Society. If such fruits contain various types of metals they may augument the types and amounts of them in the human body. The metals in fruits may depend on what is in the soils from which they are grown. If the soils contain toxic metals like lead, mercury and cadmium then the consumers may be poisoned as happened in the [open quotes]Ouchi - ouchi[close quotes], disease in Japan and similar episodes. In the area under study, the Geological Survey indicates the presence of 2.5more » ppm of lead, 10 - 20 ppm of copper and less than 15 ppm of nickel. Silver, not reported in commercial amounts, is a byproduct of gold productions at Obuasi. Since copper and nickel are presented in the area traces of silver will certainly occur. In the same manner zinc is usually associated with lead as sulphide of zinc blend trace amounts of it are likely to occur in the area. Of the four metals measured, iron and zinc essential for citrus. The extractable iron and zinc in the area of study were 90 and 1.8 mg/kg, levels on the low side for the healthy growth of crops. The investigation reported here is the comparison of the levels of some metals in oranges and avocados from farms in Obuasi and Konongo with those from farms in Kumasi City. This is a part of a project aimed at finding out differences in the metal contents of various food crops grown in various regions of the country. Konongo and Obuasi have soils which are rich in gold but Kumasi city, which is not too distant from these towns, does not have gold in its soil. 18 refs., 1 tab.« less

  5. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).

    PubMed

    Scheers, Nathalie; Rossander-Hulthen, Lena; Torsdottir, Inga; Sandberg, Ann-Sofie

    2016-02-01

    Lactic fermentation of foods increases the availability of iron as shown in a number of studies throughout the years. Several explanations have been provided such as decreased content of inhibitory phytate, increased solubility of iron, and increased content of lactic acid in the fermented product. However, to our knowledge, there are no data to support that the bioavailability of iron is affected by lactic fermentation. The objective of the present study was to investigate whether the bioavailability of iron from a vegetable mix was affected by lactic fermentation and to propose a mechanism for such an event, by conducting human and cell (Caco-2, HepG2) studies and iron speciation measurements (voltammetry). We also investigated whether the absorption of zinc was affected by the lactic fermentation. In human subjects, we observed that lactic-fermented vegetables served with both a high-phytate and low-phytate meal increased the absorption of iron, but not zinc. In vitro digested fermented vegetables were able to provoke a greater hepcidin response per ng Fe than fresh vegetables, indicating that Fe in the fermented mixes was more bioavailable, independent on the soluble Fe content. We measured that hydrated Fe(3+) species were increased after the lactic fermentation, while there was no significant change in hydrated Fe(2+). Furthermore, lactate addition to Caco-2 cells did not affect ferritin formation in response to Fe nor did lactate affect the hepcidin response in the Caco-2/HepG2 cell system. The mechanism for the increased bioavailability of iron from lactic-fermented vegetables is likely an effect of the increase in ferric iron (Fe(3+)) species caused by the lactic fermentation. No effect on zinc bioavailability was observed.

  6. Zinc: an essential but elusive nutrient123

    PubMed Central

    King, Janet C

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515

  7. Intercritical heat treatments in ductile iron and steel

    NASA Astrophysics Data System (ADS)

    Aristizabal, Ricardo E.

    Materials such as dual phase (DP) steels, transformation induced plasticity (TRIP) steels and dual phase ductile irons are produced by intercritical heat treatments. These materials can provide significant weight savings in the automotive industry. The goal of this dissertation is to study intercritical heat treatments in ductile iron and steel to optimize the production parameters. Three different aspects were addressed. First, common steels were intercritically austenitized and austempered (intercritically austempered) under a variety conditions. The results showed that common grade steels that were intercritically austempered exhibited tensile properties in the same range as DP and TRIP steels. The second study consisted of determining the effect of heat treatment conditions on the tensile properties of intercritically austenitized, quenched and tempered ductile iron (IAQ&TDI). The results showed that (1) ultimate tensile strength (UTS) and yield strength (YS) were determined by the volume fraction of martensite, (2) tempering improved the elongation 1.7-2.5 times with only a slight decrease in strength, (3) the carbon in austenite formed during the intercritical heat treatment of ductile iron with a ferritic-pearlitic matrix came from the carbon available in the matrix and that carbon diffusion from the graphite nodules was restricted, and (4) limited segregation of substitutional elements occurred during intercritical austenitizing. Finally, intercritically austempered ductile iron (IADI) alloyed with different amounts of manganese and nickel was produced. Tensile properties and microstructure were determined. Also, the stability of the austenite during deformation and the lattice strains of the ferrite and the austenite phases were determined using x-ray diffraction (XRD) and neutron diffraction. The results indicated that: 1) high manganese concentrations produced materials with large blocky, low carbon austenite particles at the intercellular boundaries

  8. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  9. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution.

    PubMed

    Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I

    2014-03-01

    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  10. Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry

    NASA Astrophysics Data System (ADS)

    Thamdrup, Bo; Finster, Kai; Fossing, Henrik; Hansen, Jens Würgler; Jørgensen, Bo Barker

    1994-01-01

    Depth distributions of thiosulfate (S 2O 32-) and sulfite (SO 32-) were measured in the porewaters of a Danish salt marsh and subtidal marine sediments by HPLC analysis after derivatization with DTNP [2,2'-dithiobis(5-nitropyridine)]. The distributions were compared to the redox zonation as indicated by Eh and Mn 2+, Fe 2+ and H 2S distributions. Concentrations of S 2O 32- varied from below detection (<50 nM) to 600 nM while SO 32- concentrations generally were 2-3 times higher, 100-1500 nM. Depth distributions of the two species were roughly similar. Lowest concentrations were found in the oxidized zone, including both the oxic surface layer and the suboxic zone of intense manganese and iron reduction, and concentrations tended to increase through the suboxic and into the reduced, sulfidic zone. The similarity of SO 32- and S 2O 32- profiles suggested a close coupling of the cycling of the two species. Rates of consumption were suggested as the main factor governing their distribution. Rapid turnover times for S 2O 32- and H 2S of 4 and 1.1 h, respectively, were estimated for the upper 0-1 cm of a subtidal sediment.

  11. Control of arsenic mobilization in paddy soils by manganese and iron oxides.

    PubMed

    Xu, Xiaowei; Chen, Chuan; Wang, Peng; Kretzschmar, Ruben; Zhao, Fang-Jie

    2017-12-01

    Reductive mobilization of arsenic (As) in paddy soils under flooded conditions is an important reason for the relatively high accumulation of As in rice, posing a risk to food safety and human health. The extent of As mobilization varies widely among paddy soils, but the reasons are not well understood. In this study, we investigated As mobilization in six As-contaminated paddy soils (total As ranging from 73 to 122 mg kg -1 ) in flooded incubation and pot experiments. Arsenic speciation in the solution and solid phases were determined. The magnitude of As mobilization into the porewater varied by > 100 times among the six soils. Porewater As concentration correlated closely with the concentration of oxalate-extractable As, suggesting that As associated with amorphous iron (oxyhydr)oxides represents the potentially mobilizable pool of As under flooded conditions. Soil containing a high level of manganese oxides showed the lowest As mobilization, likely because Mn oxides retard As mobilization by slowing down the drop of redox potential upon soil flooding and maintaining a higher arsenate to arsenite ratio in the solid and solution phases. Additions of a synthetic Mn oxide (hausmannite) to two paddy soils increased arsenite oxidation, decreased As mobilization into the porewater and decreased As concentrations in rice grain and straw. Consistent with previous studies using simplified model systems or pure mineral phases, the present study shows that Mn oxides and amorphous Fe (oxyhydr)oxides are important factors controlling reductive As mobilization in As-contaminated paddy soils. In addition, this study also suggests a potential mitigation strategy using exogenous Mn oxides to decrease As uptake by rice in paddy soils containing low levels of indigenous Mn oxides, although further work is needed to verify its efficacy and possible secondary effects under field conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Zinc toxicology following particulate inhalation

    PubMed Central

    Cooper, Ross G.

    2008-01-01

    The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection. PMID:20040991

  13. Evaluation of solubility in simulated lung fluid of metals present in the slag from a metallurgical industry to produce metallic zinc.

    PubMed

    Lima, Rosilda M G; Carneiro, Luana G; Afonso, Júlio C; Cunha, Kenya M D

    2013-01-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) for nickel, cadmium, zinc and manganese compounds present in a pile of slag accumulated under exposure to weathering. This slag was generated by a metallurgical industry that produced zinc and zinc alloys from hemimorphite (Zn(4)(OH)(2)Si(2)O(7).H(2)O) and willemite (Zn(2)SiO(4)) minerals. A static dissolution test in vitro was used to determine the solubility parameters and Gamble's solution was used as the simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the slag samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). There are significant differences in terms of solubility parameters among the metals. The results indicated that the zinc, nickel, cadmium and manganese compounds present in the slag were moderately soluble in the SLF. The rapid dissolution fractions of these metals are associated with their sulfates. In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the slag.

  14. Complementary microanalysis of Zn, Mn and Fe in the chelicera of spiders and scorpions using scanning MeV-ion and electron microprobes

    NASA Astrophysics Data System (ADS)

    Schofield, Robert; Lefevre, Harlan; Shaffer, Michael

    1989-04-01

    Energy-loss scanning transmission ion microscopy (ELSTIM or just STIM), PIXE and electron microprobe techniques are used to investigate certain minor element accumulations in a few spiders and scorpions. STIM and PIXE are used to survey the unsectioned specimens, while electron microprobe techniques are used for higher resolution investigations of several sections of the specimens. Concentration values measured using STIM and PIXE are found to be in satisfactory agreement with those measured using electron probe microanalysis. A garden spider Araneus diadematus is found to contain high concentrations of zinc in a thin layer near the surface of its fangs (reaching 23% of dry weight), and manganese in its marginal teeth (about 5% of dry weight). A wolf spider Alopecosa kochi is found to have similar concentrations of zinc in a layer near the surface of it's fang, and concentrations of manganese reaching 1.5% in a layer beneath the zinc containing layer. A scorpion Centruroides sp. is found to contain high concentrations of iron (reaching 8%) and zinc (reaching 24%) in the tips of teeth on the cheliceral fingers, and manganese (about 5%) in the stinger. The hypothesis that these elements simply harden the cuticle does not appear to explain their segregation patterns.

  15. Quality of ground water in the Puget sound region, Washington, 1981

    USGS Publications Warehouse

    Turney, G.L.

    1986-01-01

    Groundwater from more than 100 sites in the Puget Sound region, Washington, was sampled and analyzed in 1981 for pH, specific conductance, and concentrations of fecal coliform bacteria, major ions, and dissolved iron, manganese, and nitrate. 20% of the samples were analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were calcium bicarbonate and calcium-magnesium bicarbonate. Some wells in San Juan and Island Counties contained sodium chloride as a result of seawater intrusion. Dissolved solids concentrations were generally < 150 mg/L. Iron concentrations > 300 micrograms/L in 14% of all samples. Manganese concentrations > 50 micrograms/L in 40% of all samples. Trace-metal concentrations were generally < 10 mg/L , except for barium, copper, lead, and zinc. Nitrate concentrations were < 1.0 mg/L in water for over 75% of the sites. Concentrations > 1.0 mg/L in samples from Skagit, Whatcom , and Pierce Counties, were probably due to agricultural activities or septic tanks. Fecal coliform bacteria were detected in isolated instances. EPA drinking water regulations were exceeded only in isolated instances, except for widespread excessive iron and manganese concentrations. The historical data for the region were also evaluated for the same constituents. There are quantitative differences between historical and 1981 data, but they may be due to inconsistencies in data collection and analytical methods. (Author 's abstract)

  16. Performances of metal concentrations from three permeable pavement infiltrates.

    PubMed

    Liu, Jiayu; Borst, Michael

    2018-06-01

    The U.S. Environmental Protection Agency constructed a 4000-m 2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each permeable pavement infiltrate, surface runoff from traditional asphalt, and rainwater were analyzed in duplicate for 22 metals (total and dissolved) for 6 years. In more than 99% of the samples, the concentration of barium, chromium, copper, manganese, nickel and zinc, and in 60%-90% of the samples, the concentration of arsenic, cadmium, lead, and antimony in infiltrates from all three permeable pavements met both the groundwater effluent limitations (GEL) and maximum contaminant levels (MCL). The concentration of aluminum (50%) and iron (93%) in PICP infiltrates samples exceed the GELs; however, the concentration in more than 90% samples PA and PC infiltrates met the GELs. No measurable difference in metal concentrations was found from the five sources for arsenic, cadmium, lead, antimony, and tin. Large concentrations of eleven metals, including manganese, copper, aluminum, iron, calcium, magnesium, sodium, potassium, silica, strontium and vanadium, were detected in surface runoff than the rainwater. Chromium, copper, manganese, nickel, aluminum, zinc, iron and magnesium concentrations in PICP infiltrates; calcium, barium, and strontium concentrations in PA infiltrates; sodium, potassium and vanadium concentrations in PC infiltrates were statistically larger than the other two permeable pavement infiltrates. Published by Elsevier Ltd.

  17. Relationship between assimilable-nutrient content and physicochemical properties of topsoil

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Przemysław; Bednarek, Wiesław; Dresler, Sławomir; Krzyszczak, Jaromir; Baranowski, Piotr; Sławiński, Cezary

    2017-10-01

    In the years 2008-2011, an environmental study was conducted for Polish soils, focusing on the south-eastern Poland soils, as they exhibit significant acidification. This study aimed at assessing the current pHKCl and the supply of basic macro- (P, K, Mg and S-SO4) and microelements (B, Cu, Fe, Mn and Zn) in the collected soil samples, and also at determining their relationship with the soil agronomic category, humus content and pH class. Soil reaction and humus and macronutrient content were positively correlated with the amount of colloidal clay and particles < 0.02 mm. In the majority of cases, the macro-element content in the soil was positively correlated with soil pH and humus content. As for microelements, a usually significant and positive correlation was found between the soil agronomic category and the content of manganese, iron and zinc, whereas for the content of boron and copper, no such relationship was observed. A significant and positive correlation between soil reaction and the content of manganese, iron and boron was also found. Such correlations were not observed in relation to copper and zinc content. Statistical analysis indicated that the content of boron and manganese depended to the greatest extent on the investigated physicochemical properties.

  18. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Du, Jun; Tao, Changyuan

    2015-10-01

    Electrolytic manganese residue (EMR) is a solid waste found in filters after sulphuric acid leaching of manganese carbonate ore, which mainly contains manganese and ammonia nitrogen and seriously damages the ecological environment. This work demonstrated the use of electrokinetic (EK) remediation to remove ammonia nitrogen and manganese from EMR. The transport behavior of manganese and ammonia nitrogen from EMR during electrokinetics, Mn fractionation before and after EK treatment, the relationship between Mn fractionation and transport behavior, as well as the effects of electrolyte and pretreatment solutions on removal efficiency and energy consumption were investigated. The results indicated that the use of H2SO4 and Na2SO4 as electrolytes and pretreatment of EMR with citric acid and KCl can reduce energy consumption, and the removal efficiencies of manganese and ammonia nitrogen were 27.5 and 94.1 %, respectively. In these systems, electromigration and electroosmosis were the main mechanisms of manganese and ammonia nitrogen transport. Moreover, ammonia nitrogen in EMR reached the regulated level, and the concentration of manganese in EMR could be reduced from 455 to 37 mg/L. In general, the electrokinetic remediation of EMR is a promising technology in the future.

  19. Nutritional assessment of processing effects on major and trace element content in sea buckthorn juice (Hippophaë rhamnoides L. ssp. rhamnoides).

    PubMed

    Gutzeit, D; Winterhalter, P; Jerz, G

    2008-08-01

    Processing effects on the mineral content were investigated during juice production from sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides, Elaeagnaceae) using berries from 2 different growing areas. The major and trace elements of sea buckthorn berries and juices were determined by atomic absorption spectroscopy (AAS)--(calcium, iron, magnesium, potassium, sodium) and inductively coupled plasma-mass spectrometry (ICP-MS)--(arsenic, boron, chromium, copper, manganese, molybdenum, nickel, selenium, zinc). Potassium is the most abundant major element in sea buckthorn berries and juices. The production process increased the potassium content in the juice by about 20%. Moreover, the processing of juice increased the value of manganese up to 32% compared to the content in berries. During industrial juice production, the technological steps caused a loss of about 53% to 77% of the chromium concentration, 50% of the copper content, 64% to 75% of the molybdenum amount, and up to 45% of the iron concentration in the final juice product. Consumption of sea buckthorn juice represents a beneficial source of chromium, copper, manganese, molybdenum, iron, and potassium for the achievement of the respective dietary requirements.

  20. Process for removing technetium from iron and other metals

    DOEpatents

    Leitnaker, J.M.; Trowbridge, L.D.

    1999-03-23

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

  1. Responses of Siberian ferrets to secondary zinc phosphide poisoning

    USGS Publications Warehouse

    Hill, E.F.; Carpenter, J.W.

    1982-01-01

    The hazard of operational-type applications of zinc phosphide (Zn3P2) on a species closely related to the black-footed ferret (Mustela nigripes), was evaluated by feeding 16 Siberian ferrets (M. eversmanni) rats that had been killed by consumption of 2% zinc phosphide treated bait or by an oral dose of 40, 80, or 160 mg of Zn3P2. All ferrets accepted rats and a single emesis by each of 3 ferrets was the only evidence of acute intoxication. All ferrets learned to avoid eating gastrointestinal tracts of the rats. Subacute zinc phosphide toxicity in the ferrets was indicated by significant decreases (18-48%) in hemoglobin, increases of 35-91 % in serum iron, and elevated levels of serum globulin, cholesterol, and triglycerides. Hemoglobin/iron, urea nitrogen/creatinine, and albumin/globulin ratios also were altered by the treatments. This study demonstrated that Siberian ferrets, or other species with a sensitive emetic reflex, are afforded a degree of protection from acute zinc phosphide poisoning due to its emetic action. The importance of toxicity associated with possible respiratory, liver, and kidney damage indicated by altered blood chemistries is not known.

  2. Manganese Health Research Program (MHRP)

    DTIC Science & Technology

    2008-01-01

    NO3)2 Manganese sulphate or Manganese (II) sulphate – MnSO4 Manganese sulphide or Manganese (II) sulphide – MnS Manganese oxide – MnO Barium... sulphide or Manganese (II) sulphide – MnS 1344-43-0 Manganese oxide – MnO 7787-35-1 Barium manganate - BaMnO4 10294-64-1 Potassium manganate – K2MnO4...Characterization of welding fumes and their potential neurotoxic effects. International Workshop: Neurotoxic Metals- Lead, Mercury , and Manganese

  3. Selective oxidation of dual phase steel after annealing at different dew points

    NASA Astrophysics Data System (ADS)

    Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo

    2011-04-01

    Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.

  4. Ferritin: a zinc detoxicant and a zinc ion donor.

    PubMed Central

    Price, D; Joshi, J G

    1982-01-01

    Rats were injected with 1 mg of Zn2+ as zinc sulfate or 2 mg of Cd2+ as cadmium sulfate per kg of body weight on a daily basis. After seven injections, ferritin and metallothionein were isolated from the livers of the rats. Significant amounts of zinc were associated with ferritin. Incubation of such ferritin with apoenzymes of calf intestinal alkaline phosphatase, yeast phosphoglucomutase, and yeast aldolase restored their enzymic activity. The amount of zinc injected was insufficient to stimulate significant synthesis of metallothionein, but similar experiments with injection of cadmium did stimulate the synthesis of metallothionein. The amount of Zn2+ in ferritin of Cd-injected rats was greater than that in ferritin in Zn-injected rats, which was greater than that in ferritin of normal rats. Thus at comparable protein concentration ferritin from Cd-injected rats was a better Zn2+ donor than was ferritin from Zn-injected or normal animals. Ferritin is a normal constituent of several tissues, whereas metallothionein is synthesized under metabolic stress. Thus ferritin may function as a "metal storage and transferring agent" for iron and for zinc. It is suggested that ferritin probably serves as the initial chelator for Zn2+ and perhaps other metal ions as well and that under very high toxic levels of metal ions the synthesis of metallothionein is initiated as the second line of defense. PMID:6212927

  5. Effects of Zinc and Ferritin Levels on Parent and Teacher Reported Symptom Scores in Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Oner, Ozgur; Oner, Pinar; Bozkurt, Ozlem Hekim; Odabas, Elif; Keser, Nilufer; Karadag, Hasan; Kizilgun, Murat

    2010-01-01

    Objective: It has been suggested that both low iron and zinc levels might be associated with Attention Deficit Hyperactivity Disorder (ADHD) symptoms. However, the association of zinc and iron levels with ADHD symptoms has not been investigated at the same time in a single sample. Method: 118 subjects with ADHD (age = 7-14 years, mean = 9.8,…

  6. Aggregative stability of fungicidal nanomodifier based on zinc hydrosilicates

    NASA Astrophysics Data System (ADS)

    Grishina, Anna; Korolev, Evgeniy

    2018-03-01

    Currently, there is a strong need of high performance multi functional materials in high-rise construction. Obviously, such materials should be characterized by high strength; but for interior rooms biosafety is important as well. The promising direction to obtain both high strength and maintain biosafety in buildings and structures is to manage the structure of mineral binders by means of fungicidal nanomodifier based on zinc hydrosilicates. In the present work the aggregative stability of colloidal solutions of zinc hydrosilicates after one year of storage was studied. It has been established that the concentration of iron (III) hydroxide used to prepare the precursor of zinc hydrosilicates has a significant effect on the long-term aggregative stability: as the concentration of iron (III) hydroxide increases, the resistance of the fungicidal nanomodifier increases. It was found that, despite the minimal concentration of nano-sized zinc hydrosilicates (0.028%), the colloidal solution possesses a low long-term aggregative stability; while in the initial period (not less than 14 days) the colloidal solution of the nanomodifier is aggregatively stable. It is shown that when the ratio in the colloidal solution of the amount of the substance CH3COOH / SiO2 = 0.43 is reached, an increase in the polymerization rate is observed, which is the main cause of low aggregative stability. Colloidal solutions containing zinc hydrosilicates synthesized at a concentration of iron (III) hydroxide used to produce a precursor equal to 0.7% have a long-term aggregative stability and do not significantly change the reduced particle. Such compositions are to be expediently used for the nanomodifying of building composites in order to control their structure formation and to create conditions that impede the development of various mycelial fungi.

  7. Transect studies on pine litter organic matter: decomposition and chemical properties of upper soil layers in Polish forests

    Treesearch

    Alicja Breymeyer; Marek Degorski; David Reed

    1998-01-01

    The relationship between litter decomposition rate, some chemical properties of upper soil layers (iron, manganese, zinc, copper, lead, mercury, nickel, chrome in humus-mineral horizon-A), and litter (the same eight elements in needle litter fraction) in pine forests of Poland was studied. Heavy metal content in organic-mineral horizon of soils was highly correlated...

  8. Matrix isolation infrared spectra, assignment and DFT investigation on reactions of iron and manganese monoxides with CH3Cl.

    PubMed

    Zhao, Yanying; Fan, Kexue; Huang, Yongfei; Zheng, Xuming

    2013-12-01

    The reactions of iron and manganese monoxide molecules (FeO, and MnO) with monochloromethane in solid argon have been studied by matrix isolation infrared spectroscopy and quantum chemistry calculations. When annealing, the reactions of FeO and MnO with CH3Cl first form the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes, which can isomerize to CH3MOCl (MMn, Fe) upon 300<λ<580 nm irradiation. The products were characterized by isotopic IR studies with CD3Cl and (13)CH3Cl and density functional calculations. Based on theoretical calculations, the OFe-(η(Cl)-CH3Cl) and OMn-(η(Cl)-CH3Cl) complexes have (5)A' and (6)A' ground state with Cs symmetry, respectively. The accurate CCSD(T) single point calculations illustrate the CH3MOCl isomerism are 13.8 and 3.1 kcal/mol lower in energy than the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Distribution of copper, iron, and zinc in biological samples (scalp hair, serum, blood, and urine) of Pakistani viral hepatitis (A-E) patients and controls.

    PubMed

    Kolachi, Nida Fatima; Kazi, Tasneem Gul; Afridi, Hassan Imran; Kazi, Naveed; Kandhro, Ghulam Abbas; Shah, Abdul Qadir; Baig, Jameel Ahmed; Wadhwa, Sham Kumar; Khan, Sumaira; Shah, Faheem; Jamali, Mohammad Khan; Arain, Mohammad Balal

    2011-10-01

    The aim of the present study was to compare the level of copper (Cu), iron (Fe) and zinc (Zn) in biological samples (serum, blood, urine, and scalp hair) of patients suffering from different viral hepatitis (A, B, C, D, and E; n = 521) of both gender age ranged 31-45 years. For comparative study, 255 age-matched control subjects, of both genders residing in the same city were selected as referents. The elements in the biological samples were analyzed by flame atomic absorption spectrophotometry, prior to microwave-assisted acid digestion. The validity and accuracy of the methodology was checked by using certified reference materials (CRMs) and with those values obtained by conventional wet acid digestion method on same CRMs. The results of this study showed that the mean values of Cu and Fe were higher in blood, sera, and scalp hair samples of hepatitis patients, while Zn level was found to be lower than age-matched control subjects. The urinary levels of these elements were found to be higher in the hepatitis patients than in the age-matched healthy controls (p < 0.05). These results are consistent with literature-reported data, confirming that the deficiency of zinc and hepatic iron and copper overload can directly cause lipid peroxidation and eventually hepatic damage.

  10. FGF23 is correlated with iron status but not with inflammation and decreases after iron supplementation: a supplementation study

    PubMed Central

    2012-01-01

    Background Recent studies have described relationships between iron status and fibroblast growth factor-23 (FGF23) but the possible confounding effects of inflammation on iron status have not been considered. The aims of this study were a) to consider a relationship between FGF23 and inflammation b) to identify relationships between iron status and FGF23 whilst correcting for inflammation and c) to assess the relationship between changes in FGF23 and iron status after supplementation. Study design and methodology Blood samples from an iron supplementation study in children (n=79) were collected at baseline and after 3 months supplementation with iron sulphate. The children were from a rural Gambian population where rates of iron deficiency and infection/inflammation are high. This study identified cross-sectional and longitudinal relationships between FGF23, inflammation (C-reactive protein (CRP)) and iron status (ferritin, haemoglobin, and zinc protoporphyrin). CRP ≥ 5 mg/dL was used to indicate inflammation and FGF23 ≥ 125 RU/mL was considered elevated. Results FGF23 was not significantly correlated with CRP. At baseline, all markers of iron status were significantly correlated with FGF23. Ferritin was the strongest independent inverse predictor of FGF23 in subjects with and without elevated CRP (coefficient (SE)): All subjects=−0.57 (0.12), R2=22.3%, P≤0.0001; subjects with CRP < 5 mg/dL=−0.89 (0.14), R2=38.9%, P≤0.0001. FGF23 was elevated in 28% of children at baseline and 16% post supplementation (P=0.1). Improved iron status was associated with a decrease in FGF23 concentration in univariate (ferritin =−0.41 (0.11), R2=14.1%, P=0.0004; haemoglobin=−2.22 (0.64), R2=12.5%, P=0.0008; zinc protoporphyrin=1.12 (0.26), R2=18.6%, P≤0.0001) and multivariate analysis (R2=33.1%; ferritin=−0.36 (0.10), P=0.0007, haemoglobin = −1.83 (0.61), P=0.004, zinc protoporphyrin=0.62 (0.26), P=0.02). Conclusions Iron status rather than inflammation is a

  11. PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS

    DOEpatents

    Zumwalt, L.R.

    1959-02-10

    A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.

  12. Homeostasis of metals in the progression of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2014-06-01

    In order to study the involvement of metals in the progression of Alzheimer's disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer's disease.

  13. Waste battery treatment options: comparing their environmental performance.

    PubMed

    Briffaerts, K; Spirinckx, C; Van der Linden, A; Vrancken, K

    2009-08-01

    Waste consumer batteries are recycled using different routes based on hydrometallurgical and pyrometallurgical processes. Two hydrometallurgical and two pyrometallurgical treatment scenarios are compared starting from an average composition of Belgian waste batteries. The environmental performance is compared using life cycle analysis (LCA). The recycling rate is studied through mass balance calculation. Each treatment scenario results in a specific recycling rate. The environmental impact and benefits also vary between the treatment options. There is no such thing as a typical hydrometallurgical or pyrometallurgical treatment. When applying a hydrometallurgical treatment scenario, the focus lies on zinc and iron recycling. When allowing manganese recycling, the energy demand of the hydrometallurgical process increases considerably. Both pyrometallurgical options recycle zinc, iron and manganese. According to the LCA, none of the treatment scenarios performs generally better or worse than the others. Each option has specific advantages and disadvantages. The Batteries Directive 2006/66/EC sets out a recycling rate of 50% for consumer waste batteries. Based on metal recycling alone, the mass balances show that the target is difficult to obtain.

  14. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, A.; Djinovic, J.

    2006-10-01

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and leadmore » are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.« less

  15. Reconnaissance of water-quality characteristics of streams in the City of Charlotte and Mecklenburg County, North Carolina

    USGS Publications Warehouse

    Eddins, W.H.; Crawford, J.K.

    1984-01-01

    In 1979-81, water samples were collected from 119 sites on streams throughout the City of Charlotte and Mecklenburg County, North Carolina, and were analyzed for specific conductance, dissolved chloride, hardness, pH, total alkalinity, total phosphorus, trace elements, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver, and zinc and biological measures including dissolved oxygen, biochemical oxygen demand, fecal coliform bacteria, and fecal streptococcus bacteria. Sampling was conducted during both low flow (base flow) and high flow. Several water-quality measures including pH, total arsenic, total cadmium, total chromium, total copper, total iron, total lead, total manganese, total mercury, total silver, total zinc, dissolved oxygen, and fecal coliform bacteria at times exceeded North Carolina water-quality standards in various streams. Runoff from non-point sources appears to contribute more to the deterioration of streams in Charlotte and Mecklenburg County than point-source effluents. Urban and industrial areas contribute various trace elements. Residential and rural areas and municipal waste-water treatment plants contribute high amounts of phosphorus.

  16. Zinc Pyrithione Inhibits Yeast Growth through Copper Influx and Inactivation of Iron-Sulfur Proteins▿†

    PubMed Central

    Reeder, Nancy L.; Kaplan, Jerry; Xu, Jun; Youngquist, R. Scott; Wallace, Jared; Hu, Ping; Juhlin, Kenton D.; Schwartz, James R.; Grant, Raymond A.; Fieno, Angela; Nemeth, Suzanne; Reichling, Tim; Tiesman, Jay P.; Mills, Tim; Steinke, Mark; Wang, Shuo L.; Saunders, Charles W.

    2011-01-01

    Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal. PMID:21947398

  17. Selected Metals in Sediments and Streams in the Oklahoma Part of the Tri-State Mining District, 2000-2006

    USGS Publications Warehouse

    Andrews, William J.; Becker, Mark F.; Mashburn, Shana L.; Smith, S. Jerrod

    2009-01-01

    The abandoned Tri-State mining district includes 1,188 square miles in northeastern Oklahoma, southeastern Kansas, and southwestern Missouri. The most productive part of the Tri-State mining district was the 40-square mile part in Oklahoma, commonly referred to as 'the Picher mining district' in north-central Ottawa County, Oklahoma. The Oklahoma part of the Tri-State mining district was a primary producing area of lead and zinc in the United States during the first half of the 20th century. Sulfide minerals of cadmium, iron, lead, and zinc that remained in flooded underground mine workings and in mine tailings on the land surface oxidized and dissolved with time, forming a variety of oxide, hydroxide, and hydroxycarbonate metallic minerals on the land surface and in streams that drain the district. Metals in water and sediments in streams draining the mining district can potentially impair the habitat and health of many forms of aquatic and terrestrial life. Lakebed, streambed and floodplain sediments and/or stream water were sampled at 30 sites in the Oklahoma part of the Tri-State mining district by the U.S. Geological Survey and the Oklahoma Department of Environmental Quality from 2000 to 2006 in cooperation with the U.S. Environmental Protection Agency, and the Quapaw and Seneca-Cayuga Tribes of Oklahoma. Aluminum and iron concentrations of several thousand milligrams per kilogram were measured in sediments collected from the upstream end of Grand Lake O' the Cherokees. Manganese and zinc concentrations in those sediments were several hundred milligrams per kilogram. Lead and cadmium concentrations in those sediments were about 10 percent and 0.1 percent of zinc concentrations, respectively. Sediment cores collected in a transect across the floodplain of Tar Creek near Miami, Oklahoma, in 2004 had similar or greater concentrations of those metals than sediment cores collected at the upstream end of Grand Lake O' the Cherokees. The greatest concentrations of

  18. Leaching of manganese from electrolytic manganese residue by electro-reduction.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan

    2017-08-01

    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  19. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1987-01-01

    allowed oxidation of ore deposits which, on saturation with water, resulted in poor-quality water that generally contains large concentrations of sulfate and trace metals. Water from mines in the eastern area contained dissolved-solids concentrations of less than 500 mg/L (milligrams per liter), a median pH of 3.9, sulfate concentrations that ranged between 98 and 290 mg/L, and median concentrations for zinc of 37,600 micrograms/L (micrograms per liter), for lead of 240 micrograms/L, for cadmium of 180 micrograms/L, for iron of 70 micrograms/L, for manganese of 240 micrograms/L, and for silica of 15 mg/L. Water from mines in the western area contained dissolved-solids concentrations of generally more than 500 mg/L, a median pH of 6.8, sulfate concentrations that ranged between 170 and 2,150 mg/L, and median concentrations for zinc of 3,200 micrograms/L, for lead of 0 micrograms/L (minimum detection limit is 10 micrograms/L), for cadmium of 6 micrograms/L, for iron of 840 micrograms/L, for manganese of 440 micrograms/L, and for silica of 11 mg/L. No conclusive evidence of lateral migration of water from the mines into domestic well-water supplies in the shallow aquifer was found in the study area in Kansas. Analyses of water from public-supply wells tapping the deep aquifer did not indicate contamination with trace metals, although chemical analyses from four of six wells exhibited increasing trends through time in sulfate concentrations. These increases probably reflect localized leakage of water from the shallow aquifer along corroded or leaky well casings. Effects of abandoned lead and zinc mines on tributaries of the Spring River in the eastern area are most severe in Short Creek. Compared with water samples from three other major streams in the eastern area, a sample collected from Short Creek, 2 miles west of Galena, Kansas, during August 1981, contained the largest concentrations of dissolved sulfate (240 mg/L), zinc (25,000 micrograms/L), ca

  20. Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2002-01-01

    A new method for combining elemental iron and other metals to form an inexpensive ceramic to stabilize arsenic, alkaline red mud wastes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast.