Sample records for zinc oxide nanoparticles

  1. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications.

    PubMed

    Sabir, Sidra; Arshad, Muhammad; Chaudhari, Sunbal Khalil

    2014-01-01

    Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles.

  2. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications

    PubMed Central

    Sabir, Sidra; Arshad, Muhammad

    2014-01-01

    Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles. PMID:25436235

  3. Zinc oxide nanoparticles as selective killers of proliferating cells.

    PubMed

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant.

  4. Zinc oxide nanoparticles as selective killers of proliferating cells

    PubMed Central

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    Background: It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Methods: Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. Results: In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Conclusion: Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant. PMID:21698081

  5. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2018-05-01

    Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

  6. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes.

    PubMed

    Siddiqi, Khwaja Salahuddin; Ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2018-05-08

    Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

  7. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A.

    2017-11-01

    This work presents a study of the effects on the photocatalytic capabilities of zinc oxide nanoparticles when prepared via green synthesis using different fruit peel extracts as reducing agents. Zinc nitrate was used as a source of the zinc ions, while Lycopersicon esculentum (tomato), Citrus sinensis (orange), Citrus paradisi (grapefruit) and Citrus aurantifolia (lemon) contributed their peels for extracts. The Synthesized Samples were studied and characterized through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and High Resolution Transmission Electron Microscopy (HRTEM). All samples presented a band at 618 cm-1, indicating the presence of the Znsbnd O bond. The different samples all presented the same hexagonal crystal growth in their structure, the Wurtzite phase. The surface morphology of the nanoparticles showed that, depending on the extract used, the samples vary in size and shape distribution due to the chemical composition of the extracts. The photocatalytic properties of the zinc oxide samples were tested through UV light aided degradation of methylene blue. Most samples exhibited degradation rates at 180 min of around 97%, a major improvement when compared to chemically synthesized commercially available zinc oxide nanoparticles.

  8. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India.

    PubMed

    Nagarajan, Sangeetha; Arumugam Kuppusamy, Kumaraguru

    2013-12-03

    The biosynthesis of metal nanoparticles by marine resources is thought to be clean, nontoxic, and environmentally acceptable "green procedures". Marine ecosystems are very important for the overall health of both marine and terrestrial environments. The use of natural sources like Marine biological resources essential for nanotechnology. Seaweeds constitute one of the commercially important marine living renewable resources. Seaweeds such as green Caulerpa peltata, red Hypnea Valencia and brown Sargassum myriocystum were used for synthesis of Zinc oxide nanoparticles. The preliminary screening of physico-chemical parameters such as concentration of metals, concentration of seaweed extract, temperature, pH and reaction time revealed that one seaweed S. myriocystum were able to synthesize zinc oxide nanoparticles. It was confirmed through the, initial colour change of the reaction mixture and UV visible spectrophotometer. The extracellular biosynthesized clear zinc oxide nanoparticles size 36 nm through characterization technique such as DLS, AFM, SEM -EDX, TEM, XRD and FTIR. The biosynthesized ZnO nanoparticles are effective antibacterial agents against Gram-positive than the Gram-negative bacteria. Based on the FTIR results, fucoidan water soluble pigments present in S. myriocystum leaf extract is responsible for reduction and stabilization of zinc oxide nanoparticles. by this approach are quite stable and no visible changes were observed even after 6 months. These soluble elements could have acted as both reduction and stabilizing agents preventing the aggregation of nanoparticles in solution, extracellular biological synthesis of zinc oxide nanoparticles of size 36 nm.

  9. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis.

    PubMed

    Taranath, Tarikere C; Patil, Bheemanagouda N

    2016-06-01

    The present investigation was undertaken to synthesize zinc oxide nanoparticles using Limonia acidissima L. and to test their efficacy against the growth of Mycobacterium tuberculosis. The formation of zinc oxide nanoparticles was confirmed with UV-visible spectrophotometry. Fourier transform infrared spectroscopy shows the presence of bio-molecules involved in the stabilization of zinc oxide nanoparticles. The shape and size was confirmed with atomic force microscope, X-ray diffraction, and high resolution transmission electron microscope. These nanoparticles were tested for their effect on the growth of M. tuberculosis through the microplate alamar blue assay technique. The UV-visible data reveal that an absorbance peak at 374nm confirms formation of zinc oxide nanoparticles and they are spherical in shape with sizes between 12nm and 53nm. These nanoparticles control the growth of M. tuberculosis at 12.5μg/mL. Phytosynthesis of zinc oxide nanoparticles is a green, eco-friendly technology because it is inexpensive and pollution free. In the present investigation, based on our results we conclude that the aqueous extract of leaves of L. acidissima can be used for the synthesis of zinc oxide nanoparticles. These nanoparticles control the growth of M. tuberculosis and this was confirmed with the microplate alamar blue method. The potential of biogenic zinc oxide nanoparticles may be harnessed as a novel medicine ingredient to combat tuberculosis disease. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  10. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens.

    PubMed

    Shaalan, Mohamed Ibrahim; El-Mahdy, Magdy Mohamed; Theiner, Sarah; El-Matbouli, Mansour; Saleh, Mona

    2017-07-21

    Antibiotic resistance is a global issue that threatens public health. The excessive use of antibiotics contributes to this problem as the genes of antibiotic resistance can be transferred between the bacteria in humans, animals and aquatic organisms. Metallic nanoparticles could serve as future substitutes for some conventional antibiotics because of their antimicrobial activity. The aim of this study was to evaluate the antimicrobial effects of silver and zinc oxide nanoparticles against major fish pathogens and assess their safety in vitro. Silver nanoparticles were synthesized by chemical reduction and characterized with UV-Vis spectroscopy, transmission electron microscopy and zeta sizer. The concentrations of silver and zinc oxide nanoparticles were measured using inductively coupled plasma-mass spectrometry. Subsequently, silver and zinc oxide nanoparticles were tested for their antimicrobial activity against Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Edwardsiella ictaluri, Edwardsiella tarda, Francisella noatunensis subsp. orientalis, Yersinia ruckeri and Aphanomyces invadans and the minimum inhibitory concentrations were determined. MTT assay was performed on eel kidney cell line (EK-1) to determine the cell viability after incubation with nanoparticles. The interaction between silver nanoparticles and A. salmonicida was investigated by transmission electron microscopy. The tested nanoparticles exhibited marked antimicrobial activity. Silver nanoparticles inhibited the growth of both A. salmonicida and A. invadans at a concentration of 17 µg/mL. Zinc oxide nanoparticles inhibited the growth of A. salmonicida, Y. ruckeri and A. invadans at concentrations of 15.75, 31.5 and 3.15 µg/mL respectively. Silver nanoparticles showed higher cell viability when compared to zinc oxide nanoparticles in the MTT assay. Transmission electron microscopy showed the attachment of silver nanoparticles to the bacterial membrane and disruption of its

  11. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India

    PubMed Central

    2013-01-01

    Background The biosynthesis of metal nanoparticles by marine resources is thought to be clean, nontoxic, and environmentally acceptable “green procedures”. Marine ecosystems are very important for the overall health of both marine and terrestrial environments. The use of natural sources like Marine biological resources essential for nanotechnology. Seaweeds constitute one of the commercially important marine living renewable resources. Seaweeds such as green Caulerpa peltata, red Hypnea Valencia and brown Sargassum myriocystum were used for synthesis of Zinc oxide nanoparticles. Result The preliminary screening of physico-chemical parameters such as concentration of metals, concentration of seaweed extract, temperature, pH and reaction time revealed that one seaweed S. myriocystum were able to synthesize zinc oxide nanoparticles. It was confirmed through the, initial colour change of the reaction mixture and UV visible spectrophotometer. The extracellular biosynthesized clear zinc oxide nanoparticles size 36 nm through characterization technique such as DLS, AFM, SEM –EDX, TEM, XRD and FTIR. The biosynthesized ZnO nanoparticles are effective antibacterial agents against Gram-positive than the Gram-negative bacteria. Conclusion Based on the FTIR results, fucoidan water soluble pigments present in S. myriocystum leaf extract is responsible for reduction and stabilization of zinc oxide nanoparticles. by this approach are quite stable and no visible changes were observed even after 6 months. These soluble elements could have acted as both reduction and stabilizing agents preventing the aggregation of nanoparticles in solution, extracellular biological synthesis of zinc oxide nanoparticles of size 36 nm. PMID:24298944

  12. The development of latent fingerprints by zinc oxide and tin oxide nanoparticles prepared by precipitation technique

    NASA Astrophysics Data System (ADS)

    Luthra, Deepali; Kumar, Sacheen

    2018-05-01

    Fingerprints are the very important evidence at the crime scene which must be developed clearly with shortest duration of time to solve the case. Metal oxide nanoparticles could be the mean to develop the latent fingerprints. Zinc oxide and Tin Oxide Nanoparticles were prepared by using chemical precipitation technique which were dried and characterized by X-ray diffraction, UV-Visible spectroscopy and FTIR. The size of zinc oxide crystallite was found to be 14.75 nm with minimum reflectance at 360 nm whereas tin oxide have the size of 90 nm and reflectance at minimum level 321 nm. By using these powdered samples on glass, plastic and glossy cardboard, latent fingerprints were developed. Zinc oxide was found to be better candidate than tin oxide for the fingerprint development on all the three types of substrates.

  13. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  14. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    NASA Astrophysics Data System (ADS)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  15. Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles.

    PubMed

    Baskar, G; Chandhuru, J; Sheraz Fahad, K; Praveen, A S; Chamundeeswari, M; Muthukumar, T

    2015-01-01

    Demand for developing novel delivery system for cancer treatment has increased due to the side effects present in intravenous injection of L-asparaginase. Nanoparticles are used for delivering the drugs to its destination in cancer cure. Nanobiocomposite of zinc oxide nanoparticles conjugated with L-asparaginase was produced by Aspergillus terreus and was confirmed using maximum UV-Vis absorption at 340 nm in the present work. The presence of functional groups like OH, C-H, -C=N and C=O on the surface of nanobiocomposite was found from Fourier transform infrared spectrum analysis. Size of the produced nanocomposite was found in the range of 28-63 nm using scanning electron microscope. The crystalline nature of the synthesized nanobiocomposites was confirmed by X-ray diffraction analysis. The presence of zinc oxide on synthesized nanobiocomposite was confirmed by energy dispersive spectrum analysis. The anti-cancerous nature of the synthesized zinc oxide conjugated L-asparaginase nanobiocomposite on MCF-7 cell line was studied using MTT assay. The viability of the MCF-7 cells was decreased to 35.02 % when it was treated with L-asparaginase conjugated zinc oxide nanobiocomposite. Hence it is proved that the synthesized nanobiocomposites of zinc oxide conjugated L-asparaginase has good anti-cancerous activity.

  16. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats.

    PubMed

    Nazarizadeh, Ali; Asri-Rezaie, Siamak

    2016-08-01

    In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.

  17. Green Synthesis of Formulated Zinc Oxide Nanoparticles for Chemical Protection of Skin Care and Related Applications

    NASA Astrophysics Data System (ADS)

    Koppolu, Ramya

    Nanomaterials have diversified applications based on the unique properties. These nanoparticles and functionalized nanocomposites have been studied in the health care filed. Nanoparticles are mostly used in sunscreens which are a part of human life. These sunscreens consist of titanium dioxide and zinc oxide nanoparticles. Due to the higher band crevices, they help the skin to protect from ultraviolet rays, for instance, ultraviolet B and ultraviolet A. A series of nanostructured zinc oxide nanoparticles were prepared by cost-effective chemical and bioinspired methods and variables were optimized. Highly stable and spherical zinc oxide nanoparticles were formulated by aloe vera ( Aloe barbadensis) plant extract and avocado (Persea americana Mill) fruit extract. The state-of-the-art instrumentation was used to characterize the morphology, elemental composition, and particle size distribution. X-ray diffraction data indicated highly crystalline and ultrafine nanoparticles were obtained from the colloidal methods. The X-ray photoelectron spectroscopy results showed the chemical state of zinc, carbon, and oxygen atoms were well-indexed and are used as fingerprint identification of the elements. Transmission electron microscopy images show the shape of particles were cubic and fiber shape contingent upon the protecting operators and heat treatment conditions. The toxicity studies of zinc oxide nanoparticles were found to cause an increase in nitric oxide, which is protecting against further oxidative stress and appears to be nontoxic.

  18. Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P, Sharmila P, E-mail: sharmilavishram@gmail.com; Tharayil, Nisha J., E-mail: nishajohntharayil@gmail.com

    Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of bothmore » AC and DC conductivity are studied and activation energy calculated.« less

  19. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route.

    PubMed

    Happy Agarwal; Soumya Menon; Venkat Kumar, S; Rajeshkumar, S

    2018-04-25

    A large array of diseases caused by bacterial pathogens and origination of multidrug resistance in their gene provokes the need of developing new vectors or novel drug molecules for effective drug delivery and thus, better treatment of disease. The nanoparticle has emerged as a novel drug molecule in last decade and has been used in various industrial fields like cosmetics, healthcare, agricultural, pharmaceuticals due to their high optical, electronic, medicinal properties. Use of nanoparticles as an antibacterial agent remain in current studies with metal nanoparticles like silver, gold, copper, iron and metal oxide nanoparticles like zinc oxide, copper oxide, titanium oxide and iron oxide nanoparticles. The high anti-bacterial activity of nanoparticles is due to their large surface area to volume ratio which allows binding of a large number of ligands on nanoparticle surface and hence, its complexation with receptors present on the bacterial surface. Green synthesis of Zinc Oxide Nanoparticle (ZnO NP) and its anti-bacterial application has been particularly discussed in the review literature. The present study highlights differential nanoparticle attachment to gram + and gram - bacterial surface and different mechanism adopted by nanoparticle for bacterial control. Pharmacokinetics and applications of ZnO NP are also discussed briefly. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Diatom frustules decorated with zinc oxide nanoparticles for enhanced optical properties

    NASA Astrophysics Data System (ADS)

    Lamastra, F. R.; Grilli, M. L.; Leahu, G.; Belardini, A.; Li Voti, R.; Sibilia, C.; Salvatori, D.; Cacciotti, I.; Nanni, F.

    2017-09-01

    Zinc oxide (ZnO) nanoparticles were synthesized on diatomite (DE) surface by a low temperature sol gel technique, starting from zinc acetate dihydrate (Zn(CH3COO)2 · 2H2O) solution in water/ethyl alcohol, in presence of triethanolamine (TEA) with functions of Zn2+ chelating agent, catalyst and mediator of nanoparticle growth on DE surface. Microstructural features were investigated by field emission scanning electron microscopy and x-ray diffraction. ZnO crystalline nanoparticles, well distributed both on the surface and into the porous architecture of diatomite, were obtained just after the synthesis carried out at 80 °C without the need of calcination treatments. The optical properties of ZnO/DE hybrid powders were measured for the first time by means of photoacoustic spectroscopy (PAS). A new method to retrieve both the optical absorption and scattering coefficients from PAS is here discussed for powder aggregates. The fingerprint of the zinc oxide nanoparticles has been highlighted in the Mie scattering resonance in the UV-Vis range, and in the enhancement of the optical absorption with respect to diatomite.

  1. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    PubMed

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property

    NASA Astrophysics Data System (ADS)

    Chauhan, Ritika; Reddy, Arpita; Abraham, Jayanthi

    2015-01-01

    The development of eco-friendly alternative to chemical synthesis of metal nanoparticles is of great challenge among researchers. The present study aimed to investigate the biological synthesis, characterization, antimicrobial study and synergistic effect of silver and zinc oxide nanoparticles against clinical pathogens using Pichia fermentans JA2. The extracellular biosynthesis of silver and zinc oxide nanoparticles was investigated using Pichia fermentans JA2 isolated from spoiled fruit pulp bought in Vellore local market. The crystalline and stable metallic nanoparticles were characterized evolving several analytical techniques including UV-visible spectrophotometer, X-ray diffraction pattern analysis and FE-scanning electron microscope with EDX-analysis. The biosynthesized metallic nanoparticles were tested for their antimicrobial property against medically important Gram positive, Gram negative and fungal pathogenic microorganisms. Furthermore, the biosynthesized nanoparticles were also evaluated for their increased antimicrobial activities with various commercially available antibiotics against clinical pathogens. The biosynthesized silver nanoparticles inhibited most of the Gram negative clinical pathogens, whereas zinc oxide nanoparticles were able to inhibit only Pseudomonas aeruginosa. The combined effect of standard antibiotic disc and biosynthesized metallic nanoparticles enhanced the inhibitory effect against clinical pathogens. The biological synthesis of silver and zinc oxide nanoparticles is a novel and cost-effective approach over harmful chemical synthesis techniques. The metallic nanoparticles synthesized using Pichia fermentans JA2 possess potent inhibitory effect that offers valuable contribution to pharmaceutical associations.

  3. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with themore » proposed models.« less

  5. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    PubMed

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity

    NASA Astrophysics Data System (ADS)

    Zare, Elham; Pourseyedi, Shahram; Khatami, Mehrdad; Darezereshki, Esmaeel

    2017-10-01

    Nanoparticles with antimicrobial activity, especially as a new class of biomedical materials for use in increasing the level of public health in daily life have emerged. In this study, green synthesis of zinc oxide) ZnO(nanoparticles was studied by Cuminum cyminum (cumin) as novel natural source and zinc nitrate [Zn(NO3)2] as Zn2+ source. The results showed that parameters such as concentration, time, temperature and pH have a direct impact on the synthesis of zinc nanoparticles and change in any of the factors causing the change in the process of synthesis. The properties of synthesized nanoparticles were examined by UV-visible Spectrophotometer, X-ray diffraction spectroscopy and transmission electron microscopy (TEM). The UV-visible spectroscopy presented the absorption peak in the range of 370 nm. Transmission electron microscopy images of synthesized nanoparticles are mainly spherical or oval with an average size of about 7 nm. The effect of antimicrobial nanoparticles calculated using disk diffusion method and broth MIC and MBC in different strains of bacteria, which showed that gram positive and negative were sensitive to zinc oxide nanoparticles. The sensitivity of gram-negative bacteria was more.

  7. [Efficacy of using zinc oxide nanoparticles in nutrition. Experiments on the laboratory animal].

    PubMed

    Raspopov, R V; Trushina, E N; Mustafina, O K; Tananova, O N; Gmoshinskiĭ, I V; Khotimchenko, S A

    2011-01-01

    In experiments on rats there was researched bioavailability of zinc oxide (ZnO) nanoparticles. There were determined the content of Zn in blood serum and tibia, intestinal uptake of macromolecules of egg albumin, some hematological, biochemical and immune indices, liver cells apoptosis. The results obtained show that the uptake of nanoparticles of ZnO enables restoration of this microelement status damaged by zinc deficit diet.

  8. Effect of the temperature on structural and optical properties of zinc oxide nanoparticles.

    PubMed

    Hadia, N M A; García-Granda, Santiago; García, José R

    2014-07-01

    Zinc nitrate hexahydrate, Zn(NO3)2 x 6H2O was used as a precursor with urea NH2CONH2 to prepare hydrozincite Zn5(CO3)2(OH)6 powder using hydrothermal method for 8 h at 90 degrees C. Zinc oxide (ZnO) nanoparticles (NPs) were prepared by thermal annealing of hydrozincite powder at different annealing temperatures, i.e., 350, 550 750 and 950 degrees C in air for 2 h. The resulting materials were characterized by X-ray diffraction, scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). The optical properties of the products were characterized by Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy and photoluminescence (PL) spectra. It was found that the particle size increased from - 33 to 250 nm with increasing in the annealing temperatures. FTIR results showed that the standard peaks of zinc oxide were presented at 428.17 and 532.32 cm(-1). Thermal analysis study showed that the primary weight loss starts at - 93 degrees C is due to solvent evaporation. The secondary weight loss, observed at - 378 degrees C, is due to phase transition from hydrated zinc oxide to zinc oxide. The band gaps of the products were in the range - 3.26-3.30 eV. The PL spectrum showed that the as-synthesized ZnO nanoparticles had UV (381 nm) and green (537 nm) emissions.

  9. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension.

    PubMed

    Scheckel, Kirk G; Luxton, Todd P; El Badawy, Amro M; Impellitteri, Christopher A; Tolaymat, Thabet M

    2010-02-15

    Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and surface chemistry. Changing these basic characteristics of nanoparticles may result in a final reaction product that is significantly different than the initial nanomaterial. As such, basing long-term risk and toxicity on the initial properties of a nanomaterial may lead to erroneous conclusions if nanoparticles change upon release to the environment. The influence of aging on the speciation and chemical stability of silver and zinc oxide nanoparticles in kaolin suspensions was examined in batch reactors for up to 18 months. Silver nanoparticles remained unchanged in sodium nitrate suspensions; however, silver chloride was identified with the metallic silver nanoparticles in sodium chloride suspensions and may be attributed to an in situ silver chloride surface coating. Zinc oxide nanoparticles were rapidly converted via destabilization/dissolution mechanisms to Zn(2+) inner-sphere sorption complexes within 1 day of reaction and these sorption complexes were maintained through the 12 month aging processes. Chemical and physical alteration of nanomaterials in the environment must be examined to understand fate, mobility, and toxicology.

  10. Functionalization of textiles with silver and zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pulit-Prociak, Jolanta; Chwastowski, Jarosław; Kucharski, Arkadiusz; Banach, Marcin

    2016-11-01

    The paper presents a method for functionalization of textile materials using fabric dyes modified with silver or zinc oxide nanoparticles. Embedding of these nanoparticles into the structure of other materials makes that the final product is characterized by antimicrobial properties. Indigo and commercially available dye were involved in studies. It is worth to note that silver nanoparticles were obtained in-situ in the reaction of preparing indigo dye and in the process of preparing commercial dye baths. Such a method allows reducing technological steps. The modified dyes were used for dyeing of cotton fibers. The antimicrobial properties of final textile materials were studied. Saccharomyces cerevisiae strain was used in microbiological test. The results confirmed biocidal activity of prepared materials.

  11. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles

    PubMed Central

    Baek, Miri; Chung, Hae-Eun; Yu, Jin; Lee, Jung-A; Kim, Tae-Hyun; Oh, Jae-Min; Lee, Won-Jae; Paek, Seung-Min; Lee, Jong Kwon; Jeong, Jayoung; Choy, Jin-Ho; Choi, Soo-Jin

    2012-01-01

    Background This study explored the pharmacokinetics, tissue distribution, and excretion profile of zinc oxide (ZnO) nanoparticles with respect to their particle size in rats. Methods Two ZnO nanoparticles of different size (20 nm and 70 nm) were orally administered to male and female rats, respectively. The area under the plasma concentration-time curve, tissue distribution, excretion, and the fate of the nanoparticles in organs were analyzed. Results The plasma zinc concentration of both sizes of ZnO nanoparticles increased during the 24 hours after administration in a dose-dependent manner. They were mainly distributed to organs such as the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender. Elimination kinetics showed that a small amount of ZnO nanoparticles was excreted via the urine, while most of nanoparticles were excreted via the feces. Transmission electron microscopy and x-ray absorption spectroscopy studies in the tissues showed no noticeable ZnO nanoparticles, while new Zn-S bonds were observed in tissues. Conclusion ZnO nanoparticles of different size were not easily absorbed into the bloodstream via the gastrointestinal tract after a single oral dose. The liver, lung, and kidney could be possible target organs for accumulation and toxicity of ZnO nanoparticles was independent of particle size or gender. ZnO nanoparticles appear to be absorbed in the organs in an ionic form rather than in a particulate form due to newly formed Zn-S bonds. The nanoparticles were mainly excreted via the feces, and smaller particles were cleared more rapidly than the larger ones. ZnO nanoparticles at a concentration below 300 mg/kg were distributed in tissues and excreted within 24 hours. These findings provide crucial information on possible acute and chronic toxicity of ZnO nanoparticles in potential target organs. PMID:22811602

  12. The Green Synthesis and Evaluation of Silver Nanoparticles and Zinc Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gebear-Eigzabher, Bellsabel

    Nanoparticle (NP) research has received exceptional attention as the field of study that contributes to transforming the world of materials science. When implementing NPs in consumer and industrial products, their unique properties improve technologies to the extent of significant game-changing breakthroughs. Conversely, the increased production of NPs, their use, their disposal or inadvertent release in the environment drove the need for processes and policies that ensures consumer and environmental safety. Mitigation of any harmful effects that NPs could potentially have combines methods of safe preparation, safe handling and safe disposal as well as containment of any inadvertent release. Our focus is in safe preparation of nanomaterials and we report green and energy efficient synthesis methods for metal NPs and metal oxide NPs of two popular materials: silver (Ag) and zinc oxide (ZnO). The thesis explained: 1) The impact of NPs in nowadays' world; 2) Synthesis methods that were designed to include environmentally-friendly staring materials and energy-saving fabrication processes, with emphasis on maintaining NPs final size and morphology when compared with existing methods; and 3) Nanoparticles characterization and data collection which allowed us to determine and/or validate their properties. Nanoparticles were studied using transmission electron microscope (TEM), X-Ray powder diffraction (XRD), low-voltage (5 keV) transmission electron microscopy (LV EM 5), Fourier-Transform Infrared Spectroscopy (FT-IR), and Ultraviolet-Visible (UV-Vis) spectroscopy. We developed an aqueous-based preparation of zinc oxide nanoparticles (ZnO NPs) using microwave-assisted chemistry to render a well-controlled particle size distribution within each set of reaction conditions in the range of 15 nm to 75 nm. We developed a scalable silver nanoparticles synthesis by chemical reduction methods. The NPs could be used in consumer products. The measurement tools for consumer products

  13. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection.

    PubMed

    Gutiérrez-Hernández, José Manuel; Escalante, Alfredo; Murillo-Vázquez, Raquel Nalleli; Delgado, Ezequiel; González, Francisco Javier; Toríz, Guillermo

    2016-10-01

    The use of sunscreens is essential for preventing skin damage and the potential appearance of skin cancer in humans. Inorganic active components such as zinc oxide (ZnO) have been used commonly in sunscreens due to their ability to block UVA radiation. This ultraviolet (UV) protection might be enhanced to cover the UVB and UVC bands when combined with other components such as titanium dioxide (TiO2). In this work we evaluate the photoprotection properties of organic nanoparticles made from lignin in combination with ZnO nanoparticles as active ingredients for sunscreens. Lignin nanoparticles were synthesized from Agave tequilana lignin. Two different pulping methods were used for dissolving lignin from agave bagasse. ZnO nanoparticles were synthesized by the precipitation method. All nanoparticles were characterized by SEM, UV-Vis and FT-IR spectroscopy. Nanoparticles were mixed with a neutral vehicle in different concentrations and in-vitro sun protection factor (SPF) values were calculated. Different sizes of spherical lignin nanoparticles were obtained from the spent liquors of two different pulping methods. ZnO nanoparticles resulted with a flake shape. The mixture of all components gave SPF values in a range between 4 and 13. Lignin nanoparticles showed absorption in the UVB and UVC regions which can enhance the SPF value of sunscreens composed only of zinc oxide nanoparticles. Lignin nanoparticles have the added advantage of being of organic nature and its brown color can be used to match the skin tone of the person using it. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo

    2017-12-01

    Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.

  15. Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Samreen Heena, E-mail: samreen.heena.khan@gmail.com; Suriyaprabha, R.; Pathak, Bhawana, E-mail: bhawana.pathak@cug.ac.in

    With the miniaturization of crystal size, the fraction of under-coordinated surface atoms becomes dominant, and hence, materials in the nano-regime behave very differently from the similar material in a bulk. Zinc oxide (ZnO), particularly, exhibits extraordinary properties such as a wide direct band gap (3.37 eV), large excitation binding energy (60 meV), low refractive index (1.9), stability to intense ultraviolet (UV) illumination, resistance to high-energy irradiation, and lower toxicity as compared to other semiconductors. This very property makes Zinc Oxide a potential candidate in many application fields, particularly as a prominent semiconductor. Zinc Oxide plays a significant role in manymore » technological advances with its application in semiconductor mediated photocatalytic processes and sensor, solar cells and others. In present study, Zinc Oxide (ZnO) has been synthesized using three different precursors by sonochemical method. Zinc Acetate Dihydrate, Zinc Nitrate Hexahydrate and Zinc Sulphate Heptahydrate used as a precursor for the synthesis process. The synthesized ZnO nanoparticle has been found under the range of ∼50 nm. Zinc oxide nanoparticles were characterized using different characterizing tools. The as-synthesized ZnO was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) for the determination of functional group; Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) for Morphology and elemental detection respectively, Transmission Electron Microscopy for Particle size distribution and morphology and X-Ray Diffraction (XRD) for the confirmation of crystal structure of the nanomaterial. The optical properties of the ZnO were examined by UV-VIS spectroscopy equipped with Diffuse Reflectance spectroscopy (DRS) confirmed the optical band gap of ZnO-3 around 3.23 eV resembles with the band gap of bulk ZnO (3.37eV). The TEM micrograph of the as-synthesized material showed perfectly spherical

  16. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities

    NASA Astrophysics Data System (ADS)

    Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig

    2018-03-01

    In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.

  17. Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves

    NASA Astrophysics Data System (ADS)

    Kavitha, S.; Dhamodaran, M.; Prasad, Rajendra; Ganesan, M.

    2017-04-01

    Zinc oxide (ZnO) nanoparticles have been widely employed for various pharmacological applications. Several approaches were tried to synthesize ZnO nanoparticles. In this study, ZnO nanoparticles were biosynthesized using terpenoid (TAP) fractions isolated from Andrographis paniculata leaves. Subsequently, the ZnNO3 (0.1 N) is treated with the isolated TAP fractions to biosynthesize zinc oxide nanoparticles (Zn-TAP NPs). This nanoparticle preparation has been confirmed by the colour change from green to cloudy-white and the peak at 300 nm by UV-Visible spectra. FTIR analysis of Zn-TAP NPs showed the presence of functional group (i.e.) C=O which has further been confirmed by H1-NMR studies. From SEM and XRD analysis, it has been found that the hexagonal nanorod particle is 20.23 nm in size and +17.6 mV of zeta potential. Hence, it can be easily absorbed by negatively charged cellular membrane to contribute for efficient intracellular distribution. Therefore, it is suggested that the synthesised Zn-TAP NPs are more suitable in drug delivery processes.

  18. Effect of zinc oxide nanoparticles on dielectric behavior of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Kumar, Pankaj; Malik, Praveen

    2018-05-01

    In this work, phase transition and dielectric behavior of nematic liquid crystal (NLC), E7 and zinc oxide (ZnO) nanoparticles (NPs) doped nematic liquid crystals are investigated. Effect of nano-particles dispersion is analyzed and compared with the dielectric behavior of E7 and E7-ZnO. Frequency dependent dielectric permittivity at various temperatures in nematic phase for E7 and E7-ZnO sample is also studied.

  19. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system

    NASA Astrophysics Data System (ADS)

    Tang, Erjun; Cheng, Guoxiang; Ma, Xiaolu; Pang, Xingshou; Zhao, Qiang

    2006-05-01

    Commercial zinc oxide nanoparticles were modified by polymethacrylic acid (PMAA) in aqueous system. The hydroxyl groups of nano-ZnO particle surface can interact with carboxyl groups (COO-) of PMAA and form poly(zinc methacrylate) complex on the surface of nano-ZnO. The formation of poly(zinc methacrylate) complex was testified by Fourier-transform infrared spectra (FT-IR). Thermogravimetric analysis (TGA) indicated that PMAA molecules were absorbed or anchored on the surface of nano-ZnO particle, which facilitated to hinder the aggregation of nano-ZnO particles. Through particle size analysis and transmission electron micrograph (TEM) observation, it was found that PMAA enhanced the dispersibility of nano-ZnO particles in water. The dispersion stabilization of modified ZnO nanoparticles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nanoparticles. The modification did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns.

  20. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  1. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@yahoo.com; Najafi, Farhood

    2012-07-15

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticlemore » (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.« less

  2. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction

    PubMed Central

    Choi, Soo-Jin; Choy, Jin-Ho

    2014-01-01

    Biokinetic studies of zinc oxide (ZnO) nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. PMID:25565844

  3. Resistance of extremely halophilic archaea to zinc and zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Bhakti B.; Das, Deepthi; Bragança, Judith Maria

    2016-02-01

    Industrialization as well as other anthropogenic activities have resulted in addition of high loads of metal and/or metal nanoparticles to the environment. In this study, the effect of one of the widely used heavy metal, zinc (Zn) and zinc oxide nanoparticles (ZnO NPs) on extremely halophilic archaea was evaluated. One representative member from four genera namely Halococcus, Haloferax, Halorubrum and Haloarcula of the family Halobacteriaceae was taken as the model organism. All the haloarchaeal genera investigated were resistant to both ZnCl2 and ZnO NPs at varying concentrations. Halococcus strain BK6 and Haloferax strain BBK2 showed the highest resistance in complex/minimal medium of up to 2.0/1.0 mM ZnCl2 and 2.0/1.0-0.5 mM ZnO NP. Accumulation of ZnCl2/ZnO NPs was seen as Haloferax strain BBK2 (287.2/549.6 mg g-1) > Halococcus strain BK6 (165.9/388.5 mg g-1) > Haloarcula strain BS2 (93.2/28.5 mg g-1) > Halorubrum strain BS17 (29.9/16.2 mg g-1). Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX) analysis revealed that bulk ZnCl2 was sorbed at a higher concentration (21.77 %) on the cell surface of Haloferax strain BBK2 as compared to the ZnO NPs (14.89 %).

  4. Synthesis and characterization of copper zinc oxide nanoparticles obtained via metathesis process

    NASA Astrophysics Data System (ADS)

    Phoohinkong, Weerachon; Foophow, Tita; Pecharapa, Wisanu

    2017-09-01

    Copper-doped zinc oxide nanoparticles were successfully synthesized by grinding copper acetate and zinc acetate powder with different starting molar ratios in combined with sodium hydroxide. The effect of initial copper and zinc molar ratios on the product samples was investigated and discussed. Relevant ligand coordination type of reactant acetate salt precursors and product samples were investigated by Fourier transform infrared spectroscopy (FTIR). The particle shapes and surface morphologies were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Phase structures of prepared samples were studied by x-ray powder diffraction (XRD) and x-ray absorption near-edge spectroscopy (XANES) was applied to investigate the local structure of Cu and Zn environment atoms. The results demonstrate that the, particle size of as-synthesized products affected by copper concentration in the precursor trend to gradually decreases from nanorod shape with diameter around 50-100 nm to irregular particle structure around 5 nm associated with an increase in the concentration of copper in precursor. Moreover, it is noticed that shape and morphology of the products are strongly dependent on Cu:Zn ratios during the synthesis. Nanocrystallines Cu-doped ZnO by the substitution in Zn site with a high crystallization degree of hexagonal wurtzite structure were obtained. This synthesis technique is suggested as a potential effective technique for preparing copper zinc oxide nanoparticles with various atomic ratio in wide range of applications. Contribution at the 4th Southeast Asia Conference on Thermoelectrics 2016 (SACT 2016), 15-18 December 2016, Da Nang City, Vietnam.

  5. Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications

    PubMed Central

    Rasmussen, John W.; Martinez, Ezequiel; Louka, Panagiota; Wingett, Denise G.

    2010-01-01

    Importance of the field Metal oxide nanoparticles, including zinc oxide, are versatile platforms for biomedical applications and therapeutic intervention. There is an urgent need to develop new classes of anticancer agents, and recent studies demonstrate that ZnO nanomaterials hold considerable promise. Areas covered in this review This review analyzes the biomedical applications of metal oxide and ZnO nanomaterials under development at the experimental, preclinical, and clinical levels. A discussion regarding the advantages, approaches, and limitations surrounding the use of metal oxide nanoparticles for cancer applications and drug delivery is presented. The scope of this article is focused on ZnO, and other metal oxide nanomaterial systems, and their proposed mechanisms of cytotoxic action, as well as current approaches to improve their targeting and cytotoxicity against cancer cells. Take home message Through a better understanding of the mechanisms of action and cellular consequences resulting from nanoparticles interactions with cells, the inherent toxicity and selectivity of ZnO nanoparticles against cancer may be further improved to make them attractive new anti-cancer agents. PMID:20716019

  6. Differential Regulation of Gene and Protein Expression by Zinc Oxide Nanoparticles in Hen's Ovarian Granulosa Cells: Specific Roles of Nanoparticles.

    PubMed

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Shen, Wei; Liu, Jing; Yang, Fen-Fang; Liu, Hong-Bo; Hao, Zhi-Hui

    2015-01-01

    Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs) are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs) research. Genes are very important players however proteins are the real actors in the biological systems. By using hen's ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways.

  7. Green Approach for Fabrication and Applications of Zinc Oxide Nanoparticles

    PubMed Central

    Smita, Kumari; Cumbal, Luis

    2014-01-01

    Zinc oxide nanoparticles (ZnO-NPs) are known to be one of the multifunctional inorganic compounds which are widely used in everyday applications. This study aims to fabricate ZnO-NPs using grapefruit (Citrus paradisi) peel extract with particle size ranging from 12 to 72 nm. Structural, morphological, and optical properties of the synthesized nanoparticles have been characterized by using UV-Vis spectrophotometer, TEM, DLS, and FTIR analysis. They show the significant photocatalytic degradation efficiency (>56%, 10 mg/L, 6 h) against methylene blue and antioxidant efficacy (≥80% for 1.2 mM) against 1,1-diphenyl-2-picrylhydrazyl. From the results obtained it is suggested that green ZnO-NPs could be used effectively in environmental safety applications and also can address future medical concerns. PMID:25374484

  8. Green approach for fabrication and applications of zinc oxide nanoparticles.

    PubMed

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis

    2014-01-01

    Zinc oxide nanoparticles (ZnO-NPs) are known to be one of the multifunctional inorganic compounds which are widely used in everyday applications. This study aims to fabricate ZnO-NPs using grapefruit (Citrus paradisi) peel extract with particle size ranging from 12 to 72 nm. Structural, morphological, and optical properties of the synthesized nanoparticles have been characterized by using UV-Vis spectrophotometer, TEM, DLS, and FTIR analysis. They show the significant photocatalytic degradation efficiency (>56%, 10 mg/L, 6 h) against methylene blue and antioxidant efficacy (≥80% for 1.2 mM) against 1,1-diphenyl-2-picrylhydrazyl. From the results obtained it is suggested that green ZnO-NPs could be used effectively in environmental safety applications and also can address future medical concerns.

  9. Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L. - An endemic species

    NASA Astrophysics Data System (ADS)

    Murali, M.; Mahendra, C.; Nagabhushan; Rajashekar, N.; Sudarshana, M. S.; Raveesha, K. A.; Amruthesh, K. N.

    2017-05-01

    Zinc oxide nanoparticles (ZnO-NPs) were synthesized for the first time from any of the species of Ceropegia. Presently, ZnO-NPs were synthesized from the leaf extract of Ceropegia candelabrum with zinc nitrate using a simple hydrothermal process. The synthesized ZnO-NPs showed an absorption peak at 320 nm which is one of the characteristic features of ZnO-NPs. The FT-IR characterization revealed a spectrum band at 551.93 cm- 1 corresponding to the functional group metal oxide. SEM images showed agglomeration of nanoparticles with a hexagonal shape. XRD results are in corroboration with SEM images as the synthesized particles were of hexagonal wurtzite shape and the size of the particles was in the range of 12-35 nm calculated using Scherrer's formula. The elemental analysis using EDS confirmed high zinc content of 70.48% stating that the process of biosynthesis of nanoparticles was carried out in accordance. The biosynthesized ZnO-NPs offered significant antibacterial potential against S. aureus, B. subtilis, E. coli and S. typhi. The antioxidant results revealed significant (p ≤ 0.05) RSA from 0% to 55.43% (IC50 = 95.09 μg mL- 1). The results affirm that biosynthesized ZnO-NPs can be used as an alternative to present-day chemical compounds.

  10. Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms.

    PubMed

    Dhas, Sindhu Priya; Shiny, Punalur John; Khan, Sudheer; Mukherjee, Amitava; Chandrasekaran, Natrajan

    2014-09-01

    Silver and zinc oxide nanoparticles (Ag and ZnO NPs) are widely used as antimicrobial agents. However, their potential toxicological impact on environmental microorganisms is largely unexplored. The aim of this work was to investigate the sensitivity and adaptability of five bacterial species isolated from sewage towards Ag and ZnO NPs. The bacterial species were exposed to increasing concentration of nanoparticles and the growth inhibitory effect, exopolysaccharides (EPSs) and extracellular proteins (ECPs) productions were determined. The involvement of surface charge in nanoparticles toxicity was also determined. The bacterial species were constantly exposed to nanoparticles to determine the adaptation behavior toward nanoparticles. The nanoparticles exhibited remarkable growth inhibitory effect on tested bacterial species. The toxicity of nanoparticles was found to be strongly dependent on surface charge effects. Though, these organisms are highly sensitive to Ag and ZnO NPs, the continuous exposure to these nanoparticles leads to moderate adaptation of bacterial species and the adapted bacterial species convert the highly toxic nano form to less toxic microform. Finally we predict that the continuing applications of nanoparticles in consumer products may lead to the development of nanoparticles resistant bacterial strains in future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures

    USGS Publications Warehouse

    Croteau, M.-N.; Dybowska, A.D.; Luoma, S.N.; Valsami-Jones, E.

    2011-01-01

    If engineered nanomaterials are released into the environment, some are likely to end up associated with the food of animals due to aggregation and sorption processes. However, few studies have considered dietary exposure of nanomaterials. Here we show that zinc (Zn) from isotopically modified 67ZnO particles is efficiently assimilated by freshwater snails when ingested with food. The 67Zn from nano-sized 67ZnO appears as bioavailable as 67Zn internalized by diatoms. Apparent agglomeration of the zinc oxide (ZnO) particles did not reduce bioavailability, nor preclude toxicity. In the diet, ZnO nanoparticles damage digestion: snails ate less, defecated less and inefficiently processed the ingested food when exposed to high concentrations of ZnO. It was not clear whether the toxicity was due to the high Zn dose achieved with nanoparticles or to the ZnO nanoparticles themselves. Further study of exposure from nanoparticles in food would greatly benefit assessment of ecological and human health risks. ?? 2011 Informa UK, Ltd.

  12. Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.

    PubMed

    Santos, Lídia; Nunes, Daniela; Calmeiro, Tomás; Branquinho, Rita; Salgueiro, Daniela; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2015-01-14

    Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

  13. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation.

    PubMed

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok

    2016-09-01

    Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Reusability Performance of Zinc Oxide Nanoparticles for Photocatalytic Degradation of POME

    NASA Astrophysics Data System (ADS)

    Zarifah Zainuri, Nur; Hanis Hayati Hairom, Nur; Abu Bakar Sidik, Dilaelyana; Misdan, Nurasyikin; Yusof, Norhaniza; Wahab Mohammad, Abdul

    2018-03-01

    Performance and reusability of different zinc oxide nanoparticles (ZnO-PVP and ZnO-PEG) for photocatalytic degradation of palm-mill oil effluent (POME) has been studied. The nanoparticles properties were characterised with fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM results show that ZnO-PEG nanoparticles exhibit the smaller size than ZnO-PVP with less agglomeration. It was found that ZnO-PEG shows better effectiveness than ZnO-PVP in reducing turbidity, colour and increasing the dissolved oxygen (DO). By using two types of reusability methods: (a) oven drying (b) hot water rinsing, the oven drying method portrayed the most efficient route for POME treatment. This research would be a solution to the palm oil industry for photocatalyst recovering as well as reduction of the chemical usage in order to meet the development of advanced and greener technologies.

  15. Differential Regulation of Gene and Protein Expression by Zinc Oxide Nanoparticles in Hen’s Ovarian Granulosa Cells: Specific Roles of Nanoparticles

    PubMed Central

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Shen, Wei; Liu, Jing; Yang, Fen-Fang; Liu, Hong-Bo; Hao, Zhi-Hui

    2015-01-01

    Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs) are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs) research. Genes are very important players however proteins are the real actors in the biological systems. By using hen’s ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways. PMID:26460738

  16. Study of physical properties of metal oxide nanoparticles obtained in acoustoplasma discharge

    NASA Astrophysics Data System (ADS)

    Bulychev, N. A.; Kazaryan, M. A.; Zakharyan, A. R.; Bodryshev, V. V.; Kirichenko, M. N.; Shevchenko, S. N.; Yakunin, V. G.; Timoshenko, V. Y.; Bychenko, A. B.

    2018-04-01

    Nanoparticles of tungsten, copper, iron, and zinc oxides were synthesized in acoustoplasma discharge. Their size distribution was studied by electron microscopy and laser correlation spectroscopy. Ultrasound was found to narrow significantly the size distribution width of zinc oxide nanoparticles. Water suspensions of zinc oxide nanoparticles showed photoluminescence in red and near infrared spectral ranges, which makes them a promising material for luminescent diagnostics of biological systems.

  17. Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sadhan Kumar; Malodia, Lalit

    2017-11-01

    Green synthesis of zinc oxide nanoparticles was carried out using Calotropis leaf extract with zinc acetate salt in the presence of 2 M NaOH. The combination of 200 mM zinc acetate salt and 15 ml of leaf extract was ideal for the synthesis of less than 20 nm size of highly monodisperse crystalline nanoparticles. Synthesized nanoparticles were characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), EDX (energy dispersive X-ray), and AFM (atomic force microscopy). Effects of biogenic zinc oxide (ZnO) nanoparticles on growth and development of tree seedlings in nursery stage were studied in open-air trenches. The UV-Vis absorption maxima showed peak near 350 nm, which is characteristic of ZnO nanoparticles. DLS data showed that single peak is at 11 nm (100%) and Polydispersity Index is 0.245. XRD analysis showed that these are highly crystalline ZnO nanoparticles having an average size of 10 nm. FTIR spectra were recorded to identify the biomolecules involved in the synthesis process, which showed absorption bands at 4307, 3390, 2825, 871, 439, and 420 cm-1. SEM images showed that the particles were spherical in nature. The presence of zinc and oxygen was confirmed by EDX and the atomic % of zinc and oxygen were 33.31 and 68.69, respectively. 2D and 3D images of ZnO nanoparticles were obtained by AFM studies, which indicated that these are monodisperse having size ranges between 1.5 and 8.5 nm. Significant enhancement of growth was observed in Neem ( Azadirachta indica), Karanj ( Pongamia pinnata), and Milkwood-pine ( Alstonia scholaris) seedlings in foliar spraying ZnO nanoparticles to nursery stage of tree seedlings. Out of the three treated saplings, Alstonia scholaris showed maximum height development.

  18. Heterostructured nanohybrid of zinc oxide-montmorillonite clay.

    PubMed

    Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Hwang, Sung-Ho; Yang, Jae Hun; Choy, Jin-Ho

    2006-02-02

    We have synthesized heterostructured zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and the sol solution of zinc acetate. According to X-ray diffraction, N2 adsorption-desorption isotherm, and field emission-scanning electron microscopic analyses, it was found that the intercalation of zinc oxide nanoparticles expands the basal spacing of the host montmorillonite clay, and the crystallites of the nanohybrids are assembled to form a house-of-cards structure. From UV-vis spectroscopic investigation, it becomes certain that calcined nanohybrid contains two kinds of the zinc oxide species in the interlayer space of host lattice and in mesopores formed by the house-of-cards type stacking of the crystallites. Zn K-edge X-ray absorption near-edge structure/extended X-ray absorption fine structure analyses clearly demonstrate that guest species in the nanohybrids exist as nanocrystalline zinc oxides with wurzite-type structure.

  19. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens.

    PubMed

    Venkatasubbu, G Devanand; Baskar, R; Anusuya, T; Seshan, C Arun; Chelliah, Ramachandran

    2016-12-01

    Food preservation is an important field of research. It extends the shelf life of major food products. Our current study is based on food preservation through TiO 2 and ZnO nanoparticles. TiO 2 and ZnO are biocompatible nanomaterial. The biocompatibility of the materials were established through toxicity studies on cell lines. Titanium dioxide and Zinc Oxide nanoparticle were synthesized by wet chemical process. They are characterized by X-Ray diffraction and TEM. The antibacterial activities of both the materials were analysed to ensure their effectiveness as food preservative against Salmonella typhi, Klebsiella pneumoniae and Shigella flexneri. The results indicates that TiO 2 and ZnO nanoparticle inhibits Salmonella, Klebsiella and Shigella. The mode of action is by the generation of ROS in cases of Salmonella, Klebsiella. Mode of action in Shigella is still unclear. It was also proved that TiO 2 and ZnO nanoparticle are biocompatible materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad; Verma, Ankit; Ahamed, Maqusood; Ahmed, Mukhtar; Alhadlaq, Hisham A

    2013-01-01

    The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and lactate dehydrogenase-based cell viability assays showed a significant decrease in cell viability after exposure to ZnO nanoparticles, and phase contrast images revealed that cells treated with these nanoparticles had a lower density and a rounded morphology. ZnO nanoparticles were also found to induce oxidative stress, evidenced by generation of reactive oxygen species and depletion of the antioxidant, glutathione. Induction of apoptosis was confirmed by chromosomal condensation assay and caspase-3 activation. Further, more DNA damage was observed in cells exposed to the highest concentration of ZnO nanoparticles. These results demonstrate that ZnO nanoparticles have genotoxic potential in A375 cells, which may be mediated via oxidative stress. Our short-term exposure study showing induction of a genotoxic and apoptotic response to ZnO nanoparticles needs further investigation to determine whether there may be consequences of long-term exposure to ZnO nanoparticles. PMID:23493450

  1. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment.

    PubMed

    Leite-Silva, V R; Sanchez, W Y; Studier, H; Liu, D C; Mohammed, Y H; Holmes, A M; Ryan, E M; Haridass, I N; Chandrasekaran, N C; Becker, W; Grice, J E; Benson, H A E; Roberts, M S

    2016-07-01

    Public health concerns continue to exist over the safety of zinc oxide nanoparticles that are commonly used in sunscreen formulations. In this work, we assessed the effects of two conditions which may be encountered in everyday sunscreen use, occlusion and a compromised skin barrier, on the penetration and local toxicity of two topically applied zinc oxide nanoparticle products. Caprylic/capric triglyceride (CCT) suspensions of commercially used zinc oxide nanoparticles, either uncoated or with a silane coating, were applied to intact and barrier impaired skin of volunteers, without and with occlusion for a period of six hours. The exposure time was chosen to simulate normal in-use conditions. Multiphoton tomography with fluorescence lifetime imaging was used to noninvasively assess zinc oxide penetration and cellular metabolic changes that could be indicative of toxicity. We found that zinc oxide nanoparticles did not penetrate into the viable epidermis of intact or barrier impaired skin of volunteers, without or with occlusion. We also observed no apparent toxicity in the viable epidermis below the application sites. These findings were validated by ex vivo human skin studies in which zinc penetration was assessed by multiphoton tomography with fluorescence lifetime imaging as well as Zinpyr-1 staining and toxicity was assessed by MTS assays in zinc oxide treated skin cryosections. In conclusion, applications of zinc oxide nanoparticles under occlusive in-use conditions to volunteers are not associated with any measurable zinc oxide penetration into, or local toxicity in the viable epidermis below the application site. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana.

    PubMed

    Lee, Chang Woo; Mahendra, Shaily; Zodrow, Katherine; Li, Dong; Tsai, Yu-Chang; Braam, Janet; Alvarez, Pedro J J

    2010-03-01

    Phytotoxicity is an important consideration to understand the potential environmental impacts of manufactured nanomaterials. Here, we report on the effects of four metal oxide nanoparticles, aluminum oxide (nAl(2)O(3)), silicon dioxide (nSiO(2)), magnetite (nFe(3)O(4)), and zinc oxide (nZnO), on the development of Arabidopsis thaliana (Mouse-ear cress). Three toxicity indicators (seed germination, root elongation, and number of leaves) were quantified following exposure to each nanoparticle at three concentrations: 400, 2,000, and 4,000 mg/L. Among these particles, nZnO was most phytotoxic, followed by nFe(3)O(4), nSiO(2), and nAl(2)O(3), which was not toxic. Consequently, nZnO was further studied to discern the importance of particle size and zinc dissolution as toxicity determinants. Soluble zinc concentrations in nanoparticle suspensions were 33-fold lower than the minimum inhibitory concentration of dissolved zinc salt (ZnCl(2)), indicating that zinc dissolution could not solely account for the observed toxicity. Inhibition of seed germination by ZnO depended on particle size, with nanoparticles exerting higher toxicity than larger (micron-sized) particles at equivalent concentrations. Overall, this study shows that direct exposure to nanoparticles significantly contributed to phytotoxicity and underscores the need for eco-responsible disposal of wastes and sludge containing metal oxide nanoparticles.

  3. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.

    PubMed

    Xie, Yanping; He, Yiping; Irwin, Peter L; Jin, Tony; Shi, Xianming

    2011-04-01

    The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.

  4. Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation

    PubMed Central

    2013-01-01

    Cyanide is an extreme hazard and extensively found in the wastes of refinery, coke plant, and metal plating industries. A simple, fast, cost-effective, room-temperature wet chemical route, based on cyclohexylamine, for synthesizing zinc oxide nanoparticles in aqueous and enthanolic media was established and tested for the photodegradation of cyanide ions. Particles of polyhedra morphology were obtained for zinc oxide, prepared in ethanol (ZnOE), while spherical and some chunky particles were observed for zinc oxide, prepared in water (ZnOW). The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at an equivalent concentration of 0.02 wt.% ZnO. Increasing the concentration wt.% of ZnOE from 0.01 to 0.09 led to an increase in the photocatalytic degradation efficiency from 85% to almost 100% after 180 min and a doubling of the first-order rate constant (k). PMID:24314056

  5. Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa.

    PubMed

    Isaac, Ann V; Kumari, Sandhya; Nair, Ramya; Urs, Deepak Raj; Salian, Sujith Raj; Kalthur, Guruprasad; Adiga, Satish Kumar; Manikkath, Jyothsna; Mutalik, Srinivas; Sachdev, Divya; Pasricha, Renu

    2017-12-16

    The sperm DNA integrity post cryopreservation of human semen samples is one of the serious concerns in human infertility treatment. In the present study, the beneficial effects of zinc oxide nanoparticles in preserving the functional ability of spermatozoa was explored. Ejaculates of normozoospermic men cryopreserved along with Zinc oxide nanoparticles (ZnONPs) exhibited non-significantly higher percentage of total and progressive motility in frozen-thawed samples compared to control. The sperm chromatin damage and malondialdehyde (MDA) level was significantly lower in ZnONPs group (P < 0.01 and P < 0.05 respectively) and the spermatozoa's ability to undergo acrosome reaction was also unaltered. Fluorescence microscopy and High resolution transmission electron microscopy analysis demonstrated that the ZnONPs do not penetrate the membrane of spermatozoa but stay around the spermatozoa. In conclusion, the presence of ZnONPs during cryopreservation appears to be beneficial to the spermatozoa as they withstand freeze-thaw process competently better than control, without any adverse effect shown. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Antimicrobial property of zinc based nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiriac, V.; Stratulat, D. N.; Calin, G.; Nichitus, S.; Burlui, V.; Stadoleanu, C.; Popa, M.; Popa, I. M.

    2016-06-01

    Pathogen bacteria strains with wide spectrum can cause serious infections with drastic damages on humans. There are studies reflecting antibacterial effect of nanoparticles type metal or metal oxides as an alternative or concurrent treatment to the diseases caused by infectious agents. Synthesised nanoparticles using different methods like sol-gel, hydrothermal or plant extraction were tested following well-established protocols with the regard to their antimicrobial activity. It was found that zinc based nanoparticles possess strong synergistic effect with commonly used antibiotics on infection tratment.

  7. Study of Perfluorophosphonic Acid Surface Modifications on Zinc Oxide Nanoparticles.

    PubMed

    Quiñones, Rosalynn; Shoup, Deben; Behnke, Grayce; Peck, Cynthia; Agarwal, Sushant; Gupta, Rakesh K; Fagan, Jonathan W; Mueller, Karl T; Iuliucci, Robbie J; Wang, Qiang

    2017-11-28

    In this study, perfluorinated phosphonic acid modifications were utilized to modify zinc oxide (ZnO) nanoparticles because they create a more stable surface due to the electronegativity of the perfluoro head group. Specifically, 12-pentafluorophenoxydodecylphosphonic acid, 2,3,4,5,6-pentafluorobenzylphosphonic acid, and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid have been used to form thin films on the nanoparticle surfaces. The modified nanoparticles were then characterized using infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy were utilized to determine the particle size of the nanoparticles before and after modification, and to analyze the film coverage on the ZnO surfaces, respectively. Zeta potential measurements were obtained to determine the stability of the ZnO nanoparticles. It was shown that the surface charge increased as the alkyl chain length increases. This study shows that modifying the ZnO nanoparticles with perfluorinated groups increases the stability of the phosphonic acids adsorbed on the surfaces. Thermogravimetric analysis was used to distinguish between chemically and physically bound films on the modified nanoparticles. The higher weight loss for 12-pentafluorophenoxydodecylphosphonic acid and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid modifications corresponds to a higher surface concentration of the modifications, and, ideally, higher surface coverage. While previous studies have shown how phosphonic acids interact with the surfaces of ZnO, the aim of this study was to understand how the perfluorinated groups can tune the surface properties of the nanoparticles.

  8. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis.

    PubMed

    Venkatachalam, P; Jayaraj, M; Manikandan, R; Geetha, N; Rene, Eldon R; Sharma, N C; Sahi, S V

    2017-01-01

    The present study describes the role of zinc oxide nanoparticles (ZnONPs) in reversing oxidative stress symptoms induced by heavy metal (Cd and Pb) exposure in Leucaena leucocephala (Lam.) de Wit. Seedling growth was significantly enhanced with the augmentation of ZnONPs following Cd and Pb exposure. Heavy metal accumulations were recorded as 1253.1 mg Cd per kg DW and 1026.8 mg Pb per kg DW for the respective treatments. Results demonstrated that ZnONPs augmentation caused an increase in photosynthetic pigment and total soluble protein contents while a significant decrease in malondialdehyde (MDA-lipid peroxidation) content in leaves. Antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were, in turn, elevated in heavy metal-exposed leaves amended with ZnONPs. The ameliorating effect of ZnO nanoparticles on oxidative stress induced toxicity was also confirmed by the reduced MDA content and the elevated level of antioxidative enzyme activities in leaf tissues of L. leucocephala seedlings. Further, addition of ZnONPs in combination with Cd and Pb metals induced distinct genomic alterations such as presence of new DNA bands and/or absence of normal bands in the RAPD pattern of the exposed plants. This study uniquely suggests a potential role of zinc oxide nanoparticles in the remediation of heavy metal contaminated media. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.

    PubMed

    Raghupathi, Krishna R; Koodali, Ranjit T; Manna, Adhar C

    2011-04-05

    The antibacterial properties of zinc oxide nanoparticles were investigated using both gram-positive and gram-negative microorganisms. These studies demonstrate that ZnO nanoparticles have a wide range of antibacterial activities toward various microorganisms that are commonly found in environmental settings. The antibacterial activity of the ZnO nanoparticles was inversely proportional to the size of the nanoparticles in S. aureus. Surprisingly, the antibacterial activity did not require specific UV activation using artificial lamps, rather activation was achieved under ambient lighting conditions. Northern analyses of various reactive oxygen species (ROS) specific genes and confocal microscopy suggest that the antibacterial activity of ZnO nanoparticles might involve both the production of reactive oxygen species and the accumulation of nanoparticles in the cytoplasm or on the outer membranes. Overall, the experimental results suggest that ZnO nanoparticles could be developed as antibacterial agents against a wide range of microorganisms to control and prevent the spreading and persistence of bacterial infections.

  10. Ultraselective Toluene-Gas Sensor: Nanosized Gold Loaded on Zinc Oxide Nanoparticles.

    PubMed

    Suematsu, Koichi; Watanabe, Kosuke; Tou, Akihiro; Sun, Yongjiao; Shimanoe, Kengo

    2018-02-06

    Selectivity is an important parameter of resistive-type gas sensors that use metal oxides. In this study, a highly selective toluene sensor is prepared using highly dispersed gold-nanoparticle-loaded zinc oxide nanoparticles (Au-ZnO NPs). Au-ZnO NPs are synthesized by coprecipitation and calcination at 400 °C with Au loadings of 0.15, 0.5, and 1.5 mol %. The Au NPs on ZnO are about 2-4 nm in size, and exist in a metallic state. Porous gas-sensing layers are fabricated by screen printing. The responses of the sensor to 200 ppm hydrogen, 200 ppm carbon monoxide, 100 ppm ethanol, 100 ppm acetaldehyde, 100 ppm acetone, and 100 ppm toluene are evaluated at 377 °C in a dry atmosphere. The sensor response of 0.15 mol % Au-ZnO NPs to toluene is about 92, whereas its sensor responses to other combustible gases are less than 7. Such selective toluene detection is probably caused by the utilization efficiency of the gas-sensing layer. Gas diffusivity into the sensing layer of Au-ZnO NPs is lowered by the catalytic oxidation of combustible gases during their diffusion through the layer. The present approach is an effective way to improve the selectivity of resistive-type gas sensors.

  11. A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in Wistar rats: Toxicity study of zinc oxide nanoparticles.

    PubMed

    Srivastav, Anurag Kumar; Kumar, Mahadeo; Ansari, Nasreen Ghazi; Jain, Abhishek Kumar; Shankar, Jai; Arjaria, Nidhi; Jagdale, Pankaj; Singh, Dhirendra

    2016-12-01

    The purpose of this study was to characterize the zinc oxide nanoparticles (ZnO-NPs) and their bulk counterpart in suspensions and to access the impact of their acute oral toxicity at doses of 300 and 2000 mg/kg in healthy female Wistar rats. The hematological, biochemical, and urine parameters were accessed at 24 and 48 h and 14 days posttreatment. The histopathological evaluations of tissues were also performed. The distribution of zinc content in liver, kidney, spleen, plasma, and excretory materials (feces and urine) at 24 and 48 h and 14 days posttreatment were accessed after a single exposure at dose of 2000 mg/kg body weight. The elevated level of alanine amino transferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were observed in ZnO-NPs at a dose of 2000 mg/kg at all time points. There was a decrease in iron levels in all the treated groups at 24 h posttreatment as compared to control groups but returned to their normal level at 14 days posttreatment. The hematological parameters red blood cells, hemoglobin, hematocrit, platelets, and haptoglobin were reduced at 48 h posttreatment at a dose of 2000 mg/kg ZnO-NPs and showed hemolytic condition. All the treated groups were comparable to control group at the end of 14 days posttreatment. The zinc concentration in the kidney, liver, plasma, feces, and urine showed a significant increase in both groups as compared to control. This study explained that ZnO-NPs produced more toxicological effect as compared to their bulk particles as evidenced through alteration in some hemato-biochemical parameters and with few histopathological lesions in liver and kidney tissues. © The Author(s) 2016.

  12. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.

    PubMed

    McGuffie, Matthew J; Hong, Jin; Bahng, Joong Hwan; Glynos, Emmanouil; Green, Peter F; Kotov, Nicholas A; Younger, John G; VanEpps, J Scott

    2016-01-01

    Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide

    2015-02-01

    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  14. The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gac, Wojciech, E-mail: wojciech.gac@umcs.lublin.pl; Zawadzki, Witold; Słowik, Grzegorz

    Highlights: • Synthesis of novel ZnO−Al{sub 2}O{sub 3} oxides in the presence of CTAB surfactant. • Determination of the structural, surface and optical properties. • Nanocrystalline, high-surface area ZnO−Al{sub 2}O{sub 3} oxides. • ZnO-Al{sub 2}O{sub 3} materials of different gap energy. - Abstract: Novel alumina modified zinc oxide materials were prepared by co-precipitation method in the presence of different amounts of cetyltrimethylammonium bromide (CTAB) surfactant. X-ray diffraction, {sup 27}Al magic-angle spinning Nuclear Magnetic Resonance Spectroscopy, and transmission electron microscopy studies evidenced formation of 10–15 nm zinc oxide nanoparticles in the presence of the small amounts of surfactant. Amorphous alumina andmore » zinc aluminate phases of different coordination environment of Al sites were identified. An increase of surfactant concentration led to the elongation of nanoparticles and changes of the nature of hydroxyl groups. Precipitation in the high CTAB concentration conditions facilitated formation of mesoporous materials of high specific surface area. The materials were composed of very small (2–3 nm) zinc aluminate spinel nanoparticles. High concentration of CTAB induced widening of band gap energy.« less

  15. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    ERIC Educational Resources Information Center

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  16. Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis.

    PubMed

    Hartner, Sonja; Ali, Moazzam; Schulz, Christof; Winterer, Markus; Wiggers, Hartmut

    2009-11-04

    Aluminum-doped zinc oxide nanoparticles have been prepared by chemical vapor synthesis, which facilitates the incorporation of a higher percentage of dopant atoms, far above the thermodynamic solubility limit of aluminum. The electrical properties of aluminum-doped and undoped zinc oxide nanoparticles were investigated by impedance spectroscopy. The impedance is measured under hydrogen and synthetic air between 323 and 673 K. The measurements under hydrogen as well as under synthetic air show transport properties depending on temperature and doping level. Under hydrogen atmosphere, a decreasing conductivity with increasing dopant content is observed, which can be explained by enhanced scattering processes due to an increasing disorder in the nanocrystalline material. The temperature coefficient for the doped samples switches from positive temperature coefficient behavior to negative temperature coefficient behavior with increasing dopant concentration. In the presence of synthetic air, the conductivity firstly increases with increasing dopant content by six orders of magnitude. The origin of the increasing conductivity is the generation of free charge carriers upon dopant incorporation. It reaches its maximum at a concentration of 7.7% of aluminum, and drops for higher doping levels. In all cases, the conductivity under hydrogen is higher than under synthetic air and can be changed reversibly by changing the atmosphere.

  17. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less

  18. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    NASA Astrophysics Data System (ADS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  19. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less

  20. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses.

    PubMed

    Pan, Chih-Hong; Liu, Wen-Te; Bien, Mauo-Ying; Lin, I-Chan; Hsiao, Ta-Chih; Ma, Chih-Ming; Lai, Ching-Huang; Chen, Mei-Chieh; Chuang, Kai-Jen; Chuang, Hsiao-Chi

    2014-01-01

    Although the health effects of zinc oxide nanoparticles (ZnONPs) on the respiratory system have been reported, the fate, potential toxicity, and mechanisms in biological cells of these particles, as related to particle size and surface characteristics, have not been well elucidated. To determine the physicochemical properties of ZnONPs that govern cytotoxicity, we investigated the effects of size, electronic properties, zinc concentration, and pH on cell viability using human alveolar-basal epithelial A549 cells as a model. We observed that a 2-hour or longer exposure to ZnONPs induced changes in cell viability. The alteration in cell viability was associated with the zeta potentials and pH values of the ZnONPs. Proteomic profiling of A549 exposed to ZnONPs for 2 and 4 hours was used to determine the biological mechanisms of ZnONP toxicity. p53-pathway activation was the core mechanism regulating cell viability in response to particle size. Activation of the Wnt and TGFβ signaling pathways was also important in the cellular response to ZnONPs of different sizes. The cadherin and Wnt signaling pathways were important cellular mechanisms triggered by surface differences. These results suggested that the size and surface characteristics of ZnONPs might play an important role in their observed cytotoxicity. This approach facilitates the design of more comprehensive systems for the evaluation of nanoparticles.

  1. Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate.

    PubMed

    Ramimoghadam, Donya; Bin Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin

    2013-01-01

    Rice as a renewable, abundant bio-resource with unique characteristics can be used as a bio-template to synthesize various functional nanomaterials. Therefore, the effect of uncooked rice flour as bio-template on physico-chemical properties, especially the morphology of zinc oxide nanostructures was investigated in this study. The ZnO particles were synthesized through hydrothermal-biotemplate method using zinc acetate-sodium hydroxide and uncooked rice flour at various ratios as precursors at 120°C for 18 hours. The results indicate that rice as a bio-template can be used to modify the shape and size of zinc oxide particles. Different morphologies, namely flake-, flower-, rose-, star- and rod-like structures were obtained with particle size at micro- and nanometer range. Pore size and texture of the resulting zinc oxide particles were found to be template-dependent and the resulting specific surface area enhanced compared to the zinc oxide synthesized without rice under the same conditions. However, optical property particularly the band gap energy is generally quite similar. Pure zinc oxide crystals were successfully synthesized using rice flour as biotemplate at various ratios of zinc salt to rice. The size- and shape-controlled capability of rice to assemble the ZnO particles can be employed for further useful practical applications.

  2. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles.

    PubMed

    Leite-Silva, Vânia R; Liu, David C; Sanchez, Washington Y; Studier, Hauke; Mohammed, Yousuf H; Holmes, Amy; Becker, Wolfgang; Grice, Jeffrey E; Benson, Heather Ae; Roberts, Michael S

    2016-05-01

    We assessed the effects of flexing and massage on human skin penetration and toxicity of topically applied coated and uncoated zinc oxide nanoparticles (˜75 nm) in vivo. Noninvasive multiphoton tomography with fluorescence lifetime imaging was used to evaluate the penetration of nanoparticles through the skin barrier and cellular apoptosis in the viable epidermis. All nanoparticles applied to skin with flexing and massage were retained in the stratum corneum or skin furrows. No significant penetration into the viable epidermis was seen and no cellular toxicity was detected. Exposure of normal in vivo human skin to these nanoparticles under common in-use conditions of flexing or massage is not associated with significant adverse events.

  3. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors

    NASA Astrophysics Data System (ADS)

    Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.

    2018-03-01

    In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.

  4. Zinc oxide nanoparticles induce rat retinal ganglion cell damage through bcl-2, caspase-9 and caspase-12 pathways.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wu, Qiuxin; Wang, Daoguang; Cui, Yan

    2013-06-01

    Nanomaterials, including zinc oxide (ZnO) nanoparticles, are being developed for a variety of commercial products. Recent reports showed that cells exposed to ZnO nanoparticles produced severe cytotoxicity accompanied by oxidative stress and genotoxicity. To understand the possible mechanism underlying oxidative stress of ZnO nanoparticles, the present investigation focused on the direct bioactivity of ZnO nanoparticles using a rat retinal ganglion cell (RGC-5) culture. At concentrations relevant to those used in vitro exposure of RGC-5 cells to ZnO nanoparticles, it was found that ZnO nanoparticles could inhibit cell proliferation in time- and concentration-dependent manners. Meanwhile, cell cycle arrest of S and G2/M phases occurred in RGC-5 cells induced by ZnO nanoparticles. Moreover, our results also demonstrated that the overproduction of reactive oxygen species (ROS) and elevated level of caspase-12 as well as decreased levels of bcl-2 and caspase-9 occurred after treatment with different concentrations of ZnO nanoparticles when compared to those in untreated cells. In summary, our findings suggest that ZnO nanoparticles could lead to the over generations of ROS and caspase-12 as well as decreased levels of bcl-2 and caspase-9. These results indicate that bcl-2, caspase-9 and caspase-12 may play significant roles in ZnO nanoparticle-induced RGC-5 cell damage.

  5. Investigation of the Genotoxicity of Aluminum Oxide, β-Tricalcium Phosphate, and Zinc Oxide Nanoparticles In Vitro.

    PubMed

    Akbaba, Giray Buğra; Türkez, Hasan

    The aim of this study was to investigate the genotoxicity of aluminum oxide (Al 2 O 3 ), β-tricalcium phosphate (β-TCP) (Ca 3 (PO 4 ) 2 ), and zinc oxide (ZnO) nanoparticles (NPs) that were 4.175, 9.058, and 19.8 nm sized, respectively, on human peripheral blood lymphocytes using micronucleus (MN) and chromosome aberration (CA) techniques. Aluminum oxide and β-TCP NPs did not show genotoxic effects on human peripheral blood cultures in vitro, even at the highest concentrations; therefore, these materials may be suitable for use as biocompatible materials. It was observed that, even at a very low dose (≥12.5 ppm), ZnO NPs had led to genotoxicity. In addition, at high concentrations (500 ppm and above), ZnO NPs caused mortality of lymphocytes. For these reasons, it was concluded that ZnO NPs are not appropriate for using as a biocompatible biomaterial.

  6. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles

    USGS Publications Warehouse

    Jiang, Chuanjia; Aiken, George R.; Hsu-Kim, Heileen

    2015-01-01

    The dissolution of zinc oxide (ZnO) nanoparticles (NPs) is a key step of controlling their environmental fate, bioavailability, and toxicity. Rates of dissolution often depend upon factors such as interactions of NPs with natural organic matter (NOM). We examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution using anodic stripping voltammetry to directly measure dissolved zinc concentrations. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg C L–1) for Suwannee River humic and fulvic acids and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. The findings of this study facilitate a better understanding of the fate of ZnO NPs in organic-rich aquatic environments and highlight SUVA as a facile and useful indicator of NOM interactions with metal-based nanoparticles.

  7. Synthesis and characterization of lanthanum doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vinod; Sonia,; Suman,

    La doped ZnO (Zn{sub 1-x}La{sub x}O, x = 0, 3, 6 and 9) were prepared via chemical co-precipitation method using Zinc Acetate, Lanthanum Acetate and Sodium Hydroxide at 50°C. Hydrate nanoparticles were annealed in air at 300°C for 3 hours. The synthesized samples have been characterized by powder X-ray diffraction and UV–Visible spectrophotometer. The XRD measurement revealsthat the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The result shows the change in nanoparticles size with the increment of lanthanum concentration for lower concentration for x = 0 to 6 and decreases at x = 9.

  8. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles.

    PubMed

    Zak, A Khorsand; Razali, R; Majid, W H Abd; Darroudi, Majid

    2011-01-01

    Zinc oxide nanoparticles (ZnO-NPs) were synthesized via a solvothermal method in triethanolamine (TEA) media. TEA was utilized as a polymer agent to terminate the growth of ZnO-NPs. The ZnO-NPs were characterized by a number of techniques, including X-ray diffraction analysis, transition electron microscopy, and field emission electron microscopy. The ZnO-NPs prepared by the solvothermal process at 150°C for 18 hours exhibited a hexagonal (wurtzite) structure, with a crystalline size of 33 ± 2 nm, and particle size of 48 ± 7 nm. The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.

  9. Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2017-09-19

    Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.

  10. PEGylation of zinc nanoparticles amplifies their ability to enhance olfactory responses to odorant

    PubMed Central

    Singletary, Melissa; Hagerty, Samantha; Muramoto, Shin; Daniels, Yasmine; MacCrehan, William A.; Stan, Gheorghe; Lau, June W.; Pustovyy, Oleg; Globa, Ludmila; Morrison, Edward E.; Sorokulova, Iryna

    2017-01-01

    Olfactory responses are intensely enhanced with the addition of endogenous and engineered primarily-elemental small zinc nanoparticles (NPs). With aging, oxidation of these Zn nanoparticles eliminated the observed enhancement. The design of a polyethylene glycol coating to meet storage requirements of engineered zinc nanoparticles is evaluated to achieve maximal olfactory benefit. The zinc nanoparticles were covered with 1000 g/mol or 400 g/mol molecular weight polyethylene glycol (PEG). Non-PEGylated and PEGylated zinc nanoparticles were tested by electroolfactogram with isolated rat olfactory epithelium and odorant responses evoked by the mixture of eugenol, ethyl butyrate and (±) carvone after storage at 278 K (5 oC), 303 K (30 oC) and 323 K (50 oC). The particles were analyzed by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and laser Doppler velocimetry. Our data indicate that stored ZnPEG400 nanoparticles maintain physiologically-consistent olfactory enhancement for over 300 days. These engineered Nanoparticles support future applications in olfactory research, sensitive detection, and medicine. PMID:29261701

  11. Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Migliorini, Fernanda L.; Sanfelice, Rafaela C.; Mercante, Luiza A.; Andre, Rafaela S.; Mattoso, Luiz H. C.; Correa, Daniel. S.

    2018-06-01

    Reliable analytical techniques to evaluate dairy products, including milk, are of outmost importance to ensure food safety against contaminants. Among possible substances employed as adulterants in milk, urea raises deep concern due to its harmful effects to consumer's health. In the present study, a biosensing platform was developed to be applied in the electrochemical detection of urea. The sensing platform was fabricated using polymeric electrospun nanofibers of polyamide 6 (PA6) and polypyrrole (PPy) deposited onto fluorine doped tin oxide (FTO) electrodes, which were then modified with zinc oxide nanoparticles (ZnO). This material showed excellent properties for the immobilization of urease enzyme, conferring the FTO/PA6/PPy/ZnO/urease electrode high sensitivity for urea detection within the concentration range between 0.1 and 250 mg dL-1 with a limit of detection of 0.011 mg dL-1. The results achieved evidence the potential of electrospun nanofibers-based electrodes for applications in biosensors aiming at dairy products analysis.

  12. Structural and optical properties of pure and copper doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sajjad, Muhammad; Ullah, Inam; Khan, M. I.; Khan, Jamshid; Khan, M. Yaqoob; Qureshi, Muhammad Tauseef

    2018-06-01

    Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.

  13. Transport of bare and capped zinc oxide nanoparticles is dependent on porous medium composition

    NASA Astrophysics Data System (ADS)

    Kurlanda-Witek, H.; Ngwenya, B. T.; Butler, I. B.

    2014-07-01

    Zinc oxide (ZnO) nanoparticles are one of the most frequently used nanoparticles in industry and hence are likely to be introduced to the groundwater environment. The mobility of these nanoparticles in different aquifer materials has not been assessed. While some studies have been published on the transport of ZnO nanoparticles in individual porous media, these studies do not generally account for varying porous medium composition both within and between aquifers. As a first step towards understanding the impact of this variability, this paper compares the transport of bare ZnO nanoparticles (bZnO-NPs) and capped ZnO nanoparticles, coated with tri-aminopropyltriethoxysilane (cZnO-NPs), in saturated columns packed with glass beads, fine grained sand and fine grained calcite, at near-neutral pH and groundwater salinity levels. With the exception of cZnO-NPs in sand columns, ZnO nanoparticles are highly immobile in all three types of studied porous media, with most retention taking place near the column inlet. Results are in general agreement with DLVO theory, and the deviation in experiments with cZnO-NPs flowing through columns packed with sand is linked to variability in zeta potential of the capped nanoparticles and sand grains. Therefore, differences in surface charge of nanoparticles and porous media are demonstrated to be key drivers in nanoparticle transport.

  14. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Prakash, Meppaloor G; Chung, Ill Min

    2016-09-01

    The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L(-1) of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L(-1) of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L(-1) of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L(-1) of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.

  15. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets

    PubMed Central

    Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets. PMID:28704517

  16. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets.

    PubMed

    Wang, Chao; Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets.

  17. Green synthesized zinc oxide nanoparticles as a therapeutic tool to combat candidiasis

    NASA Astrophysics Data System (ADS)

    Rathod, Tejas; Padalia, Hemali; Chanda, Sumitra

    2017-05-01

    Advancement of modern medicine, the increasing ratio of immunocompromised and immunosuppressive individuals is increased in hospitalized with serious underlying disease. This has resulted in a rise in the incidence of fungal infections, especially those due to Candida species. For many years the conventional antibiotic therapy has been critical in the fight against Candidiasis. Candidiasis is a fungal infection due to various types of Candida (yeast) species. In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using the Cinnamomum verum bark plus Cassia auriculata leaf powder extracts. The characterization of synthesized ZnONPs was done by UV-Vis spectrophotometer and SEM analysis. The average size of nanoparticles was 77 nm. Synergistic anticandidal activity of ZnONPs (ZnONPs plus antibiotics) was determined by disc diffusion method against 16 multidrug resistant clinical pathogens of Candida species. Antibiotic Ketoconazole plus ZnONPs showed best synergistic anticandidal activity against all the 16 isolates. Green synthesized ZnONPs appears to be a new promising approach to fight against Candidiasis.

  18. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Jesline, A.; John, Neetu P.; Narayanan, P. M.; Vani, C.; Murugan, Sevanan

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens responsible for a wide spectrum of infections and the emergence of bacterial resistance to antibiotics has lead to treatment drawbacks towards large number of drugs. Formation of biofilms is the main contributing factor to antibiotic resistance. The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide and titanium dioxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. This study was designed to determine the efficacy of zinc and titanium dioxide nanoparticles against biofilm producing methicillin-resistant S. aureus. Biofilm production was detected by tissue culture plate method. Out of 30 MRSA isolates, 22 isolates showed strong biofilm production and 2 showed weak and moderate biofilm formation. Two strong and weak biofilm-producing methicillin-resistant S. aureus isolates were subjected to antimicrobial activity using commercially available zinc and titanium dioxide nanoparticles. Thus, the nanoparticles showed considerably good activity against the isolates, and it can be concluded that they may act as promising, antibacterial agents in the coming years.

  19. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  20. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis.

    PubMed

    Suman, T Y; Radhika Rajasree, S R; Kirubagaran, R

    2015-03-01

    The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM). Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle

    PubMed Central

    Tripathi, Durgesh K.; Mishra, Rohit K.; Singh, Swati; Singh, Samiksha; Vishwakarma, Kanchan; Sharma, Shivesh; Singh, Vijay P.; Singh, Prashant K.; Prasad, Sheo M.; Dubey, Nawal K.; Pandey, Avinash C.; Sahi, Shivendra; Chauhan, Devendra K.

    2017-01-01

    The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate–glutatione cycle (AsA–GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA–GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA–GSH cycle. PMID:28220127

  2. Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses.

    PubMed

    Song, Uhram; Lee, Sunryung

    2016-05-01

    The phytotoxicity and accumulation of zinc oxide nanoparticles (ZnO NPs) on aquatic plant Hydrilla verticillata and Phragmites australis were investigated using mesocosms. The percentage of dissolved Zn in the ZnO NP treatment solutions was measured along with plant shoot growth, antioxidant enzyme activity, chlorophyll content, and Zn content. The dissolution rate of ZnO NPs in Hoagland solution was inversely related to the concentration. The submerged aquatic plant H. verticillata, growth was reduced during the early stages of the experiment when exposed to the highest ZnO NP concentration (1000 mg/L), whereas the emerged aquatic plant P. australis began to show significantly reduced growth after a few weeks. The measurements of chlorophyll content, antioxidant enzyme activity, and Zn accumulation showed that P. australis was adversely affected by NPs and absorbed more Zn than H. verticillata. The results indicated that physiological differences among aquatic plants, such as whether they use leaves or roots for nutrient and water uptake, led to differences in nanoparticle toxicity. Overall, High ZnO NP concentrations caused significant phytotoxicity on aquatic plants, and low concentrations caused unpredictable phytotoxicity. Therefore, the use and disposal of zinc oxide nanoparticles should be carefully monitored.

  3. Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles.

    PubMed

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Liu, Xin-Qi; Zhang, Wei-Dong; Ding, Zhao-Peng; Wang, Shi-Wen; Shen, Wei; Min, Ling-Jiang; Hao, Zhi-Hui

    2016-04-01

    This investigation was designed to explore the effects of Zinc Oxide Nanoparticles (ZnO NP) on egg quality and the mechanism of decreasing of yolk lipids. Different concentration of ZnO NP and ZnSO4 were used to treat hens for 24 weeks. The body weight and egg laying frequency were recorded and analyzed. Albumen height, Haugh unit, and yolk color score were analyzed by an Egg Multi Tester. Breaking strength was determined by an Egg Force Reader. Egg shell thickness was measured using an Egg Shell Thickness Gouge. Shell color was detected by a spectrophotometer. Egg shape index was measured by Egg Form Coefficient Measuring Instrument. Albumen and yolk protein was determined by the Kjeldahl method. Amino acids were determined by an amino acids analyzer. Trace elements Zn, Fe, Cu, and P (mg/kg wet mass) were determined in digested solutions using Inductively Coupled Plasma-Optical Emission Spectrometry. TC and TG were measured using commercial analytical kits. Yolk triglyceride, total cholesterol, pancreatic lipase, and phospholipids were determined by appropriate kits. β-carotene was determined by spectrophotometry. Lipid metabolism was also investigated with liver, plasma, and ovary samples. ZnO NP did not change the body weight of hens during the treatment period. ZnO NP slowed down egg laying frequency at the beginning of egg laying period but not at later time. ZnO NP did not affect egg protein or water contents, slightly decreased egg physical parameters (12 to 30%) and trace elements (20 to 35%) after 24 weeks treatment. However, yolk lipids content were significantly decreased by ZnO NP (20 to 35%). The mechanism of Zinc oxide nanoparticles decreasing yolk lipids was that they decreased the synthesis of lipids and increased lipid digestion. These data suggested ZnO NP affected egg quality and specifically regulated lipids metabolism in hens through altering the function of hen's ovary and liver. © 2016 Poultry Science Association Inc.

  4. Transport of Zinc Oxide Nanoparticles in a Simulated Gastric Environment

    NASA Astrophysics Data System (ADS)

    Mayfield, Ryan T.

    Recent years have seen a growing interest in the use of many types of nano sized materials in the consumer sector. Potential uses include encapsulation of nutrients, providing antimicrobial activity, altering texture, or changing bioavailability of nutrients. Engineered nanoparticles (ENP) possess properties that are different than larger particles made of the same constituents. Properties such as solubility, aggregation state, and toxicity can all be changed as a function of size. The gastric environment is an important area for study of engineered nanoparticles because of the varied physical, chemical, and enzymatic processes that are prevalent there. These all have the potential to alter those properties of ENP that make them different from their bulk counterparts. The Human Gastric Simulator (HGS) is an advanced in vitro model that can be used to study many facets of digestion. The HGS consists of a plastic lining that acts as the stomach cavity with two sets of U-shaped arms on belts that provide the physical forces needed to replicate peristalsis. Altering the position of the arms or changing the speed of the motor which powers them allows one to tightly hone and replicate varied digestive conditions. Gastric juice, consisting of salts, enzymes, and acid levels which replicate physiological conditions, is introduced to the cavity at a controllable rate. The release of digested food from the lumen of simulated stomach is controlled by a peristaltic pump. The goal of the HGS is to accurately and repeatedly simulate human digestion. This study focused on introducing foods spiked with zinc oxide ENP and bulk zinc oxide into the HGS and then monitoring how the concentration of each changed at two locations in the HGS over a two hour period. The two locations chosen were the highest point in the lumen of the stomach, which represented the fundus, and a point just beyond the equivalent of the pylorus, which represented the antrum of the stomach. These points were

  5. Enzyme and Cancer Cell Selectivity of Nanoparticles: Inhibition of 3D Metastatic Phenotype and Experimental Melanoma by Zinc Oxide.

    PubMed

    DeLong, Robert K; Mitchell, Jennifer A; Morris, R Tyler; Comer, Jeffrey; Hurst, Miranda N; Ghosh, Kartik; Wanekaya, Adam; Mudge, Miranda; Schaeffer, Ashley; Washington, Laurie L; Risor-Marhanka, Azure; Thomas, Spencer; Marroquin, Shanna; Lekey, Amber; Smith, Joshua J; Garrad, Richard; Aryal, Santosh; Abdelhakiem, Mohamed; Glaspell, Garry P

    2017-02-01

    Biomedical applications for metal and metal oxide nanoparticles are rapidly increasing. Here their functional impact on two well-characterized model enzymes, Luciferase (Luc) or β-galactosidase (β-Gal) was quantitatively compared. Nickel oxide nanoparticle (NiO-NP) activated β-Gal (>400% control) and boron carbide nanoparticle (B4C-NP) inhibited Luc(<10% control), whereas zinc oxide (ZnO-NP) and cobalt oxide (Co3O4-NP) activated β-Gal to a lesser extent and magnesium oxide (MgO) moderately inhibited both enzymes. Melanoma specific killing was in the order; ZnO > B4C ≥ Cu > MgO > Co3O4 > Fe2O3 > NiO, ZnO-NP inhibiting B16F10 and A375 cells as well as ERK enzyme (>90%) and several other cancer-associated kinases (AKT, CREB, p70S6K). ZnO-NP or nanobelt (NB) serve as photoluminescence (PL) cell labels and inhibit 3-D multi-cellular tumor spheroid (MCTS) growth and were tested in a mouse melanoma model. These results demonstrate nanoparticle and enzyme specific biochemical activity and suggest their utility as new tools to explore the important model metastatic foci 3-D environment and their chemotherapeutic potential.

  6. Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants

    PubMed Central

    Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.

    2017-01-01

    This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463

  7. Zinc oxide doped graphene oxide films for gas sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetna,, E-mail: chetna2288@gmail.com; Kumar, Shani; Chaudhary, S.

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer’s method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheetsmore » play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.« less

  8. Fate of Zinc and Silver Engineered Nanoparticles in Sewerage Networks

    EPA Science Inventory

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage sy...

  9. Inclusion of Zinc Oxide Nanoparticles into Virus-Like Peptide Nanocapsules Self-Assembled from Viral β-Annulus Peptide

    PubMed Central

    Fujita, Seiya; Matsuura, Kazunori

    2014-01-01

    A viral β-annulus peptide connected with a zinc oxide (ZnO)-binding sequence (HCVAHR) at its N-terminal was synthesized, and the inclusion behavior of quantum-sized ZnO nanoparticles into the peptide nanocapsules formed by self-assembly of the peptide in water was investigated. Dynamic light scattering (DLS) measurements showed that ZnO nanoparticles (approximately 10 nm) in the presence of the peptide (0.1 mM) formed assemblies with an average size of 48 ± 24 nm, whereas ZnO nanoparticles in the absence of the peptide formed large aggregates. Transmission electron microscopy (TEM) observations of the ZnO nanoparticles in the presence of the peptide revealed that ZnO nanoparticles were encapsulated into the peptide nanocapsules with a size of approximately 50 nm. Fluorescence spectra of a mixture of the peptide and ZnO nanoparticles suggested that the ZnO surface and the peptide interact. Template synthesis of ZnO nanoparticles with the peptide nanocapsules afforded larger nanoparticles (approximately 40 nm), which are not quantum-sized ZnO. PMID:28344248

  10. Zinc Oxide Nanoparticle-Poly I:C RNA Complexes: Implication as Therapeutics against Experimental Melanoma.

    PubMed

    Ramani, Meghana; Mudge, Miranda C; Morris, R Tyler; Zhang, Yuntao; Warcholek, Stanislaw A; Hurst, Miranda N; Riviere, Jim E; DeLong, Robert K

    2017-03-06

    There is current interest in harnessing the combined anticancer and immunological effect of nanoparticles (NPs) and RNA. Here, we evaluate the bioactivity of poly I:C (pIC) RNA, bound to anticancer zinc oxide NP (ZnO-NP) against melanoma. Direct RNA association to unfunctionalized ZnO-NP is shown by observing change in size, zeta potential, and absorption/fluorescence spectra upon complexation. RNA corona was visualized by transmission electron microscopy (TEM) for the first time. Binding constant (K b = 1.6-2.8 g -1 L) was determined by modified Stern-Volmer, absorption, and biological surface activity index analysis. The pIC-ZnO-NP complex increased cell death for both human (A375) and mouse (B16F10) cell lines and suppressed tumor cell growth in BALB/C-B16F10 mouse melanoma model. Ex vivo tumor analysis indicated significant molecular activity such as changes in the level of phosphoproteins JNK, Akt, and inflammation markers IL-6 and IFN-γ. High throughput proteomics analysis revealed zinc oxide and poly I:C-specific and combinational patterns that suggested possible utility as an anticancer and immunotherapeutic strategy against melanoma.

  11. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice

    PubMed Central

    Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2016-01-01

    Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice. PMID:27732669

  12. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice.

    PubMed

    Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2016-01-01

    Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice.

  13. Supported versus colloidal zinc oxide for advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Laxman, Karthik; Al Rashdi, Manal; Al Sabahi, Jamal; Al Abri, Mohammed; Dutta, Joydeep

    2017-07-01

    Photocatalysis is a green technology which typically utilizes either supported or colloidal catalysts for the mineralization of aqueous organic contaminants. Catalyst surface area and surface energy are the primary factors determining its efficiency, but correlation between the two is still unclear. This work explores their relation and hierarchy in a photocatalytic process involving both supported and colloidal catalysts. In order to do this the active surface areas of supported zinc oxide nanorods (ZnO NR's) and colloidal zinc oxide nanoparticles (having different surface energies) were equalized and their phenol oxidation mechanism and capacity was analyzed. It was observed that while surface energy had subtle effects on the oxidation rate of the catalysts, the degradation efficiency was primarily a function of the surface area; which makes it a better parameter for comparison when studying different catalyst forms of the same material. Thus we build a case for the use of supported catalysts, wherein their catalytic efficiency was tested to be unaltered over several days under both natural and artificial light, suggesting their viability for practical applications.

  14. Photo-induced Leishmania DNA degradation by silver-doped zinc oxide nanoparticle: an in-vitro approach.

    PubMed

    Nadhman, Akhtar; Sirajuddin, Muhammad; Nazir, Samina; Yasinzai, Masoom

    2016-06-01

    Recently, the authors reported newly synthesised polyethylene glycol (PEG)ylated silver (9%)-doped zinc oxide nanoparticle (doped semiconductor nanoparticle (DSN)) which has high potency for killing Leishmania tropica by producing reactive oxygen species on exposure to sunlight. The current report is focused on Leishmania DNA interaction and damage caused by the DSN. Here, we showed that the damage to Leishmania DNA was indirect, as the DSN was unable to interact with the DNA in intact Leishmania cell, indicating the incapability of PEGylated DSN to cross the nucleus barrier. The DNA damage was the result of high production of singlet oxygen on exposure to sunlight. The DNA damage was successfully prevented by singlet oxygen scavenger (sodium azide) confirming involvement of the highly energetic singlet oxygen in the DNA degradation process.

  15. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil

    PubMed Central

    Milani, Narges; Hettiarachchi, Ganga M.; Kirby, Jason K.; Beak, Douglas G.; Stacey, Samuel P.; McLaughlin, Mike J.

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ–XRF) mapping and absorption fine structure spectroscopy (μ–XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the

  16. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation.

    PubMed

    Lee, Woo-Mi; An, Youn-Joo

    2013-04-01

    Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO2 NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems.

    PubMed

    Giovanni, Marcella; Tay, Chor Yong; Setyawati, Magdiel Inggrid; Xie, Jianping; Ong, Choon Nam; Fan, Rongli; Yue, Junqi; Zhang, Lifeng; Leong, David Tai

    2015-12-01

    Engineered nanoparticles (ENPs) are increasingly detected in water supply due to environmental release of ENPs as the by-products contained within the effluent of domestic and industrial run-off. The partial recycling of water laden with ENPs, albeit at ultra-low concentrations, may pose an uncharacterized threat to human health. In this study, we investigated the toxicity of three prevalent ENPs: zinc oxide, silver, and titanium dioxide over a wide range of concentrations that encompasses drinking water-relevant concentrations, to cellular systems representing oral and gastrointestinal tissues. Based on published in silico-predicted water-relevant ENPs concentration range from 100 pg/L to 100 µg/L, we detected no cytotoxicity to all the cellular systems. Significant cytotoxicity due to the NPs set in around 100 mg/L with decreasing extent of toxicity from zinc oxide to silver to titanium dioxide NPs. We also found that noncytotoxic zinc oxide NPs level of 10 mg/L could elevate the intracellular oxidative stress. The threshold concentrations of NPs that induced cytotoxic effect are at least two to five orders of magnitude higher than the permissible concentrations of the respective metals and metal oxides in drinking water. Based on these findings, the current estimated levels of NPs in potable water pose little cytotoxic threat to the human oral and gastrointestinal systems within our experimental boundaries. © 2014 Wiley Periodicals, Inc.

  18. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System.

    PubMed

    Panda, Kamal K; Golari, Dambaru; Venugopal, A; Achary, V Mohan M; Phaomei, Ganngam; Parinandi, Narasimham L; Sahu, Hrushi K; Panda, Brahma B

    2017-05-18

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH₃COO)₂) through the green route using the milky latex from milk weed ( Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn 2+ from Zn(CH₃COO)₂ were tested in a dose range of 0-100 mg·L -1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O₂ •- , H₂O₂ and • OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn 2+ alone.

  19. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  20. Red fluorescent zinc oxide nanoparticle: A novel platform for cancer targeting

    DOE PAGES

    Hong, Hao; Wang, Fei; Zhang, Yin; ...

    2015-01-21

    Multifunctional zinc oxide (ZnO) nanoparticles (NPs) with well-integrated multimodality imaging capacities have generated increasing research interest in the past decade. However, limited progress has been made in developing ZnO NP-based multimodality tumor-imaging agents. In this paper, we developed novel red fluorescent ZnO NPs and described the successful conjugation of 64Cu ( t 1/2 = 12.7 h) and TRC105, a chimeric monoclonal antibody against CD105, to these ZnO NPs via well-developed surface engineering procedures. The produced dual-modality ZnO NPs were readily applicable for positron emission tomography (PET) imaging and fluorescence imaging of the tumor vasculature. Their pharmacokinetics and tumor-targeting efficacy/specificity inmore » mice bearing murine breast 4T1 tumor were thoroughly investigated. In conclusion, ZnO NPs with dual-modality imaging properties can serve as an attractive candidate for future cancer theranostics.« less

  1. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract.

    PubMed

    Nagajyothi, P C; Cha, Sang Ju; Yang, In Jun; Sreekanth, T V M; Kim, Kwang Joong; Shin, Heung Mook

    2015-05-01

    The exploitation of various plant materials for the green synthesis of nanoparticles is considered an eco-friendly technology because it does not involve toxic chemicals. In this study, zinc oxide nanoparticles (ZnO NPs) were synthesized using the root extract of Polygala tenuifolia. Synthesized ZnO NPs were characterized by UV-Vis spectroscopy, FTIR, TGA, TEM, SEM and EDX. Anti-inflammatory activity was investigated in LPS-stimulated RAW 264.7 macrophages, whereas antioxidant activity was examined using a DPPH free radical assay. ZnO NPs demonstrated moderate antioxidant activity by scavenging 45.47% DPPH at 1mg/mL and revealed excellent anti-inflammatory activity by dose-dependently suppressing both mRNA and protein expressions of iNOS, COX-2, IL-1β, IL-6 and TNF-α. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effects of zinc oxide nanoparticles on human coronary artery endothelial cells.

    PubMed

    Chuang, Kai-Jen; Lee, Kang-Yun; Pan, Chih-Hong; Lai, Ching-Huang; Lin, Lian-Yu; Ho, Shu-Chuan; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2016-07-01

    Inhalation of zinc oxide (ZnO) metal fumes is known to cause metal fume fever and to have systemic effects; however, the effects of ZnO nanoparticles (ZnONPs) on the cardiovascular system remain unclear. The objective of this study was to investigate the cardiovascular toxicity of ZnONPs. Human coronary artery endothelial cells (HCAECs) were exposed to ZnONPs of different sizes to investigate the cell viability, 8-hydroxy-2'-deoxyguanosine (8-OHdG), interleukin (IL)-6, nitric oxide (NO), and regulation of cardiovascular disease-related genes. Exposure of HCAECs to ZnONPs resulted in decreased cell viability and increased levels of 8-OHdG, IL-6, and NO. Downregulation of cardiovascular-associated genes was observed in response to ZnONPs in HCAECs determined by qPCR, suggesting that the calcium signaling pathway, neuroactive ligand-receptor interaction, hypertrophic cardiomyopathy, dilated cardiomyopathy, and renin-angiotensin system are important affected pathways in response to ZnONPs. Furthermore, we observed a significant response of AGTR1 to ZnONP exposure in HCAECs. Our results suggest that ZnONPs cause toxicity to HCAECs, which could be associated with cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae.

    PubMed

    Galván Márquez, Imelda; Ghiyasvand, Mergan; Massarsky, Andrey; Babu, Mohan; Samanfar, Bahram; Omidi, Katayoun; Moon, Thomas W; Smith, Myron L; Golshani, Ashkan

    2018-01-01

    Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.

  4. Time dependent rise and decay of photocurrent in zinc oxide nanoparticles in ambient and vacuum medium

    NASA Astrophysics Data System (ADS)

    C, Rajkumar; Srivastava, Rajneesh K.

    2018-05-01

    Zinc oxide (ZnO) nanoparticle has been synthesized by cost effective Co-precipitation method and studied its photo-response activity. The synthesized ZnO nanomaterial was characterized by using various analytical techniques such as x-ray diffraction (XRD), UV–visible spectroscopy, FTIR spectroscopy, photoluminescence (PL) spectroscopy, and Scanning Electron Microscopy (SEM). From the XRD results, it is confirmed that synthesized ZnO nanomaterial possess hexagonal wurtzite phase structure with an average crystallite size of ∼16–17 nm. The UV-Visible absorption spectrum shows that it has blue shift compared to their bulk counterparts. Photoluminescence spectra of ZnO nanoparticles have a strong violet band at 423 nm and three weak bands at 485 nm (blue), 506 nm (green), and 529 nm (green). The presence of hydroxyl group was confirmed by FTIR. The photo-response analysis was studied by the time-dependent rise and decay photocurrent of ZnO nanoparticle was tested in the air as well as vacuum medium.

  5. Electrochemical synthesis and characterization of zinc oxalate nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com; Roushani, Mahmoud; Department of Chemistry, Ilam University, Ilam

    2013-03-15

    Highlights: ► Synthesis of zinc oxalate nanoparticles via electrolysis of a zinc plate anode in sodium oxalate solutions. ► Design of a Taguchi orthogonal array to identify the optimal experimental conditions. ► Controlling the size and shape of particles via applied voltage and oxalate concentration. ► Characterization of zinc oxalate nanoparticles by SEM, UV–vis, FT-IR and TG–DTA. - Abstract: A rapid, clean and simple electrodeposition method was designed for the synthesis of zinc oxalate nanoparticles. Zinc oxalate nanoparticles in different size and shapes were electrodeposited by electrolysis of a zinc plate anode in sodium oxalate aqueous solutions. It was foundmore » that the size and shape of the product could be tuned by electrolysis voltage, oxalate ion concentration, and stirring rate of electrolyte solution. A Taguchi orthogonal array design was designed to identify the optimal experimental conditions. The morphological characterization of the product was carried out by scanning electron microscopy. UV–vis and FT-IR spectroscopies were also used to characterize the electrodeposited nanoparticles. The TG–DTA studies of the nanoparticles indicated that the main thermal degradation occurs in two steps over a temperature range of 350–430 °C. In contrast to the existing methods, the present study describes a process which can be easily scaled up for the production of nano-sized zinc oxalate powder.« less

  6. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni.

    PubMed

    Javed, Rabia; Usman, Muhammad; Yücesan, Buhara; Zia, Muhammad; Gürel, Ekrem

    2017-01-01

    This study aims to address the effects of different concentrations (0, 0.1, 1.0, 10, 100 or 1000 mg L -1 ) of engineered zinc oxide (ZnO) nanoparticles (34 nm in size) on growth parameters, steviol glycosides (rebaudioside A and stevioside) production and antioxidant activities in the tissue culture grown shoots of Stevia rebaudiana Bertoni. The highest percentage of shoot formation (89.6%) at 1 mg L -1 of ZnO nanoparticles concentration suggests a positive influence of ZnO nanoparticles on S. rebaudiana growth as compared to other treatments with or without ZnO nanoparticles. Additionally, HPLC results illustrate a significant enhancement of steviol glycosides (almost doubled as compared to the control) in micropropagated shoots grown under an oxidative stress of 1 mg L -1 of ZnO nanoparticles. This finding is further affirmed by an increased 2,2-diphenyl-1-picryl hydrazyl (DPPH) scavenging activity, total anti-oxidant capacity, total reducing power, total flavonoid content and total phenolic content, with an ascending oxidative pressure and generation of reactive oxygen species (ROS). However, the antioxidant activities, formation of secondary metabolites and the physiological parameters showed a sudden decline after crossing a threshold of 1 mg L -1 concentration of ZnO nanoparticles and falls to a minimum at 1000 mg L -1 , elucidating maximum phytotoxic effect of ZnO nanoparticles at this concentration. This is the first study evaluating both the favorable and adverse effects of ZnO nanoparticles employed to a highly valuable medicinal plant, S. rebaudiana. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Singh, Davender; Kundu, Virender Singh; Maan, A. S.

    2016-07-01

    The pure and Zn-doped SnO2 nanoparticles were prepared successfully by hydrothermal route on large scale having different doping concentration of zinc from 0 to 0.20%. The calcined nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) for structural and morphological studies. XRD analyses reveal that the nanoparticles of these doping concentrations are polycrystalline in nature and existed as tetragonal rutile structure, SEM study of images confirms the existence of very small, homogeneously distributed, and spherical nanoparticles. The particles size of the nanoparticles was calculated by Scherrer formula and was found in the range of 9-21 nm. The presence of dopant (i.e. zinc) and formation of Sn-O phase and hydrous nature of Zn-doped SnO2 nanoparticles are confirmed by EDX and FTIR study. The gas sensing properties of pure and Zn-doped SnO2 nanoparticles were investigated for various concentrations of methanol, ethanol and acetone at different operating temperatures and it has been found that with doping concentration of zinc (x = 0.20%) shows the maximum response 78% to methanol, 65% to ethanol and 62% to acetone respectively at different operating temperature within the measurement limit for a concentration of 100 ppm of each gases.

  8. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents.

    PubMed

    Basnet, Parita; Inakhunbi Chanu, T; Samanta, Dhrubajyoti; Chatterjee, Somenath

    2018-06-01

    In the age of technology, nanoparticles have proven to be one of the essential needs for development. These nanoparticles have the potential to be used for a wide variety of applications, thereby, development in improving the quality of nanoparticles, to make them more application specific, is still under research. In this regard, an important point to note is that the procedures employed in synthesizing nanoparticles require to be cost-effective and less-steps involved and have an additional advantage, i.e. they should be eco-friendly. This means that the synthesis procedure needs avoiding the use of harmful chemicals, and negligible generation of any noxious by-products. The green synthesis (biosynthesis) method employs simple procedures, easily available raw materials and ambiance for the synthesis process, where the precursors used are safe, with minute possibility for the production of harmful by-products. Considering these advantages, the current review includes a brief description on the various chemical and physical synthesis method of zinc oxide (ZnO) nanoparticles with emphasis on the biosynthesis of ZnO nanoparticles using plant extracts (and briefly microbes), the phytochemicals present in the plant extracts, the plausible mechanisms involved in the formation of ZnO nanoparticles and applications of the as-synthesized ZnO nanoparticles as photocatalysts and microbial inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The effect of zinc oxide nanoparticles deposition for friction reduction on orthodontic wires

    PubMed Central

    Kachoei, Mojghan; Eskandarinejad, Faranak; Divband, Baharak; Khatamian, Masumeh

    2013-01-01

    Background: In the sliding technique, the reduced frictional forces are associated with rapid tooth movements and better control of the anchorage. Recently, wire coating with different nanoparticles has been proposed to decrease frictional forces. This in vitro study was carried out to coat stainless steel (SS) wires with zinc oxide (ZnO) nanoparticles in order to determine the effect of this coating on friction between wires and orthodontic brackets. Materials and Methods: Eighty 0.016 inch and 0.019 inch × 0.025 inch SS wires with and without ZnO nanoparticles were used in 80 orthodontic brackets (0.018 and 0.022 systems). The coated wires were analyzed by SEM and X-Ray diffraction (XRD) observations. Kinetic friction between the wires and orthodontic brackets were calculated using a universal testing machine. Frictional forces were statistically analyzed using three-way ANOVA, one-way ANOVA, Student's t-test and Tukey multiple comparison tests. Results: Coating with ZnO nanoparticles significantly influenced frictional force values (P < 0.0001). In 0.019 inch × 0.025 inch wires, the frictional forces were 1.6912 ± 0.18868 and 3.4485 ± 0.32389 N in the coated and uncoated wires respectively, (51% reductions). In the 0.016 inch wires, the friction values were estimated to be 1.5668 ± 0.10703 and 2.56 ± 0.34008 N in the coated and uncoated conditions, respectively, (39% reductions). Conclusion: Due to the positive effects of ZnO nanoparticle coating on decreasing frictional forces, these nanoparticles might offer a novel opportunity to significantly reduce friction during tooth movement. PMID:24130586

  10. Synthesis of Zinc Oxide Nanoparticles using Anthocyanin as a Capping Agent

    NASA Astrophysics Data System (ADS)

    Septiani, N. L. W.; Yuliarto, B.; Iqbal, M.; Nugraha

    2017-05-01

    Zinc Oxide nanoparticles have been successfully synthesized by utilizing anthocyanin as a capping agent by thermal decomposition of precursor route. The influence of the high and low concentrations of the anthocyanin to the shape and size of ZnO was investigated in this work. The anthocyanin was obtained from Indonesia black rice extract with methanol as a solvent. The crystallinity and morphology properties were characterized by X-Ray Diffractometer (XRD), and Scanning Electron Microscope (SEM), respectively. XRD result showed that ZnO was formed with good crystallinity without any second phase and had a hexagonal wurtzite crystal structure. SEM result revealed that ZnO with a low concentration of anthocyanin has a spherical shape with a uniform size of about 16 nm while ZnO with a high concentration of anthocyanin has a rod-like shape. The size of spherical ZnO in this work is smaller than ZnO from the same method of synthesis without anthocyanin (~30 nm).

  11. Solubility of nano-zinc oxide in environmentally and biologically important matrices

    PubMed Central

    Reed, Robert B.; Ladner, David A.; Higgins, Christopher P.; Westerhoff, Paul; Ranville, James F.

    2011-01-01

    Increasing manufacture and use of engineered nanoparticles (NPs) is leading to a greater probability for release of ENPs into the environment and exposure to organisms. In particular, zinc oxide (ZnO) is toxic, although it is unclear whether this toxicity is due to the zinc oxide nanoparticles (ZnO), dissolution to Zn2+, or some combination thereof. The goal of this study was to determine the relative solubilites of both commercially available and in-house synthesized ZnO in matrices used for environmental fate and transport or biological toxicity studies. Dissolution of ZnO was observed in nanopure water (7.18– 7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (~5 mg/L), but much more dissolution was observed in Dulbecco’s Modified Eagle’s Medium (DMEM), where the dissolved Zn concentration exceeded 34 mg/L. Moderately hard water exhibited low zinc solubility, likely due to precipitation of a zinc carbonate solid phase. Precipitation of a zinc-containing solid phase in RPMI also appeared to limit zinc solubility. Equilibrium conditions with respect to ZnO solubility were not apparent in these matrices, even after more than 1,000 h of dissolution. These results suggest that solution chemistry exerts a strong influence on ZnO dissolution and can result in limits on zinc solubility due to precipitation of less soluble solid phases. PMID:21994124

  12. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System

    PubMed Central

    Panda, Kamal K.; Golari, Dambaru; Venugopal, A.; Achary, V. Mohan M.; Phaomei, Ganngam; Parinandi, Narasimham L.; Sahu, Hrushi K.; Panda, Brahma B.

    2017-01-01

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH3COO)2) through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn2+ from Zn(CH3COO)2 were tested in a dose range of 0–100 mg·L−1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone. PMID:28524089

  13. Application of zinc oxide quantum dots in food safety

    USDA-ARS?s Scientific Manuscript database

    Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...

  14. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  15. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration.

    PubMed

    Cho, Wan-Seob; Kang, Byeong-Cheol; Lee, Jong Kwon; Jeong, Jayoung; Che, Jeong-Hwan; Seok, Seung Hyeok

    2013-03-26

    The in vivo kinetics of nanoparticles is an essential to understand the hazard of nanoparticles. Here, the absorption, distribution, and excretion patterns of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles following oral administration were evaluated. Nanoparticles were orally administered to rats for 13 weeks (7 days/week). Samples of blood, tissues (liver, kidneys, spleen, and brain), urine, and feces were obtained at necropsy. The level of Ti or Zn in each sample was measured using inductively coupled plasma-mass spectrometry. TiO₂ nanoparticles had extremely low absorption, while ZnO nanoparticles had higher absorption and a clear dose-response curve. Tissue distribution data showed that TiO₂ nanoparticles were not significantly increased in sampled organs, even in the group receiving the highest dose (1041.5 mg/kg body weight). In contrast, Zn concentrations in the liver and kidney were significantly increased compared with the vehicle control. ZnO nanoparticles in the spleen and brain were minimally increased. Ti concentrations were not significantly increased in the urine, while Zn levels were significantly increased in the urine, again with a clear dose-response curve. Very high concentrations of Ti were detected in the feces, while much less Zn was detected in the feces. Compared with TiO₂ nanoparticles, ZnO nanoparticles demonstrated higher absorption and more extensive organ distribution when administered orally. The higher absorption of ZnO than TiO₂ nanoparticles might be due to the higher dissolution rate in acidic gastric fluid, although more thorough studies are needed.

  16. Acute and long-term in vitro effects of zinc oxide nanoparticles.

    PubMed

    Annangi, Balasubramanyam; Rubio, Laura; Alaraby, Mohamed; Bach, Jordi; Marcos, Ricard; Hernández, Alba

    2016-09-01

    Since most of the toxic studies of zinc oxide nanoparticles (ZnO NPs) focused on acute and high-dose exposure conditions, the aim of the present study was to fill the existing knowledge gap of long-term effects of ZnO NPs at sub-toxic doses. To overcome this point, we have evaluated the toxic, genotoxic, and carcinogenic effects of ZnO NPs under long-term treatments (12 weeks), using a sub-toxic dose (1 µg/mL) according to acute 48-h exposure. Preliminarily, oxidative stress and genotoxic/oxidative DNA damage were determined under acute exposure and high-dose conditions. To determine the role of oxidative DNA damage, a wild-type mouse embryonic fibroblast (MEF Ogg1 (+/+)) and its isogenic 8-oxo-guanine DNA glycosylase 1 (Ogg1) knockout partner (MEF Ogg1 (-/-)) cell lines were used. Although short-term exposure (24-h) experiments demonstrated that ZnO NPs were able to induce ROS, genotoxicity, and oxidative DNA damage in both cell lines, no effects were obtained under long-term exposure scenario. Thus, 1 µg/mL exposure over 12 weeks was unable to induce genotoxicity as well as cellular transformation in both cell types, as indicated by the lack of observed morphological cell changes, variations in the secretion of matrix metalloproteinases, and anchorage-independent cell growth ability, regarded as cancer-like phenotypic hallmarks. Our results indicate that short-term effects of ZnO NP exposure are not replicated under long-term and sub-toxic dose conditions. All together, the lack of genotoxic/carcinogenic effects after chronic treatments seem to indicate a reduced risk associated with ZnO NP exposure.

  17. Wet chemical synthesis of zinc-iron oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Ito, Honami; Amagasa, Shota; Nishida, Naoki; Kobayashi, Yoshio; Yamada, Yasuhiro

    2017-11-01

    Zinc-iron oxide nanoparticles (ZnxFe3-xO4 and δ-ZnxFe1-xOOH) were successfully synthesized by room temperature chemical reaction of a solution containing ZnCl2 and FeCl2 in the presence of gelatin. The composition of products could be controlled by variation of the Zn/Fe mixture ratio of the starting material. ZnxFe3-xO4 nanoparticles were obtained from a solution with a high Zn/Fe ratio, whereas Zn-doped feroxyhyte ( δ-ZnxFe1-xOOH) nanoparticles were obtained from a solution with a low Zn/Fe ratio. The ZnxFe3-xO4 nanoparticles were spherical with diameters of approximately 10 nm, and the δ-ZnxFe1-xOOH particles were needle-like with lengths of approximately 100 nm. Mössbauer spectra measured at room temperature indicated superparamagnetic behavior of the nanoparticles, whereas the magnetic components were observed at low temperature. The Zn content of the intermediate species (( {Zn}^{ {II}}x {Fe}^{ {II}}_{1-x} {Fe}^{ {III}}2O4)) plays an important role in the oxidation process. When the Zn concentration was high, the content of Fe2+ in the intermediate species was small, and Zn2+ prevented further oxidation of the nanoparticles. When the starting material had low Zn concentration, the amount of Fe2+ in the intermediate species became large and was rapidly oxidized into δ-ZnxFe1-xOOH while rinsing under the ambient atmosphere.

  18. Influence of humic acid on the stability and bacterial toxicity of zinc oxide nanoparticles in water.

    PubMed

    Akhil, K; Chandran, Preethy; Sudheer Khan, S

    2015-12-01

    The present study investigated the stability of zinc oxide nanoparticles (ZnO NPs) by the adsorption of humic acid (HA) and the mechanism of adsorption. The effect of humic acid on NP toxicity was determined by Escherichia coli (ATCC 13534), E. coli (ATCC 25922), and Pseudomonas putida (MTCC 4910). The nanoparticles showed low zeta potential and were least stable in the absence of HA. However, the negative surface charge of the particles increased in the presence of HA (0-50mg/L) that reduced the propensity of nanoparticles to aggregate in water. A decrease in absorbance of ZnO NPs at 375 nm (plasmon peak) was noted in the presence of HA by UV-visible spectrophotometric analysis. A blue shift towards 370 nm was noted when the concentration of HA was above 20mg/L. The HA adsorbed ZnO NPs showed higher zeta potential (>-30 mV) and were highly stable. HA reduced the photocatalytic activity of ZnO and at the same time increased the photostability of ZnO. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

    PubMed Central

    Chu, Zhuangzhuang; Zhao, Tianrui; Li, Lin; Fan, Jian; Qin, Yuyue

    2017-01-01

    Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of nano-Ag and nano-ZnO. The addition of nanoparticles into the pure PLA film decreased the tensile strength and elasticity modulus and increased the elongation of breaks—in other words, the flexibility and extensibility of these composites improved. According to the results of differential scanning calorimetry (DSC), the glass transition temperature of the PLA nano-composite films decreased, and the crystallinity of these films increased; a similar result was apparent from X-ray diffraction (XRD) analysis. The water vapor permeability (WVP) and opacity of the PLA nano-composite films augmented compared with pure PLA film. Incorporation of nanoparticles to the PLA films significantly improved the antimicrobial activity to inhibit the growth of Escherichia coli. The results indicated that PLA films with nanoparticles could be considered a potential environmental-friendly packaging material. PMID:28773018

  20. The cytotoxic effects of titanium oxide and zinc oxide nanoparticles oh Human Cervical Adenocarcinoma cell membranes

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam

    2013-03-01

    The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.

  1. Biochemical responses of duckweed (Spirodela polyrhiza) to zinc oxide nanoparticles.

    PubMed

    Hu, Changwei; Liu, Yimeng; Li, Xiuling; Li, Mei

    2013-05-01

    The present study focuses on the biochemical responses of the aquatic plant duckweed (Spirodela polyrhiza L.) to zinc oxide nanoparticles (ZnO NPs). Laboratory experiments were performed using a 96-h exposure to 25-nm NPs at different concentrations (0, 1, 10, and 50 mg/L). Growth, chlorophyll-to-pheophytin ratio (D665/D665a) and activities of superoxide dismutase, catalase, peroxidase (POD), and Na(+), K(+)-ATPase were determined as indices to evaluate the toxicity of NPs in the culture medium. To understand better whether the Zn(2+) released from the ZnO NP suspensions plays a key role in toxicity of the NPs, we investigated particle aggregation and dissolution in the medium. Furthermore, two exposure treatments for the group with the highest concentration (50 mg/L) were performed: (1) exposure for the full 96 h (50a treatment) and (2) the medium being replaced with culture medium without NPs after 12 h (50b treatment). Our results indicate that ZnO NPs induced adverse effects in S. polyrhiza at the concentration of 50 mg/L in the culture medium. Zn(2+) released from the NPs might be the main source of its toxicity to this species.

  2. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  3. Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans.

    PubMed

    Polak, Natasa; Read, Daniel S; Jurkschat, Kerstin; Matzke, Marianne; Kelly, Frank J; Spurgeon, David J; Stürzenbaum, Stephen R

    2014-03-01

    Zinc oxide nanoparticles (ZnONPs) are used in large quantities by the cosmetic, food and textile industries. Here we exposed Caenorhabditis elegans wild-type and a metal sensitive triple knockout mutant (mtl-1;mtl-2;pcs-1) to ZnONPs (0-50mg/L) to study strain and exposure specific effects on transcription, reactive oxygen species generation, the biomolecular phenotype (measured by Raman microspectroscopy) and key endpoints of the nematode life cycle (growth, reproduction and lifespan). A significant dissolution effect was observed, where dissolved ZnO constituted over 50% of total Zn within a two day exposure to the test medium, suggesting that the nominal exposure to pure ZnONPs represents in vivo, at best, a mixture exposure of ionic zinc and nanoparticles. Nevertheless, the analyses provided evidence that the metallothioneins (mtl-1 and mtl-2), the phytochelatin synthase (pcs-1) and an apoptotic marker (cep-1) were transcriptionally activated. In addition, the DCFH-DA assay provided in vitro evidence of the oxidative potential of ZnONPs in the metal exposure sensitive triple mutant. Raman spectroscopy highlighted that the biomolecular phenotype changes significantly in the mtl-1;mtl-2;pcs-1 triple knockout worm upon ZnONP exposure, suggesting that these metalloproteins are instrumental in the protection against cytotoxic damage. Finally, ZnONP exposure was shown to decrease growth and development, reproductive capacity and lifespan, effects which were amplified in the triple knockout. By combining diverse toxicological strategies, we identified that individuals (genotypes) housing mutations in key metalloproteins and phytochelatin synthase are more susceptible to ZnONP exposure, which underlines their importance to minimize ZnONP induced toxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Mode of bindings of zinc oxide nanoparticles to myoglobin and horseradish peroxidase: A spectroscopic investigations

    NASA Astrophysics Data System (ADS)

    Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan

    2011-07-01

    The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH˜7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.

  5. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

    NASA Astrophysics Data System (ADS)

    Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.

    2016-06-01

    Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal

  6. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions.

    PubMed

    Brun, Nadja Rebecca; Lenz, Markus; Wehrli, Bernhard; Fent, Karl

    2014-04-01

    The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of nZnO are solely or partly due to dissolved Zn(II). Here we compare potential effects of 0.2, 1 and 5mg/L nZnO and corresponding concentrations of released Zn(II) by water soluble ZnCl2 to two development stages of zebrafish, embryos and eleuthero-embryos, by analysing expressional changes by RT-qPCR. Another objective was to assess uptake and tissue distribution of Zn(II). Laser ablation-ICP-MS analysis demonstrated that uptake and tissue distribution of Zn(II) were identical for nZnO and ZnCl2 in eleuthero-embryos. Zn(II) was found particularly in the retina/pigment layer of eyes and brain. Both nZnO and dissolved Zn(II) derived from ZnCl2 had similar inhibiting effects on hatching, and they induced similar expressional changes of target genes. At 72hours post fertilization (hpf), both nZnO and Zn(II) delayed hatching at all doses, and inhibited hatching at 1 and 5 mg/L at 96 hpf. Both nZnO and Zn(II) lead to induction of metallothionein (mt2) in both embryos and eleuthero-embryos at all concentrations. Transcripts of oxidative stress related genes cat and Cu/Zn sod were also altered. Moreover, we show for the first time that nZnO exposure results in transcriptional changes of pro-inflammatory cytokines IL-1β and TNFα. Overall, transcriptional alterations were higher in embryos than eleuthero-embryos. The similarities of the effects lead to the conclusion that effects of nZnO are mainly related to the release of Zn(II). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  8. Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants.

    PubMed

    Hu, Changwei; Liu, Xu; Li, Xiuling; Zhao, Yongjun

    2014-01-01

    The adverse effects of zinc oxide nanoparticles (ZnO NPs) with an average diameter of 25 nm on the aquatic plant Salvinia natans (L.) All. were determined. Growth, superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase activity, and chlorophyll content of the plants were measured after 7 days of exposure to different concentrations of ZnO NPs (1 to 50 mg L(-1)). The particle distribution in the culture medium (without plants) during the first 24 h was determined using a Nanotrac 250 particle analyzer. We also investigated the zinc accumulation in leaves and roots of the plant after 7 days of exposure. Exposure to 50 mg L(-1) ZnO NPs significantly increased SOD and CAT activities (P < 0.05) and significantly depressed photosynthetic pigments (P < 0.05). However, plant growth was not significantly affected (P > 0.05). NPs completely precipitated at the bottom of the container at 8 h except for the portions of dissolution and aggregation on the roots. ZnO NPs at a concentration of 50 mg L(-1) can adversely affect S. natans, and their stress is affected by their aggregation and dissolution.

  9. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  10. In vitro toxicity of zinc oxide nanoparticles: a review

    NASA Astrophysics Data System (ADS)

    Pandurangan, Muthuraman; Kim, Doo Hwan

    2015-03-01

    The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn2+] level. The mechanism for increased intracellular [Zn2+] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca2+] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10-100 nm) on various cell lines.

  11. Chondroprotective effect of zinc oxide nanoparticles in conjunction with hypoxia on bovine cartilage-matrix synthesis.

    PubMed

    Mirza, Eraj Humayun; Pan-Pan, Chong; Wan Ibrahim, Wan Mohd Azhar Bin; Djordjevic, Ivan; Pingguan-Murphy, Belinda

    2015-11-01

    Articular cartilage is a tissue specifically adapted to a specific niche with a low oxygen tension (hypoxia), and the presence of such conditions is a key factor in regulating growth and survival of chondrocytes. Zinc deficiency has been linked to cartilage-related disease, and presence of Zinc is known to provide antibacterial benefits, which makes its inclusion attractive in an in vitro system to reduce infection. Inclusion of 1% zinc oxide nanoparticles (ZnONP) in poly octanediol citrate (POC) polymer cultured in hypoxia has not been well determined. In this study we investigated the effects of ZnONP on chondrocyte proliferation and matrix synthesis cultured under normoxia (21% O2 ) and hypoxia (5% O2 ). We report an upregulation of chondrocyte proliferation and sulfated glycosaminoglycan (S-GAG) in hypoxic culture. Results demonstrate a synergistic effect of oxygen concentration and 1% ZnONP in up-regulation of anabolic gene expression (Type II collagen and aggrecan), and a down regulation of catabolic (MMP-13) gene expression. Furthermore, production of transcription factor hypoxia-inducible factor 1A (HIF-1A) in response to hypoxic condition to regulate chondrocyte survival under hypoxia is not affected by the presence of 1% ZnONP. Presence of 1% ZnONP appears to act to preserve homeostasis of cartilage in its hypoxic environment. © 2015 Wiley Periodicals, Inc.

  12. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    PubMed

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode.

    PubMed

    Chawla, Sheetal; Rawal, Rachna; Kumar, Dheeraj; Pundir, Chandra Shekhar

    2012-11-01

    A method is described for construction of a highly sensitive amperometric biosensor for measurement of total phenolic compounds in wine by immobilizing laccase covalently onto nanocomposite of silver nanoparticles (AgNPs)/zinc oxide nanoparticles (ZnONPs) electrochemically deposited onto gold (Au) electrode. Scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy were applied for characterization of the surface morphology of the modified electrode, and cyclic voltammetry was used to investigate the electrochemical properties of the proposed electrode toward the oxidation of guaiacol. The linearity between the oxidation current and the guaiacol concentration was obtained in a range of 0.1 to 500μM with a detection limit of 0.05μM (signal-to-noise ratio (S/N)=3) and sensitivity of 0.71μAμM(-1)cm(-2). The electrode showed increased oxidation and reduced reduction current with the deposition of AgNPs/ZnONPs on it. R(CT) values of ZnONPs/Au, AgNPs/ZnONPs/Au, and laccase/AgNPs/ZnONPs/Au electrode were 220, 175, and 380Ω, respectively. The biosensor showed an optimal response within 8s at pH 6.0 (0.1M acetate buffer) and 35°C when operated at 0.22V against Ag/AgCl. Analytical recovery of added guaiacol was 98%. The method showed a good correlation (r=0.99) with the standard spectrophotometric method, with the regression equation being y=1.0053x-3.5541. The biosensor lost 25% of its initial activity after 200 uses over 5months. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections

    NASA Astrophysics Data System (ADS)

    Bhande, Rashmi M.; Khobragade, C. N.; Mane, R. S.; Bhande, S.

    2013-01-01

    In this study, enhanced synergistic bioactivity of zinc oxide nanoparticles (ZnO NPs) with β-lactam antibiotics were evaluated against a panel of clinically isolated extended spectrum β-lactamase producers implicated in urinary tract infections. Chemically synthesized zinc oxide nanoparticles (15 nm) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmittance electron microscopy (HR-TEM), selective area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and UV-Visible spectrophotometry techniques. The antimicrobial potency (10 ± 0.66, 12, 11.33 ± 1.10, and 0.7 ± 0.66 mm inhibiting zone) and minimum inhibitory concentrations (80, 60, 30, 50 μg/ml) of ZnO NPs were tested separately whereas time-kill and membrane leakage assays were evaluated in combination with ZnO NPs+ cefotaxime, ampicillin, ceftriaxone, cefepime against the β-lactamase producer strains of E. coli, K. pneumoniae, S. paucimobilis, and P. aeruginosa, respectively. Time-kill curve dynamics of ZnO NPs with β-lactam antibiotics revealed enhanced bactericidal activity (50, 85, 58, 50 % fold inhibition) by delaying the exponential and stationary phases of all isolates when tested separately. Posttime-kill effect was studied on cell membrane by assaying leakage of reducing sugars (130.2, 124.7, 137, and 115.8 μg/bacterial dry weight of 1 mg (μg/mg) and proteins (15, 10, 16, 18 μg/mg). These assays revealed that membrane leakage was due to synergism of ZnO NPs+ β-lactam antibiotics which successfully damage cell membrane thereby leading to death of all ESBL producers. The results demonstrate the utilization of ZnO NPs as a potentiator of β-lactam antibiotics and suggest the possibility to use nanoparticles in a combination therapy to treat UTI.

  15. Involvement of the cytokine-IDO1-AhR loop in zinc oxide nanoparticle-induced acute pulmonary inflammation.

    PubMed

    Ho, Chia-Chi; Lee, Hui-Ling; Chen, Chao-Yu; Luo, Yueh-Hsia; Tsai, Ming-Hsien; Tsai, Hui-Ti; Lin, Pinpin

    2017-04-01

    Zinc oxide nanoparticles (ZnONPs) are widely used in our daily life, such as in sunscreens and electronic nanodevices. However, pulmonary exposure to ZnONPs causes acute pulmonary inflammation, which is considered as an initial event for various respiratory diseases. Thus, elucidation of the underlying cellular mechanisms of ZnONPs can help us in predicting their potential effects in respiratory diseases. In this study, we observed that ZnONPs increased proinflammatory cytokines, accompanied with an increased expression of aryl hydrocarbon receptor (AhR) and its downstream target cytochrome P450 1A1 (CYP1A1) in macrophages in vitro and in mouse lung epithelia in vivo. Moreover, zinc nitrate, but not silica or titanium dioxide nanoparticles (NPs), had similar effects on macrophages, indicating that the zinc element or ion released from ZnONPs is likely responsible for the activation of the AhR pathway. Cotreatment with an AhR antagonist or AhR knockout reduced ZnONPs-induced cytokine secretion in macrophages or mice, respectively. Furthermore, kynurenine (KYN), an endogenous AhR agonist and a tryptophan metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was increased in the serums of mice that aspirated ZnONPs. Consistently, ZnONPs increased IDO1 expression in lung cells in vitro and in vivo. Finally, AhR knockout reduced ZnONPs-induced pulmonary inflammation, cytokine secretion and KYN production in mice, suggesting that AhR activation is involved in ZnONPs-induced cytokine secretion and pulmonary inflammation. In summary, we demonstrated that the pulmonary exposure of ZnONPs stimulated the cytokine-IDO1-AhR loop in the lungs, which has been implied to play roles in immune dysfunctions.

  16. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos.

    PubMed

    Zhao, Xuesong; Ren, Xin; Zhu, Rong; Luo, Zhouying; Ren, Baixiang

    2016-11-01

    Zinc oxide nanoparticles (nano-ZnO) are one of the most important nanoparticles in the industry. The objectives of this study were (1) to investigate the effects of nano-ZnO on oxidative damage to DNA and on apoptosis in zebrafish (Danio rerio) embryos, and (2) to identify the underlying molecular mechanism affecting theapoptotic process. In addition to nano-ZnO, we also investigated the toxic effects of the Zn 2+ ion. Zebrafish embryos were exposed to 10, 30, 60, 90, or 120mg/L nano-ZnO for 96h postfertilization. Nano-ZnO (at concentrations between 10 and 120mg/L) significantly reduced the rate of embryo hatching. Embryos/larvae exposed to 120mg/L nano-ZnO had significantly higher heart rates. Increased heart rates could be a physiological mechanism compensating for body hypoxia. Embryos/larvae exposed to nano-ZnO exhibited oxidative stress, due to an excessive generation of reactive oxygen species (ROS). Oxidative stress was evidenced by increased levels of superoxide dismutase, by increased lipid peroxidation, and by increased expression of genes related to the antioxidant defense system (sod1, cat, gpx1a, and pparα), which were altered at different degrees. Upon exposure to nano-ZnO, the percentage of apoptotic cells increased in a dose-dependent manner (0.41% to 4.21%). In addition, altered transcriptional regulation of pro-apoptotic genes (bax, puma, and apaf-1) and anti-apoptotic genes (bcl-2) provided further evidence of the activation of apoptosis. In this study, exposure of zebrafish embryos to nano-ZnO triggered an excessive production of ROS, which was followed by several phenomena: the up-regulation of p53, a reduction in the bcl-2/bax ratio,a reduction in the mitochondrial membrane potential (ψ m ), the release of cytochrome c into the cytosolic fraction, and the activation of caspases 9 and 3. Collectively, our data imply that nano-ZnO induce an excessive production of ROS which then activate the apoptosis pathway mediated by mitochondria and

  17. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles

    PubMed Central

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-01-01

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus, Bacillus cereus, Escherichia coli, Bacillus atrophaeus, and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans. Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus. UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles. PMID:29670066

  18. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles.

    PubMed

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-04-18

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus , Bacillus cereus , Escherichia coli , Bacillus atrophaeus , and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans . Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus . UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles.

  19. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    PubMed

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enzymes loaded chitosan/coconut fibre/zinc oxide nanoparticles strip for polyamine determination.

    PubMed

    Hooda, Vinita; Archita

    2018-01-15

    Most often, the immobilized enzyme based quantification is an attractive alternative to other chromatographic, electrochemical and mass spectrometry based methods due to its specificity and simplicity. In the present study, polyamine oxidase specific for spermine and spermidine and diamine oxidase specific for putrescine, were co-immobilized onto a novel chitosan/coconut fibre/zinc oxide nanoparticles (CS/CF/nZnO) hybrid support to yield a polyamine sensing strip. The strip worked optimally at pH 7.0, temperature 25°C and 6min of incubation time. Pretty good values for kinetic constants Km app (6.60mM), Vmax (17.69μmol/min mg protein) and kcat app (1987.64s -1 ) as well as for thermal (<50 % activity retained at 40°C), storage (half life-40days) and operational stabilities (<90 % activity retained after 20 reuses) were obtained. The strip was employed for polyamine determination in some of the locally grown fruit and vegetables and the results were found to be comparable, reliable and reproducible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in H₂S reactive adsorption.

    PubMed

    Giannakoudakis, Dimitrios A; Bandosz, Teresa J

    2014-12-15

    Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Characterizing the inhibitory action of zinc oxide nanoparticles on allergic-type mast cell activation.

    PubMed

    Feltis, B N; Elbaz, A; Wright, P F A; Mackay, G A; Turney, T W; Lopata, A L

    2015-08-01

    The development of nanoparticles (NPs) for commercial products is undergoing a dramatic expansion. Many sunscreens and cosmetics now use zinc oxide (ZnO) or titania (TiO2) NPs, which are effective ultraviolet (UV) filters. Zinc oxide topical creams are also used in mild anti-inflammatory treatments. In this study we evaluated the effect of size and dispersion state of ZnO and TiO2 NPs, compared to "bulk" ZnO, on mast cell degranulation and viability. ZnO and TiO2 NPs were characterized using dynamic light scattering and disc centrifugation. Rat basophilic leukaemia (RBL-2H3) cells and primary mouse bone marrow-derived mast cells (BMMCs) were exposed to ZnO and TiO2 NPs of different sizes (25-200 nm) and surface coatings at concentrations from 1 to 200 μg/mL. The effect of NPs on immunoglobulin E (IgE)-dependent mast cell degranulation was assessed by measuring release of both β-hexosaminidase and histamine via colorimetric and ELISA assays. The intracellular level of Zn(2+) and Ca(2+) ions were measured using zinquin ethyl ester and Fluo-4 AM fluorescence probes, respectively. Cellular viability was determined using the soluble tetrazolium-based MTS colorimetric assay. Exposure of RBL-2H3 and primary mouse BMMC to ZnO NPs markedly inhibited both histamine and β-hexosaminidase release. This effect was both particle size and dispersion dependent. In contrast, TiO2 NPs did not inhibit the allergic response. These effects were independent of cytotoxicity, which was observed only at high concentrations of ZnO NPs, and was not observed for TiO2 NPs. The inhibitory effects of ZnO NPs on mast cells were inversely proportional to particle size and dispersion status, and thus these NPs may have greater potential than "bulk" zinc in the inhibition of allergic responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes

    NASA Astrophysics Data System (ADS)

    Sri Sindhura, K.; Prasad, T. N. V. K. V.; Panner Selvam, P.; Hussain, O. M.

    2014-10-01

    Nanobiotechnology, the bio-branch of nanotechnology is considered to be one of the fastest emerging research fields. Biosynthesis of metallic nanoparticles is currently under exploitation. Use of plant and plant materials for the synthesis of Zinc nanoparticles is relatively new and exciting research field. The biogenic zinc nanoparticles were synthesized using the leaves of Parthenium hysterophorous by green synthesis route. UV-VIS absorption spectroscopy was used to monitor the quantitative formation of zinc nanoparticles. The characteristics of the synthesized zinc nanoparticles were studied using scanning electron microscopy and nanoparticle analyzer. Zinc nanoparticles were observed to be spherical in shape with size range of 16 to 108.5 nm. The measured zeta potentials varied from 100.4 to 117.20 mV indicate high dispersion of the zinc nanoparticles. The synthesized zinc nanoparticles showed good enzymatic activity and microbial activity. The physiological parameters increased from 30 to 60 days of sowing when compared to control.

  4. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    PubMed

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers.

    PubMed

    Zhao, Cui-Yan; Tan, Shu-Xian; Xiao, Xi-Yu; Qiu, Xian-Shuai; Pan, Jia-Qiang; Tang, Zhao-Xin

    2014-09-01

    Broilers in four groups were fed a basal diet supplemented with 60 mg/kg zinc oxide (60-ZnO; control), or 20, 60, or 100 mg/kg ZnO nanoparticles (20-, 60-, and 100-nano-ZnO, respectively). Compared with the controls, after 14 days, birds in the 20- and 60-nano-ZnO groups had significantly greater weight gains and better feed conversion ratios. However, the body weight of birds in the 100-nano-ZnO group was dramatically reduced after 28 days. Relative to the control group, the total antioxidant capability (T-AOC) in serum and liver tissue was significantly higher in the 20-nano-ZnO group at all time points and also significantly higher in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues on days 21 and 28. Compared with the controls, the activity of copper-zinc superoxide dismutase (Cu-Zn-SOD) was significantly greater in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues after 21 days. Catalase activity in serum samples was significantly higher in the 20- and 60-nano-ZnO groups relative to the control and 100-nano-ZnO birds, but catalase activity in liver tissue was not affected by different nano-ZnO levels. Malondialdehyde content in serum and liver tissues was significantly reduced in the 20-, 60-, and 100-nano-ZnO groups compared with that in the control group at all time points except day 42. Taken together, our data indicate that appropriate concentration of dietary ZnO nanoparticles improves growth performance and antioxidative capabilities in broilers, and 20 mg/kg nano-ZnO is the optimal concentration.

  6. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics.

    PubMed

    Shaheen, Th I; El-Naggar, Mehrez E; Abdelgawad, Abdelrahman M; Hebeish, A

    2016-02-01

    Herein we represent a new discovery based on amine material called hexamethyltriethylene tetramine (HMTETA). We have observed that when an aqueous solution of Zn(NO3)·6H2O was added to aqueous solution of HMTETA followed by shaking for a time, the colorless solution was converted to milky color under the alkaline medium provided by HMTETA prior to formation of uniform zinc oxide nanoparticles (ZnO NPs). The latter are in situ formed within the cotton fabrics without the support of capping or other stabilizing agents. Obviously, then, the new made of formation of ZnO NPs speaks of a single-stage process where cotton fabric is immersed in a prepared solution of the new precursors through which binding of ZnO NPs into the textile fabrics takes place. Textile fabrics are, indeed, used as a template, which is capable of maintaining the size and surface distribution of the as-synthesized nanoparticles in a uniform domain. It is also likely that nanoparticles is confined inside the fibril and microfibrils of the cotton fibers. World-class facilities have been employed to follow up the synthesis of ZnO NPs, their characterization and their application to confer, in particular, high durable antibacterial and UV protective function on cotton fabrics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Zinc oxide nanoparticles and SH-SY5Y cell line

    NASA Astrophysics Data System (ADS)

    Zheng, Jinghui

    The Arctic and sub-arctic regions are impacted by the growth of the global nanotechnology industry. Nanomaterials have unique chemical and physical properties that may lead to toxicological effects that interfere with normal cellular metabolism. Zinc oxide nanoparticles (ZnO NPs) are now very common and widely used in daily life. In industry, ZnO NPs are used to protect different materials from damage caused by UV exposure. The scientific literature suggests that ZnO NPs can have negative impacts on both living organisms and plants. However, there is a paucity of research on the mechanisms by which ZnO NPs may affect the neuronal cells. This study investigates how ZnO NPs interact with the neuroblastoma cell line SH-SY5Y. Using transmission electron microscopy, we observed that the ZnO NPs form 36 nm particles on average, and increase the level of vascular endothelial growth factor (VEGF) in extracellular fluid, as measured by an enzyme-linked immunosorbent assay (ELISA). Moreover, ZnO NPs, in presence of tumor necrosis factor-alpha (TNF-alpha), can also decrease the level of extracellular VEGF compared with TNF-alpha treatment alone. These findings suggest the basis for more studies on understanding the mechanism by which ZnO NPs impact cytokine signaling. Another direction is using ELISA technology to observe the interactions of NPs with different cell types such as neuronal stem cells.

  8. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.

  9. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    PubMed Central

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility. PMID:28045082

  10. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladfelter, Wayne L.; Blank, David A.; Mann, Kent R.

    The overall energy conversion efficiency of photovoltaic cells depends on the combined efficiencies of light absorption, charge separation and charge transport. Dye-sensitized solar cells are photovoltaic devices in which a molecular dye absorbs light and uses this energy to initiate charge separation. The most efficient dye-sensitized solar cells (DSSCs) use nanocrystal titanium dioxide films to which are attached ruthenium complexes. Numerous studies have provided valuable insight into the dynamics of these and analogous photosystems, but the lack of site homogeneity in binding dye molecules to metal oxide films and nanocrystals (NCs) is a significant impediment to extracting fundamental details aboutmore » the electron transfer across the interface. Although zinc oxide is emerging as a potential semiconducting component in DSSCs, there is less known about the factors controlling charge separation across the dye/ZnO interface. Zinc oxide crystallizes in the wurtzite lattice and has a band gap of 3.37 eV. One of the features that makes ZnO especially attractive is the remarkable ability to control the morphology of the films. Using solution deposition processes, one can prepare NCs, nanorods and nanowires having a variety of shapes and dimensions. This project solved problems associated with film heterogeneity through the use of dispersible sensitizer/ZnO NC ensembles. The overarching goal of this research was to study the relationship between structure, energetics and dynamics in a set of synthetically controlled donor-acceptor dyads and triads. These studies provided access to unprecedented understanding of the light absorption and charge transfer steps that lie at the heart of DSSCs, thus enabling significant future advances in cell efficiencies. The approach began with the construction of well-defined dye-NC dyads that were sufficiently dispersible to allow the use of state of the art pulsed laser spectroscopic and kinetic methods to understand the charge

  11. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc oxide. 182.8991 Section 182.8991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use...

  12. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used in...

  13. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally...

  14. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used in...

  15. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally...

  16. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of § 73.1991...

  17. Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling.

    PubMed

    Krupa, A Nithya Deva; Vimala, R

    2016-04-01

    Green synthesis of zinc oxide nanoparticles (ZnO-NPs) is gaining importance as an eco-friendly alternative to conventional methods due to its enormous applications. The present work reports the synthesis of ZnO-NPs using the endosperm of Cocos nucifera (coconut water) and the bio-molecules responsible for nanoparticle formation have been identified. The synthesized nanoparticles were characterized using UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Zeta potential measurement. The results obtained reveal that the synthesized nanoparticles are moderately stable with the size ranging from 20 to 80 nm. The bactericidal effect of the nanoparticles was proved by well diffusion assay and determination of minimum inhibitory concentration (MIC) against marine biofilm forming bacteria. Further the green synthesized ZnO-NPs were doped with TEOS sol-gels (TESGs) in order to assess their antimicrofouling capability. Different volumes of liquid sol-gels were coated on to 96-well microtitre plate and cured under various conditions. The optimum curing conditions were found to be temperature 60 °C, time 72 h and volume 200 μl. Antiadhesion test of the undoped (SG) and ZnO-NP doped TEOS sol-gel (ZNSG) coatings were evaluated using marine biofilm forming bacteria. ZNSG coatings exhibited highest biofilm inhibition (89.2%) represented by lowest OD value against Pseudomonasotitidis strain NV1. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants.

    PubMed

    Boddupalli, Anuraag; Tiwari, Rameshwar; Sharma, Anamika; Singh, Surender; Prasanna, Radha; Nain, Lata

    2017-05-01

    There is a growing interest in the use of bioinoculants to assist mineral fertilizers in improving crop production and yield. Azotobacter and Pseudomonas are two agriculturally relevant strains of bacteria which have been established as efficient bioinoculants. An experiment involving addition of graded concentrations of zinc oxide (ZnO) nanoparticles was undertaken using log phase cultures of Azotobacter and Pseudomonas. Growth kinetics revealed a clear trend of gradual decrease with Pseudomonas; however, Azotobacter exhibited a twofold enhancement in growth with increase in the concentration of ZnO concentration. Scanning electron microscopy (SEM), supported by energy-dispersive X-ray (EDX) analyses, illustrated the significant effect of ZnO nanoparticles on Azotobacter by the enhancement in the abundance of globular biofilm-like structures and the intracellular presence of ZnO, with the increase in its concentration. It can be surmised that extracellular mucilage production in Azotobacter may be providing a barrier to the nanoparticles. Further experiments with Azotobacter by inoculation of wheat and tomato seeds with ZnO nanoparticles alone or bacteria grown on ZnO-infused growth medium revealed interesting results. Vigour index of wheat seeds reduced by 40-50% in the presence of different concentrations of ZnO nanoparticles alone, which was alleviated by 15-20%, when ZnO and Azotobacter were present together. However, a drastic 50-60% decrease in vigour indices of tomato seeds was recorded, irrespective of Azotobacter inoculation.

  19. Simulation of the effect of photoprotective titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles on the thermal response and optical characteristics of skin

    NASA Astrophysics Data System (ADS)

    Krasnikov, I. V.; Seteikin, A. Yu.; Popov, A. P.

    2015-04-01

    The thermal response of skin covered with a mixture of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles of optimal sizes and irradiated by sunlight has been calculated. The nanoparticles were rubbed into the skin for maximum protection against the incident radiation. The dependences of the temperature dynamics in different skin layers (corneal layer, epidermis, dermis) have been obtained and analyzed upon skin irradiation with light at a wavelength of 310-800 nm. It has been found that increasing light scattering and absorption due to the nanoparticles introduced into the corneal layer resulted in a decrease in the thermal load and penetration depth of the incident radiation.

  20. Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies

    NASA Astrophysics Data System (ADS)

    Meißner, Tobias; Oelschlägel, Kathrin; Potthoff, Annegret

    2014-08-01

    The increasing use of zinc oxide (ZnO) nanoparticles in sunscreens and other cosmetic products demands a risk assessment that has to be done in toxicological studies. Such investigations require profound knowledge of the behavior of ZnO in cell culture media. The current study was performed to get well-dispersed suspensions of a hydrophilic (ZnO-hydro) and a lipophilic coated (ZnO-lipo) ZnO nanomaterial for use in in vitro tests. Therefore, systematic tests were carried out with common dispersants (phosphate, lecithin, proteins) to elucidate chemical and physical changes of ZnO nanoparticles in water and physiological solutions (PBS, DMEM). Non-physiological stock suspensions were prepared using ultrasonication. Time-dependent changes of pH, conductivity, zeta potential, particle size and dissolution were recorded. Secondly, the stock suspensions were added to physiological media with or without albumin (BSA) or serum (FBS), to examine characteristics such as agglomeration and dissolution. Stable stock suspensions were obtained using phosphate as natural and physiological electrostatic stabilizing agent. Lecithin proved to be an effective wetting agent for ZnO-lipo. Although the particle size remained constant, the suspension changed over time. The pH increased as a result of ZnO dissolution and formation of zinc phosphate complexes. The behavior of ZnO in physiological media was found to depend strongly on the additives used. Applying only phosphate as additive, ZnO-hydro agglomerated within minutes. In the presence of lecithin or BSA/serum, agglomeration was inhibited. ZnO dissolution was higher under physiological conditions than in the stock suspension. Serum especially promoted this process. Using body-related dispersants (phosphate, lecithin) non-agglomerating stock suspensions of hydrophilic and lipophilic ZnO were prepared as a prerequisite to perform meaningful toxicological investigation. Both nanomaterials showed a non-negligible dissolution behavior

  1. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in...

  2. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in...

  3. Process for preparing zinc oxide-based sorbents

    DOEpatents

    Gangwal, Santosh Kumar [Cary, NC; Turk, Brian Scott [Durham, NC; Gupta, Raghubir Prasad [Durham, NC

    2011-06-07

    The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  4. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite

    PubMed Central

    Namvar, Farideh; Azizi, Susan; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Rasedee, Abdullah; Soltani, Mozhgan; Rahim, Raha Abdul

    2016-01-01

    The study describes an in situ green biosynthesis of zinc oxide nanocomposite using the seaweed Sargassum muticum water extract and hyaluronan biopolymer. The morphology and optical properties of the hyaluronan/zinc oxide (HA/ZnO) nanocomposite were determined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and ultraviolet–vis analysis. Electron microscopy and X-ray diffraction analysis showed that the zinc oxide nanoparticles were polydispersed with a mean size of 10.2±1.5 nm. The nanoparticles were mostly hexagonal in crystalline form. The HA/ZnO nanocomposite showed the absorption properties in the ultraviolet zone that is ascribed to the band gap of zinc oxide nanocomposite. In the cytotoxicity study, cancer cells, pancreatic adenocarcinoma (PANC-1), ovarian adenocarcinoma (CaOV-3), colonic adenocarcinoma (COLO205), and acute promyelocytic leukemia (HL-60) cells were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50) value via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 10.8±0.3 μg/mL, 15.4±1.2 μg/mL, 12.1±0.9 μg/mL, and 6.25±0.5 μg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5) cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers. PMID:27555781

  5. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc oxide is a white or yellow-white amorphous...

  6. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc oxide is a white or yellow-white amorphous...

  7. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc oxide is a white or yellow-white amorphous...

  8. Intravaginal Zinc Oxide Tetrapod Nanoparticles as Novel Immunoprotective Agents against Genital Herpes.

    PubMed

    Antoine, Thessicar E; Hadigal, Satvik R; Yakoub, Abraam M; Mishra, Yogendra Kumar; Bhattacharya, Palash; Haddad, Christine; Valyi-Nagy, Tibor; Adelung, Rainer; Prabhakar, Bellur S; Shukla, Deepak

    2016-06-01

    Virtually all efforts to generate an effective protection against the life-long, recurrent genital infections caused by HSV-2 have failed. Apart from sexual transmission, the virus can also be transmitted from mothers to neonates, and it is a key facilitator of HIV coacquisition. In this article, we uncover a nanoimmunotherapy using specially designed zinc oxide tetrapod nanoparticles (ZOTEN) with engineered oxygen vacancies. We demonstrate that ZOTEN, when used intravaginally as a microbicide, is an effective suppressor of HSV-2 genital infection in female BALB/c mice. The strong HSV-2 trapping ability of ZOTEN significantly reduced the clinical signs of vaginal infection and effectively decreased animal mortality. In parallel, ZOTEN promoted the presentation of bound HSV-2 virions to mucosal APCs, enhancing T cell-mediated and Ab-mediated responses to the infection, and thereby suppressing a reinfection. We also found that ZOTEN exhibits strong adjuvant-like properties, which is highly comparable with alum, a commonly used adjuvant. Overall, to our knowledge, our study provides the very first evidence for the protective efficacy of an intravaginal microbicide/vaccine or microbivac platform against primary and secondary female genital herpes infections. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  10. Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites

    PubMed Central

    Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed

    2012-01-01

    In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength. PMID:22605981

  11. Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites.

    PubMed

    Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed

    2012-01-01

    In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.

  12. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways.

    PubMed

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-06-27

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.

  13. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways

    PubMed Central

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-01-01

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use. PMID:28487501

  14. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis

    PubMed Central

    Wang, Xiaoping; Yang, Xiyu; Chen, Siyu; Li, Qianqian; Wang, Wei; Hou, Chunjiang; Gao, Xiao; Wang, Li; Wang, Shucai

    2016-01-01

    Dramatic increase in the use of nanoparticles (NPs) in a variety of applications greatly increased the likelihood of the release of NPs into the environment. Zinc oxide nanoparticles (ZnO NPs) are among the most commonly used NPs, and it has been shown that ZnO NPs were harmful to several different plants. We report here the effects of ZnO NPs exposure on biomass accumulation and photosynthesis in Arabidopsis. We found that 200 and 300 mg/L ZnO NPs treatments reduced Arabidopsis growth by ∼20 and 80%, respectively, in comparison to the control. Pigments measurement showed that Chlorophyll a and b contents were reduced more than 50%, whereas carotenoid contents remain largely unaffected in 300 mg/L ZnO NPs treated Arabidopsis plants. Consistent with this, net rate of photosynthesis, leaf stomatal conductance, intercellular CO2 concentration and transpiration rate were all reduced more than 50% in 300 mg/L ZnO NPs treated plants. Quantitative RT-PCR results showed that expression levels of chlorophyll synthesis genes including CHLOROPHYLL A OXYGENASE (CAO), CHLOROPHYLL SYNTHASE (CHLG), COPPER RESPONSE DEFECT 1 (CRD1), MAGNESIUM-PROTOPORPHYRIN IX METHYLTRANSFERASE (CHLM) and MG-CHELATASE SUBUNIT D (CHLD), and photosystem structure gene PHOTOSYSTEM I SUBUNIT D-2 (PSAD2), PHOTOSYSTEM I SUBUNIT E-2 (PSAE2), PHOTOSYSTEM I SUBUNIT K (PSAK) and PHOTOSYSTEM I SUBUNIT K (PSAN) were reduced about five folds in 300 mg/L ZnO NPs treated plants. On the other hand, elevated expression, though to different degrees, of several carotenoids synthesis genes including GERANYLGERANYL PYROPHOSPHATE SYNTHASE 6 (GGPS6), PHYTOENE SYNTHASE (PSY) PHYTOENE DESATURASE (PDS), and ZETA-CAROTENE DESATURASE (ZDS) were observed in ZnO NPs treated plants. Taken together, these results suggest that toxicity effects of ZnO NPs observed in Arabidopsis was likely due to the inhibition of the expression of chlorophyll synthesis genes and photosystem structure genes, which results in the inhibition of

  15. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  16. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any mixtues... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc...). It is principally composed of Zn. (2) Color additive mixtures for drug use made with zinc oxide may...

  17. Effect of incorporation of zinc oxide nanoparticles on mechanical properties of conventional glass ionomer cements.

    PubMed

    Panahandeh, Narges; Torabzadeh, Hassan; Aghaee, Mohammadamin; Hasani, Elham; Safa, Saeed

    2018-01-01

    The aim of this study is to investigate the physical properties of conventional and resin-modified glass ionomer cements (GICs) compared to GICs supplemented with zinc oxide (ZnO) nanofiller particles at 5% (w/w). In this in vitro study, ZnO nanoparticles of different morphologies (nanospherical, nanorod, and nanoflower) were incorporated to glass ionomer powder. The samples were subjected to the flexural strength ( n = 20) and surface hardness test ( n = 12) using a universal testing machine and a Vickers hardness machine, respectively. Surface analysis and crystal structure of samples were performed with scanning electron microscope and X-radiation diffraction, respectively. The data were analyzed using one-way ANOVA, Shapiro-Wilk, and Tukey's tests ( P < 0.05). Flexural strength of glass ionomer containing nanoparticles was not significantly different from the control group ( P > 0.05). The surface hardness of the glass ionomer containing nanospherical or nanoflower ZnO was significantly lower than the control group ( P < 0.05). However, the surface hardness of glass ionomer containing nanorod ZnO was not significantly different from the control group ( P = 0.868). Incorporation of nanospherical and nanoflower ZnO to glass ionomer decreased their surface hardness, without any changes on their flexural strength. Incorporation of nanorod ZnO particles caused no effect on the mechanical properties.

  18. Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator.

    PubMed

    Fabrega, Julia; Tantra, Ratna; Amer, Aisha; Stolpe, Bjorn; Tomkins, Jordan; Fry, Tony; Lead, Jamie R; Tyler, Charles R; Galloway, Tamara S

    2012-01-17

    We studied the effects of ZnO nanoparticles [ZnO NPs, primary particle size 35 ± 10 nm (circular diameter, TEM)], bulk [160 ± 81 nm (circular diameter, TEM)], and Zn ions (from ZnCl(2)) on mortality, growth, and reproductive endpoints in the sediment dwelling marine amphipod Corophium volutator over a complete lifecycle (100 days). ZnO NPs were characterized by size, aggregation, morphology, dissolution, and surface properties. ZnO NPs underwent aggregation and partial dissolution in the seawater exposure medium, resulting in a size distribution that ranged in size from discrete nanoparticles to the largest aggregate of several micrometers. Exposure via water to all forms of zinc in the range of 0.2-1.0 mg L(-1) delayed growth and affected the reproductive outcome of the exposed populations. STEM-EDX analysis was used to characterize insoluble zinc precipitates (sphaerites) of high sulfur content, which accumulated in the hepatopancreas following exposures. The elemental composition of the sphaerites did not differ for ZnO NP, Zn(2+), and bulk ZnO exposed organisms. These results provide an illustration of the comparable toxicity of Zn in bulk, soluble, and nanoscale forms on critical lifecycle parameters in a sediment dwelling organism.

  19. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    PubMed

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  20. Zinc oxide nanocolloids prepared by picosecond pulsed laser ablation in water at different temperatures

    NASA Astrophysics Data System (ADS)

    D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza

    2018-01-01

    Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.

  1. Zinc oxide nanoparticles inhibit murine photoreceptor-derived cell proliferation and migration via reducing TGF-β and MMP-9 expression in vitro.

    PubMed

    Guo, Da Dong; Li, Qing Ning; Li, Chun Min; Bi, Hong Sheng

    2015-04-01

    To investigate behaviour and expression of transforming growth factor-β (TGF-β) and matrix metalloproteinases (MMP-9) in murine photoreceptor-derived cells (661W) after incubation with zinc oxide (ZnO) nanoparticles. We explored effects of ZnO nanoparticles on 661W cells using a real-time cell electronic sensing system, flow cytometry, multiple function microplate reading, real-time quantitative PCR detection system and enzyme-linked immunosorbent assay respectively. Our results indicate that ZnO nanoparticles induced overload of calcium and reactive oxygen species within cells, causing formation of apoptotic bodies, disruption of cell cycle distribution, and reduction in expression of TGF-β and MMP-9, to suppress cell proliferation and migration. Our findings show that disruption of intracellular calcium homoeostasis and overproduction of reactive oxygen species were closely associated with reduction of TGF-β and MMP-9 in 661W cells under ZnO nanoparticle treatment. Results of our study indicate that ZnO nanoparticles suppressed cell proliferation and migration, and reduced production of TGF-β and MMP-9 at both gene and protein levels. Our findings contribute to the understanding of the molecular mechanisms that reduced TGF-β and MMP-9 levels inhibit cell proliferation and migration under ZnO nanoparticle influence. © 2015 John Wiley & Sons Ltd.

  2. Antibacterial Activity of Dental Composites Containing Zinc Oxide Nanoparticles

    PubMed Central

    Sevinç, Berdan Aydin; Hanley, Luke

    2010-01-01

    The resin-based dental composites commonly used in restorations result in more plaque accumulation than other materials. Bacterial biofilm growth contributes to secondary caries and failure of resin-based dental composites. Methods to inhibit biofilm growth on dental composites have been sought for several decades. It is demonstrated here that zinc oxide nanoparticles (ZnO-NPs) blended at 10% (w/w) fraction into dental composites display antimicrobial activity and reduce growth of bacterial biofilms by roughly 80% for a single-species model dental biofilm. Antibacterial effectiveness of ZnO-NPs was assessed against Streptococcus sobrinus ATCC 27352 grown both planktonically and as biofilms on composites. Direct contact inhibition was observed by scanning electron microscopy and confocal laser scanning microscopy while biofilm formation was quantified by viable counts. An 80% reduction in bacterial counts was observed with 10% ZnO-NP-containing composites compared with their unmodified counterpart, indicating a statistically significant suppression of biofilm growth. Although, 20% of the bacterial population survived and could form a biofilm layer again, 10% ZnO-NP-containing composites maintained at least some inhibitory activity even after the third generation of biofilm growth. Microscopy demonstrated continuous biofilm formation for unmodified composites after one day growth, but only sparsely distributed biofilms formed on 10% ZnO-NP-containing composites. The minimum inhibitory concentration of ZnO-NPs suspended in S. sobrinus planktonic culture was 50 μg/ml. 10% ZnO-NP-containing composites qualitatively showed less biofilm after one day anaerobic growth of a three-species initial colonizer biofilm after when compared to unmodified composites, but did not significantly reduce growth after three days. PMID:20225252

  3. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells

    PubMed Central

    Ramasamy, Mohankandhasamy; Das, Minakshi; An, Seong Soo A; Yi, Dong Kee

    2014-01-01

    The wide-scale applications of zinc oxide (ZnO) nanoparticles (NPs) in photocatalysts, gas sensors, and cosmetics may cause toxicity to humans and environments. Therefore, the aim of the present study was to reduce the toxicity of ZnO NPs by coating them with a silica (SiO2) layer, which could be used in human applications, such as cosmetic preparations. The sol–gel method was used to synthesize core ZnO with SiO2-shelled NPs (SiO2/ZnO NPs) with varying degrees of coating. Diverse studies were performed to analyze the toxicity of NPs against cells in a dose- and time-dependent manner. To ensure the decreased toxicity of the produced SiO2/ZnO NPs, cytotoxicity in membrane damage and/or intracellular reactive oxygen species (ROS) were assessed by employing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, 2′,7′-dichlorofluorescin, and lipid peroxide estimations. The cores of ZnO NPs exhibited cytotoxicity over time, regardless of shell thickness. Nevertheless, the thicker SiO2/ZnO NPs revealed reduced enzyme leakage, decreased peroxide production, and less oxidative stress than their bare ZnO NPs or thinner SiO2/ZnO NPs. Therefore, thicker SiO2/ZnO NPs moderated the toxicity of ZnO NPs by restricting free radical formation and the release of zinc ions, and decreasing surface contact with cells. PMID:25143723

  4. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells.

    PubMed

    Ramasamy, Mohankandhasamy; Das, Minakshi; An, Seong Soo A; Yi, Dong Kee

    2014-01-01

    The wide-scale applications of zinc oxide (ZnO) nanoparticles (NPs) in photocatalysts, gas sensors, and cosmetics may cause toxicity to humans and environments. Therefore, the aim of the present study was to reduce the toxicity of ZnO NPs by coating them with a silica (SiO2) layer, which could be used in human applications, such as cosmetic preparations. The sol-gel method was used to synthesize core ZnO with SiO2-shelled NPs (SiO2/ZnO NPs) with varying degrees of coating. Diverse studies were performed to analyze the toxicity of NPs against cells in a dose- and time-dependent manner. To ensure the decreased toxicity of the produced SiO2/ZnO NPs, cytotoxicity in membrane damage and/or intracellular reactive oxygen species (ROS) were assessed by employing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, 2',7'-dichlorofluorescin, and lipid peroxide estimations. The cores of ZnO NPs exhibited cytotoxicity over time, regardless of shell thickness. Nevertheless, the thicker SiO2/ZnO NPs revealed reduced enzyme leakage, decreased peroxide production, and less oxidative stress than their bare ZnO NPs or thinner SiO2/ZnO NPs. Therefore, thicker SiO2/ZnO NPs moderated the toxicity of ZnO NPs by restricting free radical formation and the release of zinc ions, and decreasing surface contact with cells.

  5. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis.

    PubMed

    Gupta, Govind Sharan; Senapati, Violet Aileen; Dhawan, Alok; Shanker, Rishi

    2017-06-01

    The extensive use of zinc oxide nanoparticles (ZnO NPs) in cosmetics, sunscreens and healthcare products increases their release in the aquatic environment. The present study explored the possible interaction of ZnO NPs with montmorillonite clay minerals in aqueous conditions. An addition of ZnO NPs on clay suspension significantly (p<0.05) increases the hydrodymic size of clay particles from 1652±90nm to 2158±13nm due to heteroagglomeration. The electrokinetic measurements showed a significant (p<0.05) difference in the electrophoretic mobilities of bare (-1.80±0.03μmcm/Vs) and ZnO NPs-clay association (-1.37±0.03μmcm/Vs) that results to the electrostatic interaction between ZnO NPs and clay particles. The attenuated total reflectance Fourier transform infrared spectroscopy analysis of ZnO NPs-clay association demonstrated the binding of ZnO NPs with the Si-O-Al region on the edges of clay particles. The increase in size of ZnO NPs-clay heteroagglomerates further leads to their sedimentation at 24h. Although, the stability of ZnO NPs in the clay suspension was decreased due to heteroagglomeration, but the bioavailability and toxicity of ZnO NPs-clay heteroagglomerates in Tetrahymena pyriformis was enhanced. These observations provide an evidence on possible mechanisms available in natural environment that can facilitate nanoparticles entry into the organisms present in lower trophic levels of the food web. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.).

    PubMed

    Mahendra, C; Murali, M; Manasa, G; Ponnamma, Pooja; Abhilash, M R; Lakshmeesha, T R; Satish, A; Amruthesh, K N; Sudarshana, M S

    2017-09-01

    Zinc oxide nanoparticles synthesized through eco-friendly approach has gained importance among researchers due to its broad applications. In the present work, hexagonal wurtzite shape nanoparticles (below 100 nm size) were obtained using aqueous leaf extract of Cochlospermum religiosum which was confirmed through X-Ray diffraction (XRD) analysis. The synthesized ZnO-NPs showed an absorption peak at 305 nm which is one of the characteristic features of ZnO-NPs.The bio-fabricated ZnO-NPs were of high purity with an average size of ∼76 nm analyzed through Dynamic Light Scattering (DLS) analysis supporting the findings of XRD. The SEM images confirmed the same with agglomeration of smaller nanoparticles. The composition of aqueous leaf extract and ZnO-NPs was explored with Fourier Transform Infrared Spectroscopy (FT-IR). The plant extract as well as bio-fabricated ZnO-NPs offered significant inhibition against Gram-positive (B. subtilis and Staph. aureus) and Gram-negative (P. aeruginosa and E. coli) bacteria. The minimum inhibitory concentration (MIC) of bio-fabricated ZnO-NPs and plant extract was found between 4.8 and 625 μg/ml against test pathogens, which was authenticated with live and dead cell analysis. Apart from antibacterial potentiality, antimitotic activity was also observed with a mitotic index of 75.42% (ID 50 0.40 μg mL -1 ) and 61.41% (ID 50 0.58 μg mL -1 ) in ZnO-NPs and plant extract, respectively. The results affirm that plant extract and its mediated ZnO-NPs possess biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis.

    PubMed

    Khan, Shams Tabrez; Ahmad, Javed; Ahamed, Maqusood; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-06-01

    Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml(-1), respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml(-1), respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26-83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene.

  8. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Wang, Hua-Jie; Cao, Cui; Sun, Yuan-Yuan; Yang, Lin; Wang, Bao-Qing; Zhou, Jian-Guo

    2011-07-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  9. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    PubMed

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  10. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5991 Zinc oxide. (a) Product. Zinc...

  11. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5991 Zinc oxide. (a) Product. Zinc...

  12. Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production.

    PubMed

    Abedini, M; Shariatmadari, F; Karimi Torshizi, M A; Ahmadi, H

    2018-06-01

    The objective of this study was to evaluate the effects of dietary supplementation with zinc oxide nanoparticles (ZnO-NPs) on the performance, egg quality, Zn retention, immunity responses, superoxide dismutase activity (SOD), egg malondialdehyde (MDA) content, and serum parameters in laying hens in the late phase of production. A total of 288 laying hens at 64 weeks of age were randomly assigned to 4 treatments with 6 replicates, and 12 birds within each group. Experimental diets included a corn-soybean meal-based diet (without Zn supplementation) and a basal diet supplemented with 80 mg/kg of Zn-oxide, ZnO-NPs, and Zn-methionine. The results indicated that egg production and egg mass were significantly higher in the Zn-methionine and ZnO-NPs groups (p < .05). Also, eggshell thickness and shell strength increased in the ZnO-NPs group as compared with the other groups (p < .05). Moreover, Zn supplementation decreased egg loss (p < .05). There were significant differences among treatments in Zn deposition in tibiotarsus, liver, pancreas, eggs, and excreta (p < .01). Antibody titre, heterophil (%(, and phytohemagglutinin (PHA) were significantly higher in birds fed with Zn-supplemented diets (p < .05). In treatments supplemented with ZnO-NPs and Zn-methionine, the SOD activity in the liver, pancreas, and plasma was greater as compared with the other treatments (p < .05). The MDA content in eggs was significantly reduced in groups supplemented with Zn (p < .01). Moreover, dietary Zn supplementation significantly affected serum total protein, albumin, glucose, alkaline phosphatase activity, carbonic anhydrase activity, and Zn level (p < .05). In conclusion, this study demonstrated that dietary supplementation with ZnO-NPs can improve the performance of laying hens. Therefore, ZnO-NPs can enhance zinc absorption in the intestine of aged layers and can be a more suitable source of zinc than regular Zn-oxide in diets. © 2018 Blackwell Verlag GmbH.

  13. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.

    PubMed

    Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric

    2012-02-01

    We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats.

    PubMed

    Faddah, Laila M; Abdel Baky, Nayira A; Al-Rasheed, Nouf M; Al-Rasheed, Nawal M; Fatani, Amal J; Atteya, Muhammad

    2012-05-02

    Nanoparticles are small-scale substances (<100 nm) with unique properties. Therefore, nanoparticles pose complex health risk implications. The objective of this study was to detect whether treatment with quercetin (Qur) and/or arginine (Arg) ameliorated nephrotoxicity induced by two different doses of nano zinc oxide (n-ZnO) particles. ZnO nanoparticles were administered orally in two doses (either 600 mg or 1 g/Kg body weight/day for 5 conscutive days) to Wister albino rats. In order to detect the protective effects of the studied antioxidants against n-ZnO induced nepherotoxicity, different biochemical parameters were investigated. Moreover, histopathological examination of kidney tissue was performed. Nano zinc oxide-induced nephrotoxicity was confirmed by the elevation in serum inflammatory markers including: tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); and C-reactive protein (CRP). Moreover, immunoglobulin (IGg), vascular endothelium growth factor (VEGF), and nitric oxide (NO) were significantly increased in rat serum. Serum urea and creatinine levels were also significantly increased in rats intoxicated with n-ZnO particles compared with the control group. Additionally, a significant decrease in the non-enzymatic antioxidant reduced glutathione (GSH) was shown in kidney tissues and serum glucose levels were increased. These biochemical findings were supported by a histopathological examination of kidney tissues, which showed that in the animals that received a high dose of n-ZnO, numerous kidney glomeruli underwent atrophy and fragmentation. Moreover, the renal tubules showed epithelial desquamation, degeneration and necrosis. Some renal tubules showed casts in their lumina. Severe congestion was also observed in renal interstitium. These effects were dose dependent. Cotreatment of rats with Qur and/or Arg along with n-ZnO significantly improved most of the deviated tested parameters. The data show that Qur has a beneficial effect against

  15. Surface passivation of semiconducting oxides by self-assembled nanoparticles

    PubMed Central

    Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.

    2016-01-01

    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials. PMID:26757827

  16. Intra-vaginal Zinc Oxide Tetrapod Nanoparticles as Novel Immunoprotective Agents against Genital Herpes

    PubMed Central

    Antoine, Thessicar E.; Hadigal, Satvik R.; Yakoub, Abraam; Mishra, Yogendra K.; Bhattacharya, Palash; Haddad, Christine; Valyi-Nagy, Tibor; Adelung, Rainer; Prabhakar, Bellur S.; Shukla, Deepak

    2016-01-01

    Virtually all efforts to generate an effective protection against the life-long, recurrent genital infections caused by Herpes simplex virus-2 (HSV-2) have failed. Apart from sexual transmission, the virus can also be transmitted from mothers to neonates, and is a key facilitator of HIV co-acquisition. Here, we uncover a nanoimmunotherapy using specially designed Zinc Oxide Tetrapod Nanoparticles (ZOTEN) with engineered oxygen vacancies. We demonstrate that ZOTEN, when used intravaginally as a microbicide, is an effective suppressor of HSV-2 genital infection in female BALB/c mice. The strong HSV-2 trapping ability of ZOTEN significantly reduced the clinical signs of vaginal infection and effectively decreased animal mortality. In parallel, ZOTEN promoted the presentation of bound HSV-2 virions to mucosal antigen presenting cells, enhancing T cell- mediated and antibody-mediated responses to the infection, and thereby, suppressing a re-infection. We also found that ZOTEN exhibits strong adjuvant-like properties, which is highly comparable to alum, a commonly used adjuvant. Overall, our study provides very first evidence for the protective efficacy of an intravaginal microbicide/vaccine or microbivac platform against primary and secondary female genital herpes infections. PMID:27183601

  17. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2015-02-10

    We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.

  18. Calcium ions rescue human lung epithelial cells from the toxicity of zinc oxide nanoparticles.

    PubMed

    Hanagata, Nobutaka; Morita, Hiromi

    2015-01-01

    Contradictory results have been reported for in vitro evaluations of whether zinc oxide nanoparticles (ZnO NPs) are cytotoxic. Though there have been reports of ZnO NPs cytotoxicity due to Zn ions released from the nanoparticles, there have also been reports concluding that Zn ions are not cytotoxic. This inconsistency is mostly attributed to the types of cells used. In this research, we investigated the difference in the level of ZnO NPs cytotoxicity due to culturing conditions. The sensitivity of human lung epithelial cells to ZnO NPs cytotoxicity differed depending on the dispersing medium, physiological state of the cells resulting from their growth stage, and composition of the medium. Further, with regard to the toxicity of ZnO NPs, NPs internalized into cells had a greater cytotoxic effect than Zn ions released from ZnO NPs. Instead of inducing cell death, ZnO NPs internalized into cells slowed the rate of cell proliferation. Furthermore, the cytotoxicity of ZnO NPs depended greatly on the concentration of calcium ions (Ca2+) in the medium. When the concentration of Ca2+ was low, the cytotoxicity of ZnO NPs increased markedly. However, the toxicity of ZnO NPs was mitigated by the addition of CaCl2 to the medium. Global gene expression analysis revealed that Ca2+ -induced upregulation of cell cycle functions could be attributable to the mitigation of ZnO NP toxicity by Ca2+.

  19. The impact of zinc oxide nanoparticles on the bacterial microbiome of activated sludge systems

    NASA Astrophysics Data System (ADS)

    Meli, K.; Kamika, I.; Keshri, J.; Momba, M. N. B.

    2016-12-01

    The expected growth in nanomaterial applications could result in increased amounts of nanoparticles entering municipal sewer systems, eventually ending up in wastewater treatment plants and therefore negatively affecting microbial populations and biological nutrient removal. The aim of this study was to ascertain the impact of zinc oxide nanoparticles (nZnO) on the bacterial microbiome of an activated sludge system. A metagenomic approach combined with the latest generation Illumina MiSeq platform and RDP pipeline tools were used to identify and classify the bacterial microbiome of the sludge. Results revealed a drastic decrease in the number of operational taxonomic units (OTUs) from 27 737 recovered in the nZnO-free sample to 23 743, 17 733, and 13 324 OTUs in wastewater samples exposed to various concentrations of nZnO (5, 10 and 100 mg/L nZnO, respectively). These represented 12 phyla, 21 classes, 30 orders, 54 families and 51 genera, completely identified at each taxonomic level in the control samples; 7-15-25-28-20 for wastewater samples exposed to 5 mg/L nZnO; 9-15-24-31-23 for those exposed to 10 mg/L and 7-11-19-26-17 for those exposed 100 mg/L nZnO. A large number of sequences could not be assigned to specific taxa, suggesting a possibility of novel species to be discovered.

  20. Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor.

    PubMed

    Zhang, Xiaojing; Zhang, Nan; Fu, Haoqiang; Chen, Tao; Liu, Sa; Zheng, Shuhua; Zhang, Jie

    2017-11-01

    In this study, a membrane bioreactor (MBR) was adopted for completely autotrophic nitrogen removal over nitrite (CANON) process. Zinc oxide nanoparticles (ZnO NPs) was step-wise increased to analyze the influence on nitrogen removal, microbial activity and microbial communities. Finally ZnO NPs was removed to study its recovery capability. The bioactivities of ammonia-oxidizing bacteria (AOB), anaerobic ammonia-oxidizing bacteria (AAOB) and nitrite-oxidizing bacteria (NOB) were detected by batch experiments. Results showed that the ZnO NPs with low concentration (≤5mgL -1 ) was profitable for nitrogen removal while the high concentration performed inhibition, and it lowered the abundance of both AOB and NOB while enhanced that of AAOB. ZnO NPs with high concentration (≥10mgL -1 ) suppressed both AOB and AAOB, and long-term exposure within ZnO NPs led to microbial diversity decrease. The inhibition threshold of ZnO NPs on CANON process was 10mgL -1 , and the profitable concentration was 1mgL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity Short Running Title: Genotoxicity of ZnO NPs

    PubMed Central

    Scherzad, Agmal; Meyer, Till; Kleinsasser, Norbert

    2017-01-01

    Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival. PMID:29240707

  2. Characterization of the modified nickel-zinc ferrite nanoparticles coated with APTES by salinization reaction

    NASA Astrophysics Data System (ADS)

    Zainal, Israa G.; Al-Shammari, Ahmed Majeed; Kachi, Wjeah

    2018-05-01

    Surface functionalization of magnetic iron oxide nanoparticles (NPs) is a kind of functional materials, which have been widely used in the biotechnology and catalysis. In this study, Nickel-Zinc ferrite nanoparticles was functionalized with amino propyl triethoxy silane (APTES) by silanization reaction and both non coated and organosilane-coated magnetite characterized by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy. Basic groups of amino anchored on the external surface of the coated magnetite were observed. Our study procedure nanoparticles which have surface with free - NH2 groups which can carry out ionic interaction with carboxylic groups and act as a carrier of biological molecules, drugs and metals.

  3. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prach, Morag; Stone, Vicki; Proudfoot, Lorna, E-mail: l.proudfoot@napier.ac.uk

    2013-01-01

    Zinc oxide (ZnO) particle induced cytotoxicity was dependent on size, charge and solubility, factors which at sublethal concentrations may influence the activation of the human monocytic cell line THP1. ZnO nanoparticles (NP; average diameter 70 nm) were more toxic than the bulk form (< 44 μm mesh) and a positive charge enhanced cytotoxicity of the NP despite their relatively high dissolution. A positive charge of the particles has been shown in other studies to have an influence on cell viability. Centrifugal filtration using a cut off of 5 kDa and Zn element analysis by atomic absorption spectroscopy confirmed that exposuremore » of the ZnO particles and NP to 10% foetal bovine serum resulted in a strong association of the Zn{sup 2+} ion with protein. This association with protein may influence interaction of the ZnO particles and NP with THP1 cells. After 24 h exposure to the ZnO particles and NP at sublethal concentrations there was little effect on immunological markers of inflammation such as HLA DR and CD14, although they may induce a modest increase in the adhesion molecule CD11b. The cytokine TNFα is normally associated with proinflammatory immune responses but was not induced by the ZnO particles and NP. There was also no effect on LPS stimulated TNFα production. These results suggest that ZnO particles and NP do not have a classical proinflammatory effect on THP1 cells. -- Highlights: ► ZnO is cytotoxic to THP-1 monocytes. ► ZnO nanoparticles are more toxic than the bulk form. ► Positive charge enhances ZnO nanoparticle cytotoxicity. ► Sublethal doses of ZnO particles do not induce classical proinflammatory markers.« less

  4. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.

    PubMed

    Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash

    2014-08-01

    Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeednia, S., E-mail: sami_saeednia@yahoo.com; Iranmanesh, P.; Ardakani, M. Hatefi

    Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM),more » X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.« less

  6. Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilik, N., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu; Greenberg, B. L.; Yang, J.

    In this paper, we present a large-volume (non-micro) atmospheric pressure glow plasma capable of rapid, large-scale zinc oxide nanocrystal synthesis and deposition (up to 400 μg/min), whereas in the majority of the literature, nanoparticles are synthesized using micro-scale or filamentary plasmas. The reactor is an RF dielectric barrier discharge with a non-uniform gap spacing. This design encourages pre-ionization during the plasma breakdown, making the discharge uniform over a large volume. The produced zinc oxide nanocrystals typically have diameters ranging from 4 to 15 nm and exhibit photoluminescence at ≈550 nm and localized surface plasmon resonance at ≈1900 cm{sup −1} due to oxygen vacancies. Themore » particle size can be tuned to a degree by varying the gas temperature and the precursor mixing ratio.« less

  7. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    PubMed

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement-A comparative study

    NASA Astrophysics Data System (ADS)

    Sedira, Sofiane; Ayachi, Ahmed Abdelhakim; Lakehal, Sihem; Fateh, Merouane; Achour, Slimane

    2014-08-01

    Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag+. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag+ release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV-vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM).

  9. Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics

    NASA Astrophysics Data System (ADS)

    Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi

    2012-06-01

    Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.

  10. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  11. Tissue-Specific Regulation of the Contents and Correlations of Mineral Elements in Hens by Zinc Oxide Nanoparticles.

    PubMed

    Zhao, Yong; Feng, Yan-Ni; Li, Lan; Zhang, Hong-Fu; Zhang, Yu-Na; Zhang, Peng-Fei; Liu, Xin-Qi; Zhang, Wei-Dong; Huang, Ting-Ting; Zhao, Li; Shen, Wei; Hao, Zhi-Hui

    2017-06-01

    Due to their small size, zinc oxide (ZnO) nanoparticles (NPs) are readily absorbed and easily cross biological barriers, which make them promising candidates as diet additives. However, some studies have reported that ZnO NPs cause toxicity; therefore, their safety and potency as diet additives for farm animals should be established. This study was the first to fully evaluate the effects of ZnO NPs on the homeostasis of eight elements in seven organs/tissues. The regulation of element homeostasis was found to be organ specific with no influence on oxidation status, anti-oxidation capability, or organ damage. ZnO NPs may specifically regulate the homeostasis of mineral elements and affect the following correlations: (1) between the element content in each organ and the concentration of Zn used in ZnSO 4 or ZnO NP treatments; (2) between ZnO NP and ZnSO 4 treatments for the same element in each organ; and (3) between elements (in each organ in ZnSO 4 or ZnO NP treatments) in layers' organs/tissues. The use of ZnO NPs as diet additives for animals should be implemented cautiously because, among other uncertainties, they may affect mineral element content.

  12. Molecular evidence of offspring liver dysfunction after maternal exposure to zinc oxide nanoparticles.

    PubMed

    Hao, Yanan; Liu, Jing; Feng, Yanni; Yu, Shuai; Zhang, Weidong; Li, Lan; Min, Lingjiang; Zhang, Hongfu; Shen, Wei; Zhao, Yong

    2017-08-15

    Recently, reproductive, embryonic and developmental toxicity have been considered as one important sector of nanoparticle (NP) toxicology, with some studies already suggesting varying levels of toxicity and possible transgenerational toxic effects. Even though many studies have investigated the toxic effects of zinc oxide nanoparticles (ZnO NPs), little is known of their impact on overall reproductive outcome and transgenerational effects. Previously we found ZnO NPs caused liver dysfunction in lipid synthesis. This investigation, for the first time, explored the liver dysfunction at the molecular level of gene and protein expression in offspring after maternal exposure to ZnO NPs. Three pathways were investigated: lipid synthesis, growth related factors and cell toxic biomarkers/apoptosis at 5 different time points from embryonic day-18 to postnatal day-20. It was found that the expression of 15, 16, and 16 genes in lipid synthesis, growth related factors and cell toxic biomarkers/apoptosis signalling pathway respectively in F1 animal liver were altered by ZnO NPs compared to ZnSO 4 . The proteins in these signalling pathways (five in each pathways analyzed) in F1 animal liver were also changed by ZnO NPs compared to ZnSO 4 . The results suggest that ZnO NPs caused maternal liver defects can also be detected in offspring that might result in problems on offspring liver development, mainly on lipid synthesis, growth, and lesions or apoptosis. Along with others, this study suggests that ZnO NPs may pose reproductive, embryonic and developmental toxicity; therefore, precautions should be taken with regard to human exposure during daily life. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    PubMed Central

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  14. Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses.

    PubMed

    Chupani, Latifeh; Niksirat, Hamid; Velíšek, Josef; Stará, Alžběta; Hradilová, Šárka; Kolařík, Jan; Panáček, Aleš; Zusková, Eliška

    2018-01-01

    Concerns regarding the potential toxic effects of zinc oxide nanoparticles (ZnO NPs) on aquatic organisms are growing due to the fact that NPs may be released into aquatic ecosystems. This study aimed to investigate the effects of dietary exposure to ZnO NPs on juvenile common carp (Cyprinus carpio). Fish were fed a spiked diets at doses 50 and 500mg of ZnO NPs per kg of feed for 6 weeks followed by a 2-week recovery period. Fish were sampled every 2 weeks for haematology trends, blood biochemistry measures, histology analyses, and determination of the accumulation of zinc in tissues. At the end of the exposure and post-exposure periods, fish were sampled for an assessment of lipid peroxidation levels. Dietborne ZnO NPs had no effects on haematology, blood biochemistry, and lipid peroxidation levels during the exposure period. After the recovery period, aspartate aminotransferase activity significantly (p < 0.05) increased and alanine transferase activity significantly (p < 0.05) decreased in the higher exposure group. The level of lipid peroxidation significantly (p < 0.05) decreased in liver of treated fish after 2 weeks post-exposure period. A histological examination revealed mild histopathological changes in kidneys during exposure. Our results did not show a significant increase of zinc content at the end of experiment in any of tested organs. However, chronic dietary exposure to ZnO NPs might affect kidney and liver function. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... coloring externally applied drugs. (b) Specifications. Zinc oxide shall conform to the following...

  16. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The... (a)(1) and (b). (b) Uses and restrictions. Zinc oxide may be safely used in cosmetics, including cosmetics intended for use in the area of the eye, in amounts consistent with good manufacturing practice...

  17. Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics.

    PubMed

    Mahajan, Bikram K; Yu, Xiaowei; Shou, Wan; Pan, Heng; Huang, Xian

    2017-05-01

    Bioresorbable electronics is predominantly realized by complex and time-consuming anhydrous fabrication processes. New technology explores printable methods using inks containing micro- or nano-bioresorbable particles (e.g., Zn and Mg). However, these particles have seldom been obtained in the context of bioresorbable electronics using cheap, reliable, and effective approaches with limited study on properties essential to printable electronics. Here, irregular nanocrystalline Zn with controllable sizes and optimized electrical performance is obtained through ball milling approach using polyvinylpyrrolidone (PVP) as a process control agent to stabilize Zn particles and prevent cold welding. Time and PVP dependence of the ball milled particles are studied with systematic characterizations of morphology and composition of the nanoparticles. The results reveal crystallized Zn nanoparticles with a size of ≈34.834 ± 1.76 nm and low surface oxidation. The resulting Zn nanoparticles can be readily printed onto bioresorbable substrates and sintered at room temperature using a photonic sintering approach, leading to a high conductivity of 44 643 S m -1 for printable zinc nanoparticles. The techniques to obtain Zn nanoparticles through ball milling and processing them through photonic sintering may potentially lead to a mass fabrication method for bioresorbable electronics and promote its applications in healthcare, environmental protection, and consumer electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.

    PubMed

    Odzak, Niksa; Kistler, David; Sigg, Laura

    2017-07-01

    Nanoparticles, such as silver (Ag-NP) and zinc oxide (ZnO-NP), are increasingly used in many consumer products. These nanoparticles (NPs) will likely be exposed to the aquatic environment (rain, river, lake water) and to light (visible and UV) in the products where they are applied, or after those products are discharged. Dissolution of Ag-NP and ZnO-NP is an important process because the dissolved Ag + and Zn 2+ are readily available and toxic for aquatic organisms. The objective of this study was to investigate the role of daylight (UV and visible) for the fate of engineered Ag-NP and ZnO-NPs in different types of natural waters. Ag-NP and ZnO-NP were exposed to rainwater, river Rhine, and lake waters (Greifen, Lucerne, Cristallina, Gruère) under different light conditions (no light, UV 300-400 nm and visible light 400-700 nm) for up to 8 days. Stronger agglomeration of Ag-NP was observed in the waters with higher ionic strength in comparison to those with lower ionic strength. Visible light tended to increase the dissolution of Ag-NP under most natural water conditions in comparison to dark conditions, whereas UV-light led to decreased dissolved Ag + after longer exposure time. These effects illustrate the dynamic interactions of Ag-NP with light, which may lead both to increased oxidation and to increased reduction of Ag + by organic compounds under UV-light. In the case of ZnO-NP, agglomeration occurred at higher ionic strength, but the effects of pH were predominant for dissolution, which occurred up to concentrations close to the solubility limit of ZnO(s) at pH around 8.2 and to nearly complete dissolution of ZnO-NP at lower pH (pH 4.8-6.5), with both visible and UV-light facilitating dissolution. This study thus shows that light conditions play an important role in the dissolution processes of nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials.

    PubMed

    Chaturvedi, Archana; Bajpai, Anil K; Bajpai, Jaya; K Singh, Sunil

    2016-08-01

    In this investigation cryogels composed of poly (vinyl alcohol) (PVA) were prepared by repeated freeze thaw method followed by in situ precipitation of zinc oxide nanoparticles within the cryogel networks. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX) were used to characterize the nanocomposites. The morphologies of native PVA cryogels and PVA cryogel-ZnO nanocomposites were observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well-defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated zinc oxide nanoparticles with diameter<100nm. XRD results showed all relevant Bragg's reflections for crystal structure of zinc oxide nanoparticles. Thermo gravimetric-differential thermal analysis (TG-DTA) was conducted to evaluate thermal stability of the nanocomposites. Mechanical properties of nanocomposites were determined in terms of tensile strength and percent elongation. Biocompatible nature was ascertained by anti-haemolytic activity, bovine serum albumin (blood protein) adsorption and in vitro cytotoxicity tests. The prepared nanocomposites were also investigated for swelling and deswelling behaviours. The results revealed that both the swelling and deswelling process depend on the chemical composition of the nanocomposites, number of freeze-thaw cycles, pH and temperature of the swelling medium. The developed biocompatible PVA cryogel-ZnO nanocomposites were also tested for antibacterial activities against both Gram-negative and Gram-positive bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Assessing the anti-fungal efficiency of filters coated with zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Decelis, Stephen; Sardella, Davide; Triganza, Thomas; Brincat, Jean-Pierre; Gatt, Ruben; Valdramidis, Vasilis P.

    2017-05-01

    Air filters support fungal growth, leading to generation of conidia and volatile organic compounds, causing allergies, infections and food spoilage. Filters that inhibit fungi are therefore necessary. Zinc oxide (ZnO) nanoparticles have anti-fungal properties and therefore are good candidates for inhibiting growth. Two concentrations (0.012 M and 0.12 M) were used to coat two types of filters (melt-blown and needle-punched) for three different periods (0.5, 5 and 50 min). Rhizopus stolonifer and Penicillium expansum isolated from spoiled pears were used as test organisms. Conidial suspensions of 105 to 103 spores ml-1 were prepared in Sabouraud dextrose agar at 50°C, and a modified slide-culture technique was used to test the anti-fungal properties of the filters. Penicillium expansum was the more sensitive organism, with inhibition at 0.012 M at only 0.5 min coating time on the needle-punched filter. The longer the coating time, the more effective inhibition was for both organisms. Furthermore, it was also determined that the coating process had only a slight effect on the Young's Moduli of the needle-punched filters, while the Young's Moduli of the melt-blown filters is more susceptible to the coating method. This work contributes to the assessment of the efficacy of filter coating with ZnO nanopaticles aimed at inhibiting fungal growth.

  1. Assessing the anti-fungal efficiency of filters coated with zinc oxide nanoparticles

    PubMed Central

    Decelis, Stephen; Sardella, Davide; Triganza, Thomas; Brincat, Jean-Pierre; Gatt, Ruben

    2017-01-01

    Air filters support fungal growth, leading to generation of conidia and volatile organic compounds, causing allergies, infections and food spoilage. Filters that inhibit fungi are therefore necessary. Zinc oxide (ZnO) nanoparticles have anti-fungal properties and therefore are good candidates for inhibiting growth. Two concentrations (0.012 M and 0.12 M) were used to coat two types of filters (melt-blown and needle-punched) for three different periods (0.5, 5 and 50 min). Rhizopus stolonifer and Penicillium expansum isolated from spoiled pears were used as test organisms. Conidial suspensions of 105 to 103 spores ml−1 were prepared in Sabouraud dextrose agar at 50°C, and a modified slide-culture technique was used to test the anti-fungal properties of the filters. Penicillium expansum was the more sensitive organism, with inhibition at 0.012 M at only 0.5 min coating time on the needle-punched filter. The longer the coating time, the more effective inhibition was for both organisms. Furthermore, it was also determined that the coating process had only a slight effect on the Young's Moduli of the needle-punched filters, while the Young's Moduli of the melt-blown filters is more susceptible to the coating method. This work contributes to the assessment of the efficacy of filter coating with ZnO nanopaticles aimed at inhibiting fungal growth. PMID:28572995

  2. Assessing the anti-fungal efficiency of filters coated with zinc oxide nanoparticles.

    PubMed

    Decelis, Stephen; Sardella, Davide; Triganza, Thomas; Brincat, Jean-Pierre; Gatt, Ruben; Valdramidis, Vasilis P

    2017-05-01

    Air filters support fungal growth, leading to generation of conidia and volatile organic compounds, causing allergies, infections and food spoilage. Filters that inhibit fungi are therefore necessary. Zinc oxide (ZnO) nanoparticles have anti-fungal properties and therefore are good candidates for inhibiting growth. Two concentrations (0.012 M and 0.12 M) were used to coat two types of filters (melt-blown and needle-punched) for three different periods (0.5, 5 and 50 min). Rhizopus stolonifer and Penicillium expansum isolated from spoiled pears were used as test organisms. Conidial suspensions of 10 5 to 10 3 spores ml -1 were prepared in Sabouraud dextrose agar at 50°C, and a modified slide-culture technique was used to test the anti-fungal properties of the filters. Penicillium expansum was the more sensitive organism, with inhibition at 0.012 M at only 0.5 min coating time on the needle-punched filter. The longer the coating time, the more effective inhibition was for both organisms. Furthermore, it was also determined that the coating process had only a slight effect on the Young's Moduli of the needle-punched filters, while the Young's Moduli of the melt-blown filters is more susceptible to the coating method. This work contributes to the assessment of the efficacy of filter coating with ZnO nanopaticles aimed at inhibiting fungal growth.

  3. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    PubMed

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  4. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zinc oxide. 182.8991 Section 182.8991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product...

  5. 21 CFR 182.8991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Zinc oxide. 182.8991 Section 182.8991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product...

  6. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Kotnala, R. K.; Gopal, R.

    2015-08-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.

  7. Electrosynthesis and characterization of zinc tungstate nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahimi-Nasrabadi, Mehdi; Pourmortazavi, Seied Mahdi; Ganjali, Mohammad Reza; Hajimirsadeghi, Seiedeh Somayyeh; Zahedi, Mir Mahdi

    2013-09-01

    Zinc tungstate nanoparticles with different sizes are produced through an electrolysis process including a zinc plate anode in sodium tungstate solution. The shape and size of the product was found to be controlled by varying reaction parameters such as electrolysis voltage, stirring rate of electrolyte solution and temperature. The morphological (SEM) characterization analysis was performed on the product and UV-Vis spectrophotometry and FT-IR spectroscopy was utilized to characterize the electrodeposited nanoparticles. Study of the particle size of the product versus the electrolysis voltage showed that, increasing the voltage from 4 to 8 V, led to the particle size of zinc tungstate to decrease, but further increasing the voltage from 8 to 12 V, the particle size of the produced particles increased. The size and shape of the product was also found to be dependent on the stirring rate and temperature of the electrolyte solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR spectroscopy, and photoluminescence, were used to study the structure as well as composition of the nano-material prepared under optimum conditions.

  8. 21 CFR 73.2991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... color additive zinc oxide shall conform in identity and specifications to the requirements of § 73.1991...

  9. Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications.

    PubMed

    Hwa, Kuo-Yuan; Subramani, Boopathi

    2014-12-15

    Synthesis of zinc oxide nanoparticles incorporated graphene-carbon nanotubes hybrid (GR-CNT-ZnO) through a simple, one-pot method is demonstrated. The as-synthesized GR-CNT-ZnO composite is applied to fabricate an enzyme based glucose biosensor. The GOx immobilized on GR-CNT-ZnO composite exhibits well-defined redox peaks with a peak potential separation (ΔEp) of about 26 mV with enhanced peak currents, indicating a fast electron transfer at the modified electrode surface. The cyclic voltammetry measurements revealed that the modified film has high electrocatalytic ability towards glucose detection in the presence of oxygen. The proposed sensor has a wide linear detection range from 10 μM to 6.5 mM of glucose with a limit of detection (LOD) of 4.5 (±0.08) μM. In addition, the sensor possessed appreciable repeatability, reproducibility and remarkable stability for the sensitive determination of glucose. The practicality of this sensor has been demonstrated in human serum samples, with results being in good agreement with those determined using a standard photometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination

    PubMed Central

    Dwivedi, Sourabh; Wahab, Rizwan; Khan, Farheen; Mishra, Yogendra K.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2014-01-01

    The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼10–15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods. PMID:25402188

  11. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination.

    PubMed

    Dwivedi, Sourabh; Wahab, Rizwan; Khan, Farheen; Mishra, Yogendra K; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2014-01-01

    The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼ 10-15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.

  12. Effect of Zinc Oxide Doping on Electroluminescence and Electrical Behavior of Metalloporphyrins-Doped Samarium Complex

    NASA Astrophysics Data System (ADS)

    Janghouri, Mohammad; Amini, Mostafa M.

    2018-02-01

    Samarium complex [(Sm(III)] as a new host material was used for preparation of red organic light-emitting diodes (OLEDs). Devices with configurations of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):(poly(styrenesulfonate) (PEDOT:PSS (50 nm)/polyvinyl carbazole (PVK):[zinc oxide (ZnO)] (50 nm)/[(Sm(III)]:[zinc(II) 2,3-tetrakis(dihydroxyphenyl)-porphyrin and Pt(II) 2,3-dimethoxyporphyrin] (60 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (15 nm)/Al (150 nm) have been fabricated and investigated. An electroplex occurring at the (PVK/Sm: Pt(II) 2,3-dimethoxyporphyrin) interface has been suggested when ZnO nanoparticles were doped in PVK. OLED studies have revealed that the photophysical characteristics and electrical behavior of devices with ZnO nanoparticles are much better than those of devices with pure PVK. The efficiency of devices based on [(Sm(III)] was superior than that of known aluminum tris(8-hydroxyquinoline) (Alq3) and also our earlier reports on red OLEDs under the same conditions.

  13. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    NASA Astrophysics Data System (ADS)

    Faure, Bertrand; Salazar-Alvarez, German; Ahniyaz, Anwar; Villaluenga, Irune; Berriozabal, Gemma; De Miguel, Yolanda R.; Bergström, Lennart

    2013-04-01

    This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.

  14. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    PubMed Central

    Faure, Bertrand; Salazar-Alvarez, German; Ahniyaz, Anwar; Villaluenga, Irune; Berriozabal, Gemma; De Miguel, Yolanda R; Bergström, Lennart

    2013-01-01

    This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed. PMID:27877568

  15. Anticoccidial and antioxidant activities of zinc oxide nanoparticles on Eimeria papillata-induced infection in the jejunum

    PubMed Central

    Dkhil, Mohamed A; Al-Quraishy, Saleh; Wahab, Rizwan

    2015-01-01

    Nanomedicine has recently emerged as a better option for the treatment of various diseases. Here, we investigated the in vivo anticoccidial properties of zinc oxide nanoparticles (ZNPs). ZNPs were crystalline in nature, with a smooth and spherical surface and a diameter in the range of ~10–15 nm. The X-ray diffraction pattern was utilized to identify the crystalline property of the grown ZNPs, whereas field emission scanning electron microscopy was employed to check the size and morphology of the ZNPs. The data showed that mice infected with Eimeria papillata produced 29.7×103±1,500 oocysts/g feces on day 5 postinfection. This output was significantly decreased, to 12.5×103±1,000 oocysts, in mice treated with ZNPs. Infection also induced inflammation and injury of the jejunum. This was evidenced (1) through an increase in the inflammatory histological score, (2) through increased production of nitric oxide and malondialdehyde, and (3) through a decrease in both the glutathione level and goblet cell number in mice jejuna. All these infection-induced parameters were significantly altered during treatment with ZNPs. Our results indicate, therefore, that ZNPs have protective effects against E. papillata-induced coccidiosis. PMID:25792829

  16. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells.

    PubMed

    Bai, Ding-Ping; Zhang, Xi-Feng; Zhang, Guo-Liang; Huang, Yi-Fan; Gurunathan, Sangiliyandi

    2017-01-01

    Zinc oxide nanoparticles (ZnO NPs) are frequently used in industrial products such as paint, surface coating, and cosmetics, and recently, they have been explored in biologic and biomedical applications. Therefore, this study was undertaken to investigate the effect of ZnO NPs on cytotoxicity, apoptosis, and autophagy in human ovarian cancer cells (SKOV3). ZnO NPs with a crystalline size of 20 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The cytotoxicity, apoptosis, and autophagy were examined using a series of cellular assays. Exposure of cells to ZnO NPs resulted in a dose-dependent loss of cell viability, and the characteristic apoptotic features such as rounding and loss of adherence, enhanced reactive oxygen species generation, and loss of mitochondrial membrane potential were observed in the ZnO NP-treated cells. Furthermore, the cells treated with ZnO NPs showed significant double-strand DNA breaks, which are gained evidences from significant number of γ-H 2 AX and Rad51 expressed cells. ZnO NP-treated cells showed upregulation of p53 and LC3, indicating that ZnO NPs are able to upregulate apoptosis and autophagy. Finally, the Western blot analysis revealed upregulation of Bax, caspase-9, Rad51, γ-H 2 AX, p53, and LC3 and downregulation of Bcl-2. The study findings demonstrated that the ZnO NPs are able to induce significant cytotoxicity, apoptosis, and autophagy in human ovarian cells through reactive oxygen species generation and oxidative stress. Therefore, this study suggests that ZnO NPs are suitable and inherent anticancer agents due to their several favorable characteristic features including favorable band gap, electrostatic charge, surface chemistry, and potentiation of redox cycling cascades.

  17. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells

    PubMed Central

    Zhang, Guo-Liang; Huang, Yi-Fan; Gurunathan, Sangiliyandi

    2017-01-01

    Background Zinc oxide nanoparticles (ZnO NPs) are frequently used in industrial products such as paint, surface coating, and cosmetics, and recently, they have been explored in biologic and biomedical applications. Therefore, this study was undertaken to investigate the effect of ZnO NPs on cytotoxicity, apoptosis, and autophagy in human ovarian cancer cells (SKOV3). Methods ZnO NPs with a crystalline size of 20 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The cytotoxicity, apoptosis, and autophagy were examined using a series of cellular assays. Results Exposure of cells to ZnO NPs resulted in a dose-dependent loss of cell viability, and the characteristic apoptotic features such as rounding and loss of adherence, enhanced reactive oxygen species generation, and loss of mitochondrial membrane potential were observed in the ZnO NP-treated cells. Furthermore, the cells treated with ZnO NPs showed significant double-strand DNA breaks, which are gained evidences from significant number of γ-H2AX and Rad51 expressed cells. ZnO NP-treated cells showed upregulation of p53 and LC3, indicating that ZnO NPs are able to upregulate apoptosis and autophagy. Finally, the Western blot analysis revealed upregulation of Bax, caspase-9, Rad51, γ-H2AX, p53, and LC3 and downregulation of Bcl-2. Conclusion The study findings demonstrated that the ZnO NPs are able to induce significant cytotoxicity, apoptosis, and autophagy in human ovarian cells through reactive oxygen species generation and oxidative stress. Therefore, this study suggests that ZnO NPs are suitable and inherent anticancer agents due to their several favorable characteristic features including favorable band gap, electrostatic charge, surface chemistry, and potentiation of redox cycling cascades. PMID:28919752

  18. Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio).

    PubMed

    Chen, Te-Hao; Lin, Chia-Chi; Meng, Pei-Jie

    2014-07-30

    Zinc oxide nanoparticles (ZnO NP) are extensively used in various consumer products such as sunscreens and cosmetics, with high potential of being released into aquatic environments. In this study, fertilized zebrafish (Danio rerio) eggs were exposed to various concentrations of ZnO NP suspensions (control, 0.1, 0.5, 1, 5, and 10mg/L) or their respective centrifuged supernatants (0.03, 0.01, 0.08, 0.17, 0.75, and 1.21mg/L dissolved Zn ions measured) until reaching free swimming stage. Exposure to ZnO NP suspensions and their respective centrifuged supernatants caused similar hatching delay, but did not cause larval mortality or malformation. Larval activity level, mean velocity, and maximum velocity were altered in the groups exposed to high concentrations of ZnO NP (5-10mg/L) but not in the larvae exposed to the supernatants. To evaluate possible mechanism of observed effects caused by ZnO NP, we also manipulated the antioxidant environment by co-exposure to an antioxidant compound (N-acetylcysteine, NAC) or an antioxidant molecule suppressor (buthionine sulfoximine, BSO) with 5mg/L ZnO NP. Co-exposure to NAC did not alter the effects of ZnO NP on hatchability, but co-exposure to BSO caused further hatching delay. For larval locomotor activity, co-exposure to NAC rescued the behavioral effect caused by ZnO NP, but co-exposure to BSO did not exacerbate the effect. Our data indicated that toxicity of ZnO NP cannot be solely explained by dissolved Zn ions, and oxidative stress may involve in ZnO NP toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sagitova, A.; Yaminsky, I.; Meshkov, G.

    2016-08-01

    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope.

  20. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. C., E-mail: subhash.laserlab@gmail.com; Gopal, R.; Kotnala, R. K.

    2015-08-14

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, relatedmore » to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.« less

  1. Amino acid-assisted synthesis of zinc oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Baljinder; Moudgil, Lovika; Singh, Gurinder; Kaura, Aman

    2018-05-01

    In this manuscript we have used experimental approach that can provide a fundamental knowledge about the role played by biomolecules in designing the shape of nanostructure (NS) at a microscopic level. The three different amino acids (AAs) - Arginine (Arg), Aspartic acid (Asp) and Histidine (His) coated Zinc oxide (ZnO) NSs to explain the growth mechanism of nanoparticles of different shapes. Based on the experimental methodology we propose that AA-ZnO (Asp and Arg) nanomaterials could form of rod like configuration and His-ZnO NPs could form tablet like configuration. The synthesized samples are characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Results reveal that AAs are responsible for formation of different NSs

  2. Oxidative Stress and Genotoxicity of Zinc Oxide Nanoparticles to Pseudomonas Species, Human Promyelocytic Leukemic (HL-60), and Blood Cells.

    PubMed

    Soni, Deepika; Gandhi, Deepa; Tarale, Prashant; Bafana, Amit; Pandey, R A; Sivanesan, Saravanadevi

    2017-08-01

    In the present study, toxicity of commercial zinc oxide nanoparticles (ZnO NPs) was studied on the bacterium Pseudomonas sp., human promyelocytic leukemia (HL-60) cells, and peripheral blood mononuclear cells (PBMC). The toxicity was assessed by measuring growth, cell viability, and protein expression in bacterial cell. The bacterial growth and viability decreased with increasing concentrations of ZnO NP. Three major proteins, ribosomal protein L1 and L9 along with alkyl hydroperoxides reductase, were upregulated by 1.5-, 1.7-, and 2.0-fold, respectively, after ZnO NP exposure. The results indicated oxidative stress as the leading cause of toxic effect in bacteria. In HL-60 cells, cytotoxic and genotoxic effects along with antioxidant enzyme activity and reactive oxygen species (ROS) generation were studied upon ZnO NP treatment. ZnO NP exhibited dose-dependent increase in cell death after 24-h exposure. The DNA-damaging potential of ZnO NP in HL-60 cells was maximum at 0.05 mg/L concentration. Comet assay showed 70-80% increase in tail DNA at 0.025 to 0.05 mg/L ZnO NP concentration. A significant increase of 1.6-, 1.4-, and 2.0-fold in ROS level was observed after 12 h. Genotoxic potential of ZnO NPs was also demonstrated in PBMC through DNA fragmentation. Thus, ZnO NP, besides being an essential element having antibacterial activity, also showed toxicity towards human cells (HL-60 and PBMC).

  3. Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles

    DOE PAGES

    Escorihuela, Laura; Fernández, Alberto; Rallo, Robert; ...

    2017-07-20

    The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. This work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. We used models of small ZnO clusters to describe the final dissolved material, since the complete ionicmore » dissolution of ZnO is hindered by the formation of O 2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg L -1 and equivalents of 50 μg L -1 for the free Zn 2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.« less

  4. Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escorihuela, Laura; Fernández, Alberto; Rallo, Robert

    The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. Current work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. Models of small ZnO clusters are used for describing the final dissolved material, since the complete ionicmore » dissolution of ZnO is hindered by the formation of O2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg·L-1 and equivalents of 50 g·L-1 for the free Zn2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.« less

  5. Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escorihuela, Laura; Fernández, Alberto; Rallo, Robert

    The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. This work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. We used models of small ZnO clusters to describe the final dissolved material, since the complete ionicmore » dissolution of ZnO is hindered by the formation of O 2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg L -1 and equivalents of 50 μg L -1 for the free Zn 2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.« less

  6. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    PubMed

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2017-10-01

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  7. Triple-wavelength passively Q-switched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Mohsin Al-Hayali, Sarah Kadhim; Hadi Al-Janabi, Abdul

    2018-07-01

    We report on the generation of a triple-wavelength passively Q-switched ytterbium-doped fibre laser using a saturable absorber (SA) based on zinc oxide nanoparticles (ZnO NPs) film. The SA was fabricated by embedding ZnO NPs powder into a polyvinyl alcohol as a host polymer. By properly adjusting the pump power and the polarization state, single-, dual- and triple-wavelength Q-switching are stably generated without additional components (such as optical filter, or fibre grating). For the triple wavelength operation, the fibre laser generates a maximum pulse repetition of 87.9 kHz with the shortest pulse duration of 2.7 μs. To the best of authors' knowledge, it's the first demonstration of triple-wavelength passively Q-switching fibre laser using ZnO NPs as a SA. Our results suggest that ZnO is a promising SA for multi-wavelength laser operation.

  8. Directed spatial organization of zinc oxide nanostructures

    DOEpatents

    Hsu, Julia [Albuquerque, NM; Liu, Jun [Richland, WA

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  9. Phytofabrication of bioinspired zinc oxide nanocrystals for biomedical application.

    PubMed

    Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Jang, Jum-Suk; Yi, Young-Joo; Han, Sang-Sub; Lee, Sang-Hyun; Cho, Kwang-Min; Cho, Min; Oh, Byung-Taek

    2016-09-01

    In the present study, we investigated a novel green route for synthesis of zinc oxide nanoparticles (ZnO NPs) using the extract of young cones of Pinus densiflora as a reducing agent. Standard characterization studies were carried out to confirm the obtained product using UV-Vis spectra, SEM-EDS, FTIR, and XRD. TEM images showed that various shapes of ZnO NPs were synthesized, including hexagonal (wurtzite), triangular, spherical, and oval-shaped particles, with average sizes between 10 and 100 nm. The synthesized ZnO NPs blended with the young pine cone extract have very good activity against bacterial and fungal pathogens, similar to that of commercial ZnO NPs.

  10. Berberine and zinc oxide-based nanoparticles for the chemo-photothermal therapy of lung adenocarcinoma.

    PubMed

    Kim, Sungyun; Lee, Song Yi; Cho, Hyun-Jong

    2018-05-16

    Organic/inorganic hydrid nanoparticles (NPs) composed of berberine (BER) and zinc oxide (ZnO) were developed for the therapy of lung cancers. Without the use of pharmaceutical excipients, NPs were fabricated with only dual anticancer agents (BER and ZnO) by facile blending method. The mean weight ratio between BER and ZnO in BER-ZnO NPs was 39:61 in this study. BER-ZnO NPs dispersed in water exhibited 200-300 nm hydrodynamic size under 5 mg/mL concentration. The exposure of both BER and ZnO in the outer layers of BER-ZnO NPs was identified by X-ray photoelectron spectroscopy analysis. The amorphization of BER and the maintenance of ZnO structure were observed in the results of X-ray powder diffractometer analysis. Improved antiproliferation efficacy, based on the chemo-photothermal therapeutic efficacy, of BER-ZnO NPs in A549 (human lung adenocarcinoma) cells was presented. According to the blood tests in rats after intravenous administration, BER-ZnO NPs did not induce severe hepatotoxicity, renal toxicity, and hemotoxicity. Developed BER-ZnO NPs can be used efficiently and safely for the chemo-photothermal therapy of lung cancers. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Alteration in the expression of antioxidant and detoxification genes in Chironomus riparius exposed to zinc oxide nanoparticles.

    PubMed

    Gopalakrishnan Nair, Prakash M; Chung, Ill Min

    2015-12-01

    Zinc oxide nanoparticles (ZnONPs) are widely used in several commercial products due to their unique physicochemical properties. However, their release into the aquatic environments through various anthropogenic activities will lead to toxic effect in aquatic organisms. Although several investigations have been reported on the effect of ZnONPs in aquatic organisms using traditional end points such as survival, growth, and reproduction, the molecular level end points are faster and sensitive. In this study, the expression of different genes involved in oxidative stress response, detoxification, and cellular defense was studied in an ecotoxicologically important bio-monitoring organism Chironomus riparius in order to understand the subcellular effects of ZnONPs. The fourth instar larvae were exposed to 0, 0.2, 2, 10, and 20 mg/L of ZnONPs and Zn ions (in the form of ZnSO4.7H2O) for 24 and 48 h period. The expression of CuZn superoxide dismutase, manganese superoxide dismutase, catalase, phospholipid hydroperoxide glutathione peroxidase, thioredoxin reductase 1 and delta-3, sigma-4 and epsilon-1 classes of glutathione S-transferases, cytochrome p4509AT2, and heat shock protein 70 were studied using real-time polymerase chain reaction method. Gene expression results showed that the expression of genes related to oxidative stress response was more pronounced as a result of ZnONPs exposure as compared to Zn ions. The mRNA expression of genes involved in detoxification and cellular protection was also modulated. Significantly higher expression levels of oxidative stress-related genes shows that oxidative stress is an important mechanism of toxicity as a result of ZnONPs exposure in C. riparius. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Crystal Structure Characterization of Thin Layer Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Doyan, Aris; Susilawati; Azizatul Fitri, Siti; Ahzan, Sukainil

    2017-05-01

    In this research the characterization of the crystal structure of a thin layer of ZnO (zinc oxide) were synthesized by sol - gel method and spin coating deposited on a glass substrate. The samples were divided into three sol concentrations of 0.1, 0.3, 0.5 Molar and two deposition temperature is 350 °C, and 550 °C. UV-Vis. spectrophotometer results showed that in the spectrum of visible light (wavelength range 300-800 nm) has a transmittance value of which increases with increasing concentration and temperature deposition of zinc oxide, otherwise the value of the absorption and the band gap energy decreases with the addition of concentration and deposition temperature. The transmittances value of the highest and lowest absorption was 93.5% and 0.03 is at a concentration of 0.1 M and zinc oxide deposition temperature of 550 °C, with a value of band gap energy of 2.98 eV. The XRD results showed that the zinc oxide crystal orientation in the field of 013 with a crystal grain size 14.4472 nm. SEM results showed the surface morphology of zinc oxide such as rod-like.

  13. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles.

    PubMed

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu

    2017-01-01

    Fungal infected denture, which is typically composed of polymethylmethacrylate (PMMA), is a common problem for a denture wearer, especially an elderly patient with limited manual dexterity. Therefore, increasing the antifungal effect of denture by incorporating surface modification nanoparticles into the PMMA, while retaining its mechanical properties, is of interest. This study aimed to evaluate antifungal, optical, and mechanical properties of heat-cured PMMA incorporated with different amounts of zinc oxide nanoparticles (ZnOnps) with or without methacryloxypropyltrimethoxysilane modification. Specimens made from heat-cured PMMA containing 1.25, 2.5, and 5% (w/w) nonsilanized (Nosi) or silanized (Si) ZnOnps were evaluated. Specimens without filler served as control. The fungal assay was performed placing a Candida albicans suspension on the PMMA surface for 2 h, then Sabouraud Dextrose Broth was added, and growth after 24 h was determined by counting colony forming units on agar plates. A spectrophotometer was used to measure the color in L* (brightness), a* (red-green), b* (yellow-blue) and opacity of the experimental groups. Flexural strength and flexural modulus were determined using a three-point bending test on universal testing machine after 37°C water storage for 48 h and 1 month. The antifungal, optical, and mechanical properties of the PMMA incorporated with ZnOnps changed depending on the amount. With the same amount of ZnOnps, the silanized groups demonstrated a greater reduction in C. albicans compared with the Nosi groups. The color difference (ΔE) and opacity of the Nosi groups were greater compared with the Si groups. The flexural strength of the Si groups, except for the 1.25% group, was significantly greater compared with the Nosi groups. PMMA incorporated with Si ZnOnps, particularly with 2.5% Si ZnOnps, had a greater antifungal effect, less color differences, and opacity compared with Nosi ZnOnps, while retaining its mechanical properties.

  14. Zinc oxide-based sorbents and processes for preparing and using same

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasad

    2005-10-04

    Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2 O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  15. Zinc-oxide-based sorbents and processes for preparing and using same

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  16. Preliminary investigations on the antibacterial activity of zinc oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Ramani, Meghana; Ponnusamy, S.; Muthamizhchelvan, C.

    2013-04-01

    In this study, we present a systematic investigation on the evolution of nanorods of diameter 35-40 nm and 1-2 μm length from nanoparticles of diameter 30-35 nm by varying the concentration of 2,6-lutidine which acts as a shape-directing agent in the synthesis process. This variation in morphology was studied using transmission electron microscopy. The surface capping agent was subsequently removed by heating during the synthesis process and confirmed using Fourier Transform Infra-red spectroscopy. Sufficient quantity of surface defects in the form of oxygen vacancies was observed from the photoluminescence analysis of the synthesized nanostructures. The concentration of defects decreased as the shape transits from nanoparticles to nanorods. The synthesized samples were preliminarily studied for their antibacterial activity against four model (gram-positive and gram-negative) pathogens by disk diffusion method and growth curve analysis. The calculated generation time indicates higher activity for nanoparticles than nanorods. However, the difference in the activity against different pathogens and their dependence on the concentration of defects indicate oxidative stress in addition to mechanical membrane damage as the major toxicity mechanism. Overall, the experimental findings are preliminary evidence supporting the possibility of developing zinc oxide nanostructures as antibacterial agents against a wide range of microorganisms to control and prevent the spreading of bacterial infections.

  17. Structural properties of perovskite films on zinc oxide nanoparticles-reduced graphene oxide (ZnO-NPs/rGO) prepared by electrophoretic deposition technique

    NASA Astrophysics Data System (ADS)

    Bahtiar, Ayi; Nurazizah, Euis Siti; Latiffah, Efa; Risdiana, Furukawa, Yukio

    2018-02-01

    Perovskite solar cells highly believed as next generation solar cells to replace currently available inorganic silicon solar cells due to their high power conversion efficiency and easy processing to thin films using solution processing techniques. Performance and stability, however still need to be improved for mass production and widely used for public electricity generation. Perovskite solar cells are commonly deposited on Titanium Dioxide (TiO2) film as an effective electron transport layer (ETL). We used Zinc Oxide nanoparticles (ZnO-NPs) as ETL in perovskite solar cells due to the low temperature required for crystallization and can be formed into different shapes of nanostructures. However, perovskite film can easily degrade into insulating lead iodide due to deprotonation of the methylammoniumcation at the surface of ZnO-NPs, in particular when it stored in ambient air with high relative humidity. The degradation of perovskite layer is therefore needed to be overcome. Here, we capped ZnO-NPs with reduced graphene oxide (rGO) to overcome the degradation of perovskite film where ZnO-NPs is synthesized by sol-gel method. The average nanoparticle size of ZnO is 15 nm. ZnO-NPs and ZnO-NPs-rGO films are prepared using electrophoretic deposition technique, which can produce large area with good homogeneity and high reproducibility. The stability of perovskite layer can significantly be improved by capping ZnO with rGO, which is indicated by absence of color change of perovskite after storage for 5 (five) days in ambient air with relative humidity above 95%. Moreover, the X-Ray Diffaction peaks of perovskite film are more preserved when deposited on ZnO/rGO film than using only ZnO film. We strongly believe, by capping ZnO film with rGO, both the performance and stability of perovskite solar cells can be improved significantly.

  18. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    PubMed Central

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  19. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.

    PubMed

    Singh, P; Nanda, A

    2014-06-01

    A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. Morphological impact of zinc oxide layers on the device performance in thin-film transistors.

    PubMed

    Faber, Hendrik; Klaumünzer, Martin; Voigt, Michael; Galli, Diana; Vieweg, Benito F; Peukert, Wolfgang; Spiecker, Erdmann; Halik, Marcus

    2011-03-01

    Zinc oxide thin-films are prepared either by spin coating of an ethanolic dispersion of nanoparticles (NP, diameter 5 nm) or by spray pyrolysis of a zinc acetate dihydrate precursor. High-resolution electron microscopy studies reveal a monolayer of particles for the low temperature spin coating approach and larger crystalline domains of more than 30 nm for the spray pyrolysis technique. Thin-film transistor devices (TFTs) based on spray pyrolysis films exhibit higher electron mobilities of up to 24 cm2 V(-1) s(-1) compared to 0.6 cm2 V(-1) s(-1) for NP based TFTs. These observations were dedicated to a reduced number of grain boundaries within the transistor channel.

  1. Synergistic effect of Chitosan-Zinc Oxide Hybrid Nanoparticles on antibiofouling and water disinfection of mixed matrix polyethersulfone nanocomposite membranes.

    PubMed

    Munnawar, Iqra; Iqbal, Sadia S; Anwar, Muhammad N; Batool, Mehwish; Tariq, Sheraz; Faitma, Nosheen; Khan, Asim L; Khan, Asad U; Nazar, Umair; Jamil, Tahir; Ahmad, Nasir M

    2017-11-01

    Antifouling polyethersulfone (PES) membranes for water disinfection were fabricated by incorporating varying concentrations of carbohydrate polymer chitosan and Zinc oxide hybrid nanoparticles (CS-ZnO HNPS). The CS-ZnO HNPS were prepared using chemical precipitation method and were characterized using SEM, XRD and FTIR. The membranes were then fabricated by incorporating nanoparticles of CS-ZnO HNPS with three different concentrations of 5%, 10% and 15% w/w in the casting solution of PES through phase inversion method. The influence of nano-sized CS-ZnO HNPS on the properties of PES was characterized to study morphology, contact angle, water retention, surface roughness and permeability flux. The membranes with the maximum concentrations of 15% HNPS resulted in larger mean pore sizes and lowest contact angle value as compare to the pristine PES membrane. The prepared membranes exhibited significant water permeability, hydrophilicity and prevention against microbial fouling. The prepared membranes were observed to have significant antibacterial as well as antifungal properties due to the synergistic effect of chitosan and ZnO against both bacteria of the type of S. Aureus, B. Cereus, E. coli, and fungi such as S. typhi, A. fumigatus and F. solani. Copyright © 2017. Published by Elsevier Ltd.

  2. Zinc-doped cerium oxide nanoparticles: Sol-gel synthesis, characterization, and investigation of their in vitro cytotoxicity effects

    NASA Astrophysics Data System (ADS)

    Akbari, Alireza; Khammar, Mansoureh; Taherzadeh, Danial; Rajabian, Arezoo; Khorsand Zak, Ali; Darroudi, Majid

    2017-12-01

    Zinc-doped cerium oxide nanoparticles (Zn-doped CeO2-NPs) with Ce1-xZnxO2 composition, where x equals to 0.0, 0.01, 0.03, and 0.05 are synthesized through a green based sol-gel method from nitrate precursors and gelatin at the fixed calcination temperature of 600 °C maintained for 2 h. The powder X-ray diffraction (PXRD) patterns displayed the single-crystalline structure of these particular samples, which seemed to be completely indexed with the cubic fluorite phase. The evolution of crystalline phases in Ce1-xZnxO2 are assured by the observed broadening in PXRD peaks, while the field emission scanning electron microscopy (FE-SEM) images revealed that the spherical-shaped single-crystalline NPs do exist and confirmed the size estimations that were obtained from the Scherrer's equation. A dose dependent toxicity with non-toxic effects of concentrations up to 31.25 μg/ml is illustrated through the In vitro cytotoxicity studies regarding Neuro2A cells.

  3. Optical, Magnetic and Photocatalytic Activity Studies of Li, Mg and Sr Doped and Undoped Zinc Oxide Nanoparticles.

    PubMed

    Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M

    2018-08-01

    Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.

  4. Effect of Variable Doses of Zinc Oxide Nanoparticles on Male Albino Mice Behavior.

    PubMed

    Zahra, Javeria; Iqbal, Shahid; Zahra, Kiran; Javed, Zulha; Shad, Muhammad Aslam; Akbar, Atif; Ashiq, Muhammad Naeem; Iqbal, Furhan

    2017-02-01

    Zinc oxide nanoparticles (ZnO NPs) have diverse utility these days ranging from being part of nanosensors to be ingredient of cosmetics. Present study was designed to report the effect of variable doses of ZnO NPs on selected aspects of male albino mice behavior. Nano particles were synthesized by sol-gel auto-combustion method (Data not shown here). 10 week old male albino mice were divided into four experimental groups; group A, B and C were orally supplemented with 50 (low dose), 300 (medium dose) and 600 mg/ml solvent/kg body weight (high dose) of ZnO NPs for 4 days. Group D (control) orally received 0.2 M sodium phosphate buffer (solvent for ZnO NPs) for the same duration. A series of neurological tests (Rota rod, open field, novel object and light-dark box test) were conducted in all groups and performance was compared between ZnO NPs treated and control group. Muscular functioning during rota rod test was significantly improved in all ZnO NPs treated mice as compared to control group. While no significant differences in open field, novel object and light-dark box test performance were observed when data from studied parameters of specific ZnO NPs treatment were compared with the control group indicating that applied doses of ZnO NPs did not affect the exploratory, anxiolytic behavior and object recognition capability of adult male albino mice.

  5. Effect of zinc oxide nanoparticles on dams and embryo–fetal development in rats

    PubMed Central

    Hong, Jeong-Sup; Park, Myeong-Kyu; Kim, Min-Seok; Lim, Jeong-Hyeon; Park, Gil-Jong; Maeng, Eun-Ho; Shin, Jae-Ho; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Jong-Kwon; Park, Jin-A; Kim, Jong-Choon; Shin, Ho-Chul

    2014-01-01

    This study investigated the potential adverse effects of zinc oxide nanoparticles (ZnOSM20[−] NPs; negatively charged, 20 nm) on pregnant dams and embryo–fetal development after maternal exposure over the period of gestational days 5–19 with Sprague Dawley rats. ZnOSM20(−) NPs were administered to pregnant rats by gavage at 0 mg/kg/day, 100 mg/kg/day, 200 mg/kg/day, and 400 mg/kg/day. All dams were subjected to caesarean section on gestational day 20, and all the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight at 400 mg/kg/day and decreased liver weight, and increased adrenal glands weight at 200 mg/kg/day and 400 mg/kg/day. However, no treatment-related difference in the number of corpora lutea, the number of implantation sites, the implantation rate (%), resorption, dead fetuses, litter size, fetal deaths, fetal and placental weights, and sex ratio were observed between the groups. Morphological examinations of the fetuses demonstrated no significant difference in the incidences of abnormalities between the groups. No significant difference was found in the Zn content of fetal tissue between the control and high-dose groups. These results showed that a 15-day repeated oral dose of ZnOSM20(−) was minimally maternotoxic at dose of 200 mg/kg/day and 400 mg/kg/day. PMID:25565833

  6. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane.

    PubMed

    Tang, Chuan-Ho; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien

    2017-06-01

    Zinc oxide nanoparticles (nZnOs) released from popular sunscreens used during marine recreation apparently endanger corals; however, the known biological effects are very limited. Membrane lipids constitute the basic structural element to create cell a dynamic structure according to the circumstance. Nano-specific effects have been shown to mechanically perturb the physical state of the lipid membrane, and the cells accommodating the actions of nZnOs can be involved in the alteration of the membrane lipid composition. To gain insight into the effects of nanoparticles on coral, glycerophosphocholine (GPC) profiling of the coral Seriatopora caliendrum exposed to nZnOs was performed in this study. Increasing lyso-GPCs, docosapentaenoic acid-possessing GPCs and docosahexaenoic acid-possessing GPCs and decreasing arachidonic acid-possessing GPCs were the predominant changes responded to nZnO exposure in the coral. A backfilling of polyunsaturated plasmanylcholines was observed in the coral exposed to nZnO levels over a threshold. These changes can be logically interpreted as an accommodation to nZnOs-induced mechanical disturbances in the cellular membrane based on the biophysical properties of the lipids. Moreover, the coral demonstrated a difference in the changes in lipid profiles between intra-colonial functionally differentiated polyps, indicating an initial membrane composition-dependent response. Based on the physicochemical properties and physiological functions of these changed lipids, some chronic biological effects can be incubated once the coral receives long-term exposure to nZnOs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synergistic effect of bolus exposure to zinc oxide nanoparticles on bleomycin-induced secretion of pro-fibrotic cytokines without lasting fibrotic changes in murine lungs.

    PubMed

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D'Alessandro-Gabazza, Corina N; Gabazza, Esteban C; Ichihara, Sahoko

    2014-12-30

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs.

  8. Synergistic Effect of Bolus Exposure to Zinc Oxide Nanoparticles on Bleomycin-Induced Secretion of Pro-Fibrotic Cytokines without Lasting Fibrotic Changes in Murine Lungs

    PubMed Central

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D’Alessandro-Gabazza, Corina N.; Gabazza, Esteban C.; Ichihara, Sahoko

    2014-01-01

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs. PMID:25561223

  9. A review of zinc oxide mineral beneficiation using flotation method.

    PubMed

    Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi

    2014-04-01

    In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Zinc Oxide Nanoparticles Demoted MDM2 Expression to Suppress TSLP-Induced Mast Cell Proliferation.

    PubMed

    Kim, Min-Ho; Jeong, Hyun-Ja

    2016-03-01

    Activation of murine double minute 2 (MDM2) through thymic stromal lymphopoietin (TSLP)-induced signal transducers and activators of transcription (STAT6) phosphorylation plays a critical role in proliferation and survival of mast cells. Previously, we reported that zinc oxide nanoparticles (ZnO-NP) effectively decrease the mast cell-mediated allergic inflammatory reactions. Here, we evaluated the effect of ZnO-NP on TSLP-induced proliferation of mast cells. ZnO-NP significantly reduced the number of BrdU-incorporating mast cells increased by TSLP. ZnO-NP decreased the expression of MDM2 through the blockade of STAT6 phosphorylation. TSLP increased the production and mRNA expression of interleukin-13 (a growth factor of mast cells), its increase was significantly decreased by ZnO-NP (10 μg/mL). ZnO-NP induced the down-regulation of Bcl2 (an anti-apoptotic factor) and up-regulation of Bax (an apoptotic factor) through the stabilization of p53 protein. However, ZnO-NP has no effect on caspase-3 activation, cytochrome c release into cytosol, and apoptosis-inducing factor translocation into nucleus in TSLP-stimulated cells. The results of the present study demonstrated that ZnO-NP inhibited the proliferation of mast cells through the regulation of MDM2 and p53 protein levels. These finding suggest that ZnO-NP could be improved mast cell-mediated various diseases.

  11. Regulation of neuroendocrine cells and neuron factors in the ovary by zinc oxide nanoparticles.

    PubMed

    Liu, Xin-Qi; Zhang, Hong-Fu; Zhang, Wei-Dong; Zhang, Peng-Fei; Hao, Ya-Nan; Song, Ran; Li, Lan; Feng, Yan-Ni; Hao, Zhi-Hui; Shen, Wei; Min, Ling-Jiang; Yang, Hong-Di; Zhao, Yong

    2016-08-10

    The pubertal period is an important window during the development of the female reproductive system. Development of the pubertal ovary, which supplies the oocytes intended for fertilization, requires growth factors, hormones, and neuronal factors. It has been reported that zinc oxide nanoparticles (ZnO NPs) cause cytotoxicity of neuron cells. However, there have been no reports of the effects of ZnO NPs on neuronal factors and neuroendocrine cells in the ovary (in vivo). For the first time, this in vivo study investigated the effects of ZnO NPs on gene and protein expression of neuronal factors and the population of neuroendocrine cells in ovaries. Intact NPs were detected in ovarian tissue and although ZnO NPs did not alter body weight, they reduced the ovary organ index. Compared to the control or ZnSO4 treatments, ZnO NPs treatments differentially regulated neuronal factor protein and gene expression, and the population of neuroendocrine cells. ZnO NPs changed the contents of essential elements in the ovary; however, they did not alter levels of the steroid hormones estrogen and progesterone. These data together suggest that intact ZnO NPs might pose a toxic effect on neuron development in the ovary and eventually negatively affect ovarian developmental at puberty. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Preparation, characterization and conductivity study of nitro-mercurated styrene butadiene rubber/silver doped zinc oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Anilkumar, T.; Naik, Adarsh Ajith; Ramesan, M. T.

    2017-06-01

    Here we report the preparation of nitromercurated styrene butadiene rubber (NMSBR)/silver doped zinc oxide nanocomposite by inexpensive and ecofriendly two roll mill mixing. The composites were characterized by UV, FTIR, XRD, SEM, TGA and conductivity measurements. UV and FTIR spectrum indicated the interfacial interaction between the polymer and nanoparticles.XRD and SEM images showed the uniform arrangement of nanoparticles within the macromolecular chain. TGA study indicated the better thermal resistance of the composite. The dielectric properties and AC conductivity ofnanocomposites were much greater than nitromercurated SBR and they may be used as multifunctional materials for nanoelectronic devices.

  13. Synthesis and characterization of alginate beads encapsulated zinc oxide nanoparticles for bacteria disinfection in water.

    PubMed

    Motshekga, Sarah Constance; Sinha Ray, Suprakas; Maity, Arjun

    2018-02-15

    The use of polymer nanocomposites as novel materials for water remediation has emerged as a promising alternative for disinfection of bacteria contaminated water. Sodium alginate, a natural biopolymer has been investigated in this study by encapsulating antimicrobial zinc oxide nanoparticles supported bentonite. The confirmation of the alginate nanocomposites was done by use of TEM, SEM-EDS and XRD. The antimicrobial activity of the alginate nanocomposites was investigated by batch studies using surface water and synthetic bacteria contaminated water containing Staphylococcus aureus. The effect of nanocomposite amount and initial bacteria concentration has been studied. The inactivation results indicated that the nanocomposite effectively inactivated bacteria in both the synthetic and surface water. With an amount of 0.5 g of the nanocomposites, no bacteria was observed in the water after 70 min of contact time with initial bacteria concentration of 200 cfu/ml for synthetic water and within a min, no bacteria was observed in the water for surface water. It is worth noting that 200 cfu/ml is the bacteria concentration range in which environmental water is likely to contain. Therefore, the results of this study have indicated that the alginate nanocomposites can be deemed as a potential antimicrobial agent for water disinfection. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  15. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster

    PubMed Central

    Ng, Cheng Teng; Yong, Liang Qing; Hande, Manoor Prakash; Ong, Choon Nam; Yu, Liya E; Bay, Boon Huat; Baeg, Gyeong Hun

    2017-01-01

    Background Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. Methods In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. Results For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. Conclusion The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in

  16. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster.

    PubMed

    Ng, Cheng Teng; Yong, Liang Qing; Hande, Manoor Prakash; Ong, Choon Nam; Yu, Liya E; Bay, Boon Huat; Baeg, Gyeong Hun

    2017-01-01

    Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster . A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript ( DDIT3 ) and endoplasmic reticulum (ER) to nucleus signaling 1 ( ERN1 ) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would

  17. Application of EIS and SECM Studies for Investigation of Anticorrosion Properties of Epoxy Coatings Containing Zinc Oxide Nanoparticles on Mild Steel in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Raj, X. Joseph

    2017-07-01

    The effect of corrosion protection performance of epoxy coatings containing ZnO nanoparticle on mild steel in 3.5% NaCl solution was analyzed using scanning electrochemical microscopy and electrochemical impedance spectroscopy (EIS). Line profile and topographic image analysis were measured by applying -0.70 and +0.60 V as the tip potential for the cathodic and anodic reactions, respectively. The tip current at -0.70 V for the epoxy-coated sample with ZnO nanoparticles decreased rapidly, which is due to cathodic reduction in dissolved oxygen. The EIS measurements were taken in 3.5% NaCl after wet and dry cyclic corrosion test. The increase in the film resistance ( R f) and charge transfer resistance ( R ct) values was confirmed by the addition of ZnO nanoparticles in the epoxy coating. SEM/EDX analysis showed that complex oxide layer of zinc was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. FIB-TEM analysis confirmed the presence of the nanoscale complex oxide layer of Zn in the rust of the steel that had a beneficial effect on the corrosion resistance of coated steel by forming protective corrosion products in the wet/dry cyclic test.

  18. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles.

    PubMed

    Sun, Jing; Wang, Shaochuang; Zhao, Dong; Hun, Fei Han; Weng, Lei; Liu, Hui

    2011-10-01

    Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe(2)O(3)), iron(II,III) oxide (Fe(3)O(4)), magnesium oxide (MgO), aluminum oxide (Al(2)O(3)), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12-24 h and 0.001-100 μg/ml of exposure). The results indicated that Fe(2)O(3), Fe(3)O(4), and Al(2)O(3) NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time. © Springer Science+Business Media B.V. 2011

  19. Time-resolved fluorescence and ultrafast energy transfer in a zinc (hydr)oxide-graphite oxide mesoporous composite

    NASA Astrophysics Data System (ADS)

    Secor, Jeff; Narinesingh, Veeshan; Seredych, Mykola; Giannakoudakis, Dimitrios A.; Bandosz, Teresa; Alfano, Robert R.

    2015-01-01

    Ultrafast energy decay kinetics of a zinc (hydr)oxide-graphite oxide (GO) composite is studied via time-resolved fluorescence spectroscopy. The time-resolved emission is spectrally decomposed into emission regions originating from the zinc (hydr)oxide optical gap, surface, and defect states of the composite material. The radiative lifetime of deep red emission becomes an order of magnitude longer than that of GO alone while the radiative lifetime of the zinc optical gap is shortened in the composite. An energy transfer scheme from the zinc (hydr)oxide to GO is considered.

  20. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  1. Electrosprayed Cerium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Azar, Pedram Bagherzadeh; Tavanai, Hossein; Allafchian, Ali Reza

    2018-04-01

    Cerium oxide nanoparticles were fabricated via the calcination of electrosprayed polyvinyl alcohol (PVA)/cerium nitrate nanoparticles. The effect of material variables of PVA/cerium nitrate electrospraying solution, i.e. viscosity, surface tension and electrical conductivity, as well as important process variables like voltage, nozzle-collector distance and feed rate on cerium oxide nanoparticle size, are investigated. Scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analysis have also been carried out. The results showed that electrospraying of PVA/cerium nitrate (25% w/v) was only possible with PVA concentrations in the range of 5-8% w/v. With other conditions constant, decreasing PVA concentration, decreasing feed rate, increasing nozzle-collector distance and increasing voltage decreased the size of the final cerium oxide nanoparticles. The gross average size of all cerium oxide nanoparticles obtained in this work was about 80 nm. FTIR analysis proved the formation of cerium oxide after the calcination process.

  2. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  3. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Yuan, Lulu; Yao, Chenjie; Ding, Lin; Li, Chenchen; Fang, Jie; Sui, Keke; Liu, Yuanfang; Wu, Minghong

    2014-11-01

    At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the cytotoxicity significantly compared with that of the ZnO only NPs. When the cells were exposed to ZnO NPs at a concentration less than 15 mg L-1, or to Vc at a concentration less than 300 mg L-1, there was no significant cytotoxicity, both in the case of gastric epithelial cell line (GES-1) and neural stem cells (NSCs). However, when 15 mg L-1 of ZnO NPs and 300 mg L-1 of Vc were introduced to cells together, the cell viability decreased sharply indicating significant cytotoxicity. Moreover, the significant increase in toxicity was also shown in the in vivo experiments. The dose of the ZnO NPs and Vc used in the in vivo study was calculated according to the state of food and nutrition enhancer standard. After repeated oral exposure to ZnO NPs plus Vc, the injury of the liver and kidneys in mice has been indicated by the change of these indices. These findings demonstrate that the synergistic toxicity presented in a complex system is essential for the toxicological evaluation and safety assessment of nanofood.At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the

  4. Combined flame and solution synthesis of nanoscale tungsten-oxide and zinc/tin-oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Dong, Zhizhong; Huo, Di; Kear, Bernard H.; Tse, Stephen D.

    2015-12-01

    Heterostructures of tungsten-oxide nanowires decorated with zinc/tin-oxide nanostructures are synthesized via a combined flame and solution synthesis approach. Vertically well-aligned tungsten-oxide nanowires are grown on a tungsten substrate by a flame synthesis method. Here, tetragonal WO2.9 nanowires (diameters of 20-50 nm, lengths >10 μm, and coverage density of 109-1010 cm-2) are produced by the vapor-solid mechanism at 1720 K. Various kinds of Zn/Sn-oxide nanostructures are grown or deposited on the WO2.9 nanowires by adjusting the Sn2+ : Zn2+ molar ratio in an aqueous ethylenediamine solution at 65 °C. With WO2.9 nanowires serving as the base structures, sequential growth or deposition on them of hexagonal ZnO nanoplates, Zn2SnO4 nanocubes, and SnO2 nanoparticles are attained for Sn2+ : Zn2+ ratios of 0 : 1, 1 : 10, and 10 : 1, respectively, along with different saturation conditions. High-resolution transmission electron microscopy of the interfaces at the nanoheterojunctions shows abrupt interfaces for ZnO/WO2.9 and Zn2SnO4/WO2.9, despite lattice mismatches of >20%.

  5. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescencemore » and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.« less

  6. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  7. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Hsin-Cheng; Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw; Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology ismore » suitable for use in flexible displays.« less

  8. Microfluidic Encapsulation of Prickly Zinc-Doped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy.

    PubMed

    Zhang, Hongbo; Liu, Dongfei; Wang, Liang; Liu, Zehua; Wu, Runrun; Janoniene, Agne; Ma, Ming; Pan, Guoqing; Baranauskiene, Lina; Zhang, Linlin; Cui, Wenguo; Petrikaite, Vilma; Matulis, Daumantas; Zhao, Hongxia; Pan, Jianming; Santos, Hélder A

    2017-06-01

    Structural features of nanoparticles have recently been explored for different types of applications. To explore specific particles as nanomedicine and physically destroy cancer is interesting, which might avoid many obstacles in cancer treatment, for example, drug resistance. However, one key element and technical challenge of those systems is to selectively target them to cancer cells. As a proof-of-concept, Prickly zinc-doped copper oxide (Zn-CuO) nanoparticles (Prickly NPs) have been synthesized, and subsequently encapsulated in a pH-responsive polymer; and the surface has been modified with a novel synthesized ligand, 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl] benzenesulfonamide (VD1142). The Prickly NPs exhibit very effective cancer cell antiproliferative capability. Moreover, the polymer encapsulation shields the Prickly NPs from unspecific nanopiercing and, most importantly, VD1142 endows the engineered NPs to specifically target to the carbonic anhydrase IX, a transmembrane protein overexpressed in a wide variety of cancer tumors. Intracellularly, the Prickly NPs disintegrate into small pieces that upon endosomal escape cause severe damage to the endoplasmic reticulum and mitochondria of the cells. The engineered Prickly NP is promising in efficient and targeted cancer treatment and it opens new avenue in nanomedication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite.

    PubMed

    Alswat, Abdullah A; Ahmad, Mansor Bin; Saleh, Tawfik A; Hussein, Mohd Zobir Bin; Ibrahim, Nor Azowa

    2016-11-01

    Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Enhanced photocatalytic activity of nanocellulose supported zinc oxide composite for RhB dye as well as ciprofloxacin drug under sunlight/visible light

    NASA Astrophysics Data System (ADS)

    Tavker, Neha; Sharma, Manu

    2018-05-01

    Zinc oxide nanoparticles were synthesised from zinc acetate di-hydrate via co-precipitation method. Nanocellulose was isolated from agrowaste using chemo-mechanical treatments and characterized. Nanocellulose supported zinc oxide composites were prepared through in-situ method by adding different amounts of nanocellulose. The photocatalytic efficiency of pure Zno and nanocellulose supported ZnO was calculated using RhB dye under visible light and sun light. The composites which had nanocellulose in greater ratio showed higher degradation efficiency in sunlight rather than visible light for both; dye and drug. All the composites showed high rate of photodegradation compared to bare ZnO and bare nanocellulose. The enhancement in photocatalytic activity was observed maximum where the amount of cellulose was maximum. The maximum observed rate was 0.025 min-1 using Ciprofloxacin drug due to the increase in lifetime of Z4 sample delaying the electron and hole pair recombination. The degrading efficiency of nanocellulose supported zinc oxide (NC/ZnO) composite for RhB was found to be 35% in visible, 76% in sunlight and 75% for ciprofloxacin under sunlight.

  11. Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A Transcriptomic Analysis

    PubMed Central

    Choi, Jin Soo; Kim, Ryeo-Ok; Yoon, Seokjoo

    2016-01-01

    Zinc oxide nanoparticles (ZnO NPs) are being utilized in an increasing number of fields and commercial applications. While their general toxicity and associated oxidative stress have been extensively studied, the toxicological pathways that they induce in developmental stages are still largely unknown. In this study, the developmental toxicity of ZnO NPs to embryonic/larval zebrafish was investigated. The transcriptional expression profiles induced by ZnO NPs were also investigated to ascertain novel genomic responses related to their specific toxicity pathway. Zebrafish embryos were exposed to 0.01, 0.1, 1, and 10 mg/L ZnO NPs for 96 h post-fertilization. The toxicity of ZnO NPs, based on their Zn concentration, was quite similar to that in embryonic/larval zebrafish exposed to corresponding ZnSO4 concentrations. Pericardial edema and yolk-sac edema were the principal malformations induced by ZnO NPs. Gene-expression profiling using microarrays demonstrated 689 genes that were differentially regulated (fold change >1.5) following exposure to ZnO NPs (498 upregulated, 191 downregulated). Several genes that were differentially regulated following ZnO NP exposure shared similar biological pathways with those observed with ZnSO4 exposure, but six genes (aicda, cyb5d1, edar, intl2, ogfrl2 and tnfsf13b) associated with inflammation and the immune system responded specifically to ZnO NPs (either in the opposite direction or were unchanged in ZnSO4 exposure). Real-time reverse-transcription quantitative polymerase chain reaction confirmed that the responses of these genes to ZnO NPs were significantly different from their response to ZnSO4 exposure. ZnO NPs may affect genes related to inflammation and the immune system, resulting in yolk-sac edema and pericardia edema in embryonic/larval developmental stages. These results will assist in elucidating the mechanisms of toxicity of ZnO NPs during development of zebrafish. PMID:27504894

  12. Effect of addition of butyl benzyl phthalate plasticizer and zinc oxide nanoparticles on mechanical properties of cellulose acetate butyrate/organoclay biocomposite

    NASA Astrophysics Data System (ADS)

    Putra, B. A. P.; Juwono, A. L.; Rochman, N. T.

    2017-07-01

    Plastics as packaging materials and coatings undergo increasing demands globally each year. This pose a serious problem to the environment due to its difficulty to degrade. One solution to addressing the problem of plastic wastes is the use of bioplastics. According to the European Organization Bioplastic, one of the biodegradable plastics is derivative of cellulose. To improve mechanical properties of bioplastic, biocomposites are made with the addition of certain additives and fillers. The aim of this study is to investigate the effect of butyl benzyl phthalate plasticizer (BBP) and ZnO nanoparticles addition on mechanical properties of cellulose acetate butyrate (CAB) / organoclay biocomposite. ZnO nanoparticles synthesized from commercial ZnO precursor by using sol-gel size reduction method. ZnO was dissolved in a solution of citric acid in the ratio 1:1 to 1:5 to form zinc citrate. Zinc citrate then decomposed by calcination at temperature of 600oC. ZnO nanoparticles with an average size of 44.4 nm is obtained at a ratio of 1: 2. The addition of ZnO nanoparticles and BBP plasticizer was varied to determine the effect on the mechanical properties of biocomposite. The addition of 10 - 15 %wt ZnO nanoparticles and 30 - 40 %wt BBP plasticizer was studied to determine the effect on the tensile strength, elongation, and modulus elasticity of the biocomposites. Biocomposite films were made by using solution casting method with acetone as solvent. The addition of plasticizer BBP and ZnO nanoparticles by 30% and 10% made biocomposite has a tensile strength of 2.223 MPa.

  13. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    PubMed

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  14. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization

    PubMed Central

    Huang, Jun; Liu, Cheng; Xiao, Haiyan; Wang, Juntao; Jiang, Desheng; GU, Erdan

    2007-01-01

    Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used to bind laccase via glutaraldehyde. The optimal pH for the activity of the immobilized laccases and free laccase were the same at pH 3.0 and the optimal temperature for laccase immobilization on ZnTAPc-Fe3O4 nanoparticle composite was 45°. The immobilization yields and Km value of the laccase immobilized on ZnTAPc-Fe3O4 nanoparticle composite were 25% and 20.1 μM, respectively. This kind of immobilized laccase has good thermal, storage and operation stability, and could be used as the sensing biocomponent for the fiber optic biosensor based on enzyme catalysis. PMID:18203444

  15. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device.

    PubMed

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J

    2015-01-01

    Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  16. Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode.

    PubMed

    Xie, Lingling; Xu, Yuandong; Cao, Xiaoyu

    2013-07-01

    In this work, a highly sensitive hydrogen peroxide (H2O2) biosensor based on immobilization of hemoglobin (Hb) at Au nanoparticles (AuNPs)/flower-like zinc oxide/graphene (AuNPs/ZnO/Gr) composite modified glassy carbon electrode (GCE) was constructed, where ZnO and Au nanoparticles were modified through layer-by-layer onto Gr/GCE. Flower-like ZnO nanoparticles could be easily prepared by adding ethanol to the precursor solution having higher concentration of hydroxide ions. The Hb/AuNPs/ZnO/Gr composite film showed a pair of well-defined, quasi-reversible redox peaks with a formal potential (E(0)) of -0.367 V, characteristic features of heme redox couple of Hb. The electron transfer rate constant (k(s)) of immobilized Hb was 1.3 s(-1). The developed biosensor showed a very fast response (<2 s) toward H2O2 with good sensitivity, wide linear range, and low detection limit of 0.8 μM. The fabricated biosensor showed interesting features, including high selectivity, acceptable stability, good reproducibility, and repeatability along with excellent conductivity, facile electron mobility of Gr, and good biocompatibility of ZnO and AuNPs. The fabrication method of this biosensor was simple and effective for determination of H2O2 in real samples with quick response, good sensitivity, high selectivity, and acceptable recovery. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Fate of Zinc and Silver Engineered Nanoparticles in ...

    EPA Pesticide Factsheets

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage systems before reaching wastewater treatment plants. To address this knowledge gap, laboratory-scale systems fed with raw wastewater were used to evaluate the transformation of ZnO- and Ag-NPs within sewerage transfer networks. Two experimental systems were established and spiked with either Ag- and ZnO-NPs or with their dissolved salts, and the wastewater influent and effluent samples from both systems were thoroughly characterised. X-ray absorption spectroscopy (XAS) was used to assess the extent of the chemical transformation of both forms of Zn and Ag during transport through the model systems. The results indicated that both ZnO- and Ag-NPs underwent significant transformation during their transport through the sewerage network. Reduced sulphur species represented the most important endpoint for these NPs in the sewer with slight differences in terms of speciation; ZnO converted largely to Zn sulfide, while Ag was also sorbed to cysteine and histidine. Importantly, both ionic Ag and Ag-NPs formed secondary Ag sulfide nanoparticles in the sewerage network as revealed by TEM analysis. Ag-cysteine was also shown to be a major species in biofilms. These results were verified in the

  18. Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin.

    PubMed

    Sruthi, S; Millot, N; Mohanan, P V

    2017-10-01

    Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products and are currently being investigated for biomedical applications. However, they have the potential to interact with macromolecules like proteins, lipids and DNA within the cells which makes the safe biomedical application difficult. The toxicity of the ZnO NP is mainly attributed reactive oxygen species (ROS) generation. Different strategies like iron doping, polymer coating and external supply of antioxidants have been evaluated to minimize the toxic potential of ZnO NPs. Melatonin is a hormone secreted by the pineal gland with great antioxidant properties. The melatonin is known to protect cells from ROS inducing external agents like lipopolysaccharides. In the present study, the protective effect of melatonin on ZnO NPs mediated toxicity was evaluated using C6 glial cells. The Cytotoxicity, mitochondrial membrane potential and free radical formation were measured to study the effect of melatonin. Antioxidant assays were done on mice brain slices, incubated with melatonin and ZnO NPs. The results of the study reveal that, instead of imparting a protective effect, the melatonin pre-treatment enhanced the toxicity of ZnO NPs. Melatonin increased antioxidant enzymes in brain slices. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding*

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Sun, Xi; Liu, Ke J.; Hudson, Laurie G.

    2015-01-01

    Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation. PMID:26063799

  20. Nanocomposite of Half-Fin Anchovy Hydrolysates/Zinc Oxide Nanoparticles Exhibits Actual Non-Toxicity and Regulates Intestinal Microbiota, Short-Chain Fatty Acids Production and Oxidative Status in Mice

    PubMed Central

    Song, Ru; Yao, Jianbin; Shi, Qingqing; Wei, Rongbian

    2018-01-01

    The nanocomposite of half-fin anchovy hydrolysates (HAHp) and zinc oxide nanoparticles (ZnO NPs) (named as HAHp(3.0)/ZnO NPs) demonstrated increased antibacterial activity compared to either HAHp(3.0) or ZnO NPs as per our previous studies. Also, reactive oxygen species (ROS) formation was detected in Escherichia coli cells after treatment with HAHp(3.0)/ZnO NPs. The aim of the present study was to evaluate the acute toxicity of this nanocomposite and to investigate its effect on intestinal microbiota composition, short-chain fatty acids (SCFAs) production, and oxidative status in healthy mice. The limit test studies show that this nanoparticle is non-toxic at the doses tested. The administration of HAHp(3.0)/ZnO NPs, daily dose of 1.0 g/kg body weight for 14 days, increased the number of goblet cells in jejunum. High-throughput 16S ribosomal RNA gene sequencing of fecal samples revealed that HAHp(3.0)/ZnO NPs increased Firmicutes and reduced Bacteriodetes abundances in female mice. Furthermore, the microbiota for probiotic-type bacteria, including Lactobacillus and Bifidobacterium, and SCFAs-producing bacteria in the Clostridia class, e.g., Lachnospiraceae_unclassified and Lachnospiraceae_UCG-001, were enriched in the feces of female mice. Increases of SCFAs, especially statistically increased propionic and butyric acids, indicated the up-regulated anti-inflammatory activity of HAHp(3.0)/ZnO NPs. Additionally, some positive responses in liver, like markedly increased glutathione and decreased malonaldehyde contents, indicated the improved oxidative status. Therefore, our results suggest that HAHp(3.0)/ZnO NPs could have potential applications as a safe regulator of intestinal microbiota or also can be used as an antioxidant used in food products. PMID:29324644

  1. Photoluminescence of Porous Silicon-Zinc Oxide Hybrid structures

    NASA Astrophysics Data System (ADS)

    Olenych, I. B.; Monastyrskii, L. S.; Luchechko, A. P.

    2017-03-01

    Arrays of ZnO nanostructures, which are optically transparent in the visible range, were grown on the surface of porous silicon by electrochemical deposition. Photoluminescence excitation and emission spectra of the obtained hybrid structures were investigated in 220-450 and 400-800 nm regions, respectively. It is established that multicolor emission is formed by combining the luminescence bands of porous silicon and zinc oxide. The possibility of controlling the photoluminescence spectra by changing the excitation energy is demonstrated. It is revealed that thermal annealing has an effect on the luminescent properties of porous silicon/zinc oxide hybrid structures. Thermal processing at 500°C leads to a sharp decrease of long-wavelength luminescence associated with porous silicon and to an increase of short-wavelength luminescence intensity related to zinc oxide.

  2. Biological interactions in vitro of zinc oxide nanoparticles of different characteristics

    NASA Astrophysics Data System (ADS)

    Aula, Sangeetha; Lakkireddy, Samyuktha; AVN, Swamy; Kapley, Atya; Jamil, Kaiser; Rao Tata, Narasinga; Hembram, Kaliyan

    2014-09-01

    Zinc oxide nanoparticles (ZnO NPs) have recently received growing attention for various biomedical applications, including use as therapeutic or carrier for drug delivery and/or imaging. For the above applications, the NPs necessitate administration into the body leading to their systemic exposure. To better anticipate the safety, make risk assessment, and be able to interpret the future preclinical and clinical safety data, it is important to systematically understand the biological interaction of the NPs, the consequences of such interaction, and the mechanisms associated with the toxicity induction, with the important components with which the NPs are expected to be in contact after systemic exposure. In this context, we report here a detailed study on the biological interactions in vitro of the ZnO NPs with healthy human primary lymphocytes as these are the important immune components and the first systemic immune contact, and with the whole human blood. Additionally, the influence, if any, of the NPs shape (spheres and rods) on the biological interaction has been evaluated. The ZnO NPs caused toxicity (30% at 12.5 μg ml-1 spheres and 10.5 μg ml-1 rods; 50% at 22 μg ml-1 spheres and 19.5 μg ml-1 rods) to the lymphocytes at molecular and genetic level in a dose-dependent and shape-dependent manner, while the interaction consequences with the blood and blood components such as RBC, platelets was only dose-dependent and not shape-dependent. This is evident from the decreased RBC count due to increased %Hemolysis (5.3% in both the spheres- and rods-treated blood) and decreased platelet count due to increased %platelet aggregation (28% in spheres-treated and 33% in rods-treated platelet-rich plasma). Such in-depth understanding of the biological interaction of the NPs, the consequences, and the associated mechanisms in vitro could be expected to allow anticipating the NP safety for risk assessment and for interpretation of the preclinical and clinical safety

  3. Copper Doping of Zinc Oxide by Nuclear Transmutation

    DTIC Science & Technology

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  4. Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis.

    PubMed

    Tyagi, Nikhil; Srivastava, Sanjeev K; Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; Al-Ghadhban, Ahmed; Deshmukh, Sachin K; Carter, James E; Singh, Ajay P; Singh, Seema

    2016-12-01

    Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO 2 ) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO 2 - and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO 2 -NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO 2 -NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO 2 -NPs and establish superior protective efficacy of Ag-NPs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Comparative analysis of the relative potential of silver, zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis

    PubMed Central

    Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; AL-Ghadhban, Ahmed; Deshmukh, Sachin K.; Carter, James E.; Singh, Ajay P.; Singh, Seema

    2016-01-01

    Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO2) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO2- and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO2-NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO2-NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO2-NPs and establish superior protective efficacy of Ag-NPs. PMID:27693632

  6. Organization of research team for nano-associated safety assessment in effort to study nanotoxicology of zinc oxide and silica nanoparticles.

    PubMed

    Kim, Yu-Ri; Park, Sung Ha; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Ja Hei; Meang, Eun-Ho; Yoon, Tae Hyun; Lim, Seok Tae; Oh, Jae-Min; An, Seong Soo A; Kim, Meyoung-Kon

    2014-01-01

    Currently, products made with nanomaterials are used widely, especially in biology, bio-technologies, and medical areas. However, limited investigations on potential toxicities of nanomaterials are available. Hence, diverse and systemic toxicological data with new methods for nanomaterials are needed. In order to investigate the nanotoxicology of nanoparticles (NPs), the Research Team for Nano-Associated Safety Assessment (RT-NASA) was organized in three parts and launched. Each part focused on different contents of research directions: investigators in part I were responsible for the efficient management and international cooperation on nano-safety studies; investigators in part II performed the toxicity evaluations on target organs such as assessment of genotoxicity, immunotoxicity, or skin penetration; and investigators in part III evaluated the toxicokinetics of NPs with newly developed techniques for toxicokinetic analyses and methods for estimating nanotoxicity. The RT-NASA study was carried out in six steps: need assessment, physicochemical property, toxicity evaluation, toxicokinetics, peer review, and risk communication. During the need assessment step, consumer responses were analyzed based on sex, age, education level, and household income. Different sizes of zinc oxide and silica NPs were purchased and coated with citrate, L-serine, and L-arginine in order to modify surface charges (eight different NPs), and each of the NPs were characterized by various techniques, for example, zeta potentials, scanning electron microscopy, and transmission electron microscopy. Evaluation of the "no observed adverse effect level" and systemic toxicities of all NPs were performed by thorough evaluation steps and the toxicokinetics step, which included in vivo studies with zinc oxide and silica NPs. A peer review committee was organized to evaluate and verify the reliability of toxicity tests, and the risk communication step was also needed to convey the current findings

  7. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    NASA Astrophysics Data System (ADS)

    Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.

    2017-06-01

    The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  8. Osteogenic activity and antibacterial effect of zinc oxide/carboxylated graphene oxide nanocomposites: Preparation and in vitro evaluation.

    PubMed

    Chen, Junyu; Zhang, Xin; Cai, He; Chen, Zhiqiang; Wang, Tong; Jia, Lingling; Wang, Jian; Wan, Qianbing; Pei, Xibo

    2016-11-01

    The aim of this study was to prepare nanocomposites of carboxylated graphene oxide (GO-COOH) sheets decorated with zinc oxide (ZnO) nanoparticles (NPs) and investigate their advantages in the field of bone tissue engineering. First, ZnO/GO-COOH nanocomposites were synthesized by facile reactions, including the carboxylation of graphene oxide (GO) and the nucleation of ZnO on GO-COOH sheets. The synthesized ZnO/GO-COOH nanocomposites were then characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectra, and transmission electron microscopy (TEM). The biocompatibility, osteogenic activity and antibacterial effect of ZnO/GO-COOH nanocomposites were further investigated. In the nanocomposites, ZnO nanoparticles with a size of approximately 12nm were uniformly decorated on GO-COOH sheets. Compared with GO-COOH and the control group, ZnO/GO-COOH nanocomposites significantly enhanced ALP activity, osteocalcin production and extracellular matrix mineralization as well as up-regulated osteogenic-related genes (ALP, OCN, and Runx2) in MG63 osteoblast-like cells. Moreover, ZnO/GO-COOH nanocomposites had an antibacterial effect against Streptococcus mutans. These results indicated that ZnO/GO-COOH nanocomposites exhibited both osteogenic activity and antibacterial effect and had great potential for designing new biomaterials in the field of bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells.

    PubMed

    Fernández, Dolores; García-Gómez, Concepción; Babín, Mar

    2013-05-01

    Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.

  10. Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Ghasaban, Samaneh; Atai, Mohammad; Imani, Mohammad

    2017-03-01

    The specific properties of zinc oxide (ZnO) nanoparticles have attracted much attention within the scientific community as a useful material for biomedical applications. Hydrothermal synthesis is known as a useful method to produce nanostructures with certain particle size and morphology however, scaling up the reaction is still a challenging task. In this research, large scale hydrothermal synthesis of ZnO nanostructures (60 g) was performed in a 5 l stainless steel autoclave by reaction between anionic (ammonia or sodium hydroxide) and cationic (zinc acetate dehydrate) precursors in low temperature. Hydrothermal reaction temperature and time were decreased to 115 °C and 2 or 6 h. In batch repetitions, the same morphologies (plate- and needle-like) with reproducible particle size were obtained. The nanostructures formed were analyzed by powder x-ray diffraction, Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, scanning electron microscopy and BET analysis. The nanostructures formed were antibacterially active against Staphylococcus aureus.

  11. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    NASA Astrophysics Data System (ADS)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  12. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive

    PubMed Central

    Reddy, Aileni Kaladhar; Kambalyal, Prabhuraj B; Patil, Santosh R; Vankhre, Mallikarjun; Khan, Mohammed Yaser Ahmed; Kumar, Thamtam Ramana

    2016-01-01

    Objective: To investigate the influence of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles on shear bond strength (SBS). Materials and Methods: One hundred and twenty extracted premolars divided into four groups with thirty specimens in each group. Group 1 (control): brackets (American Orthodontics) were bonded with Transbond XT primer. Groups 2, 3, and 4: brackets (American Orthodontics) were bonded with adhesives incorporated with Ag, ZnO, and TiO2 nanoparticles in the concentration of 1.0% nanoparticles of Ag, 1.0% TiO2, and 1.0% ZnO weight/weight, respectively. An Instron universal testing machine AGS-10k NG (SHIMADZU) was used to measure the SBS. The data were analyzed by SPSS software and then, the normal distribution of the data was confirmed by Kolmogorov–Smirnov test. One-way ANOVA test and Tukey's multiple post hoc procedures were used to compare between groups. In all statistical tests, the significance level was set at 5% (P < 0.05). Results: A significant difference was observed between control (mean [standard deviation (SD)] 9.43 [3.03], confidence interval [CI]: 8.30–10.56), Ag (mean [SD]: 7.55 [1.29], CI: 7.07–8.03), ZnO (mean [SD]: 6.50 [1.15], CI: 6.07–6.93), and TiO2 (mean [SD]: 6.33 [1.51], CI: 5.77–0.89) with SBS (F = 16.8453, P < 0.05) at 5% level of significance. Conclusion: Incorporation of various nanoparticles into adhesive materials in minimal amounts may decrease SBS and may lead to the failure of bracket or adhesive. The limitation of this study is that it is an in vitro research and these results may not be comparable to what the expected bond strengths observed in vivo. Further clinical studies are needed to evaluate biological effects of adding such amounts of nanoparticles and approve such adhesives as clinically sustainable. PMID:27843887

  13. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A.

    2016-05-06

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Ymore » doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.« less

  14. Acetone sensor based on zinc oxide hexagonal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastir, Anita, E-mail: anitahastir@gmail.com; Singh, Onkar, E-mail: anitahastir@gmail.com; Anand, Kanika, E-mail: anitahastir@gmail.com

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  15. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli

    PubMed Central

    Salem, Wesam; Leitner, Deborah R.; Zingl, Franz G.; Schratter, Gebhart; Prassl, Ruth; Goessler, Walter; Reidl, Joachim; Schild, Stefan

    2015-01-01

    Vibrio cholerae and enterotoxic Escherichia coli (ETEC) remain two dominant bacterial causes of severe secretory diarrhea and still a significant cause of death, especially in developing countries. In order to investigate new effective and inexpensive therapeutic approaches, we analyzed nanoparticles synthesized by a green approach using corresponding salt (silver or zinc nitrate) with aqueous extract of Caltropis procera fruit or leaves. We characterized the quantity and quality of nanoparticles by UV–visible wavelength scans and nanoparticle tracking analysis. Nanoparticles could be synthesized in reproducible yields of approximately 108 particles/ml with mode particles sizes of approx. 90–100 nm. Antibacterial activity against two pathogens was assessed by minimal inhibitory concentration assays and survival curves. Both pathogens exhibited similar resistance profiles with minimal inhibitory concentrations ranging between 5 × 105 and 107 particles/ml. Interestingly, zinc nanoparticles showed a slightly higher efficacy, but sublethal concentrations caused adverse effects and resulted in increased biofilm formation of V. cholerae. Using the expression levels of the outer membrane porin OmpT as an indicator for cAMP levels, our results suggest that zinc nanoparticles inhibit adenylyl cyclase activity. This consequently deceases the levels of this second messenger, which is a known inhibitor of biofilm formation. Finally, we demonstrated that a single oral administration of silver nanoparticles to infant mice colonized with V. cholerae or ETEC significantly reduces the colonization rates of the pathogens by 75- or 100-fold, respectively. PMID:25466205

  16. Synthesis and characterization of biopolymer protected zinc sulphide nanoparticles

    NASA Astrophysics Data System (ADS)

    Senapati, U. S.; Sarkar, D.

    2015-09-01

    Zinc sulphide (ZnS) nanoparticles are prepared by a simple, economic and green synthesis route. X-ray diffraction patterns confirm zinc blend structure. ZnS formation is confirmed through chemical analysis by energy dispersive analysis of X-rays. Transmission electron microscopy reveals formation of nanosize with dimension in the range of 8-2 nm. Band gap of the nanocrystals is found to lie in the range of 4.51-4.65 eV. Photoluminescence study indicate defect like vacancies. The growth mechanism of ZnS nanoparticles is discussed with the help of Fourier transform infrared spectroscopy and thermogravimetric analysis. The materials show high dielectric constant compared to its bulk counterpart. The dielectric loss of the samples shows anomalous behaviour. The frequency dependent A.C. conductivity of the samples is discussed both in high and low frequency regimes. Current-voltage (I-V) characteristic performed under dark and under illumination, shows excellent light response of the material.

  17. Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica.

    PubMed

    Azizi, Susan; Mohamad, Rosfarizan; Bahadoran, Azadeh; Bayat, Saadi; Rahim, Raha Abdul; Ariff, Arbakariya; Saad, Wan Zuhainis

    2016-08-01

    The use of nontoxic biological compounds in the synthesis of nanomaterials is an economic and eco-friendly approach. The present work was undertaken to develop zinc oxide nanoparticles (ZnO-NPs) by a green method using simple precursor from the solution consisting of zinc acetate and the flower extract of Anchusa italica (A. italica). Effect of annealing temperature on structural and antimicrobial properties was investigated. The crystalline structure of ZnO-NPs was shown using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) results showed that ZnO-NPs are hexagonal in shapes with mean particle size of ~8 and ~14nm at 100°C and 200°C annealing temperatures respectively. The optical band gap was increased from 3.27eV to 3.30eV with the decreasing of the particle size. The antimicrobial activity of ZnO-NPs towards Gram positive (Bacillus megaterium and Stapphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhimurium) pathogens decreased with the increasing of the heat treating temperature. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 142μg/mL was shown. The results indicated that A. italica is an appropriate reaction media to prepare ZnO-NPs for cosmetic and bio-medical productions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparative studies on Indian traditional nanomedicine Yashadha Bhasma and zinc oxide nanoparticles for anti-diabetic activity

    NASA Astrophysics Data System (ADS)

    Durgalakshmi, D.; Ajay Rakkesh, R.; Bhargavi Ram, T.; Balakumar, S.

    2017-07-01

    Diabetes mellitus is the most common endocrine disorder due to carbohydrate metabolism. Also, zinc and its supplements have been used in Indian traditional medicines for treating urinary tract infections. In this work, an attempt has been made to compare the properties of ‘Yashadha Bhasma’ a traditional ayurvedic ZnO supplement for diabetic treatment with the laboratory-synthesized ZnO nanoparticles. The nano-sized ZnO particles are synthesized using co-precipitation method and calcined at 400 °C for further purification. Confirmation of ZnO and presence of Ca and K elements additional to Zn in Yashadha Bhasma is confirmed from XPS. The morphology of ZnO is found to be spherical with average diameter of 15 nm. TEM results show that ZnO rods of Yashadha Bhasma are porous and non-uniform. Glucose degradation studies revealed good performance with ZnO nanoparticles with 80% degradation occurring within 15 min itself. Antibacterial studies also performed well establishing efficacy of ZnO nanoparticles against both gram-positive and gram-negative bacterial strains, thereby establishing suitable material for treating diabetes mellitus and also curing bacterial wound infections arising due to diabetes mellitus.

  19. Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: a Review

    NASA Astrophysics Data System (ADS)

    Bogdan, Janusz; Pławińska-Czarnak, Joanna; Zarzyńska, Joanna

    2017-03-01

    Cancer has become a global problem. On all continents, a great number of people are diagnosed with this disease. In spite of the progress in medical care, cancer still ends fatal for a great number of the ill, either as a result of a late diagnosis or due to inefficiency of therapies. The majority of the tumors are resistant to drugs. Thus, the search for new, more effective therapy methods continues. Recently, nanotechnology has been attributed with big expectations in respect of the cancer fight. That interdisciplinary field of science creates nanomaterials (NMs) and nanoparticles (NPs) that can be applied, e.g., in nanomedicine. NMs and NPs are perceived as very promising in cancer therapy since they can perform as drug carriers, as well as photo- or sonosensitizers (compounds that generate the formation of reactive oxygen species as a result of either electromagnetic radiation excitation with an adequate wavelength or ultrasound activation, respectively). Consequently, two new treatment modalities, the photodynamic therapy (PDT) and the sonodynamic therapy (SDT) have been created. The attachment of ligands or antibodies to NMs or to NPs improve their selective distribution into the targeted organ or cell; hence, the therapy effectiveness can be improved. An important advantage of the targeted tumor treatment is lowering the cyto- and genotoxicity of active substance towards healthy cells. Therefore, both PDT and SDT constitute a valuable alternative to chemo- or radiotherapy. The vital role in cancer eradication is attributed to two inorganic sensitizers in their nanosized scale: titanium dioxide and zinc oxide.

  20. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives.

    PubMed

    Wang, Yanli; Yuan, Lulu; Yao, Chenjie; Ding, Lin; Li, Chenchen; Fang, Jie; Sui, Keke; Liu, Yuanfang; Wu, Minghong

    2014-12-21

    At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the cytotoxicity significantly compared with that of the ZnO only NPs. When the cells were exposed to ZnO NPs at a concentration less than 15 mg L(-1), or to Vc at a concentration less than 300 mg L(-1), there was no significant cytotoxicity, both in the case of gastric epithelial cell line (GES-1) and neural stem cells (NSCs). However, when 15 mg L(-1) of ZnO NPs and 300 mg L(-1) of Vc were introduced to cells together, the cell viability decreased sharply indicating significant cytotoxicity. Moreover, the significant increase in toxicity was also shown in the in vivo experiments. The dose of the ZnO NPs and Vc used in the in vivo study was calculated according to the state of food and nutrition enhancer standard. After repeated oral exposure to ZnO NPs plus Vc, the injury of the liver and kidneys in mice has been indicated by the change of these indices. These findings demonstrate that the synergistic toxicity presented in a complex system is essential for the toxicological evaluation and safety assessment of nanofood.

  1. Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides

    NASA Astrophysics Data System (ADS)

    Zeer, G. M.; Zelenkova, E. G.; Belousov, O. V.; Beletskii, V. V.; Nikolaev, S. V.; Ledyaeva, O. N.

    2017-09-01

    Samples of a composite electrocontact material based on silver strengthened by the dispersed phases of zinc and titanium oxides have been investigated by the electron microscopy and energy dispersive X-ray spectroscopy. A uniform distribution of the oxide phases containing 2 wt % zinc oxide in the initial charge has been revealed. The increase in the amount of zinc oxide leads to an increase of the size of the oxide phases. It has been shown that at the zinc oxide content of 2 wt %, the minimum wear is observed in the process of electroerosion tests; at 3 wt %, an overheating and welding of the contacts are observed.

  2. The route of liquid precursor to ZnO nanoparticles in premixed combustion spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2018-04-01

    Zinc oxide nanoparticles had been successfully synthesized by premixed combustion spray pyrolysis. Zinc acetate was dissolved in distilled water was selected as a liquid precursor. Zinc nitrate was also used for comparison the effect of precursor type on the generated particles morphology and the crystallinity. The premixed combustion reaction used liquefied petroleum gas (LPG) mainly consisting of butane and propane as a fuel and compressed air used as an oxidizer. The liquid precursor was atomized using a custom two fluid nozzle to generate droplets. Then, the droplets were sprayed by the flow of air as a carrier gas into the premixed combustion reactor. The zinc precursor was decomposed to zinc oxide due to the high temperature as a result of combustion reaction inside the reactor resulting in nanoparticles formation. The particle size decreased with the increase of the fuel flow rate. In addition, it can be found that at the same flow rate of fuel, the particle size of zinc oxide synthesized using zinc nitrate is larger than that of the use of zinc acetate as a precursor.

  3. Morphological and Biochemical Features of Cerebellar Cortex After Exposure to Zinc Oxide Nanoparticles: Possible Protective Role of Curcumin.

    PubMed

    Amer, Mona G; Karam, Rehab A

    2018-03-25

    Zinc oxide nanoparticles (ZnONPs) are widely used in the last decades. Therefore, investigation of its neurotoxic effect is important. This work aimed to investigate the potential adverse effects of ZnONPs on rat's cerebellar cortex and the possible neuroprotective role of curcumin (Cur). Forty male albino rats were randomly divided into four equal groups. Two groups were injected with ZnONPs and one group was previously received Cur before ZnONPs. At the end of the experiment, cerebellar tissue samples were prepared for histological, morphometric, immunohistochemical study, and tissue levels of oxidative stress markers and cytokine analysis. cerebellar damage is clearly visible with ZnONPs. Degeneration, loss, disorganization of cerebellar neurons was observed. Histopathological degeneration of Purkinje and granular cells together with loss of Nissl substance, astrocyte gliosis, and affection of cerebellar blood brain barrier were detected. Moreover, an apoptotic marker (caspase-3) was significantly expressed in Purkinje and granular layers together with elevated gene expression of P53 and COX-2 in cerebellar tissue of ZnONPs intoxicated group. Astrocyte gliosis and inflammatory markers IL-1, IL-6, and TNF-α were expressed significantly in ZnONPs intoxicated cerebellum. These changes were associated with evidence of cerebellar oxidative stress. Strikingly, treatment with Cur together with ZnONPs recorded morphological improvement, with increased number of Purkinje cells and decreased caspase +ve cells. These findings were confirmed by morphometric and statistical analysis. Cur ameliorates the deterious effect of ZnONPs on the cerebellar cortex through its antioxidant, antiapoptotic, and anti-inflammatory efficacies. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    PubMed

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Anthelmintic Effect of Biocompatible Zinc Oxide Nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a Neglected Parasite of Indian Water Buffalo

    PubMed Central

    Khan, Yasir Akhtar; Singh, Braj Raj; Ullah, Rizwan; Shoeb, Mohd; Naqvi, Alim H.; Abidi, Syed M. A.

    2015-01-01

    Helminth parasites of veterinary importance cause huge revenue losses to agrarian economy worldwide. With the emergence of drug resistance against the current formulations, there is a need to focus on the alternative approaches in order to control this menace. In the present study, biocompatible zinc oxide nanoparticles (ZnO NPs) were used to see their in vitro effect on the biliary amphistomes, Gigantocotyle explanatum, infecting Bubalus bubalis because these nanoparticles are involved in generation of free radicals that induce oxidative stress, resulting in disruption of cellular machinery. The ZnO NPs were synthesized by using egg albumin as a biotemplate and subsequently characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction and Spectrophotometrical, which showed that ZnO NPs were highly purified wurtzite type polycrystals, with a mean size of 16.7 nm. When the parasites were treated with lower concentrations (0.004% and 0.008%) of the ZnO NPs, the worms mounted a protective response by stimulating the antioxidant system but the treatment of G. explanatum with 0.012% ZnO NPs produced significant inhibition of the antioxidant enzymes like superoxide dismutase (SOD) (p< 0.05) and glutathione S- transferase (GST) (p<0.01), while the level of malondialdehyde (MDA), a lipid peroxidation marker, was significantly (p< 0.01) elevated. SEM and histopathology revealed pronounced tegumental damage showing the disruption of surface papillae and the annulations, particularly in the posterior region near acetabulum. The under expression of a number of polypeptides, loss of worm motility in a time dependent manner, further reflect strong anthelmintic potential of ZnO NPs. It can be concluded that the anthelmintic effect might be due to the production of reactive oxygen species that target a variety of macromolecules such as nucleic acid, protein and lipids which are involved in different cellular processes. PMID:26177503

  6. Anthelmintic Effect of Biocompatible Zinc Oxide Nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a Neglected Parasite of Indian Water Buffalo.

    PubMed

    Khan, Yasir Akhtar; Singh, Braj Raj; Ullah, Rizwan; Shoeb, Mohd; Naqvi, Alim H; Abidi, Syed M A

    2015-01-01

    Helminth parasites of veterinary importance cause huge revenue losses to agrarian economy worldwide. With the emergence of drug resistance against the current formulations, there is a need to focus on the alternative approaches in order to control this menace. In the present study, biocompatible zinc oxide nanoparticles (ZnO NPs) were used to see their in vitro effect on the biliary amphistomes, Gigantocotyle explanatum, infecting Bubalus bubalis because these nanoparticles are involved in generation of free radicals that induce oxidative stress, resulting in disruption of cellular machinery. The ZnO NPs were synthesized by using egg albumin as a biotemplate and subsequently characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction and Spectrophotometrical, which showed that ZnO NPs were highly purified wurtzite type polycrystals, with a mean size of 16.7 nm. When the parasites were treated with lower concentrations (0.004% and 0.008%) of the ZnO NPs, the worms mounted a protective response by stimulating the antioxidant system but the treatment of G. explanatum with 0.012% ZnO NPs produced significant inhibition of the antioxidant enzymes like superoxide dismutase (SOD) (p< 0.05) and glutathione S- transferase (GST) (p<0.01), while the level of malondialdehyde (MDA), a lipid peroxidation marker, was significantly (p< 0.01) elevated. SEM and histopathology revealed pronounced tegumental damage showing the disruption of surface papillae and the annulations, particularly in the posterior region near acetabulum. The under expression of a number of polypeptides, loss of worm motility in a time dependent manner, further reflect strong anthelmintic potential of ZnO NPs. It can be concluded that the anthelmintic effect might be due to the production of reactive oxygen species that target a variety of macromolecules such as nucleic acid, protein and lipids which are involved in different cellular processes.

  7. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less

  8. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli.

    PubMed

    Salem, Wesam; Leitner, Deborah R; Zingl, Franz G; Schratter, Gebhart; Prassl, Ruth; Goessler, Walter; Reidl, Joachim; Schild, Stefan

    2015-01-01

    Vibrio cholerae and enterotoxic Escherichia coli (ETEC) remain two dominant bacterial causes of severe secretory diarrhea and still a significant cause of death, especially in developing countries. In order to investigate new effective and inexpensive therapeutic approaches, we analyzed nanoparticles synthesized by a green approach using corresponding salt (silver or zinc nitrate) with aqueous extract of Caltropis procera fruit or leaves. We characterized the quantity and quality of nanoparticles by UV-visible wavelength scans and nanoparticle tracking analysis. Nanoparticles could be synthesized in reproducible yields of approximately 10(8) particles/ml with mode particles sizes of approx. 90-100 nm. Antibacterial activity against two pathogens was assessed by minimal inhibitory concentration assays and survival curves. Both pathogens exhibited similar resistance profiles with minimal inhibitory concentrations ranging between 5×10(5) and 10(7) particles/ml. Interestingly, zinc nanoparticles showed a slightly higher efficacy, but sublethal concentrations caused adverse effects and resulted in increased biofilm formation of V. cholerae. Using the expression levels of the outer membrane porin OmpT as an indicator for cAMP levels, our results suggest that zinc nanoparticles inhibit adenylyl cyclase activity. This consequently deceases the levels of this second messenger, which is a known inhibitor of biofilm formation. Finally, we demonstrated that a single oral administration of silver nanoparticles to infant mice colonized with V. cholerae or ETEC significantly reduces the colonization rates of the pathogens by 75- or 100-fold, respectively. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Cardiorespiratory toxicity of environmentally relevant zinc oxide nanoparticles in the freshwater fish Catostomus commersonii.

    PubMed

    Bessemer, Robin Anne; Butler, Kathryn Marie Alison; Tunnah, Louise; Callaghan, Neal Ingraham; Rundle, Amanda; Currie, Suzanne; Dieni, Christopher Anthony; MacCormack, Tyson James

    2015-01-01

    The inhalation of zinc oxide engineered nanomaterials (ENMs) has been linked to cardiorespiratory dysfunction in mammalian models but the effects of aquatic ENM exposure on fish have not been fully investigated. Nano-zinc oxide (nZnO) is widely used in consumer products such as sunscreens and can make its way into aquatic ecosystems from domestic and commercial wastewater. This study examined the impact of an environmentally relevant nZnO formulation on cardiorespiratory function and energy metabolism in the white sucker (Catostomus commersonii), a freshwater teleost fish. Evidence of oxidative and cellular stress was present in gill tissue, including increases in malondialdehyde levels, heat shock protein (HSP) expression, and caspase 3/7 activity. Gill Na(+)/K(+)-ATPase activity was also higher by approximately three-fold in nZnO-treated fish, likely in response to increased epithelial permeability or structural remodeling. Despite evidence of toxicity in gill, plasma cortisol and lactate levels did not change in animals exposed to 1.0 mg L(-1) nZnO. White suckers also exhibited a 35% decrease in heart rate during nZnO exposure, with no significant changes in resting oxygen consumption or tissue energy stores. Our results suggest that tissue damage or cellular stress resulting from nZnO exposure activates gill neuroepithelial cells, triggering a whole-animal hypoxic response. An increase in parasympathetic nervous signaling will decrease heart rate and may reduce energy demand, even in the face of an environmental toxicant. We have shown that acute exposure to nZnO is toxic to white suckers and that ENMs have the potential to negatively impact cardiorespiratory function in adult fish.

  10. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach

    NASA Astrophysics Data System (ADS)

    Raliya, Ramesh; Tarafdar, J. C.

    2014-02-01

    In the present study, zinc (Zn), magnesium (Mg) and titanium (Ti) nanoparticles synthesized using fungus by employing various precursor salts of sulfate salts, nitrate salts, chloride salts and oxide salts. To access the nanoparticle production potential, over a hundreds of fungi were isolated from the soil and tested with precursor salts of the Zn, Mg and Ti. Out of which, only 14 fungal isolates were identified, having potential to reduce metal salt into metal nanoparticles. Upon molecular identification, six were identified as Aspergillus flavus, two each as Aspergillus terreus and Aspergillus tubingensis and one each as Aspergillus niger, Rhizoctonia bataticola, Aspergillus fumigatus, and Aspergillus oryzae. Factors responsible for more production of monodispersed Zn, Mg and Ti nanoparticles were optimized. It was concluded that 0.01 mM precursor salt concentration, 72 h of incubation at pH 5.5 and temperature 28 °C resulted smaller nanoparticles obtained. The biosynthesized functional Zn and Ti nanoparticles can be stored up to 90 days and Mg nanoparticles up to 105 days in its nanoform. Bio-transformed products were analyzed using valid characterization technique i.e. dynamic light scattering, transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy to confirm size, shape, surface morphology and elemental composition. It was found that the average size of developed nano Zn was 8.2 nm, with surface charge of -5.70 mV and 98 % particles were of Zn metal only. Similarly, the average size of Mg nanoparticles was 6.4 nm with surface charge of -6.66 and 97.4 % Mg metal yield, whereas, Ti nanoparticles size were found in the ranges between 1.5 and 30 nm with surface charge of -6.25 mV and 98.6 % Ti metal yield.

  11. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A., E-mail: vamoshnikov@mail.ru

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  12. Analysis of Zinc Oxide Thin Films Synthesized by Sol-Gel via Spin Coating

    NASA Astrophysics Data System (ADS)

    Wolgamott, Jon Carl

    Transparent conductive oxides are gaining an increasingly important role in optoelectronic devices such as solar cells. Doped zinc oxide is a candidate as a low cost and nontoxic alternative to tin doped indium oxide. Lab results have shown that both n-type and p-type zinc oxide can be created on a small scale. This can allow zinc oxide to be used as either an electrode as well as a buffer layer to increase efficiency and protect the active layer in solar cells. Sol-gel synthesis is emerging as a low temperature, low cost, and resource efficient alternative to producing transparent conducting oxides such as zinc oxide. For sol-gel derived zinc oxide thin films to reach their potential, research in this topic must continue to optimize the known processing parameters and expand to new parameters to tighten control and create novel processing techniques that improve performance. The processing parameters of drying and annealing temperatures as well as cooling rate were analyzed to see their effect on the structure of the prepared zinc oxide thin films. There were also preliminary tests done to modify the sol-gel process to include silver as a dopant to produce a p-type thin film. The results from this work show that the pre- and post- heating temperatures as well as the cooling rate all play their own unique role in the crystallization of the film. Results from silver doping show that more work needs to be done to create a sol-gel derived p-type zinc oxide thin film.

  13. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam

    2006-09-01

    Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.

  14. Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.).

    PubMed

    Chupani, Latifeh; Zusková, Eliška; Niksirat, Hamid; Panáček, Aleš; Lünsmann, Vanessa; Haange, Sven-Bastiaan; von Bergen, Martin; Jehmlich, Nico

    2017-02-01

    Zinc oxide (ZnO) nanoparticles (NPs) have been dramatically used in industry, biology, and medicine. Despite their interesting physico-chemical properties for application in various industrial, medical, and consumer products, safe use of ZnO NPs are under challenges due to the inadequate information related to their toxicological endpoints. Proteomics was applied to evaluate the sub-lethal effects of dietary exposure to ZnO NPs on serum proteome profile of juvenile common carp, (Cyprinus carpio). Therefore, ZnO NPs solution (500mgkg -1 of feed) was added to a commercial carp feed for six weeks. We compared the serum proteome profile from 7 controls and 7 treated fish. In addition, zinc accumulation were measured in intestine, liver, gill and brain. In total, we were able to identify 326 proteins from 6845 distinct peptides. As a result of the data analysis, the abundance levels of four proteins were significantly altered (fold change (fc) ≥2 and p<0.05) after dietary exposure to ZnO NPs. The protein levels of the complement component C4-2 (fc 2.5) and the uncharacterised protein encoded by kng1 (fc 5.8) were increased and major histocompatibility class I (fc 4.9) and the uncharacterised protein encoded by lum (fc 3.5) were decreased (fc 2.5). Molecular pathway analysis revealed four canonical pathways including acute-phase response signalling, liver and retinoid X receptors activation, and intrinsic and extrinsic prothrombin activation pathways as significantly regulated in the treated fish. No significant difference was observed for zinc accumulation in exposed fish compared to controls. In summary, despite no apparent accumulation, ZnO NPs exposure to common carp probably disturbs the fish homeostasis by affecting proteins of the haematological and the immune systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Investigation of Optical Properties of Zinc Oxide Photodetector

    NASA Astrophysics Data System (ADS)

    Chism, Tyler

    UV photodetection devices have many important applications for uses in biological detection, gas sensing, weaponry detection, fire detection, chemical analysis, and many others. Today's photodetectors often utilize semiconductors such as GaAs to achieve high responsivity and sensitivity. Zinc oxide, unlike many other semiconductors, is cheap, abundant, non-toxic, and easy to grow different morphologies at the micro and nano scale. With the proliferation of these devices also comes the impending need to further study optics and photonics in relation to phononics and plasmonics, and the general principles underlying the interaction of photons with solid state matter and, specifically, semiconductors. For this research a metal-semiconductor-metal UV photodetector has been fabricated by using a quartz substrate on top of which was deposited micropatterned gold in an interdigitated electrode design. On this, sparsely coated zinc oxide nano trees were hydrothermally grown. The UV photodetection device showed promise for detection applications, especially because zinc oxide is also very thermally stable, a quality which is highly sought after in today's UV photodetectors. Furthermore, the newly synthesized photodetector was used to investigate optical properties and how they respond to different stimuli. It was discovered that the photons transmitted through the sparsely coated zinc oxide nano trees decreased as the voltage across the device increased. This research is aimed at better understanding photons interaction with matter and also to open the door for new devices with tunable optical properties such as transmission.

  16. Bandgap-Engineered Zinc-Tin-Oxide Thin Films for Ultraviolet Sensors.

    PubMed

    Cheng, Tien-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn

    2018-07-01

    Zinc-tin-oxide thin-film transistors were prepared by radio frequency magnetron co-sputtering, while an identical zinc-tin-oxide thin film was deposited simultaneously on a clear glass substrate to facilitate measurements of the optical properties. When we adjusted the deposition power of ZnO and SnO2, the bandgap of the amorphous thin film was dominated by the deposition power of SnO2. Since the thin-film transistor has obvious absorption in the ultraviolet region owing to the wide bandgap, the drain current increases with the generation of electron-hole pairs. As part of these investigations, a zinc-tin-oxide thin-film transistor has been fabricated that appears to be very promising for ultraviolet applications.

  17. The influence of oxidation time on the properties of oxidized zinc films

    NASA Astrophysics Data System (ADS)

    Rambu, A. P.

    2012-09-01

    The effect of oxidation time on the structural characteristics and electronic transport mechanism of zinc oxide thin films prepared by thermal oxidation, have been investigated. Zinc metallic films were deposited by thermal evaporation under vacuum, the subsequent oxidation of Zn films being carried out in open atmosphere. XRD and AFM analysis indicate that obtained films posses a polycrystalline structure, the crystallites having a preferential orientation. Structural analysis reveals that microstructure of the films (crystallite size, surface roughness, internal stress) is depending on the oxidation time of metallic films. The electrical behavior of ZnO films was investigated, during a heat treatment (two heating/cooling cycles). It was observed that after the first heating, the temperature dependences of electrical conductivity become reversible. Mott variable range hopping model was proposed to analyze the temperature dependence of the electrical conductivity, in low temperature ranges. Values of some characteristic parameters were calculated.

  18. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro.

  19. Zinc Oxide Nanoparticles Influence Microflora in Ileal Digesta and Correlate Well with Blood Metabolites.

    PubMed

    Feng, Yanni; Min, Lingjiang; Zhang, Weidong; Liu, Jing; Hou, Zhumei; Chu, Meiqiang; Li, Lan; Shen, Wei; Zhao, Yong; Zhang, Hongfu

    2017-01-01

    Zinc oxide nanoparticles (ZnO NPs) are used widely in consumer and industrial products, however, their influence on gut microbiota and metabolism and their mutual interactions are not fully understood. In this study, the effects of ZnO NPs on ileal bacterial communities, plasma metabolites, and correlations between them were investigated. Hens were fed with different concentrations of ZnO NPs [based on Zn; 0 mg/kg (control), 25 mg/kg, 50 mg/kg, and 100 mg/kg] for 9 weeks. Subsequently, ileal digesta and blood plasma were collected for analysis of microflora and metabolites, respectively. The V3-V4 region of the 16S rRNA gene of ileal digesta microbiota was sequenced using the Illumina HiSeq 2500 platform. The predominant bacterial community in the ileum belongs to the phylum Firmicutes. The richness of the bacterial community was negatively correlated with increasing amounts of ZnO NPs ( r = -0.636, P < 0.01); when ZnO NP levels were at 100 mg/kg, microbiota diversity was significantly decreased ( P < 0.05). The community structure determined by LEfSe analysis indicated that Bacilli, Fusobacteria, and Proteobacteria were changed, and Lactobacillus was reduced by ZnO NPs. Moreover, metabolism as analyzed by nuclear magnetic resonance (NMR) indicated that glucose, some amino acids, and other metabolites were changed by ZnO NPs. Choline, lactate, and methionine were positively correlated with bacterial richness. In summary, ZnO NPs could influence the levels of microflora in ileal digesta, particularly Lactobacillus . Furthermore, the richness of the microbiota was related to changes in choline, lactate, and methionine metabolism.

  20. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    NASA Astrophysics Data System (ADS)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak; Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd

    2016-10-01

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes ( n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  1. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    NASA Astrophysics Data System (ADS)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  2. Size dependent nonlinear optical properties of spin coated zinc oxide-polystyrene nanocomposite films

    NASA Astrophysics Data System (ADS)

    Jeeju, Pullarkat P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P.

    2012-11-01

    Using simple wet chemical method at room temperature, zinc oxide (ZnO) nanoparticles embedded in polystyrene (PS) matrix were synthesized. The size of the ZnO nanoparticles could be varied by varying the precursor concentration, reaction time and stirring speed. Transparent films of ZnO/PS nanocomposites of thickness around 1 μm were coated on ultrasonically cleaned glass substrates by spin coating. The optical absorptive nonlinearity in ZnO/PS nanocomposite films was investigated using open aperture Z-scan technique with nanosecond laser pulses at 532 nm. The results indicate optical limiting type nonlinearity in the films due to two-photon absorption in ZnO. These films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. The observed nonlinear absorption is strongly dependent on particle size and the normalized transmittance could be reduced to as low as 0.43 by the suitable choice of the ZnO nanoparticle size. These composite films can hence be used as efficient optical limiters for sensor protection. The much-pronounced nonlinear response of these composite films, compared to pure ZnO, combined with the improved stability of ZnO nanoparticles in the PS matrix offer prospects of application of these composite films in the fabrication of stable non-linear optical devices.

  3. Computational predictions of zinc oxide hollow structures

    NASA Astrophysics Data System (ADS)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  4. Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.

    Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less

  5. Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs

    DOE PAGES

    Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.

    2015-08-21

    Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less

  6. Hybrid phototransistors based on bulk heterojunction films of poly(3-hexylthiophene) and zinc oxide nanoparticle.

    PubMed

    Nam, Sungho; Seo, Jooyeok; Park, Soohyeong; Lee, Sooyong; Jeong, Jaehoon; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2013-02-01

    Hybrid phototransistors (HPTRs) were fabricated on glass substrates using organic/inorganic hybrid bulk heterojunction films of p-type poly(3-hexylthiophene) (P3HT) and n-type zinc oxide nanoparticles (ZnO(NP)). The content of ZnO(NP) was varied up to 50 wt % in order to understand the composition effect of ZnO(NP) on the performance of HPTRs. The morphology and nanostructure of the P3HT:ZnO(NP) films was examined by employing high resolution electron microscopes and synchrotron radiation grazing angle X-ray diffraction system. The incident light intensity (P(IN)) was varied up to 43.6 μW/cm², whereas three major wavelengths (525 nm, 555 nm, 605 nm) corresponded to the optical absorption of P3HT were applied. Results showed that the present HPTRs showed typical p-type transistor performance even though the n-type ZnO(NP) content increased up to 50 wt %. The highest transistor performance was obtained at 50 wt %, whereas the lowest performance was measured at 23 wt % because of the immature bulk heterojunction morphology. The drain current (I(D)) was proportionally increased with P(IN) due to the photocurrent generation in addition to the field-effect current. The highest apparent and corrected responsivities (R(A) = 4.7 A/W and R(C) = 2.07 A/W) were achieved for the HPTR with the P3HT:ZnO(NP) film (50 wt % ZnO(NP)) at P(IN) = 0.27 μW/cm² (555 nm).

  7. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community.

    PubMed

    Xu, Jiangbing; Luo, Xiaosan; Wang, Yanling; Feng, Youzhi

    2018-02-01

    The wide spread of nanoparticles (NPs) has caused tremendous concerns on agricultural ecosystem. Some metallic NPs, such as zinc oxide (ZnO), can be utilized as a nano-fertilizer when used at optimal doses. However, little is known about the responses of plant development and concomitant soil bacteria community to ZnO NPs. The present pot experiment studied the impacts of different doses of ZnO NPs and bulk ZnO (0, 1, 10, 100 mg ZnO/kg), on the growth of lettuce (Lactuca sativa L.) and the associated rhizospheric soil bacterial community. Results showed that at a dose of 10 mg/kg, ZnO NPs and bulk ZnO, enhanced the lettuce biomass and the net photosynthetic rate; whereas, the Zn content in plant tissue was higher in NPs treatment than in their bulk counterpart at 10 mg/kg dose or higher. For the underground observations, 10 mg/kg treatment doses (NPs or bulk) significantly changed the soil bacterial community structure, despite the non-significant variations in alpha diversity. Taxonomic distribution revealed that some lineages within Cyanobacteria and other phyla individually demonstrated similar or different responses to ZnO NPs and bulk ZnO. Moreover, some lineages associated with plant growth promotion were also influenced to different extents by ZnO NPs and bulk ZnO, suggesting the distinct microbial processes occurring in soil. Collectively, this study expanded our understanding of the influence of ZnO NPs on plant performance and the associated soil microorganisms.

  8. Organization of research team for nano-associated safety assessment in effort to study nanotoxicology of zinc oxide and silica nanoparticles

    PubMed Central

    Kim, Yu-Ri; Park, Sung Ha; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Ja Hei; Meang, Eun-Ho; Yoon, Tae Hyun; Lim, Seok Tae; Oh, Jae-Min; An, Seong Soo A; Kim, Meyoung-Kon

    2014-01-01

    Currently, products made with nanomaterials are used widely, especially in biology, bio-technologies, and medical areas. However, limited investigations on potential toxicities of nanomaterials are available. Hence, diverse and systemic toxicological data with new methods for nanomaterials are needed. In order to investigate the nanotoxicology of nanoparticles (NPs), the Research Team for Nano-Associated Safety Assessment (RT-NASA) was organized in three parts and launched. Each part focused on different contents of research directions: investigators in part I were responsible for the efficient management and international cooperation on nano-safety studies; investigators in part II performed the toxicity evaluations on target organs such as assessment of genotoxicity, immunotoxicity, or skin penetration; and investigators in part III evaluated the toxicokinetics of NPs with newly developed techniques for toxicokinetic analyses and methods for estimating nanotoxicity. The RT-NASA study was carried out in six steps: need assessment, physicochemical property, toxicity evaluation, toxicokinetics, peer review, and risk communication. During the need assessment step, consumer responses were analyzed based on sex, age, education level, and household income. Different sizes of zinc oxide and silica NPs were purchased and coated with citrate, L-serine, and L-arginine in order to modify surface charges (eight different NPs), and each of the NPs were characterized by various techniques, for example, zeta potentials, scanning electron microscopy, and transmission electron microscopy. Evaluation of the “no observed adverse effect level” and systemic toxicities of all NPs were performed by thorough evaluation steps and the toxicokinetics step, which included in vivo studies with zinc oxide and silica NPs. A peer review committee was organized to evaluate and verify the reliability of toxicity tests, and the risk communication step was also needed to convey the current

  9. Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity

    NASA Astrophysics Data System (ADS)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur

    2014-06-01

    The present investigation deals with the facile synthesis and characterization of chitosan (CTS)-based zinc oxide (ZnO) nanoparticles (NPs) and their antimicrobial activities against pathogenic microorganisms. ZnO-CTS NPs were synthesized through two different methods: nano spray drying and precipitation, using various organic compounds (citric acid, glycerol, starch and whey powder) as stabilizers. Both the synthesis methods were simple and were devoid of any chemical usage. The detailed characterization of the NPs was carried out using UV-Vis spectroscopy, dynamic light scattering particle size analysis, zeta potential measurements and scanning electron microscopy, which confirmed the fabrication of NPs with different shapes and sizes. Antimicrobial assay of synthesized ZnO-CTS NPs was carried out against different pathogenic microbial strains ( Candida albicans, Micrococcus luteus and Staphylococcus aureus). The significant ( p < 0.05) inhibition of growth was observed for both M. luteus and S. aureus with ZnO-CTS NPs (with a concentration ranging from 0.625 to 0.156 mg/ml) as compared to control treatment. ZnO-CTS NPs also showed significant biofilm inhibition activity ( p < 0.05) against M. luteus and S. aureus. The study demonstrated the potential of ZnO-CTS NPs as antimicrobial and antibiofilm agents.

  10. Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism

    DTIC Science & Technology

    2011-10-01

    Zinc Oxide ( ZnO ) Nanostars: Synthesis and Simulation of Growth Mechanism Jinhyun Cho1, Qiubao Lin2,3, Sungwoo...characterization, and ab initio simulations of star-shaped hexagonal zinc oxide ( ZnO ) nanowires. The ZnO nanostructures were synthesized by a low...Introduction Zinc oxide ( ZnO ) is a wide bandgap (3.37 eV), Ⅱ–Ⅵ semiconductor of great interest for optoelectronic applications [1–3]. Its

  11. The Molecular Basis of Inactivation of Metronidazole-Resistant Helicobacter pylori Using Polyethyleneimine Functionalized Zinc Oxide Nanoparticles

    PubMed Central

    Chowdhury, Rukhsana; Chakrabarti, Pinak

    2013-01-01

    In view of the world wide prevalence of Helicobacter pylori infection, its potentially serious consequences, and the increasing emergence of antibiotic resistant H. pylori strains there is an urgent need for the development of alternative strategies to combat the infection. In this study it has been demonstrated that polyethyleneimine (PEI) functionalized zinc oxide (ZnO) nanoparticles (NPs) inhibit the growth of a metronidazole-resistant strain of H. pylori and the molecular basis of the anti-bacterial activity of ZnO-PEI NP has been investigated. The ZnO-PEI NP was synthesized using a wet chemical method with a core size of approximately 3–7 nm. Internalization and distribution of ZnO-PEI NP without agglomeration was observed in H. pylori cytosol by electron microscopy. Several lines of evidence including scanning electron microscopy, propidium iodide uptake and ATP assay indicate severe membrane damage in ZnO-PEI NP treated H. pylori. Intracellular ROS generation increased rapidly following the treatment of H. pylori with ZnO-PEI NP and extensive degradation of 16S and 23S rRNA was observed by quantitative reverse-transcriptase PCR. Finally, considerable synergy between ZnO-PEI NP and antibiotics was observed and it has been demonstrated that the concentration of ZnO-PEI NP (20 µg/ml) that is non-toxic to human cells could be used in combination with sub-inhibitory concentrations of antibiotics for the inhibition of H. pylori growth. PMID:23951006

  12. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity.

    PubMed

    Raja, A; Ashokkumar, S; Pavithra Marthandam, R; Jayachandiran, J; Khatiwada, Chandra Prasad; Kaviyarasu, K; Ganapathi Raman, R; Swaminathan, M

    2018-04-01

    The present work reports the green synthesis of Zinc Oxide Nanoparticles (ZnO NPs) using aqueous Tabernaemontana divaricata green leaf extract. ZnO NPs have been characterized by X-ray diffraction (XRD), Ultra Violet-Visible (UV-Vis) studies, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infra Red (FT-IR) analysis. XRD pattern analysis confirms the presence of pure hexagonal wurtzite crystalline structure of ZnO. The TEM images reveal the formation of spherical shape ZnO NPs with the sizes ranging from 20 to 50 nm. The FT-IR analysis suggests that the obtained ZnO NPs have been stabilized through the interactions of steroids, terpenoids, flavonoids, phenyl propanoids, phenolic acids and enzymes present in the leaf extract. Mechanism for the formation of ZnO NPs using Tabernaemontana divaricata as bioactive compound is proposed. As prepared ZnO NPs reveals antibacterial activity against three bacterial strains, Salmonella paratyphi, Escherichia coli and Staphylococcus aureus. The ZnO NPs shows higher antibacterial activity against S. aureus and E. coli and lesser antibacterial activity against S. paratyphi compared to the standard pharmaceutical formulation. Photocatalytic activity of synthesized ZnO NPs was analyzed for methylene blue (MB) dye degradation with sunlight. Almost complete degradation of dye occurred in 90 min. This nano-ZnO, prepared by eco-friendly method will be much useful for dye removal and bacterial decontamination. Copyright © 2018. Published by Elsevier B.V.

  13. In situ observation of the formation of hollow zinc oxide shells

    DOE PAGES

    Tringe, J. W.; Levie, H. W.; El-Dasher, B. S.; ...

    2011-06-14

    Single crystal zinc particles, 1–2 μm1–2 μm in diameter, were observed in situ with transmission electron microscopy during sublimation. The rate of sublimation is strongly dependent on the presence of a surface oxide layer. Near 375°, minimally oxidized Zn surfaces sublime in tens of seconds, consistent with a model in which the particle behaves similarly to an isolated microscale effusion cell. By contrast, zinc particles fully enclosed by oxide sublime less than one-tenth as quickly. Here these results provide new insight into the synthesis mechanisms of hollow ZnO microspheres and related structures formed from metallic zinc at elevated temperatures.

  14. Toxicity of Functional Nano-Micro Zinc Oxide Tetrapods: Impact of Cell Culture Conditions, Cellular Age and Material Properties

    PubMed Central

    Papavlassopoulos, Heike; Mishra, Yogendra K.; Kaps, Sören; Paulowicz, Ingo; Abdelaziz, Ramzy; Elbahri, Mady; Maser, Edmund; Adelung, Rainer; Röhl, Claudia

    2014-01-01

    With increasing production and applications of nanostructured zinc oxide, e.g., for biomedical and consumer products, the question of safety is getting more and more important. Different morphologies of zinc oxide structures have been synthesized and accordingly investigated. In this study, we have particularly focused on nano-micro ZnO tetrapods (ZnO-T), because their large scale fabrication has been made possible by a newly introduced flame transport synthesis approach which will probably lead to several new applications. Moreover, ZnO-T provide a completely different morphology then classical spherical ZnO nanoparticles. To get a better understanding of parameters that affect the interactions between ZnO-T and mammalian cells, and thus their biocompatibility, we have examined the impact of cell culture conditions as well as of material properties on cytotoxicity. Our results demonstrate that the cell density of fibroblasts in culture along with their age, i.e., the number of preceding cell divisions, strongly affect the cytotoxic potency of ZnO-T. Concerning the material properties, the toxic potency of ZnO-T is found to be significantly lower than that of spherical ZnO nanoparticles. Furthermore, the morphology of the ZnO-T influenced cellular toxicity in contrast to surface charges modified by UV illumination or O2 treatment and to the material age. Finally, we have observed that direct contact between tetrapods and cells increases their toxicity compared to transwell culture models which allow only an indirect effect via released zinc ions. The results reveal several parameters that can be of importance for the assessment of ZnO-T toxicity in cell cultures and for particle development. PMID:24454775

  15. High-Throughput Continuous Hydrothermal Synthesis of Transparent Conducting Aluminum and Gallium Co-doped Zinc Oxides.

    PubMed

    Howard, Dougal P; Marchand, Peter; McCafferty, Liam; Carmalt, Claire J; Parkin, Ivan P; Darr, Jawwad A

    2017-04-10

    High-throughput continuous hydrothermal flow synthesis was used to generate a library of aluminum and gallium-codoped zinc oxide nanoparticles of specific atomic ratios. Resistivities of the materials were determined by Hall Effect measurements on heat-treated pressed discs and the results collated into a conductivity-composition map. Optimal resistivities of ∼9 × 10 -3 Ω cm were reproducibly achieved for several samples, for example, codoped ZnO with 2 at% Ga and 1 at% Al. The optimum sample on balance of performance and cost was deemed to be ZnO codoped with 3 at% Al and 1 at% Ga.

  16. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  17. Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium

    NASA Astrophysics Data System (ADS)

    Kılınç, Mert; Çakal, Gaye Ö.; Yeşil, Sertan; Bayram, Göknur; Eroğlu, İnci; Özkar, Saim

    2010-11-01

    Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B 2O 3·3.5H 2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H 3BO 3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.

  18. Application of Chitosan-Zinc Oxide Nanoparticles for Lead Extraction From Water Samples by Combining Ant Colony Optimization with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Khajeh, M.; Pourkarami, A.; Arefnejad, E.; Bohlooli, M.; Khatibi, A.; Ghaffari-Moghaddam, M.; Zareian-Jahromi, S.

    2017-09-01

    Chitosan-zinc oxide nanoparticles (CZPs) were developed for solid-phase extraction. Combined artificial neural network-ant colony optimization (ANN-ACO) was used for the simultaneous preconcentration and determination of lead (Pb2+) ions in water samples prior to graphite furnace atomic absorption spectrometry (GF AAS). The solution pH, mass of adsorbent CZPs, amount of 1-(2-pyridylazo)-2-naphthol (PAN), which was used as a complexing agent, eluent volume, eluent concentration, and flow rates of sample and eluent were used as input parameters of the ANN model, and the percentage of extracted Pb2+ ions was used as the output variable of the model. A multilayer perception network with a back-propagation learning algorithm was used to fit the experimental data. The optimum conditions were obtained based on the ACO. Under the optimized conditions, the limit of detection for Pb2+ ions was found to be 0.078 μg/L. This procedure was also successfully used to determine the amounts of Pb2+ ions in various natural water samples.

  19. A new approach to synthesize ZnO tetrapod-like nanoparticles with DC thermal plasma technique

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Fen; Liao, Shih-Chieh; Hu, Chen-Ti

    2009-02-01

    The feasibility of fabricating the tetrapod-like zinc oxide (TZ) nanoparticles with a DC thermal plasma reactor was demonstrated in the present study. Advantages of this process include the low cost and high yield rate (0.8-1.0 kg/h) in producing high TZ content mixtures (with small portion of rod-like zinc oxide (RZ) and plate-like zinc oxide (PZ) nanoparticles) from commercial metal zinc powders. ZnO nanopowders with high TZ content could be employed as the starting material for photocatalytic filters. The ratio of TZ to RZ and PZ in the products was observed to be strongly influenced by the plasma power and the plasma gas flow rate. The optical spectrum, photostability and anti-microbial property of the as-grown and annealed TZ mixtures were examined and compared in this study.

  20. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasami, Alamelu K.; Raja Naika, H.; Nagabhushana, H.

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electronmore » microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.« less

  1. Solvothermal synthesis, characterization and optical properties of ZnO, ZnO-MgO and ZnO-NiO, mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslani, Alireza; Arefi, Mohammad Reza; Babapoor, Aziz; Amiri, Asghar; Beyki-Shuraki, Khalil

    2011-03-01

    ZnO-MgO and ZnO-NiO mixed oxides nanoparticles were produced from a solution containing Zinc acetate, Mg and Ni nitrate by Solvothermal method. The calcination process of the ZnO-MgO and ZnO-NiO composites nanoparticles brought forth polycrystalline two-phase ZnO-MgO and ZnO-NiO nanoparticles of 40-80 nm in diameters. ZnO, MgO and NiO were crystallized into würtzite and rock salt structures, respectively. The optical properties of ZnO-MgO and ZnO-NiO nanoparticles were obtained by solid state UV and solid state florescent. The XRD, SEM and Raman spectroscopies of these nanoparticles were analyzed.

  2. Toxicity of food-relevant nanoparticles in intestinal epithelial models

    NASA Astrophysics Data System (ADS)

    McCracken, Christie

    Nanoparticles are increasingly being incorporated into common consumer products, including in foods and food packaging, for their unique properties at the nanoscale. Food-grade silica and titania are used as anti-caking and whitening agents, respectively, and these particle size distributions are composed of approximately one-third nanoparticles. Zinc oxide and silver nanoparticles can be used for their antimicrobial properties. However, little is known about the interactions of nanoparticles in the body upon ingestion. This study was performed to investigate the role of nanoparticle characteristics including surface chemistry, dissolution, and material type on toxicity to the intestinal epithelium. Only mild acute toxicity of zinc oxide nanoparticles was observed after 24-hour treatment of intestinal epithelial C2BBe1 cells based on the results of toxicity assays measuring necrosis, apoptosis, membrane damage, and mitochondrial activity. Silica and titanium dioxide nanoparticles were not observed to be toxic although all nanoparticles were internalized by cells. In vitro digestion of nanoparticles in solutions representing the stomach and intestines prior to treatment of cells did not alter nanoparticle toxicity. Long-term repeated treatment of cells weekly for 24 hours with nanoparticles did not change nanoparticle cytotoxicity or the growth rate of the treated cell populations. Thus, silica, titanium dioxide, and zinc oxide nanoparticles were found to induce little toxicity in intestinal epithelial cells. Fluorescent silica nanoparticles were synthesized as a model for silica used in foods that could be tracked in vitro and in vivo. To maintain an exterior of pure silica, a silica shell was hydrolyzed around a core particle of quantum dots or a fluorescent dye electrostatically associated with a commercial silica particle. The quantum dots used were optimized from a previously reported microwave quantum dot synthesis to a quantum yield of 40%. Characterization

  3. Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State

    NASA Astrophysics Data System (ADS)

    Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.

    2015-12-01

    Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.

  4. Investigations on structural, optical and magnetic properties of Dy-doped zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Vinosha, P. Annie; Deepapriya, S.; Rodney, John. D.; Das, S. Jerome

    2018-04-01

    A persuasive and thriftily feasible homogeneous co-precipitation route was adopted to fabricate dysprosium (Dy) doped zinc ferrite (Zn1-xDyxFe2O4)nanoparticles in order to examine their structural, optical and magnetic properties. Theas-synthesized Zn1-xDyxFe2O4 was studied for its momentous applications in photo-degradation of organic Methylene Blue (MB) dye. The paper marksthe connotation of zinc ferrite nanocatalyst in Photo-Fenton degradation. The chemical composition of dysprosium has a decisive feature of this research work. From X-ray diffraction analysis (XRD), spinel phase formation of theas-synthesized Zn1-xDyxFe2O4 nanoparticles was observedand the crystallite size was foundto increase as the doping concentration increased. Theabsorption bands peaked between 600-400 cm-l waspragmatic by Fourier Transform Infrared spectral analysis (FTIR). Transmission Electron Microscopy (TEM) micrograph elucidated the morphology and the speck size of as-synthesized nanoparticles. Surface area and pore size were determined by Brunauer-Emmett-Teller (BET) technique.

  5. Sorption behavior of microamounts of zinc on titanium oxide from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasany, S.M.; Ghaffar, A.; Chughtai, F.A.

    1991-08-01

    To correlate soil response toward zinc, it is necessary to study its adsorption in detail on soils or on their constituents. The adsorption of microamounts of zinc on titanium oxide, prepared and characterized in this laboratory, has been studied in detail. Zinc adsorption has been found to be dependent on the pH of the aqueous solution, amount of oxide, and zinc concentration. Maximum adsorption is from pH 10 buffer. EDTA and cyanide ions inhibit adsorption significantly. The adsorption of other elements under optimal conditions has also been measured on this oxide. Sc(III) and Cs(I) show almost negligible adsorption. Zinc adsorptionmore » follows the linear form of the Freundlich adsorption isotherm: log C{sub Ads} = log A + (1/n) log C{sub Bulk} with A = 0.48 mol/g and n = 1. Except at a very low bulk concentration (3 {times} 10{sup {minus}5} mol/dm{sup 3}), Langmuir adsorption isotherm is also linear for the entire zinc concentration investigated. The limiting adsorbed concentration is estimated to be 0.18 mol/g.« less

  6. Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model.

    PubMed

    Dale, Amy L; Lowry, Gregory V; Casman, Elizabeth A

    2015-06-16

    Mathematical models are needed to estimate environmental concentrations of engineered nanoparticles (NPs), which enter the environment upon the use and disposal of consumer goods and other products. We present a spatially resolved environmental fate model for the James River Basin, Virginia, that explores the influence of daily variation in streamflow, sediment transport, and stream loads from point and nonpoint sources on water column and sediment concentrations of zinc oxide (ZnO) and silver (Ag) NPs and their reaction byproducts over 20 simulation years. Spatial and temporal variability in sediment transport rates led to high NP transport such that less than 6% of NP-derived metals were retained in the river and sediments. Chemical transformations entirely eliminated ZnO NPs and doubled Zn mobility in the stream relative to Ag. Agricultural runoff accounted for 23% of total metal stream loads from NPs. Average NP-derived metal concentrations in the sediment varied spatially up to 9 orders of magnitude, highlighting the need for high-resolution models. Overall, our results suggest that "first generation" NP risk models have probably misrepresented NP fate in freshwater rivers due to low model resolutions and the simplification of NP chemistry and sediment transport.

  7. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

    NASA Astrophysics Data System (ADS)

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V. Ramgopal; Garnier, Gil

    2017-03-01

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.

  8. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling.

    PubMed

    Al-Naamani, Laila; Dobretsov, Sergey; Dutta, Joydeep; Burgess, J Grant

    2017-02-01

    Marine biofouling is a worldwide problem affecting maritime industries. Global concerns about the high toxicity of antifouling paints have highlighted the need to develop less toxic antifouling coatings. Chitosan is a natural polymer with antimicrobial, antifungal and antialgal properties that is obtained from partial deacetylation of crustacean waste. In the present study, nanocomposite chitosan-zinc oxide (chitosan-ZnO) nanoparticle hybrid coatings were developed and their antifouling activity was tested. Chitosan-ZnO nanoparticle coatings showed anti-diatom activity against Navicula sp. and antibacterial activity against the marine bacterium Pseudoalteromonas nigrifaciens. Additional antifouling properties of the coatings were investigated in a mesocosm study using tanks containing natural sea water under controlled laboratory conditions. Each week for four weeks, biofilm was removed and analysed by flow cytometry to estimate total bacterial densities on the coated substrates. Chitosan-ZnO hybrid coatings led to better inhibition of bacterial growth in comparison to chitosan coatings alone, as determined by flow cytometry. This study demonstrates the antifouling potential of chitosan-ZnO nanocomposite hybrid coatings, which can be used for the prevention of biofouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Andrée, Birgit; Cebotari, Serghei; Boyle, Erin C.; Haverich, Axel; Hilfiker, Andres

    2017-08-01

    In this paper, we report on the interaction of multifunctional nanoparticles with living endothelial cells. The nanoparticles were synthesized using direct growth of gallium nitride on zinc oxide nanoparticles alloyed with iron oxide followed by core decomposition in hydrogen flow at high temperature. Using transmission electron microscopy, we demonstrate that porcine aortic endothelial cells take up GaN-based nanoparticles suspended in the growth medium. The nanoparticles are deposited in vesicles and the endothelial cells show no sign of cellular damage. Intracellular inert nanoparticles are used as guiding elements for controlled transportation or designed spatial distribution of cells in external magnetic fields.

  10. Fate of zinc and silver engineered nanoparticles in sewerage networks.

    PubMed

    Brunetti, Gianluca; Donner, Erica; Laera, Giuseppe; Sekine, Ryo; Scheckel, Kirk G; Khaksar, Maryam; Vasilev, Krasimir; De Mastro, Giuseppe; Lombi, Enzo

    2015-06-15

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage systems before reaching wastewater treatment plants. To address this knowledge gap, laboratory-scale systems fed with raw wastewater were used to evaluate the transformation of ZnO- and Ag-NPs within sewerage transfer networks. Two experimental systems were established and spiked with either Ag- and ZnO-NPs or with their dissolved salts, and the wastewater influent and effluent samples from both systems were thoroughly characterised. X-ray absorption spectroscopy (XAS) was used to assess the extent of the chemical transformation of both forms of Zn and Ag during transport through the model systems. The results indicated that both ZnO- and Ag-NPs underwent significant transformation during their transport through the sewerage network. Reduced sulphur species represented the most important endpoint for these NPs in the sewer with slight differences in terms of speciation; ZnO converted largely to Zn sulfide, while Ag was also sorbed to cysteine and histidine. Importantly, both ionic Ag and Ag-NPs formed secondary Ag sulfide nanoparticles in the sewerage network as revealed by TEM analysis. Ag-cysteine was also shown to be a major species in biofilms. These results were verified in the field using recently developed nanoparticle in situ deployment devices (nIDDs) which were exposed directly to sewerage network conditions by immersing them into a municipal wastewater network trunk sewer and then retrieving them for XAS analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.

    PubMed

    Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong

    2017-08-15

    As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.

  12. Novel synthesis and structural analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor.

    PubMed

    Dayakar, T; Venkateswara Rao, K; Bikshalu, K; Rajendar, V; Park, Si-Hyun

    2017-06-01

    A non-enzymatic glucose biosensor was developed by utilizing the zinc oxide nanoparticles (ZnO NPs) synthesized by a novel green method using the leaf extract of Ocimum tenuiflorum. The structural, optical and morphological properties of ZnO NPs characterized by means of X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDAX) spectroscopy, and transmission electron microscopy (TEM). The XRD analysis revealed that the ZnO NPs were crystalline and had a hexagonal wurtzite structure. The crystallite size measured by XRD was the same as that measured using SEM and TEM. The UV-vis absorption spectrum estimates the band gap of ZnO NPs present in the range of 2.82 to 3.45eV. The reduction and formation of ZnO NPs mainly due to the involvement of leaf extract bio-molecular compounds analyzed from the FTIR spectra. The SEM result confirms the morphology of the NPs responsible from the various concentration of leaf extract in the synthesis process. HRTEM analysis depicts the spherical structure of ZnO NPs. The synthesized NPs have the average size ranges from 10 to 20nm. The fabricated GCE/ZnO glucose sensor represents superior electro catalytic activity that has been observed for ZnO NPs with a reproducible sensitivity of 631.30μAmM -1 cm -2 , correlation coefficient of R=0.998, linear dynamic range from 1-8.6mM, low detection limit of 0.043μM (S/N=3) and response time<4s. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of ultrafine zinc oxide (ZnO) nanoparticles on induction of oral tolerance in mice.

    PubMed

    Matsumura, Misa; Takasu, Nobuo; Nagata, Masafumi; Nakamura, Kazuichi; Kawai, Motoyuki; Yoshino, Shin

    2010-01-01

    Ultrafine nanoparticles of zinc oxide (ZnO) recently became available as a substitute for larger-size fine ZnO particles. However, the biological activity of ultrafine ZnO currently remains undefined. In the present study, we investigated the effect of ultrafine ZnO on oral tolerance that plays an important role in the prevention of food allergy. Oral tolerance was induced in mice by a single oral administration (i.e., gavage) of 25 mg of ovalbumin (OVA) 5 days prior to a subcutaneous immunization with OVA (Day 0). Varying doses of ultrafine (diameter: approximately 21 nm) as well as fine (diameter: < 5 microm) ZnO particles were given orally at the same time during the OVA gavage. The results indicated that a single oral administration of OVA was followed by significant decreases in serum anti-OVA IgG, IgG(1), IgG(2a), and IgE antibodies and in the proliferative responses to the antigen by these hosts' spleen cells. The decreases in these immune responses to OVA were associated with a marked suppression of secretion of interferon (IFN)gamma, interleukin (IL)-5, and IL-17 by these lymphoid cells. Treatment with either ultrafine or fine ZnO failed to affect the oral OVA-induced suppression of antigen-specific IgG, IgG(1), IgG(2a), and IgE production or lymphoid cell proliferation. The suppression induced by the oral OVA upon secretion of IFN gamma, IL-5, and IL-17 was also unaffected by either size of ZnO. These results indicate that ultrafine particles of ZnO do not appear to modulate the induction of oral tolerance in mice.

  14. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Borbíró, I.; Angyal, A.; Csedreki, L.; Furu, E.; Szoboszlai, Z.; Kiss, Á. Z.; Hunyadi, J.

    2011-10-01

    Skin penetration is one of the potential routes for nanoparticles to gain access into the human body. Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the particle size smaller than 200 nm makes the product more transparent compared to formulations containing coarser particles. The present study continues the work carried out in the frame of the NANODERM: “Quality of skin as a barrier to ultrafine particles” European project and complements our previous investigations on human skin with compromised barrier function. Atopic dermatitis (a type of eczema) is an inflammatory, chronically relapsing, non-contagious skin disease. It is very common in children but may occur at any age. The exact cause of atopic dermatitis is unknown, but is likely due to a combination of impaired barrier function together with a malfunction in the body's immune system. In this study, skin samples were obtained from two patients suffering from atopic dermatitis. Our results indicate that the ultrafine zinc oxide particles, in a hydrophobic basis gel with an application time of 2 days or 2 weeks, have penetrated deeply into the stratum corneum in these patients. On the other hand, penetration into the stratum spinosum was not observed even in the case of the longer application time.

  15. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.).

    PubMed

    Venkatachalam, P; Priyanka, N; Manikandan, K; Ganeshbabu, I; Indiraarulselvi, P; Geetha, N; Muralikrishna, K; Bhattacharya, R C; Tiwari, M; Sharma, N; Sahi, S V

    2017-01-01

    This report focuses on application of zinc oxide nanoparticles (ZnONPs) carrying phycomolecule ligands as a novel plant growth promoter aimed at increasing the crop productivity. The present investigation examined the effect of ZnONPs on plant growth characteristics, and associated biochemical changes in cotton (Gossypium hirsutum L.) following growth in a range of concentrations (25-200 mg L -l ZnONPs) in combination with 100 mM P in a hydroponic system. Treated plants registered an increase in growth and total biomass by 130.6% and 131%, respectively, over control. Results demonstrated a significant increase in the level of chlorophyll a (141.6%), b (134.7%), carotenoids (138.6%), and total soluble protein contents (179.4%); at the same time, a significant reduction (68%) in the level of malondialdehyde (MDA) in leaves with respect to control. Interestingly, a significant increase in superoxide dismutase (SOD, 264.2%), and peroxidase (POX, 182.8%) enzyme activities followed by a decrease in the catalase (CAT) activity, in response to above treatments. These results suggest that bioengineered ZnONPs interact with meristematic cells triggering biochemical pathways conducive to an accumulation of biomass. Further investigations will map out the mode of action involved in growth promotion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Investigation of manifestation of optical properties of butterfly wings with nanoscale zinc oxide incorporation

    NASA Astrophysics Data System (ADS)

    Aideo, Swati N.; Mohanta, Dambarudhar

    2016-10-01

    In this work, microstructural and optical characteristics nanoparticles of wings of Tailed Jay (Graphium Agamemnon) butterfly were studied before and after treating it in a precursor solution of zinc acetate and ethanol. We speculate that the butterfly scales are infiltrated with ZnO nanoparticles owing to reduction of Zinc hydroxide under ambient condition. The ZnO butterfly scales so produced were characterised using optical microscopy, UV-Vis reflectance spectroscopy, and electron microscopy etc. From the reflectance spectra, we could see that after treating it in the solution, optical properties vary. We anticipate that this change may be due to the formation of ZnO nanoparticles as well as the loss in periodicity due to the chemical treatments, which could be assessed from the SEM micrographs.

  17. The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Rajeev; Kumar, Ashavani, E-mail: ashavani@yahoo.com

    2015-08-28

    The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain sizemore » was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.« less

  18. 21 CFR 582.5991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  19. Zinc oxide hierarchical nanostructures for photocatalysis

    NASA Astrophysics Data System (ADS)

    Yukhnovets, O.; Semenova, A. A.; Levkevich, E. A.; Maximov, A. I.; Moshnikov, V. A.

    2018-03-01

    In this work, we perform the study of zinc oxide hierarchical structures synthesized by the low-temperature hydrothermal method. The paper considers morphological properties of obtained structures. Photocatalytic activity of samples was analysed by methyl orange degradation under UV irradiation. The sufficient decrease in methyl orange has been demonstrated.

  20. Method of capturing or trapping zinc using zinc getter materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  1. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  2. Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles.

    PubMed

    Nazıroğlu, Mustafa; Muhamad, Salina; Pecze, Laszlo

    2017-07-01

    In etiology of Alzheimer's disease (AD), involvement of amyloid β (Aβ) plaque accumulation and oxidative stress in the brain have important roles. Several nanoparticles such as titanium dioxide, silica dioxide, silver and zinc oxide have been experimentally using for treatment of neurological disease. In the last decade, there has been a great interest on combination of antioxidant bioactive compounds such as selenium (Se) and flavonoids with the oxidant nanoparticles in AD. We evaluated the most current data available on the physiological effects of oxidant and antioxidant nanoparticles. Areas covered: Oxidative nanoparticles decreased the activities of reactive oxygen species (ROS) scavenging enzymes such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase in the brain of rats and mice. However, Se-rich nanoparticles in small size (5-15 nm) depleted Aβ formation through decreasing ROS production. Reports on low levels of Se in blood and tissue samples and the low activities of GSH-Px, catalase and SOD enzymes in AD patients and animal models support the proposed crucial role of oxidative stress in the pathogenesis of AD. Expert commentary: In conclusion, present literature suggests that Se-rich nanoparticles appeared to be a potential therapeutic compound for the treatment of AD.

  3. Electrical properties of films of zinc oxide nanoparticles and its hybrid with reduced graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhuri, K. Priya; Bramhaiah, K.; John, Neena S., E-mail: jsneena@cnsms.res.in

    Free-standing films of ZnO nanoparticles (NPs) and reduced graphene oxide (rGO)-ZnO NPs hybrid are prepared at a liquid/liquid interface. The films are characterized by UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy. ZnO film consists of spherical aggregated NPs while the hybrid film contains folded sheets of rGO with embedded ZnO NPs. Electrical properties of the films and its photoresponse in presence of UV radiation are investigated using current sensing atomic force microscopy (CSAFM) at nanoscale and bulk measurements using two probe methods. Enhancement in photocurrent is observed in both cases and the current imaging reveals anmore » inhomogeneous contribution by different ZnO grains in the film.« less

  4. Topical zinc oxide vs. salicylic acid-lactic acid combination in the treatment of warts.

    PubMed

    Khattar, Joe A; Musharrafieh, Umayya M; Tamim, Hala; Hamadeh, Ghassan N

    2007-04-01

    Warts are a common dermatologic problem. Treatment is painful, prolonged, and can cause scarring. To evaluate topical zinc oxide for the treatment of warts. This was a randomized, double-blind controlled trial of 44 patients. Twenty-two patients were given topical zinc oxide 20% ointment, and the other 22 received salicylic acid 15% + lactic acid 15% ointment twice daily. All patients were followed up for 3 months or until cure, whichever occurred first. All patients were observed for side-effects. Sixteen patients in the zinc group and 19 in the salicylic acid-lactic acid group completed the study. In the zinc oxide-treated group, 50% of the patients showed complete cure and 18.7% failed to respond, compared with 42% and 26%, respectively, in the salicylic acid-lactic acid-treated group. No patients developed serious side-effects. Topical zinc oxide is an efficacious, painless, and safe therapeutic option for wart treatment.

  5. Characterization of an Olive Flounder Bone Gelatin-Zinc Oxide Nanocomposite Film and Evaluation of Its Potential Application in Spinach Packaging.

    PubMed

    Beak, Songee; Kim, Hyeri; Song, Kyung Bin

    2017-11-01

    Olive flounder bone gelatin (OBG) was used for a film base material in this study. In addition, zinc oxide nanoparticles (ZnO) were incorporated into the OBG film to prepare a nanocomposite film and to impart antimicrobial activity to it. The tensile strength of the OBG film increased by 6.62 MPa, and water vapor permeability and water solubility decreased by 0.93 × 10 -9 g/m s Pa and 13.79%, respectively, by the addition of ZnO to the OBG film. In particular, the OBG-ZnO film exhibited antimicrobial activity against Listeria monocytogenes. To investigate the applicability of the OBG-ZnO packaging film, fresh spinach was wrapped in this film and stored for a week. The results indicated that the OBG-ZnO film showed antimicrobial activity against L. monocytogenes inoculated on spinach without affecting the quality of spinach, such as vitamin C content and color. Thus, the OBG-ZnO nanocomposite film can be applied as an efficient antimicrobial food packaging material. As a base material of edible films, gelatin was extracted from olive flounder bone, which is fish processing by-product. Olive flounder bone gelatin (OBG) nanocomposite films were prepared with zinc oxide nanoparticles (ZnO). For an application to antimicrobial packaging, spinach was wrapped with the OBG-ZnO nanocomposite film. © 2017 Institute of Food Technologists®.

  6. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications

    NASA Astrophysics Data System (ADS)

    Yuvakkumar, R.; Suresh, J.; Saravanakumar, B.; Joseph Nathanael, A.; Hong, Sun Ig; Rajendran, V.

    2015-02-01

    A naturally occurring rambutan peel waste was employed to synthesis bioinspired zinc oxide nanochains. Rambutan peels has the ability of ligating zinc ions as a natural ligation agent resulting in zinc oxide nanochains formation due to its extended polyphenolic system over incubation period. Successful formation of zinc oxide nanochains was confirmed employing transmission electron microscopy studies. About 60% and ∼40% cell viability was lost and 50% and 10% morphological change was observed in 7 and 4 days incubated ZnO treated cells compared with control. Moreover, 50% and 55% of cell death was observed at 24 and 48 h incubation with 7 days treated ZnO cells and hence alters and disturbs the growth of cancer cells and could be used for liver cancer cell treatment.

  7. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.

    PubMed

    Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand

    2016-12-01

    We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of

  8. Chemical stability and electrical performance of dual-active-layered zinc-tin-oxide/indium-gallium-zinc-oxide thin-film transistors using a solution process.

    PubMed

    Kim, Chul Ho; Rim, You Seung; Kim, Hyun Jae

    2013-07-10

    We investigated the chemical stability and electrical properties of dual-active-layered zinc-tin-oxide (ZTO)/indium-gallium-zinc-oxide (IGZO) structures (DALZI) with the durability of the chemical damage. The IGZO film was easily corroded or removed by an etchant, but the DALZI film was effectively protected by the high chemical stability of ZTO. Furthermore, the electrical performance of the DALZI thin-film transistor (TFT) was improved by densification compared to the IGZO TFT owing to the passivation of the pin holes or pore sites and the increase in the carrier concentration due to the effect of Sn(4+) doping.

  9. Dual-step synthesis of 3-dimensional niobium oxide - Zinc oxide

    NASA Astrophysics Data System (ADS)

    Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Rusop, M.

    2018-05-01

    A facile fabrication process for constructing 3-dimensional (3D) structure of Niobium oxide - Zinc oxide (Nb2O5-ZnO) consisting of branched ZnO microrods on top of nanoporous Nb2O5 films was developed based on dual-step synthesis approach. The preliminary procedure was anodization of sputtered niobium metal on Fluorine doped Tin Oxide (FTO) to produce nanoporous Nb2O5, and continued with the growth of branched microrods of ZnO by hydrothermal process. This approach offers insight knowledge on the development of novel 3D metal oxide films via dual-step synthesis process, which might potentially use for multi-functional applications ranging from sensing to photoconversion.

  10. Zinc-oxide nanocoating for improvement of the antibacterial and frictional behavior of nickel-titanium alloy.

    PubMed

    Kachoei, Mojgan; Nourian, Azin; Divband, Baharak; Kachoei, Zahra; Shirazi, Sajjad

    2016-10-01

    To fabricate a friction-reducing and antibacterial coating with zinc oxide (ZnO) nanoparticles on nickel-titanium (NiTi) wire. NiTi orthodontic wires were coated with ZnO nanoparticles using the chemical deposition method. Characteristics of the coating as well as the physical, mechanical and antibacterial properties of the wires were investigated. A stable and well-adhered ZnO coating on the NiTi wires was obtained. The hardness and elastic modulus of the ZnO nanocoating were 2.3 ± 0.2 and 61.0 ± 3.6 GPa, respectively. The coated wires presented up to 21% reduction in the frictional forces and antibacterial activity against Streptococcus mutans. ZnO nanocoating significantly improved the surface quality of NiTi wires. The modulus of elasticity, unloading forces and austenite finish temperature were not significantly different after coating. This unique coating could be implemented into practice for safer and faster treatment to the benefit of both patient and clinician.

  11. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach.

    PubMed

    Jafarirad, Saeed; Mehrabi, Meysam; Divband, Baharak; Kosari-Nasab, Morteza

    2016-02-01

    The use of plant extract in the biosynthesis of nanoparticles (NPs) can be an eco-friendly approach and have been suggested as a possible alternative to classic methods namely physical and chemical procedures. In this study, the biosynthesis of zinc oxide (ZnO) NPs by both "conventional heating" (CH) and "microwave irradiation" (MI) methods has been reported. Stable and spherical ZnONPs were produced using zinc nitrate and flesh extract of Rosa canina fruit (rosehip) which was used as a precursor. The flesh extract acts as a reducing and capping agent for generation of ZnONPs. The structural, morphological and colloidal properties of the as-synthesized NPs have been confirmed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Fourier transform Infrared (FT-IR) and Dynamic Light Scattering (DLS). In comparison with the CH method, the MI method has some advantages such as significantly short reaction time (within 8min) owing to the high heating rate and thus the accelerated reaction rate. Both methods led to the synthesis of nearly identical NPs with respect to shape and size according to the results of DLS, XRD and SEM techniques. The possible mechanism for synthesis pathway has been proposed based on FT IR results, XRD patterns, potentiometric data and antioxidant activity. In addition, the antibacterial activity of as-prepared ZnONPs was investigated against several bacteria such as Listeria monocytogenes, Escherichia coli, Salmonella typhimurium. Moreover, the efficacy of ZnONPs to treat cancer cell lines were measured by means of cell viability test via MTT assay in which concentrations of 0.05 and 0.1mg/mL of ZnONPs induced a very low toxicity. Thus, the present investigation reveals that ZnONPs have the potential for various medical and industrial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain.

    PubMed

    Shrivastava, Rupal; Raza, Saimah; Yadav, Abhishek; Kushwaha, Pramod; Flora, Swaran J S

    2014-07-01

    Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. However the information regarding toxicity of these nanoparticles on humans and environment is still deficient. The present study investigated the toxic effects of three metal oxide nanoparticles, TiO2, ZnO and Al2O3 on mouse erythrocytes, brain and liver. Male mice were administered a single oral dose of 500 mg/kg of each nanoparticles for 21 consecutive days. The results suggest that exposure to these nano metallic particles produced a significant oxidative stress in erythrocyte, liver and brain as evident from enhanced levels of Reactive Oxygen Species (ROS) and altered antioxidant enzymes activities. A significant increase in dopamine and norepinephrine levels in brain cerebral cortex and increased brain oxidative stress suggest neurotoxic potential of these nanoparticles. Transmission electron microscopic (TEM) analysis indicated the presence of these nanoparticles inside the cytoplasm and nucleus. These changes were also supported by the inhibition of CuZnSOD and MnSOD, considered as important biomarkers of oxidative stress. The toxic effects produced by these nanoparticles were more pronounced in the case of zinc oxide, followed by aluminum oxide and titanium dioxide, respectively. The present results further suggest the involvement of oxidative stress as one of the main mechanisms involved in nanoparticles induced toxic manifestations.

  13. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  14. Evaluating the Microshear Bond Strength and Microleakage of Flowable Composites Containing Zinc Oxide Nano-particles.

    PubMed

    Teymoornezhad, Koorosh; Alaghehmand, Homayoun; Daryakenari, Ghazaleh; Khafri, Soraya; Tabari, Mitra

    2016-11-01

    Preventive resin restorations (PRR) are the conservative choice for the most common carious lesions in children. Thus, new age flowable resin composites with higher filler content are readily used. The aim of this study was to evaluate the microshear bond strength and microleakage of two flowable resin composites containing different percentages of nano zinc oxide (NZnO) particles, which have proven to have antimicrobial properties. This experimental in-vitro study was carried out in the Dental Material Research Center of Babol University of Medical Sciences in 2015. One nanohybrid and one nanofill flowable resin composite were chosen and modified with the incorporation of 1% and 3% Wt NZnO particles. Six groups (n=10, 0%, 1%, and 3%) of resin composite sticks on dental enamel (2×2mm) were prepared to be placed in the microtensile tester. The microshear bond strength magnitude (MPa) was recorded at the point of failure. A class I box (3×0.8×1 mm) was prepared on 60 premolars and filled using the resin composites (6 groups, n=10). The specimens were immersed in a 5% basic fuschin solution and sectioned bucco-lingually to view the microleakage using a stereomicroscope. One-way ANOVA and Tukey tests for microshear and Wilcoxon and Kruskal-Wallis tests for microleakage were used to analyze the data in the IBM SPSS Statistics version 22 software. The bond strength of the 3% clearfill group significantly decreased while no significant change occurred in the bond strength in other groups. The Z-350 group had significantly lower microleakage as nanoparticles increased. No significant difference was observed in the clearfill group. Up to 3% Wt incorporation of NZnO particles will not diversely alter the bond strength, but it will be beneficial in providing antimicrobial effects with lower microleakage rates.

  15. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  16. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    PubMed Central

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  17. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  18. Conducting metal oxide and metal nitride nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst supportmore » in a fuel cell.« less

  19. Electron spectroscopy imaging and surface defect configuration of zinc oxide nanostructures under different annealing ambient

    NASA Astrophysics Data System (ADS)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd

    2013-01-01

    In this study, electron spectroscopy imaging was used to visualize the elemental distribution of zinc oxide nanopowder. Surface modification in zinc oxide was done through annealing treatment and type of surface defect was also inferred from the electron spectroscopy imaging investigation. The micrographs revealed the non-stoichiometric distribution of the elements in the unannealed samples. Annealing the samples in nitrogen and oxygen ambient at 700 °C would alter the density of the elements in the samples as a result of removal or absorption of oxygen. The electrical measurement showed that nitrogen annealing treatment improved surface electrical conductivity, whereas oxygen treatment showed an adverse effect. Observed change in the photoluminescence green emission suggested that oxygen vacancies play a significant role as surface defects. Structural investigation carried out through X-ray diffraction revealed the polycrystalline nature of both zinc oxide samples with hexagonal phase whereby annealing process increased the crystallinity of both zinc oxide specimens. Due to the different morphologies of the two types of zinc oxide nanopowders, X-ray diffraction results showed different stress levels in their structures and the annealing treatment give significant effect to the structural stress. Electron spectroscopy imaging was a useful technique to identify the elemental distribution as well as oxygen defect in zinc oxide nanopowder.

  20. Magnetic properties and bio-medical applications in hyperthermia of lithium zinc ferrite nanoparticles integrated with reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Mallick, A.; Mahapatra, A. S.; Mitra, A.; Greneche, J. M.; Ningthoujam, R. S.; Chakrabarti, P. K.

    2018-02-01

    Nanoparticles of Zn substituted lithium ferrite (Li0.31Zn0.38Fe2.31O4, LZFO) synthesized by the sol-gel route are successfully dispersed in layers of reduced graphene oxide (RGO) during the course of preparation. The analysis of X-ray diffractograms confirms the desired crystallographic phase of the nanocomposite sample of LZFO-RGO. The results of field emission scanning electron microscopy and high resolution transmission electron microscopy are consistent with the presence of dispersed nanoparticles in different layers of graphene oxide. Structural information obtained from selected area electron diffraction and nanocrystalline fringe patterns agree well with those obtained from X-ray diffractogram analysis. Mössbauer spectra recorded at 300 and 77 K suggest the presence of a fraction of superparamagnetic particles together with ferrimagnetic particles. Static magnetic measurements include observation of hysteresis loops at 300 and 5 K, magnetization vs. temperature curves under zero field cooling and field cooling conditions. Saturation magnetizations, coercive field, and saturation to remanence ratio are also evaluated. To explore the suitability of this nanocomposite for hyperthermia application, inductive heating of LZFO and LZFO-RGO is measured at different concentrations of nanoparticles. Interestingly, the inductive heating rate of LZFO nanoparticles is enhanced in the nanocomposite phase of LZFO-RGO, suggesting their high potential for hyperthermia therapy in cancer treatment.

  1. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

    PubMed

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach.

  2. Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles

    PubMed Central

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F.; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn2+ leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach. PMID:23894303

  3. The use of unirradiated and γ-irradiated zinc oxide nanoparticles as a preservative in cosmetic preparations

    PubMed Central

    Hosny, Alaa El-Dien MS; Kashef, Mona T; Taher, Hadeer A; El-Bazza, Zeinab E

    2017-01-01

    Purpose Microbial contamination of different cosmetic preparations, as a result of preservative failure, presents a major public health threat. Also, most of the known preservatives have serious consumer side effects. The antimicrobial activity of zinc oxide nanoparticles (ZnO NP) is well documented. Therefore, we aimed to determine the possible use of unirradiated and γ-irradiated ZnO NP as a cosmetic preservative. Methods The possible use of ZnO NP as a preservative was tested and compared to commonly used preservatives using a challenge test. Their activity was tested in six different types of preparations. The effect of γ radiation on the antimicrobial activity of ZnO NP was tested through determination of the obtained zone diameters against different microorganisms and the total aerobic microbial count in tested preparations. The antimicrobial activity, of unirradiated and γ-irradiated ZnO NP during storage was also determined. Results ZnO NP were superior to other commonly used preservatives in all tested cosmetic preparations. They pass the challenge test in all types of tested preparations. γ irradiation enhanced their antimicrobial activity in all tested preparations. The irradiation causes a reduction in NP sizes that is directly proportional to the applied radiation dose. Upon storage, ZnO NP were effective in maintaining the microbial count of the product within the acceptable range. Their activity in stored products was enhanced by γ irradiation. Conclusion Unirradiated and γ-irradiated ZnO NP can be used as effective preservatives. They are compatible with the components of all tested products. γ irradiation enhanced the antimicrobial activity of ZnO NP. PMID:28979119

  4. Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hadadian, Mahboubeh; Goharshadi, Elaheh K.; Fard, Mina Matin; Ahmadzadeh, Hossein

    2018-03-01

    The threat of toxic substances such as heavy metals to public health and wildlife has led to an increasing public awareness. Different techniques for neutralizing the toxic effects of heavy metals in wastewater have been used. Here, we prepared a new and efficient type of adsorbent, zinc oxide-graphene nanocomposite (ZnO-Gr), via a green method to remove Ni (II) ions from aqueous solutions. A facile microwave-assisted hydrothermal technique in the presence of an ionic liquid, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [C6mim] [NTf2], was used to prepare ZnO-Gr. The synergistic effect between graphene nanosheets and ZnO nanoparticles in this new adsorbent for Ni (II) ions caused a maximum adsorption capacity of 66.7 mg g-1 at room temperature which is much higher than that of graphene nanosheets (3.8 mg g-1) and other carbonaceous nanomaterials used as an adsorbent in the literature. The maximum desorption percentage (90.32%) was achieved at pH 3.6. By thermodynamic study, we found that the adsorption of this heavy metal ion on ZnO-Gr was spontaneous (Δ G° = -6.14 kJ mol-1) and endothermic (Δ H° = 53.31 kJ mol-1) with entropy change of Δ S° = 199.45 J K-1 mol- 1.

  5. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications.

    PubMed

    Yuvakkumar, R; Suresh, J; Saravanakumar, B; Joseph Nathanael, A; Hong, Sun Ig; Rajendran, V

    2015-02-25

    A naturally occurring rambutan peel waste was employed to synthesis bioinspired zinc oxide nanochains. Rambutan peels has the ability of ligating zinc ions as a natural ligation agent resulting in zinc oxide nanochains formation due to its extended polyphenolic system over incubation period. Successful formation of zinc oxide nanochains was confirmed employing transmission electron microscopy studies. About 60% and ∼40% cell viability was lost and 50% and 10% morphological change was observed in 7 and 4 days incubated ZnO treated cells compared with control. Moreover, 50% and 55% of cell death was observed at 24 and 48 h incubation with 7 days treated ZnO cells and hence alters and disturbs the growth of cancer cells and could be used for liver cancer cell treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. BIOCHEMISTRY OF MOBILE ZINC AND NITRIC OXIDE REVEALED BY FLUORESCENT SENSORS

    PubMed Central

    Pluth, Michael D.; Tomat, Elisa; Lippard, Stephen J.

    2010-01-01

    Biologically mobile zinc and nitric oxide (NO) are two prominent examples of inorganic compounds involved in numerous signaling pathways in living systems. In the past decade, a synergy of regulation, signaling, and translocation of these two species has emerged in several areas of human physiology, providing additional incentive for developing adequate detection systems for Zn(II) ions and NO in biological specimens. Fluorescent probes for both of these bioinorganic analytes provide excellent tools for their detection, with high spatial and temporal resolution. We review the most widely used fluorescent sensors for biological zinc and nitric oxide, together with promising new developments and unmet needs of contemporary Zn(II) and NO biological imaging. The interplay between zinc and nitric oxide in the nervous, cardiovascular, and immune systems is highlighted to illustrate the contributions of selective fluorescent probes to the study of these two important bioinorganic analytes. PMID:21675918

  7. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles.

    PubMed

    Cochran, David B; Wattamwar, Paritosh P; Wydra, Robert; Hilt, J Zach; Anderson, Kimberly W; Eitel, Richard E; Dziubla, Thomas D

    2013-12-01

    The biomedical use of superparamagnetic iron oxide nanoparticles has been of continued interest in the literature and clinic. Their ability to be used as contrast agents for imaging and/or responsive agents for remote actuation makes them exciting materials for a wide range of clinical applications. Recently, however, concern has arisen regarding the potential health effects of these particles. Iron oxide toxicity has been demonstrated in in vivo and in vitro models, with oxidative stress being implicated as playing a key role in this pathology. One of the key cell types implicated in this injury is the vascular endothelial cells. Here, we report on the development of a targeted polymeric antioxidant, poly(trolox ester), nanoparticle that can suppress oxidative damage. As the polymer undergoes enzymatic hydrolysis, active trolox is locally released, providing a long term protection against pro-oxidant agents. In this work, poly(trolox) nanoparticles are targeted to platelet endothelial cell adhesion molecules (PECAM-1), which are able to bind to and internalize in endothelial cells and provide localized protection against the cytotoxicity caused by iron oxide nanoparticles. These results indicate the potential of using poly(trolox ester) as a means of mitigating iron oxide toxicity, potentially expanding the clinical use and relevance of these exciting systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness

    PubMed Central

    Smijs, Threes G; Pavel, Stanislav

    2011-01-01

    Sunscreens are used to provide protection against adverse effects of ultraviolet (UV)B (290–320 nm) and UVA (320–400 nm) radiation. According to the United States Food and Drug Administration, the protection factor against UVA should be at least one-third of the overall sun protection factor. Titanium dioxide (TiO2) and zinc oxide (ZnO) minerals are frequently employed in sunscreens as inorganic physical sun blockers. As TiO2 is more effective in UVB and ZnO in the UVA range, the combination of these particles assures a broad-band UV protection. However, to solve the cosmetic drawback of these opaque sunscreens, microsized TiO2 and ZnO have been increasingly replaced by TiO2 and ZnO nanoparticles (NPs) (<100 nm). This review focuses on significant effects on the UV attenuation of sunscreens when microsized TiO2 and ZnO particles are replaced by NPs and evaluates physicochemical aspects that affect effectiveness and safety of NP sunscreens. With the use of TiO2 and ZnO NPs, the undesired opaqueness disappears but the required balance between UVA and UVB protection can be altered. Utilization of mixtures of micro- and nanosized ZnO dispersions and nanosized TiO2 particles may improve this situation. Skin exposure to NP-containing sunscreens leads to incorporation of TiO2 and ZnO NPs in the stratum corneum, which can alter specific NP attenuation properties due to particle–particle, particle–skin, and skin–particle–light physicochemical interactions. Both sunscreen NPs induce (photo)cyto- and genotoxicity and have been sporadically observed in viable skin layers especially in case of long-term exposures and ZnO. Photocatalytic effects, the highest for anatase TiO2, cannot be completely prevented by coating of the particles, but silica-based coatings are most effective. Caution should still be exercised when new sunscreens are developed and research that includes sunscreen NP stabilization, chronic exposures, and reduction of NPs’ free-radical production

  9. Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton

    NASA Astrophysics Data System (ADS)

    Priyanka, N.; Venkatachalam, P.

    2016-12-01

    This study describes the bioengineering of phycomolecule-coated zinc oxide nanoparticles (ZnO NPs) as a novel type of plant-growth-enhancing micronutrient catalyst aimed at increasing crop productivity. The impact of natural engineered phycomolecule-loaded ZnO NPs on plant growth characteristics and biochemical changes in Gossypium hirsutum L. plants was investigated after 21 days of exposure to a wide range of concentrations (0, 25, 50, 75, 100, and 200 mg l-l). ZnO NP exposure significantly enhanced growth and biomass by 125.4% and 132.8%, respectively, in the treated plants compared to the untreated control. Interestingly, photosynthetic pigments, namely, chlorophyll a (134.7%), chlorophyll b (132.6%), carotenoids (160.1%), and total soluble protein contents (165.4%) increased significantly, but the level of malondialdehyde (MDA) content (73.8%) decreased in the ZnO-NP-exposed plants compared to the control. The results showed that there were significant increases in superoxide dismutase (SOD, 267.8%) and peroxidase (POX, 174.5%) enzyme activity, whereas decreased catalase (CAT, 83.2%) activity was recorded in the NP-treated plants compared to the control. ZnO NP treatment did not show distinct alterations (the presence or absence of DNA) in a random amplified polymorphic DNA (RAPD) banding pattern. These results suggest that bioengineered ZnO NPs coated with natural phycochemicals display different biochemical effects associated with enhanced growth and biomass in G. hirsutum. Our results imply that ZnO NPs have tremendous potential in their use as an effective plant-growth-promoting micronutrient catalyst in agriculture.

  10. Nickel oxide decorated zinc oxide composite nanorods: Excellent catalyst for photoreduction of hexavalent chromium.

    PubMed

    Singh, Simranjeet; Ahmed, Imtiaz; Haldar, Krishna Kanta

    2018-08-01

    In light of the growing interest and ability to search for new materials, we have synthesized Nickel oxide (NiO) nanoparticles decorated Zinc (ZnO) nanorods composite (NiO/ZnO) nanostructure. The NiO/ZnO heterostructure formation was confirmed by X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM). The fabricated environmental friendly NiO/ZnO composite nanostructure shows a well-defined photoreduction characteristic of hexavalent Chromium (Cr) (VI) to tri-valent Chromium (Cr) (III) under UV-light. Such an enhanced photoreduction property is attributed due to the decreased electron-hole recombination process which was proved by photoluminescence (PL) spectroscopy, photocurrent study, and electrochemical impedance spectroscopy. Furthermore, the photocatalytic activity rate of the NiO decorated ZnO nanorods was much higher than that of bare ZnO nanorods for the reduction of chromium (VI) and the rate is found to be 0.306 min -1 . These results have demonstrates that suitable surface engineering may open up new opportunities in the development of high-performance photocatalyst. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas.

    PubMed

    Tanaka, Manabu; Kageyama, Takuya; Sone, Hirotaka; Yoshida, Shuhei; Okamoto, Daisuke; Watanabe, Takayuki

    2016-04-06

    Lithium metal oxide nanoparticles were synthesized by induction thermal plasma. Four different systems-Li-Mn, Li-Cr, Li-Co, and Li-Ni-were compared to understand formation mechanism of Li-Me oxide nanoparticles in thermal plasma process. Analyses of X-ray diffractometry and electron microscopy showed that Li-Me oxide nanoparticles were successfully synthesized in Li-Mn, Li-Cr, and Li-Co systems. Spinel structured LiMn₂O₄ with truncated octahedral shape was formed. Layer structured LiCrO₂ or LiCoO₂ nanoparticles with polyhedral shapes were also synthesized in Li-Cr or Li-Co systems. By contrast, Li-Ni oxide nanoparticles were not synthesized in the Li-Ni system. Nucleation temperatures of each metal in the considered system were evaluated. The relationship between the nucleation temperature and melting and boiling points suggests that the melting points of metal oxides have a strong influence on the formation of lithium metal oxide nanoparticles. A lower melting temperature leads to a longer reaction time, resulting in a higher fraction of the lithium metal oxide nanoparticles in the prepared nanoparticles.

  12. Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells.

    PubMed

    Malaikozhundan, Balasubramanian; Vaseeharan, Baskaralingam; Vijayakumar, Sekar; Pandiselvi, Karuppiah; Kalanjiam, Mohamed Ali Rajamohamed; Murugan, Kadarkarai; Benelli, Giovanni

    2017-03-01

    The overuse of antimicrobics and drugs has led to the development of resistance in a number of pathogens and parasites, which leads to great concerns for human health and the environment. Furthermore, breast cancer is the second most common cause of cancer death in women. MCF-7 is a widely used epithelial cancer cell line, derived from breast adenocarcinoma for in vitro breast cancer studies, since the cell line has retained several ideal characteristics particular to the mammary epithelium. In this scenario, the development of novel and eco-friendly drugs are of timely importance. Green synthesis of nanoparticles is cost effective, environmental friendly and does not involve the use of toxic chemicals or elevate energy inputs. This research focused on the anticancer activity of Pongamia pinnata seed extract-fabricated zinc oxide nanoparticles (Pp-ZnO NPs) on human MCF-7 breast cancer cells, antibiofilm activity against bacteria and fungi was also investigated. Nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX). Pp-ZnO NPs effectively inhibited the growth of Gram positive Bacillus licheniformis (zone of inhibition: 17.3 mm) at 25 μg ml -1 followed by Gram negative Pseudomonas aeruginosa (14.2 mm) and Vibrio parahaemolyticus (12.2 mm). Pp-ZnO NPs also effectively inhibited the biofilm formation of C. albicans at 50 μg ml -1 . Cytotoxicity studies revealed that a single treatment with Pp-ZnO NPs significantly reduced the cell viability of breast cancer MCF-7 cells at doses higher than 50 μg ml -1 . Morphological changes in the Pp-ZnO NPs treated MCF-7 breast cancer cells were observed using phase contrast microscopy. This study concludes that the green synthesized Pp-ZnO NPs may be used as an effective antimicrobial and antibreast cancer agents. Copyright © 2017 Elsevier Ltd. All rights

  13. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    PubMed

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-09

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  14. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles

    PubMed Central

    2009-01-01

    Background Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. Results A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 μg/cm2. The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 μg/cm2) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 μg/cm2 ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. Conclusion The ALICE

  15. Characterization of zinc oxide thin film for pH detector

    NASA Astrophysics Data System (ADS)

    Hashim, Uda; Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Uda, M. N. A.

    2017-03-01

    This paper presents the fabrication process of the zinc oxide thin films for using to act as pH detection by using different PH solution. Sol-gel solution technique is used for preparing zinc oxide seed solution, followed by metal oxide deposition process by using spin coater on the silicon dioxide. Silicon dioxide layer is grown on the silicon wafer, then, ZnO seed solution is deposited on the silicon layer, baked, and annealing process carried on to undergo the characterization of its surface morphology, structural and crystalline phase. Electrical characterization is showed by using PH 4, 7, and 10 is dropped on the surface of the die, in addition, APTES solution is used as linker and also as a references of the electrical characterization.

  16. Synthesis and structural characterization of ZnO and CuO nanoparticles supported mesoporous silica SBA-15

    NASA Astrophysics Data System (ADS)

    El-Nahhal, Issa M.; Salem, Jamil K.; Selmane, Mohamed; Kodeh, Fawzi S.; Ebtihan, Heba A.

    2017-01-01

    Zinc oxide (ZnO) and copper oxide (CuO) nanoparticles were loaded into mesoporous silica SBA-15 by post-synthesis and direct methods. The structural properties were characterized using wide and small angle X-ray diffraction (WXRD & SXRD), X-ray photoelectron spectroscopy (XPS) and N2-adsorption desorption (BET). The WXRD showed that, the loaded zinc and copper oxides were present in crystalline forms (impregnation). The mesoporosity properties of SBA-15 silica were well maintained even after the introduction of metal oxide nanoparticles. BET analysis indicate that the impregnated and condensed ZnO and CuO supported SBA-15 nanocomposites have a lower surface area than that of its parent SBA-15.

  17. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek

    2012-10-01

    Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.

  18. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  19. Weatherability and Leach Resistance of Wood Impregnated with Nano-Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Clausen, Carol A.; Green, Frederick; Nami Kartal, S.

    2010-09-01

    Southern pine specimens vacuum-treated with nano-zinc oxide (nano-ZnO) dispersions were evaluated for leach resistance and UV protection. Virtually, no leaching occurred in any of the nano-ZnO-treated specimens in a laboratory leach test, even at the highest retention of 13 kg/m3. However, specimens treated with high concentrations of nano-ZnO showed 58-65% chemical depletion after 12 months of outdoor exposure. Protection from UV damage after 12 months exposure is visibly obvious on both exposed and unexposed surfaces compared to untreated controls. Graying was markedly diminished, although checking occurred in all specimens. Nano-zinc oxide treatment at a concentration of 2.5% or greater provided substantial resistance to water absorption following 12 months of outdoor exposure compared to untreated and unweathered southern pine. We conclude that nano-zinc oxide can be utilized in new wood preservative formulations to impart resistance to leaching, water absorption and UV damage of wood.

  20. Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors

    NASA Astrophysics Data System (ADS)

    Wu, Shao-Hang; Zhang, Nan; Hu, Yong-Sheng; Chen, Hong; Jiang, Da-Peng; Liu, Xing-Yuan

    2015-10-01

    Strontium-zinc-oxide (SrZnO) films forming the semiconductor layers of thin-film transistors (TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide (ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel. Project supported by the National Natural Science Foundation of China (Grant No. 6140031454) and the Innovation Program of Chinese Academy of Sciences and State Key Laboratory of Luminescence and Applications.

  1. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan [Santa Fe, NM; Mendoza, Daniel [Santa Fe, NM; Chen, Chun-Ku [Albuquerque, NM

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  2. Pulsed Laser Synthesized Magnetic Cobalt Oxide Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhatta, Hari; Gupta, Ram; Ghosh, Kartik; Kahol, Pawan; Delong, Robert; Wanekawa, Adam

    2011-03-01

    Nanomaterials research has become a major attraction in the field of advanced materials research in the area of Physics, Chemistry, and Materials Science. Biocompatible and chemically stable magnetic metal oxide nanoparticles have biomedical applications that includes drug delivery, cell and DNA separation, gene cloning, magnetic resonance imaging (MRI). This research is aimed at the fabrication of magnetic cobalt oxide nanoparticles using a safe, cost effective, and easy to handle technique that is capable of producing nanoparticles free of any contamination. Cobalt oxide nanoparticles have been synthesized at room temperature using cobalt foil by pulsed laser ablation technique. These cobalt oxide nanoparticles were characterized using UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and dynamic laser light scattering (DLLS). The magnetic cobalt oxides nanoparticles were stabilized in glucose solutions of various concentrations in deionized water. The presence of UV-Vis absorption peak at 270 nm validates the nature of cobalt oxide nanoparticles. The DLLS size distributions of nanoparticles are in the range of 110 to 300 nm, which further confirms the presence nanoparticles. This work is partially supported by National Science Foundation (DMR- 0907037).

  3. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles.

    PubMed

    Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi

    2008-08-01

    We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds. Copyright (c) 2008 John Wiley & Sons, Ltd.

  4. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    NASA Astrophysics Data System (ADS)

    Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.

    2015-11-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.

  5. Synthesis and characterization of nanometric zinc oxide for a stationary phase in liquid chromatography

    NASA Astrophysics Data System (ADS)

    Gordillo-Delgado, F.; Soto-Barrera, C. C.; Plazas-Saldaña, J.

    2017-01-01

    The increasing demand for equipment to remove organic compounds in industry and research activity has led to evaluate nanometric zinc oxide (ZnO). In this work, we present the ZnO nanoparticles synthesis for reusing of discarded columns, as a low-cost alternative. The compound was obtained by sol-gel technique using zinc chloride and sodium hydroxide as precursors and a drying temperature of 169°C. An X-ray diffractometer was used to estimate the average particle size at 20.3±0.2nm the adsorption capacity was 0.0144L/g and the chemical resistance was tested with HCl and NaOH. The ZnO nanopowder was packed with 100psi pressure in an empty C-18 column cavity. The column packing resolution was evaluated using a high performance liquid chromatographer (HPLC-Thermo Scientific Dionex UltiMate 3000); using a caffeine standard, the following parameters were established: solvent flow: 1.2mL/min, average column temperature: 40°C, running time: 10 minutes, mobile phase acetonitrile-water composition (9:1). These results validate the potential of ZnO nanopowder as a column packing material in HPLC technique.

  6. Study on the pre-treatment of oxidized zinc ore prior to flotation

    NASA Astrophysics Data System (ADS)

    He, Dong-sheng; Chen, Yun; Xiang, Ping; Yu, Zheng-jun; Potgieter, J. H.

    2018-02-01

    The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%.

  7. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-07-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were systematically investigated by high-resolution transmission electron microscopy. The majority of oxide nanoparticles were identified to be orthorhombic YAlO3. During hot consolidation and extrusion, they develop a coherent interface and a near cuboid-on-cube orientation relationship with the ferrite matrix in the material. After annealing at 1200 °C for 1 h, however, the orientation relationship between the oxide nanoparticles and the matrix becomes arbitrary, and their interface mostly incoherent. Annealing at 1300 °C leads to considerable coarsening of oxide nanoparticles, and a new orientation relationship of pseudo-cube-on-cube between oxide nanoparticles and ferrite matrix develops. The reason for the developing interfaces and orientation relationships between oxide nanoparticles and ferrite matrix under different conditions is discussed.

  8. Process for fabricating doped zinc oxide microsphere gel

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1991-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  9. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim H J; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb E M; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Mohd Isa, Norhaszalina; El Zowalaty, Mohamed Ezzat

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6-1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells.

  10. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim HJ; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb EM; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Isa, Norhaszalina Mohd; Zowalaty, Mohamed Ezzat El

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6–1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells. PMID:23885175

  11. An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers

    DOE PAGES

    Chu, Manh Hung; Tian, Liang; Chaker, Ahmad; ...

    2016-08-09

    The growth of zinc oxide thin films by atomic layer deposition is believed to proceed through an embryonic step in which three-dimensional nanoislands form and then coalesce to trigger a layer-by-layer growth mode. This transient initial state is characterized by a poorly ordered atomic structure, which may be inaccessible by X-ray diffraction techniques. Here in this work, we apply X-ray absorption spectroscopy in situ to address the local structure of Zn after each atomic layer deposition cycle, using a custom-built reactor mounted at a synchrotron beamline, and we shed light on the atomistic mechanisms taking place during the first stagesmore » of the growth. We find that such mechanisms are surprisingly different for zinc oxide growth on amorphous (silica) and crystalline (sapphire) substrate. Ab initio simulations and quantitative data analysis allow the formulation of a comprehensive growth model, based on the different effects of surface atoms and grain boundaries in the nanoscale islands, and the consequent induced local disorder. From a comparison of these spectroscopy results with those from X-ray diffraction reported recently, we observe that the final structure of the zinc oxide nanolayers depends strongly on the mechanisms taking place during the initial stages of growth. Finally, the approach followed here for the case of zinc oxide will be of general interest for characterizing and optimizing the growth and properties of more complex nanostructures.« less

  12. Zinc oxide eugenol paste jeopardises the adhesive bonding to primary dentine.

    PubMed

    Pires, C W; Lenzi, T L; Soares, F Z M; Rocha, R O

    2018-05-12

    This was to evaluate the influence of root canal filling pastes on microshear bond strength (µSBS) of an adhesive system to primary dentine. Human (32) primary molars were randomly assigned into four experimental groups (n = 8): zinc oxide eugenol paste (ZOE); iodoform paste (Guedes-Pinto paste); calcium hydroxide paste thickened with zinc oxide; and no filling paste (control). Flat dentine surfaces were covered with a 1 mm-thick layer of the pastes for 15 min at 37 °C. The pastes were mechanically removed from dentine surfaces, followed by rinsing and drying. After adhesive application (Adper Single Bond 2, 3M ESPE), starch tubes were placed over pre-treated dentine and filled with composite resin (Z250, 3M ESPE). The µSBS test was performed after 24 h of water storage at 37 °C. The failure mode was evaluated using a stereomicroscope. The µSBS values (MPa) were analysed with one-way ANOVA and Tukey post-hoc tests (α = 0.05). The lowest µSBS values were achieved when ZOE was used. No difference was found among other filling pastes compared with control group. All specimens showed adhesive/mixed failures. Zinc oxide eugenol paste negatively influenced the bond strength of adhesive systems to primary dentine. Iodoform-based Guedes-Pinto paste and calcium hydroxide paste thickened with zinc oxide did not influence the microshear bond strength values.

  13. An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Manh Hung; Tian, Liang; Chaker, Ahmad

    The growth of zinc oxide thin films by atomic layer deposition is believed to proceed through an embryonic step in which three-dimensional nanoislands form and then coalesce to trigger a layer-by-layer growth mode. This transient initial state is characterized by a poorly ordered atomic structure, which may be inaccessible by X-ray diffraction techniques. Here in this work, we apply X-ray absorption spectroscopy in situ to address the local structure of Zn after each atomic layer deposition cycle, using a custom-built reactor mounted at a synchrotron beamline, and we shed light on the atomistic mechanisms taking place during the first stagesmore » of the growth. We find that such mechanisms are surprisingly different for zinc oxide growth on amorphous (silica) and crystalline (sapphire) substrate. Ab initio simulations and quantitative data analysis allow the formulation of a comprehensive growth model, based on the different effects of surface atoms and grain boundaries in the nanoscale islands, and the consequent induced local disorder. From a comparison of these spectroscopy results with those from X-ray diffraction reported recently, we observe that the final structure of the zinc oxide nanolayers depends strongly on the mechanisms taking place during the initial stages of growth. Finally, the approach followed here for the case of zinc oxide will be of general interest for characterizing and optimizing the growth and properties of more complex nanostructures.« less

  14. Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus.

    PubMed

    Malaikozhundan, Balasubramanian; Vaseeharan, Baskaralingam; Vijayakumar, Sekar; Thangaraj, Merlin P

    2017-09-01

    Insect pests belonging to the genus Callosobruchus are the major cause of damage to stored pulse crops. Recently, nanotechnology has emerged as a promising tool for pest control. In the present study, we report for the first time the synthesis and biological evaluation of Bacillus thuringiensis coated zinc oxide nanoparticles (Bt-ZnO NPs) on the pulse beetle, Callosobruchus maculatus. The biologically synthesized Bt-ZnO NPs were extensively characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Zeta potential. The bio-physical characterization revealed that the Bt-ZnO NPs has a hexagonal wurtzite structures with an average particle size of 20nm. In addition, zeta potential measurement demonstrated that the Bt-ZnO NPs are negatively charged (-12.7mV) and are moderately stable. The biopesticidal effect of Bt-ZnO NPs was tested against the pulse beetle, C. maculatus. Treatment with Bt-ZnO NPs reduced the fecundity (eggs laid) and hatchability of C. maculatus in a dose-dependent manner. A significant delay in the larval, pupal and total development period of C. maculatus was observed after treatment with Bt-ZnO NPs at 25μg/mL. Furthermore, Bt-ZnO NPs are highly effective in the control of C. maculatus and caused 100% mortality at 25μg/mL. The LC 50 value was estimated to be 10.71μg/mL. In addition, treatment with Bt-ZnO NPs decreased the mid-gut α-amylase, cysteine protease, α-glucosidase and glutathione S-transferase (GST) activity in C. maculatus. Our results suggest that Bt-ZnO NPs are effective against C. maculatus and could be used as nanobiopesticides in the control of stored grain insect pests in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn−S−NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn−S−NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  16. PLA coated paper containing active inorganic nanoparticles: Material characterization and fate of nanoparticles in the paper recycling process.

    PubMed

    Zhang, Hai; Bussini, Daniele; Hortal, Mercedes; Elegir, Graziano; Mendes, Joana; Jordá Beneyto, Maria

    2016-06-01

    For paper and paperboard packaging, recyclability plays an important role in conserving the resources and reducing the environmental impacts. Therefore, when it comes to the nano-enabled paper packaging material, the recyclability issue should be properly addressed. This study represents our first report on the fate of nanomaterials in paper recycling process. The packaging material of concern is a PLA (Polylactic Acid) coated paper incorporating zinc oxide nanoparticles in the coating layer. The material was characterised and assessed in a lab-scale paper recycling line. The recyclability test was based on a method adapted from ATICELCA MC501-13, which enabled to recover over 99% of the solids material. The mass balance result indicates that 86-91% zinc oxide nanoparticles ended up in the rejected material stream, mostly embedded within the polymer coating; whereas 7-16% nanoparticles ended up in the accepted material stream. Besides, the tensile strength of the recycled handsheets suggests that the nano-enabled coating had no negative impacts on the recovered fibre quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Temperature-Driven Structural and Morphological Evolution of Zinc Oxide Nano-Coalesced Microstructures and Its Defect-Related Photoluminescence Properties

    PubMed Central

    Lim, Karkeng; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Al-Hardan, N.H.; Mansor, Ishak; Chiu, Weesiong

    2016-01-01

    In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. PMID:28773425

  18. Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications.

    PubMed

    Maldonado-Camargo, Lorena; Unni, Mythreyi; Rinaldi, Carlos

    2017-01-01

    Iron oxide nanoparticles are of interest in a wide range of biomedical applications due to their response to applied magnetic fields and their unique magnetic properties. Magnetization measurements in constant and time-varying magnetic field are often carried out to quantify key properties of iron oxide nanoparticles. This chapter describes the importance of thorough magnetic characterization of iron oxide nanoparticles intended for use in biomedical applications. A basic introduction to relevant magnetic properties of iron oxide nanoparticles is given, followed by protocols and conditions used for measurement of magnetic properties, along with examples of data obtained from each measurement, and methods of data analysis.

  19. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    USDA-ARS?s Scientific Manuscript database

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  20. Respiratory Symptoms and Pulmonary Function Tests among Galvanized Workers Exposed To Zinc Oxide.

    PubMed

    Aminian, Omid; Zeinodin, Hamidreza; Sadeghniiat-Haghighi, Khosro; Izadi, Nazanin

    2015-01-01

    Galvanization is the process of coating steel or cast iron pieces with a thin layer of zinc allowing protection against corrosion. One of the important hazards in this industry is exposure to zinc compounds specially zinc oxide fumes and dusts. In this study, we evaluated chronic effects of zinc oxide on the respiratory tract of galvanizers. Overall, 188 workers were selected from Arak galvanization plant in 2012, 71 galvanizers as exposed group and 117 workers from other departments of plants as control group. Information was collected using American Thoracic Society (ATS) standard questionnaire, physical examination and demographic data sheet. Pulmonary function tests were measured for all subjects. Exposure assessment was done with NIOSH 7030 method. The Personal Breathing Zone (PBZ) air sampling results for zinc ranged from 6.61 to 8.25 mg/m³ above the permissible levels (Time weighted average; TWA:2 mg/m³). The prevalence of the respiratory symptoms such as dyspnea, throat and nose irritation in the exposed group was significantly (P<0.01) more than the control group. Decreasing in average percent in all spirometric parameters were seen in the galvanizers who exposed to zinc oxide fumes and dusts. The prevalence of obstructive respiratory disease was significantly (P=0.034) higher in the exposed group. High workplace zinc levels are associated with an increase in respiratory morbidity in galvanizers. Therefore administrators should evaluate these workers with periodic medical examinations and implement respiratory protection program in the working areas.

  1. Ferrate(VI) oxidation of zinc-cyanide complex.

    PubMed

    Yngard, Ria; Damrongsiri, Seelawut; Osathaphan, Khemarath; Sharma, Virender K

    2007-10-01

    Zinc-cyanide complexes are found in gold mining effluents and in metal finishing rinse water. The effect of Zn(II) on the oxidation of cyanide by ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) was thus investigated by studying the kinetics of the reaction of Fe(VI) with cyanide present in a potassium salt of a zinc cyanide complex (K(2)Zn(CN)(4)) and in a mixture of Zn(II) and cyanide solutions as a function of pH (9.0-11.0). The rate-law for the oxidation of Zn(CN)(4)(2-) by Fe(VI) was found to be -d[Fe(VI)]/dt=k[Fe(VI)][Zn(CN)(4)(2-)](0.5). The rate constant, k, decreased with an increase in pH. The effect of temperature (15-45 degrees C) on the oxidation was studied at pH 9.0, which gave an activation energy of 45.7+/-1.5kJmol(-1). The cyanide oxidation rate decreased in the presence of the Zn(II) ions. However, Zn(II) ions had no effect on the cyanide removal efficiency by Fe(VI) and the stoichiometry of Fe(VI) to cyanide was approximately 1:1; similar to the stoichiometry in absence of Zn(II) ions. The destruction of cyanide by Fe(VI) resulted in cyanate. The experiments on removal of cyanide from rinse water using Fe(VI) demonstrated complete conversion of cyanide to cyanate.

  2. Effects of titanium dioxide and zinc oxide nanoparticles on methane production from anaerobic co-digestion of primary and excess sludge.

    PubMed

    Zheng, Xiong; Wu, Lijuan; Chen, Yinguang; Su, Yinglong; Wan, Rui; Liu, Kun; Huang, Haining

    2015-01-01

    Anaerobic co-digestion of primary and excess sludge is regarded as an efficient way to reuse sludge organic matter to produce methane. In this study, short-term and long-term exposure experiments were conducted to investigate the possible effects of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) on methane production from anaerobic co-digestion of primary and excess sludge. The data showed that TiO2 NPs had no measurable impact on methane production, even at a high concentration (150 mg/g total suspended solids (TSS)). However, short-term (8 days) exposure to 30 or 150 mg/g-TSS of ZnO NPs significantly decreased methane production. More importantly, these negative effects of ZnO NPs on anaerobic sludge co-digestion were not alleviated by increasing the adaptation time to 105 days. Further studies indicated that the presence of ZnO NPs substantially decreased the abundance of methanogenic archaea, which reduced methane production. Meanwhile, the activities of some key enzymes involved in methane production, such as protease, acetate kinase, and coenzyme F420, were remarkably inhibited by the presence of ZnO NPs, which was also an important reason for the decreased methane production. These results provide a better understanding of the potential risks of TiO2 and ZnO NPs to methane production from anaerobic sludge co-digestion.

  3. Induction of inflammation, DNA damage and apoptosis in rat heart after oral exposure to zinc oxide nanoparticles and the cardioprotective role of α-lipoic acid and vitamin E.

    PubMed

    Baky, N A A; Faddah, L M; Al-Rasheed, N M; Al-Rasheed, N M; Fatani, A J

    2013-05-01

    Although zinc oxide nanoparticles (ZnO-NP) are being used on a wide scale in the world consumer market, their potential hazards on humans remain largely unknown. The present study was aimed at investigating the oral toxicity of ZnO-NP in 2 dose regimen (600 mg/kg and 1 g/kg body weight for 5 consecutive days) in rats. In addition, the protective role of either α-lipoic acid (Lipo) or vitamin E (Vit E) against this cardiotoxic effect of ZnO-NPs was assessed. Results revealed that, co-administration of Lipo (200 mg/Kg body weight) or Vit E (100 mg/Kg body weight) daily for 3 weeks to rats intoxicated with ZnO-NPs (in either of the 2 dose regimen) significantly ameliorated the cardiotoxic effect of these nanoparticles. As, both agents significantly reduced the increase in serum cardiac injury markers including troponin-T, creatine kinase-MB (CK-MB), and myoglobin. Additionally, Lipo and Vit E significantly decreased the increase in serum pro-inflammatory biomarkers level including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP). Moreover, either of the 2 used agents successfully alleviated the alteration in nitric oxide (NO) and vascular endothelial growth factor (VEGF) in ZnO-NPs in sera of intoxicated group. They also significantly reduced the increase in cardiac calcium concentration and the consequent oxidative deoxyribonucleic acid (DNA) damage, as well as the increase in cardiac caspase-3 activity of intoxicated rats. Conclusively, these results indicate that early treatment with either α-lipoic acid or vitamin E may offer protection against cardiac tissue injury induced by the deleterious toxic impacts of ZnO-NPs. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    PubMed

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  5. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shadab Ali; Ahmad, Absar, E-mail: a.ahmad@ncl.res.in

    2013-10-15

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO{sub 2} nanoparticles. • Biosynthesized CeO{sub 2} nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods formore » the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO{sub 2}) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN{sub 3}O{sub 9}·6H{sub 2}O) results in the extracellular formation of CeO{sub 2} nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy

  6. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  7. Seed mediated synthesis of nanosized zinc oxide and its electron transporting activity in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rajkumar, C.; Arulraj, Arunachalam

    2018-01-01

    A zinc oxide (ZnO) nanoparticle has been synthesized using seed mediated method at a low temperature of 90 °C. To understand its optical, structural and morphological properties of as-synthesized ZnO, it was characterized using various analytical techniques. The obtained result reveals that ZnO nanoparticles possess hexagonal wurtzite crystal structure with an average crystallite size of ˜40 nm. The presence of hydroxyl, amine and alkyl groups was confirmed from Fourier transform infrared analysis. Furthermore, the synthesized ZnO powder has employed as photoanode for the fabrication of dye-sensitized solar cells using Doctor-blade technique. To evaluate its photo-conversion efficiency, the device has been assembled into a cell module and illuminated with the light intensity of 100 mW cm-2. The device exhibits the photo-conversion efficiency of 1.85% with the current density of 4.532 mA cm-2 and voltage of 0.61 V.

  8. Development of Annealing-Free, Solution-Processable Inverted Organic Solar Cells with N-Doped Graphene Electrodes using Zinc Oxide Nanoparticles.

    PubMed

    Jung, Seungon; Lee, Junghyun; Seo, Jihyung; Kim, Ungsoo; Choi, Yunseong; Park, Hyesung

    2018-02-14

    An annealing-free process is considered as a technological advancement for the development of flexible (or wearable) organic electronic devices, which can prevent the distortion of substrates and damage to the active components of the device and simplify the overall fabrication process to increase the industrial applications. Owing to its outstanding electrical, optical, and mechanical properties, graphene is seen as a promising material that could act as a transparent conductive electrode for flexible optoelectronic devices. Owing to their high transparency and electron mobility, zinc oxide nanoparticles (ZnO-NP) are attractive and promising for their application as charge transporting materials for low-temperature processes in organic solar cells (OSCs), particularly because most charge transporting materials require annealing treatments at elevated temperatures. In this study, graphene/annealing-free ZnO-NP hybrid materials were developed for inverted OSC by successfully integrating ZnO-NP on the hydrophobic surface of graphene, thus aiming to enhance the applicability of graphene as a transparent electrode in flexible OSC systems. Chemical, optical, electrical, and morphological analyses of ZnO-NPs showed that the annealing-free process generates similar results to those provided by the conventional annealing process. The approach was effectively applied to graphene-based inverted OSCs with notable power conversion efficiencies of 8.16% and 7.41% on the solid and flexible substrates, respectively, which promises the great feasibility of graphene for emerging optoelectronic device applications.

  9. Core/shell structured Zn/ZnO nanoparticles synthesized by gaseous laser ablation with enhanced photocatalysis efficiency

    NASA Astrophysics Data System (ADS)

    Song, Lu; Wang, Yafei; Ma, Jing; Zhang, Qinghua; Shen, Zhijian

    2018-06-01

    Zinc oxide (ZnO) is a competitive candidate in semiconductor photocatalysts, only if the efficiency could be fully optimized especially by tailored nanostructures. Here we report a kind of core/shell structured Zn/ZnO nanoparticles with enhanced photocatalysis efficiency, which were synthesized by a highly-productive gaseous laser ablation method. The nanodroplets generated by laser ablation would be reduced to zinc in the protective atmosphere, and further be oxidized at surface to form a specific core/shell structured Zn/ZnO nanoparticles within seconds. Thanks to the formation of this Zn-ZnO Schottky junction, the photocatalysis degradation efficiency of such core/shell Zn/ZnO nanostructure is significantly improved owing to the enhanced visible light absorption and inhibited carrier recombination by introducing the metallic zinc.

  10. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.

    PubMed

    Hauser, Anastasia K; Mitov, Mihail I; Daley, Emily F; McGarry, Ronald C; Anderson, Kimberly W; Hilt, J Zach

    2016-10-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Targeted iron oxide nanoparticles for the enhancement of radiation therapy

    PubMed Central

    Hauser, Anastasia K.; Mitov, Mihail I.; Daley, Emily F.; McGarry, Ronald C.; Anderson, Kimberly W.; Hilt, J. Zach

    2017-01-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  12. Sonochemical synthesis and photocatalytic property of zinc oxide nanoparticles doped with magnesium(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xianyong, E-mail: xylu@buaa.edu.cn; Liu, Zhaoyue; Zhu, Ying

    2011-10-15

    Highlights: {yields} Mg-doped ZnO nanoparticles were synthesized by sonochemical strategy. {yields} Mg-doped ZnO nanoparticles present good photocatalytic properties. {yields} The change of band gap contributes to their high efficiency in photocatalyst. -- Abstract: Mg-doped ZnO nanoparticles were successfully synthesized by sonochemical method. The products were characterized by scan electron microscopy (SEM) and X-ray powder diffraction (XRD). SEM images revealed that ZnO doped with Mg(II) nanoparticles and ZnO nanoparticles synthesized by the same strategy all had spherical topography. XRD patterns showed that the doped nanoparticles had the same crystals structures as the pure ZnO nanoparticles. The Mg-doped ZnO nanoparticles had largermore » lattice volume than the un-doped nanoparticles. X-ray photoelectron spectroscopy (XPS) not only demonstrated the moral ratio of Mg and Zn element on the surface of nanoparticles, but their valence in nanoparticles as well. The Mg-doped ZnO nanoparticles presented good properties in photocatalyst compared with pure ZnO nanoparticles.« less

  13. Process for fabricating doped zinc oxide microsphere gel

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1991-11-05

    Disclosed are a new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  14. Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.

    PubMed

    Bele, Marjan; Hribar, Gorazd; Campelj, Stanislav; Makovec, Darko; Gaberc-Porekar, Vladka; Zorko, Milena; Gaberscek, Miran; Jamnik, Janko; Venturini, Peter

    2008-05-01

    The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.

  15. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  16. Facile Synthesis of Self-Assembled Flower-Like Mesoporous Zinc Oxide Nanoflakes for Energy Applications

    NASA Astrophysics Data System (ADS)

    Saranya, P. E.; Selladurai, S.

    Flower-shaped self-assembled zinc oxide (ZnO) nanoflakes were successfully synthesized via a temperature-controlled hydrothermal method. The crystallinity and phase formation of the compound were determined from powder X-ray diffraction (PXRD) result. Surface morphology investigations reveal the self-assembled ZnO nanoflakes to form a spherical flower-like structure. In addition, the particle size was determined from high-resolution transmission electron microscope measurement as 18nm which is in accord with XRD and UV results. X-ray photo electron spectroscopy studies reveal the chemical composition and oxidation state of the ZnO nanoparticle. The specific surface area was calculated, and mesoporous nature was confirmed using Brunauer-Emmett-Teller analysis. Results support the superior interaction between the electrode and electrolyte ions through surface pores. Capacitive performance of the ZnO electrode material was determined using cyclic voltammetry and galvanostatic charge/discharge studies, and a maximum specific capacitance of 322F/g was obtained at 5mV/sec. Electrochemical impedance spectrum reveals the materials fast charge transfer kinetics.

  17. Effects of zinc oxide nanoparticles on Kupffer cell phagosomal motility, bacterial clearance, and liver function

    PubMed Central

    Watson, Christa Y; Molina, Ramon M; Louzada, Andressa; Murdaugh, Kimberly M; Donaghey, Thomas C; Brain, Joseph D

    2015-01-01

    Background Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. Materials and methods First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. Results We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. Conclusion Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that

  18. Using fluorescence measurement of zinc ions liberated from ZnS nanoparticle labels in bioassay for Escherichia coli O157:H7

    NASA Astrophysics Data System (ADS)

    Cowles, Chad L.; Zhu, Xiaoshan; Pai, Chi-Yun

    2011-10-01

    In this study, an alternative approach using ZnS nanoparticle biolabels as fluorescence signal transducers is reported for the immunoassay of E. coli O157:H7 in tap water samples. Instead of measuring the fluorescence of ZnS nanoparticles in the assay, the fluorescence signal is generated through the binding of zinc ions released from nanoparticle labels with zinc-ion sensitive fluorescence indicator Fluozin-3. In the assay, ZnS nanoparticles around 50 nm in diameter were synthesized, bioconjugated, and applied for the detection of E. coli O157:H7. The assay shows a detection range over two orders of magnitude and a detection limit around 1000 colony-forming units (cfu) of E. coli O157:H7.

  19. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  20. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  1. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles.

    PubMed

    Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning

    2012-02-02

    In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.

  2. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  3. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.

    2010-06-01

    Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.

  4. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans.

    PubMed

    Vijayanandan, Ajuy Sundar; Balakrishnan, Raj Mohan

    2018-07-15

    Metallic oxide nanoparticles have profound applications in electrochemical devices, supercapacitors, biosensors and batteries. Though four fungi were isolated from Nothapodytes foetida, Aspergillus nidulans was found to be suitable for synthesis of cobalt oxide nanoparticles, as it has proficient tolerance towards metal under study. The broth containing precursor solution and organism Aspergillus nidulans had changed from pink to orange indicating the formation of nanoparticles. Characterization by x-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive x-ray analysis (EDX) confirmed the formation of spinel cobalt oxide nanoparticles at an average size of 20.29 nm in spherical shape with sulfur-bearing proteins acting as a capping agent for the synthesized nanoparticles. The nanoparticles could be applied in energy storage, as a specific capacitance of 389 F/g showed competence. The study was a greener attempt to synthesize cobalt oxide nanoparticles using endophytic fungus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Combinatorial study of zinc tin oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-01

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO :SnO2 ratio of the film varies as a function of position on the sample, from pure ZnO to SnO2, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2to12cm2/Vs, with two peaks in mobility in devices at ZnO fractions of 0.80±0.03 and 0.25±0.05, and on/off ratios as high as 107. Transistors composed predominantly of SnO2 were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  6. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  7. Formation of ZnO at zinc oxidation by near- and supercritical water under the constant electric field

    NASA Astrophysics Data System (ADS)

    Shishkin, A. V.; Sokol, M. Ya.; Shatrova, A. V.; Fedyaeva, O. N.; Vostrikov, A. A.

    2014-12-01

    The work has detected an influence of a constant electric field (up to E = 300 kV/m) on the structure of a nanocrystalline layer of zinc oxide, formed on the surface of a planar zinc anode in water under supercritical (673 K and 23 MPa) and near-critical (673 K and 17. 5 MPa) conditions. The effect of an increase of zinc oxidation rate with an increase in E is observed under supercritical conditions and is absent at near-critical ones. Increase in the field strength leads to the formation of a looser structure in the inner part of the zinc oxide layer.

  8. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao, E-mail: xuwentaoboy@sina.com

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did notmore » affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage

  9. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    NASA Astrophysics Data System (ADS)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  10. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals.

    PubMed

    Buonsanti, Raffaella; Llordes, Anna; Aloni, Shaul; Helms, Brett A; Milliron, Delia J

    2011-11-09

    Plasmonic nanocrystals have been attracting a lot of attention both for fundamental studies and different applications, from sensing to imaging and optoelectronic devices. Transparent conductive oxides represent an interesting class of plasmonic materials in addition to metals and vacancy-doped semiconductor quantum dots. Herein, we report a rational synthetic strategy of high-quality colloidal aluminum-doped zinc oxide nanocrystals. The presence of substitutional aluminum in the zinc oxide lattice accompanied by the generation of free electrons is proved for the first time by tunable surface plasmon absorption in the infrared region both in solution and in thin films.

  11. Zinc oxide nanostructures and its nano-compounds for efficient visible light photo-catalytic processes

    NASA Astrophysics Data System (ADS)

    Adam, Rania E.; Alnoor, Hatim; Elhag, Sami; Nur, Omer; Willander, Magnus

    2017-02-01

    Zinc oxide (ZnO) in its nanostructure form is a promising material for visible light emission/absorption and utilization in different energy efficient photocatalytic processes. We will first present our recent results on the effect of varying the molar ratio of the synthesis nutrients on visible light emission. Further we will use the optimized conditions from the molar ration experiments to vary the synthesis processing parameters like stirring time etc. and the effect of all these parameters in order to optimize the efficiency and control the emission spectrum are investigated using different complementary techniques. Cathodoluminescence (CL) is combined with photoluminescence (PL) and electroluminescence (EL) as the techniques to investigate and optimizes visible light emission from ZnO/GaN light emitting diodes. We will then show and discuss our recent finding of the use of high quality ZnO nanoparticles (NPs) for efficient photo-degradation of toxic dyes using the visible spectra, namely with a wavelength up to 800 nm. In the end, we show how ZnO nanorods (NRs) are used as the first template to be transferred to bismuth zinc vanadate (BiZn2VO6). The BiZn2VO6 is then used to demonstrate efficient and cost effective hydrogen production through photoelectrochemical water splitting using solar radiation.

  12. Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide

    NASA Astrophysics Data System (ADS)

    Ning, Y.; Fielding, L. A.; Andrews, T. S.; Growney, D. J.; Armes, S. P.

    2015-04-01

    Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source.Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel

  13. Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae

    NASA Astrophysics Data System (ADS)

    Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B.

    2015-02-01

    In this study, zinc oxide nanoparticles were biologically synthesized using the leaf extract of Plectranthus amboinicus (Pam-ZnO NPs). The synthesized Pam-ZnO NPs were characterized by UV-Vis spectrophotometer, FTIR, TEM and XRD analysis. TEM analysis of Pam-ZnO NPs showed the average size of about 20-50 nm. Pam-ZnO NPs control the growth of methicillin-resistant Staphylococcus aureus biofilms (MRSA ATCC 33591) at the concentration of 8-10 μg/ml. Confocal laser scanning microscope (CLSM) images revealed that Pam-ZnO NPs strongly inhibited the biofilm forming ability of S. aureus. In addition, Pam-ZnO NPs showed 100% mortality of fourth instar mosquito larvae of Anopheles stephensi, Culex quinquefasciatus and Culex tritaeniorhynchus at the concentration of 8 and 10 μg/ml. The histopathological studies of Pam-ZnO NPs treated A. stephensi and C. quinquefasciatus larvae revealed the presence of damaged cells and tissues in the mid-gut. The damaged tissues suffered major changes including rupture and disintegration of epithelial layer and cellular vacuolization. The present study conclude that Pam-ZnO NPs showed effective control of S. aureus biofilms and mosquito larvae by damaging the mid gut cells.

  14. Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film

    PubMed Central

    Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C. B.; Haarindraprasad, R.; Liu, Wei-Wen; Poopalan, P.; Balakrishnan, S. R.; Thivina, V.; Ruslinda, A. R.

    2015-01-01

    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5–10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications. PMID:26694656

  15. Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film.

    PubMed

    Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C B; Haarindraprasad, R; Liu, Wei-Wen; Poopalan, P; Balakrishnan, S R; Thivina, V; Ruslinda, A R

    2015-01-01

    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.

  16. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  17. Novel Magnetic Zinc Oxide Nanotubes for Phenol Adsorption: Mechanism Modeling

    PubMed Central

    Elkady, Marwa F.; Hassan, Hassan Shokry; Amer, Wael A.; Salama, Eslam; Algarni, Hamed; Shaaban, Essam Ramadan

    2017-01-01

    Considering the great impact of a material’s surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m2/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA) as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs identified the nanotubes’ morphology in the synthesized material with an average aspect ratio of 3. X-ray diffraction (XRD) analysis verified the combination of magnetite material with the hexagonal wurtzite structure of ZnO in the prepared material. The immobilization of magnetite nanoparticles on to ZnO was confirmed using vibrating sample magnetometry (VSM). The sorption affinity of the synthesized magnetic ZnO nanotube for phenolic compounds from aqueous solutions was examined as a function of various processing factors. The degree of acidity of the phenolic solution has great influence on the phenol sorption process on to magnetic ZnO. The calculated value of ΔH0 designated the endothermic nature of the phenol uptake process on to the magnetic ZnO nanotubes. Mathematical modeling indicated a combination of physical and chemical adsorption mechanisms of phenolic compounds on to the fabricated magnetic ZnO nanotubes. The kinetic process correlated better with the second-order rate model compared to the first-order rate model. This result indicates the predominance of the chemical adsorption process of phenol on to magnetic ZnO nanotubes. PMID:29186853

  18. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles

    PubMed Central

    2014-01-01

    Background Nanoparticle pharmacokinetics and biological effects are influenced by several factors. We assessed the effects of amorphous SiO2 coating on the pharmacokinetics of zinc oxide nanoparticles (ZnO NPs) following intratracheal (IT) instillation and gavage in rats. Methods Uncoated and SiO2-coated ZnO NPs were neutron-activated and IT-instilled at 1 mg/kg or gavaged at 5 mg/kg. Rats were followed over 28 days post-IT, and over 7 days post-gavage. Tissue samples were analyzed for 65Zn radioactivity. Pulmonary responses to instilled NPs were also evaluated at 24 hours. Results SiO2-coated ZnO elicited significantly higher inflammatory responses than uncoated NPs. Pulmonary clearance of both 65ZnO NPs was biphasic with a rapid initial t1/2 (0.2 - 0.3 hours), and a slower terminal t1/2 of 1.2 days (SiO2-coated ZnO) and 1.7 days (ZnO). Both NPs were almost completely cleared by day 7 (>98%). With IT-instilled 65ZnO NPs, significantly more 65Zn was found in skeletal muscle, liver, skin, kidneys, cecum and blood on day 2 in uncoated than SiO2-coated NPs. By 28 days, extrapulmonary levels of 65Zn from both NPs significantly decreased. However, 65Zn levels in skeletal muscle, skin and blood remained higher from uncoated NPs. Interestingly, 65Zn levels in bone marrow and thoracic lymph nodes were higher from coated 65ZnO NPs. More 65Zn was excreted in the urine from rats instilled with SiO2-coated 65ZnO NPs. After 7 days post-gavage, only 7.4% (uncoated) and 6.7% (coated) of 65Zn dose were measured in all tissues combined. As with instilled NPs, after gavage significantly more 65Zn was measured in skeletal muscle from uncoated NPs and less in thoracic lymph nodes. More 65Zn was excreted in the urine and feces with coated than uncoated 65ZnO NPs. However, over 95% of the total dose of both NPs was eliminated in the feces by day 7. Conclusions Although SiO2-coated ZnO NPs were more inflammogenic, the overall lung clearance rate was not affected. However, SiO2 coating

  19. Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei.

    PubMed

    Romero-Freire, Ana; Lofts, Stephen; Martín Peinado, Francisco J; van Gestel, Cornelis A M

    2017-01-01

    To assess the influence of soil properties and aging on the availability and toxicity of zinc (Zn) applied as nanoparticles (Zn oxide [ZnO]-NPs) or as Zn 2+ ions (Zn chloride [ZnCl 2 ]), 3 natural soils were individually spiked with either ZnO-NPs or ZnCl 2 and incubated for up to 6 mo. Available Zn concentrations in soil were measured by porewater extraction (ZnPW), whereas earthworms (Eisenia andrei) were exposed to study Zn bioavailability. Porewater extraction concentrations were lower when Zn was applied as NPs compared to the ionic form and decreased with increasing soil pH. For both Zn forms and Zn-PW values were affected by aging, but they varied among the tested soils, highlighting the influence of soil properties. Internal Zn concentration in the earthworms (ZnE) was highest for the soil with high organic carbon content (5.4%) and basic pH (7.6) spiked with Zn-NPs, but the same soil spiked with ZnCl 2 showed the lowest increase in ZnE compared to the control. Survival, weight change, and reproduction of the earthworms were affected by both Zn forms; but differences in toxicity could not be explained by soil properties or aging. This shows that ZnO-NPs and ZnCl 2 behave differently in soils depending on soil properties and aging processes, but differences in earthworm toxicity remain unexplained. Environ Toxicol Chem 2017;36:137-146. © 2016 SETAC. © 2016 SETAC.

  20. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.

    2010-01-21

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steelmore » substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.« less