Sample records for zinc phosphate glass

  1. Tb3+ and Eu3+ doped zinc phosphate glasses for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Jha, Kaushal; Vishwakarma, Amit K.; Jayasimhadri, M.; Haranath, D.; Jang, Kiwan

    2018-04-01

    Tb3+ and Eu3+ doped zinc phosphate (ZP) glasses were prepared by conventional melt-quenching technique and their photoluminescence properties were investigated in detail. For, Tb3+ doped glasses the intense emission was at 545 nm corresponding to 5D4→7F5 transition under 377 nm n-UV excitation. The optimized concentration for Tb3+ doped zinc phosphate glass was 3 mol% and above this concentration quenching takes place. The Eu3+ doped zinc phosphate glass revealed intense emission at 613 nm attributed to the 5D0→7F2 transition under intense 392 nm n-UV excitation. The concentration quenching phenomenon was not observed in the Eu3+ doped ZP glasses. The CIE chromaticity coordinates for 3 mol% Tb3+ and 5 mol% Eu3+ doped ZP glasses were found to (0.283, 0.615) and (0.652, 0.331) lying in the green and red regions, respectively. The above mentioned results indicate that the prepared glass are suitable for application in the field of lighting and display devices.

  2. Laboratory strength of glass ionomer and zinc phosphate cements.

    PubMed

    Piwowarczyk, A; Ottl, P; Lauer, H C

    2001-09-01

    The present in vitro study examined 3 mechanical properties, namely compressive, flexural, and diametral tensile strength, of various commercially available cements and core materials as a function of time after mixing. The examined materials were 2 cermet cements (Ketac Silver [ESPE, Seefeld, Germany] and Chelon Silver [ESPE]), 1 metal-reinforced glass ionomer cement (Miracle Mix [GC Dental Industrial Corp, Tokyo, Japan]), 2 conventional glass ionomer cements (Ketac Bond [ESPE] and Ketac Cem [ESPE]), 1 standard cure zinc phosphate cement (Harvard Cement [Richter and Hoffmann, Berlin, Germany]), and 1 zinc phosphate cement with the addition of 30% silver amalgam alloy powder (Harvard Cement 70% with Dispersalloy 30% [Richter and Hoffmann/Johnson and Johnson, East Windsor, NJ]). Properties were measured using a universal testing machine at 15 minutes, 1 hour, and 24 hours after first mixing. Compressive strengths varied widely between the 3 times of measurement from 5.8 +/- 6.6 MPa for Ketac Cem to 144.3 +/- 10.2 MPa for Ketac Silver. Twenty-four hours after mixing, the Bonferroni test showed significant (p glass ionomer cement reinforced with sintered glass-silver particles, showed the highest mechanical properties of the examined materials. Copyright 2001 by The American College of Prosthodontists.

  3. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns--an in vitro study.

    PubMed

    Reddy, R; Basappa, N; Reddy, V V

    1998-03-01

    This study was conducted on 30 extracted human primary molars to assess the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements. The teeth were embedded in resin blocks and were randomly divided into 3 groups of 10 each. The occlusal surfaces of all teeth were reduced uniformly by 1.0 to 1.5 mm. All mesial, distal undercuts were removed and sharp angles rounded. This was followed by cementing pretrimmed and precontoured stainless steel crowns on each tooth with hand pressure and storing in artificial saliva at 37 degrees C for 24 hours. Retentive strength was tested using Instron Universal Testing Machine. The load was applied starting from a zero reading and gradually increased until the cemented stainless steel crowns showed signs of movement and then the readings were recorded. It was found that retentive strengths of zinc phosphate and glass ionomer cements were statistically better (P < 0.05) when compared to the polycarboxylate cement. Negligible difference (0. 59 kg/cm2) was however observed between zinc phosphate and glass ionomer cements.

  4. X-ray-induced fluorescent centers formation in zinc- phosphate glasses doped with Ag and Cu ions

    NASA Astrophysics Data System (ADS)

    Klyukin, D. A.; Pshenova, A. S.; Sidorov, A. I.; Stolyarchuk, M. V.

    2016-08-01

    Fluorescent properties of silver and copper doped zinc-phosphate glasses were studied. By X-ray irradiation of silver and copper co-doped glasses we could create and identify new emission centers which do not exist in single-doped samples. Doping of the glass with both silver and copper ions leads to the increase of quantum yield by 2.7 times. The study was complemented by quantum chemical calculations using the time-dependent density functional theory. It was shown that fluorescence may be attributed to the formation of mixed Ag-Cu molecular clusters.

  5. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns - an in vitro study.

    PubMed

    Raghunath Reddy, M H; Subba Reddy, V V; Basappa, N

    2010-01-01

    An in vitro study was conducted to compare the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements using Instron universal testing machine. Thirty preformed and pretrimmed stainless steel crowns were used for cementation on 30 extracted human primary molars which were divided into three groups of 10 teeth in each group. Then the teeth were stored in artificial saliva and incubated at 37°C for 24 h. A load was applied on to the crown and was gradually increased till the crown showed dislodgement, and then the readings were recorded using Instron recorder and analyzed for statistical significance. The surface area of crown was measured by graphical method. The retentive strength was expressed in terms of kg/cm 2 , which was calculated by the equation load divided by area. Retentive strengths of zinc phosphate (ranged from a minimum of 16.93 to amaximum of 28.13 kg/cm 2 with mean of 21.28 kg/cm 2 ) and glass ionomer cement (minimum of 13.69 - 28.15 kg/cm 2 with mean of 20.69 kg/cm 2 ) were greater than that of polycarboxylate cement (minimum of 13.26 - 22.69 kg/cm 2 with mean of 16.79 kg/cm 2 ). Negligible difference (0.59 kg/cm 2 ) of retentive strength was observed between zinc phosphate (21.28 kg/cm 2 ) and glass ionomer cements (20.69 kg/cm 2 ). Glass ionomer cements can be recommended for cementation of stainless steel crowns because of its advantages and the retentive strength was almost similar to that of zinc phosphate cement.

  6. Physical and absorption properties of titanium nanoparticles incorporated into zinc magnesium phosphate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, S.F.; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    We report the influences of Titania (TiO{sub 2}) nanoparticles (NPs) on the physical and optical properties of melt quench synthesized zinc magnesium phosphate glasses. Five glass samples with composition (42 − x)P{sub 2}O{sub 5}–50ZnO–8MgO–xTiO{sub 2}, where x = 0, 1, 2, 3, 4 mol% are prepared and characterized. XRD pattern verified the amorphous nature of all samples. TEM images manifested the growth of Ti NPs of average size ≈ 5.78 nm. TiO{sub 2} NP concentration dependent variation in the physical properties including glass density, molar volume, molar refractivity, electronic polarizability and ionic packing density are determined. The values of glassmore » refractive indices, density and ionic packing density are increased with the increase of TiO{sub 2} NP contents. Conversely, the Urbach energy, direct and indirect optical band gap are found to decrease with the increase of TiO{sub 2} NP concentration. These glass compositions may be potential for various solid state devices including laser. - Highlights: • TiO{sub 2} NP embedded self-cleaning phosphate glass are synthesized for the first time. • Well dispersed and uniform sized TiO{sub 2} NPs are grown. • Absorption spectra revealed prominent peak in the UV region. • TiO{sub 2} NPs strongly influenced the physical and absorption features of synthesized glasses. • The effects of TiO{sub 2} NPs on the physical and optical properties of these glasses are determined.« less

  7. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass.

    PubMed

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-31

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnO x (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  8. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass

    NASA Astrophysics Data System (ADS)

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-01

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnOx (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  9. Study of electrical conductivity and memory switching in the zinc-vanadium-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Mirzayi, M.; Hekmatshoar, M. H.

    2013-07-01

    Vanadium zinc phosphate glasses were prepared by the conventional melt quenching technique and effect of V2O5 concentration on d.c. conductivity of prepared samples were investigated. X-ray diffraction patterns confirmed the glassy character of the samples. The d.c. conductivity increased with increase in V2O5 content. Results showed that activation energy has a single value in the investigated range of temperature, which can be explained in accordance with Mott small pollaron hopping model. I-V characteristics at high electric field showed that switching in these glasses was memory type. The threshold field of switching was found to decrease with increase in V2O5 content. Non-linear behavior and switching phenomenon was explained by Pool-Frenkel effect and thermal model.

  10. Influence of silver and copper doping on luminescent properties of zinc-phosphate glasses after x-ray irradiation

    NASA Astrophysics Data System (ADS)

    Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.

    2017-11-01

    It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.

  11. Structural and optical properties of CuO in zinc phosphate glasses and effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Ouis, M. A.; ElBatal, H. A.; Abdelghany, A. M.; Hammad, Ahmed H.

    2016-01-01

    Collective optical and infrared measurements have been employed to investigate the state of increasing copper ions in host 0.5ZnO-0.5P2O5 glass composition. The same spectral measurements were repeated after gamma irradiation with a dose of 20 and 80 KGy. Optical absorption spectra reveal strong UV absorption due to trace ferric ions present as unavoidable impurities within the chemicals used in the preparation of the glasses. Copper containing glasses show an additional broad visible-near infrared band due to distorted octahedrally coordinated Cu2+ ions which at high CuO contents exhibit splitting to several component absorption peaks. Gamma irradiation causes several variations between the response of the base host zinc phosphate glass and effect of increasing CuO. These changes are correlated with both the formation of induced defects through suggested photochemical reactions in the UV region and some shielding effects with increasing CuO in the visible-near infrared spectrum. Infrared absorption spectra reveal repetitive vibrational bands due to phosphate groups mainly from metaphosphate units and the spectra show some variations with the increase of CuO content visualize by the increase of the intensity of the mid broad band extending in the range 800-1500 cm-1.

  12. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  13. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  14. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  15. Retentive [correction of Preventive] efficacy of glass ionomer, zinc phosphate and zinc polycarboxylate luting cements in preformed stainless steel crowns: a comparative clinical study.

    PubMed

    Khinda, V I S; Grewal, N

    2002-06-01

    This study was undertaken to assess the efficacy of three luting cements, namely, glass ionomer, zinc phosphate and zinc polycarboxylate in retainng the preformed stainless steel crowns in-vivo. Twenty subjects, with an indication for restoration of three primary molars with stainless steel crowns, were selected. Sixty teeth were taken up for the study, and twenty crowns were cemented with each of the three luting cements. After an eight month follow up the crowns were assessed for their presence/ absence or "rocking". Statistical analysis was done using Chi-square test. The results have shown no significant difference in retentivity of stainless steel crowns with the use of either of the three luting agents.

  16. Structural and luminescence studies of Ho{sup 3+}-doped zinc-aluminium-sodium-phosphate (ZANP) glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahmachary, K.; Rajesh, D.; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com

    Trivalent holmium doped zinc-aluminium-sodium-phosphate (ZANP) glasses were prepared by conventional melt-quenching technique and characterized for their structural and luminescence properties. The amorphous nature, elemental analysis and thermal stability of the glasses were studied by using X-ray diffraction, energy dispersive spectrum and differential scanning calorimetry analysis, respectively. The absorption and fluorescence spectra have been recorded at room temperature. Based on the absorption spectra, the Judd-Ofelt parameters and radiative parameters such as spontaneous transition probabilities (A{sub R}), branching ratios (β{sub R}), radiative lifetimes (τ{sub R}) were calculated and discussed. From the emission spectra emission peak positions (λ{sub P}), effective bandwidths (Δλ{sub eff})more » and stimulated emission cross-sections (σ{sub P}) were calculated for the observed emission transitions,{sup 5}S{sub 2} ({sup 5}F{sub 4}→{sup 5}I{sub 8}) and {sup 5}F{sub 5}→{sup 5}I{sub 8} in all the glass samples. The stimulated emission cross-section is higher for ZANPHo10 glass matrix and so it may be useful for laser excitation.« less

  17. Influence of europium (Eu3+) ions on the optical properties of lithium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shwetha, M.; Eraiah, B.

    2018-02-01

    Europium doped lithium zinc phosphate glasses with composition xEu2O3-(15-x) Li2O-45ZnO-40P2O5 (where x=0, 0.1, 0.3 and 0.5 mol %) named as EP0, EP1, EP3 and EP5 respectively, are prepared by melt-quenching method and the influence of Eu3+ ions on physical and optical properties of these glasses has been studied. Optical properties were studied using optical absorption spectra which was recorded at room temperature in the UV-Visible region. Optical direct band gap and indirect band gap energies were measured and their values range from 3.167 to 4.23eV and 2.08 to 3.02eV, respectively. Refractive indices have been measured with respect to different concentration of europium ions. Fluorescence spectroscopy measurements have been performed by excitation in the UV-Visible range, which resulted in the significant fluorescence peaks. The luminescence color of the glass system is characterized using Commission International de l’Eclairage de France 1931 standards.

  18. Luminescence performance of Eu{sup 3+} doped lead free zinc phosphate glasses for red emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, V. Reddy; Babu, S.; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com

    2016-05-06

    Luminescence performance of zinc phosphate glasses containing Eu{sup 3+} ion with the chemical compositions (60-x)NH{sub 4}H{sub 2}PO{sub 4}-20ZnO-10BaF{sub 2}-10NaF-x Eu{sub 2}O{sub 3} (where x = 0.2, 0.5, 1.0 and 1.5 mol%) has been studied. The Fourier Transform Infrared Spectroscopy (FT-IR) shows several vibrations bands. Luminescence spectra of these glasses exhibit characteristic emission of Eu{sup 3+} ion with an intense and most prominent red emission (614 nm) which is attributed to {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. Judd-Ofelt (Ω{sub 2}, Ω{sub 4}) parameters have been evaluated from the luminescence intensity ratios of {sup 5}D{sub 0}→{sup 7}F{sub J} (where J = 2 and 4)more » to {sup 5}D{sub 0}→{sup 7}F{sub 1} transition as well as absorption spectra under different constraints. Using J-O parameters and excitation spectra, the radiative parameters are calculated for different Eu{sup 3+} doped glasses.« less

  19. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  20. Influence of CuO and ZnO addition on the multicomponent phosphate glasses: Spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Szumera, Magdalena; Wacławska, Irena; Sułowska, Justyna

    2016-06-01

    The spectra of phosphate-silicate glasses from the P2O5-SiO2-K2O-MgO-CaO system modified with the addition of CuO or ZnO have been studied by means of FTIR, Raman and 31P MAS NMR spectroscopy. All glasses were synthesized by the conventional melt-quenching technique and their homogeneous chemical composition was controlled and confirmed. By using the aforementioned research techniques, the presence of structural units with various degrees of polymerization was shown in the structure of analyzed phosphate-silicate glasses: Q3, Q2, Q1 and Q0. It was found that an increase in the content of CuO or ZnO in the composition of analyzed glasses, which are introduced at the expense of decreasing amounts of CaO and MgO, has a different influence on the phospho-oxygen network. It was shown that copper ions cause its gradual polymerization, while zinc ions cause its depolymerization. At the same time, polymerization of the silico-oxygen subnetwork was found. Additionally, in the case of glasses containing increasing amounts of ZnO, a change of the role of zinc ions in the vitreous matrix was confirmed (from the modifier to a structure-forming component).

  1. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  2. Ultraviolet and infrared absorption spectra of Cr2O3 doped-sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study.

    PubMed

    Marzouk, M A; ElBatal, F H; Abdelghany, A M

    2013-10-01

    The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Iron phosphate glasses: Bulk properties and atomic scale structure

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  4. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  5. An infrared and Raman spectroscopic study of natural zinc phosphates.

    PubMed

    Frost, Ray L

    2004-06-01

    Zinc phosphates are important in the study of the phosphatisation of metals. Raman spectroscopy in combination with infrared spectroscopy has been used to characterise the zinc phosphate minerals. The minerals may be characterised by the patterns of the hydroxyl stretching vibrations in both the Raman and infrared spectra. Spencerite is characterised by a sharp Raman band at 3516 cm(-1) and tarbuttite by a single band at 3446 cm(-1). The patterns of the Raman spectra of the hydroxyl stretching region of hopeite and parahopeite are different in line with their differing crystal structures. The Raman spectrum of the PO4 stretching region shows better band separated peaks than the infrared spectra which consist of a complex set of overlapping bands. The position of the PO4 symmetric stretching mode can be used to identify the zinc phosphate mineral. It is apparent that Raman spectroscopy lends itself to the fundamental study of the evolution of zinc phosphate films.

  6. Optical absorption spectra and energy band gap in manganese containing sodium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sardarpasha, K. R.; Hanumantharaju, N.; Gowda, V. C. Veeranna

    2018-05-01

    Optical band gap energy in the system 25Na2O-(75-x)[0.6P2O5-0.4ZnO]-xMnO2 (where x = 0.5,1,5,10 and 20 mol.%) have been studied. The intensity of the absorption band found to increase with increase of MnO2 content. The decrease in the optical band gap energy with increase in MnO2 content in the investigated glasses is attributed to shifting of absorption edge to a longer wavelength region. The obtained results were discussed in view of the structure of phosphate glass network.

  7. Ultraviolet optical absorptions of semiconducting copper phosphate glasses

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.

  8. Concentration-dependent studies of Nd3+ -doped zinc phosphate glasses for NIR photoluminescence at 1.05 μm.

    PubMed

    Reddy Prasad, V; Seshadri, M; Babu, S; Ratnakaram, Y C

    2017-05-01

    Nd 3 + -doped lead-free zinc phosphate glasses with the chemical compositions (60-x) NH 4 H 2 PO 4  + 20ZnO + 10BaF 2  + 10NaF + xNd 2 O 3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) were prepared using a melt quenching technique. Vibrational bands were assigned and clearly elucidated by Raman spectral profiles for all the glass samples. Judd-Ofelt (J-O) intensity parameters (Ω λ : λ = 2, 4, 6) were obtained from the spectral intensities of different absorption bands of Nd 3 + ions. Radiative properties such as radiative transition probabilities (A R ), radiative lifetimes (τ R ) and branching ratios (β R ) for different excited states were calculated using J-O parameters. The near infrared (NIR) photoluminescence spectra exhibited three emission bands ( 4 F 3 /2 level to 4 I 13 /2 , 4 I 11 /2 and 4 I 9 /2 states) for all the concentrations of Nd 3 + ions. Various luminescence properties were studied by varying the Nd 3 + concentration for the three spectral profiles. Fluorescence decay curves of the 4 F 3 /2 level were recorded. The energy transfer mechanism that leads to quenching of the 4 F 3 /2 state lifetimes was discussed at higher concentration of Nd 3 + ions. These glasses are suggested as suitable hosts to produce efficient lasing action in NIR region at 1.05 μm. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  10. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  11. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  12. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Baglasses containing copper dopants.

  13. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  14. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  15. Ammonia-treated phosphate glasses useful for sealing to metals

    DOEpatents

    Brow, R.K.; Day, D.E.

    1991-09-03

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  16. 40 CFR 721.10302 - Zinc ammonium phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zinc ammonium phosphate (generic). 721.10302 Section 721.10302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10302 Zinc ammonium...

  17. 40 CFR 721.10302 - Zinc ammonium phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zinc ammonium phosphate (generic). 721.10302 Section 721.10302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10302 Zinc ammonium...

  18. 40 CFR 721.10302 - Zinc ammonium phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc ammonium phosphate (generic). 721.10302 Section 721.10302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10302 Zinc ammonium...

  19. Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications

    NASA Astrophysics Data System (ADS)

    Francisco-Rodriguez, H. I.; Lira, A.; Soriano-Romero, O.; Meza-Rocha, A. N.; Bordignon, S.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2018-05-01

    A spectroscopic analysis of Tb3+ and Tb3+/Eu3+ doped lithium-aluminum-zinc phosphate glasses is performed through their absorbance and photoluminescence spectra, and decay time profiles. Laser parameter values (stimulated emission cross section, effective bandwidth, gain bandwidth and optical gain) were obtained for the terbium 5D4 → 7F5 green emission from the Tb3+ singly-doped glass (LAZT) excited at 350 nm to judge the suitability of the glass phosphor for fiber lasers. A quantum yield of (47.68 ± 0.49)% was measured for the 5D4 level luminescence. Upon 350 nm excitation the LAZT glass phosphor emits green light with a color purity of 65.6% and chromaticity coordinates (0.285, 0.585) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. The Tb3+/Eu3+codoped glass emission color can be tuned from reddish-orange of 1865 K upon 318 nm excitation to warm white of 3599 K and neutral white of 4049 K upon 359 and 340 nm excitations, respectively. Upon Tb3+ excitation at 340 nm Eu3+ is sensitized by Tb3+ through a non-radiative energy transfer with an efficiency of 0.23-0.26. An electric dipole-dipole interaction might be the dominant mechanism in the Tb3+ to Eu3+ energy transfer taking place into Tb3+ - Eu3+ clusters.

  20. Novel lead-iron phosphate glass

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    The invention described and claimed in the specification relates to the discovery that effective addition of Fe.sub.2 O.sub.3 to a lead phosphate glass results in a glass having enhanced chemical durability and physical stability, and consists essentially of the glass resulting from melting a mixture consisting essentially of, in weight percent, 40-66 percent PbO, 30-55 percent P.sub.2 O.sub.5 and an effective concentration up to 12 percent Fe.sub.2 O.sub.3.

  1. Novel lead-iron phosphate glass

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1989-07-11

    The invention described and claimed in the specification relates to the discovery that effective addition of Fe[sub 2]O[sub 3] to a lead phosphate glass results in a glass having enhanced chemical durability and physical stability, and consists essentially of the glass resulting from melting a mixture consisting essentially of, in weight percent, 40--66 percent PbO, 30--55 percent P[sub 2]O[sub 5] and an effective concentration up to 12 percent Fe[sub 2]O[sub 3].

  2. Ammonia-treated phosphate glasses useful for sealing to metals metals

    DOEpatents

    Brow, Richard K.; Day, Delbert E.

    1991-01-01

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  3. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2017-01-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  4. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2016-12-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  5. Intermediate-range order in simple metal-phosphate glasses: The effect of metal cations on the phosphate anion distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, B.C.; Boatner, L.A.; Ramey, J.O.

    1997-06-01

    The technique of high-performance liquid chromatography (HPLC) has been used to probe the phosphate anion distribution in a variety of metal phosphate glasses including glasses made with trivalent metal cations (Al, In, Ga, La). The composition of each glass was chosen so that the average phosphate chain length was between 2 and 4 PO{sub 4} tetrahedra. The widths of the resulting phosphate anion distributions were determined directly from an analysis of the HPLC chromatograms. Literature values for the free energy of formation of the crystalline metal-orthophosphate compounds with respect to P{sub 2}O{sub 5} and the metal oxide, were compared tomore » the chromatogram widths. It was found that the smaller the energy of formation, the wider the distribution of phosphate chains, and the greater the ease of glass formation.« less

  6. Modelling aqueous corrosion of nuclear waste phosphate glass

    NASA Astrophysics Data System (ADS)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  7. Phosphate base laser glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumitani, T.; Tsuru, M.

    1980-12-16

    A phosphate base laser glass comprising 55-70% P2O5, 1-15% Al2O3, 0-25% Li2O, 0-25% Na2O, 0-8% K2O, the total proportion of Li2O, Na2O, and K2O being 10-25%, 0-15% BaO, 0-15% ZnO, 0-15% CaO , 0-15%, sro, 0-15% MgO, the total proportion of BaO, ZnO, CaO, SrO, and MgO being 5-15%, 0-5% Y2O3, 0-5% La2O3, 0-5% GeO2, 0-5% CeO2, 0-3% Nb2O5, 0-3% MnO2, 0-2% Ta2O5, 0-1% Sb2O3, and 0.01-5% Nd2O3, all % being mole %. The phosphate base laser glass of this invention has a high induced emission cross section, a low non-linear refractive index coefficient, and excellent acid resistance and divitrificationmore » resistance. By replacing partially or wholely one or more of LiO2, Na2O, K2O, BaO, ZnO, CaO, SrO, MgO or Al2O3 by LiF, NaF, KF , BaF2ZnF2, CaF2, SrF2, MgF2 or AlF3, respectively, the above properties of the laser glass are further improved.« less

  8. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a

  9. [Influence of adhesion on the color of glass infiltrated alumina ceramic restorations].

    PubMed

    Jiang, Li; Yang, Liu; Xu, Qiang; Guan, Hong-Yu; Wan, Qian-Bing

    2006-10-01

    To investigate the effects of luting agent on the final color of glass infiltrated alumina ceramic restorations. 12 plate-shaped specimens with 12.5 mm in diameter and 0.5 mm thickness were fabricated from GI-II (color IG2). Vitadur alpha veneering porcelain (color A2) with 1.0 mm thickness was fired to GI- II glass/alumina composite. 12 plate-shaped background specimens simulating the metal alloy post-and-core 12.5 mm in diameter and 2 mm thickness were also made from Ni-Cr alloy. All-ceramic specimens were luted to the metal alloy by Zinc Phosphate cement, glass ionomer cement and composite resin. The color shifts of the specimens were measured by colorimeter. Luting agents had effect on the final color of restorations. The influence of composite resin was least, followed by glass ionomer cement and Zinc Phosphate cement. The color difference between with and without Zinc Phosphate cement could be identified by the eye. To reduce the effect of luting agents, composite resin is recommended to all-ceramic restorations' adhesion.

  10. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    NASA Astrophysics Data System (ADS)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  11. Devitrification studies of wollastonite-tricalcium phosphate eutectic glass.

    PubMed

    Magallanes-Perdomo, M; Pena, P; De Aza, P N; Carrodeguas, R G; Rodríguez, M A; Turrillas, X; De Aza, S; De Aza, A H

    2009-10-01

    The present paper describes and discusses the devitrification and crystallization process of wollastonite-tricalcium phosphate (W-TCP) eutectic glass. This process was studied in situ from room temperature up to 1375 degrees C, by neutron diffractometry in vacuum. The data obtained were combined and compared with those performed in ambient atmosphere by differential thermal analysis and with those of samples fired in air at selected temperatures, and then cooled down and subsequently studied by laboratory XRD and field emission scanning electron microscopy fitted with energy X-ray dispersive spectroscopy. The experimental evidence indicates that the devitrification of W-TCP eutectic glass begins at approximately 870 degrees C with the crystallization of a Ca-deficient apatite phase, followed by wollastonite-2M (CaSiO(3)) crystallization at approximately 1006 degrees C. At 1375 degrees C, the bio-glass-ceramic is composed of quasi-rounded colonies formed by a homogeneous mixture of pseudowollastonite (CaSiO(3)) and alpha-tricalcium phosphate (Ca(3)(PO(4))(2)). This microstructure corresponds to irregular eutectic structures. It was also found that it is possible to obtain from the eutectic composition of the wollastonite-tricalcium phosphate binary system a wide range of bio-glass-ceramics, with different crystalline phases present, through appropriate design of thermal treatments.

  12. Glasses of three alkyl phosphates show a range of kinetic stabilities when prepared by physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Beasley, M. S.; Tylinski, M.; Chua, Y. Z.; Schick, C.; Ediger, M. D.

    2018-05-01

    In situ AC nanocalorimetry was used to characterize vapor-deposited glasses of three phosphates with increasing lengths of alkyl side chains: trimethyl phosphate, triethyl phosphate, and tributyl phosphate. The as-deposited glasses were assessed in terms of their reversing heat capacity, onset temperature, and isothermal transformation time. Glasses with a range of kinetic stabilities were prepared, including kinetically stable glasses, as indicated by high onset temperatures and long transformation times. Trimethyl phosphate forms kinetically stable glasses, similar to many other organic molecules, while triethyl phosphate and tributyl phosphate do not. Triethyl phosphate and tributyl phosphate present the first examples of non-hydrogen bonding systems that are unable to form stable glasses via vapor deposition at 0.2 nm/s. Based on experiments utilizing different deposition rates, we conclude that triethyl phosphate and tributyl phosphate lack the surface mobility required for stable glass formation. This may be related to their high enthalpies of vaporization and the internal structure of the liquid state.

  13. Iron Phosphate Glass-Containing Hanford Waste Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less

  14. Effect of Zinc Phosphate on the Corrosion Behavior of Waterborne Acrylic Coating/Metal Interface

    PubMed Central

    Wan, Hongxia; Song, Dongdong; Li, Xiaogang; Zhang, Dawei; Gao, Jin; Du, Cuiwei

    2017-01-01

    Waterborne coating has recently been paid much attention. However, it cannot be used widely due to its performance limitations. Under the specified conditions of the selected resin, selecting the function pigment is key to improving the anticorrosive properties of the coating. Zinc phosphate is an environmentally protective and efficient anticorrosion pigment. In this work, zinc phosphate was used in modifying waterborne acrylic coatings. Moreover, the disbonding resistance of the coating was studied. Results showed that adding zinc phosphate can effectively inhibit the anode process of metal corrosion and enhance the wet adhesion of the coating, and consequently prevent the horizontal diffusion of the corrosive medium into the coating/metal interface and slow down the disbonding of the coating. PMID:28773013

  15. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Van Phuong, Nguyen; Moon, Sungmo; Chang, Doyon; Lee, Kyu Hwan

    2013-01-01

    The effect of the microstructure, particularly of β-Mg17Al12 phase, on the formation and growth of zinc phosphate conversion coatings on magnesium alloy AZ91 (AZ91) was studied. The zinc phosphate coatings were formed on AZ91 with different microstructures produced by heat treatment. The effect of the microstructure on the zinc phosphate coatings were examined using optical microscope (OM), X-ray diffraction (XRD), coatings weight and etching weight balances, scanning electron microscopy (SEM) and salt immersion test. Results showed that as-cast AZ91 contained a high volume fraction of the β-Mg17Al12 phase and it was dissolved into α-Mg phase during heat treatment at 400 °C. The β-phase became center for hydrogen evolution during phosphating reaction (cathodic sites). The decreased volume fraction of the β-phase caused decreasing both coatings weight and etching weight of the phosphating process. However, it increased the crystal size of the coatings and improved corrosion resistance of AZ91 by immersing in 0.5 M NaCl solution. Results also showed that the structure of the zinc phosphate conversion on AZ91 consisted of two layers: an outer crystal Zn3(PO4)2·4H2O (hopeite) and an inner which was mainly composed of MgZn2(PO4)2 and Mg3(PO4)2. A mechanism for the formation of two layers of the coatings was also proposed in this study.

  16. Further damage induced by water in micro-indentations in phosphate laser glass

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Jian, Qingyun; Yuan, Weifeng; Gu, Bin; Ji, Fang; Huang, Wen

    2014-02-01

    Using a microhardness tester, artificial flaws were made by micro-indentation in N31 Nd-doped phosphate laser glass. Indentation fracture toughness, KIC, was estimated as 0.45-0.53 MPa m1/2 from these indentations. The glasses with indentations were then immersed in ultrapure water to investigate further water-induced damage of these indentations. Stress-enhanced hydrolysis leads to the propagations of radial crack, lateral cracks and microcracks in the subsurface. These crack propagations therefore cause deformation in subsurface to form annular reflections regions around the indentations and further material collapse within imprints. After the residual stresses are exhausted, the leaching plays a more dominated role in glass corrosion in the further immersion. After immersion, the material structure slackens around micro-indentation, which decreases the contact stiffness and results in a lower nano-hardness. For the surface far away from flaws, water immersion presents a weak effect on the near-surface mechanical since the matrix leaching in phosphate glass restricts the formation of hydration layer. During first 20 min immersion, due to higher chemical activity and lower fracture toughness, the radial cracks show a faster propagation in phosphate glass compared with that in K9 silicate glass. For further immersion, crack healing occurs in silicate glass but not in phosphate glass. Analysis shows that the formation of hydration layer on crack walls plays an important role in crack healing in glasses.

  17. Use of zinc phosphate cement as a luting agent for Denzir™ copings: an in vitro study

    PubMed Central

    Söderholm, Karl-Johan M; Mondragon, Eduardo; Garcea, Ileana

    2003-01-01

    Background The clinical success rate with zinc phosphate cemented Procera crowns is high. The objective with this study was to determine whether CADCAM processed and zinc phosphate cemented Denzir copings would perform as well as zinc phosphate cemented Procera copings when tested in vitro in tension. Methods Twelve Procera copings and twenty-four Denzir copings were made. After the copings had been made, twelve of the Denzir copings were sandblasted on their internal surfaces. All copings were then cemented with zinc phosphate cement to carbon steel dies and transferred to water or artificial saliva. Two weeks after cementation, half of the samples were tested. The remaining samples were tested after one year in the storage medium. All tests were done in tension and evaluated with an ANOVA. Results Sandblasted and un-sandblasted Denzir copings performed as well as Procera copings. Storage in water or artificial saliva up to one year did not decrease the force needed to dislodge any of the coping groups. Three copings fractured during testing and one coping developed a crack during testing. The three complete fractures occurred in Procera copings, while the partly cracked coping was a Denzir coping. Conclusion No significant differences existed between the different material groups, and the retentive force increased rather than decreased with time. Fewer fractures occurred in Denzir copings, explained by the higher fracture toughness of the Denzir material. Based on good clinical results with zinc phosphate cemented Procera crowns, we foresee that zinc phosphate cement luted Denzir copings are likely to perform well clinically. PMID:12622874

  18. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    PubMed

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  20. Glass formation and crystallization in the alumina-silica-lanthanum phosphate system for ceramics composites

    NASA Astrophysics Data System (ADS)

    Guo, Shuling

    The formation, structure, and dynamics of glasses in the alumina-silica-lanthanum phosphate system and their crystallization were investigated as a function of composition. These are of interest because of their potential as precursors for synthesizing ceramic-matrix-composites via co-crystallization of lanthanum monazite and either mullite or alumina into finely mixed microstructures. The glasses were characterized by X-Ray Diffraction (XRD), Raman spectroscopy, Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Electron Energy Loss Spectrometry (EELS). Glass formation from rapidly quenched liquids was easiest and most consistent for compositions containing silica, such as for mullitemonazite compositions, and more difficult for alumina-monazite compositions. For mullite-monazite glasses, the glass transition temperatures increased linearly from 845°C to 906°C with increasing mullite content. An analysis of the glass structure indicated a network consisting of corner-linked aluminate, silicate and phosphate tetrahedra where aluminum played a central role of separating silicon and phosphorous. It was hypothesized that the glass network consisted of domains of aluminum silicate network edged by phosphate tetrahedra. A maximum in the crystallization temperature was attributed to the complexity of the glass network. At relatively mullite-rich compositions, simultaneous and cooperative crystallization of lanthanum phosphate and mullite correlated with the highest crystallization temperatures, and the lowest activation energies of crystallization. This was preceded by amorphous phase segregation in the glass at lower temperatures. An intermediate phase of lanthanum phosphate was discovered with an orthorhombic unit cell. For compositions of high phosphate contents, lanthanum phosphate precipitated first at about 900°C leaving an essentially pure mullite glass

  1. Effects of titanium nanoparticles on self-cleaning and structural features of zinc-magnesium-phosphate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, S.F.; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    Graphical abstract: Water contact angle for sample S2, S3, S4 and S5. The water contact angle increased with increased the titanium NPs content (mol%). - Highlights: • ZnO–MgO–P{sub 2}O{sub 5} embedded TiO{sub 2} NPs prepared by conventional melt-quenching method. • The amorphous nature is confirmed by X-ray diffraction spectroscopy. • The structural characteristics of glasses is investigated using FTIR and Raman. • Wettability of the glasses surface by water contact angle. - Abstract: The loss of glass transparency on surface pollutants contamination unless inhibited not only causes vision obscurity but also responsible for major aesthetic damages of cultural heritage. Itmore » is due to the sticking of fine dirt particles on wetting layers, a complex process with several possible ramifications still to be clarified. We report the influence of titanium dioxide or titania (TiO{sub 2}) nanoparticles (NPs) on the structural and self-cleaning properties of zinc–magnesium–phosphate glasses. Following melt-quenching method glass samples of optimized composition (42 − x)P{sub 2}O{sub 5}–8MgO–50ZnO–xTiO{sub 2} with x = 0, 1, 2, 3 and 4 mol% are prepared. XRD patterns verified their amorphous nature and TEM images revealed the nucleation of TiO{sub 2} NPs of average diameter ≈4.05 ± 0.01 nm. Fourier transform infrared (FTIR) spectra displayed four absorption band centred at 1618–3438 cm{sup −1}, 902– 931 cm{sup −1}, 757–762 cm{sup −1} and 531–560 cm{sup −1}. Raman spectra exhibited four peaks each accompanied by a blue-shift. Water contact angle is found to increase with the increase of titanium NPs concentration into the amorphous matrix. This knowledge can be used to set up strategies and selective treatments to preventing glass transparency loss via the modification of self-cleaning attributes.« less

  2. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.

    PubMed

    Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P

    2015-07-01

    This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses

  3. X-ray absorption studies of gamma irradiated Nd doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Rai, V. N.; Rajput, Parasmani; Jha, S. N.; Bhattacharyya, D.

    2015-06-01

    This paper presents the X-ray absorption near edge structure (XANES) studies of Nd doped phosphate glasses before and after gamma irradiation. The intensity and location of LIII edge white line peak of Nd changes depending on its concentration as well as on the ratio of O/Nd in the glass matrix. The decrease in the peak intensity of white line after gamma irradiation indicates towards reduction of Nd3+ to Nd2+ in the glass matrix, which increases with an increase in the doses of gamma irradiation. Similarity in the XANES spectra of Nd doped phosphate glasses and Nd2O3 suggests that coordination geometry around Nd3+ in glass samples may be identical to that of Nd2O3.

  4. In Vitro Comparison of Zinc Phosphate and Glass Ionomers Ability to Inhibit Decalcification under and Adjacent to Orthodontic Bands.

    DTIC Science & Technology

    1985-08-01

    confer the ability to leach fluoride ions into the surrounding tooth enamel . Kidd 3 7 using an artifical caries tec- hnique with a diffusion controlled...5 - Enamel Changes Scoring System- 1. NONE: No color change evident 2. MILD: Slight change in enamel color 3.MODERATE: Definate whitening of enamel ...to adhere to stainless steel and to tooth enamel with a chemical bond 51 . Zinc phosphate, on the other hand, does not chemically adhere to enamel or

  5. Spectroscopic properties of Eu3+/Nd3+ co-doped phosphate glasses and opaque glass-ceramics

    NASA Astrophysics Data System (ADS)

    Narro-García, R.; Desirena, H.; López-Luke, T.; Guerrero-Contreras, J.; Jayasankar, C. K.; Quintero-Torres, R.; De la Rosa, E.

    2015-08-01

    This paper reports the fabrication and characterization of Eu3+/Nd3+ co-doped phosphate (PNE) glasses and glass-ceramics as a function of Eu3+ concentration. The precursor glasses were prepared by the conventional melt quenching technique and the opaque glass-ceramics were obtained by heating the precursor glasses at 450 °C for 30 h. The structural and optical properties of the glass and glass-ceramics were analyzed by means of X-ray diffraction, Raman spectroscopy, UV-VIS-IR absorption spectroscopy, photoluminescence spectra and lifetimes. The amorphous and crystalline structures of the precursor glass and opaque glass-ceramic were confirmed by X-ray diffraction respectively. The Raman spectra showed that the maximum phonon energy decreased from 1317 cm-1 to 1277 cm-1 with the thermal treatment. The luminescence spectra of the glass and glass-ceramic samples were studied under 396 nm and 806 nm excitation. The emission intensity of the bands observed in opaque glass-ceramic is stronger than that of the precursor glass. The luminescence spectra show strong dependence on the Eu3+ ion concentration in the Nd3+ ion photoluminescence (PL) intensity, which suggest the presence of energy transfer (ET) and cross-relaxation (CR) processes. The lifetimes of the 4F3/2 state of Nd3+ ion in Eu3+/Nd3+ co-doped phosphate glasses and glass-ceramics under 806 nm excitation were measured. It was observed that the lifetimes of the 4F3/2 level of Nd3+ of both glasses and glass-ceramics decrease with the increasing Eu3+ concentration. However in the case of opaque glass-ceramics the lifetimes decrease only 16%.

  6. Chemically durable phosphate glasses and a method for their preparation

    DOEpatents

    Day, D.E.; Wilder, J.A. Jr.

    The chemical durability of alkali phosphate glasses is improved by incorporation of up to 23 weight percent of nitrogen. A typical phosphate glass contains: 10 to 60 mole % of Li/sub 2/O, Na/sub 2/O or K/sub 2/O; 5 to 40 mole % of BaO or CaO; 0 to 1 to 10 mole % of Al/sub 2/O/sub 3/; and 40 to 70 mole % of P/sub 2/O/sub 5/. Nitrides, such as AlN, are the favored additives.

  7. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    PubMed

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Thermophysical and structural studies on some glass-ceramics and role of nano size crystallites

    NASA Astrophysics Data System (ADS)

    Kothiyal, G. P.; Arvind, A.; Kumar, Rakesh; Dixit, Anupam; Sharma, Kuldeep; Goswami, Madhumita

    2009-07-01

    In this paper, we present some studies on structure and thermophysical properties of glass and glass-ceramics with possible bio-medical and sealing applications. The glass-ceramics prepared for bio-medical applications include phosphate as well as silico-phosphate compositions. In vitro bio-compatibility/activity of these materials is discussed. The glass-ceramics used for the sealing application are lithium aluminium silicate (LAS) and lithium zinc silicate (LZS). The phase formation and some aspects of thermophysical properties and sealing are discussed.

  9. Fiberglass goes green: Developing phosphate glass for use in biodegradable composites

    NASA Astrophysics Data System (ADS)

    Arendt, Christina Lee

    Composite materials, such as the glass fiber reinforced polyester thermosets known as "fiberglass," are used in many applications. However, recycling processes for these materials are inefficient and not widely available. Specially engineered degradable polymers offer an opportunity to redesign these composites. Additionally, the composite could be tailored to be multi-use, such that upon degradation, the resulting products could be used as part of a zeoponic substrate (artificial soil) for growing plants. Such a material would be beneficial for long-duration space missions, terraforming, or in other agricultural applications. The research presented in this dissertation focuses on developing phosphate glass for use as the fiber reinforcement for such a composite. Due to the under-utilization of phosphate systems, there is a lack of thermodynamic data on these systems. The modified associate species method of phase diagram calculation was used in an attempt to gain more information about the desired system, as it is a good predictor of the phase relations in oxide melts, slags, and glasses and requires less data than other methods. Further research into the thermodynamic properties of phosphates is still needed to develop accurate phase diagrams and melting temperatures for this system. Seventeen glass formulations were developed and melted. Six of these formulations were chosen for dissolution testing. Of these six, Glass 17 was chosen for intensive testing and characterization. This glass was tested in water, hydrochloric acid solutions, and citric acid solutions. The weight loss was measured and ICP-OES was performed on the leachate solution. Scanning electron microscopy (SEM) and X-ray diffraction were performed on the tested specimens. Shrinking-core models were fit to the dissolution data. Fibers were drawn from the glass and characterized using SEM. The data shows that this glass is not dissolving congruently, as is expected of phosphate glasses. Instead

  10. Alkaline resistant phosphate glasses and method of preparation and use thereof

    DOEpatents

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  11. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.

    PubMed

    Colquhoun, R; Tanner, K E

    2015-12-23

    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.

  12. Thermoluminescence response of rare earth activated zinc lithium borate glass

    NASA Astrophysics Data System (ADS)

    Saidu, A.; Wagiran, H.; Saeed, M. A.; Obayes, H. K.; Bala, A.; Usman, F.

    2018-03-01

    New glasses of zinc lithium borate doped with terbium oxide were synthesized by high temperature solid-state reaction. The amorphous nature of the glasses was confirmed using x-ray diffraction analysis (XRD). Thermoluminescence (TL) response of pure zinc lithium borate (ZLB) and zinc lithium borate doped with terbium (ZLB: Tb) exposed to gamma radiation was measured and compared. There is significant enhancement in the TL yields of ZLB: Tb compared to that of pure ZLB. Effect of varying concentration of dopant (Tb4O7) on the TL response of zinc lithium borate was investigated. 0.3 mol% concentration of Tb exhibited strongest TL intensity. Thermoluminescence curve of the phosphor consist of single isolated peak. The TL response of the new materials to the exposed radiation is linear within 0.5-100 Gy range of dose with sublinearity at the lower region of the curve. High sensitivity was exhibited by the new amorphous materials. Reproducibility, thermal fading and energy response of the proposed TLD were investigated and shows remarkable result that made the phosphor suitable for radiation dosimetry.

  13. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasileva, A.A., E-mail: anvsilv@gmail.com; Nazarov, I.A.; Olshin, P.K.

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. Themore » process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.« less

  14. Strong emission in Yb3+/Er3+ co-doped phosphate glass ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Yanling; Song, Feng; Jia, Guozhi; Zhang, Yanbang; Tang, Yi

    Yb3+/Er3+ co-doped phosphate glass and glass ceramics were prepared by high-temperature melting method. The X-ray diffraction, transmission electron micrographs, up-conversion and infrared emissions, photothermal conversion properties of the samples have been measured. The results showed the annealing time had a great impact on the microstructure and luminous performance of the phosphate glass. At the beginning of annealing, the metaphosphate crystals were firstly dissolved out. The metaphosphate crystals gradually turned into the orthophosphate with the increasing of annealing time. The emission intensity of the sample was obviously improved after the precursor glass was annealed. The up-conversion and infrared emissions of the sample annealed at 600 °C for 24 h, reached the maximum intensity. Compared with the photothermal properties of glass, the lower photothermal conversion efficiency of the glass ceramics testified the strong emission.

  15. Chemically durable nitrogen containing phosphate glasses useful for sealing to metals

    DOEpatents

    Day, Delbert E.; Wilder, Jr., James A.

    1984-01-01

    The chemical durability of alkali phosphate glasses is improved by incorporation of up to 23 weight percent of nitrogen. A typical phosphate glass contains: 10 to 60 mole % of Li.sub.2 O, Na.sub.2 O or K.sub.2 O; 5-40 mole % of BaO or CAO; 0-1 to 10 mole % of Al.sub.2 O.sub.3 ; and 40-70 mole % of P.sub.2 O.sub.5. Nitrides, such as AlN, are the favored additives.

  16. Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics.

    PubMed

    Du, Rui Lin; Chang, Jiang; Ni, Si Yu; Zhai, Wan Yin; Wang, Jun Ying

    2006-04-01

    Zinc-containing glass is prepared by the substitution of CaO in 58S bioactive glass with 0.5 and 4 wt% ZnO, and glass-ceramics are obtained by heat-treating the glass at 1,200 C. The bending strength and in vitro bioactivity of the glass and glass-ceramics are evaluated. The results indicate that Zn promotes the crystallization of SiO(2) and wollastonite in glass-ceramics, and proper crystallization can enhance the bending strength of the glass-ceramic. The in vitro results show that ZnO in glass retards the hydroxyapatite (HA) nucleation at the initial stage of simulated body fluid (SBF) soaking, but does not affect the growth of HA after long periods of soaking, and the ionic products of 58S4Z glass can stimulate the proliferation of osteoblast at certain concentrations. Osteoblasts attach well on both glass samples and glass-ceramic samples, but the high Si ion concentration released from glass samples restrains the proliferation of osteoblasts after 3 days of culture. In contrast, osteoblasts show good proliferation on glass-ceramic samples, and ZnO in glass-ceramics promotes the proliferation rate. The results in this study suggest that the glass and glass-ceramics with different ZnO content might be used as bioactive bone implant materials in different applications.

  17. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garaje, Sunil N.; Apte, Sanjay K.; Kumar, Ganpathy

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2%more » ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.« less

  18. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up tomore » 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.« less

  19. Analysis of radiophotoluminescence center formation mechanism in Ag-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Kawamoto, Hiroki; Fujimoto, Yutaka; Koshimizu, Masanori; Okada, Go; Yanagida, Takayuki; Asai, Keisuke

    2018-06-01

    Ag-doped phosphate glasses have widely been used as radiophotoluminescence (RPL) dosimeters. However, the RPL center formation process is not fully understood. In this study, we investigated the RPL center formation process in Ag-doped Na–Al phosphate glasses. We observed that two RPL centers (Ag0 and Ag2+) were formed at temperatures higher than 100 and 250 K, respectively. In addition, activation energies of their formation were estimated to be 20 and 267 meV, respectively. These results suggest that the electron transfer process is not a simple thermally activated process.

  20. Research on up- and down-conversion emissions of Er3+/Yb3+ co-doped phosphate glass ceramic

    NASA Astrophysics Data System (ADS)

    Ming, Chengguo; Song, Feng; An, Liqun; Ren, Xiaobin; Yuan, Yize; Cao, Yang; Wang, Gangzhi

    2012-12-01

    By high-temperature melting method and thermal treatment technology, Er3+/Yb3+ co-doped phosphate glass and glass ceramic samples were prepared. The luminescence spectra of the glass and glass ceramic samples were studied under 975 nm excitation. In visible and near-infrared bands, the emission intensity of the glass ceramic is stronger than that of the glass. The glass ceramic can comprehensively improve the luminous characters of the precursor glass. The phosphate glass ceramic will be valuable luminescence materials.

  1. Characteristics of Zinc Phosphate Coating Activated by Different Concentrations of Nickel Acetate Solution

    NASA Astrophysics Data System (ADS)

    Abdalla, Khalid; Zuhailawati, H.; Rahmat, Azmi; Azizan, A.

    2017-02-01

    Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.

  2. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    PubMed

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.

  3. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    PubMed Central

    Stępień, Ryszard; Franczyk, Marcin; Pysz, Dariusz; Kujawa, Ireneusz; Klimczak, Mariusz; Buczyński, Ryszard

    2014-01-01

    In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt%) of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index) and thermal proprieties (thermal expansion coefficient, rheology). The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity. PMID:28788702

  4. Study on surface roughness evolvement of Nd-doped phosphate glass after IBF

    NASA Astrophysics Data System (ADS)

    Li, Furen; Xie, Xuhui; Zhou, Lin; Tie, Guipeng; Hu, Hao

    2016-10-01

    Nd doped phosphate glass is widely used as gain media in high power laser system. It is traditionally polished with the annular polishing technology. The edge effect is inevitable in annular polishing process and it results in the low manufacturing efficiency. Ion Beam Figuring (IBF) is a highly deterministic, non-contact method for the ultra-precision optics fabrication. So the edge effect is avoided. Nanometer and sub-nanometer precision is realizable in IBF. In this paper, Nd doped phosphate glass was polished with IBF, and the evolvement of surface roughness was emphasized. The roughness of surface polished with ion beam at normal and oblique incidence was researched. The oblique incident angle was 45°. The surface roughness was measured with the white light interferometer. No evident change was observed. This means that the pre-finish roughness can be preserved in IBF. The results denote that IBF is a feasible method to correct the contour errors of Nd doped phosphate glass, and the roughness will not be coarsened.

  5. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.

    PubMed

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

  6. Third order nonlinear optical properties of bismuth zinc borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V., E-mail: ravi.phy@pondiuni.edu.in; Kuladeep, R.

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due tomore » dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.« less

  7. Spectroscopic studies of gel grown zinc doped calcium hydrogen phosphate dihydrate crystals

    NASA Astrophysics Data System (ADS)

    Suryawanshi, V. B.; Chaudhari, R. T.

    2018-05-01

    The influence of zinc doping on the gel grown calcium hydrogen phosphate dihydrate crystals was studied using the spectroscopic techniques, which included SEM, FTIR and EDAX. It was found that, zinc ions transform the morphology of brushite crystals from rectangular plate shaped crystals to branching microcrystal patterns. However in FT-IR spectroscopy, as compared to undoped brushite crystals few vibrations were shifted to higher value. The observed changes in the vibrations were due to the impact of zinc ions. EDAX techniques is use to determine the percentage composition of elements present in the doped crystals. It revealed that the sample was of a mixed composition.

  8. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  9. Optical, Structural, and Thermal Properties of Cerium-Doped Zinc Borophosphate Glasses.

    PubMed

    Choi, Su-Yeon; Ryu, Bong-Ki

    2015-11-01

    In this study, we verify the relationship between the optical properties and structure of cerium-doped zinc borophosphate glasses that have concurrence of non-bridging oxygen (NBO) and bridging oxygen (BO), Ce3+ and Ce4+, and BO3 structure and BO4 structure. We prepared cerium-doped zinc borophosphate glass with various compositions, given by xCeO2-(100-x)[50ZnO-10B2O3 -40P2O5] (x = 1 mol% to 6 mol%), and analyzed their optical band energy, glass transition temperature, crystallization temperature, density, and molar volume. Some of the techniques used for analysis were Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In the investigated glasses, the optical band gap energy decreased from 3.28 eV to 1.73 eV. From these results, we can deduce the changes when transitions occur from BO to NBO, from Ce3+ to Ce4+, and from the BO3 structure to the BO4 structure with increasing CeO2 content using FT-IR and XPS analysis. We also verified the changes in structural and physical properties from quantitative properties such as glass transition temperature, crystallization temperature, density, and molar volume.

  10. Spectroscopic identification of rare earth elements in phosphate glass

    NASA Astrophysics Data System (ADS)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  11. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, Joseph S.; Sapak, David L.; Ward, Julia M.

    1990-01-01

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K.sub.90.degree. C. >0.8 W/mK, and a low coefficient of thermal expansion, .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., consists essentially of (on a batch composition basis): the amounts of Li.sub.2 O and Na.sub.2 O providing an average alkali metal ionic radius sufficiently low whereby said glass has K.sub.90.degree. C. >0.8 W/mK and .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd.sub.2 O.sub.3 can be replaced by other lasing species.

  12. Red light emission from europium doped zinc sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.

    2017-12-01

    Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.

  13. Nd- And Er-Doped Phosphate Glass For Fiber Laser.

    NASA Astrophysics Data System (ADS)

    Yamashita, Toshiharu T.

    1990-02-01

    Laser fibers prepared from Nd- and Er-doped phosphate glass possessing a large stimulated emission cross section have been investigated both in a single fiber and in a fiber bundle. In the single fiber, continuous wave oscillations were successfully obtained at 1.054 p.m and 1.366 µm on a high Nd-doped single-mode fiber of 10 mm in length and also at 1.535 pm in a Er-doped single-mode fiber, sensitized by Nd, Yb. Especially, a low threshold of 1 mw and a high slope-efficiency of 50% were achieved in 1.054 pm laser oscillation on a Nd-doped fiber, end-pumped with a laser diode. A fiber bundle of phosphate glass doped with 8 wt% Nd2O3 yielded an average output power of 100 W at 50 pps where the bundle was 4.6 mm in diameter and was side-pumped with flash lamps.

  14. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    PubMed

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The peculiarity of the formation of zinc films on a glass substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomaev, V. V., E-mail: tvaza@mail.ru; Saint Petersburg Mining University, Russia, 199106, St. Petersburg, V.O., 21-st line, 2; Polishchuk, V. A., E-mail: vpvova2010@yandex.ru

    2016-06-17

    Thin Nanocrystalline films of the zinc have been fabricated by thermal spraying on the glass substrate. Morphologies and structure of the films had been investigated by the methods X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). It is found that the surface of the films has a different types of the nanocrystals zinc. Were detected intergrowths of two or more the nanocrystals, hexagonal shape. Using the theory of homogeneous and heterogeneous nucleation of a new phase, had been evaluated the geometrical and thermodynamic parameters nanocrystals zinc.

  16. Spectroscopic and dielectric response of zinc bismuth phosphate glasses as a function of chromium content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, P. Srinivasa; Babu, P. Ramesh; Vijay, R.

    2014-09-15

    Graphical abstract: 20ZnF{sub 2}–(20 − x)Bi{sub 2}O{sub 3}–60P{sub 2}O{sub 5}:xCr{sub 2}O{sub 3} (0 ≤ x ≤2 mol%) glasses are prepared by melt quenching technique. The optical absorption spectra of present glasses are analyzed as a function of chromium content. The absorption bands are assigned to {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 1g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 2}T{sub 1g}(G) and {sup 4}A{sub 2g}(F) ⟶ {sup 2}E{sub g}(G) transitions of Cr{sup 3+} ions. - Highlights: • ZnF{sub 2}–Bi{sub 2}O{sub 3}–P{sub 2}O{sub 5}:Cr{sub 2}O{sub 3} glasses were prepared by melt quenching and annealing. • Spectroscopicmore » and dielectric properties of chromium ions were investigated. • ESR and optical absorption spectra indicate the co-existence of Cr{sup 6+} ions with Cr{sup 5+} ions and Cr{sup 3+} ions. • Cr{sup 3+} ions act as modifiers and influence the semiconducting nature of the glass system. - Abstract: 20ZnF{sub 2}–(20 − x)Bi{sub 2}O{sub 3}–60P{sub 2}O{sub 5}:xCr{sub 2}O{sub 3} (0 ≤ x ≤2 mol%) glasses are prepared by melt quenching technique. Amorphous nature of these samples is confirmed by X-ray diffraction (XRD) analysis. FTIR study reveals bands due to CrO{sub 6}(o{sub d}) and CrO{sub 4}{sup 2−}(T{sub d}) units along with conventional phosphate groups. The optical absorption and ESR studies of present glasses are analyzed as a function of chromium content. The absorption bands are assigned to {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 1g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 2}T{sub 1g}(G) and {sup 4}A{sub 2g}(F) ⟶ {sup 2}E{sub g}(G) transitions of Cr{sup 3+} ions. The highest concentration of Cr{sup 3+} ions (in octahedral sites, with network modifying positions) is found in the sample with 2.0 mol% of Cr{sub 2}O{sub 3}. The analysis of dielectric properties indicates a gradual increase in semiconducting character with increase in the

  17. New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Jiang, Shibin; Luo, Tao; Hwang, Bor-Chyuan; Nunzi Conti, Gualtiero; Myers, Michael J.; Rhonehouse, Daniel L.; Honkanen, Seppo; Peyghambarian, Nasser

    1998-12-01

    A new Er(superscript 3+)-doped phosphate glass exhibiting an excellent durability in both boiling water and NaNO(subscript 3) molten salt is developed. The ion-exchange process of this glass is investigated by treating glass samples in a variety of salt baths with various exposure times. A planar waveguide with one mode at 1.54 micrometers and three modes at 632.8 nm is demonstrated. The spectral properties of Er(superscript 3+) in this glass are characterized by measuring absorption and emission spectra and fluorescence lifetimes. The emission cross section of Er(superscript 3+) in this glass is calculated to be 0.76 X 10(superscript 20) cm(superscript 2) using McCumber theory.

  18. Structural aspects of calcium iron phosphate glass containing neodymium oxide

    NASA Astrophysics Data System (ADS)

    Li, Haijian; Liang, Xiaofeng; Wang, Cuiling; Yu, Huijun; Li, Zhen; Yang, Shiyuan

    2014-06-01

    Homogeneous glasses of the xNd2O3sbnd (100 - x)(12CaOsbnd 20Fe2O3sbnd 68P2O5) system were obtained within the 0 ⩽ x ⩽ 10 mol% composition range. The density and molar volume measurements helped to understand the structural changes occurring in these glasses. Vickers-hardness results showed that addition of Nd2O3 strengthened the crosslinking of the glass network. Spectra analysis indicated that Nd2O3 enters in the structure of the phosphate glasses as a network modifier. The depolymerization of the glass network by the addition of Nd2O3 is characterized by the increase in the concentration of pyrophosphate. The decrease of the Q1 terminal oxygen with increasing Nd2O3 content indicated that Psbnd Osbnd Nd bonds participated in the pyrophosphate glass structure, determined from the Raman spectra.

  19. Structural and spectroscopic characteristics of Eu3+-doped tungsten phosphate glasses

    NASA Astrophysics Data System (ADS)

    Dousti, M. Reza; Poirier, Gael Yves; de Camargo, Andrea Simone Stucchi

    2015-07-01

    Tungsten based phosphate glasses are interesting non-crystalline materials, commonly known for photochromic and electrochromic effects, but also promising hosts for luminescent trivalent rare earth ions. Despite very few reports in the literature, association of the host´s functionalities with the efficient emissions of the dopant ions in the visible and near-infrared spectra could lead to novel applications. This work reports the preparation and characterization of glasses with the new composition 4(Sb2O3)96-x(50WO3 50NaPO3)xEu2O3 where x = 0, 0.1, 0.25, 0.5 and 1.0 mol%, obtained by the melt quenching technique. The glasses present large density (∼4.6 g cm-3), high glass transition temperature (∼480 °C) and high thermal stability against crystallization. Upon excitation at 464 nm, the characteristic emissions of Eu3+ ions in the red spectral region are observed with high intensity. The Judd-Ofelt intensity parameters Ω2 = 6.86 × 10-20, Ω4 = 3.22 × 10-20 and Ω6 = 8.2 × 10-20 cm2 were calculated from the emission spectra and found to be higher than those reported for other phosphate glass compositions. An average excited state lifetime value of 1.2 ms, was determined by fitting the luminescence decay curves with single exponential functions and it is comparable or higher than those of other oxide glasses.

  20. Effect of Bi2O3 on structural, optical, and other physical properties of semiconducting zinc vanadate glasses

    NASA Astrophysics Data System (ADS)

    Punia, R.; Kundu, R. S.; Hooda, J.; Dhankhar, S.; Dahiya, Sajjan; Kishore, N.

    2011-08-01

    Zinc bismuth vanadate glasses with compositions 50V2O5-xBi2O3-(50-x) ZnO have been prepared using a conventional melt-quenching method and the solubility limit of Bi2O3 in zinc vanadate glass system has been investigated using x-ray diffraction. Density has been measured using Archimedes' principle; molar volume (Vm) and crystalline volumes (Vc) have also been estimated. With an increase in Bi2O3 content, there is an increase in density and molar volume of the glass samples. The glass transition temperature (Tg) and Hurby coefficient (Kgl) have been determined using differential scanning calorimetry (DSC) and are observed to increase with increase in Bi2O3 content (i.e., x), up to x = 15, thereby indicating the structural modifications and increased thermal stability of zinc vanadate glasses on addition of Bi2O3. FTIR spectra have been recorded and the analysis of FTIR shows that the structure depends upon the Bi2O3 content in the glass compositions. On addition of Bi2O3 into the zinc vanadate system, the structure of V2O5 changes from VO4 tetrahedral to VO5 trigonal bi-pyramid configuration. The optical parameters have been calculated by using spectroscopic ellipsometry for bulk oxide glasses (perhaps used first time for bulk glasses) and optical bandgap energy is found to increase with increase in Bi2O3 content.

  1. Structural investigation of phosphate - bismuth glasses with vanadium

    NASA Astrophysics Data System (ADS)

    Stǎnescu, R.; Vedeanu, N.; Cozar, I. B.; Mǎgdaş, A.

    2013-11-01

    The xV2O5(1-dx)[0.5P2O5ṡ0.5Bi2O3] glass system with 0 ≤ x ≤ 50 mol% is investigated by IR and Raman spectroscopy. Both P2O5 and Bi2O3 oxides are known as network formers, but Bi2O3 is an unconventional one. At low content of vanadium oxide (x ≤ 5 mol%), both IR and Raman spectra are dominated by vibration bands characteristics to structural groups of phosphate and bismuthate lattices. Due to the network modifier role, vanadium oxide acts mainly on the Bi2O3 network allowing the phosphate groups to impose their characteristics absorption bands in spectra. These bands are strongly reduced for x ≥ 20 mol% due to the phosphate network depolymerization and the appearance of new vibrations characteristic to P-O-V, Bi-O-V and V-O-V groups showing the network former role of V2O5.

  2. Comprehensive thermal and structural characterization of antimony-phosphate glass

    NASA Astrophysics Data System (ADS)

    Moustafa, S. Y.; Sahar, M. R.; Ghoshal, S. K.

    For the first time, we prepare new ternary glass systems of composition (95-x)Sb2O3-xP2O5-5MgO, where x = 45, 40, 35 mol%; (85-x)Sb2O3-xP2O5-15MgO, where x = 55, 35, 25 mol%; (75-x)Sb2O3-xP2O5-25MgO, where x = 45, 35, 25 mol%; and 60Sb2O3-(40-x)P2O5-xMgO, where x = 10, 20 mol% via melt-quenching method. Synthesized glasses are characterized using XRD, FESEM, EDX, and TG/DTA measurements. The influence of varying modifier concentrations on their thermal properties is evaluated. The XRD patterns confirmed the amorphous nature of samples. SEM images demonstrated interesting phase formation with ribbons-like texture. Five crystalline phases are evidenced in the ternary diagram which are antimony phosphate and antimony orthophosphate as major phases as well as magnesium phosphate, magnesium cyclo-tetraphosphate and cervantite as minor phases. EDX spectra detected the right elemental traces. Detailed thermal analysis of these glasses revealed their high-molecular polymer character for Sb2O3 content greater than 50 mol%. Three different glass transition temperatures are achieved around 276, 380-381 and 422-470 °C depending on the composition. Furthermore, the solidus and liquidus temperature are found to decrease with increasing Sb2O3 and increases for MgO contents till 15 mol% and then decrease, where the lowest recorded solidus temperature is 426 °C. This observation may open up new research avenues for antimony based ternary glasses and an exploitation of the derived results for optoelectronics applications, photonic devices and non-linear optical devices.

  3. Phosphate-based glasses: Prediction of acoustical properties

    NASA Astrophysics Data System (ADS)

    El-Moneim, Amin Abd

    2016-04-01

    In this work, a comprehensive study has been carried out to predict the composition dependence of bulk modulus and ultrasonic attenuation coefficient in the phosphate-based glass systems PbO-P2O5, Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-doped Na2O-ZnO-P2O5 at room temperature. The prediction is based on (i) Makishima-Mackenzie theory, which correlates the bulk modulus with packing density and dissociation energy per unit volume, and (ii) Our recently presented semi-empirical formulas, which correlate the ultrasonic attenuation coefficient with the oxygen density, mean atomic ring size, first-order stretching force constant and experimental bulk modulus. Results revealed that our recently presented semi-empirical formulas can be applied successfully to predict changes of ultrasonic attenuation coefficient in binary PbO-P2O5 glasses at 10 MHz frequency and in quaternary Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-Na2O-ZnO-P2O5 glasses at 5 MHz frequency. Also, Makishima-Mackenzie theory appears to be valid for the studied glasses if the effect of the basic structural units that present in the glass network is taken into account.

  4. Polaronic conductivity and scaling behavior of lithium iron phosphate glass

    NASA Astrophysics Data System (ADS)

    Banday, Azeem; Murugavel, Sevi

    2018-05-01

    Charge transport properties of the Lithium Iron Phosphate (LFP) glass has been investigated in a wide frequency and temperature range by means of broadband dielectric spectroscopy. The conductivity spectra has been studied on the basis of Jonscher power law for characterizing the hopping dynamics of charge carriers. The ac conductivity and scaling behavior of the LFP glass has been studied in the temperature range from 333K to 573K and frequency range from 100 mHz to 1 MHz. The conductivity isotherms of LFP glass do not superimpose upon each other by using Summerfield scaling. The structural peculiarities in the material could result in different conduction pathways giving rise to the deviation from Summerfield scaling.

  5. Optical absorption and photoluminescence properties of Nd3+ doped mixed alkali phosphate glasses-spectroscopic investigations.

    PubMed

    Ratnakaram, Y C; Srihari, N V; Kumar, A Vijaya; Naidu, D Thirupathi; Chakradhar, R P S

    2009-02-01

    Spectroscopic investigations were performed on 68NH(4)H(2)PO(4).xLi(2)CO(3)(30-x)K(2)CO(3) and 68NH(4)H(2)PO(4).xNa(2)CO(3)(30-x)K(2)CO(3) (where x=5, 10, 15, 20 and 25) glasses containing 2 mol% Nd(2)O(3). Various spectroscopic parameters (Racah (E(1), E(2), E(3)), spin-orbit (xi(4f)) and configuration interaction (alpha)) are reported. Judd-Ofelt intensity parameters (Omega(2), Omega(4), Omega(6)) are calculated for Nd(3+) doped two mixed alkali phosphate glass matrices. From the magnitude of Judd-Ofelt parameters, covalency is studied as a function of x in the glass matrix. Using Judd-Ofelt intensity parameters, total radiative transition probabilities (A(T)), radiative lifetimes (tau(R)), branching ratios (beta) and integrated absorption cross sections (Sigma) have been computed for certain excited states of Nd(3+) in these mixed alkali phosphate glasses. Emission cross sections (sigma(P)) are calculated for the two transitions, (4)G(7/2)-->(4)I(11/2) and (4)G(7/2)-->(4)I(13/2) of Nd(3+) in these mixed alkali phosphate glasses. Optical band gaps (E(opt)) for direct and indirect transitions are reported.

  6. Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide

    NASA Astrophysics Data System (ADS)

    Halimah, M. K.; Ami Hazlin, M. N.; Muhammad, F. D.

    2018-04-01

    A series of glass samples with chemical formula {[(TeO2)0.7(B2O3)0.3]0.7(ZnO)0.3}1 - x(Dy2O3)x where x = 0.01, 0.02, 0.03, 0.04 and 0.05 M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO4, BO3, TeO4 and TeO3 vibrational groups. The density of the glass systems is increased with the addition of Dy2O3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy2O3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3 + ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Generation of white light The generation of the white light can be achieved by using two emission bands which comprise of the yellow

  7. Survey and research on up-conversion emission character and energy transition of Yb3+/Er3+/Tm3+ co-doped phosphate glass and glass ceramic

    NASA Astrophysics Data System (ADS)

    Yu, Yin; Song, Feng; Ming, Chengguo; Liu, Jiadong; Li, Wei; Liu, Yanling; Zhao, Hongyan

    2012-11-01

    By conventional high-temperature melting method, Yb3+/Er3+/Tm3+ co-doped phosphate glass was synthesized. After annealing the precursor glass, the phosphate glass ceramic (GC) was obtained. By measuring the X-ray diffraction (XRD) spectrum, it is proved that the LiYbP4O12 and Li6P6O18 nano-crystals have existed in the phosphate GC. The up-conversion (UC) emission intensity of the GC is obvious stronger compared to that of the glass. The reason is that the shorter distance between rare earth ions in the glass ceramic increases the energy transitions from the sensitized ions (Yb3+) to the luminous ions (Er3+ and Tm3+). By studying the dependence of UC emissions on the pump power, the 523 and 546 nm green emissions of Er3+ ions in the glass are two-photon processes. But in the glass ceramic, they are two/three-photon processes. The phenomenon implies that a three-photon process has participated in the population of the two green emissions. Using Dexter theory, we discuss the energy transitions of Er3+ and Tm3+. The results indicate the energy transition of Tm3+ to Er3+ is very strong in the GC, which changes the population mechanism of UC emissions of Er3+.

  8. Comprehensive study on compositional modification of Tb3+ doped zinc phosphate glass

    NASA Astrophysics Data System (ADS)

    Yaacob, S. N. S.; Sahar, M. R.; Sazali, E. S.; Mahraz, Zahra Ashur; Sulhadi, K.

    2018-07-01

    Series of glass composition (60-x) P2O5 -40 ZnO -(x) Tb2O3 where x = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol % are prepared by conventional melt quenching technique. X-Ray Diffraction (XRD), FTIR, UV-Vis-NIR and the photoluminescence (PL) spectroscopy are used to characterize the physical, structural and optical behavior of the glass sample. The XRD pattern confirms the amorphous nature and DTA verified the thermal stability of all the glass samples. Glass with 1.5 mol % of Tb2O3 possesses the highest thermal stability. Glass density is found to increase proportionally with increasing amount of Tb3+ while the molar volume behaves reversely. Six main IR absorption bands centered at about 540, 748, 891, 1085 and 1294 cm- 1 are evidenced. The UV-Vis NIR absorption spectra reveals the absorption center band at about 540, 376, 488 and 1920 nm corresponding to the absorption from 7F6 ground state to various excited state of Tb3+ ion. The optical band gaps for direct and indirect transition are in the range 4.53-5.07 eV and 4.30 eV-4.56 eV respectively. The Urbach energy decreases with the increasing concentration of Tb2O3. The PL emission spectra reveals several prominent peaks at 413, 435, 457, 488, 540, 585 and 620 nm due to electronic transition from 5D3→7F5, 5D3→7F4, 5D3→7F3, 5D4→7F6, 5D4→7F5, 5D4→7F3 and 5D4→7F5 respectively.

  9. Manganese modified structural and optical properties of zinc soda lime silica glasses.

    PubMed

    Samsudin, Nur Farhana; Matori, Khamirul Amin; Wahab, Zaidan Abdul; Fen, Yap Wing; Liew, Josephine Ying Chi; Lim, Way Foong; Mohd Zaid, Mohd Hafiz; Omar, Nur Alia Sheh

    2016-03-20

    A series of MnO-doped zinc soda lime silica glass systems was prepared by a conventional melt and quenching technique. In this study, the x-ray diffraction analysis was applied to confirm the amorphous nature of the glasses. Fourier transform infrared spectroscopy shows the glass network consists of MnO4, SiO4, and ZnO4 units as basic structural units. The glass samples under field emission scanning electron microscopy observation demonstrated irregularity in shape and size with glassy phase-like structure. The optical absorption studies revealed that the optical bandgap (Eopt) values decrease with an increase of MnO content. Through the results of various measurements, the doping of MnO in the glass matrix had effects on the performance of the glasses and significantly improved the properties of the glass sample as a potential host for phosphor material.

  10. Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses.

    PubMed

    Massera, J; Petit, L; Cardinal, T; Videau, J J; Hupa, M; Hupa, L

    2013-06-01

    In this paper, we investigate the effect of SrO substitution for CaO in 50P₂O₅-10Na₂-(40-x)CaO-xSrO glass system (x from 0 to 40) on the thermal and structural properties and also on the glass reactivity in simulated body fluid (SBF) in order to find new glass candidates for biomedical glass fibers. The addition of SrO at the expense of CaO seems to restrain the leaching of phosphate ions in the solution limiting the reduction of the solution pH. We observed the formation of an apatite layer at the surface of the glasses when in contact with SBF. SrO and MgO were found in the apatite layer of the strontium ion-containing glasses, the concentration of which increases with an increase of SrO content. We think that it is the presence of MgO and SrO in the layer which limits the leaching of phosphate in the solution and thus the glass dissolution in SBF.

  11. Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil

    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.

  12. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.

    PubMed

    Chaturvedi, Pranav Kumar; Seth, Chandra Shekhar; Misra, Virendra

    2007-08-25

    Sorption efficacy of phosphatic clay and humus rich soil alone and on combination were tested towards heavy metals present in zinc mine tailing (Zawar Zinc Mine), Udaipur (India). Characterization of the zinc mine tailing sample indicated the presence of Pb, Cu, Zn and Mn in the concentration of 637, 186, 720 and 577microg(-1), respectively. For sorption efficacy, the zinc mine tailing soil were properly amended with phosphatic clay and humus rich soil separately and in combination and leachability study was performed by batch experiment at different pH range from 3 to 9. The data showed that the percent leachability of heavy metal in non-amended soil was 75-90%. After amendment with phosphatic clay percent leachability of heavy metals became 35-45%. Further, the addition of humus soil to phosphatic clay decreased the percent leachability up to 5-15% at all tested pH. Column leachability experiment was performed to evaluate the rate of leachability. The shape of cumulative curves of Pb, Cu, Zn and Mn showed an increase in its concavity in following order: PbCu>Zn>Mn. Further, Langmuir isotherms applied for the sorption studies indicated that phosphatic clay in the presence of humus soil had high affinity for Pb followed by Cu, Zn and Mn, with sorption capacities (b) 139.94, 97.02, 83.32 and 67.58microgg(-1), respectively.

  13. Dimensionality Alteration and Intra- versus Inter-SBU Void Encapsulation in Zinc Phosphate Frameworks.

    PubMed

    Dar, Aijaz A; Bhat, Gulzar A; Murugavel, Ramaswamy

    2016-06-06

    4,4'-Bipyridine-N-oxide (BIPYMO, 1), a less commonly employed coordination polymer linker, has been used as a ditopic spacer to bridge double-four-ring (D4R) zinc phosphate clusters to form novel framework coordination polymers. Zinc phosphate framework compounds [Zn4(X-dipp)4(BIPYMO)2]n·2MeOH [X = H (2), Cl (3), Br (4), I (5); dipp = 2,6-diisopropylphenyl phosphate] have been obtained by treating a methanol solution of zinc acetate with X-dippH2 and BIPYMO (in a 1:1:1 molar ratio) at ambient conditions. Framework phosphates 2-5 can also be obtained by treating the preformed D4R cubanes [Zn(X-dipp)(DMSO)]4 with required quantities of BIPYMO in methanol. Single-crystal X-ray diffraction studies reveal that these framework solids are two-dimensional (2D) networks as opposed to the diamondoid networks obtained when the parent unoxidized 4,4'-bipyridine is used as the linker (Inorg. Chem. 2014, 53, 8959). The two types of voids (viz., smaller intra-D4R and larger inter-D4R) present in these framework solids can be utilized for different types of encapsulation processes. For example, the in situ generated 2D framework 2 encapsulates fluoride ions accompanied by a change in the dimensionality of the framework to yield {[(nC4H9)4N][F@(Zn4(dipp)4(BIPYMO)2)]}n (6). The three-dimensional framework 6 represents the first structurally characterized example of a fluoride-ion-encapsulated polymeric coordination compound or a metal-organic framework. The possibility of utilizing inter-D4R voids as hosts for small organic molecules has been explored by treating in situ generated 2 with a series of organic molecules of appropriate size. Framework 2 has been found to be a selective host for benzil and not for other structurally similar molecules such as benzoquinone, benzidine, anthracene, naphthalene, α-pyridoin, etc. The benzil-occluded isolated framework [benzil@{Zn4(dipp)4(BIPYMO)2}]n (7) has been isolated as single crystals, and its crystal structure determination revealed

  14. Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses.

    PubMed

    Stavrou, E; Tsiantos, C; Tsopouridou, R D; Kripotou, S; Kontos, A G; Raptis, C; Capoen, B; Bouazaoui, M; Turrell, S; Khatir, S

    2010-05-19

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out on four mixed tellurium-zinc oxide (TeO(2))(1 - x)(ZnO)(x) (x = 0.1, 0.2, 0.3, 0.4) glasses under variable temperature, with particular attention being given to the respective glass transition region. From the DSC measurements, the glass transition temperature T(g) has been determined for each glass, showing a monotonous decrease of T(g) with increasing ZnO content. The Raman study is focused on the low-frequency band of the glasses, the so-called boson peak (BP), whose frequency undergoes an abrupt decrease at a temperature T(d) very close to the respective T(g) values obtained by DSC. These results show that the BP is highly sensitive to dynamical effects over the glass transition and provides a means for an equally reliable (to DSC) determination of T(g) in tellurite glasses and other network glasses. The discontinuous temperature dependence of the BP frequency at the glass transition, along with the absence of such a behaviour by the high-frequency Raman bands (due to local atomic vibrations), indicates that marked changes of the medium range order (MRO) occur at T(g) and confirms the correlation between the BP and the MRO of glasses.

  15. Parameters optimization for the fabrication of phosphate glass/hydroxyapatite nanocomposite scaffold

    NASA Astrophysics Data System (ADS)

    Govindan, R.; Girija, E. K.

    2015-06-01

    Three-dimensional, highly porous, bioactive and biodegradable phosphate glass and nanohydroxyapatite (n-HA) composite scaffolds was fabricated by the polymer foam replication technique. Polyurethane foam (PU) and polyvinyl alcohol (PVA) were used as template and binder, respectively. Optimization of composition and sintering temperature is carried out for tissue engineering scaffold fabrication.

  16. Nanoscale mechanochemical wear of phosphate laser glass against a CeO2 particle in humid air

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; He, Hongtu; Zhang, Yafeng; Hu, Hailong

    2017-01-01

    Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO2 particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO2 pair in air was found to be 5-7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65-79%. The capillary water bridge further induced a serious material removal of glass and CeO2 particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Cesbnd Osbnd P bond, accelerating the reaction between water and the glass/CeO2 pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  17. Optical evaluation on Nd3+-doped phosphate glasses for O-band amplification.

    PubMed

    Lei, Weihong; Chen, Baojie; Zhang, Xiangling; Pun, Edwin Yun Bun; Lin, Hai

    2011-02-20

    We have fabricated and characterized optically Nd3+-doped phosphate [Li2O-CaO-BaO-Al2O3-La2O3-P2O5 (LCBALP)] glasses for drawing single-mode glass fiber. The 4F3/2→4I13/2 transition emission from the Nd3+ is at the 1.327 μm wavelength with a full width at half-maximum of 43 nm, and the spontaneous transition probability and quantum efficiency are calculated to be 1836 s-1 and 52%, respectively. The maximum stimulated emission cross sections for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions are derived to be 1.82×10(-20) cm2 and 6.97×10(-21) cm2, respectively, and the theoretical gain coefficient at the 1.327 μm wavelength is evaluated to be 0.182 dB/cm when the fractional factor of the excited neodymium ions equals 0.6, which indicates that Nd3+-doped LCBALP phosphate glasses are potential candidates in developing O-band optical fiber amplifiers.

  18. Dental glass-reinforced composite for caries inhibition: Calcium phosphate ion release and mechanical properties

    PubMed Central

    Xu, Hockin H. K.; Moreau, Jennifer L.

    2010-01-01

    The two main challenges facing dental composite restorations are secondary caries and bulk fracture. Previous studies developed whisker-reinforced Ca-PO4 composites that were relatively opaque. The objective of this study was to develop an esthetic glass particle-reinforced, photo-cured calcium phosphate composite. Tetracalcium phosphate (TTCP) particles were incorporated into a resin for Ca and PO4 release, while glass particles provided reinforcement. Ion release and mechanical properties were measured after immersion in solutions with pH of 7, 5.5, and 4. For the composite containing 40% mass fraction of TTCP, incorporating glass fillers increased the strength (p < 0.05). Flexural strength (mean ± sd; n = 6) at 30% glass was (99 ± 18) MPa, higher than (54 ± 20) MPa at 0% glass (p < 0.05). Elastic modulus was 11 GPa at 30% glass, compared to 2 GPa without glass. At 28 d, the released Ca ion concentration was (4.61 ± 0.18) mmol/L at pH of 4, much higher than (1.14 ± 0.07) at pH of 5.5, and (0.27 ± 0.01) at pH of 7 (p < 0.05). PO4 release was also dramatically increased at cariogenic, acidic pH. The TTCP-glass composite had strength 2-3 fold that of a resin-modified glass ionomer control. In conclusion, the photo-cured TTCP-glass composite was “smart” and substantially increased the Ca and PO4 release when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit tooth caries. Its mechanical properties were significantly higher than previous Ca, PO4 and fluoride releasing restoratives. Hence, the photo-cured TTCP-glass composite may have potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities. PMID:19810118

  19. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  20. Cytotoxicity Comparison of Harvard Zinc Phosphate Cement Versus Panavia F2 and Rely X Plus Resin Cements on Rat L929-fibroblasts.

    PubMed

    Mahasti, Sahabi; Sattari, Mandana; Romoozi, Elham; Akbar-Zadeh Baghban, Alireza

    2011-01-01

    Resin cements, regardless of their biocompatibility, have been widely used in restorative dentistry during the recent years. These cements contain hydroxy ethyl methacrylate (HEMA) molecules which are claimed to penetrate into dentinal tubules and may affect dental pulp. Since tooth preparation for metal ceramic restorations involves a large surface of the tooth, cytotoxicity of these cements would be more important in fixed prosthodontic treatments. The purpose of this study was to compare the cytotoxicity of two resin cements (Panavia F2 and Rely X Plus) versus zinc phosphate cement (Harvard) using rat L929-fibroblasts in vitro. In this experimental study, ninety hollow glass cylinders (internal diameter 5-mm, height 2-mm) were made and divided into three groups. Each group was filled with one of three experimental cements; Harvard Zinc Phosphate cement, Panavia F2 resin cement and Rely X Plus resin cement. L929- Fibroblast were passaged and subsequently cultured in 6-well plates of 5×10(5) cells each. The culture medium was RPMI_ 1640. All samples were incubated in CO2. Using enzyme-linked immune-sorbent assay (ELISA) and (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (MTT) assay, the cytotoxicity of the cements was investigated at 1 hour, 24 hours and one week post exposure. Statistical analyses were performed via two-way ANOVA and honestly significant difference (HSD) Tukey tests. This study revealed significant differences between the three cements at the different time intervals. Harvard cement displayed the greatest cytotoxicity at all three intervals. After 1 hour Panavia F2 showed the next greatest cytotoxicity, but after 24-hours and oneweek intervals Rely X Plus showed the next greatest cytotoxicity. The results further showed that cytotoxicity decreased significantly in the Panavia F2 group with time (p<0.005), cytotoxicity increased significantly in the Rely X Plus group with time (p<0.001), and the Harvard cement group failed to

  1. Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers.

    PubMed

    Rinehart, J D; Taylor, T D; Tian, Y; Latour, R A

    1999-01-01

    The objective of this study was to develop an efficient "real time" measurement system able to directly measure, with microgram resolution, the dissolution rate of absorbable glass fibers, and utilize the system to evaluate the effectiveness of silane-based sizing as a means to delay the fiber dissolution process. The absorbable glass fiber used was calcium phosphate (CaP), with tetramethoxysilane selected as the sizing agent. E-glass fiber was used as a relatively nondegrading control. Both the unsized-CaP and sized-CaP degraded linearly at both the 37 degrees C and 60 degrees C test temperature levels used. No significant decrease in weight-loss rate was recorded when the CaP fiber tows were pretreated, using conventional application methods, with the tetramethoxysilane sizing for either temperature condition. The unsized-CaP and sized-CaP weight loss rates were each significantly higher at 60 than at 37 degrees C (both p < 0.02), as expected from dissolution kinetics. In terms of actual weight loss rate measured using our system for phosphate glass fiber, the unsized-CaP fiber we studied dissolved at a rate of 10.90 x 10(-09) and 41.20 x 10(-09) g/min-cm(2) at 37 degrees C and 60 degrees C, respectively. Considering performance validation of the developed system, the slope of the weight loss vs. time plot for the tested E-glass fiber was not significantly different compared to a slope equal to zero for both test temperatures. Copyright 1999 John Wiley & Sons, Inc.

  2. Structure and properties of strontium-doped phosphate-based glasses

    PubMed Central

    Abou Neel, Ensanya A.; Chrzanowski, Wojciech; Pickup, David M.; O'Dell, Luke A.; Mordan, Nicola J.; Newport, Robert J.; Smith, Mark E.; Knowles, Jonathan C.

    2008-01-01

    Owing to similarity in both ionic size and polarity, strontium (Sr2+) is known to behave in a comparable way to calcium (Ca2+), and its role in bone metabolism has been well documented as both anti-resorptive and bone forming. In this study, novel quaternary strontium-doped phosphate-based glasses, containing 1, 3 and 5 mol% SrO, were synthesized and characterized. 31P magic angle spinning (MAS) nuclear magnetic resonance results showed that, as the Sr2+ content is increased in the glasses, there is a slight increase in disproportionation of Q2 phosphorus environments into Q1 and Q3 environments. Moreover, shortening and strengthening of the phosphorus to bridging oxygen distance occurred as obtained from FTIR. The general broadening of the spectral features with Sr2+ content is most probably due to the increased variation of the phosphate–cation bonding interactions caused by the introduction of the third cation. This increased disorder may be the cause of the increased degradation of the Sr-containing glasses relative to the Sr-free glass. As confirmed from elemental analysis, all Sr-containing glasses showed higher Na2O than expected and this also could be accounted for by the higher degradation of these glasses compared with Sr-free glasses. Measurements of surface free energy (SFE) showed that incorporation of strontium had no effect on SFE, and samples had relatively higher fractional polarity, which is not expected to promote high cell activity. From viability studies, however, the incorporation of Sr2+ showed better cellular response than Sr2+-free glasses, but still lower than the positive control. This unfavourable cellular response could be due to the high degradation nature of these glasses and not due to the presence of Sr2+. PMID:18826914

  3. Effect of PbO on the spectral and thermo-optical properties of Nd3+-doped phosphate laser glass

    NASA Astrophysics Data System (ADS)

    Yin, Qianwen; Kang, Shuai; Wang, Xue; Li, Shunguang; He, Dongbing; Hu, Lili

    2017-04-01

    Nd3+-doped P2O5-K2O-Al2O3-BaO-PbO phosphate glasses with various PbO/BaO ratios were synthesized using the melt quenching technique. Raman, absorption, and emission spectra were measured to investigate the effects of PbO/BaO ratios on the structures and spectroscopic properties of the glasses. The emission cross-sections of the Nd3+-doped phosphate glasses were calculated using the Judd-Ofelt theory, and were found to increase from 4.37 × 10-20 to 4.50 × 10-20 cm2 as the PbO/BaO ratio increased. In addition, thermo-optical properties were measured using an interferometric technique. The thermo-optical coefficients, which were -1.49 × 10-6, -1.65 × 10-6, and -1.64 × 10-6 K-1, respectively, were all largely negative values. The thermal expansion coefficients of the three glass samples varied within a small range. The results showed that increasing the PbO/BaO ratio of phosphate glasses can improve the laser properties while maintaining their good thermo-optical properties.

  4. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.

    PubMed

    Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien

    2007-06-01

    This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to

  5. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings

    NASA Astrophysics Data System (ADS)

    Wagener, V.; Boccaccini, A. R.; Virtanen, S.

    2017-09-01

    In the last years, chitosan-bioactive glass (BG) composites have been developed and investigated as bioactive coatings for orthopedic applications. The increase of bioactivity occurs due to the stimulation of calcium-phosphate/hydroxyapatite formation on the surface while the coating is degrading. In the present work, protein adsorption and its influence on calcium-phosphate precipitation was studied for the first time on such composite coatings. The experiments involved coating of 316L stainless steel substrates with chitosan (Ch) and chitosan-bioactive glass (Ch-BG) and immersion of the coated samples in two different bovine serum albumin (BSA) containing solutions, namely DI H2O (with pH adjusted to about 7.2 with diluted NaOH) and simulated body fluid (SBF). In order to investigate the influence of protein adsorption on calcium-phosphate precipitation, samples were also immersed in DI H2O and in SBF without BSA. Samples were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Surface analysis revealed that adsorption of BSA takes place on all studied samples and that protein adsorption is influenced by the presence of Ca2+ and PO43- ions. Bioactivity in the form of hydroxyapatite pre-stage formation is significantly increased on Ch-BG composite coating as compared with bare stainless steel surface. However, calcium-phosphate precipitation in SBF is reduced by the presence of BSA.

  6. Evidence of phase transition in Nd3+ doped phosphate glass determined by thermal lens spectrometry.

    PubMed

    Andrade, Acácio A; Lourenço, Sidney A; Pilla, Viviane; Silva, Anielle C Almeida; Dantas, Noelio O

    2014-01-28

    Thermal lens spectroscopy (TLS), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) techniques were applied to the thermo-optical property analysis of a new phosphate glass matrix PANK with nominal composition 40P2O5·20Al2O3·35Na2O·5K2O (mol%), doped with different Nd(3+) compositions. This glass system, synthesized by the fusion protocol, presents high transparency from UV to the near infrared, excellent thermo-optical properties at room temperature and high fluorescence quantum efficiency. Thermal lens phase shift parameters, thermal diffusivity and the DSC signal present pronounced changes at about 61 °C for the PANK glass system. This anomalous behavior was associated with a phase transition in the nanostructured glass materials. The FTIR signal confirms the presence of isolated PO4 tetrahedron groups connected to different cations in PANK glass. As a main result, our experimental data suggest that these tetrahedron groups present a structural phase transition, paraelectric-ferroelectric phase transition, similar to that in potassium dihydrogen phosphate, KH2PO4, nanocrystals and which TLS technique can be used as a sensitive method to investigate changes in the structural level of nanostructured materials.

  7. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method.

    PubMed

    Jmal, Nouha; Bouaziz, Jamel

    2017-02-01

    In this work, a calcium-phosphate glass-ceramics was successfully obtained by heat treatment of a mixture of 26.52 in wt.% of fluorapatite (Fap) and 73.48 in wt.% of 77S (77 SiO 2 14 CaO9 P 2 O 5 in wt.%) gel. The calcium phosphate-glass-ceramics was prepared by sol-gel process with tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate and fluorapatite. The synthesized powders were characterized by some commonly used tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 31 P magic angle spinning nuclear magnetic resonance (MAS-NMR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (TF-XRD). The obtained results seemed to confirm the nucleation and growth of hydroxyapatite (Hap) nano-phase in the glass. Moreover, an in-vitro evaluation of the glass-ceramic was performed. In addition, to assess its bioactive capacity, it was soaked in simulated body fluid (SBF) at different time intervals. The SEM, EDS and TF-XRD analyses showed the deposition of hydroxyapatite on the surface of the specimens after three days of immersion in SBF solution. The mechanical properties of the obtained material such as rupture strength, Vickers hardness and elastic modulus were measured. In addition, the friction coefficient of calcium phosphate-glass-ceramics was tested. The values of the composite of rupture strength (24MPa), Vickers hardness (214Hv), Young's modulus (52.3GPa), shear modulus (19GPa) and friction coefficient (0.327) were obtained. This glass-ceramics can have useful applications in dental prostheses. Indeed, this material may have promising applications for implants because of its content of fluorine, the effective protector against dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system

    NASA Astrophysics Data System (ADS)

    He, Feng

    The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single

  9. Synthesis and studies on microhardness of alkali zinc borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhashini,, E-mail: subhashini.p.p@gmail.com; Bhattacharya, Soumalya, E-mail: subhashini.p.p@gmail.com; Shashikala, H. D., E-mail: subhashini.p.p@gmail.com

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributedmore » to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.« less

  10. Effect of Partial Crystallization on the Structural and Luminescence Properties of Er3+-Doped Phosphate Glasses

    PubMed Central

    Lopez-Iscoa, Pablo; Salminen, Turkka; Hakkarainen, Teemu; Petit, Laeticia; Janner, Davide; Boetti, Nadia G.; Lastusaari, Mika; Pugliese, Diego; Paturi, Petriina; Milanese, Daniel

    2017-01-01

    Er-doped phosphate glass ceramics were fabricated by melt-quenching technique followed by a heat treatment. The effect of the crystallization on the structural and luminescence properties of phosphate glasses containing Al2O3, TiO2, and ZnO was investigated. The morphological and structural properties of the glass ceramics were characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), and micro-Raman spectroscopy. Additionally, the luminescence spectra and the lifetime values were measured in order to study the influence of the crystallization on the spectroscopic properties of the glasses. The volume ratio between the crystal and the glassy phases increased along with the duration of the heat treatment. The crystallization of the glass ceramics was confirmed by the presence of sharp peaks in the XRD patterns and different crystal phases were identified depending on the glass composition. Sr(PO3)2 crystals were found to precipitate in all the investigated glasses. As evidenced by the spectroscopic properties, the site of the Er3+ ions was not strongly affected by the heat treatment except for the fully crystallized glass ceramic which does not contain Al2O3, TiO2, and ZnO. An increase of the lifetime was also observed after the heat treatment of this glass. Therefore, we suspect that the Er3+ ions are incorporated in the precipitated crystals only in this glass ceramic. PMID:28772833

  11. Rational Design Synthesis and Evaluation of New Selective Inhibitors of Microbial Class II (Zinc Dependent) Fructose Bis-phosphate Aldolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R Daher; M Coincon; M Fonvielle

    2011-12-31

    We report the synthesis and biochemical evaluation of several selective inhibitors of class II (zinc dependent) fructose bis-phosphate aldolases (Fba). The products were designed as transition-state analogues of the catalyzed reaction, structurally related to the substrate fructose bis-phosphate (or sedoheptulose bis-phosphate) and based on an N-substituted hydroxamic acid, as a chelator of the zinc ion present in active site. The compounds synthesized were tested on class II Fbas from various pathogenic microorganisms and, by comparison, on a mammalian class I Fba. The best inhibitor shows Ki against class II Fbas from various pathogens in the nM range, with very highmore » selectivity (up to 105). Structural analyses of inhibitors in complex with aldolases rationalize and corroborate the enzymatic kinetics results. These inhibitors represent lead compounds for the preparation of new synthetic antibiotics, notably for tuberculosis prophylaxis.« less

  12. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass.

    PubMed

    Yang, Yanqiu; He, Fupo; Ye, Jiandong

    2016-12-01

    In this study, phosphate-based glass (PG) was used as a sintering aid for freeze-cast porous biphasic calcium phosphate (BCP) ceramic, which was sintered under a lower temperature (1000°C). The phase composition, pore structure, compressive strength, and cytocompatibility of calcium phosphate composite ceramics (PG-BCP) were evaluated. The results indicated that PG additive reacted with calcium phosphate during the sintering process, forming β-Ca2P2O7; the ions of sodium and magnesium from PG partially substituted the calcium sites of β-calcium phosphate in BCP. The PG-BCP showed good cytocompatibility. The pore width of the porous PG-BCP ceramics was around 50μm, regardless of the amount of PG sintering aid. As the content of PG increased from 0wt.% to 15wt.%, the compressive strength of PG-BCP increased from 0.02 MP to 0.28MPa. When the PG additive was 17.5wt.%, the compressive strength of PG-BCP dramatically increased to 5.66MPa. Addition of 15wt.% PG was the critical point for the properties of PG-BCP. PG is considered as an effective sintering aid for freeze-cast porous bioceramics. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Optical characterisation of hydroxide catalysed bonds applied to phosphate glass

    NASA Astrophysics Data System (ADS)

    Lacaille, Grégoire; Mangano, Valentina; van Veggel, Anna-Maria A.; Killow, Christian J.; MacKay, Peter E.; Rowan, Sheila; Hough, James

    2017-10-01

    We apply the Hydroxide Catalysis Bonding (HCB) technique to phosphate glass and measure the reflectivity and Light Induced Damage Threshold (LITD) of the newly formed interface. HCB is a room temperature, high performing process which was designed for astronomical research glass assemblies and played a key role in the detection of gravitational waves, a breakthrough in contemporary science. The bonds have numerous assets including mechanical strength, stability, no outgassing and resistance to contamination which are of high interest in the precision optics industry. However only little research has been done on their optical properties and mostly on silica based materials. In this paper, we use HCB to bond phosphate glass at room temperature with the goal of designing composite components for solid state laser gain media. We change the solution parameters to identify how they influence the final properties of the bonds: the LIDT at 1535 nm in long pulse regime and the reflectivity at 532 nm are investigated. The measurement of the incidence dependent reflectance allows estimating the thickness and refractive index of the bond in a non destructive process. The best performing set of parameters yields a LIDT of 1.6 GW/cm2 (16 J/cm2) and a reflectivity below 0.03 % which makes it suitable for use in high power lasers. The bond thickness is derived both from Scanning Electron Microscopy and the reflectivity measurements and is in the range of 50-150 nm depending on the parameters. Finally, the bonds survive cutting and polishing which is promising for manufacturing purpose.

  14. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    PubMed

    Valappil, Sabeel P; Higham, Susan M

    2014-01-01

    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  15. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, J.S.; Sapak, D.L.; Ward, J.M.

    1990-05-29

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K[sub 90 C] > 0.8 W/mK, and a low coefficient of thermal expansion, [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, consists essentially of (on a batch composition basis Mole %): P[sub 2]O[sub 5], 45-70; Li[sub 2]O, 15-35; Na[sub 2]O, 0-10; Al[sub 2]O[sub 3], 10-15; Nd[sub 2]O[sub 3], 0.01-6; La[sub 2]O[sub 3], 0-6; SiO[sub 2], 0-8; B[sub 2]O[sub 3], 0-8; MgO, 0-18; CaO, 0-15; SrO, 0-9; BaO, 0-9; ZnO, 0-15; the amounts of Li[sub 2]O and Na[sub 2]O providing an average alkali metal ionic radius sufficiently low whereby said glass has K[sub 90 C] > 0.8 W/mK and [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd[sub 2]O[sub 3] can be replaced by other lasing species. 3 figs.

  16. Optical basicity and polarizability for copper-zinc doped sol-gel glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, G., E-mail: gkapds@gmail.com; Pandey, O. P.; Amjotkaur,, E-mail: amjotkaur93@gmail.com

    2016-05-06

    CaO-SiO{sub 2}-B{sub 2}O{sub 3}-P{sub 2}O{sub 5} glasses have been studied by varying ratios of Copper oxide and Zinc oxide. Glasses were prepared using Sol-Gel technique. Opitical Basicity and oxide ion Polarizability were calculated and discussed in relation with non bridging Oxygen ions (NBOs). Optical basicity is average electron donating capability of an oxide atom. All glasses had a little difference in optical basicity and polarizability values but CZ8 glass (20CaO-60SiO{sub 2}-5B{sub 2}O{sub 3}-5P{sub 2}O{sub 5}-2CuO-8ZnO) came out to show highest optical basicity and polarizability with value 0.5177 and 0.9798 respectively. This showed the highest electron donating tendency of CZ8 glassmore » and highest number of NBOs. These were minimum for CZ2 glass with 8CuO and 2ZnO. In aspect of optical basicity and polarizability glasses follow the series CZ2 < CZ4 < CZ6 < CZ8. Increasing concentration of ZnO and decreasing concentration of CuO lead to higher optical basicity and oxide ion polarizability.« less

  17. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  18. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.

    2016-08-01

    In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.

  20. Spectroscopic and laser properties of Er{sup 3+} doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, S.; Seshadri, M.; Reddy Prasad, V.

    2015-10-15

    Highlights: • Erbium doped different fluoro-phosphate glasses are prepared and characterized. • Spectroscopic properties have been determined using Judd–Ofelt and Mc-Cumber theory. • Prominent laser transition Er{sup 3+}:{sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} is observed at 1.53 μm. - Abstract: Different fluoro-phosphate glasses doped with 0.5 mol% Er{sup 3+} doped are prepared by melt quenching method. Both structural and spectroscopic properties have been characterized in order to evaluate their potential as both laser source and amplifier materials. Optical absorption measurements are carried out and analyzed through Judd–Ofelt and Mc-Cumber theories where spectroscopic parameters such as intensity parameters Ω{sub l}more » (λ = 2,4,6), transition probabilities, radiative lifetimes, stimulated absorption cross-sections and emission cross-sections at 1.5 μm have been evaluated for Er{sup 3+} doped different fluorophosphate glasses. The various luminescence and gain properties are explained from photoluminescence studies. The decay curve analysis have been done for obtaining the decay time constants of Er{sup 3+} excited level {sup 4}I{sub 13/2} in all the fluoro-phosphate glasses. The obtained results of each glass matrix are compared with the equivalent parameters for several other host glasses. These fluoro-phosphate glasses are found to be suitable candidates for laser and amplifier applications.« less

  1. The impact of gallium content on degradation, bioactivity, and antibacterial potency of zinc borate bioactive glass.

    PubMed

    Rahimnejad Yazdi, Alireza; Torkan, Lawrence; Stone, Wendy; Towler, Mark R

    2018-01-01

    Zinc borate glasses with increasing gallium content (0, 2.5, 5, 10, and 15 Wt % Ga) were synthesized and their degradation, bioactivity in simulated body fluid (SBF), and antibacterial properties were investigated. ICP measurements showed that increased gallium content in the glass resulted in increased gallium ion release and decreased release of other ions. Degradability declined with the addition of gallium, indicating the formation of more symmetric BO 3 units with three bridging oxygens and asymmetric BO 3 units with two bridging oxygens in the glass network as the gallium content in the series increased. The formation of amorphous CaP on the glass surface after 24 h of incubation in SBF was confirmed by SEM, XRD, and FTIR analyses. Finally, antibacterial evaluation of the glasses using the agar disc-diffusion method demonstrated that the addition of gallium increased the antibacterial potency of the glasses against P. aeruginosa (Gram-negative) while decreasing it against S. epidermidis (Gram-positive); considering the ion release trends, this indicates that the gallium ion is responsible for the glasses' antibacterial behavior against P. aeruginosa while the zinc ion controls the antibacterial activity against S. epidermidis. The statistical significance of the observed trends in the measurements were confirmed by applying the Kruskal-Wallis H Test. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 367-376, 2018. © 2017 Wiley Periodicals, Inc.

  2. Synthesis, growth, structural, spectroscopic and optical studies of a semiorganic NLO crystal: zinc guanidinium phosphate.

    PubMed

    Suvitha, A; Murugakoothan, P

    2012-02-01

    The semi-organic nonlinear optical (NLO) crystal, zinc guanidinium phosphate (ZGuP) has been grown through synthesis between zinc sulphate, guanidine carbonate and orthophosphoric acid from its aqueous solution by slow solvent evaporation technique. Solubility of the synthesized material has been determined for various temperatures using water as solvent. The grown crystal has been characterized by powder X-ray diffraction to confirm the crystal structure. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier transform infrared spectroscopy technique. (1)H and (13)C FT-NMR have been recorded to elucidate the molecular structure. The optical absorption study confirms the suitability of the crystal for device applications. The second harmonic generation (SHG) efficiency of ZGuP is found to be 1.825 times that of potassium dihydrogen phosphate (KDP). Thermal behavior of the grown crystals has been studied by thermogravimetric and differential thermal analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Physical and optical properties of calcium sulfate ultra-phosphate glass-doped Er2O3

    NASA Astrophysics Data System (ADS)

    Aliyu, Aliyu Mohammed; Hussin, R.; Deraman, Karim; Ahmad, N. E.; Danmadami, Amina M.; Yamusa, Y. A.

    2018-03-01

    The influence of erbium on physical and optical properties of calcium sulfate ultra-phosphate glass was investigated using conventional melt quench process. Selected samples of composition 20CaSO4 (80 - x) P2O5- xEr2O3 with 0.1 ≤x ≤ 0.9 mol.% were prepared and assessed. X-ray diffraction (XRD) techniques were used to confirm the amorphous nature of the said samples. The structural units of phosphate-based glass were assessed from Raman spectra as ultra-(Q3), meta-(Q2), pyro-(Q1) and orthophosphate (Q0) units. Depolymerization process of the glasses was testified for higher calcium oxide content and UV-visible for optical measurement. Thermal analysis have been investigated by means of thermogravimetric analysis. The results show the decomposition of materials in the temperature range of 25∘C-1000∘C. Er3+ absorption spectra were measured in the range of 400-1800nm. PL measurement was carried out in order to obtain the excitation and emission spectra of the samples. The emission spectra excited at 779nm comprises of 518nm, 550nm and 649nm of transition 4F9/2, 4S3/2 and 2H11/2 excited states to 4I15/2 ground state. In physical properties, the density calculated using Archimedes method is inversely proportional to molar volume with increase in Er3+ ions. Optical bandgap (Eg) were determined using Tauc’s plots for direct transitions where Eg (direct) decreases with increase in erbium content. The refractive index increases with decreasing molar volume; this may have a tendency for larger optical bandgap. The result obtained from the glass matrix indicates that erbium oxide-doped calcium sulfate ultra-phosphate may give important information for wider development of functional glasses.

  4. Effect of composition and temperature on the second harmonic generation in silver phosphate glasses

    NASA Astrophysics Data System (ADS)

    Konidakis, I.; Psilodimitrakopoulos, S.; Kosma, K.; Lemonis, A.; Stratakis, E.

    2018-01-01

    We herein employ nonlinear laser imaging microscopy to explicitly study the dynamics of second harmonic generation (SHG) in silver iodide phosphate glasses. While glasses of this family have gained extensive scientific attention over the years due to their superior conducting properties, considerably less attention has been paid to their unique nonlinear optical characteristics. In the present study, firstly, it is demonstrated that SHG signal intensity is enhanced upon increasing silver content due to the random formation of silver microstructures within the glass network. Secondly, the SHG temperature dynamics were explored near the glass transition temperature (Tg) regime, where significant glass relaxation phenomena occur. It is found that heating towards the Tg improves the SHG efficiency, whereas above Tg, the capacity of glasses to generate second harmonic radiation is drastically suppressed. The novel findings of this work are considered important in terms of the potential employment of these glasses for the realization of advanced photonic applications like optical-switches and wavelength conversion devices.

  5. Structural investigation of new vanadium-bismuth-phosphate glasses by IR and ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Vedeanu, N.; Cozar, O.; Stanescu, R.; Cozar, I. B.; Ardelean, I.

    2013-07-01

    IR spectra changes of the xV2O5(1 - x)[0.8P2O5ṡ0.2Bi2O3] glass system with 0 ⩽ x ⩽ 50 mol% show that vanadium oxide acts as a network modifier at low concentration (x ⩽ 5 mol%), affecting especially the Bi2O3 network. In the same time the phosphate groups (structures) impose their presence by themselves, fact which is illustrated by the increasing of the intensity of characteristic 910, 1040, 1230 cm-1 bands. The IR bands belonging to the phosphate groups are strongly reduced for x ⩾ 10 mol% due to the phosphate network depolymerization and to the appearance of new vibrations characteristic for POV and VOV linkages, showing the network former role of V2O5. In the same time the changes observed in the ESR spectra of these glasses are explained supposing the superposition of two signals, one with a well-resolved hyperfine structure typical for isolated V4+ ions and a broad line characteristic for clustered ions. The line width dependence versus V2O5 content shows that dipole-dipole interactions exist between vanadium ions until x = 5 mol% and the superexchange interactions prevail at high content (x ⩾ 10 mol%).

  6. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with

  7. Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Dhankhar, Sunil; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Punia, R.; Kishore, N.

    2016-09-01

    The ac conductivity of zinc modified tellurium based quaternary glasses having composition 60 TeO2-10 B2O3-(30 - x) Bi2O3-x ZnO; x = 10, 15, 20, 25 and 30 has been investigated in the frequency range 10-1-105 Hz and in temperature range 483-593 K. Frequency and temperature dependent ac conductivity found to obey Jonscher power law modified by Almond-West. DC conductivity, crossover frequency and frequency exponent have been estimated from the fitting of the experimental data of conductivity with Jonscher power law modified by Almond-West. The ac conductivity and its frequency exponent have been analyzed by various theoretical models. In presently studied glasses ac conduction takes place via tunneling of overlapping large polaron tunneling. Activation energy is found to be increased with increase in zinc content and dc conduction takes place via variable range hopping proposed by Mott with some modification suggested by Punia et al. The value of the stretched exponent ( β) obtained by fitting of M^' ' }} reveals the presence of non-Debye type relaxation. Scaling spectra of ac conductivity and electric modulus collapse into a single master curve for all compositions and temperatures, reveals the presence of composition and temperature independent conduction and relaxation process in these glasses. Activation energy of conduction ( W) and electric modulus ( E R ) are nearly equal, indicating that polaron have to overcome the same energy barrier during conduction as well as relaxation processes.

  8. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  9. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric,more » and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.« less

  10. Effect of pyrophosphate ions on the conversion of calcium-lithium-borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2010-10-01

    The conversion of glass to a hydroxyapatite (HA) material in an aqueous phosphate solution is used as an indication of the bioactive potential of the glass, as well as a low temperature route for preparing biologically useful materials. In this work, the effect of varying concentrations of pyrophosphate ions in the phosphate solution on the conversion of a calcium-lithium-borate glass to HA was investigated. Particles of the glass (150-355 μm) were immersed for up to 28 days in 0.25 M K(2)HPO(4) solution containing 0-0.1 M K(4)P(2)O(7). The kinetics of degradation of the glass particles and their conversion to HA were monitored by measuring the weight loss of the particles and the ionic concentration of the solution. The structure and composition of the conversion products were analyzed using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. For K(4)P(2)O(7) concentrations of up to 0.01 M, the glass particles converted to HA, but the time for complete conversion increased from 2 days (no K(4)P(2)O(7)) to 10 days (0.01 M K(4)P(2)O(7)). When the K(4)P(2)O(7) concentration was increased to 0.1 M, the product consisted of an amorphous calcium phosphate material, which eventually crystallized to a pyrophosphate product (predominantly K(2)CaP(2)O(7) and Ca(2)P(2)O(7)). The consequences of the results for the formation of HA materials and devices by the glass conversion route are discussed.

  11. Effect of pyrophosphate ions on the conversion of calcium–lithium–borate glass to hydroxyapatite in aqueous phosphate solution

    PubMed Central

    Fu, Hailuo; Day, Delbert E.; Huang, Wenhai

    2010-01-01

    The conversion of glass to a hydroxyapatite (HA) material in an aqueous phosphate solution is used as an indication of the bioactive potential of the glass, as well as a low temperature route for preparing biologically useful materials. In this work, the effect of varying concentrations of pyrophosphate ions in the phosphate solution on the conversion of a calcium–lithium–borate glass to HA was investigated. Particles of the glass (150–355 µm) were immersed for up to 28 days in 0.25 M K2HPO4 solution containing 0–0.1 M K4P2O7. The kinetics of degradation of the glass particles and their conversion to HA were monitored by measuring the weight loss of the particles and the ionic concentration of the solution. The structure and composition of the conversion products were analyzed using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. For K4P2O7 concentrations of up to 0.01 M, the glass particles converted to HA, but the time for complete conversion increased from 2 days (no K4P2O7) to 10 days (0.01 M K4P2O7). When the K4P2O7 concentration was increased to 0.1 M, the product consisted of an amorphous calcium phosphate material, which eventually crystallized to a pyrophosphate product (predominantly K2CaP2O7 and Ca2P2O7). The consequences of the results for the formation of HA materials and devices by the glass conversion route are discussed. PMID:20680413

  12. Controlled delivery of antimicrobial gallium ions from phosphate-based glasses.

    PubMed

    Valappil, S P; Ready, D; Abou Neel, E A; Pickup, D M; O'Dell, L A; Chrzanowski, W; Pratten, J; Newport, R J; Smith, M E; Wilson, M; Knowles, J C

    2009-05-01

    Gallium-doped phosphate-based glasses (PBGs) have been recently shown to have antibacterial activity. However, the delivery of gallium ions from these glasses can be improved by altering the calcium ion concentration to control the degradation rate of the glasses. In the present study, the effect of increasing calcium content in novel gallium (Ga2O3)-doped PBGs on the susceptibility of Pseudomonas aeruginosa is examined. The lack of new antibiotics in development makes gallium-doped PBG potentially a highly promising new therapeutic agent. The results show that an increase in calcium content (14, 15 and 16 mol.% CaO) cause a decrease in degradation rate (17.6, 13.5 and 7.3 microg mm(-2) h(-1)), gallium ion release and antimicrobial activity against planktonic P. aeruginosa. The most potent glass composition (containing 14 mol.% CaO) was then evaluated for its ability to prevent the growth of biofilms of P. aeruginosa. Gallium release was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.86 log(10) CFU reduction compared to Ga2O3-free glasses) after 48 h. Analysis of the biofilms by confocal microscopy confirmed the anti-biofilm effect of these glasses as it showed both viable and non-viable bacteria on the glass surface. Results of the solubility and ion release studies show that this glass system is suitable for controlled delivery of Ga3+. 71Ga NMR and Ga K-edge XANES measurements indicate that the gallium is octahedrally coordinated by oxygen atoms in all samples. The results presented here suggest that PBGs may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  13. Tunable luminescence mediated by energy transfer in Tm3+/Dy3+ co-doped phosphate glasses under UV excitation

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Chen, Guohua; Liu, Xiangyu; Yuan, Changlai; Zhou, Changrong

    2017-11-01

    Tm3+/Dy3+ co-doped phosphate glasses for white light-emitting diodes were synthesized by a conventional melting-quenching method. A spectroscopic research based on optical, photoluminescence spectrum and decay time curves in Tm3+/Dy3+ co-doped phosphate glasses was carried out. The color of luminescence could be tuned by altering the concentrations of Tm3+ ions. Under UV light excitation, the CIE chromaticity coordinates (0.3471, 0.3374) and color correlate temperature (CCT = 4866.21 K) close to the standard white-light illumination (0.333, 0.333 and CCT = 5454.12 K) could be achieved in 0.4 Tm3+/0.6 Dy3+ (mol %) co-doped glass sample. The decrease of the Dy3+ emission decay time in existence of Tm3+ ascertained that non-radiative energy transfer from Dy3+ to Tm3+ occurred. Moreover, the research of energy transfers between Dy3+ and Tm3+ based on the Inokuti-Hirayama model revealed that an electric quadrupole-quadrupole interaction might be the predominant mechanism participated in the energy transfer. This finding suggests that the as-prepared Tm3+/Dy3+ co-doped phosphate glasses may be promising candidate for white LEDs and other display devices.

  14. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    NASA Astrophysics Data System (ADS)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  15. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    NASA Astrophysics Data System (ADS)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2018-01-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  16. Structural and spectroscopic investigations on deuteron glasses belonging to the potassium dihydrogen phosphate family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Rajul Ranjan, E-mail: rajul@barc.gov.in; Chitra, R.; Abraham, Geogy J.

    2015-06-24

    X-ray powder diffraction and Raman measurements were performed on the mixed crystals of deuterated potassium dihydrogen phosphate (DKDP) and deuterated ammonium dihydrogen phosphate (DADP) grown at our lab. These crystals are known to behave like deuteron glasses due to frustration between ferroelectric and antiferroelectric ordering. Both spectral as well as structural studies indicate that crystals belonging to the glassy regions of the crystal composition have stronger O-D-O hydrogen bonds as compared to those belong to the ferroelectric or antiferroelectric regions of the crystal composition.

  17. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    NASA Astrophysics Data System (ADS)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  18. Effect of zinc-borate glass addition on the thermal properties of the cordierite/Al2O3 composites containing nano-sized spinel crystal.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-11-01

    Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).

  19. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm

    NASA Astrophysics Data System (ADS)

    Yan, Y. C.; Faber, A. J.; de Waal, H.; Kik, P. G.; Polman, A.

    1997-11-01

    Erbium-doped multicomponent phosphate glass waveguides were deposited by rf sputtering techniques. The Er concentration was 5.3×1020cm-3. By pumping the waveguide at 980 nm with a power of ˜21 mW, a net optical gain of 4.1 dB at 1.535 μm was achieved. This high gain per unit length at low pump power could be achieved because the Er-Er cooperative upconversion interactions in this heavily Er-doped phosphate glass are very weak [the upconversion coefficient is (2.0±0.5)×10-18 cm3/s], presumably due to the homogeneous distribution of Er in the glass and due to the high optical mode confinement in the waveguide which leads to high pump power density at low pump power.

  20. Visible emission in Sm3+ and Tb3+ doped phosphate glass excited by UV radiation

    NASA Astrophysics Data System (ADS)

    Zmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Czajkowski, Karol; Ragin, Tomasz

    2013-10-01

    In the article analysis of UV absorption and visible fluorescence of Sm3+ and Tb3+ ions doped phosphate glass with molar composition: 65P2O5 + 8Al2O3 + 10BaO + 17(Na2O + MgO + ZnO) have been investigated. As a result of optical pumping fabricated glass with radiation from a deuterium lamp four luminescence bands were observed near to the wavelength of 600 nm for Sm3+ ions and 550 nm for Tb3+ ions. It was found that larger energy gap between laser and ground levels leads to the strongest emission in the visible range in terbium doped glasses than in glasses doped with samarium ions. Both fabricated glasses are characterized by the ability to selectively detect the radiation in the UV range.

  1. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    PubMed

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N

    2006-07-01

    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process.

  2. Effect of AlF3 on the Density and Elastic Properties of Zinc Tellurite Glass Systems

    PubMed Central

    Sidek, Haji Abdul Aziz; Rosmawati, Shaharuddin; Halimah, Mohamed Kamari; Matori, Khamirul Amin; Talib, Zainal Abidin

    2012-01-01

    This paper presents the results of the physical and elastic properties of the ternary zinc oxyfluoro tellurite glass system. Systematic series of glasses (AlF3)x(ZnO)y(TeO2)z with x = 0–19, y = 0–20 and z = 80, 85, 90 mol% were synthesized by the conventional rapid melt quenching technique. The composition dependence of the physical, mainly density and molar volume, and elastic properties is discussed in term of the AlF3 modifiers addition that are expected to produce quite substantial changes in their physical properties. The absence of any crystalline peaks in the X-ray diffraction (XRD) patterns of the present glass samples indicates the amorphous nature. The addition of AlF3 lowered the values of the densities in ternary oxyfluorotellurite glass systems. The longitudinal and transverse ultrasonic waves propagated in each glass sample were measured using a MBS8020 ultrasonic data acquisition system. All the velocity data were taken at 5 MHz frequency and room temperature. The longitudinal modulus (L), shear modulus (G), Young’s modulus (E), bulk modulus (K) and Poisson’s ratio (σ) are obtained from both velocities data and their respective density. Experimental data shows the density and elastic moduli of each AlF3-ZnO-TeO2 series are found strongly depend upon the glass composition. The addition of AlF3 modifiers into the zinc tellurite causes substantial changes in their density, molar volume as well as their elastic properties.

  3. Effect of lead fluoride incorporation on the structure and luminescence properties of tungsten sodium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Nardi, Rachel Prado Russo Delorenzo; Braz, Celso Eduardo; de Camargo, Andrea S. S.; Ribeiro, Sidney J. L.; Rocha, Lucas A.; Cassanjes, Fábia Castro; Poirier, Gael

    2015-11-01

    Tungsten phosphate glasses are known to be promising materials for several applications in optics such as non linear optical properties, lower phonon energy or photochromic effects related with tungsten oxide incorporation inside the phosphate network. In this study, lead fluoride has been incorporated in a 60NaPO3-40WO3 glass composition according to the ternary molar compositions (100 - x)[0.6NaPO3-0.4WO3]-xPbF2 with x varying from 0 to 60 mol%. The structural changes as a function of composition were investigated by thermal analysis, UV-visible absorption, Raman spectroscopy, X-ray diffraction of the crystallized samples, and Eu3+ emission in the visible. While DSC analyzes points out a strong decrease in the glass network connectivity and higher crystallization tendency with increasing PbF2 contents, Raman spectra clearly identify a progressive incorporation of PbF2 in the phosphate network with the formation of terminal Psbnd F and Wsbnd F bonds. These results are also in agreement with the crystallization of β-PbF2 observed for the most lead fluoride concentrated samples. Investigation of Eu3+ emission data in the visible showed longer 5D0 excited state lifetime values and higher quantum efficiencies. These results are discussed in terms of the assumption of higher local symmetry around Eu3+ with increasing PbF2 contents.

  4. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  5. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Lisha; P, Geetha; B, Aravind P.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness andmore » composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.« less

  6. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  7. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    PubMed

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  8. Spectroscopic investigation of zinc tellurite glasses doped with Yb(3+) and Er(3+) ions.

    PubMed

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-05

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80-x-y) TeO2+(0.20) ZnO+xEr2O3+yYb2O3 (x=0, y=0; x=0.004, y=0; x=0, y=0.05 and x=0.004, y=0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er(3+) glasses as erbium doped fiber amplifiers at 1.55μm in infrared emission region. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period. © 2014 Wiley Periodicals, Inc.

  10. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Story, Sandra; Brigmon, Robin L.

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less

  11. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase

    DOE PAGES

    Story, Sandra; Brigmon, Robin L.

    2016-12-19

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less

  12. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    PubMed

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications. Copyright © 2016. Published by Elsevier Inc.

  13. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Seema, Khasa, S.; Dahiya, M. S.; Yadav, Arti; Agarwal, A.; Dahiya, S.

    2015-06-01

    Glasses with composition xZnOṡ(30 - x)ṡLi2Oṡ70B2O3 containing 2 mol% of V2O5 (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li2O is replaced by ZnO, keeping the concentration of B2O3 constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a "blocking effect" on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  14. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage

    NASA Astrophysics Data System (ADS)

    Sigaev, Vladimir N.; Savinkov, Vitaly I.; Lotarev, Sergey V.; Shakhgildyan, Georgiy Yu; Lorenzi, Roberto; Paleari, Alberto

    2013-06-01

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications.

  15. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage.

    PubMed

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Lorenzi, Roberto; Paleari, Alberto

    2013-06-07

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications.

  16. Fluorescence properties of Yb3+-Er3+ co-doped phosphate glasses containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Martínez Gámez, Ma A.; Vallejo H, Miguel A.; Kiryanov, A. V.; Licea-Jiménez, L.; Lucio M, J. L.; Pérez-García, S. A.

    2018-04-01

    Er3+-Yb3+ co-doped phosphate glasses containing silver nitrate (SN), were fabricated. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analyses were used to evidence the nucleation and presence of silver nanoparticles (SNP). The basic parameters of the glasses were inspected by means of absorption and fluorescence spectra, and fluorescence lifetimes under excitation at 916 nm (in-band of Yb3+), and at 406 nm (in-band of surface plasmon resonance given by the presence of SNP). The spectra as well as estimates for the basic parameters defining the lasing/amplifying potential of the glasses were studied as a function of SN concentration. The experimental results indicate that by increasing the SN content an enhancement of Er3+/Yb3+ fluorescence takes place.

  17. Kinetics of copper nanoparticle precipitation in phosphate glass: an isothermal plasmonic approach.

    PubMed

    Sendova, Mariana; Jiménez, José A; Smith, Robert; Rudawski, Nicholas

    2015-01-14

    The kinetics of copper nanoparticle (NP) precipitation in melt-quenched barium-phosphate glass has been studied by in situ isothermal optical micro-spectroscopy. A spectroscopically based approximation technique is proposed to obtain information about the activation energies of nucleation and growth in a narrow temperature range (530-570 °C). Pre-plasmonic and plasmonic NP precipitation stages are identified separated in time. The process as a whole is discussed employing classical nucleation/growth theory and the Kolmogorov-Johnson-Mehl-Avrami phase change model. Activation energies of 3.9(7) eV and 2.6(5) eV have been estimated for the pre-plasmonic and plasmonic spectroscopically assessed stages, respectively. High resolution transmission electron microscopy, differential scanning calorimetry, and Raman spectroscopy were used as complementary techniques for studying the nanoparticulate phase and glass host structure. An empirical linear dependence of the diffusion activation energy on the glass transition temperature with broad applicability is suggested.

  18. Role of lithium ions on the physical, structural and optical properties of zinc boro tellurite glasses

    NASA Astrophysics Data System (ADS)

    Rani, S.; Ahlawat, N.; Parmar, R.; Dhankhar, S.; Kundu, R. S.

    2018-07-01

    Lithium zinc boro tellurite glasses with compositions xLi2O-(100-x) [0.25ZnO-0.15B2O3-0.60TeO2] [where x = 0, 5, 10, 15 and 20 mol%] have been prepared by melt-quench technique. The amorphous nature of the prepared system is ascertained by X-ray diffraction. The density and molar volume are found to decrease with the increase in concentration of Li2O. The differential scanning calorimetry is used to calculate the glass transition temperature (Tg) and the observed values are found to be decreased. The IR and Raman spectra indicate that Li2O acts as a network modifier in the glass matrix. In the present system, tellurium exists as TeO4 and TeO3, B2O3 in the form of BO4 and BO3 and zinc oxide exists as ZnO4 structural units. The values of the optical band gap are estimated from the fitting of Mott and Davis's and model. A better convergence is achieved between experimental observed spectra of absorption coefficient and hydrogenic excitonic model. The optical band gap energy increases, whereas refractive index and molar refractivity follow the reverse trend with Li2O. The range of metallization criterion suggests that these glasses may be a potential candidate for nonlinear optical materials.

  19. Role of lithium ions on the physical, structural and optical properties of zinc boro tellurite glasses

    NASA Astrophysics Data System (ADS)

    Rani, S.; Ahlawat, N.; Parmar, R.; Dhankhar, S.; Kundu, R. S.

    2018-01-01

    Lithium zinc boro tellurite glasses with compositions xLi2O-(100-x) [0.25ZnO-0.15B2O3-0.60TeO2] [where x = 0, 5, 10, 15 and 20 mol%] have been prepared by melt-quench technique. The amorphous nature of the prepared system is ascertained by X-ray diffraction. The density and molar volume are found to decrease with the increase in concentration of Li2O. The differential scanning calorimetry is used to calculate the glass transition temperature (Tg) and the observed values are found to be decreased. The IR and Raman spectra indicate that Li2O acts as a network modifier in the glass matrix. In the present system, tellurium exists as TeO4 and TeO3, B2O3 in the form of BO4 and BO3 and zinc oxide exists as ZnO4 structural units. The values of the optical band gap are estimated from the fitting of Mott and Davis's and model. A better convergence is achieved between experimental observed spectra of absorption coefficient and hydrogenic excitonic model. The optical band gap energy increases, whereas refractive index and molar refractivity follow the reverse trend with Li2O. The range of metallization criterion suggests that these glasses may be a potential candidate for nonlinear optical materials.

  20. Enhanced transparency, mechanical durability, and antibacterial activity of zinc nanoparticles on glass substrate

    PubMed Central

    Choi, Hyung-Jin; Choi, Jin-Seok; Park, Byeong-Ju; Eom, Ji-Ho; Heo, So-Young; Jung, Min-Wook; An, Ki-Seok; Yoon, Soon-Gil

    2014-01-01

    Homogeneously distributed zinc nanoparticles (NPs) on the glass substrate were investigated for the transmittance, mechanical durability, and antibacterial effect. The buffered Ti NPs between Zn NPs and glass substrate were studied for an enhancement of the transmittance and mechanical endurance. The Ti NPs buffered Zn NPs showed a high transmittance of approximately 91.5% (at a wavelength of 550 nm) and a strong antibacterial activity for Staphylococcus aureus and Escherichia coli bacteria. The buffered Ti NPs are attractive for an excellent mechanical endurance of the Zn NPs. The Zn NPs did not require the protection layer to prevent the degradation of the performance for both the antibacterial effect and the transmittance. PMID:25183360

  1. Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses.

    PubMed

    Thulasiramudu, A; Buddhudu, S

    2007-02-01

    This paper reports on the spectral analysis of Eu3+ or Tb3+ ions (0.5 mol%) doped heavy metal oxide (HMO) based zinc lead borate glasses from the measurement of their absorption, emission spectra and also different physical properties. From the XRD, DSC profiles, the glass nature and glass thermal properties have been studied. The measured emission spectrum of Eu3+ glass has revealed five transitions (5D0-->7F0, 7F1, 7F2, 7F3 and 7F4) at 578, 591, 613, 654 and 702 nm, respectively, with lambdaexci=392 nm (7F0-->5L6). In the case of Tb3+:ZLB glass, four emission transitions such as (5D4-->7F6, 7F5, 7F4 and 7F3) that are located at 489, 542, 585 and 622 nm, respectively, have been measured with lambdaexci=374 nm. For all these emission bands decay curves have been plotted to evaluate their lifetimes and the emission processes that arise in the glasses have been explained in terms of energy level schemes.

  2. Radioluminescence and optical studies of gadolinium calcium phosphate oxyfluoride glasses doped with Sm3+

    NASA Astrophysics Data System (ADS)

    Meejitpaisan, P.; Insiripong, S.; Kedkaew, C.; Kim, H. J.; Kaewkhao, J.

    2017-08-01

    Sm3+-doped gadolinium calcium phosphate oxyfluoride glasses have been synthesized and investigated their optical, photo and radioluminescence properties. The glasses were prepared by melt quenching technique at 1400 °C. The characteristic absorption bands of Sm3+ ions originating from the 6H5/2 ground state and occurring absorbed photon in visible light (VIS) and near-infrared (NIR) region with clearly observed from absorption spectra. From the photoluminescence (PL), the glasses showed the emission at 561 (4G5/2→6H5/2), 598 (4G5/2→6H7/2), 644 (4G5/2→6H9/2) and 705 nm (4G5/2→6H11/2). The radioluminescence (RL), emission spectra were corresponding to those from PL measurements. From RL measurement, the integral scintillation efficiency of developed glass was determined at 43% when compared with BGO crystal.

  3. Biological Impact of Bioactive Glasses and Their Dissolution Products.

    PubMed

    Hoppe, Alexander; Boccaccini, Aldo R

    2015-01-01

    For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. © 2015 S. Karger AG, Basel.

  4. Two-photon excited microscale colour centre patterns in Ag-activated phosphate glass written using a focused proton beam

    NASA Astrophysics Data System (ADS)

    Kurobori, Toshio; Kada, Wataru; Shirao, Taichi; Satoh, Takahiro

    2018-02-01

    We report a demonstration of microscale patterns in Ag-activated phosphate glass fabricated using a focused proton beam with an energy range of 1-3 MeV. Various microscale patterns are based on blue and orange radiophotoluminescent (RPL) centres. Two- and three-dimensional (2D and 3D) microstructures are visualised by combining two-photon confocal microscopy with femtosecond (fs) laser pulses generated from a mode-locked Ti:sapphire laser operating at 700 nm. The reconstructed images are analytically evaluated using lateral/axial dose mapping and RPL spectra. In addition, the advantages of two-photon excitation applied to Ag-activated phosphate glass are discussed, and this method is compared with single-photon excitation.

  5. Development and characterization of a new Er3+-doped phosphate glass for planar waveguide lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Jiang, Shibin; Honkanen, Seppo; Luo, Tao; Hwang, Bor-Chyuan; Nunzi Conti, Gualtiero; Myers, Michael J.; Rhonehouse, Daniel L.; Peyghambarian, Nasser

    1998-04-01

    A new Er3+ doped phosphate glass exhibiting an excellent durability in both boiling water and NaNO3 molten salt was developed. Ion-exchange process of this glass was investigated by treating glass samples in a variety of salt bathes with various exposure times. Planar waveguide with one mode at 1.54 micrometers and three modes at 632.8 nm was demonstrated. Spectral properties of Er3+ in this glass were characterized by measuring absorption and emission spectra, and fluorescence lifetimes. Emission cross section of Er3+ in this glass was calculated to be 0.76 X 10-20 cm2 using McCumber theory. Our preliminary experimental results indicate this new Er3+ doped glass is an excellent material for ion-exchanged waveguide lasers and amplifiers.

  6. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement.

    PubMed

    Mazzaoui, S A; Burrow, M F; Tyas, M J; Dashper, S G; Eakins, D; Reynolds, E C

    2003-11-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) nanocomplexes have been shown to prevent demineralization and promote remineralization of enamel subsurface lesions in animal and in situ caries models. The aim of this study was to determine the effect of incorporating CPP-ACP into a self-cured glass-ionomer cement (GIC). Incorporation of 1.56% w/w CPP-ACP into the GIC significantly increased microtensile bond strength (33%) and compressive strength (23%) and significantly enhanced the release of calcium, phosphate, and fluoride ions at neutral and acidic pH. MALDI mass spectrometry also showed casein phosphopeptides from the CPP-ACP nanocomplexes to be released. The release of CPP-ACP and fluoride from the CPP-ACP-containing GIC was associated with enhanced protection of the adjacent dentin during acid challenge in vitro.

  7. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  8. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bioactive calcium pyrophosphate glasses and glass-ceramics.

    PubMed

    Kasuga, Toshihiro

    2005-01-01

    Calcium phosphate glass-based materials in the pyrophosphate region are briefly reviewed. Calcium pyrophosphate glasses can be prepared by including a small amount of TiO(2) (glasses in simulated body fluid. By heating powder-compacts of the glasses, they are crystallized and subsequently are sintered, resulting in fabrication of high-strength glass-ceramics with machinability; they are easier to be machined using conventional tools in comparison with conventional calcium phosphate ceramics. beta-Ca(2)P(2)O(7) crystal formed in the glass-ceramics plays an important role in the machinability. Their apatite-forming ability in simulated body fluid is drastically enhanced after autoclaving in distilled water. The glass-ceramics can be easily coated on a new beta-type titanium alloy using a conventional glazing technique.

  10. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    PubMed

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Formation, structural and optical characterization of neodymium doped-zinc soda lime silica based glass

    NASA Astrophysics Data System (ADS)

    Zamratul, M. I. M.; Zaidan, A. W.; Khamirul, A. M.; Nurzilla, M.; Halim, S. A.

    New glass system of neodymium - doped zinc soda lime silica glass has been synthesized for the first time by melt-quenching of glass waste soda lime silica (SLS) with zinc oxide (ZnO) as precursor glass and Nd2O3 as dopant. In order to examine the effect of Nd3+ on the structural and optical properties, the prepared sample of structure [(ZnO)0.5(SLS)0.5](Nd2O3)x (x = 0, 1, 2, 3, 4 and 5 wt%) was characterized through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy (UV-Vis) and the photoluminescence (PL). XRD pattern justifies the amorphous nature of synthesized glasses. FTIR spectroscopy has been used to observe the structural evolution of ZnO4 and SiO4 groups. The UV-Vis-NIR absorption spectra reveals seven peaks centered at excitation of electron from ground state 4I9/2 to 4D3/2 + 4D5/2 (∼360 nm), 2G9/2 + 2D3/2 + 2P3/2(∼470 nm), 2K13/2 + 4G7/2 + 4G9/2 (∼523 nm), 4G5/2 + 2G7/2 (∼583 nm), 4F9/2 (∼678 nm), 4S3/2 + 4F7/2 (∼748 nm) and 4F5/2 + 2H9/2 (∼801 nm). PL spectra under the excitation of 800 nm display four emission bands centered at 531 nm, 598 nm, 637 nm and 671 nm corresponding to 4G7/2 → 4I9/2, (4G7/2 → 4I11/2, 4G5/2 → 4I9/2), (4G5/2 → 4I11/2) and (4G7/2 → 4I13/2, 4G5/2 → 4I11/2) respectively.

  12. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    NASA Astrophysics Data System (ADS)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  13. Characterization and spectroscopic studies of multi-component calcium zinc bismuth phosphate glass ceramics doped with iron ions

    NASA Astrophysics Data System (ADS)

    Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, M. V. Sambasiva; Tirupataiah, Ch.; Rao, D. Krishna

    2018-04-01

    Glass ceramics with the composition 10CaF2-20ZnO-(15-x)Bi2O3-55P2O5:x Fe2O3(0≤x≤2.5) were synthesized by melt-quenching technique and heat treatment. These glass ceramics were characterized by XRD and SEM. Spectroscopic studies such as optical absorption, EPR were also carried out on these glass ceramics. From the absorption spectra the observed bands around 438 and 660nm are the octahedral transitions of Fe3+ (d5) ions and another band at about 536 nm is the tetrahedral transition of Fe3+ (d5) ions. The absorption spectrum also consist of a band around 991 nm and is attributed to the octahedral transition of Fe2+ ions. The EPR spectra of the prepared glass ceramics have exhibited two resonance signals one at g1=4.32 and another signal at g2=2.008. The observed decrease in band gap energy up to 2 mol% Fe2O3 doped glass ceramics is an evidence for the change of environment around iron ions and ligands from more covalent to less covalent (ionic) and induces higher concentration of NBOs which causes the depolymerization of the glass ceramic network.

  14. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.

    PubMed

    Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G

    2015-06-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.

  15. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes

    PubMed Central

    Ong, Cheryl-lynn Y.; Walker, Mark J.; McEwan, Alastair G.

    2015-01-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways. PMID:26028191

  16. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu

    2015-05-15

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N)more » analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized.

  17. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Yuiko T.; Payne, Stephen A.; Hayden, Joseph S.; Campbell, John H.; Aston, Mary Kay; Elder, Melanie L.

    1996-01-01

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  18. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

    1996-06-11

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  19. Magnesium coated bioresorbable phosphate glass fibres: investigation of the interface between fibre and polyester matrices.

    PubMed

    Liu, Xiaoling; Grant, David M; Parsons, Andrew J; Harper, Lee T; Rudd, Chris D; Ahmed, Ifty

    2013-01-01

    Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg(2+) in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness.

  20. Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices

    PubMed Central

    Liu, Xiaoling; Grant, David M.; Parsons, Andrew J.; Harper, Lee T.; Rudd, Chris D.; Ahmed, Ifty

    2013-01-01

    Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness. PMID:24066297

  1. XPS and 31P NMR inquiry of Eu3+-induced structural modification in SnO-containing phosphate glass

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.; Fachini, Esteban Rosim; Zhao, Chunqing

    2018-07-01

    The influence of Eu3+ doping on the structural properties of SnO-containing phosphate glass has been investigated by X-ray photoelectron spectroscopy (XPS) and 31P nuclear magnetic resonance (NMR) spectroscopy. Oxygen 1s XPS data indicates that the Eu3+ doping results in a higher concentration of non-bridging oxygens in the glass matrix, whereas 31P NMR shows an increase in the terminal phosphate chain tetrahedral units, i.e. the amount of Q1 sites with only one bridging oxygen. Accordingly, both techniques agree with a depolymerization effect induced by the Eu3+ ions. Further, XPS reveals that together with the Eu3+ doping, the presence of Sn4+ is supported while the presence of Eu2+ is also indicated. The structural changes are then indicated to be a consequence of redox chemistry between Sn2+ and Eu3+ promoting a transition of tin from Sn2+ with a role as network former to Sn4+ acting as network modifier in the glass system.

  2. Development, characterisation and biocompatibility testing of a cobalt-containing titanium phosphate-based glass for engineering of vascularized hard tissues.

    PubMed

    Lee, In-Ho; Yu, Hye-sun; Lakhkar, Nilay J; Kim, Hae-Won; Gong, Myoung-Seon; Knowles, Jonathan C; Wall, Ivan B

    2013-05-01

    There is a continuing need to develop scaffold materials that can promote vascularisation throughout the tissue engineered construct. This study investigated the effect of cobalt oxide (CoO) doped into titanium phosphate glasses on material properties, biocompatibility and vascular endothelial growth factor (VEGF) secretion by osteoblastic MG63 cells. Glasses composed of (P2O5)45(Na2O)20(TiO2)05(CaO)30-x(CoO)x(x=0, 5, 10, and 15 mol%) were fabricated and the effect of Co on physicochemical properties including density, glass transition temperature (Tg), degradation rate, ion release, and pH changes was assessed. The results showed that incorporation of CoO into the glass system produced an increase in density with little change in Tg. It was then confirmed that the pH did not change significantly when CoO was incorporated in the glass, and stayed constant at around 6.5-7.0 throughout the dissolution study period of 336 h. Ion release results followed a specific pattern with increasing amounts of CoO. In general, although incorporation of CoO into a titanium phosphate glass increased its density, other bulk and surface properties of the glass did not show any significant changes. Cell culture studies performed using MG63 cells over a 7-day period indicated that the glasses provide a stable surface for cell attachment and are biocompatible. Furthermore, VEGF secretion was significantly enhanced on all glasses compared with standard tissue culture plastic and Co doping enhanced this effect further. In conclusion, the developed Co-doped glasses are stable and biocompatible and thus offer enhanced potential for engineering vascularized tissue. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  3. Novel resorbable glass-ceramic scaffolds for hard tissue engineering: from the parent phosphate glass to its bone-like macroporous derivatives.

    PubMed

    Bretcanu, Oana; Baino, Francesco; Verné, Enrica; Vitale-Brovarone, Chiara

    2014-05-01

    One of the major challenges of hard tissue engineering research focuses on the development of scaffolds that can match the mechanical properties of the host bone and resorb at the same rate as the bone is repaired. The aim of this work was the synthesis and characterization of a resorbable phosphate glass, as well as its application for the fabrication of three dimensional (3-D) scaffolds for bone regeneration. The glass microstructure and behaviour upon heating were analysed by X-ray diffraction, differential scanning calorimetry and hot stage microscopy. The glass solubility was investigated according to relevant ISO standards using distilled water, simulated body fluid (SBF) and Tris-HCl as testing media. The glass underwent progressive dissolution over time in all three media but the formation of a hydroxyapatite-like layer was also observed on the samples soaked in SBF and Tris-HCl, which demonstrated the bioactivity of the material. The glass powder was used to fabricate 3-D macroporous bone-like glass-ceramic scaffolds by adopting polyethylene particles as pore formers: during thermal treatment, the polymer additive was removed and the sintering of glass particles was allowed. The obtained scaffolds exhibited high porosity (87 vol.%) and compressive strength around 1.5 MPa. After soaking for 4 months in SBF, the scaffolds mass loss was 76 wt.% and the pH of the solution did not exceed the 7.55 value, thereby remaining in a physiological range. The produced scaffolds, being resorbable, bioactive, architecturally similar to trabecular bone and exhibiting interesting mechanical properties, can be proposed as promising candidates for bone repair applications.

  4. Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of m-Xylyl-bis-cyclen.

    PubMed

    Esteves, Catarina V; Esteban-Gómez, David; Platas-Iglesias, Carlos; Tripier, Raphaël; Delgado, Rita

    2018-05-11

    The triethylbenzene-bis-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) compound (tbmce) was designed with an imposed structural rigidity at the m-xylyl spacer to be compared to a less restrained and known parent compound (bmce). The framework of both compounds differs only in the substituents of the m-xylyl spacer. The study was centered in the differences observed in the acid-base reactions of both compounds, their copper(II) and zinc(II) complexation behaviors, as well as in the uptake of phosphate and polyphosphate anions (HPPi 3- , ATP 4- , ADP 3- , AMP 2- , PhPO 4 2- , and HPO 4 2- ). On the one hand, the acid-base reactions showed lower values for the third and fourth protonation constants of tbmce than for bmce, suggesting that the ethyl groups of the spacer in tbmce force the two cyclen units to more conformational restricted positions. On the other hand, the stability constant values for copper(II) and zinc(II) complexes revealed that bmce is a better chelator than tbmce pointing out to additional conformational restraints imposed by the triethylbenzene spacer. The binding studies of phosphates by the dinuclear copper(II) and zinc(II) complexes showed much smaller effective association constants for the dicopper complexes. Single-crystal X-ray and computational (density functional theory) studies suggest that anion binding promotes the formation of tetranuclear entities in which anions are bridging the metal centers. Our studies also revealed the dinuclear zinc(II) complex of bmce as a promising receptor for phosphate anions, with the largest effective association constant of 5.94 log units being observed for the formation of [Zn 2 bmce(HPPi)] + . Accordingly, a colorimetric study via an indicator displacement assay to detect phosphates in aqueous solution found that the [Zn 2 bmce] 4+ complex acts as the best receptor for pyrophosphate displaying a detection limit of 2.5 nM by changes visible to naked eye.

  5. Effect of boron oxide addition on the viscosity-temperature behaviour and structure of phosphate-based glasses.

    PubMed

    Sharmin, Nusrat; Hasan, Muhammad S; Rudd, Chris D; Boyd, Daniel; Werner-Zwanziger, Ulrike; Ahmed, Ifty; Parsons, Andrew J

    2017-05-01

    In this study, nine phosphate-based glass formulations from the system P 2 O 5 -CaO-Na 2 O-MgO-B 2 O 3 were prepared with P 2 O 5 content fixed as 40, 45 and 50 mol%, where Na 2 O was replaced by 5 and 10 mol% B 2 O 3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B 2 O 3 addition on the viscosity-temperature behaviour, fragility index and structure of the glasses was investigated. The composition of the glasses was confirmed by ICP-AES. The viscosity-temperature behaviour of the glasses were measured using beam-bending and parallel -plate viscometers. The viscosity of the glasses investigated was found to shift to higher temperature with increasing B 2 O 3 content. The kinetic fragility parameter, m and F 1/2 , estimated from the viscosity curve were found to decease with increasing B 2 O 3 content. The structural analysis was achieved by a combination of Fourier transform infrared spectroscopy and solid state nuclear magnetic resonance. 31 P solid-state magic-angle-spinning nuclear magnetic resonance (MAS-NMR) showed that the local structure of the glasses changes with increasing B 2 O 3 content. As B 2 O 3 was added to the glass systems, the phosphate connectivity increases as the as the Q 1 units transforms into Q 2 units. The 11 B NMR results confirmed the presence of tetrahedral boron (BO 4 ) units for all the compositions investigated. Structural analysis indicates an increasing level of cross-linking with increasing B 2 O 3 content. Evidence of the presence of P-O-B bonds was also observed from the FTIR and 31 P NMR analysis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 764-777, 2017. © 2016 Wiley Periodicals, Inc.

  6. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Yuiko T.; Guesto-Barnak, Donna

    1992-01-01

    A low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K.sub.90.degree. C. >0.85 W/mK, a low coefficient of thermal expansion, .alpha..sub.20.degree.-300.degree. C. <80.times.10.sup.-7 /.degree.C., low emission cross section, .sigma.<2.5.times.10.sup.-20 cm.sup.2, and a high fluorescence lifetime, .tau.>325 .mu.secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): wherein Ln.sub.2 O.sub.3 is the sum of lanthanide oxides; .SIGMA.R.sub.2 O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al.sub.2 O.sub.3 and MgO is <24 unless .SIGMA.R.sub.2 O is 0, then the sum of Al.sub.2 O.sub.3 and MgO is <42; and the ratio of MgO to B.sub.2 O.sub.3 is 0.48-4.20.

  7. Effect of incorporation of zinc oxide nanoparticles on mechanical properties of conventional glass ionomer cements.

    PubMed

    Panahandeh, Narges; Torabzadeh, Hassan; Aghaee, Mohammadamin; Hasani, Elham; Safa, Saeed

    2018-01-01

    The aim of this study is to investigate the physical properties of conventional and resin-modified glass ionomer cements (GICs) compared to GICs supplemented with zinc oxide (ZnO) nanofiller particles at 5% (w/w). In this in vitro study, ZnO nanoparticles of different morphologies (nanospherical, nanorod, and nanoflower) were incorporated to glass ionomer powder. The samples were subjected to the flexural strength ( n = 20) and surface hardness test ( n = 12) using a universal testing machine and a Vickers hardness machine, respectively. Surface analysis and crystal structure of samples were performed with scanning electron microscope and X-radiation diffraction, respectively. The data were analyzed using one-way ANOVA, Shapiro-Wilk, and Tukey's tests ( P < 0.05). Flexural strength of glass ionomer containing nanoparticles was not significantly different from the control group ( P > 0.05). The surface hardness of the glass ionomer containing nanospherical or nanoflower ZnO was significantly lower than the control group ( P < 0.05). However, the surface hardness of glass ionomer containing nanorod ZnO was not significantly different from the control group ( P = 0.868). Incorporation of nanospherical and nanoflower ZnO to glass ionomer decreased their surface hardness, without any changes on their flexural strength. Incorporation of nanorod ZnO particles caused no effect on the mechanical properties.

  8. Influence of samarium ions (Sm3+) on the optical properties of lithium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shwetha, M.; Eraiah, B.

    2018-05-01

    New glass samples with composition xSm2O3-(15-x) Li2O-45ZnO-40P2O5, where x= 0, 0.1, 0.3 and 0.5 mol % are prepared by conventional melt-quenching method. X-ray Diffraction measurements were performed to confirm their amorphous nature. Densities of these glasses were measured by Archimedes method. Optical properties were studied using optical absorption spectra which was recorded at room temperature in the UV-Vis region. Electronic transitions specific to the rare earth ion were observed from the UV-Visible spectroscopy. Optical direct band gap and indirect band gap energies were measured and their values were found to be between 4.23-4.74 eV and 3.02-3.67 eV, respectively. Refractive index has been measured with respect to different concentrations of Sm2O3. Polaron radius, inter-nuclear distance, field strength, dielectric constant and polarizability of oxide ions have been calculated. Fluorescence spectroscopy measurements have been performed by excitation in the UV-Visible range, which resulted in the significant fluorescence peaks. The luminescence color of the glass system has been characterized using Commission International de l'Eclairage de France 1931 chromaticity diagram.

  9. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito

    An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.

  10. Presence of global and local α-relaxations in an alkyl phosphate glass former

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Jin, Xiao; Saini, Manoj K.; Liu, Ying Dan; Ngai, K. L.; Wang, Li-Min

    2017-10-01

    The dynamics of a molecular glass former, tributyl phosphate (TBP), with an alkyl phosphate structure (three alkyl branches emanating from a polar core of PO4) is studied in the supercooled regime by dielectric and thermal (or enthalpic) relaxations. The dielectric fragility index md and the stretching exponent βd of the Kohlrausch-Williams-Watts correlation function are determined. Analyses of the enthalpic relaxation data by the Tool-Narayanaswamy-Moynihan-Hodge formalism yield the enthalpic fragility index mH and stretching exponent βH. The large difference between the dielectric md and the enthalpic mH, as well as between βd and βH, is a remarkable finding. The differences are interpreted by the formation of molecular self-assemblies. The interpretation is supported by the quite comparable fragility determined by viscosity and the enthalpic relaxation. The Kirkwood factor calculated at low temperatures is also consistent with the interpretation. The results suggest that the enthalpic relaxation involving the motions of all parts of TBP is global, while the dielectric relaxation detects the local rotation, which might originate from the rotation of the dipole moment of the core. The presence of two structural α-relaxations, one global and one local, with a large difference in dynamics is revealed for the first time in a molecular glass former.

  11. Speciation And Bioavailability Of Zinc In Amended Sediments

    EPA Science Inventory

    The speciation and bioavailability of zinc (Zn) in smelter-contaminated sediments was investigated as a function of phosphate (apatite) and organic amendment loading rate. Zinc species identified in preamendment sediment were zinc hydroxide-like phases, sphalerite, and zinc sorbe...

  12. Glass formation and structure of calcium antimony phosphate glasses and those doped with tellurium oxide

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Yin; Nian, Shangjiu; Wu, Zhenning; Cao, Weijing; Zhou, Nianying; Wang, Danian

    2017-03-01

    An approximate glass-forming region in the P2O5-Sb2O3-CaO ternary system was determined. The properties and structure of two compositional series of (A) (75- x)P2O5- xSb2O3-25CaO ( x = 20, 25, 30, 35 mol%) and (B) 45P2O5-30Sb2O3-(25- x)CaO- xTeO2 ( x = 5, 10, 15, 20 mol%) were studied systematically. Thermal properties were investigated by means of differential scanning calorimetry (DSC). The densities of all samples were measured by Archimedes' method using distilled water as the immersion liquid. The water durability of the glasses was described by their dissolution rate (DR) in the distilled water at 90 °C for some time periods. Density, thermal stability and water durability were improved with the addition of Sb2O3 and TeO2. Structural studies were carried out by X-ray diffraction (XRD), infrared spectroscopy and Raman spectroscopy. The phosphate chain depolymerization occurred with the increase of Sb2O3 and the Q2 structural units transformed to the Q1 and Q0 structural units with the addition of TeO2.

  13. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Carciello, Neal R.

    1987-01-01

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80.degree. C. The polyelectrolyte or the precoat is present in about 0.5-5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150.degree. C. to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2.times.10.sup.5 gave improved ductility modulus effect.

  14. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Carciello, N.R.

    1987-04-21

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80 C. The polyelectrolyte or the precoat is present in about 0.5--5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150 C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 [times] 10[sup 5] gave improved ductility modulus effect. 5 figs.

  15. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, L.E.; Carciello, N.R.

    1985-11-05

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80/sup 0/C. The polyelectrolyte or the precoat is present in about 0.5 to 5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150/sup 0/C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 x 10/sup 5/ gave improved ductility modulus effect.

  16. Towards modular bone tissue engineering using Ti-Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies.

    PubMed

    Peticone, Carlotta; De Silva Thompson, David; Owens, Gareth J; Kim, Hae-Won; Micheletti, Martina; Knowles, Jonathan C; Wall, Ivan

    2017-09-01

    The production of large quantities of functional vascularized bone tissue ex vivo still represent an unmet clinical challenge. Microcarriers offer a potential solution to scalable manufacture of bone tissue due to their high surface area-to-volume ratio and the capacity to be assembled using a modular approach. Microcarriers made of phosphate bioactive glass doped with titanium dioxide have been previously shown to enhance proliferation of osteoblast progenitors and maturation towards functional osteoblasts. Furthemore, doping with cobalt appears to mimic hypoxic conditions that have a key role in promoting angiogenesis. This characteristic could be exploited to meet the clinical requirement of producing vascularized units of bone tissue. In the current study, the human osteosarcoma cell line MG-63 was cultured on phosphate glass microspheres doped with 5% mol titanium dioxide and different concentrations of cobalt oxide (0%, 2% and 5% mol), under static and dynamic conditions (150 and 300 rpm on an orbital shaker). Cell proliferation and the formation of aggregates of cells and microspheres were observed over a period of two weeks in all glass compositions, thus confirming the biocompatibility of the substrate and the suitability of this system for the formation of compact micro-units of tissue. At the concentrations tested, cobalt was not found to be cytotoxic and did not alter cell metabolism. On the other hand, the dynamic environment played a key role, with moderate agitation having a positive effect on cell proliferation while higher agitation resulting in impaired cell growth. Finally, in static culture assays, the capacity of cobalt doping to induce vascular endothelial growth factor (VEGF) upregulation by osteoblastic cells was observed, but was not found to increase linearly with cobalt oxide content. In conclusion, Ti-Co phosphate glasses were found to support osteoblastic cell growth and aggregate formation that is a necessary precursor to tissue

  17. Zinc chloride modified electronic transport and relaxation studies in barium-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Dhankhar, Sunil; Kundu, R. S.; Rani, Sunita; Sharma, Preeti; Murugavel, S.; Punia, Rajesh; Kishore, N.

    2017-09-01

    The ac conductivity of halide based tellurium glasses having composition 70 TeO2-(30-x) BaO-x ZnCl2; x = 5, 10, 15, 20 and 25 has been investigated in the frequency range 10-1 Hz to 105Hz and in the temperature range 453 K to 553 K. The frequency and temperature dependent ac conductivity show mixed behaviour with increase in halide content and found to obey Jonscher's universal power law. The values of dc conductivity, crossover frequency and frequency exponent have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. For determining the conduction mechanism in studied glass system, frequency exponent has been analyzed by various theoretical models. In presently studied glasses, the ac conduction takes place via overlapping large polaron tunneling (OLPT). The values of activation energy for dc conduction (W) and the one associated with relaxation process ( E R) are found to increase with increase in x up to glass sample with x = 15 and thereafter it decrease with increase in zinc chloride content. DC conduction takes place via variable range hopping (VRH) as proposed by Mott with some modification suggested by Punia et al. The value of real part of modulus ( M') is observed to decrease with increase in temperature. The value of stretched exponent (β) obtained from fitting of M'' reveals the presence of non-Debye type of relaxation in presently studied glass samples. Scaling spectra of ac conductivity and values of electric modulus ( M' and M'') collapse into a single master curve for all the compositions and temperatures. The values of relaxation energy ( E R) for all the studied glass compositions are almost equal to W, suggesting that polarons have to overcome same barrier while relaxing and conducting. The conduction and relaxation processes in the studied glass samples are composition and temperature independent. [Figure not available: see fulltext.

  18. Growth and characterization of divalent transition metal ions doped zinc hydrogen phosphate single crystals

    NASA Astrophysics Data System (ADS)

    D'Souza, Delma; Jagannatha, N.; Nagaraja, K. P.; Rohith, P. S.; Pradeepkumar, K. V.

    2018-05-01

    Zinc hydrogen phosphate (ZnHP) single crystal co-doped with divalent transition metal ions Cobalt (Co2+) and Cadmium (Cd2+) is grown by gel technique in silica hydro gel media. The presence of Co2+ and Cd2+ dopants in the ZnHP crystal was confirmed by Energy Dispersive X-ray Analysis (EDAX).FTIR spectra of the grown crystal depict the stretching and bending vibration of PO4 units, water of crystallization and metal-oxygen bonds. Powder XRD analysis reveals that the grown crystal belongs to monoclinic system with spacegroup P 21. The thermal stability of the grown crystal is rectified from TG-DSC studies.

  19. The interaction of zinc oxide-based dental cements with aqueous solutions of potassium fluoride.

    PubMed

    Pawluk, K; Booth, S E; Coleman, N J; Nicholson, J W

    2008-09-01

    The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed radicaltime kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dq(t)/dt = alpha exp(-betaq(t)). Values for alpha varied from 3.80 to 2.48 x 10(4), and for beta from 7.19 x 10(-3) to 0.1946, though only beta showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to M(t)/M(infinity) of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.

  20. Improvement in degradability of 58s glass scaffolds by ZnO and β-TCP modification

    PubMed Central

    Shuai, Cijun; Cao, Yiyuan; Dan, Gao; Gao, Chengde; Feng, Pei; Wu, Ping

    2016-01-01

    ABSTRACT 58s bioactive glass shows great potential for bone defects repair. However, at early repairing stage, the degradation rate of 58s glass is too fast due to the fast ion-exchange. At later repairing stage, the degradation rate of 58s glass is too slow due to the high dense mineral layer. In this work, Zinc oxide (ZnO) and β-tricalcium phosphate (β-TCP) were introduced into 58s glass bone scaffolds to improve the degradability. The results showed that ZnO could decrease the degradation rate and promote the stability of 58s glass at early repairing stage. Moreover, the presence of β-TCP appeared to increase the degradation rate at a later stage of repairing. Furthermore, in vitro biocompatibility study, carried out using human osteoblast-like cells (MG63), demonstrated that ZnO and β-TCP enhanced cell attachment and proliferation. The study provided a reference for further research in bone tissue engineering. PMID:27710432

  1. Controllable synthesis of Ln3+ (Ln = Tb, Eu) doped zinc phosphate nano-/micro-structured materials: phase, morphology and luminescence properties

    NASA Astrophysics Data System (ADS)

    Yue, Dan; Lu, Wei; Li, Chunyang; Zhang, Xinlei; Liu, Chunxia; Wang, Zhenling

    2014-01-01

    Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These investigations indicate that different phosphate sources MnH(3-n)PO4 (M = NH4+ or Na+, n = 1, 2, 3) can lead to the altering of morphology from nanosheet to microflower, but have no significant effect on the phase structure of the samples. The microlump, nanosheet, and microflower (constructed by the primary microlumps or nanosheets) of orthorhombic ZPT:Ln3+ could be selectively prepared by adjusting the pH value from 3.5 to 7.0. A mixture of orthorhombic ZPT:Ln3+ and monoclinic AZP:Ln3+ with a microflower morphology was obtained when the pH value was adjusted to 8.0. Monoclinic AZP:Ln3+ microplate, microcube and nanoparticle morphologies were obtained at pH values of 8.5, 9.0 and 11.0 respectively. The phase transformation and growth mechanism of the diverse morphologies were proposed, and ZPT:Ln3+ (Ln3+ = Eu or Tb) samples exhibit red or green emission under the excitation of UV light.Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These

  2. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  3. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-05

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Studies of structure of calcium-iron phosphate glasses by infrared, Raman and UV-Vis spectroscopies

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Liang, X. F.; Yu, H. J.; Yang, D. Q.; Yang, S. Y.

    2016-06-01

    Glasses in the ternary CaO-Fe2O3-P2O5 system were prepared and studied by means of density, differential scanning calorimetry, infrared, Raman and UV-Vis spectroscopies. The results showed that density and molar volume in the glass system decreased with increasing substitution of CaO for Fe2O3. The variation of glass transition temperature and thermal stability was strictly related to the nature of bonding in the vitreous network. Spectroscopic analysis showed that substitution of CaO for Fe2O3 induced an evolution of structural units from pyrophosphate to metaphosphate species indicating the polymerization of phosphate chains and the decrease of non-bridging oxygen concentrations. With increasing substitution of CaO for Fe2O3 The P-O-Ca linkage and (P-O- Ca2+ -O-P) chains participated in the glass network by replacing P-O-Fe bonds. The absorption band of the P-O-Ca stretching mode in the glasses with high CaO content (≥32 mol%) was assigned at around 1084 cm-1. The absorption edge would fall in the region between 332 and 420 nm which are the absorption bands of Fe3+ ions.

  5. Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2018-03-01

    Seven rare earth (Sm3+, Eu3+ and Nd3+) doped lead alumino phosphate glasses were prepared. The protective and sensing measures from gamma rays were analysed in terms of parameters viz. density (ρ), refractive index, energy band gap (Eg), mean free path (mfp), effective atomic number (Zeff) and buildup factors (energy absorption EABF as well as exposure buildup factor EBF). The energy dependent parameters (mfp, Zeff, EABF and EBF) were investigated in the energy region from 15 keV to 15 MeV. EABF and EBF values were observed to be maximum in the intermediate energy region. Besides, the EABF and EBF values for the prepared samples are shown to have strong dependence on chemical composition of the glass at lower energy, whereas, it is almost independent of chemical composition in higher energy region. The prepared glass samples are found to have potential applications in radiation shielding as well as radiation sensing, which further find numerous applications in the field of medicine and industry.

  6. Heat accumulation regime of femtosecond laser writing in fused silica and Nd:phosphate glass

    NASA Astrophysics Data System (ADS)

    Bukharin, M. A.; Khudyakov, D. V.; Vartapetov, S. K.

    2015-04-01

    We investigated refractive index induced by direct femtosecond laser writing inside fused silica and Nd:phosphate glass in heat accumulation regime. Spatial profile and magnitude of induced refractive index were investigated at various pulse repetition rates and translation velocities. It was shown that the magnitude of induced refractive index significantly rises with decreasing in time interval between successive laser pulses below the time for thermal diffusion. Going from nonthermal regime to heat accumulation regime, we achieved induced refractive index growth from 4 × 10-3 up to 6.5 × 10-3 in fused silica and from -6 × 10-3 to -9 × 10-3 in Nd:phosphate glass. Aspect ratio of treated area decreased from 2.1 down to less than 1.5 without correcting optical elements. It was shown that in heat accumulation regime, the treated area was surrounded by region of alternatively changed refractive index with significant magnitude up to -2 × 10-3. Wide regions of decreased refractive index enable fabrication of depressed cladding waveguides. We demonstrated low-loss (0.3 dB/cm) tubular waveguide inside fused silica. For orthogonal polarizations of guiding light, we achieved a small difference between losses as 0.1 dB/cm using highly symmetric written tracks forming the cladding. The desired structure was simulated with the beam propagation method, and the results were in good agreement with experiment data.

  7. Controllable synthesis of Ln3+ (Ln = Tb, Eu) doped zinc phosphate nano-/micro-structured materials: phase, morphology and luminescence properties.

    PubMed

    Yue, Dan; Lu, Wei; Li, Chunyang; Zhang, Xinlei; Liu, Chunxia; Wang, Zhenling

    2014-02-21

    Ln(3+) (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln(3+)) and ammonium zinc phosphate (AZP:Ln(3+)) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These investigations indicate that different phosphate sources MnH(3-n)PO4 (M = NH4(+) or Na(+), n = 1, 2, 3) can lead to the altering of morphology from nanosheet to microflower, but have no significant effect on the phase structure of the samples. The microlump, nanosheet, and microflower (constructed by the primary microlumps or nanosheets) of orthorhombic ZPT:Ln(3+) could be selectively prepared by adjusting the pH value from 3.5 to 7.0. A mixture of orthorhombic ZPT:Ln(3+) and monoclinic AZP:Ln(3+) with a microflower morphology was obtained when the pH value was adjusted to 8.0. Monoclinic AZP:Ln(3+) microplate, microcube and nanoparticle morphologies were obtained at pH values of 8.5, 9.0 and 11.0 respectively. The phase transformation and growth mechanism of the diverse morphologies were proposed, and ZPT:Ln(3+) (Ln(3+) = Eu or Tb) samples exhibit red or green emission under the excitation of UV light.

  8. Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Selvi, S.; Venkataiah, G.; Arunkumar, S.; Muralidharan, G.; Marimuthu, K.

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy3+doped lead boro-telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B-O vibrations, P-O-P symmetric vibrations and Te-O stretching modes of TeO3 and TeO6 units. The metal-ligand bond was identified through UV-vis-NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σPE) and branching ratio (βR) for the transitions that include 4F9/2→6H11/2, 6H13/2 and 6H15/2 bands. The effect of Dy3+ ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the 4F9/2 level of the title glasses has been found to decrease with the increase in Dy3+ ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  9. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    NASA Astrophysics Data System (ADS)

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  10. Fracture toughness and fractography of dental cements, lining, build-up, and filling materials.

    PubMed

    Mueller, H J

    1990-06-01

    The plane strain fracture toughness (K1c) at 23 degrees C and the fractography of zinc phosphate and zinc polycarboxylate cements, buffered glass ionomer liner, amalgam alloy admixed glass ionomer build-up material, and glass ionomer, microfilled and conventionally filled bis-GMA resin composite filling materials were analyzed by elastic-plastic short-rod and scanning electron microscopy methodologies. Results indicated that significant differences occurred in their K1c's from the lowest to the highest in the following groups of materials, (i) buffered glass ionomer, (ii) zinc phosphate, glass ionomer, zinc polycarboxylate, and alloy mixed glass ionomer, (iii) microfilled resin, and (iv) conventionally filled resin. All materials except the microfilled resin, which fractured via crack jumping, fractured via smooth crack advance. Filler debonding without any crack inhibiting process was related to materials with low K1c values. The incorporation of either buffering compounds or alloy particles into glass ionomer had no beneficial effect upon fracture toughness. This was in contrast to microfilled and conventionally filled resins where either crack blunting or crack pinning processes, respectively, were likely involved with their increased K1c's. For microfilled resin, distinct radial zones positioned around the chevron apex and characterized by plastically deformed deposited material were related to distinct crack jumps that occurred in the load versus displacement behavior. Finally, for the two remaining materials of zinc phosphate and polycarboxylate, particle cleavage and matrix debonding for the former and shear yielding for the latter occurred.

  11. Effect of Boron Addition on the Thermal, Degradation, and Cytocompatibility Properties of Phosphate-Based Glasses

    PubMed Central

    Hasan, Muhammad S.; Parsons, Andrew J.; Furniss, David; Scotchford, Colin A.; Ahmed, Ifty; Rudd, Chris D.

    2013-01-01

    In this study eight different phosphate-based glass compositions were prepared by melt-quenching: four in the (P2O5)45-(CaO)16-(Na2O)15-x -(MgO)24-(B2O3)x system and four in the system (P2O5)50-(CaO)16-(Na2O)10-x-(MgO)24-(B2O3)x, where x = 0,1, 5 and 10 mol%. The effect of B2O3 addition on the thermal properties, density, molar volume, dissolution rates, and cytocompatibility were studied for both glass systems. Addition of B2O3 increased the glass transition (T g), crystallisation (T c), melting (T m), Liquidus (T L) and dilatometric softening (T d) temperature and molar volume (V m). The thermal expansion coefficient (α) and density (ρ) were seen to decrease. An assessment of the thermal stability of the glasses was made in terms of their processing window (crystallisation onset, T c,ons minus glass transition temperature, T g), and an increase in the processing window was observed with increasing B2O3 content. Degradation studies of the glasses revealed that the rates decreased with increasing B2O3 content and a decrease in degradation rates was also observed as the P2O5 content reduced from 50 to 45 mol%. MG63 osteoblast-like cells cultured in direct contact with the glass samples for 14 days revealed comparative data to the positive control for the cell metabolic activity, proliferation, ALP activity, and morphology for glasses containing up to 5 mol% of B2O3. PMID:23991425

  12. Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses

    NASA Astrophysics Data System (ADS)

    Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar

    2017-06-01

    A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.

  13. Optical spectroscopy and luminescence properties of Ho3+ doped zinc fluorophosphate (ZFP) glasses for green luminescent device applications

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Damodaraiah, S.; Ratnakaram, Y. C.

    2018-04-01

    Ho3+ doped zinc fluorophosphate (ZFP) glasses with molar chemical compositions, (60-x) NH4H2PO4+20ZnO+10BaF2+10NaF+xHo2O3 (where x = 0.1, 0.3, 0.5, 1.0 and 1.5 mol%) were prepared by melt quenching technique. These glasses were characterized through physical, structural, optical, excitation, luminescence and decay curve analysis. From the absorption spectra, spectral intensities (fexp and fcal), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), radiative transition probabilities (AT), radiative lifetimes (τR) and branching ratios (βR) were evaluated for all Ho3+ doped ZFP glass matrices. From the photoluminescence spectra, peak stimulated emission cross-sections (σP) were calculated for all Ho3+ doped ZFP glasses. The Ho3+ doped ZFP glasses show strong green emission at 545 nm and red emission at 656 nm under excitation, 450 nm. The measured lifetimes (τmeas) of (5S2)5F4 level of Ho3+ doped ZFP glasses were obtained from decay profiles. The CIE color coordinates of Ho3+ doped ZFP glasses were calculated from emission spectra and 1.0 mol% of Ho3+ doped ZFP glass matrix gives green emission. Hence, these results confirm that the Ho3+ doped ZFP glasses could be considered as a promising candidate for visible green laser applications.

  14. Crystal growth in zinc borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.

    2017-01-01

    Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.

  15. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  16. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  17. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.

    PubMed

    Liu, Xin; Pan, Haobo; Fu, Hailuo; Fu, Qiang; Rahaman, Mohamed N; Huang, Wenhai

    2010-02-01

    Porous scaffolds of a borate-based glass (composition in mol%: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5), with interconnected porosity of approximately 70% and pores of size 200-500 microm, were prepared by a polymer foam replication technique. The degradation of the scaffolds and conversion to a hydroxyapatite-type material in a 0.02 M K2HPO4 solution (starting pH = 7.0) at 37 degrees C were studied by measuring the weight loss of the scaffolds, as well as the pH and the boron concentration of the solution. X-ray diffraction, scanning electronic microscopy and energy dispersive x-ray analysis showed that a hydroxyapatite-type material was formed on the glass surface within 7 days of immersion in the phosphate solution. Cellular response to the scaffolds was assessed using murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed that the scaffolds supported cell attachment and proliferation during the 6 day incubation. The results indicate that this borate-based glass could provide a promising degradable scaffold material for bone tissue engineering applications.

  18. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate.

    PubMed

    Steinbacher, Stefan; Schiffmann, Susanne; Bacher, Adelbert; Fischer, Markus

    2004-07-01

    The crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal centre has recently been determined at 1.7 A resolution. The enzyme converts ribulose 5-phosphate into 3,4-dihydroxy-2-butanone 4-phosphate, while its C4 atom is released as formate. The resulting four-carbon body supplies all eight C atoms for the xylene moiety of riboflavin. Three of the four hydroxyl groups of ribulose 5-phosphate were coordinated by the metal ions. Based on crystallographic refinement, the metals were assigned as zinc and calcium, which were present in the crystallization buffer. Neither metal supports the enzymatic reaction. In the present study, the correctness of this assignment is assessed using anomalous diffraction data collected at the high-energy side of the zinc absorption edge (lambda = 1.2823 A). Only the three tentative zinc ions give strong peaks in an anomalous difference Fourier map (>20sigma), whereas the four tentative calcium ions do not show anomalous signals above the noise level. These results confirm the initial assignment. In addition, the resolution was improved to 1.55 A.

  19. Determination of nonlinear optical properties by time resolved Z-scan in Nd-doped phosphate glass

    NASA Astrophysics Data System (ADS)

    de Souza, J. M.; de Lima, W. J.; Pilla, V.; Andrade, A. A.; Dantas, N. O.; Messias, D. N.

    2017-02-01

    In this work, we have used a Ti3+:Safira laser tuned at 803nm to performed time-resolved measurements using the Z-scan technique to characterize the nonlinear optical properties of phosphate glasses. The glass matrices, labeled PAN (P2O5-Al2O3-Na2CO3) and PANK (P2O5-Al2O3- Na2O-K2O), were doped with increasing Nd3+ concentration, ranging from 0.5 to 5 wt%. For both systems, we have seen that the optical nonlinearity has a linear dependence with the doping ion concentration. Therefore, we propose a new approach to obtain the parameters Δα and Δσ. All results obtained are in good agreement with others found in the literature.

  20. Silicon-Induced UV Transparency in Phosphate Glasses and Its Application to the Enhancement of the UV Type B Emission of Gd3.

    PubMed

    Jiménez, José A

    2017-05-10

    The silicon route to improve the ultraviolet (UV) transparency in phosphate glasses is investigated and further exploited to enhance the UV type B (280-320 nm) emission of gadolinium(III) relevant for biomedical applications. The glasses were synthesized with a barium phosphate composition by melt-quenching in ambient atmosphere and the optical properties investigated by optical absorption and photoluminescence (PL) spectroscopy including emission decay kinetics. An improvement in the UV transparency was gradually developed for the glasses melted merely with increasing amounts of Si powder. A particular PL in the visible was also exhibited for such glasses under excitation at 275 nm, consistent with the presence of Si-induced defects. For Si-Gd codoped glasses, the UV transparency was likewise manifested, while the UV emission from Gd 3+ around 312 nm was enhanced with the increase in Si concentration (up to ∼6.7 times). Moreover, along with the Gd 3+ PL intensity enhancement, a linear correlation was revealed between the increase in decay times for the Gd 3+6 P 7/2 -emitting state and the amount of silicon. It is then suggested that the improved PL properties of gadolinium(III) originate from the increased UV transparency of the host and the consequent precluding of a nonradiative energy transfer from Gd 3+ to the matrix. Accordingly, a role of Si as PL quenching inhibitor is supported. The demonstrated efficacy of the Si-Gd codoping concept realized by a facile glass synthesis procedure may appeal to the application of the UV-emitting glasses for phototherapy lamps.

  1. Alkali-free bioactive glasses for bone regeneration =

    NASA Astrophysics Data System (ADS)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass

  2. Influence of silver nanoparticles on the spectroscopic properties of Sm{sup 3+} doped boro-phosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthanthirakumar, P.; Marimuthu, K., E-mail: emari-ram2000@yahoo.com

    The Sm{sup 3+} doped novel boro-phosphate glasses containing silver nanoparticles (NPs) (SmBPxA) have been prepared following the melt quenching technique and their structural and spectroscopic behavior were studied through HR-TEM, optical absorption and photoluminescence spectral measurements. The TEM analysis validates the existence of Ag NPs with an average diameter of ~8 nm. The Surface plasmon resonance (SPR) band of silver NPs was found at around 600 nm from the absorption spectrum of the Sm{sup 3+} ions free glass sample. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions and the Urbach energy (ΔE) valuesmore » were determined from the absorption spectral measurements. The luminescence intensity is found to get enhance when the Ag NPs were embedded along with the Sm{sup 3+} ions in the prepared glasses due to the local electric field effect around the rare earth (RE) ion site produced by the SPR of Ag NPs.« less

  3. White light generation via up-conversion and blue tone in Er3+/Tm3+/Yb3+-doped zinc-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Rivera, V. A. G.; Ferri, F. A.; Nunes, L. A. O.; Marega, E.

    2017-05-01

    Yb3+, Er3+ and Tm3+ triply doped zinc-tellurite glass have been prepared containing up to 3.23 wt% of rare-earth ion oxides, were characterized by absorption spectroscopy, excitation, emission and up-conversion spectra. Transparent and homogeneous glasses have been produced, managing the red, green and blue emission bands, in order to generate white light considering the human eye perception. The energy transfer (resonant or non-resonant) between those rare-earth ions provides a color balancing mechanism that maintains the operating point in the white region, generating warm white light, cool white light and artificial daylight through the increase of the 976/980 nm diode laser excitation power from 4 to 470 mW. A light source at 4000 K is obtained under the excitation at 980 nm with 15 mW, providing a white light environment that is comfortable to the human eye vision. The spectroscopic study presented in this work describes the white light generation by the triply-doped zinc-tellurite glass, ranging from blue, green and red, by controlling the laser excitation power and wavelength at 976/980 nm. Such white tuning provokes healthy effects on human health throughout the day, especially the circadian system.

  4. Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications.

    PubMed

    Jaidass, N; Krishna Moorthi, C; Mohan Babu, A; Reddi Babu, M

    2018-03-01

    Different concentrations of Dy 3+ ions doped lithium zinc borosilicate glasses of chemical composition (30-x) B 2 O 3 - 25 SiO 2 -10 Al 2 O 3 -30 LiF - 5 ZnO - x Dy 2 O 3 (x = 0, 0.1, 0.5, 1.0 and 2.0 mol%) were prepared by the melt quenching technique. The prepared glasses were investigated through X-ray diffraction, optical absorption, photoluminescence and decay measurements. Intensities of absorption bands expressed in terms of oscillator strengths (f) were used to determine the Judd-Ofelt (J-O) intensity parameters Ω λ (λ = 2, 4 and 6). The evaluated J-O parameters were used to determine the radiative parameters such as transition probabilities (A R ), total transition probability rate (A T ), radiative lifetime (τ R ) and branching ratios (β R ) for the excited 4 F 9/2 level of Dy 3+ ions. The chromaticity coordinates determined from the emission spectra were found to be located in the white light region of CIE chromaticity diagram.

  5. Suppression of phosphate liberation from eutrophic lake sediment by using fly ash and ordinary Portland cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng-Peng Ye; Fan-Zhong Chen; Yan-Qing Sheng

    2006-08-15

    In this study, the effect of suppression on phosphate liberation from eutrophic lake sediment by using fly ash and ordinary Portland cement (OPC) was investigated by small scale experiment. A system including sediment, lake water, and several kinds of capping materials was designed to clarify the suppression of phosphate liberation from sediment under the anaerobic condition. The suppression efficiencies of fly ash, OPC and glass bead used as control material were also determined, and these effects were discussed. The suppression efficiency of glass bead was 44.4%, and those of fly ash and OPC were 84.4%, 94.9%, respectively. The suppression bymore » fly ash and OPC was mainly carried out by the adsorption effect, in addition to the covering effect. The suppression efficiency depended on the amounts of the material used, and about 90% of liberated phosphate was suppressed by fly ash of 10.0 Kg m{sup -2}, and OPC of 6.0 Kg m{sup -2}. The concentrations of heavy metals, such as mercury, cadmium, lead, copper, zinc, chromium, silver, arsenic and nickel, in fly ash and OPC were lower than those in the environmental materials. And it was considered that the concentrations of heavy metals in fly ash and OPC were too low to influence the ecosystem in natural water region.« less

  6. Development of electro-conductive silver phosphate-based glass optrodes for in vivo optogenetics

    NASA Astrophysics Data System (ADS)

    Desjardins, Mathieu; Roudjane, Mourad; Ledemi, Yannick; Gagnon-Turcotte, Gabriel; Maghsoudloo, Esmaeel; Filion, Guillaume; Gosselin, Benoit; Messaddeq, Younès.

    2018-02-01

    Multifunctional fibers are developed worldwide for enabling many new advanced applications. Among the multiple new functionalities that such fibers can offer according to their design, chemical composition and materials combination, the co-transmission of light and electrical signals is of first interest for sensing applications, in particular for optogenetics and electrophysiology. Multifunctional fibers offer an all-solid approach relying on new ionic conducting glasses for the design and manufacturing of next generation optrodes, which represents a tremendous upgrade compared to conventional techniques that requires the utilization of liquid electrolytes to carry the electrical signal generated by genetically encoded neuronal gated ion channels after optical excitation. After a systematic study conducted on different ion-conductive glass systems, silver phosphate-based glasses belonging to the AgI-AgPO3-WO3 and AgI-AgPO3-Ag2WO4 systems were found to be very promising materials for the target application. Several types of fibers, including single-core step-index fibers, multimaterial fibers made of inorganic and optical polymeric glasses have been then fabricated and characterized. Light transmission ranging from 400 to 1000 nm and electrical conductivity ranging from 10-3 and 10-1 S·cm-1 at room temperature (AC frequencies from 1 Hz to 1 MHz) were demonstrated with these fibers. Very sharp fiber tapers were then produced with high repeatability by using a CO2 laser optical setup, allowing a significant shrinking from the fiber (300 μm diameter) to the taper tip (25-30 μm diameter).

  7. Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response.

    PubMed

    Brauer, Delia S; Rüssel, Christian; Vogt, Sebastian; Weisser, Jürgen; Schnabelrauch, Matthias

    2008-01-01

    The development of biodegradable materials for internal fracture fixation is of great interest, as they would both eliminate the problem of stress shielding and obviate the need for a second operation to remove fixation devices. Preliminary investigations for the production of degradable fiber reinforced polymer composite materials are detailed. Composites were produced of phosphate invert glass fibers of the glass system P(2)O(5)-CaO-MgO-Na(2)O-TiO(2), which showed a low solubility in previous work. The fibers were embedded into a matrix of a degradable organic polymer network based on methacrylate-modified oligolactide. Fracture behavior, bending strength and elastic modulus were evaluated during 3-point bending tests and the fracture surface of the composites was investigated using a scanning electron microscope. Short-term biocompatibility was tested in an FDA/EtBr viability assay using MC3T3-E1 murine pre-osteoblast cells and showed a good cell compatibility of the composite materials. Results suggested that these composite materials are biocompatible and show mechanical properties which are of interest for the production of degradable bone fixation devices.

  8. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE PAGES

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; ...

    2015-04-02

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  9. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  10. Electric double-layer capacitor based on zinc metaphosphate glass-derived hydrogel

    NASA Astrophysics Data System (ADS)

    Akamatsu, Takafumi; Kasuga, Toshihiro; Nogami, Masayuki

    2006-04-01

    The present work reports the electrochemical characteristics of an electric double-layer capacitor (EDC) cell with an electrolyte consisting of a glass-derived zinc metaphosphate hydrogel (ZP gel) or H3PO4 solution. The EDC cell showed specific discharge capacities of 2.06 and 3.21F/g using the ZP gel and H3PO4 solution, respectively. The EDC cell performed higher voltage retentionability for self-discharge behavior after constant voltage using the ZP gel (0.83V after 24h) than using H3PO4 solution (0.45V after 24h). Self-discharge behaviors of the ZP gel and H3PO4 solution were controlled by a diffusion and current leakage process, respectively. These results show that the ZP gel has a great potential for practical use as an EDC electrolyte.

  11. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Zhao, Di; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Wang, Deping

    2009-05-01

    The effect of replacing varying amounts (0-2.5 mol.%) of B2O3 with Al2O3 in a borate glass on (1) the conversion of the glass to HA in an aqueous phosphate solution and (2) the compressive strength of the as-formed HA product was investigated. Samples of each glass (10 x 10 x 8 mm) were placed in 0.25 M K2HPO4 solution at 60 degrees C, and the conversion kinetics to HA were determined from the weight loss of the glass and the pH of the solution. The structure and composition of the solid reaction products were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. While the conversion rate of the glass to HA decreased considerably with increasing Al2O3 content, the microstructure of the HA product became denser and the compressive strength of the HA product increased. The addition of SiO2 to the Al2O3-containing borate glass reversed the deterioration of the conversion rate, and produced a further improvement in the strength of the HA product. The compressive strength of the HA formed from the borate glass with 2.5 mol.% Al2O3 and 5 mol.% SiO2 was 11.1 +/- 0.2 MPa, which is equal to the highest strengths reported for trabecular bone. The results indicated that simultaneous additions of Al2O3 and SiO2 could be used to control the bioactivity of the borate glass and to enhance the mechanical strength of the HA product. Furthermore, the HA product formed from the glass containing both SiO2 and Al2O3 could be applied to bone repair.

  12. Phosphorus solubility in basaltic glass: Limitations for phosphorus immobilization in glass and glass-ceramics.

    PubMed

    Tarrago, M; Garcia-Valles, M; Martínez, S; Neuville, D R

    2018-05-11

    The composition of sewage sludge from urban wastewater treatment plants is simulated using P-doped basalts. Electron microscopy analyses show that the solubility of P in the basaltic melt is limited by the formation of a liquid-liquid immiscibility in the form of an aluminosilicate phase and a Ca-Mg-Fe-rich phosphate phase. The rheological behavior of these compositions is influenced by both phase separation and nanocrystallization. Upon a thermal treatment, the glasses will crystallize into a mixture of inosilicates and spinel-like phases at low P contents and into Ca-Mg-Fe phosphate at high P contents. Hardness measurements yield values between 5.41 and 7.66 GPa, inside the range of commercial glasses and glass-ceramics. Leaching affects mainly unstable Mg 2+ -PO 4 3- complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Fluorescence properties and white light generation from Dy3+-doped niobium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Srihari, T.; Jayasankar, C. K.

    2017-07-01

    Niobium phosphate glasses (P2O5+Nb2O5+K2O + Al2O3+Dy2O3) doped with different concentrations of Dy3+ ions have been synthesized by melt quenching technique and characterized through structural and optical measurements to evaluate the fluorescence properties and find their suitability for white light emitting diodes (LEDs). Phonon energy and vibrational groups of the host matrix have been analyzed from Raman spectra. Judd-Ofelt analysis has been applied for 1.0 mol% Dy2O3-doped glass and inturn radiative properties have been evaluated for excited states of the Dy3+ ion. The higher value of stimulated emission cross-section (σe = 6.4 × 10-21 cm2) for the 4F9/2 → 6H13/2 level confirms its potentiality to be used as yellow laser. The decay curves exhibit non-exponential nature at higher concentrations (≥1 mol %) of Dy3+ ion. From the decay curve analysis, the quantum efficiency for the 4F9/2 level of 1.0 mol % Dy3+-doped glass is found to be 92%. The yellow to blue intensity ratios and chromaticity color co-ordinates are found to vary with Dy3+ ion concentrations/excitation wavelengths and are within the white light region.

  14. Glass microspheres for medical applications

    NASA Astrophysics Data System (ADS)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass

  15. Serum zinc concentrations: contamination from laboratory equipment.

    PubMed

    Ralstin, J O; Schneider, P J; Blackstone, L; Ruberg, R L

    1979-01-01

    The following experiment was designed because of high serum zinc reported in patients who were reciving total parenteral nutrition (TPN) concentrations. Blood samples were collected, divided into 3 containers: a clean glass control test tube, a vacuum collecting tube with a rubber stopper, and paraffin clot activator. It was found that compared to glass control tubes, vacuum collection with rubber stoppers contributed an average of 76 +/- 14 microgram/dl of zinc as contaminants. Moreover, tubes with a rubber stopper and clot activator contributed 198 +/- 42 microgram/dl of zinc as contaminants. It is concluded that care must be used to avoid trace element contaminants when plasma zinc concentrations are analyzed. Without proper methodology, including selection of the container in which the sample is taken, erroneous results will be reported.

  16. Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Ruitu; Wang, Mu; Chen, Baojie; Liu, Ke; Pun, Edwin Yue-Bun; Lin, Hai

    2011-04-01

    Bent waveguide structures (S-, U-, and F-bend) based on buried Er3+/Yb3+ codoped phosphate glass waveguide channel fabricated by field-assisted annealing have been designed to achieve high-gain C-band integrated amplification. Using a simulated-bend method, the optimal radius for the curved structure is derived to be 0.90 cm with loss coefficient of 0.02 dB/cm, as the substrate size is schemed to be 4×3 cm2. In the wavelength range of 1520 to 1575 nm, obvious gain enhancement for the bent structure waveguides is anticipated, and for the F-bend waveguide, the internal gain at 1534-nm wavelength is derived to be 41.61 dB, which is much higher than the value of 26.22 and 13.81 dB in the U- and S-bend waveguides, respectively, and over three times higher than that of the straight one. The simulation results indicate that the bent structure design is beneficial in obtaining high signal gain in buried Er3+/Yb3+ codoped phosphate glass waveguides, which lays the foundation for further design and fabrication of integrated devices.

  17. Investigation of bone formation using calcium phosphate glass cement in beagle dogs

    PubMed Central

    Lee, Seung-Bum; Jung, Ui-Won; Choi, Youna; Jamiyandorj, Otgonbold; Kim, Chang-Sung; Lee, Yong-Keun; Chai, Jung-Kiu

    2010-01-01

    Purpose Among available biomaterials, bioceramics have drawn special interest due to their bioactivity and the possibility of tailoring their composition. The degradation rate and formulation of bioceramics can be altered to mimic the compositions of the mineral phase of bone. The aim of this study was to investigate the bone formation effect of amorphous calcium phosphate glass cement (CPGC) synthesized by a melting and quenching process. Methods In five male beagle dogs, 4 × 4 mm 1-wall intrabony defects were created bilaterally at the mesial or distal aspect of the mandibular second and fourth premolars. Each of the four defects was divided according to graft materials: CPGC with collagen membrane (CM), biphasic calcium phosphate (BCP) with CM, CM alone, or a surgical flap operation only. The dogs were sacrificed 8 weeks post-surgery, and block sections of the defects were collected for histologic and histometric analysis. Results There were significant differences in bone formation and cementum regeneration between the experimental and control groups. In particular, the CPGC and BCP groups showed greater bone formation than the CM and control groups. Conclusions In conclusion, CPGC was replaced rapidly with an abundant volume of new bone; CPGC also contributed slightly to regeneration of the periodontal apparatus. PMID:20607057

  18. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    PubMed

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  19. Imbalance of morphofunctional responses of Jurkat T lymphoblasts at short-term culturing with relief zinc- or copper-containing calcium phosphate coating on titanium.

    PubMed

    Litvinova, L S; Shupletsova, V V; Dunets, N A; Khaziakhmatova, O G; Yurova, K A; Khlusova, M Yu; Slepchenko, G B; Cherempey, E G; Sharkeev, Yu P; Komarova, E G; Sedelnikova, M B; Khlusov, I A

    2017-01-01

    Morphofunctional response of Jurkat T cells that were cultured for 24 h on substrates prepared from commercially pure titanium with relief microarc bilateral calcium phosphate coating containing copper or zinc was studied. Changes in the concentration of essential trace elements contained in this coating can cause significant imbalance of molecular processes of differentiation, secretion, apoptosis, and necrosis and reduce tumor cell survival.

  20. Characterization of aqueous interactions of copper-doped phosphate-based glasses by vapour sorption.

    PubMed

    Stähli, Christoph; Shah Mohammadi, Maziar; Waters, Kristian E; Nazhat, Showan N

    2014-07-01

    Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Liaolin; Xia, Yu; Shen, Xiao; Yang, Runlan; Wei, Wei

    2018-01-01

    In this work, we systematically studied the spectroscopic characteristics of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses. The emission peak beyond 976 nm showed irregular shift from 1001 nm to 1023 nm when Yb3+ in different glass matrices. It was associated with the Stark splitting of 2F7/2 and the emission intensities ratio between the transition from the lowest Stark splitting energy level of 2F5/2 to the Stark splitting energy levels of 2F7/2, e to b and that of e to d. Larger Stark splitting of 2F7/2 results in the red-shift of the near infrared emission band at room temperature and larger ratio results in the blue-shift of emission band. The fluorescence lifetimes of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses were measured to be 0.94, 0.82, 1.51, and 0.66 ms, respectively. The fluorescence lifetime was associated with the reabsorption of Yb3+, which larger absorption cross section at the emission band results in larger reabsorption, then leads to the shorter near infrared fluorescence lifetime.

  2. Scintillation properties of phosphate-borate-fluoride glass doped with Tb3+/Pr3+

    NASA Astrophysics Data System (ADS)

    Valiev, D.; Stepanov, S.; Polisadova, E.; Yao, G.

    2018-06-01

    Scintillation glass doped with Tb3+ and Pr3+ ions with different concentrations were prepared by the melt-quenching method. Optical, photoluminescence and decay kinetic characteristics of the pulse cathodoluminescence (PCL) were investigated. It was shown that the absorption coefficient of the induced absorption in the visible range of the spectrum decreases significantly with the increase of the Pr2O3 content starting from 0.2 to 1 wt%. There was the difference in the luminescence spectra of the glass at a selective and non-selective type of excitation. The "green" emission (λem= 542 nm, 5D4→7F5 radiative transition of Tb3+ ions) was excited an electron beam. The "red" emission (λem= 600 nm, 3P0→3H6 radiative transition of Pr3+ ion) was observed under selective excitation action (λexc= 450 nm). It was demonstrated that decreasing of intensity the main bands of Tb3+ ions at 487, 544, 622 nm connected with increases of concentration Pr3+ ions. The luminescence decay time of terbium ions at 487, 544, 622 nm emission bands depend on Pr3+ concentration. The tendency of reducing the luminescence decay time in the main luminescence bands of Tb3+ ions at increasing the Pr3+ concentration was presented. The results showed that Tb3+/ Pr3+ co-doped phosphate-borate-fluoride glasses are promising non-crystalline scintillation materials.

  3. Influence of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Moudane, M., E-mail: m.elmoudane@gmail.com; El Maniani, M.; Sabbar, A.

    2015-12-15

    Highlights: • Results of ionic conductivities of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. • Determination of glass transition temperature using DSC method. • Study of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. - Abstract: Lithium–Lead–Bismuth phosphates glasses having, a composition 30Li{sub 3}PO{sub 4}–(70 − x)Pb{sub 3}(PO{sub 4}){sub 2}–xBiPO{sub 4} (45 ≤ x ≤ 60 mol%) were prepared by using the melt quenching method 1000 °C. The thermal stability of theses glasses increases with the substitution of Bi{sub 2}O{sub 3} with PbO. The ionic conductivity of all compositions havemore » been measured over a wide temperature (200–500 °C) and frequency range (1–106 Hz). The ionic conductivity data below and above T{sub g} follows Arrhenius and Vogel–Tamman–Fulcher (VTF) relationship, respectively. The activation energies are estimated and discussed. The dependence in frequency of AC conductivity is found to obey Jonscher’s relation.« less

  4. Fabrication and characterization of carbon/oxygen-implanted waveguides in Nd3+-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Xu, Jun; Fu, Li-Li; Zheng, Rui-Lin; Zhou, Zhi-Guang; Li, Wei-Nan; Guo, Hai-Tao; Lin, She-Bao; Wei, Wei

    2015-06-01

    Optical planar waveguides in Nd3+-doped phosphate glasses are fabricated by a 6.0-MeV carbon ion implantation with a dose of 6.0×1014 ions/cm2 and a 6.0-MeV oxygen ion implantation at a fluence of 6.0×1014 ions/cm2, respectively. The guided modes and the corresponding effective refractive indices were measured by a modal 2010 prism coupler. The refractive index profiles of the waveguides were analyzed based on the stopping and range of ions in matter and the RCM reflectivity calculation method. The near-field light intensity distributions were measured and simulated by an end-face coupling method and a finite-difference beam propagation method, respectively. The comparison of optical properties between the carbon-implanted waveguide and the oxygen-implanted waveguide was carried out. The microluminescence and Raman spectroscopy investigations reveal that fluorescent properties of Nd3+ ions and glass microstructure are well preserved in the waveguide region, which suggests that the carbon/oxygen-implanted waveguide is a good candidate for integrated photonic devices.

  5. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    PubMed

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF

  6. Mixed polyanion glass cathodes: Glass-state conversion reactions

    DOE PAGES

    Kercher, Andrew K.; Kolopus, James A.; Carroll, Kyler; ...

    2015-11-10

    Mixed polyanion (MP) glasses can undergo glass-state conversion (GSC) reactions to provide an alternate class of high-capacity cathode materials. GSC reactions have been demonstrated in phosphate/vanadate glasses with Ag, Co, Cu, Fe, and Ni cations. These MP glasses provided high capacity and good high power performance, but suffer from moderate voltages, large voltage hysteresis, and significant capacity fade with cycling. Details of the GSC reaction have been revealed by x-ray absorption spectroscopy, electron microscopy, and energy dispersive x-ray spectroscopy of ex situ cathodes at key states of charge. Using the Open Quantum Materials Database (OQMD), a computational thermodynamic model hasmore » been developed to predict the near-equilibrium voltages of glass-state conversion reactions in MP glasses.« less

  7. Spontaneous and stimulated emission spectroscopy of a Nd(3+)-doped phosphate glass under wavelength selective pumping.

    PubMed

    Iparraguirre, I; Azkargorta, J; Balda, R; Venkata Krishnaiah, K; Jayasankar, C K; Al-Saleh, M; Fernández, J

    2011-09-26

    The influence of the host matrix on the spectroscopic and laser properties of Nd(3+) in a K-Ba-Al phosphate glass has been investigated as a function of rare-earth concentration. Site-selective time resolved laser spectroscopy and stimulated emission experiments under selective wavelength laser pumping show the existence of a very complex crystal field site distribution of Nd(3+) ions in this glass. The peak of the broad stimulated (4)F(3/2)→(4)I(11/2) emission shifts in a non monotonous way up to 3 nm as a function of the excitation wavelength. This behavior can be explained by the relatively moderate inter-site energy transfer among Nd(3+) ions found in this system and measured by using fluorescence line narrowing spectroscopy. The best slope efficiency obtained for the laser emission was 40%. © 2011 Optical Society of America

  8. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    PubMed

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  10. Judd-Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.

    2014-02-01

    Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.

  11. Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide.

    PubMed

    Halimah, M K; Ami Hazlin, M N; Muhammad, F D

    2018-04-15

    A series of glass samples with chemical formula {[(TeO 2 ) 0.7 (B 2 O 3 ) 0.3 ] 0.7 (ZnO) 0.3 } 1-x (Dy 2 O 3 ) x where x=0.01, 0.02, 0.03, 0.04 and 0.05M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO 4 , BO 3, TeO 4 and TeO 3 vibrational groups. The density of the glass systems is increased with the addition of Dy 2 O 3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy 2 O 3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses.

    PubMed

    Konidakis, Ioannis; Pissadakis, Stavros

    2014-08-07

    Silver iodide metaphosphate glasses of the x AgI + (1- x )AgPO₃ family are embedded inside the air capillaries of a commercial silica photonic crystal fiber (PCF) by means of vacuum-assisted infiltration technique. In this paper, we report on tuning the photonic bandgap (PBG) guidance characteristics of the fabricated all-glass photonic bandgap fibers, by varying the composition of the fast-ion-conducting phosphate glass infiltration medium. Doping AgPO₃ metaphosphate glass with AgI significantly alters the PBG guidance patterns in the examined range between 350 and 1750 nm, as it leads to the introduction of numerous additional transmission stop-bands, while affecting scattering dependant losses. The effect of phosphate glass cooling method during sample fabrication on the transmission behavior of the x AgI + (1- x )AgPO₃/PCFs is also considered.

  13. Cerium doped glasses: search for a new scintillator

    NASA Astrophysics Data System (ADS)

    Kielty, Matthew William

    Single crystals have been the standard material when it comes to scintillators, but with the ability to easily be produced at a considerably lower cost and fabricated into tailored sizes and shapes there is increasing interest in the development of glass scintillators as an alternative. Ce-doped borosilicate and phosphate glasses were investigated focusing on the effect of different modifiers on their optical properties and luminescence. The borosilicate glasses were prepared aiming at the detection of thermal neutrons, utilizing B-10, while the phosphate glasses were targeting the detection of gamma-rays taking advantage of high Z elements such as, Ba, Bi, Ta, Pb and W. Structural characteristics determined by Raman spectroscopy were coupled with results from photoluminescence and UV-visible transmission measurements, while the index of refraction was estimated using the Gladstone-Dale relation using experimentally obtained density values. This work revealed barium, with its superior optical transmission and luminescent properties, to be the best high Z element for inclusion in the phosphate glasses studied.

  14. Lead and aluminum bonding in Pb-AI metaphosphate glasses.

    PubMed

    Tsuchida, J E; Schneider, J; Pizani, P S; Oliveira, S L

    2008-01-21

    The bonding properties of cations in phosphate glasses determine many short- and medium-range structural features in the glass network, hence influencing bulk properties. In this work, Pb-Al-metaphosphate glasses (1 - x)Pb(PO(3))(2).xAI(PO(3))(3) with 0 < or = x < or = 1 were analyzed to determine the effect of the substitution of Pb by AI on the glass structure in the metaphosphate composition. The glass transition temperature and density were measured as a function of the Al concentration. The vibrational and structural properties were probed by Raman spectroscopy and nuclear magnetic resonance of (31)P, (27)AI, and (207)Pb. Aluminum incorporates homogeneously in the glass creating a stiffer and less packed network. The average coordination number for AI decreases from 5.9 to 5.0 as x increases from 0.1 to 1, indicating more covalent AI-O bonds. The coordination number of Pb in these glasses is greater than 8, showing an increasing ionic behavior for compositions richer in AI. A quantitative analysis of the phosphate speciation shows definite trends in the bonding of AIO(n) groups and phosphate tetrahedra. In glasses with x < 0.48, phosphate groups share preferentially only one nonbridging O corner with an AIO(n) coordination polyhedron. For x > 0.48 more than one nonbridging O can be linked to AIO(n) polyhedra. There is no corner sharing of O between AIO(n) and PbO(n) polyhedra nor between AIO(n) themselves throughout the compositional range. The PbO(n) coordination polyhedra show considerable nonbridging O sharing, with each O participating in the coordination sphere of at least two Pb. The bonding preferences determined for Al are consistent with the behavior observed in Na-AI and Ca-AI metaphosphates, indicating this may be a general behavior for ternary phosphate glasses.

  15. Mechanical, structural and dissolution properties of heat treated thin-film phosphate based glasses

    NASA Astrophysics Data System (ADS)

    Stuart, Bryan W.; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M.

    2017-09-01

    Here we show the deposition of 2.7 μm thick phosphate based glass films produced by magnetron sputtering, followed by post heat treatments at 500 °C. Variations in degradation properties pre and post heat treatment were attributed to the formation of Hematite crystals within a glass matrix, iron oxidation and the depletion of hydrophilic P-O-P bonds within the surface layer. As deposited and heat treated coatings showed interfacial tensile adhesion in excess of 73.6 MPa; which surpassed ISO and FDA requirements for HA coatings. Scratch testing of coatings on polished substrates revealed brittle failure mechanisms, amplified due to heat treatment and interfacial failure occurring from 2.3 to 5.0 N. Coatings that were deposited onto sandblasted substrates to mimic commercial implant surfaces, did not suffer from tensile cracking or trackside delamination showing substantial interfacial improvements to between 8.6 and 11.3 N. An exponential dissolution rate was observed from 0 to 2 h for as deposited coatings, which was eliminated via heat treatment. From 2 to 24 h ion release rates ordered P > Na > Mg > Ca > Fe whilst all coatings exhibited linear degradation rates, which reduced by factors of 2.4-3.0 following heat treatments.

  16. 3D FEA of cemented glass fiber and cast posts with various dental cements in a maxillary central incisor.

    PubMed

    Madfa, Ahmed A; Al-Hamzi, Mohsen A; Al-Sanabani, Fadhel A; Al-Qudaimi, Nasr H; Yue, Xiao-Guang

    2015-01-01

    This study aimed to analyse and compare the stability of two dental posts cemented with four different luting agents by examining their shear stress transfer through the FEM. Eight three-dimensional finite element models of a maxillary central incisor restored with glass fiber and Ni-Cr alloy cast dental posts. Each dental post was luted with zinc phosphate, Panavia resin, super bond C&B resin and glass ionomer materials. Finite element models were constructed and oblique loading of 100 N was applied. The distribution of shear stress was investigated at posts and cement/dentine interfaces using ABAQUS/CAE software. The peak shear stress for glass fiber post models minimized approximately three to four times of those for Ni-Cr alloy cast post models. There was negligible difference in peak of shear stress when various cements were compared, irrespective of post materials. The shear stress had same trend for all cement materials. This study found that the glass fiber dental post reduced the shear stress concentration at interfacial of post and cement/dentine compared to Ni-Cr alloy cast dental post.

  17. Optical studies on alkali-alkaline Dy3+-doped lead-alumino-boro-phosphate glasses for white LED's application

    NASA Astrophysics Data System (ADS)

    Joseph, P. Arun Jeganatha; Vinothini, J. Jemma; Maheshvaran, K.; Rayappan, I. Arul

    2018-04-01

    A new series 34B2O3+20NH4H2PO4+10Al2O3+10PbO+25MCO3+1Dy2O3, where (M= K2 and Mg) of Dy3+ doped lead-alumino-boro-phosphate glasses have been prepared by conventional melt quenching technique. The prepared glass samples were characterized through Optical absorption and photoluminescence spectra. The bonding parameter, Oscillator strength and Judd-Oflet (JO) parameter have been calculated and investigated through optical absorption spectra. The excitation and emission wavelength have been obtained through the photoluminescence spectra. The emission spectra exhibit two visible bands as 4F9/2→6H15/2 (Blue) and 4F9/2→6H13/2 (Yellow). Yellow to blue (Y/B) intensity ratio and chromaticity coordinates have been estimated for the stimulation of WLED applications.

  18. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Arzumanyan, G. M.; Möncke, D.

    2016-12-01

    Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.

  19. Comparison of the Solubility of Conventional Luting Cements with that of the Polyacid Modified Composite Luting Cement and Resin-modified Glass lonomer Cement.

    PubMed

    Karkera, Reshma; Raj, A P Nirmal; Isaac, Lijo; Mustafa, Mohammed; Reddy, R Naveen; Thomas, Mathew

    2016-12-01

    This study was planned to find the solubility of the conventional luting cements in comparison with that of the polyacid-modified composite luting cement and recently introduced resin-modified glass ionomer cement (RMGIC) with exposure to water at early stages of mixing. An in vitro study of the solubility of the following five commercially available luting cements, viz., glass ionomer cement (GIC) (Fuji I, GC), zinc phosphate (Elite 100, GC), polyacid-modified resin cement (PMCR) (Principle, Dentsply), polycarboxylate cement (PC) (Poly - F, Dentsply), RMGIC (Vitremer, 3M), was conducted. For each of these groups of cements, three resin holders were prepared containing two circular cavities of 5 mm diameter and 2 mm depth. All the cements to be studied were mixed in 30 seconds and then placed in the prepared cavities in the resin cement holder for 30 seconds. From all of the observed luting cements, PMCR cement had shown the lowest mean loss of substance at all immersion times and RMGIC showed the highest mean loss of substanceat all immersion times in water from 2 to 8 minutes. The solubility of cements decreased by 38% for GIC, 33% for ZnPO 4 , 50% for PMCR, 29% for PC, and 17% for RMGIC. The PMCR cement (Principle-Dentsply) had shown lowest solubility to water at the given time intervals of immersion. This was followed by PC, zinc phosphate, and GIC to various time intervals of immersion.

  20. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  1. Transmission performance analysis of WDM systems based on bismuth-doped phosphate glass fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Ji, Jianhua; Huang, Qian; Wang, Ke; Xu, Ming; Jiang, Chun

    2018-01-01

    In this paper transmission performance of Allwave fiber WDM systems cascaded by bismuth-doped phosphate glass fiber amplifiers pumped by 808 nm lasers is analyzed for the first time, to the best of our knowledge. The rate and power propagation equations of a three-level system are used to model the signal amplification and noise figure in the doped fibers. The simulation results show that the channels in the 1460-1470 nm wavelength region in 32 × 40 Gbit/s WDM system with 10 nm channel space can reach a BER less than 1 × 10-9 with the transmission distance more than 600 km, but when the channel space is reduced to 1 nm, the performance of the system is degraded greatly.

  2. Strontium-based glass polyalkenoate cements for luting applications in the skeleton.

    PubMed

    Clarkin, O; Boyd, D; Towler, M R

    2010-02-01

    Glass Polyalkenoate Cements (GPCs) based on strontium calcium zinc silicate (Sr-Ca-Zn-SiO2) glasses and high molecular weight poly(acrylic acid) (PAA) have been shown to exhibit suitable mechanical properties for orthopaedic arthroplasty applications, however for vertebroplasty and other medical luting applications these cements have working and setting times which are unsuitable for such applications. In this study GPCs based on Sr-Ca-Zn-SiO2 glasses and low molecular weight PAA were evaluated for orthopaedic luting applications. GPCs based on four different glasses; BT100 (0.16CaO, 0.36ZnO, 0.48SiO2), BT101 (0.04SrO, 0.12CaO, 0.36ZnO, 0.48SiO2), BT102 (0.08SrO 0.08CaO, 0.36ZnO, 0.48SiO2) and BT103 (0.12SrO 0.04CaO, 0.36ZnO, 0.48SiO2) and two PAAs (MW; 12,700 and 25,700) were examined. These cement formulations exhibited handling properties potentially suitable for luting applications as well as mechanical strengths which were similar to those of trabecular bone. Upon immersion in simulated body fluid, the GPCs showed sustained growth of a calcium phosphate layer on the surface of the cement indicating that these cements were bioactive in nature.

  3. Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten Tellurite glasses for visible photonic device applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ritu; Rao, A. S.; Deopa, Nisha; Venkateswarlu, M.; Jayasimhadri, M.; Haranath, D.; Prakash, G. Vijaya

    2018-04-01

    Zinc Lead Tungsten Tellurite (ZnPbWTe) glasses doped with different Pr3+ ion concentrations having the composition 5ZnO + 15PbO + 20WO3 + (60-x)TeO2 + xPr6O11 (where x = 0.5, 1, 1.5, 2.0 and 2.5 mol%) were prepared by using sudden quenching technique and characterized to understand their visible emission characteristic features using spectroscopic techniques such as absorption, excitation and emission. The Judd-Ofelt (J-O) theory has been applied to the absorption spectral features with an aim to evaluate various radiative properties for the prominent fluorescent levels of Pr3+ions in the as-prepared glasses. The emission spectra recorded for the as-prepared glasses under 468 nm excitation show three prominent emission transitions 3P0→3H6, 3P0→3F2 and 3P1→3F4, of which 3P0→3F2 observed in visible red region (648 nm), is relatively more intense. The intensity of 3P0→3F2 emission transition in the titled glasses increases up to 1mol% of Pr3+ ions and beyond concentration quenching is observed. Branching ratios (βR) and emission cross-sections (σse) were estimated for 3P0→3F2 transition to understand the luminescence efficiency in visible red region (648 nm). The CIE chromaticity coordinates were also evaluated in order to understand the suitability of these glasses for visible red luminescence devices. From the emission cross-sections, quantum efficiency and CIE coordinates, it was concluded that 1mol% of Pr3+ ions in ZnPbWTe glasses are quite suitable for preparing visible reddish orange luminescent devices.

  4. Alkali-lead-iron phosphate glass and associated method

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.; Franco, Sofia C. S.

    1994-01-01

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications.

  5. Optical properties of zinc lead tellurite glasses

    NASA Astrophysics Data System (ADS)

    Alazoumi, Salah Hassan; Aziz, Sidek Abdul; El-Mallawany, R.; Aliyu, Umar Sa'ad; Kamari, Halimah Mohamed; Zaid, Mohd Hafiz Mohd Mohd; Matori, Khamirul Amin; Ushah, Abdulbaset

    2018-06-01

    Tellurite glass systems in the form of [ZnO]x [(TeO2)0.7-(PbO)0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280-4000 cm-1) and UV-Vis (200-800 nm) spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD) were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41-3.94 eV and 2.40-2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition.

  6. Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Christensen, Mogens; Nishibori, Eiji; Caillat, Thierry; Brummerstedt Iversen, Bo

    2004-01-01

    By converting waste heat into electricity, thermoelectric generators could be an important part of the solution to today's energy challenges. The compound Zn4Sb3 is one of the most efficient thermoelectric materials known. Its high efficiency results from an extraordinarily low thermal conductivity in conjunction with the electronic structure of a heavily doped semiconductor. Previous structural studies have been unable to explain this unusual combination of properties. Here, we show through a comprehensive structural analysis using single-crystal X-ray and powder-synchrotron-radiation diffraction methods, that both the electronic and thermal properties of Zn4Sb3 can be understood in terms of unique structural features that have been previously overlooked. The identification of Sb3- ions and Sb-2(4-) dimers reveals that Zn4Sb3 is a valence semiconductor with the ideal stoichiometry Zn13Sb10. In addition, the structure contains significant disorder, with zinc atoms distributed over multiple positions. The discovery of glass-like interstitial sites uncovers a highly effective mechanism for reducing thermal conductivity. Thus Zn4Sb3 is in many ways an ideal 'phonon glass, electron crystal' thermoelectric material.

  7. Alkali-lead-iron phosphate glass and associated method

    DOEpatents

    Boatner, L.A.; Sales, B.C.; Franco, S.C.S.

    1994-03-29

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications. 6 figures.

  8. An in vitro radiographic analysis of the density of dental luting cements as measured by CCD-based digital radiography.

    PubMed

    Antonijevic, Djordje; Jevremovic, Danimir; Jovanovic, Svetlana; Obradovic-Djuricic, Kosovka

    2012-05-01

    According to the ISO, the radiopacity of luting cements should be equal to or greater than that of aluminum. The aim of this in vitro study was to determine the radiopacity of 13 commercially available dental luting cements and compare them with human enamel and dentin. Five classes of luting cements were evaluated: zinc phosphate (Cegal N and Harvard Zinc Phosphate), zinc polycarboxylate (Harvard Polycarboxylate and Hoffmann's Carboxylate), glass ionomers (Ketac Cem Easymix, Ketac Cem Radiopaque, and Fuji I), resin-modified glass ionomer (Rely X Luting), and resin cements (Multilink Automix, Variolink II, Speed CEM, Rely X Unicem Automix, and three shades of Variolink Veneer). Tooth slices served as controls. Five specimens of each material measuring 8 mm in diameter and 1 mm thick were prepared and radiographed alongside tooth slices and an aluminum stepwedge using a Trophy RVG sensor. The radiopacity values were expressed in mm Al and analyzed by the ANOVA and Tukey tests (P < .05). All the cements examined except Variolink Veneer had significantly higher radiopacities than that of dentin. Rely X Unicem Automix, glass ionomer, and resin-modified glass-ionomer cements demonstrated radiopacities that were not significantly different with respect to enamel. Zinc phosphate, zinc polycarboxylate, and three of the resin cements presented radiopacity values that were significantly greater than that of enamel. Almost all the investigated materials presented an acceptable radiopacity. Radiopacity of dental cements seems to depend more on the presence of elements with high atomic numbers than on the type of the material.

  9. Antibacterial activity evaluation of bioactive glass and biphasic calcium phosphate nanopowders mixtures

    NASA Astrophysics Data System (ADS)

    Nazemi, Zahra; Mehdikhani-Nahrkhalaji, Mehdi; Haghbin-Nazarpak, Masoumeh; Staji, Hamid; Kalani, Mohammad Mehdi

    2016-12-01

    The aim of this work was to evaluate the antibacterial activity of bioactive glass (BG) and biphasic calcium phosphate (BCP) nanopowders mixtures for the first time. 37S BG and BCP (50% HA-50% β-TCP) nanopowders were prepared via sol-gel technique. Characterization techniques such as X-ray diffraction, scanning electron microscopy, transition electron microscopy, and X-ray fluorescent. The antibacterial activity was studied using Escherichia coli and Salmonella typhi as gram-negative, and Staphylococcus aureus as gram-positive bacteria. The antibacterial effect of BG, BCP nanopowders, and their mixtures was evaluated at different concentrations. The 37S BG nanopowders showed minimum bactericidal concentration at 25 mg/ml. At broth concentrations below 300 mg/ml, BCP showed no antibacterial activity. BCP and BG nanopowders mixture (M2) with 60/40 ratio of BCP/BG showed noticeable antibacterial effect. It was concluded that BCP and 37S BG nanopowders mixture could be used as a good candidate for dental and orthopedic applications.

  10. Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5

    PubMed Central

    Sharmin, Nusrat; Parsons, Andrew J; Rudd, Chris D

    2014-01-01

    Previous studies investigating manufacture of phosphate-based glass fibres from glasses fixed with P2O5 content less than 50 mol% showed that continuous manufacture without breakage was very difficult. In this study, nine phosphate-based glass formulations from the system P2O5-CaO-Na2O-MgO-B2O3 were prepared with P2O5 contents fixed at 40, 45 and 50 mol%, where Na2O was replaced by 5 and 10 mol% B2O3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B2O3 addition on the fibre drawing, fibre mechanical properties and dissolution behaviour was investigated. It was found that addition of 5 and 10 mol% B2O3 enabled successful drawing of continuous fibres from glasses with phosphate (P2O5) contents fixed at 40, 45 and 50 mol%. The mechanical properties of the fibres were found to significantly increase with increasing B2O3 content. The highest tensile strength (1200 ± 130 MPa) was recorded for 45P2O5-16CaO-5Na2O-24MgO-10B2O3 glass fibres. The fibres were annealed, and a comparison of the mechanical properties and mode of degradation of annealed and non-annealed fibres were investigated. A decrease in tensile strength and an increase in tensile modulus were observed for the annealed fibres. An assessment of the change in mechanical properties of both the annealed and non-annealed fibres was performed in phosphate-buffered saline (PBS) at 37℃ for 28 and 60 days, respectively. Initial loss of mechanical properties due to annealing was found to be recovered with degradation. The B2O3-containing glass fibres were found to degrade at a much slower rate as compared to the non-B2O3-containing fibres. Both annealed and non-annealed fibres exhibited a peeling effect of the fibre's outer layer during degradation. PMID:24939962

  11. Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5.

    PubMed

    Sharmin, Nusrat; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Previous studies investigating manufacture of phosphate-based glass fibres from glasses fixed with P2O5 content less than 50 mol% showed that continuous manufacture without breakage was very difficult. In this study, nine phosphate-based glass formulations from the system P2O5-CaO-Na2O-MgO-B2O3 were prepared with P2O5 contents fixed at 40, 45 and 50 mol%, where Na2O was replaced by 5 and 10 mol% B2O3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B2O3 addition on the fibre drawing, fibre mechanical properties and dissolution behaviour was investigated. It was found that addition of 5 and 10 mol% B2O3 enabled successful drawing of continuous fibres from glasses with phosphate (P2O5) contents fixed at 40, 45 and 50 mol%. The mechanical properties of the fibres were found to significantly increase with increasing B2O3 content. The highest tensile strength (1200 ± 130 MPa) was recorded for 45P2O5-16CaO-5Na2O-24MgO-10B2O3 glass fibres. The fibres were annealed, and a comparison of the mechanical properties and mode of degradation of annealed and non-annealed fibres were investigated. A decrease in tensile strength and an increase in tensile modulus were observed for the annealed fibres. An assessment of the change in mechanical properties of both the annealed and non-annealed fibres was performed in phosphate-buffered saline (PBS) at 37℃ for 28 and 60 days, respectively. Initial loss of mechanical properties due to annealing was found to be recovered with degradation. The B2O3-containing glass fibres were found to degrade at a much slower rate as compared to the non-B2O3-containing fibres. Both annealed and non-annealed fibres exhibited a peeling effect of the fibre's outer layer during degradation. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    USGS Publications Warehouse

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  13. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Y.T.; Guesto-Barnak, D.

    1992-12-22

    Disclosed is a low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K[sub 90 C] >0.85 W/mK, a low coefficient of thermal expansion, [alpha][sub 20-300 C] <80[times]10[sup [minus]7]/C, low emission cross section, [sigma]<2.5[times]10[sup [minus]20] cm[sup 2], and a high fluorescence lifetime, [tau]>325 [mu]secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): (Mole %) P[sub 2]O[sub 5], (52-72); Al[sub 2]O[sub 3], (0-<20); B[sub 2]O[sub 3], (>0-25); ZnO, (0-31); Li[sub 2]O, (0-5); K[sub 2]O, (0-5); Na[sub 2]O, (0-5); Cs[sub 2]O, (0-5); Rb[sub 2]O, (0-5); MgO, (>0-<30); CaO, (0-20); BaO, (0-20); SrO, (0-<20); Sb[sub 2]O[sub 3], (0-<1); As[sub 2]O[sub 3], (0-<1); Nb[sub 2]O[sub 5], (0-<1); Ln[sub 2]O[sub 3], (up to 6.5); PbO, (0-<5); and SiO[sub 2], (0-3); wherein Ln[sub 2]O[sub 3] is the sum of lanthanide oxides; [Sigma]R[sub 2]O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al[sub 2]O[sub 3] and MgO is <24 unless [Sigma]R[sub 2]O is 0, then the sum of Al[sub 2]O[sub 3] and MgO is <42; and the ratio of MgO to B[sub 2]O[sub 3] is 0.48-4.20. 7 figs.

  14. Synthesis of Ag doped calcium phosphate particles and their antibacterial effect as additives in dental glass ionomer cements.

    PubMed

    Chen, Song; Gururaj, Satwik; Xia, Wei; Engqvist, Håkan

    2016-11-01

    Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy. The antibacterial properties of the cements aged for 1 day and 7 days were evaluated by direct contact measurement using staphylococcus epidermis Xen 43. Ion concentrations (F - and Ag + ) and pH were measured to correlate to the results of the antibacterial study. The compressive strength of the cements was evaluated with a crosshead speed of 1 mm/min. The glass ionomer cements containing silver doped hydroxyapatite or monetite showed improved antibacterial properties. Addition of silver doped hydroxyapatite or monetite did not change the pH and ion release of F - . Concentration of Ag + was under the detection limit (0.001 mg/L) for all samples. Silver doped hydroxyapatite or monetite had no effect on the compressive strength of glass ionomer cement.

  15. Long-term conversion of 45S5 bioactive glass-ceramic microspheres in aqueous phosphate solution.

    PubMed

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2012-05-01

    The conversion of 45S5 glass and glass-ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically <3 months). In this paper, we report for the first time on the long-term conversion of 45S5 glass-ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75-150 μm) were immersed for 10 years at room temperature (~25 °C) in K(2)HPO(4) solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25-45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K(2)HPO(4) concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K(2)HPO(4) solution but a calcium pyrophosphate product, Ca(10)K(4)(P(2)O(7))(6).9H(2)O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass-ceramics in biomedical applications are discussed.

  16. Zinc speciation in proximity to phosphate application points in a lead/zinc smelter-contaminated soil.

    PubMed

    Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew

    2012-01-01

    The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminated soil would induce Zn phosphate mineral formation and fluid P sources would be more effective than granular P amendments. A combination of different synchrotron-based techniques, namely, spatially resolved micro-X-ray fluorescence (μ-XRF), micro-extended X-ray absorption fine structure spectroscopy (μ-EXAFS), and micro-X-ray diffraction (μ-XRD), were used to speciate Zn at two incubation times in the proximity of application points (0 to 4 mm) for fluid and granular P amendments in a Pb/Zn smelter-contaminated soil. Phosphate rock (PR), triple super phosphate (TSP), monoammonium phosphate (MAP), and fluid ammonium polyphosphate induced Zn phosphate formation. Ammonium polyphosphate was more effective at greater distances (up to 3.7 mm) from the point of P application. Phosphoric acid increased the presence of soluble Zn species because of increased acidity. Soluble Zn has implications with respect to Zn bioavailability, which may negatively impact vegetation and other sensitive organisms. Although additions of P immobilize Pb, this practice needs close monitoring due to potential increases in Zn solubility in a Pb/Zn smelter-contaminated soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. On the structure and radiation chemistry of iron phosphate glasses: New insights from electron spin resonance, Mössbauer, and evolved-gas mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Griscom, D. L.; Merzbacher, C. I.; Bibler, N. E.; Imagawa, H.; Uchiyama, S.; Namiki, A.; Marasinghe, G. K.; Mesko, M.; Karabulut, M.

    1998-05-01

    Several vitreous forms for immobilization of plutonium and/or high-level nuclear wastes have been surveyed by electron spin resonance (ESR) to gain insights into their atomic-scale structures and to look for signs of radiolytic decomposition resulting from exposures to γ-ray doses of 30 MGy. While preliminary results are reported for Defense Waste Processing Facility (DWPF) borosilicate compositions and an experimental lanthanum-silicate glass, this paper focusses primarily on a class of glasses containing 40-75 mol% P 2O 5 and up to 40 mol% Fe 2O 3. Each of the six diverse compositions investigated displayed characteristic ESR signals (not resembling those of the iron-containing phosphorus-free glasses) comprising combinations of an extremely broad "X resonance" and a narrow "Z resonance", both centered near g=2.00 and both displaying nearly perfect Lorentzian line shapes (peak-to-peak derivative widths ˜300-600 mT and ˜30 mT, respectively, at 300 K). The X-resonance intensities in the air-melted glasses correlated linearly with Fe:P ratio up to [Fe 2O 3]/[P 2O 5] ≈ 0.6, where intensity values ˜1 spin/phosphorus were reached. Mössbauer studies showed that the [Fe 3+]/[Fe] tot ratio could be varied from 0.82 to 0.49 by raising the melting temperature in air from 1150°C to 1450°C and/or by employing mildly reducing atmospheres. The combined X + Z-resonance intensities were reduced to zero for [Fe 3+]/[Fe] tot less than ˜0.6, leaving only a much weaker spectrum attributable to Fe 3+ ions. The X and Z ESR signals of the iron phosphate glasses resemble nothing else in the literature except the correspondingly denoted signals in an iron-free amorphous peroxyborate (APB) preparation. The X and Z resonances in the latter are deemed to arise from superoxide ions (O 2-) in the borate network and in a separated Na 2O 2 phase, respectively. An asymmetric Z resonance signal attributable to interstitial O 2- species was a radiation-induced manifestation in phosphate

  18. Multiple Doped Erbium Glasses,

    DTIC Science & Technology

    GLASS, LASERS, ERBIUM, ERBIUM COMPOUNDS, DOPING, OXIDES, OPTIMIZATION, ATOMIC ENERGY LEVELS, PHOSPHATES , YTTERBIUM COMPOUNDS, NEODYMIUM COMPOUNDS, OPTICAL PUMPING, FLUORESCENCE, LIFE EXPECTANCY(SERVICE LIFE), BAND SPECTRA.

  19. ROLE OF THE NETWORK FORMER IN SEMICONDUCTING OXIDE GLASSES.

    DTIC Science & Technology

    SEMICONDUCTOR DEVICES, * GLASS ), (*ELECTRICAL NETWORKS, GLASS ), ELECTRICAL PROPERTIES, SEEBECK EFFECT, BORATES, PHOSPHATES, ELECTRICAL RESISTANCE, X RAY DIFFRACTION, ANNEALING, OXIDATION, OXIDES, ELECTRODES, VANADIUM

  20. Thin transparent W-doped indium-zinc oxide (WIZO) layer on glass.

    PubMed

    Lee, Young-Jun; Lim, Byung-Wook; Kim, Joo-Hyung; Kim, Tae-Won; Oh, Byeong-Yun; Heo, Gi-Seok; Kim, Kwang-Young

    2012-07-01

    Annealing effect on structural and electrical properties of W-doped IZO (WIZO) films for thin film transistors (TFT) was studied under different process conditions. Thin WIZO films were deposited on glass substrates by RF magnetron co-sputtering technique using indium zinc oxide (10 wt.% ZnO-doped In2O3) and WO3 targets in room temperature. The post annealing temperature was executed from 200 degrees C to 500 degrees C under various O2/Ar ratios. We could not find any big difference from the surface observation of as grown films while it was found that the carrier density and sheet resistance of WIZO films were controlled by O2/Ar ratio and post annealing temperature. Furthermore, the crystallinity of WIZO film was changed as annealing temperature increased, resulting in amorphous structure at the annealing temperature of 200 degrees C, while clear In2O3 peak was observed for the annealed over 300 degrees C. The transmittance of as-grown films over 89% in visible range was obtained. As an active channel layer for TFT, it was found that the variation of resistivity, carrier density and mobility concentration of WIZO film decreased by annealing process.

  1. Investigation of the Genotoxicity of Aluminum Oxide, β-Tricalcium Phosphate, and Zinc Oxide Nanoparticles In Vitro.

    PubMed

    Akbaba, Giray Buğra; Türkez, Hasan

    The aim of this study was to investigate the genotoxicity of aluminum oxide (Al 2 O 3 ), β-tricalcium phosphate (β-TCP) (Ca 3 (PO 4 ) 2 ), and zinc oxide (ZnO) nanoparticles (NPs) that were 4.175, 9.058, and 19.8 nm sized, respectively, on human peripheral blood lymphocytes using micronucleus (MN) and chromosome aberration (CA) techniques. Aluminum oxide and β-TCP NPs did not show genotoxic effects on human peripheral blood cultures in vitro, even at the highest concentrations; therefore, these materials may be suitable for use as biocompatible materials. It was observed that, even at a very low dose (≥12.5 ppm), ZnO NPs had led to genotoxicity. In addition, at high concentrations (500 ppm and above), ZnO NPs caused mortality of lymphocytes. For these reasons, it was concluded that ZnO NPs are not appropriate for using as a biocompatible biomaterial.

  2. Cell adhesion to borate glasses by colloidal probe microscopy.

    PubMed

    Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert

    2011-05-01

    The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer. Published by Elsevier Ltd.

  3. Investigation of Refractive Index Profile Induced with Femtosecond Pulses into Neodymium Doped Phosphate Glass for the Purposes of Hybrid Waveguiding Structures Formation

    NASA Astrophysics Data System (ADS)

    Bukharin, M.; Khudakov, D.; Vartapetov, S.

    The technique of writing depressed cladding waveguides into Nd:phosphate glass with relatively large mode field diameter in 2-line geometry was reported for the purposes of waveguiding structures formation. The easy to use and accurate technique of induced refractive index measurement was proposed, and it was shown the inefficiency of widespread indirect (numerical aperture) technique of refractive index measurement for such femtosecond written waveguides.

  4. Three-dimensional zinc incorporated borosilicate bioactive glass scaffolds for rodent critical-sized calvarial defects repair and regeneration.

    PubMed

    Wang, Hui; Zhao, Shichang; Xiao, Wei; Cui, Xu; Huang, Wenhai; Rahaman, Mohamed N; Zhang, Changqing; Wang, Deping

    2015-06-01

    The biomaterials with high osteogenic ability are being intensively investigated. In this study, we evaluated the bioactivity and osteogenesis of BG-Zn scaffolds in vitro and in vivo with a rodent calvarial defects model. Zinc containing borosilicate bioactive glass was prepared by doping glass with 1.5, 5 and 10 wt.% ZnO (denoted as BG-1.5Zn, BG-5Zn and BG-10Zn, respectively). When immersed in simulated body fluid, dopant ZnO retarded the degradation process, but did not affect the formation of hydroxyapatite (HA) after long-period soaking. BG-Zn scaffolds showed controlled release of Zn ions into the medium for over 8 weeks. Human bone marrow derived stem cells (hBMSCs) attached well on the BG-1.5Zn and BG-5Zn scaffolds, which exhibited no cytotoxicity to hBMSCs. In addition, the alkaline phosphatase activity of the hBMSCs increased with increasing dopant amount in the glass, while the BG-10Zn group showed over-dose of Zn. Furthermore, when implanted in rat calvarial defects for 8 weeks, the BG-5Zn scaffolds showed a significantly better capacity to regenerate bone tissue compared to the non-doping scaffolds. Generally, these results showed the BG-Zn scaffolds with high osteogenic capacity will be promising candidates using in bone tissue repair and regeneration. Copyright © 2015. Published by Elsevier B.V.

  5. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete.

    PubMed

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 . After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  6. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  7. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    PubMed Central

    Simescu, Florica; Idrissi, Hassane

    2008-01-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating. PMID:27878037

  8. Effect of alkaline earth modifier on the optical and structural properties of Cu2+ doped phosphate glasses as a bandpass filter

    NASA Astrophysics Data System (ADS)

    Farouk, M.; Samir, A.; El Okr, M.

    2018-02-01

    Glasses of composition [16RO-3Al2O3sbnd 6CuOsbnd 20Na2Osbnd 55P2O5], where R is the alkaline earth (R = Mg, Ca, Sr and Ba mol. %), were prepared by conventional melt quenching technique. The glass samples were characterized by X-ray diffraction, infrared spectroscopy, and spectrophotometer. XRD patterns show no sharp peaks indicating the non-crystalline nature of the prepared glasses. The density and molar volume of the glass systems were determined in order to study their structures. These results revealed that addition of alkaline earth elements leads to the formation of non-bridging oxygens (NBOs) and expands (opens up) the structure. The infrared spectra were analyzed to quantify the present phosphate groups. The optical absorption spectra of Cu2+ ions show the characteristic broadband single of Cu2+ ions in octahedral symmetry. The band gap was estimated following two methodologies. The first method considers the band edge of the transmission, while the second approach relays on the estimated values of the optical constants. A decent agreement for the band gap values using the two methods was obtained.

  9. Investigations on the spectroscopic properties of Dy3 + ions doped Zinc calcium tellurofluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Arunkumar, S.; Annapoorani, K.; Marimuthu, K.

    2018-03-01

    A new series of Dy3 + doped (30-x)B2O3 + 30TeO2 + 20CaCO3 + 10ZnO + 10ZnF2 + xDy2O3 (x = 0.01, 0.1, 0.5, 1, 2 and 3 in wt%) Zinc calcium tellurofluoroborate glasses were prepared and their structural, luminescence and excited state dynamics have been studied and reported. The structural properties have been characterized through XRD and FTIR studies to confirm the amorphous nature and to explore the presence of fundamental stretching vibrations. The bonding parameters (δ and β), optical band gap, Urbach's energy, oscillator strengths and Judd-Ofelt (JO) intensity parameters were calculated from the absorption spectra. The JO intensity parameters and the Y/B intensity ratio values have been used to explore the nature of the bonding and asymmetry around the Dy-ligand field environment. The luminescence properties of the present Dy3 + doped glasses have been analyzed through luminescence excited state dynamics and radiative properties such as transition probability (A), stimulated emission cross-section (σPE) branching ratio (β) and radiative lifetime (τR) values. The combination of dominant blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emissions generates white light emission in the CIE chromaticity diagram thus suggests that the present Dy3 + doped glasses are suitable for white light applications. The lifetime of the 4F9/2 excited state is found to decrease with the increase in Dy3 + ion content and the concentration quenching of the Dy3 + ions emission could be ascribed due to the resonant energy transfer and cross-relaxation processes. The non-exponential behavior of the decay curves has been analyzed with Inokuti-Hirayama model and the interaction between the Dy3 + ions is of electric dipole-dipole in nature.

  10. Surface or internal nucleation and crystallization of glass-ceramics

    NASA Astrophysics Data System (ADS)

    Höland, W.; Rheinberger, V. M.; Ritzberger, C.; Apel, E.

    2013-07-01

    Fluoroapatite (Ca5(PO4)3F) was precipitated in glass-ceramics via internal crystallization of base glasses. The crystals grew with a needle-like morphology in the direction of the crystallographic c-axis. Two different reaction mechanisms were analyzed: precipitation via a disordered primary apatite crystals and a solid state parallel reaction to rhenanite (NaCaPO4) precipitation. In contrast to the internal nucleation used in the formation of fluoroapatite, surface crystallization was induced to precipitate a phosphate-free oxyapatite of NaY9(SiO4)6O2-type. Internal nucleation and crystallization have been shown to be a very useful tool for developing high-strength lithium disilicate (Li2Si2O5) glass-ceramics. A very controlled process was conducted to transform the lithium metasilicate glass-ceramic precursor material into the final product of the lithium disilicate glass-ceramic without the major phase of the precursor material. The combination of all these methods allowed the driving forces of the internal nucleation and crystallization mechanisms to be explained. An amorphous phosphate primary phase was discovered in the process. Nucleation started at the interface between the amorphous phosphate phase and the glass matrix. The final products of all these glass-ceramics are biomaterials for dental restoration showing special optical properties, e.g. translucence and color close to dental teeth.

  11. [Quantitative determination of glass content in monazite glass-ceramics by IR technique].

    PubMed

    He, Yong; Zhang, Bao-min

    2003-04-01

    Monazite glass-ceramics consist of both monazite and metaphoshate glass phases. The absorption bands of both phases do not overlap each other, and the absorption intensities of bands 1,275 and 616 cm-1 vary with the glass contents. The correlation coefficient between logarithmic absorbance ratio of the two bands and glass contents was r = 0.9975 and its regression equation was y = 48.356 + 25.93x. The absorbance ratio of bands 952 and 616 cm-1 also varied with different ratios of Ce2O3/La2O3 in synthetic monazites, with r = 0.9917 and a regression equation y = 0.2211 exp (0.0221x). High correlation coefficients show that the IR technique could find new application in the quantitative analysis of glass content in phosphate glass-ceramics.

  12. Optical and luminescence properties of Dy3+ ions in phosphate based glasses

    NASA Astrophysics Data System (ADS)

    Rasool, Sk. Nayab; Rama Moorthy, L.; Jayasankar, C. K.

    2013-08-01

    Phosphate glasses with compositions of 44P2O5 + 17K2O + 9Al2O3 + (30 - x)CaF2 + xDy2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0 mol %) were prepared and characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), optical absorption, emission and decay measurements. The observed absorption bands were analyzed by using the free-ion Hamiltonian (HFI) model. The Judd-Ofelt (JO) analysis has been performed and the intensity parameters (Ωλ, λ = 2, 4, 6) were evaluated in order to predict the radiative properties of the excited states. From the emission spectra, the effective band widths (Δλeff), stimulated emission cross-sections (σ(λp)), yellow to blue (Y/B) intensity ratios and chromaticity color coordinates (x, y) have been determined. The fluorescence decays from the 4F9/2 level of Dy3+ ions were measured by monitoring the intense 4F9/2 → 6H15/2 transition (486 nm). The experimental lifetimes (τexp) are found to decrease with the increase of Dy3+ ions concentration due to the quenching process. The decay curves are perfectly single exponential at lower concentrations and gradually changes to non-exponential for higher concentrations. The non-exponential decay curves are well fitted to the Inokuti-Hirayama (IH) model for S = 6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole type. The systematic analysis of revealed that the energy transfer mechanism strongly depends on Dy3+ ions concentration and the host glass composition.

  13. [In vitro drug release behavior of carrier made of porous glass ceramics].

    PubMed

    Wang, De-ping; Huang, Wen-hai; Zhou, Nai

    2002-09-01

    To conduct the in vitro test on drug release of rifampin encapsulated in a carrier made of porous phosphate glass ceramics and to analyze main factors which affect the drug release rate. A certain quantitative of rifampin was sealed in a hollow cylindrical capsule which consisted of chopped calcium phosphate crystal fiber obtained from glass crystallization. The rifampin concentration was measured in the simulated physiological solution in which the capsule soaked. Rifampin could be released in a constant rate from the porous glass ceramic carrier in a long time. The release rate was dependent on the size of crystal fiber and the wall thickness of the capsule. This kind of calcium phosphate glass ceramics can be a candidate of the carrier materials used as long term drug therapy after osteotomy surgery.

  14. Blue and white light emission in Tm3+ and Tm3+/Dy3+ doped zinc phosphate glasses upon UV light excitation

    NASA Astrophysics Data System (ADS)

    Meza-Rocha, A. N.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2016-08-01

    A spectroscopic study based on photoluminescence spectra and decay time profiles in Tm3+ and Tm3+/Dy3+ doped Zn(PO3)2 glasses is reported. The Tm3+ doped Zn(PO3)2 glass, upon 357 nm excitation, exhibits blue emission with CIE1931 chromaticity coordinates, x = 0.157 and y = 0.030, and color purity of about 96%. Under excitations at 348, 352 and 363 nm, which match with the emissions of AlGaN and GaN based LEDs, the Tm3+/Dy3+ co-doped Zn(PO3)2 glass displays natural white, bluish white and cool white overall emissions, with correlated color temperature values of 4523, 10700 and 7788 K, respectively, depending strongly on the excitation wavelength. The shortening of the Dy3+ emission decay time in presence of Tm3+ suggests that Dy3+→Tm3+ non-radiative energy transfer occurs. By using the Inokuti-Hirayama model, it is inferred that an electric quadrupole-quadrupole interaction might be the dominant mechanism involved in the energy transfer. The efficiency and probability of this energy transfer are 0.12 and 126.70 s-1, respectively.

  15. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics.

    PubMed

    Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel

    2013-05-01

    The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.

  16. Framework influence of erbium doped oxyfluoride glasses on their optical properties

    NASA Astrophysics Data System (ADS)

    Środa, Marcin; Cholewa-Kowalska, Katarzyna; Różański, Marek; Nocuń, Marek

    2011-01-01

    Glasses of different matrix (phosphate, borate, silicate and lead-silicate) were studied for their optical properties. The effect of Er dopant on transmittance and luminescence properties was presented. The significant “red shift” and “blue shift” of UV edge absorption were discussed based on the changes in the framework of the borate and phosphate glasses, respectively. It was showed that the integral intensity of the two main optical absorption transitions monotonically increases with the order: phosphate < borate < silicate < lead-silicate. Ellipsometric measurement was applied to obtain the refractive index of the glasses. The correlation between the shift of edge absorption and the change of refractive index was presented. Effect of glassy matrix on luminescence of Er3+ was discussed.

  17. Spectroscopic attributes of Sm3+ doped magnesium zinc sulfophosphate glass: Effects of silver nanoparticles inclusion

    NASA Astrophysics Data System (ADS)

    Ahmadi, F.; Hussin, R.; Ghoshal, S. K.

    2017-11-01

    We report the modified optical properties of Sm3+ doped magnesium zinc sulfophosphate glass system with silver nanoparticles (Ag NPs) inclusion. Three glass samples were prepared using melt quenching method and characterized. TEM images revealed the nucleation of Ag NPs with average diameter ≈12.50 nm. The UV-Vis-NIR spectra showed thirteen absorption bands. The surface plasmon resonance (SPR) band of Ag NPs was manifested at 446 nm. FTIR spectra disclosed the bonding vibrations for P-O bonds, P-O-P linkages, and PO2 units. Ag NPs concentration dependent bonding parameters and Judd-Ofelt (JO) intensity parameters were calculated. The JO parameter Ω2 was reduced with the increase of Ag NPs contents, indicating the ionicity and symmetry enhancement between Sm3+ ions with their surrounding ligands. The emission spectra of all samples under the excitation wavelength of 402 nm exhibited four significant peaks centered at 562, 599, 644 and 702 nm which are allocated to 4G5/2 →6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions, respectively. Inclusion of Ag NPs was discerned to augment the luminescence intensity by a factor of two, which was majorly ascribed to the local field effect of Ag NPs and subsequent energy transfer from the NPs to Sm3+ ions.

  18. Photon Interaction Parameters for Some Borate Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  19. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles.

    PubMed

    Chiari, Marina D S; Rodrigues, Marcela C; Xavier, Tathy A; de Souza, Eugen M N; Arana-Chavez, Victor E; Braga, Roberto R

    2015-06-01

    To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage

    PubMed Central

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-01-01

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers. PMID:25716328

  1. Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage.

    PubMed

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-02-26

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers.

  2. Study of the thermal-optics parameters of Nd3+-doped phosphate glass as a function of temperature

    NASA Astrophysics Data System (ADS)

    Filho, J. C.; Pilla, V.; Messias, D. N.; Lourenço, S. A.; Silva, A. C. A.; Dantas, N. O.; Andrade, A. A.

    2017-02-01

    The spectroscopic properties of rare earth ions in many different hosts have been investigated, including surveys of Nd3+ in silicate, phosphate, fluorophosphates and fluoride glasses. Some of the thermal-optical properties of materials are influenced by temperature change, such as thermal diffusivity, specific heat and luminescence quantum efficiency. In this work the luminescence quantum efficiency of PANK: Nd3+, as a function of temperature (80- 480 K), was investigated using the normalized lifetime thermal lens technique. This system presents high quantum efficiency at low Nd3+ concentration and at ambient temperature, 100%, which decrease as temperature increase. Below room temperature the effects are not in accord with the maximum value of η, which must be unity.

  3. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1)

    PubMed Central

    Briat, Jean-François; Rouached, Hatem; Tissot, Nicolas; Gaymard, Frédéric; Dubos, Christian

    2015-01-01

    Phosphate and sulfate are essential macro-elements for plant growth and development, and deficiencies in these mineral elements alter many metabolic functions. Nutritional constraints are not restricted to macro-elements. Essential metals such as zinc and iron have their homeostasis strictly genetically controlled, and deficiency or excess of these micro-elements can generate major physiological disorders, also impacting plant growth and development. Phosphate and sulfate on one hand, and zinc and iron on the other hand, are known to interact. These interactions have been partly described at the molecular and physiological levels, and are reviewed here. Furthermore the two macro-elements phosphate and sulfate not only interact between themselves but also influence zinc and iron nutrition. These intricated nutritional cross-talks are presented. The responses of plants to phosphorus, sulfur, zinc, or iron deficiencies have been widely studied considering each element separately, and some molecular actors of these regulations have been characterized in detail. Although some scarce reports have started to examine the interaction of these mineral elements two by two, a more complex analysis of the interactions and cross-talks between the signaling pathways integrating the homeostasis of these various elements is still lacking. However, a MYB-like transcription factor, PHOSPHATE STARVATION RESPONSE 1, emerges as a common regulator of phosphate, sulfate, zinc, and iron homeostasis, and its role as a potential general integrator for the control of mineral nutrition is discussed. PMID:25972885

  4. Influence of gel/LED-laser application on cervical microleakage of two barrier materials used for endodontically treated teeth whitening

    NASA Astrophysics Data System (ADS)

    Marchesan, Melissa Andréia; Barros, Felipe; Porto, Saulo; Zaitter, Suellen; Brugnera, Aldo, Jr.; Sousa-Neto, Manoel D.

    2007-02-01

    This study evaluated ex vivo the influence of the number of gel/LED-laser applications/activations on cervical microleakage of two different barrier materials used for protection during whitening of endodontically treated teeth. Eighty-four canines were instrumented and obturated with epoxy resin sealer. The seal was removed 2 mm beyond the cemento-enamel junction for barrier placement and the teeth were divided into two groups of 40 teeth each: G1, zinc phosphate cement; G2, glass ionomer cement. The two groups were subdivided into 4 subgroups (n=10 each): I) no gel or LED-laser application; II) one gel application and two LED-laser activations; III) two gel applications and four LED-laser activations; IV) three gel applications and six LED-laser activations. The teeth were immersed in India ink for 7 days, decalcified and cleared. Cervical microleakage was quantified with a measurement microscope. Statistical analysis showed that zinc phosphate caused significantly lower microleakage than glass ionomer cement (presented microleakage in all subgroups). However, after two (p<0.01) and three (p<0.001) applications of gel, there was statistially significant microleakage in zinc phosphate barriers. Based on the present results, it can be concluded that cervical barriers with zinc phosphate cement show less cervical microleakage and that two or more applications/activations of gel/LED-laser significantly increase microleakage.

  5. Optical spectroscopy, 1.06 μm emission properties of Nd3 +-doped phosphate based glasses

    NASA Astrophysics Data System (ADS)

    Sk. Nayab, Rasool; Sasikala, T.; Mohan Babu, A.; Rama Moorthy, L.; C. K., Jayasankar

    2017-06-01

    Neodymium doped phosphate based glasses with composition of (P2O5 + K2O + Al2O3 + CaF2) were prepared. The samples were analysed through differential thermal analysis (DTA), Fourier transform infrared (FTIR), absorption, emission and decay measurements. Judd-Ofelt parameters (Ωλ) have been determined from the spectral intensities of absorption bands in order to calculate the radiative parameters like radiative transition probabilities (AR), radiative lifetime (τR) and branching ratios (βR) for the 4F3/2 → 4I11/2 laser transition of Nd3 + ion. The effective emission bandwidths (Δλeff), experimental branching ratios (βexp) and stimulated emission cross-sections (σe) have been determined from the emission spectrum. The decay curves of the 4F3/2 level exhibited almost single exponential nature for all the Nd3 + ion concentrations.

  6. Anaerobic Digestion Alters Copper and Zinc Speciation.

    PubMed

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  7. Er3+ phosphate glass optical waveguide amplifiers at 1.5 μm on silicon

    NASA Astrophysics Data System (ADS)

    Yan, Yingchao; Faber, Anne J.; de Waal, Henk

    1996-01-01

    RF-sputtering techniques were employed to produce Er-doped phosphate glass films on thermally oxidized silicon wafers. Film compositions were characterized by X-ray photoelectron spectroscopy. As-deposited films showed very low Er luminescence lifetimes. By postannealing of deposited films in pure oxygen, Er photoluminescence emission lifetime of the 4I13/2 - 4I15/2 transition could be increased from 1 - 2 ms to 8 - 9 ms. The long Er lifetime of the deposited films is very promising for achieving an optical gain. A dependence of measured lifetimes on pump power was observed which are related to a up-conversion quenching process. After postannealing, the sputtered waveguides showed relatively low attenuation loss at the potential pumping and signaling wavelengths. The loss spectrum from 700 nm to 1600 nm was measured by two-prism coupling. The films were easy to be patterned by lithography and ridge channel waveguides were developed by argon plasma etching.

  8. Effect of cryogenic temperature on spectroscopic and laser properties of Er, Yb-doped potassium-lanthanum phosphate glass

    NASA Astrophysics Data System (ADS)

    Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Nitsch, Karel; Cihlář, Antonín.; Král, Robert; Nejezchleb, Karel; Nikl, Martin

    2017-05-01

    Glass matrix doped with rare-earth ions is a promising laser active medium for high power laser systems. Due to amorphous structure of glasses the absorption and emission spectra lines are broader in comparison with crystalline materials thus pumping radiation can be absorbed efficiently, moreover much broader gain bandwidth is suitable for generation of ultra-short pulses. Another advantage of the glass matrix is the possibility to fabricate large volume ingots and simultaneously preservation of sufficient optical quality. The lower thermal conductivity of glasses can be compensated by geometry of the active medium for instance shaped into fibres or discs. We present temperature dependence of spectroscopic and laser properties of newly developed Er, Yb - doped potassium-lanthanum phosphate glass, which is appropriate for generation of radiation at 1.53 μm. The sample of Er,Yb:KLaP glassy mixture was cut into disc shape with dimensions of 2.5 mm (thickness) and 5 mm (diameter) and its faces were polished plan-parallelly without being anti-reflection coated. The temperature dependence of the transmission and emission spectra Er,Yb:KLaP together with the fluorescence decay time were measured the temperature range from 80 to 400 K. The fluorescence lifetime of manifold 4I13/2 (upper laser level) prolonged and the intensity of up-conversion radiation decreased with decreasing temperature. The longitudinal excitation of Er,Yb:KLaP was carried out by a fibre-coupled laser diode (pulse duration 2 ms, repetition rate 10 Hz, pump wavelength 969 nm). Laser resonator was hemispherical, with flat pumping mirror (HR @ 1.5 μm) and spherical output coupler (R = 98 % @ 1.5 - 1.6 μm). The Er,Yb:KLaP glass laser properties were investigated in the temperature range 80 - 300 K. The highest slope efficiency with respect to absorbed pumped power was 6.1 % at 80 K. The maximum output of peak amplitude power was 0.71 W at 80 K, i.e. 1.2 times higher than at 300 K. Tunability of laser

  9. Atomic-Level Structure Studies of Rare-Earth Doped Sodium Phosphate Glasses Using High Energy X-Ray Diffraction and Complementary Techniques

    NASA Astrophysics Data System (ADS)

    Amir, Faisal

    The atomic-scale structure of a series of (RE2 O3)x ( Na2O)y ( P2O5)1- x-y glasses (RE = Pr, Nd, Er) where has been characterized by high-energy X-ray diffraction technique (HEXRD). In addition, differential thermal analysis (DTA), Fourier transform infrared (FTIR) spectroscopy, and absorption and emission spectroscopy in visible and near IR ranges have been used as supplementary tools to validate structural features obtained from HEXRD techniques.Structural features such as inter-atomic distances and coordination numbers and their dependence on the concentration of RE 2 O3 have been obtained by analyzing pair distribution functions (PDF) extracted from diffraction data. Coordination numbers for P-O, Na-O, O-O, and P-P were found to be independent of the RE 2 O3 concentration. In contrast, the RE-O coordination number varies between ≈ 8 and 7.2 as the RE2 O3 concentration increases from 0.005 to 0.05. The variation of the bond distance between large rare-earth ions (Pr, Nd) and small rare-earth ion (Er) is approximately 0.2 A, which is attributed to lanthanide contraction. The Na-O coordination number in these glasses was observed to ≈ 5.0 as the RE2 O 3 content increases. The overlapping correlation of RE-O, Na-O, and O-O in the same vicinity makes it difficult to calculate these coordination numbers. DTA measurements were used for the investigation of thermal characteristics of glasses. From these measurements, it is evident that the glass transition temperature increases with increasing the RE2 O3 (RE=Pr, Er) content. FTIR was used to inspect the structural changes of the glasses. The doping of RE 2 O3 (RE=Pr, Er) induces depolymerization of the glasses at the Q3 tetrahedral sites. The forming of the ionic linkages between phosphate chains is attributed to the increase in non-bridging oxygen (NBO). The cross-linkages density (CLD) increases with the RE2 O3 (RE=Pr, Er) concentrations. Absorption spectra for x = 0.01 of Er 3+ and 0.005-0.05 for Nd3+ doped

  10. The role of Bi2O3 on the thermal, structural, and optical properties of tungsten-phosphate glasses.

    PubMed

    Manzani, Danilo; de Araújo, Cid B; Boudebs, Georges; Messaddeq, Younès; Ribeiro, Sidney J L

    2013-01-10

    Glasses in the ternary system (70 - x)NaPO(3)-30WO(3)-xBi(2)O(3), with x = 0-30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi(2)O(3) on the thermal, structural, and optical properties was investigated. Differential scanning calorimetry analysis showed that the glass transition temperature, T(g), increases from 405 to 440 °C for 0 ≤ x ≤ 15 mol % and decreases to 417 °C for x = 30 mol %. The thermal stability against devitrification decreases from 156 to 67 °C with the increase of the Bi(2)O(3) content. The structural modifications were studied by Raman scattering, showing a bismuth insertion into the phosphate chains by Bi-O-P linkage. Furthermore, up to 15 mol % of Bi(2)O(3) formation of BiO(6) clusters is observed, associated with Bi-O-Bi linkage, resulting in a progressive break of the linear phosphate chains that leads to orthophosphate Q(0) units. The linear refractive index, n(0), was measured using the prism-coupler technique at 532, 633, and 1550 nm, whereas the nonlinear (NL) refractive index, n(2) was measured at 1064 nm using the Z-scan technique. Values of 1.58 ≤ n(0) ≤ 1.88, n(2) ≥ 10(-15) cm(2)/W and NL absorption coefficient, α(2) ≤ 0.01 cm/GW, were determined. The linear and NL refractive indices increase with the increase of the Bi(2)O(3) concentration. The large values of n(0) and n(2), as well as the very small α(2), indicate that these materials have large potential for all-optical switching applications in the near-infrared.

  11. Single crystal EPR and optical studies of paramagnetic ions doped zinc potassium phosphate hexahydrate—Part I: Cu(II)—a case of orthorhombic symmetry

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, P.; Rajendiran, T. M.; Venkatesan, R.; Madhu, N.; Chandrasekhar, A. V.; Reddy, B. J.; Reddy, Y. P.; Ravikumar, R. V. S. S. N.

    2001-12-01

    Single crystal electron paramagnetic resonance (EPR) studies on Cu(II) doped zinc potassium phosphate hexahydrate (ZPPH) were carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice substitutionally in place of Zn(II) and the spin Hamiltonian parameters calculated from these spectra are gxx=2.188, gyy=2.032, gzz=2.373, Axx=50 G, Ayy=65.0 G and Azz=80 G. The g and A tensors were coincident and these values matched fairly well with the values obtained from powder spectrum. The bonding parameters have also been calculated.

  12. Judd-Ofelt analysis and energy transfer processes of Er3+ and Nd3+ doped fluoroaluminate glasses with low phosphate content

    NASA Astrophysics Data System (ADS)

    Huang, Feifei; Zhang, Yu; Hu, Lili; Chen, Danping

    2014-12-01

    Spectroscopic property and energy transfer processes of singly doped and codoped Er3+ and Nd3+ fluoroaluminate glasses with low phosphate content are systematically analyzed. The absorption spectra of these glasses are tested, and the Judd-Ofelt (J-O) and radiative parameters are discussed based on J-O theory and the parameters changes substantially because of the other codoping ions. As for Nd3+: the main emission bands at 0.9 and 1.05 μm decrease in the codoped sample under the excitation of an 800 nm laser diode from the emission spectra because the Er3+: 4I11/2 level reduces the Nd3+: 4F3/2 level effectively through the energy transfer process Nd3+: 4F3/2 → Er3+: 4I11/2. For Er3+, the emission at 1.5 μm is restrained by codoping with Nd3+ ions from the energy transfer process Er3+: 4I13/2 → Nd3+: 4I15/2. The emission at 2.7 μm is enhanced because the Nd3+ ions deplete the lower level and exert a positive effect on the upper laser level. The microparameters of the energy transfer between the Er3+ and Nd3+ ions are calculated and discussed using Forster-Dexter theory. The energy transfer efficiencies of the Nd3+: 4F3/2 to the Er3+: 4I11/2 and the Er3+: 4I13/2 to the Nd3+: 4I15/2 are 28.8% and 74.5%, respectively. These results indicate that Nd3+ can be an efficient sensitizer for Er3+ to obtain Mid-infrared (Mid-IR) emission and the codoped Er3+/Nd3+ fluoroaluminate glass with low phosphate content is suitable to be used as the fiber optical gain media for 2.7 μm laser generation.

  13. Glass transition in ferroic glass K x (ND4)1-x D2PO4: a complete x-ray diffraction line shape analysis

    NASA Astrophysics Data System (ADS)

    Ranjan Choudhury, Rajul; Chitra, R.; Jayakrishnan, V. B.

    2016-03-01

    Quenching of dynamic disorder in glassy systems is termed as the glass transition. Ferroic glasses belong to the class of paracrystalline materials having crystallographic order in-between that of a perfect crystal and amorphous material, a classic example of ferroic glass is the solid solution of ferroelectric deuterated potassium dihydrogen phosphate and antiferroelectric deuterated ammonium dihydrogen phosphate. Lowering temperature of this ferroic glass can lead to a glass transition to a quenched disordered state. The subtle atomic rearrangement that takes place at such a glass transition can be revealed by careful examination of the temperature induced changes occurring in the x-ray powder diffraction (XRD) patterns of these materials. Hence we report here results of a complete diffraction line shape analysis of the XRD patterns recorded at different temperatures from deuterated mixed crystals DK x A1-x DP with mixing concentration x ranging as 0 < x < 1. Changes observed in diffraction peak shapes have been explained on the basis of structural rearrangements induced by changing O-D-O hydrogen bond dynamics in these paracrystals.

  14. A method for predicting service life of zinc rich primers on carbon steel

    NASA Technical Reports Server (NTRS)

    Hoppesch, C. W.

    1986-01-01

    The service life of zinc rich primers on carbon steel can be estimated by immersing a primer coated glass slide into an aqueous copper sulfate solution and measuring the amount of zinc that reacts with the copper in 15 minutes. This zinc availability test was used to evaluate eleven primers currently available for which marine beach exposure data was available from previous programs. Results were evaluated and a correlation between zinc availability and ASTM rust grade was shown.

  15. Single crystal EPR and optical studies of paramagnetic ions doped zinc potassium phosphate hexahydrate--part I: Cu(II)--a case of orthorhombic symmetry.

    PubMed

    Sambasiva Rao, P; Rajendiran, T M; Venkatesan, R; Madhu, N; Chandrasekhar, A V; Reddy, B J; Reddy, Y P; Ravikumar, R V

    2001-12-01

    Single crystal electron paramagnetic resonance (EPR) studies on Cu(II) doped zinc potassium phosphate hexahydrate (ZPPH) were carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice substitutionally in place of Zn(II) and the spin Hamiltonian parameters calculated from these spectra are g(xx) = 2.188, g(yy) = 2.032, g(zz) = 2.373, Axx = 50 G, Ayy = 65.0 G and Azz = 80 G. The g and A tensors were coincident and these values matched fairly well with the values obtained from powder spectrum. The bonding parameters have also been calculated.

  16. Bright up-conversion white light emission from Er3+ doped lithium fluoro zinc borate glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Rao, K. Srinivasa; Hwang, Pyung

    2018-03-01

    Various concentrations of Er3+ (0.3, 0.5, 1.0 and 1.5 mol %) doped lithium fluoro zinc borate glasses were synthesized by a traditional melt quenching method. XRD, FTIR and FESEM have been employed to analyze the structural, compositional and morphological analysis respectively. Judd-Ofelt theory has been employed to analyze the intensity parameters (Ωλ, λ = 2, 4 and 6) which can be used to estimate the radiative properties of fluorescent levels of Er3+. We have been observed a strong NIR emission peak at 1.53 μm (4I13/2 → 4I15/2) under the excitation of 980 nm from Er3+: LBZ glasses. Nevertheless, the NIR emission is remarkably enhanced by increasing the Er3+ ions concentration until the optimized concentration of 0.5 mol%. The lifetime of the excited level of 4I13/2 in the NIR emission transition is evaluated and it is found to be1.22 ms from the decay analysis of 0.5 mol% Er3+: LBZ glass. Apart from the NIR emission, a bright up-conversion green emission is observed at 544 nm (4S3/2 → 4I15/2) along with an intense red emission at 659 nm (4F9/2 → 4I15/2) and a weak blue emission (2H9/2 → 4I15/2) under the excitation of 980 nm. Up-conversion emission features were significantly enhanced with increasing the Er3+ concentration up to 1.0 mol%. The combination of the obtained up-conversion emission colors of green, red and blue could generate white light emission. The cool white-light emission from the optimized glass sample has been confirmed from the Commission International de I'Echairage (CIE) 1931 chromaticity diagram analysis and their correlated color temperature (CCT) values. Based on the NIR and up-conversion emission features, Er3+: LBZ glasses could be suggested as promising candidates for optical amplifiers, optical telecommunication windows and white light photonic applications.

  17. Gallium incorporation into phosphate based glasses: Bulk and thin film properties.

    PubMed

    Stuart, Bryan W; Grant, Colin A; Stan, George E; Popa, Adrian C; Titman, Jeremy J; Grant, David M

    2018-06-01

    The osteogenic ions Ca 2+ , P 5+ , Mg 2+ , and antimicrobial ion Ga 3+ were homogenously dispersed into a 1.45 µm thick phosphate glass coating by plasma assisted sputtering onto commercially pure grade titanium. The objective was to deliver therapeutic ions in orthopaedic/dental implants such as cementeless endoprostheses or dental screws. The hardness 4.7 GPa and elastic modulus 69.7 GPa, of the coating were comparable to plasma sprayed hydroxyapatite/dental enamel, whilst superseding femoral cortical bone. To investigate the manufacturing challenge of translation from a target to vapour condensed coating, structural/compositional properties of the target (P51MQ) were compared to the coating (P40PVD) and a melt-quenched equivalent (P40MQ). Following condensation from P51MQ to P40PVD, P 2 O 5 content reduced from 48.9 to 40.5 mol%. This depolymerisation and reduction in the P-O-P bridging oxygen content as determined by 31 P NMR, FTIR and Raman spectroscopy techniques was attributed to a decrease in the P 2 O 5 network former and increases in alkali/alkali-earth cations. P40PVD appeared denser (3.47 vs. 2.70 g cm -3 ) and more polymerised than it's compositionally equivalent P40MQ, showing that structure/ mechanical properties were affected by manufacturing route. Copyright © 2018. Published by Elsevier Ltd.

  18. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  19. ElaC encodes a novel binuclear zinc phosphodiesterase.

    PubMed

    Vogel, Andreas; Schilling, Oliver; Niecke, Manfred; Bettmer, Jorg; Meyer-Klaucke, Wolfram

    2002-08-09

    ElaC is a widespread gene found in eubacteria, archaebacteria, and mammals with a highly conserved sequence. Two human ElaC variants were recently associated with cancer (Tavtigian, S. V., Simard, J., Teng, D. H., Abtin, V., Baumgard, M., Beck, A., Camp, N. J., Carillo, A. R., Chen, Y., Dayananth, P., Desrochers, M., Dumont, M., Farnham, J. M., Frank, D., Frye, C., Ghaffari, S., Gupte, J. S., Hu, R., Iliev, D., Janecki, T., Kort, E. N., Laity, K. E., Leavitt, A., Leblanc, G., McArthur-Morrison, J., Pederson, A., Penn, B., Peterson, K. T., Reid, J. E., Richards, S., Schroeder, M., Smith, R., Snyder, S. C., Swedlund, B., Swensen, J., Thomas, A., Tranchant, M., Woodland, A. M., Labrie, F., Skolnick, M. H., Neuhausen, S., Rommens, J., and Cannon-Albright, L. A. (2001) Nat. Genet. 27, 172-180; Yanaihara, N., Kohno, T., Takakura, S., Takei, K., Otsuka, A., Sunaga, N., Takahashi, M., Yamazaki, M., Tashiro, H., Fukuzumi, Y., Fujimori, Y., Hagiwara, K., Tanaka, T., and Yokota, J. (2001) Genomics 72, 169-179). Analysis of the primary sequence indicates homology to an arylsulfatase and predicts a metallo-beta-lactamase fold. At present, no ElaC gene product has been investigated. We cloned the Escherichia coli ElaC gene and purified the recombinant gene product. An enzymatic analysis showed that ElaC does not encode an arylsulfatase but rather encodes a phosphodiesterase that hydrolyzes bis(p-nitrophenyl)phosphate with a k(cat) of 59 s(-1) and K' of 4 mm. Kinetic analysis of the dimeric enzyme revealed positive cooperativity for the substrate bis(p-nitrophenyl)phosphate with a Hill coefficient of 1.6, whereas hydrolysis of the substrate thymidine-5'-p-nitrophenyl phosphate followed Michaelis-Menten kinetics. Furthermore, the enzyme is capable of binding two zinc or two iron ions. However, it displays phosphodiesterase activity only in the zinc form. The metal environment characterized by zinc K-edge x-ray absorption spectroscopy was modeled with two histidine residues, one

  20. Reaction of sodium calcium borate glasses to form hydroxyapatite.

    PubMed

    Han, Xue; Day, Delbert E

    2007-09-01

    This study investigated the transformation of two sodium calcium borate glasses to hydroxyapatite (HA). The chemical reaction was between either 1CaO . 2Na(2)O . 6B(2)O(3) or 2CaO . 2Na(2)O . 6B(2)O(3) glass and a 0.25 M phosphate (K(2)HPO(4)) solution at 37, 75 and 200 degrees C. Glass samples in the form of irregular particles (125-180 microm) and microspheres (45-90 and 125-180 microm) were used in order to understand the reaction mechanism. The effect of glass composition (calcium content) on the weight loss rate and reaction temperature on crystal size, crystallinity and grain shape of the reaction products were studied. Carbonated HA was made by dissolving an appropriate amount of carbonate (K(2)CO(3)) in the 0.25 M phosphate solution. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were used to characterize the reaction products. The results show that sodium calcium borate glasses can be transformed to HA by reacting with a phosphate solution. It is essentially a process of dissolution of glass and precipitation of HA. The transformation begins from an amorphous state to calcium-deficient HA without changing the size and shape of the original glass sample. Glass with a lower calcium content (1CaO . 2Na(2)O . 6B(2)O(3)), or reacted at an elevated temperature (75 degrees C), has a higher reaction rate. The HA crystal size increases and grain shape changes from spheroidal to cylindrical as temperature increases from 37 to 200 degrees C. Increase in carbonate concentration can also decrease the crystal size and yield a more needle-like grain shape.

  1. Novel method for early investigation of bioactivity in different borate bio-glasses

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  2. Novel method for early investigation of bioactivity in different borate bio-glasses.

    PubMed

    Abdelghany, A M

    2013-01-01

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm(-1) after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    PubMed

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  4. Modeling pair distribution functions of rare-earth phosphate glasses using principal component analysis

    DOE PAGES

    Cole, Jacqueline M.; Cheng, Xie; Payne, Michael C.

    2016-10-18

    The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, co-doped with two rare-earth ions (R and R’) of different sizes and optical properties, are of interest to the laser industry. The determination of structure-property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of co-doped REPGs presents significant challenges relative to their singly-doped counterparts; specifically, R and R’ are difficult to distinguish in terms of establishing relativemore » material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown co-doped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are pre-validated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly-doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. Furthermore, while this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials, and be exploited in large-scale data-mining efforts that probe many t

  5. Modeling Pair Distribution Functions of Rare-Earth Phosphate Glasses Using Principal Component Analysis.

    PubMed

    Cole, Jacqueline M; Cheng, Xie; Payne, Michael C

    2016-11-07

    The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, codoped with two rare-earth ions (R and R') of different sizes and optical properties, are of interest to the laser industry. The determination of structure-property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of codoped REPGs presents significant challenges relative to their singly doped counterparts; specifically, R and R' are difficult to distinguish in terms of establishing relative material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown codoped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are prevalidated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. While this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials and be exploited in large-scale data-mining efforts that probe many t(r) functions.

  6. In vitro behaviour of three biocompatible glasses in composite implants.

    PubMed

    Varila, Leena; Lehtonen, Timo; Tuominen, Jukka; Hupa, Mikko; Hupa, Leena

    2012-10-01

    Poly(L,DL-lactide) composites containing filler particles of bioactive glasses 45S5 and S53P4 were compared with a composite containing a slowly dissolving glass S68. The in vitro reactivity of the composites was studied in simulated body fluid, Tris-buffered solution, and phosphate buffered saline. The high processing temperature induced thermal degradation giving cavities in the composites containing 45S5 and S53P4, while good adhesion of S68 to the polymer was observed. The cavities partly affected the in vitro reactivity of the composites. The degradation of the composites containing the bioactive glasses was faster in phosphate buffered saline than in the two other solutions. Hydroxyapatite precipitation suggesting bone tissue bonding capability was observed on these two composites in all three solutions. The slower dissolution of S68 glass particles and the limited hydroxyapatite precipitation suggested that this glass has potential as a reinforcing composition with the capability to guide bone tissue growth in biodegradable polymer composites.

  7. Optical spectroscopy, 1.06μm emission properties of Nd3+-doped phosphate based glasses.

    PubMed

    Sk Nayab, Rasool; T, Sasikala; A, Mohan Babu; L, Rama Moorthy; C K, Jayasankar

    2017-06-05

    Neodymium doped phosphate based glasses with composition of (P 2 O 5 +K 2 O+Al 2 O 3 +CaF 2 ) were prepared. The samples were analysed through differential thermal analysis (DTA), Fourier transform infrared (FTIR), absorption, emission and decay measurements. Judd-Ofelt parameters (Ω λ ) have been determined from the spectral intensities of absorption bands in order to calculate the radiative parameters like radiative transition probabilities (A R ), radiative lifetime (τ R ) and branching ratios (β R ) for the 4 F 3/2 → 4 I 11/2 laser transition of Nd 3+ ion. The effective emission bandwidths (Δλ eff ), experimental branching ratios (β exp ) and stimulated emission cross-sections (σ e ) have been determined from the emission spectrum. The decay curves of the 4 F 3/2 level exhibited almost single exponential nature for all the Nd 3+ ion concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    PubMed

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  9. Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies.

    PubMed

    Castro-Guerrero, Norma A; Isidra-Arellano, Mariel C; Mendoza-Cozatl, David G; Valdés-López, Oswaldo

    2016-01-01

    Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals.

  10. Effect of surface condition of dental zirconia ceramic (Denzir) on bonding.

    PubMed

    Uo, Motohiro; Sjögren, Göran; Sundh, Anders; Goto, Mitsunari; Watari, Fumio; Bergman, Maud

    2006-09-01

    Yttria partially stabilized zirconia (YPSZ) ceramics are suitable for dental and medical use because of their high fracture toughness and chemical durability. The purpose of this study was to examine the bonding behavior of a dental YPSZ ceramic, Denzir. After being subjected to various surface treatments, Denzir specimens were bonded to each other using an adhesive resin composite, glass ionomer, or zinc phosphate cement. Bonding strength was then determined by the shearing test. No significant differences (p>0.05) were observed between SiC- and Al2O3-blasted specimens. In all surface treatments, the shear bond strength significantly (p<0.05) increased in the order of adhesive resin composite cement > glass ionomer cement > zinc phosphate cement. Moreover, silanization with methacryloxy propyl trimethoxysilane slightly increased the bonding strength of the adhesive resin composite cement.

  11. Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature.

    PubMed

    Hambali, Nur Ashikyn; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Hashim, Abdul Manaf

    2014-01-01

    The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm(2) and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm(2) exhibited the highest density of 1.45 × 10(9) cm(-2). X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, I UV/I VIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm(2) showed high I UV/I VIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source.

  12. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    PubMed

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  13. Comment on "A model for phosphate glass topology considering the modifying ion sub-network" [J. Chem. Phys. 140, 154501 (2014)

    NASA Astrophysics Data System (ADS)

    Sidebottom, David L.

    2015-03-01

    In a recent paper, Hermansen, Mauro, and Yue [J. Chem. Phys. 140, 154501 (2014)] applied the temperature-dependent constraint theory to model both the glass transition temperature, Tg, and fragility, m, of a series of binary alkali phosphate glasses of the form (R2O)x (P2 O 5) 1 - x , where R represents an alkali species. Key to their success seems to be the retention of linear constraints between the alkali ion (R+) and the non-bridging oxygens near Tg, which allows the model to mimic a supposed minimum for both Tg(x) and m(x) located near x = 0.2. However, the authors have overlooked several recent studies that clearly show there is no minimum in m(x). We argue that the retention of the alkali ion constraints at these temperatures is unjustified and question whether the model calculations can be revised to meet the actual experimental data. We also discuss alternative interpretations for the fragility based on two-state thermodynamics that can accurately account for its compositional dependence.

  14. Synthesis and characterization of barium fluoride substituted zinc tellurite glasses

    NASA Astrophysics Data System (ADS)

    Aishwarya, K.; Vinitha, G.; Varma, G. Sreevidya; Asokan, S.; Manikandan, N.

    2017-12-01

    Glasses in the TeO2-ZnO-BaF2 system were prepared by standard melt quenching technique and were characterized for their thermal, optical and structural properties. Samples were found to show good thermal stability with values ranging above 100 °C for all the compositions. Optical bandgap and refractive index values were calculated from linear optical measurements using UV-Vis spectroscopy. Infrared spectra showed the presence of hydroxyl groups in the glasses indicating that the effect of fluorine was negligible in removing the hydroxyl impurities for the experimental conditions and compositions used. Raman measurements showed the modification occurring in the glass network due to addition of barium fluoride in terms of increase in the formation of non-bridging oxygen atoms compared to strong Te-O-Te linkages in the glass matrix.

  15. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review

    PubMed Central

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848

  17. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites

    Treesearch

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci

    2012-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...

  18. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model.

    PubMed

    Yang, Hongtao; Wang, Cong; Liu, Chaoqiang; Chen, Houwen; Wu, Yifan; Han, Jintao; Jia, Zichang; Lin, Wenjiao; Zhang, Deyuan; Li, Wenting; Yuan, Wei; Guo, Hui; Li, Huafang; Yang, Guangxin; Kong, Deling; Zhu, Donghui; Takashima, Kazuki; Ruan, Liqun; Nie, Jianfeng; Li, Xuan; Zheng, Yufeng

    2017-11-01

    In the present study, pure zinc stents were implanted into the abdominal aorta of rabbits for 12 months. Multiscale analysis including micro-CT, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and histological stainings was performed to reveal the fundamental degradation mechanism of the pure zinc stent and its biocompatibility. The pure zinc stent was able to maintain mechanical integrity for 6 months and degraded 41.75 ± 29.72% of stent volume after 12 months implantation. No severe inflammation, platelet aggregation, thrombosis formation or obvious intimal hyperplasia was observed at all time points after implantation. The degradation of the zinc stent played a beneficial role in the artery remodeling and healing process. The evolution of the degradation mechanism of pure zinc stents with time was revealed as follows: Before endothelialization, dynamic blood flow dominated the degradation of pure zinc stent, creating a uniform corrosion mode; After endothelialization, the degradation of pure zinc stent depended on the diffusion of water molecules, hydrophilic solutes and ions which led to localized corrosion. Zinc phosphate generated in blood flow transformed into zinc oxide and small amounts of calcium phosphate during the conversion of degradation microenvironment. The favorable physiological degradation behavior makes zinc a promising candidate for future stent applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Femtosecond laser writing of new type of waveguides in silver containing glasses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abou Khalil, Alain; Bérubé, Jean-Philippe; Danto, Sylvain; Desmoulin, Jean-Charles; Cardinal, Thierry; Petit, Yannick G.; Canioni, Lionel; Vallée, Réal

    2017-03-01

    Femtosecond laser writing in glasses is a growing field of research and development in photonics, since it provides a versatile, robust and efficient approach to directly address 3D material structuring. Laser-glass interaction process has been studied for many years, especially the local changes of the refractive index that have been classified by three distinct types (types I, II and III, respectively). These refractive index modifications are widely used for the creation of photonics devices such as waveguides [1], couplers, photonic crystals to fabricate integrated optical functions in glasses for photonic applications as optical circuits or integrated sensors. Femtosecond laser writing in a home-developed silver containing zinc phosphate glasses induces the creation of fluorescent silver clusters distributed around the laser-glass interaction voxel [2]. In this paper, we introduce a new type of refractive index modification in glasses. It is based on the creation of these photo-induced silver clusters allowing a local change in the refractive index Δn = 5×10-3, which is sufficient for the creation of waveguides and photonics devices. The wave guiding process in our glasses along these structures with original geometry is demonstrated for wavelengths from visible to NIR [3], giving a promising access to integrated optical circuits in these silver containing glasses. Moreover, the characterization of the waveguides is presented, including their original geometry, the refractive index change, the mode profile, the estimation of propagation losses and a comparison with simulation results. 1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729-1731 (1996). 2. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, The Journal of Physical Chemistry C 114, 15584-15588 (2010). 3. S. Danto, F. Désévédavy, Y. Petit, J.-C. Desmoulin, A. Abou Khalil, C. Strutynski, M. Dussauze, F

  20. Structural and luminescence properties of Dy3+ doped bismuth phosphate glasses for greenish yellow light applications

    NASA Astrophysics Data System (ADS)

    Damodaraiah, S.; Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.

    2017-05-01

    Different compositions of (5, 10, 15 and 20 mol%) of bismuth and different concentrations (0.5, 1.0, 1.5 and 2.0 mol%) of Dy3+ ion doped bismuth phosphate (BiP) glasses were synthesized by melt-quenching technique. The structural characterization was accomplished by XRD, SEM with EDS, FTIR, FT-Raman and 31P MAS NMR spectroscopy. The optical properties were studied using absorption and photoluminescence spectroscopy. Different structural groups were identified using FTIR and FT-Raman spectra. The depolymerization of metaphosphate chains are described by the decrease of Q2 tetrahedral sites allowing the formation of pyrophosphate groups (Q1) revealed by 31P MAS NMR spectroscopic investigations. Judd-Ofelt intensity parameters Ωλ (λ = 2, 4 and 6) were evaluated from absorption spectra. Radiative parameters such as radiative lifetimes (τR), integrated absorption cross-sections (Σ) and branching ratios (βR) were calculated using Judd-Ofelt intensity parameters. From photoluminescence spectra, experimental branching ratios (βexp) and stimulated emission cross-sections (σP) were calculated for all the observed emission transitions of prepared glasses. The decay profiles for 4F9/2 level were recorded and fit exponential for 0.5 mol% and non-exponential for higher concentrations of Dy3+ due to non-radiative energy transfer among excited Dy3+ ions. The CIE chromaticity co-ordinates have been calculated from the luminescence spectra which confirmed greenish yellow light emission.

  1. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  2. Mg- and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature.

    PubMed

    Rabadjieva, D; Tepavitcharova, S; Gergulova, R; Sezanova, K; Titorenkova, R; Petrov, O; Dyulgerova, E

    2011-10-01

    Powders of magnesium-modified as well as zinc-modified calcium phosphates (Me-β-TCP and HA) with a (Ca(2+)+Mg(2+)+Zn(2+)+Na(+)+K(+))/P ratio of 1.3-1.4 and various Me(2+)/(Me(2+)+Ca(2+)) ratios (from 0.005 to 0.16) were prepared in biomimetic electrolyte systems at pH 8, mother liquid maturation and further syntering at 600-1000°C. Some differences in zinc and magnesium modifications have been prognosed on the basis of thermodynamic modeling of the studied systems and explained by the Mg(2+) and Zn(2+) ion chemical behaviour. The temperature as well as the degree of Zn(2+) and Mg(2+) ions substitutions were found to stabilize the β-TCP structure and this effect was more prononced for zinc. Thus, zinc-modified β-TCP powders consisting of idiomorphic crystals were obtained through sintering of Zn(2+) ion substituted calcium phosphates precursors at 800-1000°C. The Mg(2+) ion substitution leads to obtaining magnesium-modified β-TCP with spherical grains.

  3. Analysis of Nd3+:glass, solar-pumped, high-powr laser systems

    NASA Technical Reports Server (NTRS)

    Zapata, L. E.; Williams, M. D.

    1989-01-01

    The operating characteristics of Nd(3+):glass lasers energized by a solar concentrator were analyzed for the hosts YAG, silicate glass, and phosphate glass. The modeling is based on the slab zigzag laser geometry and assumes that chemical hardening methods for glass are successful in increasing glass hardness by a factor of 4. On this basis, it was found that a realistic 1-MW solar-pumped laser might be constructed from phosphate glass 4 sq m in area and 2 mm thick. If YAG were the host medium, a 1-MW solar-pumped laser need only be 0.5 sq m in area and 0.5 cm thick, which is already possible. In addition, Nd(3+) doped glass fibers were found to be excellent solar-pumped laser candidates. The small diameter of fibers eliminates thermal stress problems, and if their diameter is kept small (10 microns), they propagate a Gaussian single mode which can be expanded and transmitted long distances in space. Fiber lasers could then be used for communications in space or could be bundled and the individual beams summed or phase-matched for high-power operation.

  4. Damage Resistant Optical Glasses for High Power Lasers: A Continuing Glass Science and Technology Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J H

    2002-08-28

    A major challenge in the development of optical glasses for high-power lasers is reducing or eliminating laser-induced damage to the interior (bulk) and the polished surface of the glass. Bulk laser damage in glass generally originates from inclusions. With the development of novel glass melting and forming processes it is now possible to make both fused silica and a suit of meta-phosphate laser glasses in large sizes ({approx}>0.5-lm diameter), free of inclusions and with high optical homogeneity ({approx} 10{sup -6}). Considerable attention also has been focused on improving the laser damage resistance to polished optical glass surfaces. Studies have shownmore » that laser-induced damage to surfaces grows exponentially with the number of shots when illuminated with nano-second pulses at 351-nm above a given fluence threshold. A new approach for reducing and eliminating laser-induced surface damage relies on a series of post-polishing treatment steps. This damage improvement method is briefly reviewed.« less

  5. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    PubMed

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  6. Effect of biomimetic zinc-containing tricalcium phosphate (Zn-TCP) on the growth and osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Chou, Joshua; Hao, Jia; Hatoyama, Hirokazu; Ben-Nissan, Besim; Milthorpe, Bruce; Otsuka, Makoto

    2015-07-01

    Several studies have shown the effectiveness of zinc-tricalcium phosphate (Zn-TCP) for bone tissue engineering. In this study, marine calcareous foraminifera possessing uniform pore size distribution were hydrothermally converted to Zn-TCP. The ability of a scaffold to combine effectively with mesenchymal stem cells (MSCs) is a key tissue-engineering aim. In order to demonstrate the osteogenic ability of MSCs with Zn-TCP, the scaffolds were cultured in an osteogenic induction medium to elicit an osteoblastic response. The physicochemical properties of Zn-TCP were characterized by XRD, FT-IR and ICP-MS. MSCs were aspirated from rat femurs and cultured for 3 days before indirectly placing four samples into each respective well. After culture for 7, 10 and 14 days, osteoblastic differentiation was evaluated using alizarin red S stain, measurement of alkaline phosphatase (ALP) levels, cell numbers and cell viability. XRD and FT-IR patterns both showed the replacement of CO(3)(2-) with PO(4)(3-). Chemical analysis showed zinc incorporation of 5 mol%. Significant increases in cell numbers were observed at 10 and 14 days in the Zn-TCP group, while maintaining high levels of cell viability (> 90%). ALP activity in the Zn-TCP group was statistically higher at 10 days. Alizarin red S staining also showed significantly higher levels of calcium mineralization in Zn-TCP compared with the control groups. This study showed that MSCs in the presence of biomimetically derived Zn-TCP can accelerate their differentiation to osteoblasts and could potentially be useful as a scaffold for bone tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  8. Structure and transport investigations on lithium-iron-phosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banday, Azeem; Sharma, Monika; Murugavel, Sevi, E-mail: murug@physics.du.ac.in

    2016-05-23

    Cathode materials for Lithium Ion Batteries (LIB’s) are being constantly studied and reviewed especially in the past few decades. LiFePO{sub 4} (LFP) is one of the most potential candidates in the pedigree of cathode materials and has been under extensive study ever since. In this work, we report the synthesis of amorphous analogs of crystallite LFP by conventional melt quenching method. Thermal study by using differential scanning calorimetry (DSC) was used to determine the glass transition T{sub g} and crystallization T{sub c} temperatures on the obtained glass sample Fourier transform infrared (FTIR) absorption spectroscopy is being used to investigate themore » structural properties of the glass sample. The intrinsic electrical conductivity measurements were done using broad-band impedance spectroscopy with wide different temperature ranges. The conduction mechanism is described by non-adiabatic small polaron hopping between nearest neighbors. Based on the obtained results, we suggest that the glassy LFP is more suitable cathode material as compared to its crystalline counterpart.« less

  9. Evaluation of retentive strength of four luting cements with stainless steel crowns in primary molars: An in vitro study.

    PubMed

    Parisay, Iman; Khazaei, Yegane

    2018-01-01

    Stainless steel crown (SSC) is the most reliable restoration for primary teeth with extensive caries. Retention is of great importance for a successful restoration and is provided by various factors such as luting cements. The aim of this study was to evaluate the retentive strength of SSC cemented with four different luting cements. In this in vitro study, A total of 55 extracted primary first molars were selected. Following crown selection and cementation (one with no cement and four groups cemented with resin, glass ionomer, zinc phosphate, and polycarboxylate), all the specimens were incubated and thermocycled in 5°C-55°C. Retentive properties of SSCs were tested with a mechanical test machine. First dislodgement of each specimen and full crown removal were recorded. One-way ANOVA test followed by least significant difference test and Kruskal-Wallis test was used for retentive strength comparison at the level of significance of P < 0.05. The results of the study showed that the specimens cemented with zinc phosphate exhibited higher retentive strength as compared to glass ionomer and polycarboxylate ( P < 0.001 and P = 0.023, respectively). Zinc phosphate cement showed the most promising results; thus, it can be preferably used for cementation of the teeth with no grossly broken down crowns.

  10. Effect of vital tooth bleaching on solubility and roughness of dental cements.

    PubMed

    Londono, Jimmy; Abreu, Amara; Nelson, Steve; Hernandez, Jorge; Torres, Carlos; Mettenburg, Donald; Looney, Stephen; Rueggeberg, Frederick

    2009-09-01

    Vital tooth bleaching may affect properties of dental cements used for fixed prostheses. The purpose of this study was to examine the effect of a combined in-office and at-home bleaching regimen on changes in surface roughness and depth loss of a variety of commercially available dental cements. Five cement classifications were tested: glass ionomer, resin-modified glass ionomer, resin,self-adhesive resin cement, and zinc phosphate. Cements were placed in multiple wells in plastic blocks. After setting,the surface profile of each block was determined, and average roughness and vertical height of cement surface from the specimen holder were recorded. Blocks were water stored (control) or subjected to in-office and at-home bleaching(n=12). Surfaces were rescanned and pre- and posttest parameter changes were calculated. Statistical analysis consisted of Mann-Whitney-Wilcoxon Rank Sum and Student t tests applied to control and bleaching parameterc hanges within the same cements. A family-wise alpha of .05 was maintained by using a Bonferroni-adjusted level of significance preset to .01 per test. Zinc phosphate showed the only significant depth increase (P=.004) from bleaching: 0.9 +/- 0.7 microm deeper than the water-control group. Only resin-modified glass ionomer showed a significant (P=.004) increase in roughness from bleaching; values increased by 0.05 +/- 0.03 microm over the water-control group. In-office and at-home bleaching significantly increased depth loss of zinc phosphate and increased resinmodified glass ionomer roughness. However, the absolute values of differences observed, as compared to the wateronly control, were considered to be clinically insignificant. (J Prosthet Dent 2009;102:148-154)

  11. In situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of zinc-magnesium-aluminium (ZMA) alloys using novel time-lapse microscopy.

    PubMed

    Sullivan, James; Cooze, Nathan; Gallagher, Callum; Lewis, Tom; Prosek, Tomas; Thierry, Dominique

    2015-01-01

    In situ time-lapse optical microscopy was used to examine the microstructural corrosion mechanisms in three zinc-magnesium-aluminium (ZMA) alloy coated steels immersed in 1% NaCl pH 7. Preferential corrosion of MgZn(2) lamellae within the eutectic phases was observed in all the ZMA alloys followed by subsequent dissolution of Zn rich phases. The total extent and rate of corrosion, measured using time-lapse image analysis and scanning vibrating electrode technique (SVET) estimated mass loss, decreased as Mg and Al alloying additions were increased up to a level of 3 wt% Mg and 3.7 wt% Al. This was probably due to the increased presence of MgO and Al(2)O(3) at the alloy surface retarding the kinetics of cathodic oxygen reduction. The addition of 1 × 10(-2) mol dm(-3) Na(3)PO(4) to 1% NaCl pH 7 had a dramatic influence on the corrosion mechanism for a ZMA with passivation of anodic sites through phosphate precipitation observed using time-lapse image analysis. Intriguing rapid precipitation of filamentous phosphate was also observed and it is postulated that these filaments nucleate and grow due to super saturation effects. Polarisation experiments showed that the addition of 1 × 10(-2) mol dm(-3) Na(3)PO(4) to the 1% NaCl electrolyte promoted an anodic shift of 50 mV in open circuit potential for the ZMA alloy with a reduction in anodic current of 2.5 orders of magnitude suggesting that it was acting primarily as an anodic inhibitor supporting the inferences from the time-lapse investigations. These phosphate additions resulted in a 98% reduction in estimated mass loss as measured by SVET demonstrating the effectiveness of phosphate inhibitors for this alloy system.

  12. Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films

    PubMed Central

    Aslan, Kadir; Previte, Michael J.R.; Zhang, Yongxia; Geddes, Chris D.

    2009-01-01

    A detailed study of metal-enhanced fluorescence (MEF) from fluorophores in the blue-to- red spectral region placed in close proximity to thermally evaporated zinc nanostructured films is reported. The zinc nanostructured films were deposited onto glass microscope slides as individual particles and were 1–10 nm in height and 20–100 nm in width, as characterized by Atomic Force Microscopy. The surface plasmon resonance peak of the zinc nanostructured films was ≈ 400 nm. Finite-difference time-domain calculations for single and multiple nanostructures organized in a staggered fashion on a solid support predict, as expected, that the electric fields are concentrated both around and between the nanostructures. Additionally, Mie scattering calculations show that the absorption and scattering components of the extinction spectrum are dominant in the UV and visible spectral ranges, respectively. Enhanced fluorescence emission accompanied by no significant changes in excited state lifetimes of fluorophores with emission wavelengths in the visible blue-to-red spectral range near-to zinc nanostructured films were observed, implying that MEF from zinc nanostructured films is mostly due to an electric field enhancement effect. PMID:19946356

  13. Preparation and properties of porous microspheres made from borate glass.

    PubMed

    Conzone, Samuel D; Day, Delbert E

    2009-02-01

    Dysprosium lithium-borate glass microspheres and particles, ranging from 45 to 150 microm in diameter, were reacted with a 0.25 M phosphate solution at 37 degrees C, whose pH was either 3 or 8.8. The glass reacted nonuniformly and was converted into a porous, amorphous, hydrated, dysprosium phosphate reaction product. The amorphous product had the same volume and shape (pseudomorphic) as the unreacted glass, and could be dried without cracking. After heating at 300 degrees C for 1 h, the amorphous reaction product had a specific surface area of approximately 200 m(2)/g, a pore size of approximately 30 nm, and nominal crushing strength of approximately 10 MPa. When the reaction product was heated to 600 degrees C for 15 min, the specific surface area decreased to approximately 90 m(2)/g and the nominal crushing strength increased to 35 MPa. Heating above 615 degrees C converted the amorphous dysprosium phosphate product into crystalline DyPO(4), which contained open porosity until heated above 800 degrees C for 15 min. Highly porous materials of different chemical composition can be prepared by chemically reacting a borate-based glass with an aqueous solution at low-temperature (<100 degrees C). These highly porous materials are easy to process, and are considered candidates for controlled drug delivery, catalysis, chromatographic separation, filtration, and as bioactive materials.

  14. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.

    PubMed

    Ahmed, I; Parsons, A J; Palmer, G; Knowles, J C; Walker, G S; Rudd, C D

    2008-09-01

    Composites comprising a biodegradable polymeric matrix and a bioactive filler show considerable promise in the field of regenerative medicine, and could potentially serve as degradable bone fracture fixation devices, depending on the properties obtained. Therefore, glass fibres from a binary calcium phosphate (50P(2)O(5)+50CaO) glass were used to reinforce polycaprolactone, at two different volume fractions (V(f)). As-drawn, non-treated and heat-treated fibres were assessed. Weight loss, ion release and the initial mechanical properties of the fibres and composites produced have been investigated. Single fibre tensile testing revealed a fibre strength of 474MPa and a tensile modulus of 44GPa. Weibull analysis suggested a scale value of 524. The composites yielded flexural strength and modulus of up to 30MPa and 2.5GPa, respectively. These values are comparable with human trabecular bone. An 8% mass loss was seen for the lower V(f) composite, whereas for the two higher V(f) composites an approximate 20% mass loss was observed over the course of the 5week study. A plateau in the degradation profile at 350h indicated that fibre dissolution was complete at this interval. This assertion was further supported via ion release studies. The leaching of fibres from the composite created a porous structure, including continuous channels within the polymer matrix. This offers further scope for tailoring scaffold development, as cells from the surrounding tissue may be induced to migrate into the resulting porous matrix.

  15. In vitro microleakage of luting cements and crown foundation material.

    PubMed

    Lindquist, T J; Connolly, J

    2001-03-01

    Microleakage is a concern for the long-term prognosis of a cemented crown and foundation. The aims of this investigation were, first, to evaluate microleakage of zinc phosphate cement and resin-reinforced glass ionomer cement under ideal (dry) versus contaminated (wet) conditions, and second, to compare 3 foundations under both ideal and contaminated conditions. One hundred forty extracted molar teeth were cleaned and mounted. Tooth preparations for complete veneer cast crowns were completed with a chamfer finish line. A mesial surface class II cavity preparation 4 mm wide buccolingually and 2 mm deep was made in each tooth. Seven restorative groups were formed: amalgam/cavity varnish, amalgam/dentinal bonding agent, and composite/dentinal bonding agent, each with dry and contaminated groups, and a seventh group of class II cavity preparations without foundations. Finish lines for crown margins were refined 1.5 mm gingival to the restoration. Artificial crowns were cast in type III gold. Treatment groups were divided into 4 cement groups: dry and contaminated zinc phosphate cement and dry and contaminated resin-reinforced glass ionomer cement. The specimens were thermocycled and immersed in erythrosine B solution for 24 hours. Subsequently, they were rinsed, and their coronal portions were embedded in clear resin. Teeth were sectioned mesiodistally, and standard photomicrographs were made. The microleakage of each restoration and crown was measured. The least foundation microleakage was recorded for amalgam/dentinal bonding agents (ideal group) and composite/dentinal bonding agents (ideal group). The most microleakage was observed within the group without a foundation. In cement groups, the control and experiment sides were evaluated separately but displayed the same order of finding. The least leakage was recorded with resin-reinforced glass ionomer cement (ideal group); the most microleakage was noted with zinc phosphate cement (ideal group). An interaction was

  16. Remineralization Property of an Orthodontic Primer Containing a Bioactive Glass with Silver and Zinc

    PubMed Central

    Lee, Seung-Min; Kim, In-Ryoung; Park, Bong-Soo; Ko, Ching-Chang; Son, Woo-Sung; Kim, Yong-Il

    2017-01-01

    White spot lesions (WSLs) are irreversible damages in orthodontic treatment due to excessive etching or demineralization by microorganisms. In this study, we conducted a mechanical and cell viability test to examine the antibacterial properties of 0.2% and 1% bioactive glass (BAG) and silver-doped and zinc-doped BAGs in a primer and evaluated their clinical applicability to prevent WSLs. The microhardness statistically significantly increased in the adhesive-containing BAG, while the other samples showed no statistically significant difference compared with the control group. The shear bond strength of all samples increased compared with that of the control group. The cell viability of the control and sample groups was similar within 24 h, but decreased slightly over 48 h. All samples showed antibacterial properties. Regarding remineralization property, the group containing 0.2% of the samples showed remineralization properties compared with the control group, but was not statistically significant; further, the group containing 1% of the samples showed a significant difference compared with the control group. Among them, the orthodontic bonding primer containing 1% silver-doped BAG showed the highest remineralization property. The new orthodontic bonding primer used in this study showed an antimicrobial effect, chemical remineralization effect, and WSL prevention as well as clinically applicable properties, both physically and biologically. PMID:29088092

  17. In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; ElBatal, F. H.; Ghoneim, N. A.

    2018-02-01

    Some multi-component borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5 were prepared. Multi-characterization techniques were carried out to investigate their bioactivity, corrosion weight loss after immersion in phosphate solution. Controlled thermal heat-treatment by two-step technique was done to convert the prepared glasses to their corresponding glass-ceramic derivatives. X-ray diffraction analysis was performed to identify the crystalline phases formed by thermal treatment. Infrared absorption of glasses and glass-ceramics reveal vibrational bands due to combined main triangular and tetrahedral borate groups in their specific wavenumbers besides some sharing of phosphate group. After immersion in the phosphate solution, two extra characteristic peaks are generated indicating the bioactivity of the studied glasses and glass-ceramics through the formation of calcium phosphate (hydroxyapatite). X-ray diffraction data indicate the formation of crystalline phases which are variable with the introduced dopants. The main crystalline phase identified is calcium borate together with some other phases some of which contain phosphate ions. These data indicate that the presence of CaO and P2O5 initiates phase separation and subsequent crystallization of the parent and doped glasses. Weight loss data indicate that glass-ceramics are obviously durable than the parent glasses. SEM micrographs of glass-ceramics before immersion show multiconstituent crystalline phases due to the basic chemical composition consisting of multicomponent mixed alkali and alkaline earth oxides beside P2O5 and with the main B2O3 constituent. After immersion, the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved.

  18. Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Cai, Zhiping; Chardon, Alain; Xu, Huiying; Féron, Patrice; Michel Stéphan, Guy

    2002-03-01

    An Er:Yb codoped phosphate glass microchip laser has been studied under pumping with a Ti:sapphire laser ranging from 945 to 990 nm. The characteristics (threshold, slope efficiency) are first described for an optimized laser. The gain spectrum is calculated for the transition 4I13/2→ 4I15/2 around 1535 nm from fundamental spectroscopic data and from experimental results. Red-shift effect on the frequency of a single mode is experimentally observed when the pump power is increased, originating from thermal effects. Temperature inside the microchip cavity and thermal expansion coefficient were determined by employing the intensity ratio of two green upconversion emission line centered at 530 and 554 nm, respectively, which quantitatively explain this red shift.

  19. In situ fabrication of hollow hydroxyapatite microspheres by phosphate solution immersion

    NASA Astrophysics Data System (ADS)

    Wang, Yingchun; Yao, Aihua; Huang, Wenhai; Wang, Deping; zhou, Jun

    2011-07-01

    Hollow hydroxyapatite (HAP) microspheres with pores on their surfaces were prepared by converting Li 2O-CaO-B 2O 3 (LCB) glass microspheres in phosphate solution. The structure, phase composition, surface morphology, and porosity of the hollow HAP microspheres were characterized by SEM, SEM-EDS, XRD, FTIR, ICP-AES, and N 2 adsorption-desorption techniques. The formation and conversion mechanism of the hollow HAP microspheres during immersion process were discussed. The as-prepared microspheres consisted of calcium deficient carbonated hydroxyapatite, which is biomimetic. FTIR spectra indicated that the resulting apatite were B-type CO 3HAP, in which carbonate ions occupied the phosphate sites. After 600 °C heating treatment, hollow microspheres were completely composed of calcium deficient hydroxyapatite crystals including CO32-. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2-40 nm with the pore volume 0.5614 cm 3/g, and the mean pore size 10.5 nm, respectively. The results confirmed that LCB glass were transformed to hydroxyapatite without changing the external shape and dimension of the original glass object and the resulting microspheres possessed good hollow structures. Once immersed in phosphate solution, Ca-P-OH hydrates were in situ formed on the surface of the glass and precipitated in the position occupied by Ca 2+, while the pores were formed in the position occupied by Li + and B 3+. These hollow HAP microspheres with such structures may be used as promising drug delivery devices.

  20. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.

    PubMed

    Li, Ailing; Qiu, Dong

    2011-12-01

    The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content.

  1. Bandgap-Engineered Zinc-Tin-Oxide Thin Films for Ultraviolet Sensors.

    PubMed

    Cheng, Tien-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn

    2018-07-01

    Zinc-tin-oxide thin-film transistors were prepared by radio frequency magnetron co-sputtering, while an identical zinc-tin-oxide thin film was deposited simultaneously on a clear glass substrate to facilitate measurements of the optical properties. When we adjusted the deposition power of ZnO and SnO2, the bandgap of the amorphous thin film was dominated by the deposition power of SnO2. Since the thin-film transistor has obvious absorption in the ultraviolet region owing to the wide bandgap, the drain current increases with the generation of electron-hole pairs. As part of these investigations, a zinc-tin-oxide thin-film transistor has been fabricated that appears to be very promising for ultraviolet applications.

  2. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  3. Concentration dependence of luminescence efficiency of Dy3+ ions in strontium zinc phosphate glasses mixed with Pb3 O4.

    PubMed

    Kumar, Valluri Ravi; Giridhar, G; Veeraiah, N

    2017-02-01

    In this work we synthesized SrO-ZnO-P 2 O 5 glasses mixed with Pb 3 O 4 (heavy metal oxide) and doped with different amounts of Dy 2 O 3 (0.1 to 1.0 mol%). Subsequently their emission and decay characteristics were investigated as a function of Dy 2 O 3 concentration. The emission spectra exhibited three principal emission bands in the visible region corresponding to 4 F 9 /2  →  6 H 15 /2 (482 nm), 6 H 13 /2 (574 nm) and 6 H 11 /2 (663 nm) transitions. With increase in the concentration of Dy 2 O 3 (upto 0.8 mol%) a considerable increase in the intensity of these bands was observed and, for further increase, quenching of photoluminescence (PL) output was observed. Using emission spectra, various radiative parameters were evaluated and all these parameters were found to increase with increase in Dy 2 O 3 concentration. The Y/B integral emission intensity ratio of Dy 3 + ions evaluated from these spectra exhibited a decreasing trend with increase in the Dy 2 O 3 concentration up to 0.8 mol%. Quenching of luminescence observed in the case of the glasses doped with 1.0 mol% is attributed to clustering of Dy 3 + ions. The quantitative analysis of these results together with infra-red (IR) spectral studies indicated that 0.8 mol% is the optimum concentration of Dy 3 + ions needed to achieve maximum luminescence efficiency. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Porosity of different dental luting cements.

    PubMed

    Milutinović-Nikolić, Aleksandra D; Medić, Vesna B; Vuković, Zorica M

    2007-06-01

    The aim of this in vitro study was to compare open porosity and pore size distribution of different types of luting cements (zinc phosphate and polycarboxylate produced by Harvard Cement, Great Britain, glass-ionomer product GC Fuji I, GC Corporation, Japan, and Panavia F, resin based composite cement, Kurraray Co. Ltd. Japan) using mercury intrusion porosimetry and use it as an additional parameter for ranging the quality of cements used in prosthetics. Samples were hand mixed in accordance with the manufacturer's instructions and formed in cylindrical test specimens. Density of samples was determined using a pycnometer while porous structure was estimated using high pressure mercury intrusion porosimeter enabling estimation of pore diameters in interval 7.5-15,000 nm. The polycarboxylate cement posses the highest porosity and specific pore volume among investigated cements. By comparison of the results obtained for zinc phosphate and glass-ionomer cement, it can be observed that according to some textural properties zinc phosphate cement is better choice (smaller specific pore volume and absence of macropores larger than 1 microm) while according to other textural properties the glass-ionomer has advantage (smaller porosity). The resin based composite cement poses the most desired porous structure for prosthetic application among the investigated cements (the lowest porosity and specific pore volume and all identified pores are smaller than 20 nm). Based on results of this study, it is possible to estimate the efficiency of luting cements to protect the interior of tooth from penetration of oral fluids, bacteria and bacterial toxins into unprotected dentine.

  5. Comment on “A model for phosphate glass topology considering the modifying ion sub-network” [J. Chem. Phys. 140, 154501 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidebottom, David L., E-mail: sidebottom@creighton.edu

    2015-03-14

    In a recent paper, Hermansen, Mauro, and Yue [J. Chem. Phys. 140, 154501 (2014)] applied the temperature-dependent constraint theory to model both the glass transition temperature, T{sub g}, and fragility, m, of a series of binary alkali phosphate glasses of the form (R{sub 2}O){sub x}(P{sub 2}O{sub 5}){sub 1−x}, where R represents an alkali species. Key to their success seems to be the retention of linear constraints between the alkali ion (R{sup +}) and the non-bridging oxygens near T{sub g}, which allows the model to mimic a supposed minimum for both T{sub g}(x) and m(x) located near x = 0.2. However,more » the authors have overlooked several recent studies that clearly show there is no minimum in m(x). We argue that the retention of the alkali ion constraints at these temperatures is unjustified and question whether the model calculations can be revised to meet the actual experimental data. We also discuss alternative interpretations for the fragility based on two-state thermodynamics that can accurately account for its compositional dependence.« less

  6. Electric Field-Assisted Orientation of Short Phosphate Glass Fibers on Stainless Steel for Biomedical Applications.

    PubMed

    Chen, Qiang; Jing, Jiajia; Qi, Hongfei; Ahmed, Ifty; Yang, Haiou; Liu, Xianhu; Lu, T L; Boccaccini, Aldo R

    2018-04-11

    Structural and compositional modifications of metallic implant surfaces are being actively investigated to achieve improved bone-to-implant bonding. In this study, a strategy to modify bulk metallic surfaces by electrophoretic deposition (EPD) of short phosphate glass fibers (sPGF) is presented. Random and aligned orientation of sPGF embedded in a poly(acrylic acid) matrix is achieved by vertical and horizontal EPD, respectively. The influence of EPD parameters on the degree of alignment is investigated to pave the way for the fabrication of highly aligned sPGF structures in large areas. Importantly, the oriented sPGF structure in the coating, owing to the synergistic effects of bioactive composition and fiber orientation, plays an important role in directional cell migration and enhanced proliferation. Moreover, gene expression of MC3T3-E1 cells cultured with different concentrations of sPGF is thoroughly assessed to elucidate the potential stimulating effect of sPGF on osteogenic differentiation. This study represents an innovative exploitation of EPD to develop textured surfaces by orientation of fibers in the macroscale, which shows great potential for directional functionalization of metallic implants.

  7. The Antimicrobial Properties of Zinc-Releasing Bioceramics

    NASA Astrophysics Data System (ADS)

    He, Xin

    Up to 80% of nosocomial infections are caused by biofilm-producing bacteria such as Staphylococci and Pseudomonas aeruginosa. These types of microorganisms can become resistant to antibiotics and are difficult to eliminate. As such, there is tremendous interest in developing bioactive implant materials that can help to minimize these post- operative infections. Using water-based chemistry, we developed an economical, biodegradable and biocompatible orthopedic implant material consisting of zinc- doped hydroxyapatite (HA), which mimics the main inorganic component of the bone. Because the crystallinity of HA is typically too compact for efficient drug release, we substituted calcium ions in HA with zinc during the synthesis step to perturb the crystal structure. An added benefit is that zinc itself is a microelement of the human body with anti-inflammatory property, and we hypothesized that Zn-doped HA is an inherently antibacterial material. All HA samples were synthesized by a co-precipitation method using aqueous solutions of Zinc nitrate, Calcium Nitrate, and Ammonium Phosphate. XRD data showed that Zn was successfully incorporated into the HA. The effectiveness of Zn-doped HA against a model biofilm-forming bacterium is currently being evaluated using a wild-type strain and a streptomycin- resistant strain of Pseudomonas syringae pv. papulans (Psp) which is a plant pathogen isolated from diseased apples. Key words: Hydroxyapatite, Zinc, Citrate, Pseudomonas, Antibacterial.

  8. Crystal Structure Characterization of Thin Layer Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Doyan, Aris; Susilawati; Azizatul Fitri, Siti; Ahzan, Sukainil

    2017-05-01

    In this research the characterization of the crystal structure of a thin layer of ZnO (zinc oxide) were synthesized by sol - gel method and spin coating deposited on a glass substrate. The samples were divided into three sol concentrations of 0.1, 0.3, 0.5 Molar and two deposition temperature is 350 °C, and 550 °C. UV-Vis. spectrophotometer results showed that in the spectrum of visible light (wavelength range 300-800 nm) has a transmittance value of which increases with increasing concentration and temperature deposition of zinc oxide, otherwise the value of the absorption and the band gap energy decreases with the addition of concentration and deposition temperature. The transmittances value of the highest and lowest absorption was 93.5% and 0.03 is at a concentration of 0.1 M and zinc oxide deposition temperature of 550 °C, with a value of band gap energy of 2.98 eV. The XRD results showed that the zinc oxide crystal orientation in the field of 013 with a crystal grain size 14.4472 nm. SEM results showed the surface morphology of zinc oxide such as rod-like.

  9. Environmental implications of element emissions from phosphate-processing operations in southeastern Idaho

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1979-01-01

    In order to assess the contribution to plants and soils of certain elements emitted by phosphate processing, we sampled sagebrush, grasses, and A- and C-horizon soils along upwind and downwind transects at Pocatello and Soda Springs, Idaho. Analyses for 70 elements in plants showed that, statistically, the concentration of 7 environmentally important elements, cadmium, chromium, fluorine, selenium, uranium, vanadium, and zinc, were related to emissions from phosphate-processing operations. Two additional elements, lithium and nickel, show probable relationships. The literature on the effects of these elements on plant and animal health is briefly surveyed. Relations between element content in plants and distance from the phosphate-processing operations were stronger at Soda Springs than at Pocatello and, in general, stronger in sagebrush than in the grasses. Analyses for 58 elements in soils showed that, statistically, beryllium, fluorine, iron, lead, lithium, potassium, rubidium, thorium, and zinc were related to emissions only at Pocatello and only in the A horizon. Moreover, six additional elements, copper, mercury, nickel, titanium, uranium, and vanadium, probably are similarly related along the same transect. The approximate amounts of elements added to the soils by the emissions are estimated. In C-horizon soils, no statistically significant relations were observed between element concentrations and distance from the processing sites. At Soda Springs, the nonuniformity of soils at the sampling locations may have obscured the relationship between soil-element content and emissions from phosphate processing.

  10. Role of gallium and silver from phosphate-based glasses on in vitro dual species oral biofilm models of Porphyromonas gingivalis and Streptococcus gordonii.

    PubMed

    Valappil, Sabeel P; Coombes, Marc; Wright, Lucy; Owens, Gareth J; Lynch, Richard J M; Hope, Christopher K; Higham, Susan M

    2012-05-01

    Phosphate-based glasses (PBGs) are excellent controlled delivery agents for antibacterial ions such as silver and gallium. The aim of this study was to assess the potential utility of novel PBGs combining both gallium and silver for use in periodontal therapy. To this end, an in vitro biofilm model with the putative periodontal pathogen, Porphyromonas gingivalis, and an initial colonizer, Streptococcus gordonii, was established. The effect of increasing calcium content in gallium-silver-doped PBG on the susceptibility of P. gingivalis was examined. A decrease in degradation rates (30.34, 25.19, 21.40 μg mm(-2) h(-1)) with increasing PBG calciumcontent (10, 11, 12 mol.% respectively) was observed, correlating well with gallium and silver ion release and antimicrobial activity against planktonic P. gingivalis (approximately 5.4log(10) colony-forming units (CFU) reduction after 24h by the C10 glass compared with controls) and S. gordonii (total growth inhibition after 32h by C10, C11 and C12 glasses compared with controls). The most potent PBG (C10) was evaluated for its ability to inhibit the biofilm growth of P. gingivalis in a newly established constant-depth film fermentor model. The simultaneous release of silver and gallium from the glass reduced P. gingivalis biofilm growth with a maximum effect (1.92log(10) CFU reduction) after 168 h. Given the emergence of antibiotic-resistant bacteria and dearth of new antibiotics in development, the glasses, especially C10, would offer effective alternatives to antibiotics or may complement current therapies through controlled, localized delivery of gallium and silver ions at infected sites in the oral cavity. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Effect of lithium on thermal and structural properties of zinc vanadate tellurite glass

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Kundu, R. S.; Ahlawat, Neetu; Rani, Suman; Sangwan, Kanta Maan; Ahlawat, Navneet

    2018-04-01

    Glasses having composition 60TeO2-15V2O5-(25-x) ZnO-xLi2O where x= 0, 5, 10 mol% were prepared by standard melt quench technique. The glass transition temperature is measured by DSC technique using TA instrument and found to decrease with increase in Li2O signifies that glass formation tendency, thermal stability and compactness of glass structure decreases. The deconvolution of FTIR spectra evidenced the existence of TeO4, TeO3 and TeO6 structural units in glass network and vanadium exists as VO4 and VO5 structural units.

  12. Production and Characterization of a Ag- and Zn-Doped Glass-Ceramic Material and In Vitro Evaluation of Its Biological Effects

    NASA Astrophysics Data System (ADS)

    Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Raz, Majid; Rezvani, Hamideh

    2016-08-01

    Bioactive glasses in the system SiO2-CaO-Na2O-P2O5-MgO with different amounts of zinc (Zn) and silver (Ag) were synthesized by the sol-gel technique and characterized. The bioactivity was studied during in vitro assays: the ability of hydroxycarbonate apatite (HCA) layer to form on the glass surface was examined after contact with simulated body fluid (SBF). The x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma atomic emission spectrometry (ICP) studies were performed after immersion in vitro assays. Also, the antibacterial and antifungal activities of glass samples against Pseudomonas aeruginosa (ATCC 27853), E. coli (ATCC 25922), and Candida albicans were measured by the halo zone test. Introduction of zinc and silver as the trace elements induces several modifications on the observed phenomena at the glass surface and in SBF solution after immersion of the samples. The chemical durability of the glasses, the formation of the silica-rich layer, and the crystallization of the HCA layer were affected. Samples with the higher content of zinc and silver exhibited an excellent antibacterial/antifungal activity.

  13. Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system

    NASA Astrophysics Data System (ADS)

    Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.

    2012-10-01

    The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.

  14. Bioresorbable screws reinforced with phosphate glass fibre: manufacturing and mechanical property characterisation.

    PubMed

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-01-01

    Use of bioresorbable screws could eliminate disadvantages associated with metals such as removal operations, corrosion, MRI interference and stress shielding. Mechanical properties of bioresorbable polymers alone are insufficient for load bearing applications application as screws. Thus, reinforcement is necessary to try and match or surpass the mechanical properties of cortical bone. Phosphate based glass fibres were used to reinforce polylactic acid (PLA) in order to produce unidirectionally aligned (UD) and unidirectionally plus randomly distributed (UD/RM) composite screws (P40 UD and P40 UD/RM). The maximum flexural and push-out properties for the composite screws (P40 UD and P40 UD/RM) increased by almost 100% in comparison with the PLA screws. While the pull-out strength and stiffness of the headless composite screws were ∼80% (strength) and ∼130% (stiffness) higher than for PLA, those with heads exhibited properties lower than those for PLA alone as a result of failure at the heads. An increase in the maximum shear load and stiffness for the composite screws (∼30% and ∼40%) in comparison to the PLA screws was also seen. Maximum torque for the PLA screws was ∼1000 mN m, while that for the composite screws were slightly lower. The SEM micrographs for P40 UD and P40 UD/RM screws revealed small gaps around the fibres, which were suggested to be due to buckling of the UD fibres during the manufacturing process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration

    PubMed Central

    Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

    2013-01-01

    Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration. PMID:23638115

  16. Application of zinc oxide quantum dots in food safety

    USDA-ARS?s Scientific Manuscript database

    Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...

  17. Thermal and structural properties of zinc modified tellurite based glasses

    NASA Astrophysics Data System (ADS)

    Kundu, R. S.; Dhankhar, Sunil; Punia, R.; Dult, Meenakshi; Kishore, N.

    2016-05-01

    Glass system 60 TeO2 - 10 B2O3-(30-x) Bi2O3-x ZnO with mole fraction x = 10, 15, 20, 25 and 30 were synthesized by conventional melt quenching technique under controlled atmospheric conditions. The glass transition temperature (Tg) has been determined using differential scanning Calorimetry (DSC) and its value is observed to increase with increase in ZnO content. This increase may be due to the increase in the concentration of the bridging oxygen (BO) atoms. IR and Raman spectra of the present glass system indicate that ZnO acts as network modifier and exists in ZnO4 units. TeO2 exists as TeO3, TeO4, and TeO3+1 structural units. Bismuth plays the role of network modifier with BiO6 octahedral structural units whereas B2O3 exists in the form of BO3 trigonal and BO4 tetrahedral structural units.

  18. Evaluation of retentive strength of four luting cements with stainless steel crowns in primary molars: An in vitro study

    PubMed Central

    Parisay, Iman; Khazaei, Yegane

    2018-01-01

    Background: Stainless steel crown (SSC) is the most reliable restoration for primary teeth with extensive caries. Retention is of great importance for a successful restoration and is provided by various factors such as luting cements. The aim of this study was to evaluate the retentive strength of SSC cemented with four different luting cements. Materials and Methods: In this in vitro study, A total of 55 extracted primary first molars were selected. Following crown selection and cementation (one with no cement and four groups cemented with resin, glass ionomer, zinc phosphate, and polycarboxylate), all the specimens were incubated and thermocycled in 5°C–55°C. Retentive properties of SSCs were tested with a mechanical test machine. First dislodgement of each specimen and full crown removal were recorded. One-way ANOVA test followed by least significant difference test and Kruskal–Wallis test was used for retentive strength comparison at the level of significance of P < 0.05. Results: The results of the study showed that the specimens cemented with zinc phosphate exhibited higher retentive strength as compared to glass ionomer and polycarboxylate (P < 0.001 and P = 0.023, respectively). Conclusion: Zinc phosphate cement showed the most promising results; thus, it can be preferably used for cementation of the teeth with no grossly broken down crowns. PMID:29922339

  19. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography.

    PubMed

    Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, Lucia; Appavou, Marie-Sousai

    2017-04-01

    To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50μm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. P2O5-doping in waste glasses: evolution of viscosity and crystallization processes

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Espuñes, Alex; Garcia-Valles, Maite; Martinez, Salvador

    2015-04-01

    Current concern for environmental preservation is the main motive for the study of new, more sustainable materials. Increasing amounts of sewage sludge are produced in wastewater treatment plants over the world every day. This fact represents a major problem for the municipalities and industries due to the volume of waste and also to the contaminant elements it may bear, which require expensive conditions for disposal in landfills. Vitrification is an established technique in the inertization of different types of toxic wastes (such as nuclear wastes and contaminated soils) that has been used successfully for sewage sludge. Glasses of basaltic composition (43.48SiO2-14.00Al2O3-12.86Fe2O3-10.00CaO-9.94MgO-3.27Na2O-1.96K2O-0.17MnO-0.55P2O5-2.48TiO2) are used as a laboratory analogous of wastes such as sewage sludge and galvanic sludge to study the properties of the inertization matrix. This basaltic matrix is doped by adding 1%, 2%, 3%, 4% and 20% of P5O5 in order to cover the compositional range of phosphate in sewage sludge encountered in the literature. In this study, the focus has been placed in the effect of the concentration of phosphate (P2O5) in glass stability, thermal properties and evolution of viscosity with temperature. The dependence of viscosity on temperature and the thermal behaviour of these glasses are critical parameters in the design of their production process. Regarding the compositional limits of the mixture, it has been observed that melt reactivity is much increased when P2O5 content is over 4%, hindering the glass conformation process. Moreover, stanfieldite (calcium and magnesium phosphate) crystallized during glass making when phosphate concentration approached 20%, hence establishing the upper limit for glass stability. Viscosity is also dramatically increased in this range, hence requiring production amends. Differential thermal analysis has provided nucleation and crystallization temperatures of the glasses around 915°C and 1050

  1. Ionic Substitutions in Non-Apatitic Calcium Phosphates

    PubMed Central

    Laskus, Aleksandra; Kolmas, Joanna

    2017-01-01

    Calcium phosphate materials (CaPs) are similar to inorganic part of human mineralized tissues (i.e., bone, enamel, and dentin). Owing to their high biocompatibility, CaPs, mainly hydroxyapatite (HA), have been investigated for their use in various medical applications. One of the most widely used ways to improve the biological and physicochemical properties of HA is ionic substitution with trace ions. Recent developments in bioceramics have already demonstrated that introducing foreign ions is also possible in other CaPs, such as tricalcium phosphates (amorphous as well as α and β crystalline forms) and brushite. The purpose of this paper is to review recent achievements in the field of non-apatitic CaPs substituted with various ions. Particular attention will be focused on tricalcium phosphates (TCP) and “additives” such as magnesium, zinc, strontium, and silicate ions, all of which have been widely investigated thanks to their important biological role. This review also highlights some of the potential biomedical applications of non-apatitic substituted CaPs. PMID:29186932

  2. An advanced NMR protocol for the structural characterization of aluminophosphate glasses.

    PubMed

    van Wüllen, Leo; Tricot, Grégory; Wegner, Sebastian

    2007-10-01

    In this work a combination of complementary advanced solid-state nuclear magnetic resonance (NMR) strategies is employed to analyse the network organization in aluminophosphate glasses to an unprecedented level of detailed insight. The combined results from MAS, MQMAS and (31)P-{(27)Al}-CP-heteronuclear correlation spectroscopy (HETCOR) NMR experiments allow for a detailed speciation of the different phosphate and aluminate species present in the glass. The interconnection of these local building units to an extended three-dimensional network is explored employing heteronuclear dipolar and scalar NMR approaches to quantify P-O-Al connectivity by (31)P{(27)Al}-heteronuclear multiple quantum coherence (HMQC), -rotational echo adiabatic passage double resonance (REAPDOR) and -HETCOR NMR as well as (27)Al{(31)P}-rotational echo double resonance (REDOR) NMR experiments, complemented by (31)P-2D-J-RESolved MAS NMR experiments to probe P-O-P connectivity utilizing the through bond scalar J-coupling. The combination of the results from the various NMR approaches enables us to not only quantify the phosphate units present in the glass but also to identify their respective structural environments within the three-dimensional network on a medium length scale employing a modified Q notation, Q(n)(m),(AlO)(x), where n denotes the number of connected tetrahedral phosphate, m gives the number of aluminate species connected to a central phosphate unit and x specifies the nature of the bonded aluminate species (i.e. 4, 5 or 6 coordinate aluminium).

  3. Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes.

    PubMed

    Dias, Luisa L S; Mansur, Herman S; Donnici, Claudio Luis; Pereira, Marivalda M

    2011-01-01

    The tissue engineering strategy is a new approach for the regeneration of cementum, which is essential for the regeneration of the periodontal tissue. This strategy involves the cell cultures present in this tissue, called cementoblasts, and located on an appropriate substrate for posterior implantation in the regeneration site. Prior studies from our research group have shown that the proliferation and viability of cementoblasts increase in the presence of the ionic dissolution products of bioactive glass particles. Therefore, one possible approach to obtaining adequate substrates for cementoblast cultures is the development of composite membranes containing bioactive glass. In the present study, composite films of chitosan-polyvinyl alcohol-bioactive glass containing different glass contents were developed. Glutaraldehyde was also added to allow for the formation of cross-links and changes in the degradation rate. The glass phase was introduced in the material by a sol-gel route, leading to an organic-inorganic hybrid. The films were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Bioactivity tests were also conducted by immersion of the films in simulated body fluid (SBF). Films containing up to 30% glass phase could be obtained. The formation of calcium phosphate was observed after the immersion of the films. A calcium phosphate layer formed more quickly on materials containing higher bioactive glass contents. In the hybrid containing 23% bioactive glass, a complete layer was formed after 24 h immersion, showing the high bioactivity of this material. However, despite the higher in vitro bioactivity, the film with 23% glass showed lower mechanical properties compared with films containing up to 17% glass.

  4. Short-range structure and cation bonding in calcium-aluminum metaphosphate glasses.

    PubMed

    Schneider, J; Oliveira, S L; Nunes, L A O; Bonk, F; Panepucci, H

    2005-01-24

    Comprehension of short- and medium-range order of phosphate glasses is a topic of interest, due to the close relation between network structure and mechanical, thermal, and optical properties. In this work, the short-range structure of glasses (1 - x)Ca(PO(3))(2).xAl(PO(3))(3) with 0 < or = x < or = 0.47 was studied using solid-state nuclear magnetic resonance spectroscopy, Raman spectroscopy, density measurements, and differential scanning calorimetry. The bonding between a network modifier species, Al, and the network forming phosphate groups was probed using high-resolution nuclear magnetic resonance spectroscopy of (27)Al and (31)P. Changes in the compositional behavior of the density, glass transition temperature, PO(2) symmetric vibrations, and Al coordination number were verified at around x = 0.30. (31)P NMR spectra show the presence of phosphorus in Q(2) sites with nonbridging oxygens (NBOs) coordinated by Ca ions and also Q(2) sites with one NBO coordinated by Al (namely, Q(2)(1Al)). The changes in the properties as a function of x can be understood by considering the mean coordination number measured for Al and the formation of only Q(2) and Q(2)(1Al) species. It is possible to calculate that a network formed only by Q(2)(1Al) phosphates can just exist up to the upper limit of x = 0.48. Above this value, Q(2)(2Al) species should appear, imposing a major reorganization of the network. Above x = 0.30 the network undergoes a progressive reorganization to incorporate Al ions, maintaining the condition that only Q(2)(1Al) species are formed. These observations support the idea that bonding principles for cationic species inferred originally in binary phosphate glasses can also be extended to ternary systems.

  5. Chemistry of uranium in aluminophosphate glasses

    NASA Technical Reports Server (NTRS)

    Schreiber, H. D.; Balazs, G. B.; Williams, B. J.

    1982-01-01

    The U(VI)-U(V)-U(IV) redox equilibria are investigated in two sodium aluminophosphate base compositions at a variety of melt temperatures, imposed oxygen fugacities, and uranium contents. Results show that the higher redox states of uranium are quite soluble in the phosphate glasses, although U(IV) readily precipitates from the melts as UO2. In addition, comparisons of the uranium redox equilibria established in phosphate melts versus those in silicate melts shows that the coordination sites of the individual uranium species are generally the same in both solvent systems although they differ in detail.

  6. Virtual Screening of compounds to 1-deoxy-Dxylulose 5-phosphate reductoisomerase (DXR) from Plasmodium falciparum.

    PubMed

    Chaudhary, Kamal Kumar; Prasad, C V S Siva

    2014-01-01

    The 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) protein (Gen Bank ID AAN37254.1) from Plasmodium falciparum is a potential drug target. Therefore, it is of interest to screen DXR against a virtual library of compounds (at the ZINC database) for potential binders as possible inhibitors. This exercise helped to choose 10 top ranking molecules with ZINC00200163 [N-(2,2di methoxy ethyl)-6-methyl-2, 3, 4, 9-tetrahydro-1H-carbazol-1-amine] a having good fit (-6.43 KJ/mol binding energy) with the target protein. Thus, ZINC00200163 is identified as a potential molecule for further comprehensive characterization and in-depth analysis.

  7. Nonlinear femtosecond near infrared laser structuring in oxide glasses

    NASA Astrophysics Data System (ADS)

    Royon, Arnaud

    nonlinear third-order susceptibility properties have been measured. Moreover, the structuring of fused silica at the subwavelength scale into "nanogratings" is observed and the form of birefringence induced by these structures is discussed. In addition to the fused silica samples, several oxide glasses presenting very distinct chemical compositions have been studied. A sodium-borophosphate glass containing niobium oxide exhibits micro-cracks and nano-crystallites following irradiation. A silicate glass with or without a silver component reveals fluorescent rings or "nanograting" structures. A zinc phosphate glass containing silver also presents fluorescent ring structures, with a size of the order of 80 nm, well below the diffraction limit. Pump-probe microscope techniques have been performed on this glass to investigate the laser-glass interaction. The absorption mechanism is determined to be four-photon absorption. The generated free electron density is ˜ 1017 cm-3, which suggests the conclusion that an electron gas rather than a plasma is formed during the laser irradiation.

  8. Enhanced 1.53 μm emission of Er{sup 3+} ions in phosphate glass via energy transfer from Cu{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, José A., E-mail: jose.jimenez@unf.edu; Sendova, Mariana

    2014-07-21

    Optimizing the efficiency of Er{sup 3+} emission in the near-infrared telecommunication window in glass matrices is currently a subject of great interest in photonics research. In this work, Cu{sup +} ions are shown to be successfully stabilized at a high concentration in Er-containing phosphate glass by a single-step melt-quench method, and demonstrated to transfer energy to Er{sup 3+} thereby enhancing the near-infrared emission about 15 times. The spectroscopic data indicate an energy conversion process where Cu{sup +} ions first absorb photons broadly around 360 nm and subsequently transfer energy from the Stokes-shifted emitting states to resonant Er{sup 3+} absorption transitions inmore » the visible. Consequently, the Er{sup 3+} electronic excited states decay and the {sup 4}I{sub 3/2} metastable state is populated, leading to the enhanced emission at 1.53 μm. Monovalent copper ions are thus recognized as sensitizers of Er{sup 3+} ions, suggesting the potential of Cu{sup +} co-doping for applications in the telecommunications, solar cells, and solid-state lasing realizable under broad band near-ultraviolet optical pumping.« less

  9. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    PubMed

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Influence of 45S5 Bioactive Glass in A Standard Calcium Phosphate Collagen Bone Graft Substitute on the Posterolateral Fusion of Rabbit Spine.

    PubMed

    Pugely, Andrew J; Petersen, Emily B; DeVries-Watson, Nicole; Fredericks, Douglas C

    2017-01-01

    Spinal fusion surgery is an effective but costly treatment for select spinal pathology. Historically iliac crest bone graft (ICBG) has remained the gold standard for achieving successful arthrodesis. Given well-established morbidity autograft harvest, multiple bone graft replacements, void fillers, and extenders have been developed. The objective of this study was to evaluate the in vivo efficacy and safety of two mineralized collagen bone void filler materials similar in composition. Both bone void fillers were composed of hydroxyapatite (HA), tricalcium phosphate (TCP) and bovine collagen. The first test article (Bi-Ostetic bioactive glass foam or "45S5") also contained 45S5 bioactive glass particles while the second test article (Formagraft or "FG") did not. 45S5 and FG were combined with bone marrow aspirate and iliac crest autograft and compared to ICBG in an established posterolateral spine fusion rabbit model. Sixty-nine mature New Zealand White rabbits were divided into 3 test cohorts: ICBG, 45S5, and FG. A Posterolateral fusion model previous validated was utilized to assess fusion efficacy. The test groups were evaluated for spine fusion rate, new bone formation, graft resorption and inflammatory response using radiographic, μCT, biomechanical and histological endpoints at 4, 8 and 12 weeks following implantation. There were 4 clinical complications unrelated to the graft materials and were evenly split between groups (ICBG graft harvest complications; hind limb mobility, chronic pain) and were euthanized. These omissions did not affect the overall outcome of the study. Radiographic scoring of the fusion sites indicated a normal healing response in all test groups, with no adverse reactions and similar progressions of new bone formation observed over time. All groups demonstrated significantly less range of motion in both flexion/extension and lateral bending compared to normal not-fused controls, which supports fusion results observed in the other

  11. Role of magnesium on the biomimetic deposition of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  12. Dense proton injection into phosphate glasses using corona discharge treatment

    NASA Astrophysics Data System (ADS)

    Kinoshita, Takuya; Miyazaki, Atsushi; Kawaguchi, Keiga; Sakai, Daisuke; Yamaguchi, Takuya; Omata, Takahisa; Ishiyama, Tomohiro; Fujioka, Masaya; Kaiju, Hideo; Nishii, Junji

    2018-01-01

    Sodium ions in 25NaO1/2-6LaO3/2-6GeO2-63PO5/2 (mol%) glasses were substituted with protons using corona discharge treatment (CDT) under a H2 atmosphere. The substitution of sodium ion to proton proceeded from the anode side to the cathode side with constant current flow during the CDT. A crystalline free and transparent glass plate of 0.3 mm thickness was obtained after CDT for 96 h. The maximum decrease rate from sodium ion to proton was 78 ± 10%. The proton conductivity of 8.5 × 10-4 S/cm was attained at 400 °C.

  13. Femtosecond laser-induced refractive index modification in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.

    2005-04-01

    We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.

  14. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    NASA Astrophysics Data System (ADS)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium

  15. Gradient-index elements made from phosphate glasses in the system Al(PO3)3 - Na2O - Ag2O by ion-exchange process

    NASA Astrophysics Data System (ADS)

    Staronski, Leszek R.; Wychowaniec, Marek; Wasylak, Jan

    1994-10-01

    Silver aluminum phosphate glassed have been tested as a material for gradient index (GRIN) elements fabrication by exchange of Na+ ions from mixed molten salt baths by the Ag+ ones. The annealing technique was used to control the final gradient and GRIN rod elements with radial index profile were prepared with n(r) equals no(1 - A/2 (DOT) rn) where 2

  16. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy.

    PubMed

    Szumera, Magdalena

    2015-02-25

    Glasses have been synthesized in the system P2O5-SiO2-K2O-MgO-CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and (31)P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]-O-P and/or Mo[MoO4/MoO6]-O-Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effects of Cement, Abutment Surface Pretreatment, and Artificial Aging on the Force Required to Detach Cantilever Fixed Dental Prostheses from Dental Implants.

    PubMed

    Kappel, Stefanie; Chepura, Taras; Schmitter, Marc; Rammelsberg, Peter; Rues, Stefan

    To examine the in vitro effects of different cements, abutment surface preconditioning, and artificial aging on the maximum tensile force needed to detach cantilever fixed dental prostheses (FDPs) from dental implants with titanium abutments. A total of 32 tissue-level implants were combined with standardized titanium abutments. For each test group, eight cantilever FDPs were fabricated using selective laser melting (cobalt-chromium [CoCr] alloy). The inner surfaces of the cantilever FDPs and half of the abutments were sandblasted and then joined by use of four different cements (two permanent and two semi-permanent) in two different amounts per cement. Subgroups were tested after either artificial aging (thermocycling and chewing simulation) or 3 days of water storage. Finally, axial pull off-tests were performed for each abutment separately. Cement type and surface pretreatment significantly affected decementation behavior. The highest retention forces (approximately 1,200 N) were associated with sandblasted abutments and permanent cements. With unconditioned abutments, temporary cements (Fu < 100 N), as well as glass-ionomer cement (Fu ≈ 100 N), resulted in rather low retention forces. Zinc phosphate cement guaranteed high retention forces. After aging, retention was sufficient only for cementation with zinc phosphate cement and for the combination of sandblasted abutments and glass-ionomer cement. When glass-ionomer cement is used to fix cantilever FDPs on implants, sandblasting of standard titanium abutments may help prevent loss of retention. Retention forces were still high for FDPs fixed with zinc phosphate cement, even when the abutments were not pretreated. Use of permanent cements only, however, is recommended to prevent unwanted loosening of cantilever FDPs.

  18. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    NASA Astrophysics Data System (ADS)

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-06-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.

  19. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    PubMed Central

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility. PMID:24961911

  20. Influence of F- on stark splitting of Yb3+ and the thermal expansion of silica glass

    NASA Astrophysics Data System (ADS)

    Cao, Yabin; Chen, Si; Shao, Chongyun; Yu, Chunlei

    2018-06-01

    A local phosphate/fluoride environment of Yb3+ was created in silica glass using a multi-step method. The influence of F- on the Stark splitting of Yb3+ in Al3+/P5+/F- co-doped silica glass was studied at room-temperature, in addition to its effect on the thermal expansion performance of the glass matrix. The results indicate that Yb3+ ions in Al3+/P5+/F- co-doped silica glass have a larger Stark splitting energy of 2F7/2 compared to Al3+/P5+ co-doped silica glass. Moreover, a larger integrated absorption cross-section (34.58 pm2 × nm), stimulated emission cross-section (0.63 pm2), and better thermal expansion performance (1.3062 × 10-6 K- at 100 °C) are achieved in Al3+/P5+/F- co-doped silica glass. Finally, different function mechanisms of F- in silica and phosphate glasses were analyzed and the F-Si bond was used to explain the results in silica glass. The combination of low refractive index, large Stark splitting energy of 2F7/2, and small thermal expansion makes Al3+/P5+/F- co-doped silica glass a preferred material for large mode area fibers for high-power laser applications.

  1. Silicon, iron and titanium doped calcium phosphate-based glass reinforced biodegradable polyester composites as bone analogous materials

    NASA Astrophysics Data System (ADS)

    Shah Mohammadi, Maziar

    Bone defects resulting from disease or traumatic injury is a major health care problem worldwide. Tissue engineering offers an alternative approach to repair and regenerate bone through the use of a cell-scaffold construct. The scaffold should be biodegradable, biocompatible, porous with an open pore structure, and should be able to withstand the applied forces. Phosphate-based glasses (PGs) may be used as reinforcing agents in degradable composites since their degradation can be predicted and controlled through their chemistry. This doctoral dissertation describes the development and evaluation of PGs reinforced biodegradable polyesters for intended applications in bone augmentation and regeneration. This research was divided into three main objectives: 1) Investigating the composition dependent properties of novel PG formulations by doping a sodium-free calcium phosphate-based glass with SiO2, Fe2O3, and TiO2. Accordingly, (50P2 O5-40CaO- xSiO2-(10-x)Fe2O3, where x = 10, 5 and 0 mol.%) and (50P2O5-40CaO-xSiO 2-(10-x)TiO2 where x = 10, 7, 5, 3 and 0 mol.%) formulations were developed and characterised. SiO2 incorporation led to increased solubility, ion release, pH reduction, as well as hydrophilicity, surface energy, and surface polarity. In contrast, doping with Fe2O 3 or TiO2 resulted in more durable glasses, and improved cell attachment and viability. It was hypothesised that the presence of SiO 2 in the TiO2-doped formulations could up-regulate the ionic release from the PG leading to higher alkaline phosphatase activity of MC3T3-E1 cells. 2) Incorporating Si, Fe, and Ti doped PGs as fillers, either as particulates (PGPs) or fibres (PGFs), into biodegradable polyesters (polycaprolactone (PCL) and semi-crystalline and amorphous poly(lactic acid) (PLA and PDLLA)) with the aim of developing degradable bone analogous composites. It was found that PG composition and geometry dictated the weight loss, ionic release, and mechanical properties of the composites. It

  2. Calcium and Zinc Containing Bactericidal Glass Coatings for Biomedical Metallic Substrates

    PubMed Central

    Esteban-Tejeda, Leticia; Díaz, Luis A.; Prado, Catuxa; Cabal, Belén; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3–SiO2–Na2O–ZnO and SiO2–Na2O–Al2O3–CaO–B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel) have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar) according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log). PMID:25056542

  3. Kinetics of UV laser radiation defects in high performance glasses

    NASA Astrophysics Data System (ADS)

    Natura, U.; Feurer, T.; Ehrt, D.

    2000-05-01

    High purity fluoride phosphate glasses are attractive candidates as UV transmitting materials. The calculated values for the ultraviolet resonance wavelength are comparable with those of pure silica glass or fluoride single crystal CaF2. The formation of radiation-induced defect centers leads to additional absorption bands in the VUV-UV-vis range. The damage and the healing behavior by lamps and lasers are investigated in dependence on phosphate content and the content of impurities, mainly transition metals. Experiments were carried out using pulsed lasers with a duration of femto- and nanoseconds at a wavelength of 248 nm. The initial slope of the induced absorption shows a nonlinear dependence on the pulse energy density. Resonant and non-resonant two-photon mechanisms were observed. Two-photon-absorption coefficients at 248 nm for samples with different phosphate contents were measured. Models of the kinetics of the radiation-induced defects were developed. The inclusion of energy transfer was necessary to explain the difference in the damage behavior for nanosecond (248 nm, 193 nm) and femtosecond (248 nm) laser pulses.

  4. Phosphate, not superoxide dismutase, facilitates electron transfer from ferrous salts to cytochrome c.

    PubMed

    Beyer, W F; Fridovich, I

    1991-02-15

    Peterson and Eaton (1989, Biochem. Biophys. Res. Commun. 165, 164-167) reported that the copper- and zinc-containing, but not the manganese-containing, superoxide dismutase catalyzes the reduction of cytochrome c by ferrous salts. This activity, erroneously attributed to the enzyme, is now shown to have been due to inorganic phosphate.

  5. An alternative approach to recovering valuable metals from zinc phosphating sludge.

    PubMed

    Kuo, Yi-Ming

    2012-01-30

    This study used a vitrification process (with good potential for commercialization) to recover valuable metals from Zn phosphating sludge. The involved vitrification process achieves two major goals: it transformed hazardous Zn phosphating sludge into inert slag and it concentrated Fe (83.5%) and Zn (92.8%) into ingot and fine particulate-phase material, respectively. The Fe content in the ingot was 278,000 mg/kg, making the ingot a potential raw material for iron making. The fine particulate-phase material (collected from flue gas) contained abundant Zn (544,000 mg/kg) in the form of ZnO. The content (67.7%) of ZnO was high, so it can be directly sold to refineries. The recovered coarse particulate-phase material, with insufficient amount of ZnO, can be recycled as a feeding material for Zn re-concentration. Therefore, the vitrification process can not only treat hazardous materials but also effectively recover valuable metals. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Physical chemical effects of zinc on in vitro enamel demineralization.

    PubMed

    Mohammed, N R; Mneimne, M; Hill, R G; Al-Jawad, M; Lynch, R J M; Anderson, P

    2014-09-01

    Zinc salts are formulated into oral health products as antibacterial agents, yet their interaction with enamel is not clearly understood. The aim was to investigate the effect of zinc concentration [Zn(2+)] on the in vitro demineralization of enamel during exposure to caries-simulating conditions. Furthermore, the possible mechanism of zinc's action for reducing demineralization was determined. Enamel blocks and synthetic hydroxyapatite (HAp) were demineralized in a range of zinc-containing acidic solutions (0-3565ppm [Zn(2+)]) at pH 4.0 and 37°C. Inductively coupled-plasma optical emission spectroscopy (ICP-OES) was used to measure ion release into solution. Enamel blocks were analysed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and HAp by X-ray diffraction (XRD) and neutron diffraction (ND). ICP-OES analysis of the acidic solutions showed a decrease in [Ca(2+)] and [PO4(3-)] release with increasing [Zn(2+)]. FTIR revealed a α-hopeite (α-Zn3(PO4)2.4H2O)-like phase on the enamel surfaces at >107ppm [Zn(2+)]. XRD and ND analysis confirmed a zinc-phosphate phase present alongside the HAp. This study confirms that zinc reduces enamel demineralization. Under the conditions studied, zinc acts predominantly on enamel surfaces at PO4(3-) sites in the HAp lattice to possibly form an α-hopeite-like phase. These results have a significant implication on the understanding of the fundamental chemistry of zinc in toothpastes and demonstrate its therapeutic potential in preventing tooth mineral loss. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Fluorescence properties of Nd3+-doped tellurite glasses.

    PubMed

    Kumar, K Upendra; Prathyusha, V A; Babu, P; Jayasankar, C K; Joshi, A S; Speghini, A; Bettinelli, M

    2007-07-01

    The compositional and concentration dependence of luminescence of the (4)F(3/2)-->(4)I(J) (J=13/2, 11/2 and 9/2) transitions in four Nd(3+)-doped tellurite based glasses has been studied. The free-ion energy levels obtained for 60TeO(2)+39ZnO(2)+1.0Nd(2)O(3) (TZN10) glass have been analysed using the free-ion Hamiltonian model and compared with similar results obtained for Nd(3+):glass systems. The absorption spectrum of TZN10 glass has been analysed using the Judd-Ofelt theory. Relatively longer decay rates have been obtained for Nd(3+)-doped phosphotellurite glasses. The emission characteristics of the (4)F(3/2)-->(4)I(11/2) transition, of the Nd(3+):TZN10 glass, are found to be comparable to those obtained for Nd(3+):phosphate laser glasses. The non-exponential shape of the emission decay curves for the (4)F(3/2)-->(4)I(11/2) transition is attributed to the presence of energy transfer processes between the Nd(3+) ions.

  8. Anneal-induced enhancement of refractive index and hardness of silicophosphate glasses containing six-fold coordinated silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn; Jiang, Qi; Li, Xiang

    2015-01-12

    A considerable number of optical devices have significantly benefited from the development of phosphate glasses as substrate materials. Introducing silica into sodium phosphate is an effective method to enhance its mechanical and optical properties. Through annealing treatment, the tetrahedral silicon oxide network structure (Si{sup (4)}) can be transformed into an octahedral structure (Si{sup (6)}) with more constraints. Here, we use high-temperature Raman and Nuclear Magnetic Resonance to reveal the mechanism of transformation between the Si{sup (4)} and Si{sup (6)} silicon oxide structures. The increase of the Si{sup (6)} content results in the phosphate glasses having higher refractive index and hardness.more » Based on this, the refractive index contribution of SiO{sub 6} is obtained.« less

  9. Prominent spectral features of Sm3+ ion in disordered zinc tellurite glass

    NASA Astrophysics Data System (ADS)

    Tanko, Y. A.; Sahar, M. R.; Ghoshal, S. K.

    Trivalent rare earth doped glasses with modified spectroscopic features are essential for solid state lasers and diverse photonic applications. Glass composition optimisation may fulfil such demand. Stimulating the spectral properties of samarium (Sm3+) ions in tellurite glass host with desired enhancement is the key issue. Glasses with composition (80 - x)TeO2-20ZnO-(x)Sm2O3, where 0 ⩽ x ⩽ 1.5 mol% are prepared using melt quenching method. The role of varying Sm3+ contents to improving the absorption and emission properties of the prepared glasses are determined. XRD pattern verifies amorphous nature of synthesised glasses. FTIR spectroscopy has been used to observe the structural modification of (TeO4) trigonal bipyramid structural units. DTA traces display prominent transition peaks for glass transition, crystallisation and melting temperature. Samples are discerned to be stable with desired Hruby parameter and superior glass forming ability. The UV-Vis-NIR absorption spectra reveals nine peaks centred at 470, 548, 947, 1085, 1238, 1385, 1492, 1550 and 1589 nm. These bands arise due to 6H5/2 → 4I11/2, 4G5/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2 and 6F1/2 transitions, respectively. The direct, indirect band gap and Urbach energy calculated from the absorption edge of UV-Vis-NIR spectra are found to appear within (2.75-3.18) eV, (3.22-3.40) eV, and (0.20-0.31) eV, respectively. The observed increase in refractive index from 2.45 to 2.47 is ascribed to the generation of non-bridging oxygen atoms via the conversion of TeO4 into TeO3 units. Conversely the decrease in refractive index to 2.39 is attributed to the lower ionic radii (1.079 Å) of Sm3+. PL spectra under the excitation of 452 nm display four emission bands centred at 563, 600, 644 and 705 nm corresponding to 4G5/2 → 6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions of samarium ions. Excellent features of the results nominate these compositions towards prospective applications.

  10. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zeng, Huidan; Jiang, Qi; Zhao, Donghui; Chen, Guorong; Wang, Zhaofeng; Sun, Luyi; Chen, Jianding

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  11. Mixed polyanion glass cathodes: Effect of polyanion content

    DOE PAGES

    Kercher, Andrew K.; Kolopus, James A.; Sacci, Robert L.; ...

    2017-02-18

    Mixed polyanion glass cathodes in lithium-ion batteries have very high capacities (200-500 mAh/g), but currently these materials have fundamental problems with 1 st-cycle irreversible loss, cycling efficiency, and capacity fade. It is well established that polyanion substitutions into glasses can dramatically affect their physical properties, but the effect of polyanion content on the electrochemical performance has not been previously established. The proper amount of lithium and borate substitution in copper phosphate/vanadate glasses was shown to nearly eliminate 1 st-cycle irreversible loss and improve cycling efficiency. As a result, Raman and IR spectroscopy were used to identify polyanions that correlated withmore » electrochemical performance changes.« less

  12. Alkali-resistant calcium iron phosphate glass fibers for concrete reinforcement

    DOT National Transportation Integrated Search

    2008-02-01

    The physical properties and alkaline corrosion resistant properties of calcium-ironphosphate glasses were studied. Iron addition decreases the thermal expansion coefficient and increases the Youngs modulus in comparison with the addition of calciu...

  13. Optical properties of Nd3+ doped bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Venkatramu, V.; Ravi Kanth Kumar, V. V.

    2014-03-01

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) - x Nd2O3 (where x = 0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to 4F3/2 to 4I9/2, 4I11/2 and 4I13/2 transitions in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd3+ exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process.

  14. Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification.

    PubMed

    Hays, Greg R; Gaul, Erhard W; Martinez, Mikael D; Ditmire, Todd

    2007-07-20

    We have investigated two novel laser glasses in an effort to generate high-energy, broad-spectrum pulses from a chirped-pulse amplification Nd:glass laser. Both glasses have significantly broader spectra (>38 nm FWHM) than currently available Nd:phosphate and Nd:silicate glasses. We present calculations for small signal pulse amplification to simulate spectral gain narrowing. The technique of spectral shaping using mixed-glass architecture with an optical parametric chirped-pulse amplification front end is evaluated. Our modeling shows that amplified pulses with energies exceeding 10 kJ with sufficient bandwidth to achieve 120 fs pulsewidths are achievable with the use of the new laser glasses. With further development of current technologies, a laser system could be scaled to generate one exawatt in peak power.

  15. Decomposition Mechanism and Decomposition Promoting Factors of Waste Hard Metal for Zinc Decomposition Process (ZDP)

    NASA Astrophysics Data System (ADS)

    Pee, J. H.; Kim, Y. J.; Kim, J. Y.; Seong, N. E.; Cho, W. S.; Kim, K. J.

    2011-10-01

    Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 °C, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of γ-β1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 °C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.

  16. Flowing Air-Water Cooled Slab Nd: Glass Laser

    NASA Astrophysics Data System (ADS)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  17. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2017-10-18

    Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.

  18. Modeling the movement of a pH perturbation and its impact on adsorbed zinc and phosphate in a wastewater‐contaminated aquifer

    USGS Publications Warehouse

    Kent, D.B.; Wilkie, J.A.; Davis, J.A.

    2007-01-01

    Chemical conditions were perturbed in an aquifer with an ambient pH of 5.9 and wastewater‐derived adsorbed zinc (Zn) and phosphate (P) contamination by injecting a pulse of amended groundwater. The injected groundwater had low concentrations of dissolved Zn and P, a pH value of 4.5 resulting from equilibration with carbon dioxide gas, and added potassium bromide (KBr). Downgradient of the injection, breakthrough of nonreactive Br and total dissolved carbonate concentrations in excess of ambient values (excess TCO2) were accompanied by a decrease in pH values and over twentyfold increases in dissolved Zn concentrations above preinjection values. Peak concentrations of Br and excess TCO2 were followed by slow increases in pH values accompanied by significant increases in dissolved P above preinjection concentrations. The injected tracers mobilized a significant mass of wastewater‐derived Zn. Reactive transport simulations incorporating surface complexation models for adsorption of Zn, P, hydrogen ions, and major cations onto the aquifer sediments, calibrated using laboratory experimental data, captured most of the important trends observed during the experiment. These include increases in Zn concentrations in response to the pH perturbation, perturbations in major cation concentrations, attenuation of the pH perturbation with transport distance, and increases in alkalinity with transport distance. Observed desorption of P in response to chemical perturbations was not predicted, possibly because of a disparity between the range of chemical conditions in the calibration data set and those encountered during the field experiment. Zinc and P desorbed rapidly in response to changing chemical conditions despite decades of contact with the sediments. Surface complexation models with relatively few parameters in the form of logK values and site concentrations show considerable promise for describing the influence of variable chemistry on the transport of adsorbing

  19. Optical properties of Nd3+ doped bismuth zinc borate glasses.

    PubMed

    Shanmugavelu, B; Venkatramu, V; Ravi Kanth Kumar, V V

    2014-03-25

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) -x Nd2O3 (where x=0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to (4)F3/2 to (4)I9/2, (4)I11/2 and (4)I13/2 transitions in the near infrared region. The emission intensity of the (4)F3/2 to (4)I11/2 transition increases with increase of Nd(3+) concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd(3+) concentration. The lifetimes for the (4)F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd(3+) exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Use of Raman microscopy and multivariate data analysis to observe the biomimetic growth of carbonated hydroxyapatite on bioactive glass.

    PubMed

    Seah, Regina K H; Garland, Marc; Loo, Joachim S C; Widjaja, Effendi

    2009-02-15

    In the present contribution, the biomimetic growth of carbonated hydroxyapatite (HA) on bioactive glass were investigated by Raman microscopy. Bioactive glass samples were immersed in simulated body fluid (SBF) buffered solution at pH 7.40 up to 17 days at 37 degrees C. Raman microscopy mapping was performed on the bioglass samples immersed in SBF solution for different periods of time. The collected data was then analyzed using the band-target entropy minimization technique to extract the observable pure component Raman spectral information. In this study, the pure component Raman spectra of the precursor amorphous calcium phosphate, transient octacalcium phosphate, and matured HA were all recovered. In addition, pure component Raman spectra of calcite, silica glass, and some organic impurities were also recovered. The resolved pure component spectra were fit to the normalized measured Raman data to provide the spatial distribution of these species on the sample surfaces. The current results show that Raman microscopy and multivariate data analysis provide a sensitive and accurate tool to characterize the surface morphology, as well as to give more specific information on the chemical species present and the phase transformation of phosphate species during the formation of HA on bioactive glass.

  1. X-Ray Absorption Spectroscopy Studies of the Atomic Structure of Zirconium-Doped Lithium Silicate Glasses and Glass-Ceramics, Zirconium-Doped Lithium Borate Glasses, and Vitreous Rare-Earth Phosphates

    NASA Astrophysics Data System (ADS)

    Yoo, Changhyeon

    In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.

  2. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    NASA Astrophysics Data System (ADS)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  3. Zinc complex chemistry of N,N,O ligands providing a hydrophobic cavity.

    PubMed

    Gross, Florian; Vahrenkamp, Heinrich

    2005-05-02

    Three new highly substituted bis(2-picolyl)(2-hydroxybenzyl)amine ligands were synthesized, and their biomimetic zinc complex chemistry was explored. They have tert-butyl substituents at the 3-and 5-positions of their phenyl rings, and they bear one phenyl group (HL2), two methyl groups (HL3), or two phenyl groups (HL4) at the 6-positions of their pyridyl rings. Their reactions with hydrated zinc perchlorate yield three distinctively different complex types. L2 forms a trigonal-bipyramidal aqua complex, and L3, a square-pyramidal aqua complex. The substituents on L4 leave no room for a water ligand, and the resulting zinc complex is trigonal-monopyramidal with a vacant coordination site. The water ligands on the L2Zn and L3Zn units can be replaced by anionic halide, thiocyanate, p-nitrophenolate, benzoate, and organophosphate as well as uncharged pyridine ligands. The L4Zn unit forms labile halide, p-nitrophenolate, and pyridine complexes. Triethylamine converts the aqua complexes to the labile hydroxides L2Zn-OH and L3Zn-OH, and in polar media [L3Zn-OH2]+ seems to be in equilibrium with L3Zn-OH. The hydroxides, but not the water complexes, effect the hydrolytic cleavage of tris(p-nitrophenyl) phosphate to bis(p-nitrophenyl) phosphate. The kinetic investigation of the cleavage reactions has shown them to be second-order reactions, thereby supporting the proposed four-center mechanism.

  4. XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodi, G.; Pascuta, P.; Dan, V.

    2013-11-13

    X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and themore » quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.« less

  5. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC articlemore » comprising the radioisotope immobilized therein.« less

  6. Effects of Composites Containing Bioactive Glasses on Demineralized Dentin.

    PubMed

    Tezvergil-Mutluay, A; Seseogullari-Dirihan, R; Feitosa, V P; Cama, G; Brauer, D S; Sauro, S

    2017-08-01

    The aim of this study was to evaluate the degradation of completely demineralized dentin specimens in contact with a filler-free or 2 ion-releasing resins containing micrometer-sized particles of Bioglass 45S5 (BAG) or fluoride-containing phosphate-rich bioactive glass (BAG-F). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were also used to evaluate the remineralization induced by the experimental ion-releasing resin-based materials. Dentin beams were totally demineralized in H 3 PO 4 (10%) and placed in direct contact with a filler-free (RESIN) or 2 experimental ion-releasing resins (BAG or BAG-F) and immersed in artificial saliva (AS) up to 30 d. Further specimens were also processed and submitted to FTIR and SEM analysis to evaluate the remineralization induced by such ion-releasing resins before and after AS immersion. BAG and BAG-F alkalinized the incubation media. A significant decrease of the dry mass was observed between the specimens of all groups stored for 3 and 30 d in AS. However, the fluoride-containing phosphate-rich bioactive glass incorporated into a resin-based material (BAG-F) showed greater ability in reducing the solubilization of C-terminal cross-linked telopeptide (ICTP) and C-terminal telopeptide (CTX) after prolonged AS storage. Moreover, after 30 d of AS storage, BAG-F showed the greatest remineralizing effect on the stiffness of the completely demineralized dentin matrices. In conclusion, fluoride-containing phosphate-rich bioactive glass incorporated as micrometer-sized filler in dental composites may offer greater beneficial effects than Bioglass 45S5 in reducing the enzyme-mediated degradation and remineralization of demineralized dentin.

  7. Method of processing "BPS" glass ceramic and seals made therewith

    DOEpatents

    Reed, Scott T.; Stone, Ronald G.; McCollister, Howard L.; Wengert, deceased, Paul R.

    1998-01-01

    A glass ceramic composition, a glass ceramic-to-metal seal, and more specifically a hermetic glass ceramic-to-metal seal prepared by subjecting a glass composition comprising, by weight percent, SiO.sub.2 (65-80%), LiO.sub.2 (8-16%), Al.sub.2 O.sub.3 (2-8%), K.sub.2 O (1-8%), P.sub.2 O.sub.5 (1-5%), B.sub.2 O.sub.3 (0.5-7%), and ZnO (0-5%) to the following processing steps: 1) heating the glass composition in a belt furnace to a temperature sufficient to melt the glass and crystallize lithium phosphate, 2) holding at a temperature and for a time sufficient to create cristobalite nuclei, 3) cooling at a controlled rate and to a temperature to cause crystallization of lithium silicates and growth of cristobalite, and 4) still further cooling in stages to ambient temperature. This process produces a glass ceramic whose high coefficient of thermal expansion (up to 200.times.10.sup.-7 in/in/.degree.C.) permits the fabrication of glass ceramic-to-metal seals, and particularly hermetic glass ceramic seals to nickel-based and stainless steel alloys and copper.

  8. Method of processing ``BPS`` glass ceramic and seals made therewith

    DOEpatents

    Reed, S.T.; Stone, R.G.; McCollister, H.L.; Wengert, P.R.

    1998-10-13

    A glass ceramic composition, a glass ceramic-to-metal seal, and more specifically a hermetic glass ceramic-to-metal seal prepared by subjecting a glass composition comprising, by weight percent, SiO{sub 2} (65--80%), LiO{sub 2} (8--16%), Al{sub 2}O{sub 3} (2--8%), K{sub 2}O (1--8%), P{sub 2}O{sub 5} (1--5%), B{sub 2}O{sub 3} (0.5--7%), and ZnO (0--5%) to the following processing steps: (1) heating the glass composition in a belt furnace to a temperature sufficient to melt the glass and crystallize lithium phosphate, (2) holding at a temperature and for a time sufficient to create cristobalite nuclei, (3) cooling at a controlled rate and to a temperature to cause crystallization of lithium silicates and growth of cristobalite, and (4) still further cooling in stages to ambient temperature. This process produces a glass ceramic whose high coefficient of thermal expansion (up to 200{times}10{sup {minus}7} in/in/C) permits the fabrication of glass ceramic-to-metal seals, and particularly hermetic glass ceramic seals to nickel-based and stainless steel alloys and copper. 5 figs.

  9. Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters.

    PubMed

    Da, Ning; Peng, Mingying; Krolikowski, Sebastian; Wondraczek, Lothar

    2010-02-01

    We report on intense red fluorescence from Mn(2+)-doped sulfophosphate glasses and glass ceramics of the type ZnO-Na(2)O-SO(3)-P(2)O(5). As a hypothesis, controlled internal crystallization of as-melted glasses is achieved on the basis of thermally-induced bimodal separation of an SO(3)-rich phase. Crystal formation is then confined to the relict structure of phase separation. The whole synthesis procedure is performed in air at glasses, increasing MnO content results in decreasing network polymerization. Stable glasses and continuously increasing emission intensity are observed for relatively high dopant concentration of up to 3 mol.%. Recrystallization of the glass results in strongly increasing emission intensity. Dynamic emission spectroscopy reveals only on type of emission centers in the glassy material, whereas three different centers are observed in the glass ceramic. These are attributed to octahedrally coordinated Mn(2+) in the residual glass phase and in crystalline phosphate and sulfate lattices, respectively. Relatively low crystal field strength results in almost ideal red emission, peaking around 625 nm. Excitation bands lie in the blue-to-green spectral range and exhibit strong overlap. The optimum excitation range matches the emission properties of GaN- and InGaN-based light emitting devices.

  10. Efficient Nd3+→Yb3+ energy transfer processes in high phonon energy phosphate glasses for 1.0 μm Yb3+ laser

    NASA Astrophysics Data System (ADS)

    Rivera-López, F.; Babu, P.; Basavapoornima, Ch.; Jayasankar, C. K.; Lavín, V.

    2011-06-01

    Efficient Nd3+→Yb3+ resonant and phonon-assisted energy transfer processes have been observed in phosphate glasses and have been studied using steady-state and time-resolved optical spectroscopies. Results indicate that the energy transfer occurs via nonradiative electric dipole-dipole processes and is enhanced with the concentration of Yb3+ acceptor ions, having an efficiency higher than 75% for the glass doped with 1 mol% of Nd2O3 and 4 mol% of Yb2O3. The luminescence decay curves show a nonexponential character and the energy transfer microscopic parameter calculated with the Inokuti-Hirayama model gives a value of 240 × 10-40 cm6 s-1, being one of the highest reported in the literature for Nd3+-Yb3+ co-doped matrices. From the steady-state experimental absorption and emission cross-sections, a general expression for estimating the microscopic energy transfer parameter is proposed based upon the theoretical methods developed by Miyakawa and Dexter and Tarelho et al. This expression takes into account all the resonant mechanisms involved in an energy transfer processes together with other phonon-assisted nonvanishing overlaps. The value of the Nd3+→Yb3+ energy transfer microscopic parameter has been calculated to be 200 × 10-40 cm6 s-1, which is in good agreement with that obtained from the Inokuti-Hirayama fitting. These results show the importance of the nonresonant phonon-assisted Nd3+→Yb3+ energy transfer processes and the great potential of these glasses as active matrices in the development of multiple-pump-channel Yb3+ lasers.

  11. Speciation of Cu and Zn during composting of pig manure amended with rock phosphate.

    PubMed

    Lu, Duian; Wang, Lixia; Yan, Baixing; Ou, Yang; Guan, Jiunian; Bian, Yu; Zhang, Yubin

    2014-08-01

    Pig manure usually contains a large amount of metals, especially Cu and Zn, which may limit its land application. Rock phosphate has been shown to be effective for immobilizing toxic metals in toxic metals contaminated soils. The aim of this study work was to investigate the effect of rock phosphate on the speciation of Cu and Zn during co-composting of pig manure with rice straw. The results showed that composting process and rock phosphate addition significantly affected the changes of metal species. During co-composting, the exchangeable and reducible fractions of Cu were transformed to organic and residue fractions, thus the bioavailable Cu fractions were decreased. The rock phosphate addition enhanced the metal transformation depending on the level of rock phosphate amendment. Zinc was found in the exchangeable and reducible fractions in the compost. The bioavailable Zn fraction changed a little during the composting process. The composting process converted the exchangeable Zn fraction into reducible fraction. Addition of an appropriate amount (5.0%) of rock phosphate could advance the conversion. Rock phosphate could reduce metal availability through adsorption and complexation of the metal ions on inorganic components. The increase in pH and organic matter degradation could be responsible for the reduction in exchangeable and bioavailable Cu fractions and exchangeable Zn fraction in rock phosphate amended compost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Structure of zinc and niobium tellurite glasses by neutron and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Hoppe, U.; Yousef, E.; Rüssel, C.; Neuefeind, J.; Hannon, A. C.

    2004-03-01

    Neutron and x-ray diffraction experiments of high resolving power with neutrons from a spallation source and high-energy photons from a synchrotron have been performed on compositional series of binary Zn, Nb and on mixed Zn/Nb tellurite glasses. The Te-O, Zn-O and Nb-O coordination numbers are determined by Gaussian fitting of the first-neighbour peaks in the neutron and x-ray data simultaneously. The transition of TeO4 to TeO3 units with increasing fraction of a second component is indicated by decreasing total Te-O coordination numbers. This transition appears different for glasses with ZnO or Nb2O5 additions. Details of the Te-O peaks suggest there are two species of Te-O bonds with lengths of {\\sim }0.19 and {\\sim }0.21 nm. The change of their fractions shows excellent agreement with the existence of TeO4 trigonal bipyramids and TeO3 trigonal pyramids. All oxygen atoms from ZnO and Nb2O5 are used for rupture of Te-O-Te bridges, which is accompanied with a change of nearly all participating TeO4 to TeO3 groups. The tendency for a {\\mathrm {TeO}}_{4} \\to {\\mathrm {TeO}}_{3} change decreases for glasses of higher second component content which is accompanied by the occurrence of TeO4 groups with non-bridging oxygens. The Nb tellurite glasses show transition to network-forming behaviour with the formation of Nb-O-Nb bridges. The fractions of TeO3 units of ternary Zn/Nb tellurite glasses agree with an additivity behaviour of the modifying effects of ZnO and Nb2O5 additions. Some of these results have already been presented in thesis work: Yousef E 2003 A study of some physical properties of tellurite glass (Al-Azhar University, Assiut Egypt).

  13. Efficacy of tooth whitening with different calcium phosphate-based formulations.

    PubMed

    Jin, Jian; Xu, Xiaohui; Lai, Guangyun; Kunzelmann, Karl-Heinz

    2013-08-01

    The aim of this in-vitro study was to evaluate the efficacy of tooth whitening using different calcium phosphate-based formulations. Teeth were treated with three different hydroxyapatite preparations at different concentrations and with two control preparations; each tooth was treated a total of three times. After application of the last material, hydrodynamic shear force was applied to mimic mechanical loading. After each treatment, tooth color was measured using a dental spectrophotometer, and the mean changes in L*a*b* values between different measurements were expressed as ∆E. The results indicated significant differences between the materials, but neither dose- nor time-dependent associations were found. The suspension containing tricalcium phosphate (10 wt%) showed the most obvious color change (∆E = 2.20 ± 0.90), while the suspension containing zinc-carbonate-apatite (20 wt%) showed the least obvious color change (∆E = 0.91 ± 0.50). Calcium phosphate-based formulations that can adhere to the enamel surface and contribute to tooth whitening have promising tooth-whitening potential. © 2013 Eur J Oral Sci.

  14. Synthesis and characterization of cerium containing iron phosphate based glass-ceramics

    NASA Astrophysics Data System (ADS)

    Deng, Yi; Liao, Qilong; Wang, Fu; Zhu, Hanzhen

    2018-02-01

    The structure and properties of xCeO2-(100-x)(40Fe2O3-60P2O5), where x = 0, 2, 4, 6 and 8 mol%, glass-ceramics prepared by melting and slow cooling method have been investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA) and the Product Consistency Test (PCT). The results show that the 40Fe2O3-60P2O5 sample is homogeneously amorphous and the sample containing 2 mol% CeO2 has a small amount of FePO4 phase embedded. For the sample containing up to 4 mol% CeO2, monazite CePO4 and a small amount of FePO4 appear. Spectra analysis show that the structure networks of the glass-ceramics mainly consist of orthophosphate, along with pyrophosphate and a small amount of metaphosphate units. Moreover, the leaching rates of Fe and Ce are about 3.5 × 10-5 g m-2 d-1 and 5.0 × 10-5 g m-2 d-1 respectively after immersion in deionized water at 90 °C for 56 days, indicating their good chemical durability. The conclusions imply that the prepared method may be a promising process to immobilize nuclear waste into glass-ceramic matrix.

  15. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.

    PubMed

    Mahmoud, Morsi M; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen

    2016-06-23

    Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.

  16. Effect of F ions on physical and optical properties of fluorine substituted zinc arsenic tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kareem Ahmmad, Shaik; kondaul, Edu; Rahman, Syed

    2015-02-01

    The effect of substitution of fluoride ions for oxide ions on the physical and optical properties of glass system (20-x) ZnO-xZnF2-40As2O3-40TeO2 where x = 0, 4, 8,12,16,20 mole % were investigated. The samples prepared by melt quenching method under controlled condition. The amorphous nature of these glasses was checked by X-ray diffraction technique. The density was measured according to Archimedes principle. The room temperature absorption spectra of all glass samples were determined using UV-Vis-NIR spectrometer. The thermal behaviour, glass transition temperature and stability of glass samples were studied by a differential scanning calorimetric (DSC). The density reduction of present glasses with ZnF2 concentrations may be due to the low density of ZnF2 compared with that of ZnO. Breaking the oxide network, the cross linking degree of the glass former could be reduced which results in decrease of both Tg and Tx. In the present glass system when F ions replaced by oxygen ions UV-Vis absorption cut-off wavelength decreases. This resulted form the conversion of structural unit in the glass from TeO4 to Te(O,F)4 and then to Te(O, F)3.

  17. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan

    2005-12-16

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, {beta}-myosin heavy chain, and {alpha}-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated proteinmore » kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway.« less

  18. A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum

    NASA Astrophysics Data System (ADS)

    Lin, Na; Li, Jian; Lu, Zhixiang; Bian, Longchun; Zheng, Liyan; Cao, Qiue; Ding, Zhongtao

    2015-03-01

    Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions.Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in

  19. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    PubMed

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant

  20. Cation coordination in oxychloride glasses

    NASA Astrophysics Data System (ADS)

    Johnson, J. A.; Holland, D.; Bland, J.; Johnson, C. E.; Thomas, M. F.

    2003-02-01

    Glasses containing mixtures of cations and anions of nominal compositions [Sb2O3]x - [ZnCl2]1-x where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Mössbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb)2(OZn)] and [Zn(ClZn)2(OSb)2].

  1. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  2. Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions

    NASA Astrophysics Data System (ADS)

    Chen, Chen; He, Ruiyun; Tan, Yang; Wang, Biao; Akhmadaliev, Shavkat; Zhou, Shengqiang; de Aldana, Javier R. Vázquez; Hu, Lili; Chen, Feng

    2016-01-01

    This work reports on the fabrication of ridge waveguides in Er3+/Yb3+ co-doped phosphate glass by the combination of femtosecond laser ablation and following swift carbon ion irradiation. The guiding properties of waveguides have been investigated at 633 and 1064 nm through end face coupling arrangement. The refractive index profile on the cross section of the waveguide has been constructed. The propagation losses can be reduced considerably after annealing treatment. Under the optical pump laser at 980 nm, the upconversion emission of both green and red fluorescence has been realized through the ridge waveguide structures.

  3. SnO-containing oxide glasses emitting in 1.0–2.0 µm spectral range

    NASA Astrophysics Data System (ADS)

    Denker, B. I.; Galagan, B. I.; Sverchkov, S. E.; Dianov, E. M.

    2018-06-01

    Different SnO-containing oxide glasses with various net formers (silicate, phosphate, germanate, borate, and a number of mixed compositions) were investigated for the presence of near-infrared photoluminescence. It was found that SnO-containing silicate and germanate, and also a plurality of mixed glass compositions, exhibit wideband photoluminescence peaking at 1.5–1.6 µm and with lifetimes in the order of 100 µs. These glasses are interesting as promising active materials for widely tunable fiber lasers and wideband amplifiers.

  4. Fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses containing lithium, zinc and lead.

    PubMed

    Venkatramu, V; Babu, P; Jayasankar, C K

    2006-02-01

    The influence of glass composition on the fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses modified with Li+, Zn2+ and Pb2+ cations have been investigated. The magnitude of splittings of 7F1 levels are analyzed using crystal-field (CF) analysis. The relative intensities of 5D0 --> 7F2 to 5D0 --> 7F1 transitions, crystal-field strength parameters and decay times of the 5D0 level have been determined and are found to be lower for Pb based glasses than those of Zn/Li based glasses. The lifetimes of 5D0 level are found to increase when borate glasses are modified with pure fluorides than with oxides and oxyfluorides. The fluorescence decay of 5D0 level fits perfect single exponential in the Eu3+:glass systems studied which indicates the absence of energy transfer between Eu3+ ions in these glasses.

  5. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites.

    PubMed

    Sharmin, Nusrat; Hasan, Muhammad S; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2016-06-01

    In this study, Polylactic acid (PLA)/phosphate glass fibres (PGF) composites were prepared by compression moulding. Fibres produced from phosphate based glasses P2O5-CaO-MgO-Na2O (P45B0), P2O5-CaO-MgO-Na2O-B2O3 (P45B5), P2O5-CaO-MgO-Na2O-Fe2O3 (P45Fe3) and P2O5-CaO-MgO-Na2O-B2O3-Fe2O3 (P45B5Fe3) were used to reinforce the bioresorbable polymer PLA. Fibre mechanical properties and degradation rate were investigated, along with the mechanical properties, degradation and cytocompatibility of the composites. Retention of the mechanical properties of the composites was evaluated during degradation in PBS at 37°C for four weeks. The fibre volume fraction in the composite varied from 19 to 23%. The flexural strength values (ranging from 131 to 184MPa) and modulus values (ranging from 9.95 to 12.29GPa) obtained for the composites matched those of cortical bone. The highest flexural strength (184MPa) and modulus (12.29GPa) were observed for the P45B5Fe3 composite. After 28 days of immersion in PBS at 37°C, ~35% of the strength profile was maintained for P45B0 and P45B5 composites, while for P45Fe3 and P45B5Fe3 composites ~40% of the initial strength was maintained. However, the overall wet mass change of P45Fe3 and P45B5Fe3 remained significantly lower than that of the P45B0 and P45B5 composites. The pH profile also revealed that the P45B0 and P45B5 composites degraded quicker, correlating well with the degradation profile. From SEM analysis, it could be seen that after 28 days of degradation, the fibres in the fractured surface of P45B5Fe3 composites remain fairly intact as compared to the other formulations. The in vitro cell culture studies using MG63 cell lines revealed both P45Fe3 and P45B5Fe3 composites maintained and showed higher cell viability as compared to the P45B0 and P45B5 composites. This was attributed to the slower degradation rate of the fibres in P45Fe3 and P45B5Fe3 composites as compared with the fibres in P45B0 and P45B5 composites. Copyright © 2015

  6. SEPARATION OF PROTACTINIUM FROM THORIUM IN NITRIC ACID SOLUTIONS BY SOLVENT EXTRACTION WITH TRIBUTYL PHOSPHATE OR BY ADSORPTION ON PULVERIZED UNFIRED VYCOR GLASS OR SILICA GEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J.G.; Rainey, R.H.

    1963-04-01

    Two methods were investigated for the separation and recovery of Pa from short-decayed Th fuel in HNO/sub 3/ solutions. The Pa/sub 233/, Th, and U may be coextracted from highly acidic feed solutions with 30% tributyl phosphate, or the Pa may be preferentially adsorbed on pulverized unfired Vycor glass or silica gel. Major effort has been on the adsorption method. Adsorption experiments with tracer concentrations of Pa/sup 233/ in HNO/sub 3/ solutions showed distribution coefficient maxima for Pa of about 1000, 325, and 175 from 6 to 10 M HNO/sub 3/ for laboratory-prepared silica gel, unfired Vycor, and commercial silicamore » gel, respectively. Unfired Vycor, a commercial, leached borosilicate glass containing 96% SiO/sub 2/ and about 3% B/sub 2/O/sub 3/, was used for most of the studies. Fired Vycor glass adsorbed little or no Pa. The adsorption coefficient of Pa by unfired Vycor glass from HNO/sub 3/ solutions increased as the contact time increased or as the particle size of the glass decreased and was dependent on the concentration of salt or HNO/sub 3/ in the solution. The adsorbed Pa may be eluted with oxalic or tartaric acids. Although optimum conditions for column operations were not determined, decontamination factors of Pa from Th, U, Ru, Zr- Nb and total rare earths of 6x 10/sup 3/, 1.6 x 101,4 x 10/sup 3/, 3, and 5.8 x 10/sup 5/, respectively, were obtained in tracer experiments. Batch countercurrent scouting experiments with tracer Pa showed that about 90% of the Pa was extracted with the Th and U from 5 M HNO/sub 3/-1 M Al(NO/sub 3/)/sub 3/ solutions, with a decontamination factor of 70 from Ru and about 10/sup 5/ from rare earths. (P.C.H.)« less

  7. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  8. Emission characteristics of holmium ions in fluoro-phosphate glasses for photonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, S.; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com

    2016-05-23

    Optical properties of Ho{sup 3+} doped different fluorophosphate (FP) glasses have been synthesized and discussed. Thermal properties have been studied through differential scanning calorimetry (DSC).The Judd-Ofelt (J-O) intensity parameters Ω{sub λ} (λ= 2, 4, 6) from absorption spectra have been evaluated. Various radiative parameters have been obtained for the different excited states using J-O theory. From the emission spectra, different laser properties have been studied and discussed. The nature of decay curve analysis was performed for the {sup 5}F{sub 4}({sup 5}S{sub 2}) level. These glasses are expected to give interesting application in the field of photonic applications.

  9. Transporter genes identified in landraces associated with high zinc in polished rice through panicle transcriptome for biofortification

    PubMed Central

    Kulkarni, Kalyani S.; Madhu Babu, P.; Sanjeeva Rao, D.; Surekha, K.; Ravindra Babu, V

    2018-01-01

    Polished rice is poor source of micronutrients, however wide genotypic variability exists for zinc uptake and remobilization and zinc content in brown and polished grains in rice. Two landraces (Chittimutyalu and Kala Jeera Joha) and one popular improved variety (BPT 5204) were grown under zinc sufficient soil and their analyses showed high zinc in straw of improved variety, but high zinc in polished rice in landraces suggesting better translocation ability of zinc into the grain in landraces. Transcriptome analyses of the panicle tissue showed 41182 novel transcripts across three samples. Out of 1011 differentially expressed exclusive transcripts by two landraces, 311 were up regulated and 534 were down regulated. Phosphate transporter-exporter (PHO), proton-coupled peptide transporters (POT) and vacuolar iron transporter (VIT) showed enhanced and significant differential expression in landraces. Out of 24 genes subjected to quantitative real time analyses for confirmation, eight genes showed significant differential expression in landraces. Through mapping, six rice microsatellite markers spanning the genomic regions of six differentially expressed genes were validated for their association with zinc in brown and polished rice using recombinant inbred lines (RIL) of BPT 5204/Chittimutyalu. Thus, this study reports repertoire of genes associated with high zinc in polished rice and a proof concept for deployment of transcriptome information for validation in mapping population and its use in marker assisted selection for biofortification of rice with zinc. PMID:29394277

  10. Transporter genes identified in landraces associated with high zinc in polished rice through panicle transcriptome for biofortification.

    PubMed

    Neeraja, C N; Kulkarni, Kalyani S; Madhu Babu, P; Sanjeeva Rao, D; Surekha, K; Ravindra Babu, V

    2018-01-01

    Polished rice is poor source of micronutrients, however wide genotypic variability exists for zinc uptake and remobilization and zinc content in brown and polished grains in rice. Two landraces (Chittimutyalu and Kala Jeera Joha) and one popular improved variety (BPT 5204) were grown under zinc sufficient soil and their analyses showed high zinc in straw of improved variety, but high zinc in polished rice in landraces suggesting better translocation ability of zinc into the grain in landraces. Transcriptome analyses of the panicle tissue showed 41182 novel transcripts across three samples. Out of 1011 differentially expressed exclusive transcripts by two landraces, 311 were up regulated and 534 were down regulated. Phosphate transporter-exporter (PHO), proton-coupled peptide transporters (POT) and vacuolar iron transporter (VIT) showed enhanced and significant differential expression in landraces. Out of 24 genes subjected to quantitative real time analyses for confirmation, eight genes showed significant differential expression in landraces. Through mapping, six rice microsatellite markers spanning the genomic regions of six differentially expressed genes were validated for their association with zinc in brown and polished rice using recombinant inbred lines (RIL) of BPT 5204/Chittimutyalu. Thus, this study reports repertoire of genes associated with high zinc in polished rice and a proof concept for deployment of transcriptome information for validation in mapping population and its use in marker assisted selection for biofortification of rice with zinc.

  11. Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants.

    PubMed

    Rodriguez, Omar; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Waldman, Stephen; Papini, Marcello; Towler, Mark R

    2017-10-01

    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn 2+ ), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro .

  12. The network formers role of gadolinium(III) ions in some zinc-borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Bosca, Maria; Pop, Lidia; Pascuta, Petru

    2017-12-01

    EPR and magnetic susceptibility measurements were performed on glass ceramics from the (Gd2O3)x.(B2O3)(60-x).(ZnO)40 system, with 0 ≤ x ≤ 15 mol%, in order to determine the role of gadolinium ions on structural and magnetic properties. At low Gd2O3 contents (x ≤ 1 mol%) the EPR spectra show four resonance lines with effective g-values of ˜ 6, 4.8, 2.8 and 2, typical for Gd3+ ions uniformly distributed in the glass and glass ceramic samples. For higher contents of gadolinium ions (x ≥ 3 mol%) the EPR spectra are dominated by a single broad line centered at g ˜ 2, which can be due to the magnetic clusters containing Gd3+ ions. The magnetic susceptibility data show that the gadolinium ions are involved in superexchange interactions in all the investigated glass ceramics, being antiferromagnetically coupled.

  13. Vitrified metal finishing wastes I. Composition, density and chemical durability.

    PubMed

    Bingham, P A; Hand, R J

    2005-03-17

    Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.

  14. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  15. Organic Wheat Farming Improves Grain Zinc Concentration

    PubMed Central

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms. PMID:27537548

  16. Organic Wheat Farming Improves Grain Zinc Concentration.

    PubMed

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms.

  17. An in vitro atomic force microscopic study of commercially available dental luting materials.

    PubMed

    Djordje, Antonijevic; Denis, Brajkovic; Nenadovic, Milos; Petar, Milovanovic; Marija, Djuric; Zlatko, Rakocevic

    2013-09-01

    The aim of this in vitro study was to compare the surface roughness parameters of four different types of dental luting agents used for cementation of implant restorations. Five specimens (8 mm high and 1 mm thick) of each cement were made using metal ring steelless molds. Atomic Force Microscope was employed to analyze different surface texture parameters of the materials. Bearing ratio analysis was used to calculate the potential microgap size between the cement and implant material and to calculate the depth of the valleys on the cement surface, while power spectral density (PSD) measurements were performed to measure the percentage of the surface prone to bacterial adhesion. Glass ionomer cement showed significantly lower value of average surface roughness then the other groups of the materials (P < 0.05) which was in line with the results of Bearing ratio analysis. On the other side, PSD analysis showed that zinc phosphate cement experience the lowest percentage of the surface which promote bacterial colonization. Glas ionomer cements present the surface roughness parameters that are less favorable for bacterial adhesion than that of zinc phosphate, resin-modified glass ionomer and resin cements. Copyright © 2013 Wiley Periodicals, Inc.

  18. Immobilization of zinc phthalocyanines in silicate matrices and investigation of their photobactericidal effect on E. coli.

    PubMed

    Artarsky, Spas; Dimitrova, Stanislava; Bonnett, Raymond; Krysteva, Milka

    2006-03-26

    The aim of the present investigation was to immobilize zinc phthalocyanines in a silicate matrix and to test the photobactericidal properties of the matrices so prepared toward Esherichia coli in model aqueous media. For the purpose, tetra tertiary butyl zinc phthalocyanine (TBZnPc) and zinc phthalocyanine tetrasulfonic acid (ZnPcTS) were used. The abilities of these two photosensitizers to generate singlet oxygen in solution were compared by following the rate of photobleaching of 1,3-diphenylisobenzofuran (DPBF) at 430 nm in dimethylformamide (DMF). The results of this study show clearly that, under the conditions used here, the TBZnPc is the more effective generator of singlet oxygen; with it the DPBF was virtually completely photobleached in 4 min, while with the ZnPcTS under the same conditions, it took 12 min to reach this point. Glass conjugates with the two phthalocyanines were obtained by the sol-gel technique and were characterized by a well-defined color due to the phthalocyanine incorporated in the silicate matrix. Glasses with an intense, but inhomogeneous, green color were obtained when the tetrasulfonic derivative of the zinc phthalocyanine was used, while blue glasses of evenly distributed coloration were formed from the tetra tertiary butyl derivative. The ZnPcTS conjugate demonstrates more effective singlet oxygen evolution than is the case with the TBZnPc conjugate. These results are the opposite of those obtained for the free phthalocyanines in solution. The structural formulae of the compounds show that TBZnPc has a more pronounced hydrophobic character than the sulfonic derivative. In our view, the relative reactivities of the conjugates can be explained by the tetrasulfonic derivative being situated mainly in the surface parts of the glass matrix where the hydrophilic character is prevailing, while the tertiary butyl derivative is mainly present in the internal parts of the matrix as a result of which it is less accessible and therefore less

  19. Histochemical detection of lead and zinc in plant tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, G.; Temple, P.J.

    1975-01-01

    Histochemical studies on uptake and localization of lead and zinc in plant tissues were carried out. A histochemical stain technique was developed to differentiate zinc from lead. Lead was detected in plant tissues by soaking fresh plant materials in freshly prepared sodium rhodizonate stain (0.2% Na rhodizonate acidified to pH3 with glacial acetic acid). Samples were evacuated 5 min and soaked for 30 min before embedding in the congealed stain, then sectioned with a cryostat and examined under a light microscope. Lead particles in plant tissues were stained scarlet-red. Gelatinous, proteinaceous or saccharic embedding materials normally used to prepare plantmore » sampled for sectioning in the cryostat interfered with the color reaction. Sectioning plant samples without staining whole tissues resulted in a weakened response to the stain. Color of stained sample materials were retained for several months if stored in a frozen condition. This technique was used to detect lead both inside and on the surface of plant samples collected in the vicinity of highway and industrial lead sources and to trace the pathways of lead uptake from the air or from contaminated soils. A sodium rhodizonate technique was also developed to be specific for zinc in plant tissues. Plant samples were soaked in a neutral Na-rhodizonate in phosphate buffer at pH 7.5 for observation. The color of zinc developed to produce a purplish or reddish-brown color.« less

  20. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzistavrou, Xanthippi, E-mail: x.chatzistavrou@imperial.ac.uk; Kantiranis, Nikolaos, E-mail: kantira@geo.auth.gr; Kontonasaki, Eleana, E-mail: kont@dent.auth.gr

    2011-01-15

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independentmore » of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.« less

  1. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  2. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    PubMed

    Panpisut, Piyaphong; Liaqat, Saad; Zacharaki, Eleni; Xia, Wendy; Petridis, Haralampos; Young, Anne Margaret

    2016-01-01

    This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM), tristrontium phosphate (TSrP) and antimicrobial polylysine (PLS). The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine. Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt%) and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM). The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF) were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained. Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64%) but was always higher than that of Z250 (54%). Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7%) followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa. The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and help

  3. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage.

    PubMed

    Hemilä, Harri

    2017-05-01

    To compare the efficacy of zinc acetate lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of zinc acetate found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as zinc acetate lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further.

  4. New laser glass for short pulsed laser applications: the BLG80 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    George, Simi A.

    2017-03-01

    For achieving highest peak powers in a solid state laser (SSL) system, significant energy output and short pulses are necessary. For mode-locked lasers, it is well-known from the Fourier theorem that the largest gain bandwidths produce the narrowest pulse-widths; thus are transform limited. For an inhomogeneously broadened line width of a laser medium, if the intensity of pulses follow a Gaussian function, then the resulting mode-locked pulse will have a Gaussian shape with the emission bandwidth/pulse duration relationship of pulse ≥ 0.44?02/c. Thus, for high peak power SSL systems, laser designers incorporate gain materials capable of broad emission bandwidths. Available energy outputs from a phosphate glass host doped with rare-earth ions are unparalleled. Unfortunately, the emission bandwidths achievable from glass based gain materials are typically many factors smaller when compared to the Ti:Sapphire crystal. In order to overcome this limitation, a hybrid "mixed" laser glass amplifier - OPCPA approach was developed. The Texas petawatt laser that is currently in operation at the University of Texas-Austin and producing high peak powers uses this hybrid architecture. In this mixed-glass laser design, a phosphate and a silicate glass is used in series to achieve a broader bandwidth required before compression. Though proven, this technology is still insufficient for the future compact petawatt and exawatt systems capable of producing high energies and shorter pulse durations. New glasses with bandwidths that are two and three times larger than what is now available from glass hosts is needed if there is to be an alternative to Ti:Sapphire for laser designers. In this paper, we present new materials that may meet the necessary characteristics and demonstrate the laser and emission characteristics these through the internal and external studies.

  5. Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Pervukhina, A. M.; Mokhov, A. V.; Malkovsky, V. I.; Stefanovsky, S. V.

    2017-04-01

    In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na-Al-P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.

  6. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies

    NASA Astrophysics Data System (ADS)

    Meißner, Tobias; Oelschlägel, Kathrin; Potthoff, Annegret

    2014-08-01

    The increasing use of zinc oxide (ZnO) nanoparticles in sunscreens and other cosmetic products demands a risk assessment that has to be done in toxicological studies. Such investigations require profound knowledge of the behavior of ZnO in cell culture media. The current study was performed to get well-dispersed suspensions of a hydrophilic (ZnO-hydro) and a lipophilic coated (ZnO-lipo) ZnO nanomaterial for use in in vitro tests. Therefore, systematic tests were carried out with common dispersants (phosphate, lecithin, proteins) to elucidate chemical and physical changes of ZnO nanoparticles in water and physiological solutions (PBS, DMEM). Non-physiological stock suspensions were prepared using ultrasonication. Time-dependent changes of pH, conductivity, zeta potential, particle size and dissolution were recorded. Secondly, the stock suspensions were added to physiological media with or without albumin (BSA) or serum (FBS), to examine characteristics such as agglomeration and dissolution. Stable stock suspensions were obtained using phosphate as natural and physiological electrostatic stabilizing agent. Lecithin proved to be an effective wetting agent for ZnO-lipo. Although the particle size remained constant, the suspension changed over time. The pH increased as a result of ZnO dissolution and formation of zinc phosphate complexes. The behavior of ZnO in physiological media was found to depend strongly on the additives used. Applying only phosphate as additive, ZnO-hydro agglomerated within minutes. In the presence of lecithin or BSA/serum, agglomeration was inhibited. ZnO dissolution was higher under physiological conditions than in the stock suspension. Serum especially promoted this process. Using body-related dispersants (phosphate, lecithin) non-agglomerating stock suspensions of hydrophilic and lipophilic ZnO were prepared as a prerequisite to perform meaningful toxicological investigation. Both nanomaterials showed a non-negligible dissolution behavior

  8. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    PubMed

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  10. [Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].

    PubMed

    Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin

    2005-03-01

    To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.

  11. Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement.

    PubMed

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Tim F; Toledano, Manuel

    2014-11-01

    Matrix metalloproteinase (MMP) inhibition may improve endodontic treatment prognosis. The purpose of this study was to determine if zinc incorporation into experimental resin cements containing bioactive fillers may modulate MMP-mediated collagen degradation of dentin. Human dentin samples untreated and demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (OSspray, London, UK), (3) resin with beta-tricalcium silicate particles (βTCS), (4) resin with zinc-doped Bioglass 45S5, and (5) resin with zinc-doped βTCS particles. The specimens were stored in artificial saliva (for 24 hours, 1 week, and 4 weeks) and submitted to radioimmunoassay to quantify C-terminal telopeptide. Scanning electron microscopy analysis was also undertaken on dentin samples after 4 weeks of storage. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced MMP activity in demineralized dentin. Resin containing Bioglass 45S5 particles exerted higher and stable protection of collagen. The presence of zinc in βTCS particles increases MMP inhibition. Different mineral precipitation was attained in dentin infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced after resin infiltration of dentin. Zinc incorporation in βTCS particles exerted an additional protection against MMP-mediated collagen degradation. However, it did not occur in resin containing Bioglass 45S5 particles, probably because of the formation of phosphate-zinc compounds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  13. Zinc

    MedlinePlus

    ... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...

  14. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  15. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering.

    PubMed

    Der, Bryan S; Edwards, David R; Kuhlman, Brian

    2012-05-08

    Here we show that a recent computationally designed zinc-mediated protein interface is serendipitously capable of catalyzing carboxyester and phosphoester hydrolysis. Although the original motivation was to design a de novo zinc-mediated protein-protein interaction (called MID1-zinc), we observed in the homodimer crystal structure a small cleft and open zinc coordination site. We investigated if the cleft and zinc site at the designed interface were sufficient for formation of a primitive active site that can perform hydrolysis. MID1-zinc hydrolyzes 4-nitrophenyl acetate with a rate acceleration of 10(5) and a k(cat)/K(M) of 630 M(-1) s(-1) and 4-nitrophenyl phosphate with a rate acceleration of 10(4) and a k(cat)/K(M) of 14 M(-1) s(-1). These rate accelerations by an unoptimized active site highlight the catalytic power of zinc and suggest that the clefts formed by protein-protein interactions are well-suited for creating enzyme active sites. This discovery has implications for protein evolution and engineering: from an evolutionary perspective, three-coordinated zinc at a homodimer interface cleft represents a simple evolutionary path to nascent enzymatic activity; from a protein engineering perspective, future efforts in de novo design of enzyme active sites may benefit from exploring clefts at protein interfaces for active site placement.

  16. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic.

    PubMed

    de Carvalho, Rodrigo Furtado; Cotes, Caroline; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa Pereira; Özcan, Mutlu

    2015-01-01

    This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.

  17. Nd : glass rod laser with an output energy of 500 J

    NASA Astrophysics Data System (ADS)

    Shaykin, A. A.; Kuzmin, A. A.; Shaikin, I. A.; Burdonov, K. F.; Khazanov, E. A.

    2016-04-01

    The energy of two orthogonally polarised pulses injected into an available multistage amplifier based on neodymium phosphate glass rods was increased from 300 to 500 J (in both pulses). The second output pulse with an energy of 200 J will be used to pump an additional parametric amplifier of a petawatt laser.

  18. Corrosion resistance and in-vitro bioactivity of BaO containing Na2O-CaO-P2O5 phosphate glass-ceramic coating prepared on 316 L, duplex stainless steel 2205 and Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-03-01

    The phosphate glass with composition 11Na2O-15BaO-29CaO-45P2O5 was coated on biomedical implant materials such as stainless steel 316 L, duplex stainless steel (DSS) 2205 and Ti6Al4V alloy by thermal enamelling method. The structural properties and composition of glass coated substrates were studied by x-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) analysis. The coatings were partially crystalline in nature with porous structure and pore size varied from micro to nanometer range. The polarization curve was obtained for uncoated and coated substrates from electrochemical corrosion test which was conducted at 37 °C in Hank’s balanced salt solution (HBSS). The corrosion resistance of 316 L substrate increased after coating, whereas it decreased in case of DSS 2205 and Ti6Al4V. The XRD and SEM/EDS studies indicated the bioactive hydroxyapatite (HAp) layer formation on all the coated surfaces after electrochemical corrosion test, which improved the corrosion resistance. The observed electrochemical corrosion behavior can be explained based on protective HAp layer formation, composition and diffusion of ions on glass coated surfaces. The in-vitro bioactivity test was carried out at 37 °C in HBS solution for 14 days under static conditions for uncoated and coated substrates. pH and ion release rate measurements from the coated samples were conducted to substantiate the electrochemical corrosion test. The lower ion release rates of Na+ and Ca2+ from coated 316 L supported its higher electrochemical corrosion resistance among coated samples. Among the uncoated substrates, DSS showed higher electrochemical corrosion resistance. Amorphous calcium-phosphate (ACP) layer formation on all the coated substrates after in-vitro bioactivity test was confirmed by XRD, SEM/EDS and ion release measurements. The present work is a comparative study of corrosion resistance and bioactivity of glass coated and uncoated

  19. Growth study of self-assembled GaN nanocolumns on silica glass by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liudi Mulyo, Andreas; Konno, Yuta; Nilsen, Julie S.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge; Kishino, Katsumi

    2017-12-01

    We demonstrate GaN nanocolumn growth on fused silica glass by plasma-assisted molecular beam epitaxy. The effect of the substrate temperature, Ga flux and N2 flow rate on the structural and optical properties are studied. At optimum growth conditions, GaN nanocolumns are vertically aligned and well separated with an average diameter, height and density of 72 nm, 1.2 μm and 1.6 × 109 cm-2, respectively. The nanocolumns exhibit wurtzite crystal structure with no threading dislocations, stacking faults or twinning and grow in the [0 0 0 1] direction. At the interface adjacent to the glass, there is a few atom layers thick intermediate phase with ABC stacking order (zinc blende). Photoluminescence measurements evidence intense and narrow excitonic emissions, along with the absence of any defect-related zinc blende and yellow luminescence emission.

  20. Structural characterization of ZnCl2 modified tellurite based glasses

    NASA Astrophysics Data System (ADS)

    Dhankhar, Sunil; Kundu, R. S.; Punia, R.; Sunita, Parmar, R.; Sanjay, Kishore, N.

    2016-05-01

    Glass composition 70 TeO2-(30-x) BaO - x ZnCl2; x = 5, 10, 15, 20 and 25 have been prepared by rapid melt quenching technique under controlled atmospheric conditions. Amorphous nature of the samples was confirmed by x-ray diffractogram. The glass transition temperature (Tg) has been determined using differential scanning calorimetry (DSC) and its value is observed to decrease with increase in ZnCl2 content. The peaks in the Raman and FTIR spectra have been estimated by deconvolutation of the spectra and each of deconvoluted spectra exhibits several peaks. IR and Raman spectra of the present glass system indicate that TeO2 exists as TeO3 trigonal pyramidal (tp), TeO4 trigonal bipyramidal (tbp) and TeO6 polyhedra structural units. With increase in zinc halide content, transformation of some of TeO4 structural units into TeO3 structural units is observed Increase in TeO3 structural units shows that non-bridging oxygen contribution increases which confirms the decrease in glass transition temperature.